
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 50

1981
NATIONAL

COMPUTER
CONFERENCE

AFIPS
CONFERENCE
PROCEEDINGS

1981
NATIONAL

COMPUTER
CONFERENCE

May 4-7, 1981

Chicago, Illinois

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1981 National Computer Confer
ence or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 81-65717
AFIPS PRESS

1815 North Lynn Street
Arlington, Virginia 22209

© 1981 by AFIPS Press. Copying is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) reference to the AFIPS
Proceedings and notice of copyright are included on the first page. The title and
abstract may be used without further permission in computer-based and other
information-service systems. Permission to republish other excerpts should be

obtained from AFIPS Press.

Printed in the United States of America

This edition of the Proceedings of the National Computer Conference is dedicated to J. Presper Eckert and
to the late John W. Mauchly, whose pioneering efforts extended the frontiers of technology for the good of
all mankind.

iii

Preface
ALBERT K. HAWKES

1981 NCC Chairman

The National Computer Conference is an institution of the
U.S. computer industry. Each year at the NCC, thousands
representing companies, government agencies, and univer
sities gather, and a forum is provided for hundreds of them.
Much of what occurs is of course ephemeral, a great deal is of
current and very practical value, and some lasts for many
years. The Proceedings of the NCC is a principal element of
that set of things from the conference with lasting value.

This 1981 Conference Proceedings, the fiftieth volume in
the series, is an exhibit of the labors of Dr. Alex Orden,
Program Chairman of the 1981 NCC. The myriad of details
connected with organizing a program of this scope are treated
in Professor Orden's introduction, and the reader will be wise
to use that section as a road map before beginning to traverse
the extensive volume. Authors of papers appearing here have
contributed a greatet deal also, as have referees, session or
ganizers, panelists, and other presenters of information at the
conference whose contributions could not be made fully ap
parent in this volume. Another person who must be men
tioned is the one who shepherded production of this Pro
ceedings, Elizabeth G. Emanuel of AFIPS Press; her work
was excellent and in keeping with the fine tradition at AFIPS
established by Nelle W. Morgan many years ago.

It is an honor to prepare this preface to the lasting record
of the 1981 NCC. In the same sense, it also is a rare privilege
to be Conference Chairman. Having served on the NCC Com
mittee starting nearly ten years ago, and serving as its chair
man for two years covering the first and second NCCs, I did
induce a number of friends and colleagues to serve as confer
ence chairmen-Stephen S. Yau in 1974 and Carl Hammer in
1976. Thus it was a signal duty this year to try to put a National
Computer Conference together for the Chicago area, which
has been my home for the best part of my life.

One realizes early in planning an NCC that appointing a
strong and able Conference Steering Committee is the only
way to assure that this NCC institution can renew itself each
year. These competent and willing volunteers who put this
NCC together include Drs. Orden, Yau, and Hammer and
Richard B. Wise (Director of Operations), Marvin W. Ehlers

v

(CSC Secretary and Special Projects Manager), M. Mildred
Wyatt (Communications and Promotion), Sam Papa (Per
sonal Computing, whose cochairman James Gerdes produced
a companion PC Digest, which complements this volume for
NCC '81), George Eggert (Professional Development Semi
nars), Fred Harris (Special Activities, including a very great
step forward in NCCs by improving access to the conference
for handicapped persons), Robert C. Spieker (NCC Liaison),
Charles W. Schmidt (NCC '81 Fiscal Officer), Raymond Dash
and Anthony S. Wojcik (the two Chicago area Vice-Chairmen
of Professor Orden's Program Committee serving on the NCC
'81 CSC), Joseph Leubitz (Registration), and Forest May
berry (Conference Facilities). Serving ex-officio on the CSC
over the two years that work was done on this conference and
its planning were many AFIPS staff members. Principal
thanks are due particularly to Paul J. Raisig, Executive Direc
tor; James H. Kroell, Director of Conferences, and his prede
cessor Gerard Chiffriller; Betty Lou Cooke, Conference Man
ager, and her predecessor Carol Sturgeon; Sam Lippman,
Conference Operations Manager; and Christopher Hoelzel,
AFIPS Press Manager. In addition, when trying to think of
those who contributed a great deal to this conference and to
establishing another mark in a excellent tradition, two of my
mentors from the National Computer Conference Committee
should be named. Over many years, Dr. MortonM. Astrahan
and Jerry L. Koory stand out for their encouragement, sup
port, and kindly advice given freely.

The idea of the NCC as an institution, which I mentioned
previously, does remind one of what Benjamin Disraeli said
over a ceritury ago: "Individualities may form communities,
but it is institutions alone that can create a nation." This great
nation is known for its industry, and there are few more telling
examples of American ingenuity producing something good
and possibly great than what computer science and technology
are today. The NCC, as an institution, has helped computing
in the United States and in the world. May it go on, ever
eclipsing those of us honored to be part of the tradition, so
that NCCs always serve what is best in the U.S.A.

Introduction
ALEX ORDEN

1981 NCC Program Chairman

Since 1951 the National Computer Conferences have pro
vided a forum for presentation of advances on all fronts of the
computer field: research, development, and application. The
Proceedings of the meetings give an unparalleled history of
the field.

The Proceedings of 1976 include an interesting memoir by
Herb Grosch on the history of the conferences, entitled
"Conference Maketh a Ready Man, or Twenty-Five Years in
the Better Joints." From 1954 to 1972, except in 1965, there
were two conferences a year. From time to time the name has
been changed-from 1951 to 1981 the series has consisted of

2 Joint Computer Conferences
1 Western Computer Conference
9 Eastern Joint Computer Conferences
8 Western Joint Computer Conferences
10 Spring Joint' Computer Conferences
11 Fall Joint Computer Conferences
9 National Computer Conferences

-50 in all.
In recent years important developments in the history of

digital computation have been commemorated by conference
sessions and other special events on a day designated "Pioneer
Day." This year's theme for that day is the completion 30
years ago of the first UNIVAC I system. Two historic events
thereby coincided: (1) The emergence of computers from the
laborator~7 machines of those days into the marketplace
marked the birth of the computer industry. (2) Since the
UNIVAC was the first machine designed for data processing
rather than for mathematical computation, its development
was the first major step toward the enormous development in
computer-based data processing that has since occurred. It's
all too easy in the 1980's to overlook the difficulties and
doubts that had to be overcome back then. On that account,
this volume is dedicated to J. Presper Eckert and the late John
Mauchly, whose vision in the development of the UNIVAC
made possible the penetration of computers into almost every
field of human endeavor.

For 30 years, as the computer industry and the computer
field have become ever larger and more complex, the National
Computer Conferences have had a unique role in bringing
together the computer R&D community, industry representa
tives, educators, application and facility systems analysts, DP
managers, and end users to survey ongoing developments and
examine new directions. Each year the formation of a new
Program Committee sets the stage for a fresh assessment of
trends in the field and an independent effort to assemble a
well-balanced program. Drawing on several hundred paper
submissions and session proposals-some invited by the mem
bers of the Committee, some independently submitted-the
Committee sets up a program, which tends to consist of about
one-third refereed papers, which appear in the Proceedings;
one-third prepared talks on topics that do not lend themselves
well to formal publication; and one-third panel discussions on
trends and opinions.

vi

For this year's NCC, in order to provide a framework in
which all aspects of the computer field might be considered,
the Program Committee was initially organized (about a year
before the Conference) as five groups, each covering a wide
area: (1) computer hardware and architecture, (2) software,
(3) information processing management, (4) applications, and
(5) social and economic implications. We knew of course that
some important topics would straddle two or more of these
areas. Indeed, as development of the program progressed,
some members of the Committee freely ignored the area
boundaries.

The identification of significant current trends emerged in
part when we converted the initial five broad areas into a
ten-track program. In the hardware/architecture area we
found emphasis on microcomputer design, on developments
in microprogramming, and on fault-tolerant computing; and
from that general area we spun off five sessions as a separate
track on network technology, with developments in local nets
predominant. In the software area we found a strong emphasis
on reliability, software validation techniques, and quality con
trol. From software we extracted a six-session track on data
base systems, with emphasis on distributed databases. In in
formation processing management we developed coordinated
groups of sessions on DP project management, on manage
ment of transitions to new technology and methodology, on
application systems audit and quality control, on the DP pro
duction process, and on personnel; and we formed a separate
five-session track, Capacity and Performance Analysis. In the
Applications area we separated out a track called Visuals,
Natural Language Processing, and Artificial Intelligence,
leaving-under the rubric Computers at Work-sessions in
such still budding application areas as law, hospitals, energy,
and simulation modeling. Since there seemed to be no clear
dividing line between sessions on diverse issues in computer
education and sessions on computer-related social issues, and
since most social issues have much to do with the diffusion of
knowledge, we formed a track called Education and Societal
Issues. Finally, although there is now an annual AFIPS Con
ference on Office Automation, those rapid developments
should nevertheless be included in the NCC. Therefore we
provided the track entitled Automating the Office.

The published record of recent advances in the computer
field, as seen at NCC '81, resides in the papers appearing in
this volume. Since there was much more to the Conference, a
condensed view of the entire program-in the "Conference at
a Glance" form that appeared in the Program Brochure-is
attached to this introduction.

It has been a challenging experience to coordinate this
complex activity. It would not have been possible without
the devotion and hard work of the Program Committee, the
referees of the papers, and the AFIPS staff. Their names
appear elsewhere in this volume. I particularly thaJ;lk Liz
Emanuel, who managed the editorial work on the Proceedings
at AFIPS with great competence; and Martha Evens of the
Illinois Institute of Technology, who joined me in dealing with
the refereeing and selection of papers.

MOllDAY, MAY 4-DTIODL COMPUTEB COD'lBlRCE
PBlNCIPAL TRACKS 1:30 to 3:00 PM 3:18 to 4:48 PM

KABDWABE& 1.1 Design Tools for System 1.2 Innovative Architecture &

ARCHITECTUBE Architectures Commercial Computers
George Kraft Krishna M. Kavi

NETWORK TECHNOLOGY 2.1 ~ansport and Session Protocols in
2.2 Packet Speech .AND the Context of the ISO Reference

CAPACITY & Model Danny Cohen

PEllFOlUll1A:NCE ANALYSIS Leslie Jill Miller

~ 3.1 Programming Languages for Small 3.2 Software Development Tools
SOF'l'WABE 0 Systems R. Stockton Gaines

0 Leon Levy
.:4 ...
0

INFOlUllATION 0 4.1 System Implementation Strategy 4.2 Audit and Control in a Database 0 PROCESSING ... Ken Zoline Environment
MANAGEMENT

~
Steven Ross

i 8.1 Survey and Comparison of Model B.2 Joint Business-University
EDUCATION & fil Curricula for Information Systems Professional Development and
SOCIEBL ISSUES

=
Education Research Programs
ThomasHo Robert A Rouse

~

AUTOl4A!l'ING THE OFFICE ~ 6.1 Integrated Word- and Data- 6.2 Office Automation Technology:
.AND

PI Processing Systems Futures
COMPUTEBS M WORK Robert Elliott James Carlisle

DAn BASE SYSTEMS 7.1 Distributed Database Management 7.2 Database Machines
.AND Systems -~ansaction C. Robert Carlson

COMPUTEBS M WORK Environment
James Swager

VISUALS, NMUllAL S.l Image Analysis S.2 Pictorial Database Models & Query LANGUAGE PROCESSING K. S. Fu Languages & ARTIFICIAL
INTELLIGENCE K. S. Fu

vii

TUESDAY, MAY B -RHI0DL COmuBB COBrIBlRm:
PBllITCIPAL TB.ACKS 8:30 to 10:00.All 10:1B to 11:4B .All

HABDWAllE& 1.3 Microprocessor Architectures- 1.4 Perspectives on the History of
ARCHITECTURE What Next? Computing

K. Vairavan and Tadao Ichikawa Paul Armer

NETWOBIC TECHNOLOGY 2.3 Local Networks and the ETHEBlfET in 2.4 Local Networks and the ETHElllIET in
.AND Particular (I) Particular (II)

CAPACITY &
PERI'OllllllAl'lCE .ANALYSIS

Gregory T. Hopkins Gregory T. Hopkins

3.3 l!'u.nctional Capabilities of Dictionary 3.4 Operating Systems
SOI'TWABE Systems Joseph Leung

Belkis Leong-Hong

INJ'O:a:JlllMION 4.3 Technology Transfer: 4.4 Planning for Technology Transfer
PROCESSING Management Issues Robert Scheer
MANAGEMENT Conrad Weisert

EDUCA!l'ION & B.3 Computers and the Future of Literacy B.4 Issues Concerning National Computer

SOCIEDL ISSlJE8 Frederick Goodman Literacy in 1988
Robert Seidel

AUTOMATING THE OFFICE 8.3 Word Processing in Litigation & 8.4 Computer Applications in Law Firm
.AND Information RetrieVal Management

COMPlJTEB.8 M WOBIC Haley Fromholz Haley Fromholz

DAB BASE SYSTEMS 7.3 Distributed Database Architecture 7.4 Database Practicum
.AND Hal Uhrbach Susan Rosenbaum

COMPlJTEB.8 M WOBIC

VISUALS, NATl1RAL 8.3 Intelligent Computer-Aided 8.4 Computer-Based Educational Aids
LANGUAGEPBOCESSING
& AllTIFICIAL Instruction Arthur Melmed

INTELLIGENCE Mark Fox

1:30 to 3:00 PM 3:1B to 4:4B PM

1.B Fault-Tolerant Computing Systems 1.8 Contemporary Fault-Tolerant
Gerald Masson Computer DeSigns

Wllliam C. Carter

2.B Management of Capacity Planning 2.8 Network Capacity Planning
Leonard Lipner Jeffrey A Bloom

3.B Software Reliability in Real-Time 3.8 PASCAL: Standardization and Extension
Systems A Wmsor Brown
Bharat Bhargava and David Clapp

4.B Implementing Technology Transfer 4.8 Systems Assurance: A Step Beyond
Denny O. Wallace EDPAudit

James Krause
PLENARY SESSION
12:00 NOON-l:00 PM

B.B Effects of Computers on Personal Life B.6 Where is the Story'?: A Journalists
Abbe Mowshowitz Panel on Trends in Computing

Brad Schultz

8.B Simulation of Natural Systems 8.8 Future Office Systems
Roger M. Firestone Tom Sinopoli

7.B Research & Development in 7.8 Database Systems Advances in
Distributed Database Systems Medical Systems
Cory Devor Meera Blattner

8.B Communicating with Computers in 8.8 Communicating with Computers in
Natural Languages- Natural Language -Future Promises
Current Capabilities Norman K. Sondheimer Martha Evens

viii

WlDBlSDAY, MAY 8 -ITA!IOBAL COMPUDB COlUIURCI
PBINCIPAL TRACKS 8:30 to 10:00 .AlII 10:18 to 11:48.AM

HABDWAllE& 1.7 Microprogramming -The Challenge of 1.8 Microprogramming-The Challenge of

AllCHITECTUBE
the 1980's (I) the 1980's elI)
Samir S. Husson Samir S. Husson

lIE'rWOBX TECHNOLOGY 2.7 Capacity Planning in a Production 2.8 Simulation of Computer Systems:
AND Environment Software & Hardware

CAPACrrY& James Cooper Norman Schneidewind
PEBFO:a:MAlfCE ANALYSIS

3.7 Software Maintenance 3.8 Quantitative Measures for the Quality
SOl!"rWJUlE Stephen S. Yau of Systems and Programs

Carma McClure

Il'O'OllllllATION 4.7 Production Process in the Eighties 4.8 Business Communication; Security &
PROCESSING Russ Melton Vulnerability
MANAGEMENT John Donovan

EDVC.A!rION & 8.7 Protection of Proprietary Interests 8.S Planning Agenda for a National Health

SOCIB~ ISSVES in Software Information System
Susan Nycum Marion Ball

A~MMING THE OITICE 6.7 Combining Office Automation and Data 6.8 l!'orm Processing in the Office
AND Processing- Environment

COMPUTED A7 WOlUC Its Technology and Usefulness Mitch Zolliker
Dan Zatyko

D.eA BASE SYS'rBMS 7.7 The Impact of Computing on the 7.8 Simulation: A Tool for Business
.Al.'f]) Handicapped in the Eighties Decision-Making

COMPUTED A7 WOBX Samuel C. Lee Suresh K. Jain

VISUALS, NA7VRAL 8.7 Artificial Intelligence Applications to 8.8 Prospects fOr Artificial Intelligence
LANGVAGE PROCESSING Electronic Circuit Design Application in Industry
& AEl'D'ICIAL Tom Mitchell N. S. Sridharan
INTELLIGENCE

1:30 to 3:00 PM 3:18 to 8:18 PM

1.9 Higher Level Microprogramming 1.10 Higher Level Microprogramming
Languages and Optimization (I) Languages and Optimization (II)
Bruce Shriver Bruce Shriver

2.9 Special Session: Pioneer Day- 2.10 Special Session: Pioneer Day-
Univac I Univac I
Carl Hammer Nancy Stern and Henry Tropp

3.9 Maintenance of Programs & Systems 3.10 Software Development :Facilities
Ned Chapin Louis Brocato

4.9 Data Entry Productivity 4.10 Special Project Management
Lawrence Feidelman Clllton Merry

PLENAllY SESSION
12:00 lfOON-1:00 PM

8.9 Private Sector Policy Issues on the 8.10 Alternative Data Processing
Vse of Computer Technology in the Strategies for Hospital Information
Healthcare Industry Systems
Karen Duncan David Mishelevich

6.9 Definition & Measurement of 6.10 Electronic Mail: Current
Application Software Productivity Developments
Benn Konsynski Walter IDrich

7.9 Computer-Assisted Analysis in 7.10 Large Scale Database Applications
EnergylBconomic Models Eugene Kozik
Harvey Greenberg

8.9 Imaging & Computers 8.10 Educational Vses of Personal
Computers

Diana Merry Michael Tempel

ix

!IIUBSDAY, MAY 7-RA'lIODL COMPUDB COD'lUBcm
PBIl'fCIPAL TRACKS 8:30 to 10:00.Alll 10:lB to 12:1B PM

HABDWABE&
1.11 Adaptable Architectures 1.12 Architecture of Specialized Hardware

ARCHITECTURE
Svetlana Kartashev and Systems
Steven I. Kartashev William E. Farley

Nl!lTWOBX TECHNOLOGY 2.11 Implementations of Experimental 2.12 Local Networks: The Fundamental .AND
CAPACITY &

Local Networks Technology of Office Automation

PEBI'OBlIIlANCE .ANALYSIS William Lidinsky Harvey Freeman

3.11 Quality Assurance -An Emerging 3.12 The User Interface
SOJ'TWABE Technology Howard Lee Morgan

Gene Altshuler

INI'OlUlllMION 4.12 ReCruitment, Retention, &

PROCESSING 4.11 Motivation of Computer Personnel Certification of Data Processing

MANAGEMEl'f'.r J. Daniel Couger Professionals
Thomas A Browdy

EDUCATION & B.ll Computer Professional as an Expert B.12 Library & Business Computer Use:
SOCIEBL ISSUES Witness What's the Difference?

Alex Hoffman Peter Iukos

AUTOlIlA'l'ING THE OITICE 8.11 The Electronic Office: A Futuristic 8.12 Office Automation: The Federal
.AND Forecast Experience

COMPUTERS.M WOBX Richard Federico Ira W. Cotton

DAm BASE SYSTEMS 7.11 Computing & Energy Technology 7.12 Automated Testing for Increased
.AND Assessment Productivity

COMPUTERS.M WOBX Ellen M. Leonard Leonard Gardner and John Savage

VISUALS, NMURAL 8.11 Recent Computer Advances in 8.12 Applications of Artificial
LANGUAGE PROCESSING Legislative Reapportionment Intelligence to Law
& AIlTIJ'ICIAL
INTELLIGENCE Lee Papayanopoulos L. Thorne McCarty

.
PBIl'fCIPAL TBACKS 1:30 to 3:00 PM 3:1B to 4:4B PM

HABDWABE& 1.13 Single Chip Computers - Where Are 1.14 The Application of Peripheral Array

ARCHITECTURE
They Headed? Processors
K. S. Padda Walter J. Karplus

Nl!lTWOBX TECHNOLOGY 2.13 Use of Models in Capacity Planning .AND
CAPACITY & Satish K. Tripathi 2.14

PEBI'OBlIIlANCE .ANALYSIS

3.13 The Public Release of Smalltalk-80 3.14 Computer-Based Tools for Software &
SOJ'TWABE Daniel H. Ingalls, Jr. Systems Engineering

Gerald Estrin and Ray Houghton

INFOlUIIIMIOlf 4.13 user Requirements Analysis 4.14 A Survey of Project Management
PROCESSING Raymond Yeh Software Packages
MANAGEMElVT Linda Taylor

EDUCATION & B.13 Developing Software Engineers in B.14 Developing Software Engineers in
SOCIEBL ISSUES Industry the Universities

Pei Hsia Frederick E. Petry

AUTOlIIIMING THE OITICE 8.13 Choosing a Computer Language for a
.AND First Problem-Solving Course 8.14

COMPUTERS M WOBX Robert J. McGlinn

DAm BASE SYSTEMS 7.13 Computing Applications in Magnetic 7.14 Computational Methods in Inertial
.AND Fusion Energy Research Confinement Nuclear Fusion

COMPUTERS M WOBX John T. Hogan Keith A Taggart

VISUALS, NMUllAL 8.13 Expert Systems and Xnowledge
LANGUAGE PROCESSING Engineering 8.14
& AIlTIJ'ICIAL
INTELLIGENCE N. S. Sridharan

x

CONTENTS

Preface v
Albert K. Hawkes

Introduction vi
Alex Orden

COMPUTER HARDWARE AND ARCHITECTURE

Software sympathetic chip set design. 3
Richard F. Hobson

A computer-aided VLSI layout system . 11
W. A. Dees, K. M. Parmar, A. Goyal, R. Y. Tsui, B. D. Rathi, and R. J. Smith, II

A multiprocessor description language. 19
William T. Overman, Stephen D. Crocker, and Vittal Kini

Fault tolerance by means of external monitoring of computer systems. 27
Algirdas Avizienis

The fault-tolerant 3B-20 Processor. 41
L. E. Gallaher and W. N. Toy

Firmware engineering: Methods and tools for firmware specification and design. " . 49
Wolfgang K. Giloi, Reinhold Gueth, and Bruce D. Shriver

New directions for micro- and system architectures in the 1980s 57
Harold W. Lawson, Jr.

Microprogramming-The challenges of VLSI. 63
Alice C. Parker and Wayne T. Wilner

Vertical and outboard migration-A progress report. 69
Andrew Heller and Andries van Dam

Firmware testing and test data selection. .. 75
Helmut K. Berg

Specifying target resources in a machine independent higher level language. 81
Scott Davidson and Bruce D. Shriver

The design of a firmware engineering tool: the microcode compiler. 87
Perng-Yi Ma

Microcode compaction: Looking backward and looking forward. 95
Joseph A. Fisher, David Landskov, and Bruce D. Shriver

V -Compiler: A next-generation tool for microprogramming. 103
Dave Patterson, Ross Goodell, Michael D. Poe, and Simon G. Steely, Jr.

Adaptable pipeline system with dynamic architecture ~ . 111
Svetlana P. Kartashev and Steven I. Kartashev

Modular crossbar switch for large-scale multiprocessor systems-Structure and implementation. 125
Bernhard Quatember

Some potential deadlocks in layered communications architectures. 137
Joseph Hellerstein and Wesley W. Chu

General-purpose integrated indexing circuits-A proposal. 141
A. C. D. de Figueiredo

xi

The VALl (Variable Language Interpreter) 145
James D. Mooney

The architecture of MANIP-A parallel computer system for solving NP-
complete problems .. '.' . 149

Benjamin W. Wah and Y. W. Ma

Parallel sorting machines: Their speed and efficiency. 163
Leon E. Winslow and Yuan-Chieh Chow

NETWORK TECHNOLOGY

Packet communication of online speech. 169
Danny Cohen

Highlights of a group effort in algorithmic development for packet-switched voice networks. 177
J. D. Markel

A modular approach to packet voice terminal hardware design. 183
G. C. O'Leary, P. E. Blankenship, J. Tierney, and J. A. Feldman

Engineering computer network (ECN): A hardwired network of UNIX computer systems. 191
Kai Hwang, Benjamin W. Wah, and Faye A. Briggs

A protQ.~QI for a new double-loop computer network and its implementation. 203
S. Leventis, G. Papadopoulos, S. Koubias, and J. Constantinides

ILLINET -A 32 Mbits/sec. local-area network. 209
W. Y. Cheng, S. Ray, R. Kolstad, J. Luhukay, R. Campbell, and J. W-S. Liu

SOFTWARE

A survey of currently implemented Pascal extensions. 217
T. N. Turba and S. H. Costello

A standard tool for information resource management .. : 225
Michael E. Meyer

SAGA: A system to automate the management of software production , 231
R. H. Campbell and P. G. Richards

The development facility approach to improved software development .. 235
David W. Johnson

CARL-Experience of an application using clusters. 241
E. Levinson, L. S. Levy, and J. B. Salisbury

The software configuration management database 249
Edgar H. Sibley, P. Gerard Scallan, and Eric K. Clemons

EUCLID-A language for compiling quality software. 257
David B. Wortman, Richard C. Holt, James R. Cordy, David R. Crowe, and Ian H. Griggs

The design and implementation of a new UNIX kernel. 265
Charles Crowley

A security policy for a profile-oriented operating system. 273
Charles R. Young

Distributed task force scheduling in multi-microcomputer networks . 283
Andre M. van Tilborg and Larry D. Wittie

The assignment of computational tasks among processors in a distributed system . 291
Camille C. Price

Software reliability in real-time systems. 297
Bharat Bhargava

A state- and time-dependent error occurrence-rate software reliability model with imperfect debugging. 311
J. G. Shanthikumar

xii

On the complexity of measuring software complexity... 317
G. Michael Schneider, Robert L. Sedlmeyer, and Joe Kearney

Quantitative measures of MIS quality assurance during hardware conversion ~~ . 323
John W. Center

Taking the measure of program complexity . 329
Jean Cochrane Zolnowski and Dick B. Simmons

Salvaging your software asset (tools based maintenance). 337
Michael J. Lyons

Maintenance is a management problem and a programmers--opportunity. 343
John Reutter, III

Productivity in software maintenance. .. 349
Ned Chapin

Improving software testing in large data processing organizations. 353
M. A. Holthoase and C~ W £. Lybrook

Compiler validation-An assessment. 361
George N. Baird and L. Arnold Johnson

An approach to transfer verification and validation technology . 367
Mark K. Smith, Leonard L. Tripp, Leon J. Osterweil, Richard N. Taylor, and William E. Howden

Easy interactive access to batch image analysis software. 375
Ronald L. Danielson

A unified approach to online assistance ... ; 383
Nathan RelIes, Norman K. Sondheimer, and Giorgio Ingargiola

An experimental system to support a very high level user interface 389
William L. Batchelor and Lucian J. Endicott, Jr.

Principles of good software specification and their implications for specification languages. 393
Robert Balzer and Neil Goldman

Modular documentation: A software development tool. 401
Roy E. Anderson

Specification technique for parallel processing: Process-data representation . 407
Ken Hirose, Kiyoshi Segawa, Nobuo Saito, Norihisa Doi, Masahiro Hirata, Toshiharu Yamasaki,

and Masayuki Takata

A tiny portable language-independent macroprocessor and some applications. 415
Robert C. Gammill

CAPACITY AND PERFORMANCE ANALYSIS

Finite queueing approximation techniques for analysis of computer systems. 423
Dimitris A. Protopapas

Throughput-response measurements in a distributed CAD/CAM processing network. 431
J. R. Rao and W. L. Hanna

DATABASE SYSTEMS

Effective inference control mechanisms for securing statistical databases. 443
Vangalur S. Alagar, Bernard Blanchard, and David Glaser

Using partitioned databases for statistical data analysis. 453
Ruven Brooks, Meera Blattner, Zdzislaw Pawlak, and Eamon Barrett

Development of an automatic sleep EEG analysis and staging system . 459
M. W. Vannier, E. Othmer, S. Othmer, and P. Fishman

xiii

Embedding an information system within a generalized network environment. 463
Darrell L. Ward

The design of the Clinical and Research Information System for Psychiatry. 469
Ruven Brooks

A concurrency control algorithm in a distributed environment. 473
Paul Decitre

An alternative approach to distributed database updating. 481
Richard J. Greene

Multibase-integrating heterogeneous distributed database systems . 487
John Miles Smith, Philip A. Bernstein, Umeshwar Dayal, Nathan Goodman, Terry Landers,

Ken W. T. Lin, and Eugene Wong

Architecture of a distributed database information resource. 501
James R. Swager

Optimization of the file access method in content-addressable database access machine (CADAM) , 507
Sadayuki Hikita, Haruaki Yamazaki, Kiyoshi Hasegawa, and Yutaka Matsushita

Parallel sort and join for high speed database machine operations. 515
Mamoru Maekawa

Highly parallel associative search and its application to cellular database machine design . 521
Sakti Pramanik

A generalized database access path model . 529
_Georges S. Nicolas

Database programming with data abstractions. 537
Burt Leavenworth .

Feature analysis of selected database recovery techniques. 543
Bharat Bhargava and Leszek Lilien

Data compression procedures utilizing the similarity of data. 555
Yahiko Kambayashi, Narao Nakatsu, and Shuzo Yajima

INFORMATION PROCESSING MANAGEMENT

Choosing application development tools and techniques . 565
V. Kevin Whitney and Jane G. Morse

A software requirements analysis and definition methodology for business data processing. 571
Isao Miyamoto and Raymond T. Yeh

A methodology for information system design. 583
Colette Rolland

EDUCATION AND SOCIETAL ISSUES

CSDP: A model for continuing education in data processing. 593
Dennis M. Oliver, Robert A. Rouse, and Robert J. Benson

People teaching people: A cooperative education venture. 597
Edwin F. Kerr

Computers and the future of literacy. : . 601
Frederick L. Goodman

COMPUTERS AT WORK

Keeping CAl humane in the humanities. 605
Helen J. Schwartz

xiv

The effects of computers on library staff and users: How can the administrator cope? . 609
Richard W. Boss

Libraries as local database producers ... ; . . 613
Robin Crickman

Data files as library materials: Policies, procedures, and politics. 617
Richard C. Roistacher

Computerized weighted voting reapportionment. 623
L. Papayanopoulos

Hospital information systems tutorial: A guide for computer scientists and practitioners. 631
David J. Mishelevich

VISUALS, NATURAL LANGUAGE PROCESSING, AND ARTIFICIAL INTELLIGENCE

Issues in the development of natural language front-ends. 643
James Hendler, Thomas P. Kehler, Paul Roller Michaelis, Brian Phillips, Kenneth M. Ross,

and Harry R. Tennant

Text-critiquing with the EPISTLE system: An author's aid to better syntax. 649
Lance A. Miller, George E. Heidorn, and Karen Jensen

Shifting to a higher gear in a natural language system . 657
Bozena Henisz Thompson and Frederick B. Thompson

Computer speech for people with cerebral palsy '" 663
Jay Hewitt

GRASS3, a language for interactive graphics. 665
Nola Donato

VISION II: A dynamic raster-scan display .. " . . . 671
Robert Rocchetti

The development of the reactor safety film .. 677
Nancy N. Sheheen and Patrick J. Hodson

The MODEL/IMAGES2 system: An application of computer graphics and three-dimensional
geometric modeling to the jet impingement problem. 681

W. R. Winfrey and S. R. Ricketts

The applications of artificial intelligence to law: A survey of six current projects. 689
Sandra Cook, Carole D. Hafner, L. Thorne McCarty, Jeffrey A. Meldman, Mark Peterson,

N. S. Sridharan, James A. Sprowl, and D. A. Waterman

An automated reasoning system '.' . 697
L. Wos, S. K. Winker, and E. L. Lusk

xv

COMPUTER HARDWARE
AND ARCHITECTURE

Software sympathetic chip set design

by RICHARD F. HOBSON
Simon Fraser University
Burnaby, British Columbia

ABSTRACT

The current status of special function unit (SFU) use in micro
computer systems is reviewed. Also outlined are areas where
more sophisticated SFUs can be used to improve low- and
high-level software environments in a microcomputer system.
A structured machine model is presented to help containerize
and control classes of software and hardware artifacts.

INTRODUCTION

With the 1980's com~s an era wherein hardware modularity,
specialization, and structure are closing in on the software
territory of the 1970's. To simplify and speed up complex
microcomputer software systems, more functionality and con
trol are being packaged in hardware or firmware controlled
specialized function units (SFUs). SFUs are appearing either
as isolated performance enhancement devices or as part of an
announced chip set. Ad hoc microcomputer hardware module
expansion may lead to more of the architecture irregularities
plaguing software engineers. To avoid this, we should look
seriously at architectures based on a coherent structure of
such modules.

In this article we review the current status of SFU use in
microcomputer systems. We also outline areas where more
sophisticated SFUs can be used to improve low- and high
level software environments in a microcomputer system. To
this end, a model system is described. The model is partially
motivated by an evaluation of the potential of a scientific
arithmetic processor chip relative to a typical first-generation
microcomputer (see Appendix I). While a performance factor
increase of 3 or 4 was expected, the actual factor was closer to
10. More recently, the Intel 8087 has raised this factor to 100.
Speed notwithstanding, we must strive to avoid strikingly
awkward software sequences, whether to perform operations
on data types that are not natural to a microprocessor (e. g. ,
floating-point data) or to interface one chip with another. One
cannot just glue LSI chips together and retain, at the VLSI
level, the same software appeal that each chip may have en
joyed individmilly.

3

The status of language-oriented computer design is briefly
reviewed in Appendix II.

CURRENT TRENDS

LSI specialized function units have become the dominant
choice for arithmetic processing, flo"ppy- and hard-disk con
trol, CRT refresh and control, communication protocol,
DMA control, and memory management.' Single-chip com
puters with on chip ROM and RWM also fall into this catego
ry. The latter are best suited for small dedicated tasks. 2 With
such "support staff" potential, a central processor can have
more time to execute higher-level control functions for an
operating system or an application package. Code sections
will also be shorter, more to the point, and more reliable.

The latest microprocessors have been enhanced in a variety
of ways over their precursors. 3

-
7 Prominent 16-bit contenders

portray traditional register architecture philosophy more than
HLL architecture philosophy (see Table I). Their new bus
sharing protocols are significant because mUltiple SFUs can be
set up with a variety of processor interconnection schemes.

The main mode of communication between microproces
sors and special devices is via 110 sequences of the type de
scribed in Appendix I (see also Wakerly8). The next most
common mode would be a message buffer, with cooperating
processors either sharing the same buses or separated by bus
arbitration hardware. 9 Ultimately we would like to be able to
configure a microcomputer system with a collection of SFUs
in such a way that the instruction set can be dynamically
expanded to include new functions. The Inte18086's ESCAPE
mechanism is such a technique.

What we have seen so far is a packaging of clearly identi
fiable functions. What is not clearly identifiable as a function,
notably high-level program and environment control, has
been left over for the general-purpose microprocessor and the
programmer. The next step is to identify hardware control,
program control, data control, operating system control, and
language interpretation as functional areas; hence potential
candidates for LSI modules. Research is needed to iron out
communication and high-level language/environment support
problems before functional module unification will be
achieved.

4 National Computer Conference, 1981

TABLE I-Some architecture features employed
in prominent new LSI microprocessors

Processors
Features 18086 M68000 Z8000

Base relative addressing T T T
Memory management F New chip New chip
Memory segmentation Partial Partial Partial

(New chip, New chip)
Multiprocessor bus T T
Dedicated coprocessors T F
State marking (on stack) F T
Unused opcode trap F T
Opcode expansion F Via trap
Supervisor state F T
Floating-point instructions F To come
Floating-point processor New chip F
Channel processor New chip F
Instructions/data separate Optional Optional

TOWARD A PHILOSOPHY FOR CHIP SET
SPECIALIZATION

T
F
T
T

Via trap
T
F
F
F

Optional

Basic computer organization is often introduced in terms of
logical functional units for input, output, memory, arithmetic

/ and logic, and control. In general we do not think of these
units as constituting a multiple-processor or distributed
processor machine. Nor, for the most part, do we care. Enter
LSI technology. Now digital systems must be packaged as
functional units for cost effectiveness and design simplicity.

How should the logical functions be disttibuted? What
range of functions is relevant?

Since high-level-language (HLL) notation is the preferred
way to describe an application, one technique is to identify
separable activities that all or many HLLs require for run
time support. These requirements may then influence the
resulting architecture,1O but only part of the architecture.
Since languages are simply tools, we should not look exclu
sively at their requirements. Some applications have require
ments that may not be adequately representable with known
HLLs. Text editing or word processing, for example, have
data structure and real-time interaction requirements that are
difficult to describe effectively with conventional HLL tech
niques. Real-time operating system functions also form a spe
cial class. We have heard it said that a semantic gap often
exists between machine architecture and programming lan
guage features. 39 It is also clear that such a gap exists for
programming environments as well. It is the total pro
gramming environment that should be considered when de
signing a multiple-processor chip set-hence, computer archi
tecture that is oriented to a high-level-programming environ
ment rather than to an HLL.

Traditional logical partitioning remains essentially valid. It
is the degree of specialization, the sophistication of instruc
tions, and the physical separation of units that is outdated. To
begin with, input and output belong to one (or more) separate
processor modules, as do other specialized operations. A pro-

gramming environment is also destitute without sophisticated
memory management. Finally, for control, the environment
should be managed by a small real-time control processor. To
illustrate, consider a specialized unit model (SUM.4) con
sisting of four units: environment control unit (ECU), pro
gram management unit (PMU), data management unit
(DMU), and arithmetic/logic processor unit (ALPU). They
represent an SFU system hierarchy, as depicted in Figure 1.
The following subsections describe some of the functions re
quired for these units to support an HLL-oriented pro
gramming environment. The main objectives are

1. To reduce the complexity of system software by provid
ing a variety of high-level functions as software primi
tives or built-in tasks

2. To promote structured machine design
3. To provide better single user run-time support for a

variety of high-level languages and real-time applica
tions

ECU

The environment control unit provides operating system
functions and high-level I/O interpretation (see Table II).

A small real-time operating system runs in the ECU, the
application control system (ACS). ACS contains fixed tasks
for all devices that may be attached to SUM.4, e.g., for net
work control, console graphics, or editing. Provision must be
made for transient or user support tasks that may be required
to augment the functional capabilities of ACS for different
applications-in particular, high-level-language 110 inter
pretation tasks. Interface "pipes" or tasks for PMU and DMU
communication are important parts of ACS.

ECU architecture must be oriented toward variable interval
interrupt servicing and I/O translation needs. Many of the
existing microprocessors have appropriate features for an
ECU, but in terms of LSI rather than VLSI. A user micro
grammable or custom VLSI ECU could contain firmware for
a complete operating system nucleus.

/
/

/
/

/

1 __ -"---,

I support'
for I
PMU I

I ------ -

PMU

ALPU

Figure I-Block diagram showing the SUM.4 hierarchy

PMU

The program management unit is unique in terms of current
microcomputer architecture in that it is the first of several
possible processors that may contribute to the interpretation
and execution of user code.

In an interpretive mode (e.g., for debugging or supporting
a language such as APL), some internal form of the source
code is fetched from segment memory (SM), checked for
syntax errors, and translated into formatted, directly executed
language (DEL) instructions for the DMU to execute. Oper
ations modifying the execution environment, such as pro
ure call, are partially handled by the PMU.

The value of a separate PMU is not so clear for compilable
languages. However, if we can get enough overlap between
interpretation and execution of a: compilable language, there
is little reason to compile. Interpreters permit advantages,
such as interactive debugging.,. execution environment protec
tion, and run-time recovery~ that cannot reasonably be
matched by compilation. Microprocessors have been success
fully used to interpret UCSD P-code machine instructions. 36

This experiment gives confidence that two or more "simple"
processors with appropriate firmware can be very efficient at
interpreting a suitably chosen intermediate form of Pascal, an
easily compiled language. Greater benefits should result from
more COinplicated languages. The key phrase· here is "suitably
cnosen intermediate form." As long as run-time errors can be
trapped and tied to the offending source statement expression
through "reverse compilation," compilation per se is toler
able. Thus, even for compilable languages, thePMU can play
an important role.

PMU activities are language-oriented. For multilingual sup
port a user microprogrammable processor is required. This
processor needs to manipulate code streams and communi
cate effectively with segmented memory. Additional special
function support may be added to the PMU (s~e Figure 1).

DMU

A data management unit is mainly responsible for control
ling operations on various data aggregates. Instructions or
instruction bursts are normally fetched from the PMU inter
face. If the DMU is equipped to execute them directly, it does
so; otlwrwise DMU a£tion -eenteFs around providing 0fJefiH*l
data for the ALPU or ECU to manipulate. Before operation
execution is permitted, operand validity must be checked.
Such verification is facilitated by the US€, -ef data tags.

DMU and PMU design requirements are similar: Both are
language dependent; both manipulate data aggregates (as
suming that various forms of a program constitute data aggre
gates). The same processor architecture may thus be used for
DMU and PMU units; only their microcode is different.

ALPU

Arithmetic and logical functions that the DMU cannot han
dle efficiently are provided by one or more specially designed
units constituting the ALPU. This unit should operate only on

Software Sympathetic Chip Design

TABLE II-A possible partitioning of functions performed by
various specialized units

ECU
-Task initiation (with PMU).
-Single-step control (with PMU).
-User command interpretation.
-Service special events (e.g., errors).
-HLL data formatting.
-Peripheral communication.
-Special device control (e.g. graphics).
-Text. editing and command input.
-Real-time clock control.
-Execute I/O subtasks.
-Load microcode.
-test other modules.

PMU
-Interpret HLL programs (or a suitable intermediate form).
-Execute procedure CALLs.
-Establish environments, manage tasks.
-Help maintain segmented memory.
-Service exceptional conditions.

DMU
-Execute DEL instruCtions from the PMU or ECU interface.
-Verify data operations (e.g., bounds checking).

5

-Manipulate operand data for the ECU and ALPU.
-Perform some functionil operations (e.g., data rearrangements).
-Help maintain segmented memory.
-Report conditions to PMU.

ALPU
-The usual scientific calculator functions.
-Logical functions on strings.
-Adjust automatically to data size change (necessary for APL).

atomic or scalar items and need not have memory--accessing
skills if the DMU interface is properly designed. The Intel
8087 is a good example of functional sophistication in this
class, but it is too dependent on the Intel 8086.

SM

Segmented memory is not treated as a separate unit in this
seeRafio. Memory modeling is, however, an impOitant con
sideration in the quality of a programming environment.
Variable-length containers for procedures and data aggre
gates greatly -simplify run time memory management firm
ware. Beyond that, segments can be associated witl4>roPeity
lists for database content identification and protection. SM
interfacing functions are divided among the DMU and PMU
in SUM.4. Memory management is an integral part of inter
pretation, whereas a separate system is required to be inter
faced with compiled code.

The unit interface

A number of multi microprocessor communication schemes
have been described in the literature. 9

, 12-15 For system modu-

6 National Computer Conference, 1981

program EXI (output);
const H = 34; D = .0625; S = 32.; L = 32;

SEPARATOR = '-----------------';

procedure PLOT (var XS, YS: real;
var XO, LIM: integer);

const TWOPI = 6.28318;
var X,Y: real; I, N: integer;
begin for I: = 0 to LIM do

begin X: = XS*I;

end;

Y: = EXP (- X)*SIN (TWOPI*X);
N: = ROUND (YS*Y) + XO;
repeat WRITE (' '); N: = N -1;
until N =0;
WRITELN ('*');

end; {plot}

Figure 2-Pascal program example (see text)

larity and simplicity, I recommend using two or three port
memories with an asychronous wait when there is memory
contention. Semaphores can be implemented by having a
"hog" mode, permitting a processor to retain memory selec
tion beyond one cycle. There are no bus contention problems
with this model. Memory port multiplexing can be combined
with refresh control and address translation in one cascadable
LSI module.

Messages are received indirectly by poling status word lo
cations or directly through signal interrupts.

Example

To work with Pascal a user asks the ECU to load the Pascal
firmware/software assist package (or it may be loaded implic
itly). Figure 2 shows a simple Pascal program adapted from
Jensen and Wirth. 17 The program causes a damped sine wave
to be plotted along a vertical axis according to supplied scaling
parameters. A source operand recoverable, internal format is
used to store the program. Variable name literals are stored
in a master symbol table for run-time recovery.

The ECU conveys execution requests to the PMU, which
then sets up an execution environment, allocates variables,
initializes values, and begins sending code to the DMU. An
implementer would probably use individual segments for data
aggregates such as sets, arrays, and records, whereas scalars
would be kept in the variable-length program segment. Envi
ronments for more complicated languages can easily be man
aged.

Built-in procedures such as WRITE and WRITELN are
implemented through a task in the ECU. More interesting 110
procedures, such as a plot package, might be entirely imple
mented through the ECU. This facility permits a smooth in
terface between language, environment, and hardware.

There are many interesting implementation problems to be
solved. For example, should I, the FOR loop variable in
Figure 2, bE! incremented and tested by the PMU or the
DMU? Control is simpler if the PMU performs decision-mak
ing operations and maintains iteration counters. This means
that control variables, such as I, can only be modified by the

DMU with the PMU's permission. We see an opportunity
here to improve program structure by distinguishing control
from action.

To implement time-shared multitasking, timekeeping
duties go to the ECU, which notifies the PMU to switch
environments. In this case task maintenance is a PMU re
sponsibility.

Implementation

Once an instruction set has been chosen, implementation
details are irrelevant to most users. In a research environ
ment, one favors microprogrammability because new primi
tives can easily be added to upgrade a unit. With custom chip
fabrication nearing the grasp of lower-volume applications,
we can visualize chip sets designed specifically to support a
structured architecture. 18, 19 As wafer-scale integration be
comes economical, we will probably see the equivalent of
these chip sets laid out as individual modules on a single
wafer. Indeed, large hardware projects, like large software
projects, must be divided into a number of coherent pieces
with well-defined interfaces. In the VLSI era, multiple-pro
cessor systems will be essential for design simplicity as well as
for greater throughput.

With modular hardware design, units can be developed by
teams of specialists without relying heavily upon each other.
Prototype modules can be implemented on a single PC board
with the intention of gradually combining them into a single
hybrid package and finally onto one chip.

CONCLUSION

The current proliferation of microcomputer hardware needs a
focus. As a greater variety of SFUs are produced, we will be
faced with organizational problems such as befell software in
the past decade. The remedy? Structured architecture. We
should think of hardware as a kind of petrified production
software system. Hardware design therefore qualifies for all
of our software engineering experience.

A structured model has been presented to help containerize
and control classes of software and hardware artifacts. I am
present)yengaged in building a SUM.N (N = 4-6) prototype
to study performance, function distribution, communication
techniques, and language/environment support.

ACKNOWLEDGMENTS

Research support from NSERC of Canada and from a Simon
Fraser University President's Research Grant is gratefully ac
knowledged.

APPENDIX I-THE CASE FOR SPECIALIZATION

Specialized LSI processor chips have been available for sever
al years. Only recently, however, have microprocessor ven-

dors begun to realize their potential. This section compares
the performance of an Intel 8080A microprocessor (MP) with
that of Advanced Micro Devices' Arithmetic Processor Unit,
the AM951 1.20, 21 Floating-point addition is the benchmark
operation. This exercise demonstrates the desirability of LSI
special function units because they are much faster than
general-purpose processors of the same technology and be
cause, with a well-designed interface, software problems can
be greatly reduced.

Benchmark data have a 24-bit normalized (sign magnitude
form) binary mantissa and a 7-bit 2's complement exponent.
FADD, our 8080A floating-point addition subroutine, con
tains 263 instructions (loops were avoided for speed) and
assembles into 361 bytes of code. Operand pointers for the
expression Z = X + Yare passed in stream following the
CALL. The simplest cost formula for FADD, assuming two
positive numbers, can be represented as follows:

Entry overhead and setup
Fetch X
Overhead
Fetch Y
Comparison of exponents and

overhead
Assuming exp X - exp Y = N,

adjust Y N bits

Operation overhead
Mantissa addition (no carry)

Mantissa addition (carry)

Store results
Exit overhead

typical add

"Fastest" add (without
argument passing)

76 (8080A clock
233 cycles)
32

233

113

93N + 52 (align
mantissas)

102
125 (no

renormalization)
225 (1 bit

renormalization)
231

41

1286 (carry, but no
alignment shift)

509 clock cycles

F ADD is neither expressive nor conceptual, and it is certainly
not software-sympathetic. Fetching the operands requires
eight successive sequences of the form

LDAXB
STAXD
INXB
INXD,

consuming 24 clock cycles each. With a block move instruc
tion the movement should only require 10 clock cycles per
byte, i.e., five cycles each direction (the 8080A does a two
byte POP in 10 cycles and a two-byte PUSH in 11 cycles I9

).

This leads to an improvement factor of 2.4 for operand han
dling. Another awkward operation for the 8080A is the calcu
lation of 2's complement overflow, although most MPs do
include an overflow flag.

For a contrast to the above, consider Advanced Micro De
vices' Am9511 arithmetic processing unit (henceforth, the
APU). This chip is made from similar N -channel silicon gate
MOS technology and is rated at the same clock speed (2
MHz). The APU has an 8-by-16- or 4-by-32-level cascading

Software Sympathetic Chip Design 7

TABLE III-A summary of AM 9511 instructions

(Single, double, floating): ADD, SUB, MUL, DIV.
(floating): SORT, SIN, COS, TAN, ASIN, ACOS, ATAN, LOG,

LN, EXP, PWR.
(other): NOP

FIXS (convert top of stack [TOS] to single precision
integer),

FIXD (convert TOS to integer double), FLTS, FLTD,
CHSS (change sign of integer single on TOS), CHSD,

CHSF,
PTOS (push integer single TOS to NOS etc.), PTOD,

PTOF,
POPS (pop integer single NOS to TOS etc.), POPD, POPF,
XCHS (exchange integer single NOS with TOS), XCHD,

XCHF,
PUPI (push floating point constant pi onto stack).

arithmetic stack in reverse Polish notation calculator tradi
tion. As can be seen from Table III, an impressive list of fixed
or floating-point operations are available in comparison to an
MP instruction set. Floating-point addition for the APU has
a listed execution time range of 56--350 clock cycles (not
counting argument passing). The lower figure is comparable
to our above figure for the fastest add (not counting argument
passing), 509 clock cycles. At the other extreme, the APU can
do any addition within 350 clock cycles. Our benchmark re
quires up to 2748 clock cycles to add two positive numbers,
including a 23-bit exponent equalization shift. If mixed signs
are permitted, renormalization requires an additional 126
cycles per bit. Not counting operand fetch and store (for
either unit), the APU is an order of magnitude faster than an
8080A at floating-point addition! The APU obtains this ad
vantage through an optimized register level architecture and
because irrelevant instruction fetches are avoided. Because
more storage, stack operations, and instruction fetches are
involved, other APU operations should also be considerably
faster than equivalent 8080A operations. Operand passing is
equally bad for both benchmarks because the 8080A was not
equipped for block data transfer. Recently, the Intel 8087
arithmetic processor stretched this difference in performance
by another order of magnitude!40

Chip Communication

The software interface for these units should be considered
as much a candidate for optimization as their operation logic.
A simple interface between an MP and our APU example
would be via 2 1/0 ports, as depicted in Figure 3. Binary
floating-point addition, using Zilog Z80 block move instruc
tions, may be represented as follows:

LDI
MVI
MVI
MOV

HL,X
C,PUSH#
B,4
D,B

;REG(HL) : = ADDR(X)
;REG(C) : = push port #
;REG(B) : = data precision
;save precision, block move is
;destructive

8

READY

INT

-
lACK

-
IN

OUT

Intel

SOSOA

National Computer Conference, 1981

data bus S

PAUSE

END Am 9511

lACK -
C/O

- WR CS RD

.ct
INT. VECTOR J (optional)

decode 2 I ENA
ports

S
J6

address bus

PORT C/O
- WR RD ACTION

PUSH
POP
COMMAND
STATUS

Figure 3-A simple I/O interface for the Intel 8080/A and the Am 9511

OUTIR
LDI
MOV
OUTIR
MVI
MVI
OUT
LDI
IN

MVI
MOV
INIR

HL,Y
B,D

A,PLUS
C,CTL#
(C),A
HL,Z
A,(C)

C,POP#
B,D

;move value of X to APU stack

;move value of Y to APU stack
;REG(A) : = APU operation code
;REG(C) : = control port#
;perform operation

;fetch status
;loop if busy
;REG(C) : = pop port #

;move results of X + Y to Z.

Although the above code will obtain floating-point addition
results faster than FADD, its appeal is lost because there is a
large semantic gap. 39 It bears little resemblance to the fact that
we are fetching X and Y for floating-point addition. Sym
pathetic software should provide a clean notational link be
tween application and hardware. It is sometimes possible to
fake hardware operations by using low-level software macros
and subroutines, but these constructions occupy more space
and take time to develop, maintain, and standardize.

Direct-memory access (DMA) chips are occasionally used
for speed and software improvement, but even with DMA the
above example requires a messy communication routine. Un
til very recently, support chips have not been designed to help
improve instruction notation or expressiveness. There are few
attempts to integrate their effects into the microprocessor's
instruction set.

Symbolic code for the statement Z = X + Y might cause a
compiler or an interpreter to produce reverse Polish notation
code:

PUSH X
PUSHY

FADD
POP Z.

Or, for a three-address format, the statement is already di
rectly executable. Leaving aside the virtues of direct HLL
execution, these forms are software-sympathetic. We expect
the MP to know who is responsible for executing such in
structions. We also expect the MP to know how to commu
nicate with the implied device. Intel's coprocessor technique
is a partial solution to this problem.21

A coprocessor monitors the system bus looking for a special
opcode called escape (ESC). Six bits within the two-byte ESC
sequence may contain a coprocessor opcode. ESC causes the
master processor to put an operand address on its address bus
and perform a memory read. The data so read can be used
immediately (e.g., PUSH) or may be ignored. Once selected,
the coprocessor drops its TEST line for synchronization with
the host. For continued coprocessor interaction, the main
processor must see aWAIT instruction following ESC. Once
activated, the coprocessor is free to access memory by putting
the main processor on HOLD through the bus request/bus
grant protocol.

Now consider the previous example using Intel 8086 assem
bler-type code with an arithmetic coprocessor (the Intel
8087):

ESC PUSH,X
WAIT
ESC PUSH,Y
WAIT
ESC FADD,AL
WAIT
ESC POP,Z

;send X to coprocessor.
;synchronize.

;request floating-point operation.

;deposit results.

The coprocessor technique is a much needed improvement
over our previous example. But we do not see any advantage
in having the coprocessor understand a complicated instruc
tion stream. Nor does it seem necessary for a coprocessor to
access memory itself. These irregularities can be removed
with an improved interface and an appropriate instruction set.

It is clear that SFUs will playa vital role in future micro
computer design. Coprocessors, SFUs in general, are still
more of an exception than a rule.

APPENDIX II-WHITHER LANGUAGE-DIRECTED
COMPUTER DESIGN?

High-level language features have been influencing computer
designers for some time. 23-3o Where are the results? In the
beginning, because there were no high-level languages, hard
ware technology dictated architectural features. In any case,
technology was not capable enough. By the time an HLL
exeGuting processor was considered feasible, register architec
ture had a firm grip on both ends of the commercial market,
namely IBM 360 and PDP 8. Already the enormous in
vestment in software exerted great pressure on IBM to remain
upward-compatible.

DEC had an opportunity to make revolutionary changes to
minicomputer architecture when they designed the PDP 11.
Indeed, software played a large role in that design, but not

HLL software. They were more interested in how easy it was
to write assembler code, how a compiler would produce ma
chine code, how a loader would work, how relocatable code
would be, etc. 31 The main uses of minis at that time were still
in laboratories. A register-oriented architecture was the dem
onstrated choice for data acquisition and process control ap
plications. So, while some improvements are visible, e.g.,
stack features and memory-to-memory operations, DEC soon
found themselves in the same hammerlock condition as IBM
and others. DEC's new VAX does exhibit several features
that are convenient for arithmetic expression evaluation, en
vironment control, and certain COBOL operations.

Microcomputers have repeated this history. 32 If it were not
for their simple architecture, the early microprocessors could
not have been produced on a single chip. The jobs they were
designed to fill were considered known a priori and suited a
simple register/stack environment. When the potential of a
microcomputer was finally realized, economic considerations
again prevailed. New products were simple extensions of pre
vious best sellers. For example, the Intel 8080 evolved from
the Intel 8008. Interfacing remained the main application.

Stacks provide the most widespread connection between
HLLs and machine design. 33

-
36 Notable in this area are the

Burroughs B5700, B6700, and B7700 series. More recent en
tries include the Hewlett-Packard 3000 and 300, the Micro
data 32/S, and the WD9000 by Western Digital. Micro
processors in general are beginning to exploit stack tech
niques, although not on the same scale as the above. Stacks
provide an efficient logical mechanism for run-time control of
block structured languages. Stacks also facilitate execution of
the Polish string representation of an arithmetic expression.
However, recent work shows that stack architectures are of
ten more convenient than optimaI. 39

.41.42

The SYMBOL computer is one of few HLL direct execu
tion machines to have been built. 37 Seven autonomous SFUs
perform program translation, Polish string execution, virtual
memory management, 110, etc. Programs tend to flow
through the machine in a pipelined fashion for greater
throughput. Results from this project firmly establish the fea
sibility of direct HLL execution. But the popularity of an HLL
is a delicate marketing issue. Although old languages tend to
fall into disfavor (although not disuse), new languages require
several years to reach the hearts of programmers. Current
trends in LSI technology indicate that a general-purpose ma
chine with fewer SFUs and a simpler architecture than SYM
BOL could be very successful.

Burrough's B1700 series was designed to interpret interme
diate-level languages through microprogrammed inter
preters.38 Great effort was expended to abolish fixed-length
word sizes and data formats at the hardware level. Instead,
variable-length bit strings can be mapped into any desirable
data structure. HLLs are supported through dedicated S-lan
guages, which rely upon the use of stacks and special storage
to-storage instructions. The B1700 demonstrates that HLL
oriented computers are commercially feasible. It also demon
strates the flexibility of microprogramming for switching from
one high-level environment to another. But as a latecomer to
the industry, its popularity is hampered by well-established
competition. Cost effectiveness is difficult to establish for ma
chines such as SYMBOL and B1700 because work units are

Software Sympathetic Chip Design 9

different. Benchmarks are hard to agree upon. Again, current
trends in LSI technology suggest that a combination of the
B1700 and SYMBOL architectures should be very effective
and practical.

Some microcomputers are dedicated to one HLL, for exam
ple MCM 900 and IBM 5100 APL machines. What matters
when working on a dedicated machine-or any machine, for
that matter-are implementation details affecting the pro
gramming environment arid response time. We are at a stage
now where specialized hardware units can be produced more
cheaply than ever. It seems inevitable that they will be used
to boost run-time efficiency in such machines.

What about new markets? If you consider ROM-controlled
microcomputers such as the Apple, Pet, and TRS-80 to be
HLL-oriented machines (many do), then HLL machines are
exploding into an as yet unlimited market. A chip set version
of SUM.4 would compete in this lower-cost but highly person
alized computer market.

SUM.4's underlying philosophy recognizes the need for en
vironments that support application programming in a variety
of HLLs. Interpretation of an HLL is considered essential for
debugging. During this phase speed is not a major factor
because the system is generally 1I0-bound. Hence direct exe
cution should exist at least as a software option. Once a pro
gram is ready for production use, it should become as much
an integral part of the environment as possible.This is difficult
to achieve even in a unilingual environment. Structured digi
tal system design can benefit from many historical architec
tural concepts, either globally or locally. What we need most
are more working models for quantitative comparison.

REFERENCES

1. Posa, John G. "Peripheral Chips Shift Microprocessor Systems into High
Gear." Electronics, 52 (1979), pp. 93-106.

2. Wakerly, John F. "Intel MCS-48 Microcomputer Family: A Critique."
IEEE Computer, 12 (1979), pp. 22-31.

3. Morse, Stephen P., William B. Pohlman, and Bruce W. Ravenel. "The
Intel 8086 Microprocessor: A 16-bit Evolution of the 8080." IEEE Comput
er, 11 (1978), pp. 18-27.

4. Stritter, Edward, and Tom Gunter. "A Microprocessor Architecture for a
Changing World: The Motorola 68000." IEEE Computer, 12 (1979), pp.
43-52.

5. Peuto, Bernard L. "Architecture of a New Microprocessor." IEEE Com
puter. 12 (1979), pp. 10-21.

6. McKevitt, James, and John Bayliss. "New Options from Big Chips. "IEEE
Spectrum, 16 (1979), pp. 28-34.

7. Stritter, Skip, and Nick Tredennick. "Microprogrammed Implementation
of a Single Chip Microprocessor." SIGMICRO Newsletter, 9 (1979). pp.
8-16.

8. Wakerly, John F. "Microprocessor Input/Output Architecture." IEEE
Computer, 10 (1977), pp. 26-33.

9. EI-Ayat, K. A. "The Intel 8089: An Integrated I/O Processor." IEEE
Computer, 12 (1979), pp. 67-78.

10. Allison, Dennis R. "A Design Philosophy for Microcomputer Architec
tures." IEEE Computer, 10 (1977), pp. 35-41.

II. Sites, Richard L. "How to Use 1000 Registers." Proceedings of the Caltech
Conference on VLSI, January 1979. pp. 527-532.

12. Swan, R. J., S. H. Fuller, and D. P. Siewiorek. "Cm*-A Modular Multi
microprocessor." AFIPS NCC Conf. Proc., 46 (1977), pp. 637-644.

13. Adams, George, and Thomas Rolander. "Design Motivations for Multiple
Processor Microcomputer Systems." Computer Design, 17 (1978), pp.
81-89.

14. Gonzalez, Mario J., Jr. "Future Directions in Computer Architecture."
IEEE Computer, 11 (1978), pp. 54-62.

10 National Computer Conference, 1981

15. Brinch Hansen. P. "Multiprocessor Architectures for Concurrent Pro
grams." ACM 78 Conf. Proc .. Washington. D.C. December 1978. pp.
317-323.

16. Denning. Peter J. "Virtual Memory." Computing Surveys. 2 (1970). pp.
153-189.

17. Jensen. Kathleen. and Niklaus Wirth. Pascal User Manual and Report.
New York: Springer-Verlag. 197~ J).-30.

18. Sutherland. Ivan E .. and Carver A. Mead. "Microelectronics and Comput
er Science." Scientific American. 237 (1977). pp. 210-228.

19. Mead. Carver. and Lynn Conway. Introduction to VLSI Systems. Addison
Wesley. 1980.

20. Osborne. Adam. An Introduction to Microcomputers. Vol. II. Berkeley.
California: Adam Osborne and Associates. 1976.

21. Am 951/ Specification Sheet. Advanced Micro Devices. 1977.
22. MCS-86 User's Handbook, Intel Corporation. October 1979.
23. McKeeman. W. M. "Language Directed Computer Design." AFlPS FlCC

Conf. Proc., 31 (1967). pp. 413-417.
24. Lawson. Harold W .• Jr. "Programming Language-Oriented Instruction

Streams." IEEE Trans. Comput., C-17 (1968). pp. 476-485.
25. McFarland. Clay. "A Language-Oriented Computer Design." AFlPS

FlCC Conf. Proc., 37 (1970). pp. 629-640.
26. Chu. Yaohan. ed. High-Level Language Computer Architecture. New

York: Academic Press. 1975.
27. Chu. Yaohan. "An LSI Modular Direct-Execution Computer Organi

zation." Computer. July 1978. pp. 69-76.
28. Tanenbaum. Andrew S. "Implications of Structured Programming For Ma

chine Architecture." CACM, 21 (1978). pp. 237-246.
29. Fadon. Emilio Luque, Lorenzo Moreno Ruiz. and Jose F. Tirado Fern

andez. "High-Level Languages Processor Architecture." Proc. ACM An
nual Conf., Seattle, Washington. October 1977. pp. 479-483.

30. Battarel. G. J .. and R. J. Chevance. "Design of a High-Level Language
Machine." AFlPS NCC Conf. Proc. (1979). pp. 649-655.

31. Bell. C. Gordon. J. Craig Mudge. and John E. McNamara. Computer
Engineering. Digital Press. 1978. p. 243.

32. Peuto. Bernard L., and Leonard J. Shustek. "Current Issues in the Archi
tecture of Microprocessors." IEEE Computer. 10 (1977). pp. 20-25.

33. Bullman. David M. "Stack Computers: An Introduction." IEEE Comput
er, 10 (1977). pp. 18-28.

34. Blake, Russell P. "Exploring a Stack Architecture." IEEE Computer
(1977). pp. 18-28.

35. The WD9000 Pascal MICROENGINE microcomputer chip set specifica
tion guide. Western Digital. 1978.

36. Bowles. Kenneth L. "UCSD Pascal: A (Nearly) Machine Independent
Software System." Byte, May 1978, pp. 46.170-173.

37. Laliotis. Theodore A. "Architecture of the SYMBOL Computer System."
In High-Level Language Computer Architecture. Yaohan Chu, ed. New
York: Academic Press, 1975. pp. 109-185.

38. Wilner. W. T. "Design of the Burroughs B1700." AFlPS FlCC Conf.
Proc., 41. pt. 1 (1972), pp. 489-497.

39. Meyers, Glenford J. Advances in Computer Architecture. John Wiley and
Sons. 1978.

40. Palmer, John, Rafi Nave. Charles Wymore. Robert Koehler, and Charles
McMinn. "Making Mainframe Mathematics Accessible to Microcom
puters." Electronics, 53 (1980), pp. 114-121.

41. Hoevel, Lee W. "'Ideal' Directly Executed Languages: An Analytical Ar
gument for Emulation." IEEE Transactions on Computers. C-23 (1974),
pp. 759-767.

42. Flynn, Michael J. "Directions and Issues in Architecture and Language."
IEEE Computer, 13 (1980), pp. 5-22.

A computer-aided VLSI layout system

by W.A. DEES, K.M. PARMAR, A. GOYAL, R.Y. TSUI, B.D. RATHI, and R.J. SMITH, II

University of Texas at Austin
Austin, Texas

ABSTRACT

The VLSI layout system is suggested as a practical approach
for solving large and complex problems introduced by today's
VLSI technology. Computer-based design aids are introduced
which are utilized to effectively reduce design· time and to
increase product quality. A hierarchical description of VLSI
circuits is utilized to partition the problem into manageable
tasks. Each phase of the VLSI chip design cycle is discussed
with special emphasis on layout techniques. The hierarchical
VLSI layout system is applicable to the design of "semi
custom" or master-slice VLSI circuits. The placement and
placement optimization portions of the proposed system have
been implemented. Routing and routing optimization tech
niques are currently being developed.

INTRODUCTION

As VLSI chips become increasingly complex, reliability re
quirements, costs, schedules, and a host of other factors dic
tate that traditional chip design techniques cannot be ex
pected to deal adequately with new requirements. It is pro
posed that future chips be designed using tools that promote
the orderly management of design complexity, including com
puter-based design aids that are substantially more capable
than those presently in use. This paper reports plans and
specifications for a computer-aided layout facility applicable
to the design of "semicustom" or master-slice VLSI circuits
containing up to several hundred thousand gate equivalents.

We focus on layout-related aspects of the design problem,
treating in only a peripheral manner other services and capa
bilities that would be required to reap maximum benefits from
such a design system. The reported VLSI design system is in
a preliminary stage. Software development has begun, and
relationships between requirements, needs, techniques, and
priorities are evolving rapidly. This plan defines what the
authors believe to be an effective approach to the layout of
VLSI chips. Though much remains to be resolved, the under
lying approaches and design philosophies are likely to be re
tained in a system that evolves from this early work.

We begin with an introduction to hierarchical VLSI design
methods, including a brief discussion of how these approaches

11

would be used prior to initial layout efforts. A model for VLSI
layout is then presented, based on specific computer-aided
layout capabilities. Preliminary specifications and designs for
each subsystem used in the layout procedures are then
developed.

PERSPECTIVES ON VLSI DESIGN

It is apparent that trends in IC fabrication technology are
leading to the capability of manufacturing chips that become
increasingly complex, at a rate that exceeds our ability t9
design. Clearly, these advances can be exploited fully only if
substantial gains in design productivity can be realized. In
deed, motivation for the facilities described in this plan is
derived from the need to rapidly decrease VLSI design costs.

One of the most effective methods for coping with a struc
turally complex situation is to decompose it in a hierarchical
fashion into a sequence of more manageable subproblems.
Application of this approach to VLSI chip design is one prac
tical way to deal with the rapidly growing complexity of most
chip design phases. VLSI design tasks can be partitioned into
manageable subtasks if the interrelationships between sub
tasks can be managed efficiently.

Hierarchical approaches to chip design must begin during
early phases of top-down planning and architecture-level
design. This work results in a chip (system) that can be re
presented as a collection of functionally distinct subsystems
along with appropriate interconnections between them. These
descriptions may at first be incomplete and extremely tenta
tive; but they represent preliminary partitions for each sub
tem, as well as interrelationships between subsystems. If no
standard design exists for a particular function, it can in turn
be considered a design subproblem. Functional decomposi
tion can be continued through as many design levels as are
required to arrive at functional elements that are composed of
and expressed completely in terms of basic cells that realize
common standard, functions. Note that the design level at
which this occurs has a substantial impact on overall design
costs: the use of relatively high-level, functionally complex
standard cells reduces the number of specially designed cus
tom subfunction elements that must be developed for a single
project.

12 National Computer Conference, 1981

PRODUCT
DEFINITION

Figure I-The VLSI design cycle

VLSI DESIGN CYCLE

Consider the sequence of stages through which a new VLSI
chip design must pass. These stages are described as distinct,
idealized steps, even though we recognize that in practice
VLSI designs evolve through iterative repetition of closely
coupled sets of stages (shown in Figure 1).

1. Product objectives are defined in terms of capabilities,
marketing considerations, and processing technology.

2. Development of high-level structural organization. Pre
liminary instruction sets, registers, data and control
paths, and other features that guide detailed design are
defined here. Subsequently, high-level design verifica
tion is performed. Modern VLSI designs exploit micro
programmed control and PLA replacements for random
logic. PLA and ROM contents are described here at an
abstract level.

3. Decomposition of the high-level design into functionally
distinct elements. Partitions are defined so that the
amount of information transferred between functional
elements is minimized, making each functional element
a distinct design subproblem that can be individually
verified for design correctness. Concurrently, the micro
programmed control and PLA designs are detailed.

4. Preliminary layout of each functional element involves
allocation of areas and shapes on the chip, based on
detailed layout and fabrication rules dependent on tech
nology.

5. Transformation of each functional element into large
collections of interconnected logic elements. Design ver
ification at this stage may consist of development of a

physical simulator (hardware pr~totype) or extensive
analysis using high-resolution simulators, or both; the
objective here is to verify, at the greatest level of detail
practical, that the design satisfies all applicable criteria.
Generation of test patterns for fault detection is easily
adapted to this stage of the VLSI design cycle, as is the
verification of the microcode.

6. Placement and interconnection of functional elements.
Detailed layout analysis, verification, and testing are
performed to insure that the physical design (masks)
accurately portrays the logic designs previously subject
to careful scrutiny.

HIERARCHICAL DESIGN METHOD

Hierarchical decomposition may be applied to most large-chip
design tasks. However, in this paper we are most concerned
with providing layout-related design services, so let us focus
on those aspects of the overall problem. The proposed com
puter-aided layout system is a collection of software tools that
aid the IC designer in dealing with the chip in a hierarchical
manner. The capabilities and services provided will allow
future VLSI chip designs to be achieved with short turn
around time, in a cost-effective manner.

The hierarchical design method consists of top-down circuit
partitioning followed by a bottom-up circuit layout. I This top
down design procedure insures that before a detailed layout of
bottom-level element is started, a good estimate of the size
and shape of the higher-level element is known. The hier
archical approach proposed here can greatly simplify place
ment and interconnection problems because of the relatively
small number of elements and interconnections to be consid
ered at each level of the hierarchy.

MODELS FOR VLSI LAYOUT

The implementation of the hierarchical structure in the design
of an IC chip is accomplished with the use of a structure tree.
The highest level of the tree is the chip, and the branches are
its constituent cells. Different levels in the tree correspond to
different levels of the hierarchy. At each level of the hier
archy, connecting constituent cells of a function requires the
internal descriptive information of the functional cell, which
is provided by an internal cell model. Placement and routing
are done for the constituent cells of a function whose external
cell model will be updated. The latter is required for inter
connection with other constituent cells of a higher-level func
tional cell.

External Cell Modell

The external cell model is used to define the external be
havior of a functional or generic cell. This is in turn a detailed
description of a set of placed and routed cells, viewed from
outside the boundary of the set of cells. At the lowest level of
the design hierarchy for an IC chip the generic cell or basic cell

from the cell library can be defined by its external model,
which is all that need be known for use in the layout of higher
levels. An external cell model for use in the hierarchical lay
out structure includes the following:

• External cell IDINAME. Cell part number, generic cell
type, dates of design and revision, designer's name, ver
sion number, technology and associated wiring rules,
pointers to data structures for the functional cell, and
boundary and I/O descriptions.

• Functional cell description. Functional behavior (such as
a flip-flop, RAM, or ALU) is recorded to aid in selection
of constituent cells for functional design during the de
sign process.

• Cell specifications and wiring rules. Cell specifications
parameterize the cell in terms of impedance, propagation
delay, fanout, and total power. Wiring rules govern e1ec
tricaland physical parameters by controlling the physical
realization of cells.

• Cell boundary description. Defined in terms of area, size,
shape (form factor), and number of layers.

• Cell liD description. Defines and locates all nodes on the
cell, including inputs, outputs, power, clocks, etc. Loca
tions of these nodes may not be fixed in the generic cell
description, thus permitting both interlayer and intra
layer node float. Such float permits flexibility in routing
and is finally reduced to zero by the router.

Internal Cell Modell

An internal cell model is required for the layout of its
constituent cells. During top-down design on an IC chip, the
sizes of the cells at each level in the hierarchy are not exact,
as their constituent cells are not precisely defined at the lower
levels. As the design proceeds to lower levels, more accurate
estimates of sizes of cells at higher design levels can be made.
During bottom-up implementation, cell sizes at higher levels
in the hierarchy are known, as their constituent cells have
been completely designed. An internal cell model must in
clude the following information:

• Cell block IDlname. A unique user-defined name or ID.
• Constituent cell list . All constituent cells at the next lower

level of the hierarchy. Each constituent is identified by its
unique ID/name. Note that a description of each cell can
be obtained from its external cell model.

• Net list. All nets needed to interconnect constituent cells
to form the new functional cell at the next higher level of
hierarchy. For each net, there is a list of nodes belonging
to that net.

• Wiring rules. Net routing is governed by a set of wiring
rules, such as maximum total length of the net, maximum
conductor width, and capacitance and parallelism limits.

• External physical and electrical characteristics. Describes
the completed design. Includes external boundary im
posed by the wiring rules, such as the separation between
the constituent cell and the functional cell boundary and
the geometries of the actual cell within the functional
cell. External electrical information about the cell in-

A Computer-Aided VLSI Layout System 13

IIh

C10

ell

C12

H1

V4 V6 ~:

CJ Normnl Cell

[Z]] Open-Area Cell

C i Cell It i"
Hi Hor i zon ta 1
Vi

Figure 2-A typical placement of cells and the corresponding polar graphs

c1udes total power dissipated within the cell, the strength
of cell external nodes, etc.

Polar Graph Modell. 10

To facilitate placement optimization and interconnection
routing, a layout is represented by a pair of mutually dual
graphs GAVx , Ex) and Gy{Vy, Ey), where Gx and Gy are
planar, acyclic directed graphs containing one source and one
sink. Each pair of edges (e/, e/) represents a rectangle with
X -dimension l(ex

i
) and Y -dimension l(e/) where l(e) denotes

the length associated with edge e. Since a cell is modeled as
a rectangular object and there exists a one-to-one correspon
dence between the edges of Gx and Gy , a pair of edges
(e/, e/) represents cell i. Parallel edges are allowed in the
dual graphs. Therefore, a vertex in the horizontal polar graph
represents a vertical channel between cells that are repre
sented by edges incident to and departing that vertex. Edges
incident to a vertex on the horizontal polar graph represent
cells which lie to the left of the vertical channel, while those
edges departing a vertex on the same graph represent cells
lying to the right of the vertical channel (see Figure 2).

SYSTEM ORGANIZATION

The support system nucleus and design file are two of the
major components accessed by the user. To provide error
checking and an orderly supervision and management of re
vision, these components are accessed only via database man
agement utilities, as represented by the enclosing dashed
lines. All major components of the VLSI design system are
illustrated in Figure 3. Descriptions of each major component
are subsequently provided.

The system centers on a common database, which is needed
to tie all the elements of the design together. This is the nucle
us of the system, which includes a cell reference library, de
sign files of previous designs, and the support software neces
sary to access, update, and manage these files conveniently.

14 National Computer Conference, 1981

CELL
REFERENCE
LIBRARY

PROBLEM
SPECIFIC
DESIGN FILES

SUPPORT
SOFTWARE

SUPPORT SYSTEM
NUCLEUS

CONTROL FILES

CELL
CUSTOMIZATION

CELL
DEFORMATION

CONSTITUENT
PARTITIONING

CONSTITUENT
PLACEMENT

GRAPHICAL
PLACEMENT
INTERFACE

CHANNEL
WIDTH
ESTIMATION

INTERCONNECTION
ROUtING

GRAPHICAL
ROUTING
INTERFACE

PLACEMENT AND
ROUTING
OPTIMIZATION

DESIGN RULE
CHECKING AND
ANALYSIS

LAYOUT
QUALITY
ASSESSMENT

Figure 3-Computer-aided layout system structures

USER

The support system nucleus enables all design-related infor
mation to be centralized in a common database that can be
conveniently accessed, updated, etc., by other subsystems
through the use of database access utilities.

Support System Nucleus I

A collection of data, utility, and file access modules used as
the foundation of the layout system provides the necessary
CAD database management support. An input processor is
defined to insure proper entry of data into the system database
and the correct specification of a layout problem. An electrical
and layout constraint file for each technology is provided in the
database. The cell reference library contains detailed descrip
tions of the generic cells currently available, including standard
supported cells, as well as those used by specific chip designs.
Cells for a particular chip will be selected by their internal and
external characteristics. If a generic cell does not exactly match
the requirements, it is processed by the cell deformation and
cell customizer modules and brought up to required standards.
Of course, the designer has a great deal of control over this
process. Certain functional elements that are frequently used
in design with different shapes and characteristics are main
tained as distinct cells in the cell library. As the number of
varieties of a given functional cell increases, the system be
comes more flexible and powerful.

All cells are given a generic name and the layout problem

description consists of the various constraints to be placed on
the layout, the identification of the cells used, and their inter
connection details. Should a cell in the design not be available
in the cell library, its description is input to the system as a
separate design subproblem and is appended to the cell library .
Each layout probl('J.11 description is maintained in a separate
design problem file in the design library.

Input Processor

Verification of new cell descriptions being input to the cell
library and cross-checking of the design problem files is per
formed by this module. Upon verification of an error-free de
sign problem file, the required external and internal cell de
scriptions are obtained from the cell library .

Identification of the cells required in the design is performed
during the top-down phase of design. As they become known,
nets are identified and described in terms of interconnections
to be performed, and estimates of the sizes of cells in higher
levels of the hierarchy are refined.

Two modes of data entry are supported. In the interactive
mode the layout being specified is verified when requested by
the user. In batch mode, the user prepares a description in the
form of a batch file, which is subsequently checked for validity
and converted into a problem design file.

Design Decisions and Design Verification

Successful implementation of a complex VLSI circuit de
pends on more than correctly placing and interconnecting the
cells making up the proposed circuit. The operational, func
tional, and electrical parameters specified by the designers
must be satisfied by the final layout.

Many design decisions are related to the distribution of pow
er, ground, and high-performance signals. Processing of the
necessary data to optimally distribute these signals and ac
counting for the power dissipation is performed here. Clock
and other high-frequency signals are checked, and necessary
load and source impedances at critical nodes are calculated.
Other design parameters verified here include the character
tics of the input and output circuits, voltages, and drive cur
rents.

The final layout may also be processed here, and design con
straint violations may be reported to the user.

Output Generation

The output generation includes extraction of information
from database files and subsequent preparation of tabular re
ports, graphs, manufacturing files, and plots. Facilities for in
specting the layout at any stage of the design process are also
provided here. Although emphasis is placed on automatic de
sign, interactive design facilities to improve or suggest alterna
tives are nevertheless required. With these facilities, various
elements in the database or design problem are displayed indi
vidually or in a specified combination.

Constituent Cell Placement

The objective of placement is to assign positions and orien
tations to cells and pads so that overall chip size is minimized.
The program supports arbitrary-size rectangular cells and a
mosaic layout, as opposed to the polycell approach, increasing
flexibility and improving silicon use. Placement is divided into
two parts, initial placement and placement optimization. Ini
tial placement uses the mincut algorithm2 to reduce cut line
crossings and wire length as much as possible; placement opti
mization improves routability without changing relative posi
tions of the placed cells.

This VLSI placement technique is based on an earlier paper
by Lauther. 10 However, substantial alterations have been
made to achieve placements closer to manual ones for real
world VLSI placement problems. The following subsections
briefly describe the improved placement strategies.

Initial Placement

Initial placement uses an envelope of specified shape whose
area equals the sum of areas of all cells being placed and parti
tions it recursively until each partition contains exactly one
cell. The partitions are based on the area of cells; that is, each
final partition has an area equal to the area of the cell it con
tains, but it may not have the same dimensions. Thus, when
partitions are converted into actual cells, dead area may be
generated. Various techniques are used to reduce this dead
area, as discussed.

A strategy administrator supervises initial placement, select
ing positions and the directions for each cutline. A major ad
vantage of this approach is the ability to match the procedure to
the characteristics of the logic design. A partition imposed ear
lier in the sequence will have fewer signals crossing it than one
imposed toward the end of the sequence. Clearly, then, the
sequence of partitions greatly influences wiring densities. The
quadrature placement with breadth first cuts2 has currently
been implemented; each cutline divides the current block into
two partitions of approximately equal area. Options for per
forming slice cuts are available.4

.
10 However, they do not ap

pear to be as effective, since peripheral cells may be placed on
all of the four sides of the chip. The strategy administrator may
optionally select cutlines manually, switch alternately between
horizontal and vertical cutlines, or use an automatic procedure
based on cell areas and shapes to select horizontal or vertical
cutlines for a particular partition.

The mincut algorithm implemented attempts to put max
imally connected cells and the cells belonging to the same
affinity classes in the same partitions. An affinity class is rep
resented as a set of cells belonging to a pseudonet with a large
weight associated with it for crossing partitiQn boundaries.

Constructive initial placement selects cells one at a time for
placement in one of the two partitions created by a cutline.
This strategy guarantees a partition satisfying area and periph
eral conditions, locally minimizing the number of nets cross
ing the cutline.

Iterative improvement optimizes this placement by min
imizing the cost on all nets cut by a cutline. Iterative improve
ment involves the seven steps shown:

A Computer-Aided VLSI Layout System 15

1. Determine the gain (the reduction in number of con
nections cut by a cutline) for every single interchange of
a pair of cells across the cutline.

2. The pair of cells that produce the maximum gain when
interchanged are repositioned and marked non
interchangeable for subsequent passes of the iteration. If
both area and peripheral conditions are satisfied after
the interchange, a value 1 is generated for COND; oth
erwise it is O.

3. Steps 1 and 2 are a pass. They are repeated until no
further interchanges are possible. A sequence of incre
mental gains with COND is thus generated.

4. The total gain over the initial state is computed for the
progression of passes.

5. The sequence of interchanges that produce the maxi
mum total gain is determined by noting the pass where
the maximum gain occurs with COND equal to 1.

6. All interchanges subsequent to the pass of maximum
total gain are restored to their initial positions.

7. Steps 1 through 6 (;ire iteration. They are repeated until
no further gain occurs.

At the end of initial placement each partition contains ex
actly one cell. To introduce the actual cell dimensions, the arc
lengths in the dual polar graphs are replaced by the cell di
mensions, using a simple algorithm. 10 Then for each cell the
position of its lower left corner is calculated and recorded.

PLACEMENT OPTIMIZATION

The placement optimization subsystem can be used either
through automated or interactive modes at various levels of
the design hierarchy to reduce the silicon area of the problem.
Overall chip size is reduced by both removing excess area
introduced by the initial placement and reducing the es
timated interconnection length of the problem. Inter
connection length reductions result in saving silicon area and
in reduced impedance and capacitance of the interconnected
traces. A secondary goal of this subsystem is to modify the
shape factor. Shape factor improvement is allowed only after
area constraints have been met.

The techniques used for placement optimization are

1. Cell rotation
2. Channel squeezing
3. Abutment class dead-area use
4. Cell reflection
5. Cell deformation (or reshaping)

Cell rotation is an operation to reorient the cell with respect
to the problem origin. The relative position of the cell to its
neighboring cells remains the same. The operation is used
both to reduce overall problem dimensions and to reduce
interconnection length. Cells are classified into two sets, of
which one contains all cells that are located on critical sub
graphs and the other contains all cells excluded from the first
set. Rotation candidates for area reduction are selected from
the critical cell set; candidates for decreasing interconnection
length are selected from the noncritical cell set. Cell rotation

16 National Computer Conference, 1981

is restricted to 9O-degree counterclockwise increments, allow
ing only orthogonal movements.

Channel squeezing is a localized placement adjustment that
modifies the incedence relationship for the modeled channels.
Neighborhood relationships between cells are modified, but
the general location of the cell within the problem envelope
remains the same. Squeezing trials can be done on the IC at
any hierarchical level for reducing problem dimensions. Only
channels that lie on critical- subgraphs are candidates for
squeezing optimization.

Cells which must be placed abutting one another are placed
in an abutment class having a nonrectangular shape. An en
closing rectangle around the abutment class contains both the
cells making up the abutment and dead silicon area. This area
may be used if the abutment class neighboring relationship
does not change. Cells incident to the abutment class bound
ary channel are candidates for area use. Selected cells are then
placed in the interior of the abutment class, consuming the
open area.

Cell reflection is a technique for reducing wire length that
has no impact on previously placed cells. Features internal to
the cell are reflected or mirrored either around their X -axis
center line, Y-axis center line, or both center lines. Optimal
reflection orientation is determined by evaluating changes in
the minimum spanning tree length calculations over all nodes
assigned to nets. The spanning tree calculation excludes nodes
within the same net that belong to the cell being reflected.

Cell deformation allows the shape of a cell to be manipu
ed to suit the topology in the locality of the cell. Reshaping
would allow the cell to be contracted or elongated along the
X or Y axis. The resulting shape of the cell must be rectan
gular. The cell deformation technique is used both to reduce
problem envelope dimensions and to reduce wire length if two
adjacent cells have nodes connected to each other. Reshaping
can be manual or automated, depending on problem con
straints. Manual deformation allows the designer using inter
active graphic tools to appropriately reshape cells. Automatic
reshaping is the substitution of functional and electrical equiv
alent cells that have different shape factors.

The reduction of area is an iterative process in which its
operations must have inverse functions. A minor placement
optimization iteration is the selection of a trial operation,
scoring the results, and either accepting or rejecting the trial.
When a trial optimization operation fails to decrease area,
then the inverse function is applied to restore the placement
model to its previous state. Placement optimization is parti
tioned into two phases. The first phase attempts to reduce
problem envelope dimensions; the second phase modifies
placement, without increasing envelope dimensions, to re
duce wire length of the problem.

Placement optimization is a major iteration within the de
sign process. After the optimization system returns, the strat
egy administrator evaluates the modified polar graph. The
new placement is scored against the best-known placement up
to that point. If the new placement is better, then the cell
locations and orientations are saved. The strategy adminis
trator then has the option of reentering the placement opti
mization system with the previous polar graph model, hoping
for more enhancements, or to reenter with the original place
ment, but with different processing option values.

INTERCONNECTION ROUTING

The routing subsystem is used at all design levels during the
bottom-up phase. Its main task is to provide 100% inter
connection, using the least amount of silicon area consistent
with design and wiring rules.

Various methods for interconnection routing have been
used in the past for chip layout. These may be conveniently
subdivided-into several classes, including serial approaches
similar to those proposed by Lee!! and Hightower.7 The
major drawback of these approaches is the totally serial na
ture in which they attack the interconnection problem, caus
ing larger numbers of routing failures as problem complexity
increases. Hashimoto and Stevens6 first introduced the idea
of channel routers to alleviate some of the drawbacks of a
totally serial approach, thus providing much greater flex
ibility in the routing of large numbers of nets. These channel
routing methods have recently been applied to VLSI layout,
for example, in Hightower and Boyd.!7

Channel routing is a two-phase routing strategy consisting
of a channel Assignment phase and a track Assignment
phase. During channel assignment, nets are assigned to a
sequence of channels or to open wiring areas between
constituent elements, but not to tracks within the channels.
Track assignment assigns all nets in a channel to specific
tracks to permit 100% wiring. Routing is completed when
track assignment for all channels has been (successfully) com
pleted.

Channel Definition and Assignment

During placement, cells are assigned to areas without re
gard to channels required for completing the required inter
connections, thus abutting cells one to another, as illustrated
in Figure 2. The boundary between two abutting cells repre
sents a potential channel, represented by a vertex in the polar
graphs. When such a placement is performed, a great deal of
open silicon area is left unused. These areas are represented
as special cells in the polar graph and are used for inter
connection routing at the current level in the hierarchy or for
placement and/or routing at higher levels.

The locations of channels are computed from the polar
graphs, and their dimensions are estimated by the routing
area estimator module prior to channel assignment. Nets at
the current level in the hierarchy are decomposed into point
to-point interconnections, using a minimum spanning tree
algorithm, and the from-tos created are assigned to a se
quence of channels to complete the interconnections. Capac
itance and power loss estimates are verified against the wiring
rules imposed.

Track Assignment*

Once channel assignment is complete, the track assignment
phase begins, assigning all from-tos that use a channel to spe-

* This phase is currently being programmed by one of the authors.

cific tracks within the channel. There is, however, an addi
tional problem that must be dealt with.

When a from-to enters a channel at its periphery, the exact
location of the point of entry is unknown-or rather; the
permissible region of entry is known. These regions (end
float regions) may overlap with end-floats of other from-tos
that use the channel, further complicating the task.

A channel, with its associated from-tos, may be represent
ed as a graph, with a node on the graph representing the
end-float region and an edge representing a transition from
the from node to the to node. It is obvious that in the case
of single-layer routing, this graph must be planar. Nonplan
arities in the graph are very easily handled in multilayer
routing situations where the channel graph for each routing
layer must be planar.

Any of the techniques currently used for routing may be
used to perform track assignment. Careful evaluation has,
however, indicated that the Lee type algorithm, with mod
ifications to allow parallel contention resolution, is best suit
ed for this task.

ROUTING OPTIMIZATION

Connectivity improvement is introduced, since the channel
router might fail to route all the necessary point-to-point
connections. This module is invoked after the channel router
terminates, but before die dimensions are increased to sup
port the necessary conditions. Connectivity improvement is a
two-phase process, where the first phase is the application of
a Lee type of interconnection algorithm. The second phase
consists of rip-up, reroute, and shove-aside techniques, which
rearrange the interconnection structure to enhance the routa
bility of the unconnected nets. Both phases are invoked to
increase completion rates without increasing overall die di
mensions.

After connectivity improvement, interconnections can still
be left unconnected as a result of conflicts with previously
routed features or failure to meet electrical or timing con
straints. Problem dimensions are then increased to support
the unconnected nets. After die expansion all critical chan
nels are evaluated for a final area reduction, using channel
compression. The channel compression operation attempts to
modify routed channel features to reduce as much unneces
sary space as possible. If a channel is compressed, another
critical channel candidate list is generated. From this list
channels are selected for compression.

QUALITY ASSESSMENT

The quality of the placement and routing procedures is as
sessed by evaluating metrics dealing with software behavior
and problem results. The evaluation of placement and rout
ing is based on attributes reflecting the quality of the system.
These attributes include execution time, completion rates,
silicon area use, signa! distribution, and channel use. The
software behavior quality assessment report is useful when
considering the system's strengths and weaknesses, where
weaknesses are identified as areas for future enhancements.

A Computer-Aided VLSI Layout System 17

The quality of chip design is assessed after placement and
routing by noting the difference between the design goal and
the actual results in such areas as physical, electrical, and
logical characteristics. The initial problem description, mod
eled with a register transfer language, is simulated for logic
errors. Errors detected and corrected early will reduce the
number of automated design iterations. Detailed timing sim
ulation is also necessary for evaluating signal propagation
delays. Register transfer and behavior simulation are -nor
mally deficient in such detailed and accurate timing simu
lations. Physical characteristics such as total die size and
shape factor are calculated to verify that physical constraints
are not violated.

Electrical simulation and design checkers are used to guar
antee that the problem results lie within the limits imposed by
the designer. Electrical simulation estimates voltage, current,
and power dissipation so that technological constraints are
not violated. Design checkers are also used throughout the
design process during and after human interaction. These
checkers verify that wiring and technological rules are not
violated during interactive sessions.

INTERACTIVE GRAPHICS

Until very recently the role of interactive graphics was limited
to the display and manipulation of digitized manual layouts.
As the complexity of new chips grows, this approach will no
longer be practical: graphics must be used in a more cost
effective manner, and digitizing manual layouts will decline in
popularity. There will always be a demand for manual layout
of special-case designs. However, as design pressure in
creases, it is likely that a substantial number of new designs
will be generated, using a combination of automated and
graphical methods.

At any point during or after the placement or routing of a
chip or constituent cell, graphical tools can be used to modify
the evolving layout. With both automated and interactive
tools available, it is practical to use each method under cir
cumstances best suited to the situation at hand.

CONCLUSIONS

This paper has described a system for the automated layout of
semicustom and gate array VLSI. The software required is
substantial: more than 160,000 lines of programs, documen
tation, and related materials. Portions of the system outlined
have already been programmed, and others are presently be
ing developed. Until these and similar design tools come into
productive daily use, the development of VLSI layouts will
remain a time-consuming and costly task.

REFERENCES

1. "Computer-aided MOS VLSI Layout System." Electrical Engineering De
partment, The University of Texas at Austin, February 1980. (Prepared
under the direction of R. J. Smith, II, by D. LaPlante, R. Tsui, W. Dees,
W. Rogers, H. Bryce, B. D. Rathi, K. Parmar, T. Gunter, and C. Hobbs.)

18 National Computer Conference, 1981

2. Breuer, Melvin A. "A Class of Min-Cut Placement Algorithms." Proc.
14th Design Automation Conference, June 1977, pp. 284-290.

3. Lynn, Conway, and Carver Mead. Introduction to VLSI Systems. Califor
nia: Addison-Wesley, 1979.

4. Corrigan, Lorretta I., "A Placement Capability Based on Partitioning."
Proc. 16th Design Automation Conference, June 1979, pp. 406-413.

5. Deutsch, David N. "A 'Dogleg' Channel Router." Proc. 13th Design Auto
mation Conference, June 1976, pp. 425-433.

6. Hashimoto, Akhiro, and James Stevens. "Wire Routing by Optimizing
Channel Assignment Within Large Apertures," Proc. 8th Design Automa
tion Workshop, June 1971, pp. 155-169.

7. Hightower, David W. "A Solution to Line-Routing Problems on the Con
tinuous Plane." Proc. 6th Design Automation Workshop, June 1969, pp.
1-24.

8. Klomp, J. G. M. "CAD for LSI-Production's Interest Is in Its Econom
ics," ACM SIGDA Newsletter, 6 (1976), pp. 11-15.

9. Koller, Konrad W., and Ulrich Lauther. "The Siemens-A VESTA-System
for Computer-Aided Design of MaS-Standard Cell Circuits." Proc. 14th
Design Automation Conference, June 1977, pp. 153-157.

10. Lauther, Ulrich. "A Min-Cut Placement Algorithm for General Cell As-

semblies Based on a Graph Representation." Proc. 16th Design Automa
tion Conference, June 1979, pp. 1-10.

11. Lee, C. Y. "An Algorithm for Path Connections and its Applications." IRE
Transactions on Electronic Computers, September 1961, pp. 346-365.

12. Losleben, Paul, and Kathryn Thompson. "Topological Analysis for VLSI
Circuits." Proc. 16th Design Automation Conference, June 1979, pp.
461-473.

13. Oakes, M. F. "The Complete VLSI Design System." Proc. 16th Design
Automation Conference, June 1979, pp. 452-460.

14. Persky, G., Deutsch, D. N., and D. G. Schweikert. "LTX-A System for
the Directed Automatic Design of VLSI Circuits." Proc. 13th Design Auto
mation Conference, June 1976, pp. 399-407.

15. Preas, B. T., and C. W. Gwyn. "Methods for Hierarchical Automated
Layout of Custom LSI Circuit Masks." Proc. 15th Design Automation
Conference, June 1978, pp. 206-212.

16. Preas, B. T., and W. M. vanCleemput. "Placement Algorithms for Arbi
trary Shaped Blocks." Proc. 16th Design Automation Conference, June
1979, pp. 474-480.

17. Hightower, D. W., and R. L. Boyd. "A Generalized Channel Router."
Proc. 17th Design Automation Conference, June 1980, pp. 12-21.

A multiprocessor description language

by WILLIAM T. OVERMAN,
STEPHEN D. CROCKER, and
VITTAL KIN I
USC! Information Sciences Institute
Marina del Rey, California

ABSTRACT

A language for describing multiprocessor systems is
presented. The language, called MPDL, provides a flexible
and unambiguous model of concurrency and allows for hier
archical construction of concurrent systen,s. MPDL encour
ages the user to encapsulate interprocess synchronization and
communication in a special component called a connector.
This encapsulation helps facilitate multilevel modeling and
abstraction of communication protocols. A simulator for the
language has been implemented and is running at lSI. This
paper describes MPDL and evaluates the language in terms of
two examples.

INTRODUCTION

The language and simulation system reported on here were
developed as part of the Multimicroprocessor Emulation
project at USC/Information Sciences Institute. * The goal of
this project was to develop language and tools for exploring
multiprocessor architectures, with specific emphasis on the
support of closely coupled architectures and a wide variety of
processor interconnection schemes.

As a part of this effort we have designed a language for
describing the structure and behavior of networks of proces
sors. Along with this we have implemented an Interlisp-based
simulator with extensive debugging facilities to aid in the de
velopment of mUltiprocessor descriptions.

Our original intention was to use an existing hardware de-
. scription language, such as ISPS I or SMITE2

, with extensions,
to describe multiprocessor systems. However, we found that
these languages were not adequate for expressing the neces
sary interconnections and interactions among processors. 3

Therefore we developed a new language, called MPDL
(Multiprocessor Description Language), which embodies a
clean and flexible model of concurrency and provides a hier
archical interconnection language, but otherwise uses ISPS

* This work was sponsored in part by the Rome Air Development Center and
in part by the Defense Mapping Agency. both under contract DAHC15-
72-C-030B.

19

constructs for describing the sequential behavior of individual
processors.

The next section introduces MPDL by walking through an
example and then describing the major components of the
language. The section following that briefly indicates the ca
pabilities of the simulation system we have built for MPDL.
The fourth section discusses two examples that have been
described in MPDL and run on the simulator and evaluates
the language with respect to these examples.

LANGUAGE DESIGN

The following are the key ideas in MPDL:

• Communication and synchronization among processors
occur through shared variables. Wait and delay con
structs are provided as abstractions.

• Shared variable access is restricted, and all shared vari
ables and their accessing functions reside in special com
ponents called connectors that link processors together.
This encapsulation of shared variables permits abstrac
tion of communication protocols.

• The writer has control over the granularity of actions.
Mutual exclusion and sychronization must be made
explicit.

• Hierarchical description capabilities are provided. Mod
ules may be combined to form new modules.

The example in Figure 1 iIIdstrates these ideas. The following
text describes the example .

Pipeline is a composite module composed of two proces
sors, A and B, which communicate through the connector L.
Pipeline is described as being a composite with two ports
called pread and pwrite, the first returning an eight-bit value
and the second returning no value. It contains a connector,
which is to be called L, and its description is to be an instance
of the connector HandshakeLink, which can be found in the
library (HandshakeLink is described below). It also contains
two instances of the processor Handshake, which are to be
known as A and B within this composite. Processor A has two
ports, one linked to pread, the port which was passed into

20 National Computer Conference, 1981

Pipeline

A L B

read write lread read write
'"j;Tead r-- lwritt - ~

-

composite Pipeline (pread < 7:0> , pwrite)
connectors L = HandshakeLink;
processors A = Handshake (pread, L.lwrite),

B = Handshake (L.lread, pwrite)
endcomp;
processor Handshake (read < 7:0>, write)

repeat
call write(read())

endrep
endprocessor;

connector HandshakeLink
declare data < 7:0> , sig < > init 0;
proc Iread < 7:0 >

wait sig eq I endwait;
sig~);

return data
cndproc;
proc Iwrite (d < 7:0»

wait sig eq 0 cndwait;
data~d;

sig~1

cndproc
endconn

!read data and pass them on
!the processor never terminates

!buffer and handshake signal
!read entry
!wait until data arc ready
!signal "buffer empty"

!write entry
!wait until buffer is empty

!signal "data ready"

Figure I-A two-processor pipeline system using a handshake protocol

Pipeline, and the other to [write, an entry in the connector L
(specified by the qualified name L.[write). Processor B is
connected to the [read entry of L and to the pwrite port of
Pipeline. The port connections are actually access paths
through which procedures will be invoked (see below).

Processor Handshake, of which A and B are copies,. is
described following the composite. The processor has two
ports named read and write. The action of the processor is
simply to loop forever, calling the procedure bound to the
read port and then calling the write port with the value re
turned by read. By calling the port, the processor is executing
the procedure in the context of the connector. Variables can
be shared among processors by having the processors linked
to entries in the same connector.

The connector linking the processors is called Hand
Link in the library and is described in the connector state
ment. The connector has two variables declared in it, data and
sig, which can be accessed by each of the procedures in the
connector. The connector has no executable body of its own
but has procedure definitions which are exporJed to be bound
to the ports of processors. In this case we have the procedures
(also called entries of the connector) [read and lwrite.

The behavior of the Pipeline module is to simply pass data
from its pread port to its pwrite port with some buffering in
the middle so that it can read and write data at differing rates.
The nature of the language is that all processors in the system

run in parallel. If we think of the locus of control as being a
token, then each processor starts out with one token, and the
connectors have no tokens. When a processor calls a port,
control passes to the entry in the connector to which that port
has been bound. Since many different processors may be
linked to a connector, it may turn out that a connector has
more than one token in it. However, we require that at most
one processor be connected to anyone entry in the connector
so executions within the connector should be at unique loca
tions.

When processor A is started up, it calls the pread port of
Pipeline (bound through A's read port). We do not know
here what pread is bound to, but assume it returns with a
value. A then calls the write port, which is actually the [write
entry in L. The action there is to wait for sig to be zero (it is
initially zero, so execution continues). Then the shared vari
able data is set to the value passed to [write (the value
returned from read); sig, which serves as a synchronization
variable, is then set to one, indicating that there are data
available to be read. The next time A enters [write, the wait
statement will cause it to suspend and allow B to run. B is
linked to the [read entry of L, so it checks that sig is one,
resets sig indicating that it has read the data and data can be
filled with a new value, and then returns data. Upon return
back into processor B, the pwrite port of Pipeline is called,
and we assume it is written out somewhere. Processor B then
calls read (bound to [read) again and will be suspended when
it encounters the wait statement.

All of the activity between wait statements is uninterrup
tible; so in this example, each processor has only one inter
action point-at the wait statements in the conn~ctor entries.

Language Definition

The MPDL User's Manual4 gives a complete definition of
the language. This section describes a very small number of
statements, namely those representing the major structural
components of a description (processors, connectors, and
composite modules) and that illustrating the model of concur
rency embodied in MPDL (the combination waft/delay state
ment).

Processor

Each processor in a system description is an independently
running machine. As we have seen, the processors communi
cate with each other through shared variables housed in con
nectors. The processor statement looks very much like a nor
mal function or procedure definition, having internal declara
tions and a statement list, but with one difference. The "for
mal argument" list in a processor statement identifies a set of
ports that must be connected when the pfOees-sor is actuaHy
used. The formal names are used within the processor as
ordinary functions. However, when one of these ports is
called, control passes out of the processor and into the con
nector to which the port is bound. Control returns to the
processor in what looks like the normal subroutine return
mechanism, and execution continues in the processor. (The

description of the connector, below, describes what happens
within the connector). Ports are bound to connectors using
the composite statement (see below).

Connector

Connectors are similar to devices found in software engi
neering such as Clusters5

, Simula classes6
, and Parnas

modules7
• They differ from MonitorsH in that they im ose no

synchronization. The connector encapsulates variab es that
are shared among processors, along with the accessi g func
tions for those variables. One can think of portions of the
connector code as actually being part of the processo that is
bound to it, and can think that the connector simply p ovides
a mechanism to isolate that portion of a processor's d scrip
tion responsible for communicating with other processors.
This tends to help identify the interprocess communication
protocol whose correct operation is essential to the operation
of the system as a whole.

Connectors also make it possible to do multilevel modeling
and abstraction of processor behavior and interprocess com
munication. We can change the level of detail within a proces
sor and change its communication interface simply by mod
ifying the connector so that it handles the change in protocol;
we do not necessarily have to change other processors.

The connector statement specifies a set of declarations rep
resenting variables internal to the connector and a set of pro
cedures whose entry names are to be exported to be bound to
the ports of processors. These procedures have access to the
variables within the connector, and thus the variables are
shared among the processors.

Connectors are passive components and are activated only
when a processor calls one of the entry points in the con
nector. Because multiple processors are connected to a con
nector, and different processors may each call entries within
the connector at the same time, it may be the case that there
will be many statements within the connector executing at the
same time. Note, however, that if execution locations are
thought of as tokens, then the number of tokens in the system
is conserved, and there are always exactly as many tokens as
there are processors in the system.

Composite

The composite statement allows one to assemble collections
of processors, connectors, and other composite modules.
Connector entries are bound to processor ports to create a
complete system. The composite statement describes an en
tity called a composite module. This can be treated exactly as
a processor in future composition steps, thus facilitating hier
archical description.

The composite statement lists the connectors to be included
in a composite module and gives them local names, if neces
sary, to distinguish multiple copies of the same connector.
Similarly, a set of processors (and/or composite modules) is
included and possibly renamed. The composite entity being
defined has a list of formal arguments identical to the formal
arguments in a processor statement in that they represent

A Multiprocessor Description Language 21

ports to be bound to the composite module. The processors
and composite modules that are to compose the new com
ite are bound to connectors by specifying a connector entry to
be bound to each port in the processor/composite. One excep
tion is that the port of a processor/composite may be mapped
to one of the formal arguments of the composite module being
defined. These latter ports will be bound at a later time, when
the newly defined composite module is composed with other
modules.

WaitStmt

The writer uses the wait statement to specify the granularity
of the actions in each processor. This statement can be
thought of as a call to the scheduler that allows other proces
sors to run, and all of the actions between wait statements are
considered to be uninterruptible. The wait statement com
bines busy waiting on an expression, delay for a specified
time, and waiting with an associated timeout. The following
example illustrates the syntax and optional components of the
statement.

wait
a gt 1: a~O; b~O,
b gt 1: b~1,
c gt 1,
delay d+e: d~O

endwait

This statement waits until a, b, or c becomes greater than 1
and then performs the statements following the true condi
tion. If c becomes greater than 1 first, then no statements are
executed, but execution of the processor continues at the
statement following the wait statement. If none of the condi
tions becomes true within d+e time from the time the wait
statement was encountered, then the timeout action list
(d~O) is executed.

More generally, if one or more wait conditions are present,
then the processor suspends until the expression in one of the
clauses is true (if one is true immediately, then the processor
does not suspend at all). If a delay clause is also present, then
the processor waits until a clause is true or until the specified
amount of time has elapsed. If this second condition occurs
(timeout), then the action list after the time expression is
executed. If no timeout action list is present (and timeout
occurs)~ then the wait statement is just released and execution
continues at the end of the wait statement.

If only a delay clause is present, then the processor merely
suspends for the specified amount of time. A fine grain of
granularity can be achieved by inserting delays of zero time
where zero is actually interpreted as a small (epsilon) amount
of time. A zero delay causes the processor to suspend and
allow any waiting processors to evaluate their wait conditions.

MPDL SIMULATION SYSTEM

A simulator for MPDL has been implemented in Interlisp and
now runs at lSI. The simulator allows the user to run system

22 National Computer Conference, 1981

inO wO wO wO outO

inl outl

in2 out2

in3 out3

in4 out4

inS outS

in6 out6

in? out?

straight exchange

Figure 2-Binary N-cube diagram

descriptions and provides extensive monitoring facilities,
which we have found to be useful in the development of
multiprocessor descriptions.

The user interface for the MPDL simulator consists of a set
of commands that allows the user to do the following types of
things:

• Parse an MPDL mUltiprocessor description, build an in
terconnection structure to be simulated, and start the
simulation.

• Focus attention on any of the various control contexts
(processors, procedures, and connectors) in the simula
tion, using tree traversal or search commands.

• Execute a list of MPDL actions within any context
(scope) of the simulation, e.g, examine the values of
simulation variables, assign new values to variables, etc.

• Display the declaration structure and current state of any
context and its subordinate contexts.

The simulator also provides a powerful break and trace
facility for use in debugging user simulations. The package
consists of a set of commands that allow setting of breaks and
traces on any construct in the description being simulated.
The kinds of things that may be done are as follows:

• Breaking and/or tracing any construct in the MPDL
language.

• Making these breaks and traces conditional. The condi
tions are expressed in the MPDL description language

itself and can be evaluated in the context of any process
in the system .

• Specifying a set of actions to be executed once it isdeter
mined that the specified break or trace ought to occur
and before it is entered. These are, again, specified in
MPDL, and can be evaluated in any context.

The POPART system!) is used to generate a parser and a
grammar-based editor for MPDL. Given the MPDL gram
mar, the POPART system produces the parser and an exten
sive set of editing, printing, and program transformation com
mands. Typical commands allow the user to search, delete,
replace, print, and prettyprint portions of the description.

The appendix gives a summary of the commands provided
by the MPDL development system.

composite cube8 (inO, in 1, in2, in3, in4, in5, in6, in7,
outO, outl, out2, out3, out4, out5, out6, out7)

connectors waO = w, wal = w, wa2 = w, wa3 = w, wa4 = w, wa5 = w,
wa6= w, wa7 = w,
wbO = w, wb I = w, wb2 = w, wb3 = w, wb4 = w, wb5 = w,
wb6=w, wb7=w;

processors
stagel = stage (inO, inl, in2, in3, in4, in5, in6, in?,

waO.wr wal.wr, wa2.wr, wa3.wr, wa4.wr,
wa5.wr wa6.wr, wa7.wr),

stage2 = stage (waO.rd, wa2.rd, wal.rd, wa3.rd, wa4.rd, wa6.rd,
wa5.rd, wa7.rd, wbO.wr, wb2.wr, wbl.wr, wb3.wr,
wb4.wr, wb6.wr, wb5.wr, wb7.wr),

stage3 = stage (wbO.rd, wb4.rd, wbl.rd, wb5.rd, wb2.rd, wb6.rd,
wb3.rd, wb7.rd, outO, out4, outl, out5, out2, out6,
out3,out7)

endcomp;
composite stage (inO, inl, in2, in3, in4, in5, in6, in7,

outO, outl, out2, out3, out4, out5, out6, out7)
processors sl = switch (inO, inl, outO, out I),

s2 = switch (in2, in3, out2, out3),
s3 = switch (in4, in5, out4, out5),
s4 = switch (in6, in7, out6, out7)

endcomp;
processor switch (inO, inl, outO, outl)

declare upper < 6:0 > , tagO < 3:0 > : = upper < 6:3 > ,dataO < 2:0 > :
= upper < 2:0 > , lower < 6:0 > , tagl < 3:0 > :
= lower < 6:3 > ,data I < 2:0 > : = lower < 2:0 > ;

repeat
upper-inO();
lower-in 10;
tagO-tagO srr I;
tagl-tagl srr I;
decode tagO < 3 > (Cdagl < 3 > ,

O:call LISP (ERROR),
I:call outO(upper); call outl(lower), !straight
2:call outO(lower); call outl(upper), !exchange
3:call LISP(ERROR)

endec;
delay 23

endrep
endprocessor;
connector w

declare buf < 6:0 > ;
proc wr(d < 6:0 >)

buf-d
endproc;
proc rd < 6:0 >

return buf
endproc

endconn

Figure 3-BinaryN-cube MPDL description

AlternatingBit

StoR
ready ~

- write

read -
Sender Receiver

'--- loputSeq OutputSeq f---

RtoS - ready

write -
- read

Figure 4-Alternating Bit Protocol diagram

EXAMPLES

We have performed two experiments that have pointed up
strengths and weaknesses in MPDL. The first experiment is
an interconnection network suitable for interconnection of an
array of single-instruction, multiple-data (SIMD) machines.
This example has been developed by researchers at Purdue
University in conjunction with the development of efficient
image-processing architectures 10. The interconnection net
work consists of a series of stages of switching elements,
where each switch can send its inputs through straight or
exchanged. A diagram and the MPDL description of the in
terconnection network appear in Figures 2 and 3. In our ex
ample the switching elements are processors, and they com
municate with each other through trivial connectors called
wires. We were able to successfully describe and run a
48-processor system.

One apparent and one definite language weakness are illus
trated by this example. MPDL is explicitly geared to descrip
tion of asynchronous systems, and thus it appears ill-suited to
describe synchronous systems. However, the delay construct
that MPDL provides and the fact that the user has control
over the granularity of the atomic actions makes it relatively
easy to describe such systems.

There is a definite weakness in the interconnection facili
ties, however. In this example, there is a relatively succinct
mathematical description of the individual switch/wire bind
ings. This mathematical description assigns wire bindings as a
function of the bits in the binary representation of the switch
number and stage number. However, our simple inter
connection language does not provide any kind of parameter
ization facilities and thus the description became a long te
dious list of individual bindings. The binding occurs in Figure
3 in the cube8 composite description where stagel, stage2 and
stage3 are defined. We would like to extend the inter
connection language to include powerful features that would
allow concise description of such systems.

The second example is a simple data transfer protocol
called the alternating bit protocol I I which has two processors

A Multiprocessor Descrip-tien L-aftgttage 23

transferring a stream of data across an unreliable medium. A
diagram and the MPDL description of the alternating bit pro
tocol are shown in Figures 4 and 5. MPDL served very well for
describing the protocol, and the wait statement with timeout
condition was the perfect construct for this particular applica
tion. The simulation system allowed us to investigate this
protocol and other (more complicated) versions very con
veniently. The connector concept isolated the character-

composite AlternatingBit(InputSeq < 7:0 > ,OutputSeq)
connectors StoR = MsgBuf, RtoS = MsgBuf;
processors Sender(lnputSeq,StoR.write,RtoS. ready, RtoS. read),

Receiver(OutputSeq,RtoS.write,StoR.ready,StoR.read)
endcomp;
processor Sender (InputSeq < 7:0 > ,SendToMedium,

MediumToSendReady < > ,MediumToSend < >)
declare SendSeqNo < > init 0,

Message < 7:0 > ,
Timeout < 7:0 > init 2;

repeat
Message~InputSeqO ;
label ResendLoop

repeat
call SendToMedium(SendSeqNo(cvMessage);
wait MediumToSendReadyO: if MediumToSendO eq

SendSeqNo
then SendSeqNo+-- SendSeqNo;

leave ResendLoop
end if,

delay Timeout
endwait

endrep
end lab

endrep
end processor;
processor Receiver (OutputSeq,RecToMedium,

MediumToRecReady < > ,MediumToRec < 8:0 >)
declare ExpectedSeqNo < > init 0,

ReceivedSeqNo < >,
Message < 7:0 >;

repeat
wait MediumToRecReadyO endwait;
ReceivedSeqNo(ciIMessage+-MediumToRec();
call RecToMedium(ReceivedSeqNo);
if ReceivedSeqNo eq ExpectedSeqNo

then call OutputSeq(Message);
ExpectedSeqNo+- - ExpectedSeqNo

endif
endrep

endprocessor;
connector MsgBuf

declare buffer < 8:0 > ,
readyflag < > init 0;

proc write(msg < 8:0>)
if USp(RAND, (t,t)

then buffer+-msg;
readyflag+-l

endif
endproc;
proc ready < >

return readyflag
endproc;
proc read < 8:0 >

readyflag~;

return buffer
endproc

endconn

Figure 5-Alternating Bit Protocol MPDL description

24 National Computer Conference, 1981

ization of the medium and allowed easy experimentation with
different types of media, such as loss-free, and free-running
(separate processor) media.

SUMMARY

We have designed a language, MPDL, which provides a flex
ible and unambiguous model of concurrency and allows for
hierarchical construction of concurrent systems. Further
more, we have introduced a construct called a connector
which encourages a designer to encapsulate interprocess syn
chronization and communication in a single place.

Examples have been developed which have pointed out
relative strengths and weaknesses in MPDL. The inter
nection network that was modeled pointed out the signifi
cance of describing a synchronous system with an asyn
nous language and demonstrated that there is a need for an
interconnection meta-language which allows concise descrip
tion of regular, repetitive structures. Data transfer protocols
were conveniently modeled and relied on the abstraction and
timing capabilities of the language.

ACKNOWLEDGMENTS

We would like to thank Sarma Sastry for his help with the
design and implementation of the simulation system. Credit is
also due Victor Lesser, Alice Parker, Mike Lyle, Sarma
Sastry, Joel Goldberg, and Bill Landreth for the vision and
refinement of concepts embodied in the MPDL language. We

would also like to thank Jim Kuehn and H.J. Siegel for their
patience and understanding as the initial users of the MPDL
simulator.

REFERENCES

I. Barbacci, M.R., G.E. Barnes, R.G. Cattell. and D.P. Siewiorek, "The
ISPS Computer- Description Language." Tech. report CMU-CS-79-137.
Carnegie-Mellon University, Computer Science Department. August 1979.

2. TRW Defense and Space Systems Group. "SMITE Reference Manual."
Tech. report RADC-TR-77-364, TRW. November 1977.

3. Parker. A.C., D.E. Thomas, S.D. Crocker. and R.G.G. Cattell. "ISPS: A
Retrospective View." Proceedings of the Fourth International Symposium
on Computer Hardware Description Languages. IEEE. Palo Alto. CA,
October 1979. pp. 21-27.

4. Overman, W.T., V. Kini, and S. Sastry. "Multiprocessor Description Lan
guage (MPDL) User's Manual." Tech. report ISI/WP-15.3. USc/Informa
tion Sciences Institute. August 1980.

5. Liskov. B., A. Snyder. R. Atkinson. and C. Schaffert. "Abstraction Mech
anisms in CLU." Comm. ACM. Vol. 20. No.8. August 1977.

6. Dahl. OJ .. B. Myhrhaug. and K. Nygaard. "The SIMULA 67 common
base language," Tech. report S-22, Norwegian Computing Center. 1970.

7. Parnas. D.L, "Use of Abstract Interfaces in the Development of Software
for Embedded Computer Systems." NRL Report 8047. Naval Research
Laboratory; June 1977.

8. Hoare. C.A.R .. "Monitors: an operating system structuring concept."
Comm. ACM. Vol. 17. No. 10. October 1974.

9. Wile. D.S .• "POPART: Producer of Parsers and Related Tools: System
Builders' Manual." Unpublished. USC/Information Sciences Institute

10. Siegel. H.J., et al.. "Parallel Image Processing/Feature Extraction Al
gorithms and Architecture Emulation: Interim Report." Tech. report TR
EE 79-51. Purdue University, November 1979.

II. Bartlett. K.A .. R.A.Scantlebury. and P.T. Wilkinson. "A Note on Reli
able Full-Duplex Transmission over Half-Duplex Links." Comm. ACM.
Vol. 12. No.5. May 1969.

APPENDIX-MPDL SIMULATION SYSTEM COMMAND SUMMARY

Initialization Commands
parse: < filename>
build: < compositename > < parameterlist >
start:
execute: < compositename > < parameterlist >
simulate: < compositename > < parameteriist >
< filename>

Context Commands
cn:
pp: { i } { < qualifiedname > }
pp: {nx}
p:{ j } { < qualifiedname > }
p: {nx}
ar: < arrayname > { < startindex > }{ < endindex > }
setar: < arrayname > < filename> {< startindex > }
j:

dn: { < integer> }
out: { < nameorinteger > }
nx: { < nameorinteger > }
bk: { < nameorinteger > }
!nx:
f: { j} < qualifiedname > {nx}
setc:
bn:
ex: { j } { < qualifiedname > } < mpdlactionlist > ..

parse an MPDL Program from a file
build a simulatable structure
start the simulation
a combination build: and start: command
a combination parse:, build: and start: command

display the root fully qualified name of the current context
display the full current context tree
display the context trees at the same level as the current context
display one level of the context tree
show the tail of the current context
display the contents of an array
load an array with values from < filename>
go to the top context
go down a level in the context tree
go up a level in the context tree
go to a sibling context (to the right)
go to a sibling context (to the left)
go out: until a nx: is possible and then do the nx:
find the partially qualified context, either below or to the right
set the current context to be the break context'
print the name of the break context
execute the action list in the specified context

Tracing Processor Activations
trs: { t } { < qualifiednamelist > }
utrs: { t }{ < qualifiednamelist > }
ptrs: { t }
pstat: { t }{ < qualifiednamelist > }

Editing Commands
pp*
p*
pppt*
t *

out*
f* < pattern> ..
ref*
nx*
bk*
atf* { < nonterminal > }

stype*
r* < editorexpression > ..
rail * < pattern> = = > < editorexpression > ..
ib* < editorexpression > ..
ia * < editorexpression > ..
d*
val * { < metavariablename > }
ice* < pattern> ..
sgv* < metavariablename >
rgv* { < metavariablename > }

Break Commands
br: {ANY} { < tag> }
br: ASK
tr: {ANY} { < tag> }
tr: ASK
pbr: {ALL}
ptr: {ALL}
ubr: { < integer> }
utr: { < integer> }
warn: {off}

A Multiprocessor Description Language 25

trace the scheduling of Processors
untrace the specified Processors
show which Processors are traced
display the status of the named Processors

pretty print the current expression
print an abstraction of the current expression
print the parse tree
go to the topmost expression in the current context
pop out a level
find pattern. Pattern may contain metavariables.
refind the previously searched for pattern
go to the next element in an iterated object
go to the previous element in an iterated object
go to the (possibly missing) nonterminal field (or print valid field

names)
show the syntax type of the current expression
replace the current expression. (use $$ and metavariables)
replace all occurrences of < pattern> with < editorexpression >
insert before
insert after
delete the current expression
show current metavariables or their values
instantiate current expression (like f*in setting metavariables)
make the metavariable global
remove the global variable assignment (or all of them)

break the current expression
enter full break dialogue
trace the current expression
enter full trace dialogue
print current break information
print current trace information
unbreak the numbered break
untrace the numbered trace
turn assertion warnings on or off

Fault tolerance by means of external
monitoring of computer systems

by ALGIRDAS A VrZIENIS
University of California at Los Angeles
Los Angeles, California

ABSTRACT

A frequently suggested solution to the problem of increasing
the reliability of an already existing computer system (to be
called the object machine [OM]) is to employ a functionally
and physically separate monitor computer (to be called the
monitor machine [MM]) that probes the operation of the OM
in real time. The purpose of the monitoring is to assure that
the functional performance of the OM does not deviate from
the behavior specified by its design and by the programs being
executed.

This paper systematically assesses the architectural and
fault-tolerance issues that have to be resolved to effectively
implement the monitoring process. The goal of the implemen
tation is to create an integrated and uniformly fault-tolerant
OM/MM complex, beginning with a given OM design.

Four principal problems are addressed in the subsequent
sections: (1) implementation of the monitor machine; (2) im
plementation of the monitoring (OM/MM) interface; (3)
specification of the monitoring function; and (4) the cost and
effectiveness of monitoring.

The paper concludes with examples of model technical
specifications for the architectural properties needed by the
OM and the MM to attain a fault-tolerant implementation of
the monitoring process.

INTRODUCTION: SCOPE OF THE PROBLEM

A frequently suggested solution to the problem of increasing
the reliability of an already existing computer system (to be
called the object machine [OM]) is to employ a functionally
and physically separate monitor computer (to be called the
monitor machine [MM)) that probes the operation of the OM
in real time. The purpose of the monitoring is to assure that
the functional performance of the OM does not deviate from
the behavior specified by its design and by the programs being
executed.

This paper presents a systematic assessment of the architec
tural and fault-tolerance issues that have to be resolved in
order to accomplish an effective implementation of the mon
itoring process. The goal of the implementation is to create an
integrated and uniformly fault-tolerant OM/MM complex, be
ginning with a given OM design.

27

Four principal problems are addressed in the subsequent
sections:

1. Monitor Machine implementation: Its functional design,
relative size, monitoring method, fault tolerance and/or
avoidance, assistance in OM recovery, constraints to
avoid interference with the OM, and other interfaces
(operator, remote master machine, etc.)

2. Implementation of the monitoring (OM/MM) interface:
The method by which the MM gains access to the OM,
factors that limit the access, and the effect that this ac
cess has on OM design.

3. Specification of monitoring: Which functions of the OM
operation and which stored OM data are to be moni
tored, and what are the symptoms of incorrect functional
performance by the OM?

4. Monitoring effectiveness and cost: how to predict and to
measure the effectiveness and the cost of a given ap
proach to reliability monitoring.

The paper concludes with examples of model technical
specifications for the architectural properties needed by the
OM and the MM to attain a fault-tolerant implementation of
the monitoring process.

PROPERTIES OF THE MONITOR MACHINE (MM)

The complexity and other properties of the monitoring oper
ation depend very strongly on the nature of the MM itself.
The main issues in the choice of the MM are

1. Design: Is it general purpose, a custom design, or a copy
of the OM?

2. Fault tolerance: How is its own reliability assured?
3. Recovery function: Is it expected to participate in OM

recovery?
4. Constraints: How is the integrity, security, and privacy

of the OM assured in the case of a failure or a misuse of
the MM?

5. Other interfaces: Is it internally program-controlled,
operator-controlled, or connected to a remote MM mas
ter facility?

28 National Computer Conference, 1981

Design of the MM

Three fundamental choices are available in the selection of
the MM:

(a)The MM consists of m exact copies (m ~1) of the OM.
(b) The MM is a general-purpose digital computer (usually

much smaller than the OM).
(c)The MM is a custom-designed (special-purpose) digital

system.
All three approaches have been used in practice, depending
on application constraints and cost considerations.

The m -copy approach

The m-copy (m~1) approach is used in real-time appli
cations in which reliability requirements are extremely high.
Monitoring is simplified, since it can be a direct comparison of
corresponding variables of the m copies. Recovery after fail
ure is also facilitated.

With m = 1 (the duplex case), the surviving copy is iden
tified and becomes the OM, now without monitoring. The
identification requires built-in self-test features in each copy.
The use of duplexing for reliability is a very common solution.
Successful examples of this approach are the central proces
sors of the ESS system of Bell Telephone Laboratories.9, 10, 18
The success of the application of duplexing beyond pure mon
itoring, i.e., to attain recovery, differs widely as a function of
the quality of the self-test procedures. Some notoriously un
successful cases have been reported.

With m =2, triple-modular redundancy (TMR) with major
ity voters is used to monitor correct operation and to imple
ment instant correction in the variables being voted upon. A
disagreement detector (DD) is used to determine when one
input to a voter differs from the other two. The DD serves as
an instant indicator of a potential failure and allows discarding
or replacing the failed member. TMR has been successfully
used in the U.S. space program-e.g., in the SATURN V
launch vehicle computer2-and is currently being investigated
for application in microcomputer systems20 and in aerospace
control computers. 19

Values of m >2 are occasionally used when recovery from
two or more failures is needed. An example is the four
computer (m =3) space shuttle computer complex, in which
each computer monitors output variables of the other three. 21
Interface restrictions severely limit the observable variables in
this design.

In general, the m-copy approach to monitoring has been
justified by the criticality of application, and it usually follows
fault detection by recovery actions that are implemented by
the surviving copies. Because of the identical design, anyone
copy can serve as the OM. In TMR cases, the OM outputs are
produced through majority voters, thus using the MMs to
increase the probability of getting correct outputs.

The distinct general-purpose-MM (GP-MM) approach

This approach is found in some of the very recent large
scale computer systems. A small general-purpose machine

(minicomputer) or a peripheral processor is employed as a
maintenance processor, which performs a certain set of mon
itoring operations in real time on the large system (OM). In
addition, it also may act as a control console, peripheral pro
cessor, communication processor, diagnostic processor (not in
real time), logout storage device, and interface unit to a re
mote central diagnostic facility.

The use of a general-purpose minicomputer or a peripheral
processor as the MM for a large-scale OM offers a significant
cost advantage. First, the MM is an off-the-shelf product,
already operational and provided with software and mainte
nance support. Second, in addition to being the MM, it usu
ally performs several other services for the OM. An evident
disadvantage is the rather limited ability of the MM to per
form real-time monitoring. This is due to the variety of tasks
it is expected to carry out and also to the rather limited num
ber of interface points that can be established between the
MM and the OM. This problem is further discussed in the
section "The Monitoring Interface."

State-of-the-art examples of the distinct GP-MM approach
are

1. The Data General Nova 1200 minicomputer used as a
console processor for the Amdahl 470 V/6 computer
system. I

2. The Data General Eclipse S-200 minicomputer used as
a maintenance control unit for the CRA Y -1 computer
system. 16

3. The PDP-ll minicomputer used as a front-end processor
and diagnostic computer (with direct diagnostic
bus linkage) for the KL-20 central processor of
DECSYSTEM 20. 17

The custom-MM approach

This approach also is found in some large general-purpose
computer systems. Although custom-designed MMs also per
form some other functions, such as diagnostics (non-real
time), initial loading, etc., they are much more closely tai
lored to the monitoring function and cannot be readily satu
rated by other real-time tasks supporting the OM.

Because the custom design of the MM occurs along with the
design of the OM, a more favorable monitoring interface can
be created than for the GP-MM. A significant disadvantage of
the custom-MM approach is the cost of designing, building,
and developing the software and maintaining the MM. High
volume production cannot be expected to reduce the cost per
unit because the custom-MM is of very limited applicability.

Examples of the custom-MM approach are

1. The maintenance control unit (MCU) of the CDC
ST AR-lOO computer. 14 The MCU has both an I/O chan
nel connection and a special set of internally connected
interfaces that allow it to monitor CPU status and gather
event counter data.

2. The control and maintenance unit (CMU) of the Bur
roughs BSP array processorl2, which has access to most
data paths and registers of BSP and itself runs under
control of maintenance software of a B 7800 computer
(the system manager for BSP).

3. The test-and-repair processor (TARP) of the lPL
STAR computer. 3 The T ARP is an MM embedded with
in the OM that carries out very extensive real-time mon
itoring of the execution of every instruction and initiates
automatic recovery in case a fault is detected.

4. The maintenance and support processor of the IBM 4341
Processor 15 , which has a high-speed parallel link to the
CPU. It can read out, analyze, and store machine status
information upon detection of an error.

Relative size of the MM

The word size is used here to designate the complexity and
cost of the MM when compared to the OM.

In the m-copy approach, the MM size is m times the size of
the OM. In addition, there are interface elements that per
form comparisons and usually also implement recovery ac
tion. The relatively high cost of this approach limits its use to
reliability-critical real-time applications, such as aircraft con
trol, spacecraft control, air traffic control, telephone ex
change control, etc.

In order to reduce the cost of m -copy monitoring, the
copies are sometimes assigned various background tasks while
also monitoring the OM. Two modes of operation-mon
itored and simplex-are sometimes made available. 20 Such
sharing of the MM, however, may easily lead to severe reduc
tion in the effectiveness of the monitoring function. Latent
faults in the OM or the MM may accumulate more readily
when different tasks are carried out by the OM and MM for
significant time intervals.

In the distinct MM approaches (both general-purpose and
custom), the MM is usually much smaller than the OM, and
only a single copy of the MM is used. The relatively small size
of the MM is due to the usually very large size of the OM and
to the less critical reliability requirements compared to those
for which the m -copy approach was used. The emphasis here
is not on uninterrupted operation but on fast fault location
and recovery, usually by reconfiguration and manual repair.

An MM (GP or custom) larger than the OM is difficult to
justify economically, since it has to be compared to the simple
m-copy alternative. One potentially attractive exception can
be postulated here: a single central master-MM could serve as
the MM for a number of OMs, which could be located re
motely or form a computer network. A step in this direction
has been taken by some manufacturers who provide a remote
central diagnostic system accessible via local MM's.1.17

Fault Tolerance of the MM

It is evident that the MM may itself malfunction. As a
consequence it may fail to execute properly its monitoring
function. Even more dangerous is the possibility of the faulty
MM actively interfering with the correct operation of the OM.
This issue is discussed separately in the section "Interface
Constraints on the MM."

The extent of fault tolerance provided in the MM depends
on the criticality of the monitoring requirements. In the most
critical cases, the m-copy approach with m>1 provides very

Fault Tolerance by External Monitoring 29

complete fault tolerance at a relatively high cost. Standard
fault-tolerance techniques, such as TMR,z° duplexing, \0 etc.,
are applicable to the protection of the MM.

The GP-MM and custom-MM approaches do not offer a
clearcut solution to the MM fault tolerance problem. The
existing GP..;MMs use the standard fault detection and recov
ery techniques as· provided by the manufacturers. The
Custom-MMs that have been discussed do not show system
atic fault tolerance. This is probably due to the fact that re
source limitations did not allow designers of the Custom-MM
time to incorporate fault tolerance. The relatively small size of
the MM makes the probability of its failure much less than
that of the OM and thus relegates the MM fault tolerance
question to the background. An interesting and unique exam
ple of MM fault tolerance is the Custom-MM called T ARP
(test-and-repair processor) of the lPL-STAR computer,3
which uses hybrid redundancy for its own fault tolerance.

OM Recovery Assistance Functions in the MM

In addition to the OM monitoring, in most cases it is cost
effective to include OM recovery assistance functions in the
MM. The functional and physical isolation of the MM assures
a high probability that the MM will remain operational during
an OM failure and will be able to execute the OM recovery
procedures.

In the m -copy MM implementation the OM recovery is
usually closely integrated with the monitoring function in or
der to provide extensive fault tolerance. These recovery pro
cedures have been discussed in the section "The M-Copy
Approach. "

In both the GP-MM and custom-MM approaches the extent
of OM recovery assistance remains at the discretion of the
designer. The principal constraint that limits the introduction
of recovery assistance is the usually quite restrictive moni
toring interface (see the section "The Monitoring Interface").
An initial program load for the OM is the most common
recovery assistance feature of the existing MMs.

Interface Constraints on the MM

The presence of effective reliability monitoring using an
MM implies the possibility that the MM has access to internal
points of the OM that are otherwise not accessible without
meeting strict authorization requirements. Such access raises
the possibility of two forms of interference with OM that can
originate in the MM:

1. An MM hardware fault (physical fault) or a design error
in the MM software (manmade fault) may cause the MM
to interfere with OM operation.

2. The path to the OM provided via the MM may be used
by individuals who have access to the MM as a means to
gain unauthorized access to the OM, bypassing the OM
security and privacy mechanisms.

Safeguards against both forms of interference need to be
introduced into the MM design.

30 National Computer Conference, 1981

Interference due to faults in the MM

One form of possible MM interference with OM operation
is the occurrence of MM faults that cause a false alarm about
the OM. The extent of interference with OM operation
caused by such a false alarm depends on how many automatic
OM recovery functions are provided in the MM. The funda
mental solution to the false alarm problem is to provide the
MM with fault tolerance. If MM fault tolerance provisions do
not exist, an independent verification of the alarm is needed
when routine OM recovery does not succeed. This can be
carried out by an operator initiating an MM test procedure
either executed by the OM or as an MM self-test. An alterna
tive is to involve the assistance of a remote diagnostic machine
to test the MM.

A second form of MM interference with the OM can be
physical interference through the MM/OM interface. Passive
MM data acquisition interfaces can be adequately protected
by physical isolators. A more difficult problem is presented by
active MM input lines to the OM. For an extreme example, a
"stuck-on-one" master reset signal from the MM would com
pletely paralyze the OM. In addition to physical isolators,
such active interface lines -need self-checking, which can
be implemented by duplexing or other fault tolerance
techniques.

MM software errors (design faults) can also cause both false
alarms and interference (in the form of incorrect commands)
through the MM/OM active interface. Recognition of soft
ware fault conditions will be facilitated when the MM is pro
vided with fault tolerance with respect to physical faults. This
will reduce the probability of misinterpretation of design fault
symptoms as being caused by physical faults.

The probability of detecting the occurrence of both design
and physical faults in the MM can be improved by providing
certain defensive measures in the OM software. Verification
of commands received from the MM by means of an exchange
of messages is one such measure. Another is the execution of
an MM test program from the OM, either periodically or upon
the occurrence of certain MM commands.

Unauthorized access via the MM

The introduction of an MM makes it necessary to review the
security and privacy protection mechanisms that are imple
mented in the OM. The goal of this review is to insure that
there are no previously unforeseen paths that could be used
for unauthorized access, bypassing the existiIlg safeguards of
the OM.

The design of the hardware and software of the MM must
also take into account the existence of security and/or privacy
requirements for the entire system composed of the OM and
MM.

A special condition is introduced by the provisions for re
mote diagnosis of the OM from a master diagnostic MM. Such
provisions exist, for example, for the Amdahl 470V/6 and
DECSYSTEM 20 computers. In this case, procedures for
security must include the transfer of control of diagnosis of the
OM from the local MM to a remotely located MM.

Interfaces of the MM

The OM/MM interface is discussed separately in the section
immediately following. In addition to this interface, the MM
needs the definition of the MM interface with the operator
and linkages with other computers, especially a remote MM
facility.

Another interface consideration for the MM is the record
ing, reduction, and presentation of reliability data !.:ollected
during real-time monitoring. This function can readily be
made a part of the functions of a general-purpose MM. An
example is the Data General Nova 1200 minicomputer, which
serves as the MM (Console Processor) for the Amdahl 470V/6
computer. In contrast to the IBM System/370, the machine
check extended logout information is stored in the Nova 1200
memory under MM control.

The use of a programmable MM makes it necessary to
provide an MM operator manual that defines the commands
and instructions available to the operator. Furthermore, the
manual needs to describe the procedures to be followed in
case of reported OM failures and in case of suspected or
indicated MM failures.

THE MONITORING INTERFACE

The guiding principle in design of this interface is thatthe OM
and the MM are physically and functionally separate com
puter systems. A positive aspect of this constraint is that
strong isolation is provided, which reduces the probability of
related failures that simultaneously affect both the OM and
the MM. Furthermore, the OM/MM interdependence with
respect to design changes within each system is minimized. A
limitation is imposed by the necessity to interface the different
architectures, packaging, and physical layout of two separate
machines.

The main issues in the choice of interface techniques are

1. Methods of access: Standard I/O provisions, dedicated
110 devices, custom links; OM vs. MM control.

2. Access-limiting factors; Architectural, physical.
3. Modification of the OM to accommodate the use of an

MM: Limited retrofitting or redesign (hardware, archi
tecture, firmware, software features).

Methods of Access

The simplest method of supplying data about OM operation
to the MM is to employ the standard output procedures of the
OM to deliver the specified OM status data to the MM. The
MM itself may be a multipurpose peripheral ("front-end")
processor that allocates a high priority to the OM status mes
sage. In response to the data received it may in turn interrupt
the OM to gain more data or to initiate a recovery procedure.
The use of this approach is found in many older general
purpose computer systems.

Two limitations of this approach are (1) the rather loose
coupling between events in the OM and the MM and (2) the
limited bandwith for real-time monitoring that is provided by
the shared use of one channel. The loose coupling occurs
because the flow of monitoring data from OM to MM is
controlled by OM programs. It will succeed only if the OM

software involved in monitoring is itself not affected by any
faults. The occurrence of such faults will be detected by the
MM only as failure of the data to arrive or as damage (e.g.,
parity errors) in the data being delivered.

The OM conditions that can be reported to the MM via the
regular OM output route are limited to those that are avail
able to the OM software. The rate at which this information
is made available to the MM is limited by both the speed of
the output channel and the maximum acceptable overhead (in
software and in time) that the delivery of data to the MM
imposes on the OM.

Some reduction in the OM overhead and improvement in
OM/MM coupling can be attained by use of a dedicated OM
channel that is reserved exclusively for the transmission of
monitored data to the MM. Delay in transmission to the MM
is reduced, since no other functions contend for the use of the
channel. The continuous availability of the dedicated channel
allows regular scheduling of data transmission to take place in
parallel with other OM events. The software protocol needed
for transmission is reduced to a minimum. One remaining
limitation is that a subset of OM software must function cor
rectly in order to communicate the data to the MM. A second
limitation is that the data to be sent must be from registers
that are accessible to OM software.

A much more fundamental approach to OM access by the
MM is provided by the approach of custom-designed links that
connect the OM and the MM for the purposes of monitoring
and recovery (including diagnostics). It should be noted that
a few special links are sometimes provided in systems that
depend on the standard channel interface. These are signals
that usually are available at the operator's console. For exam
ple, the CRAY-1, which is connected to its MM (Data Gener
al ECLIPSE S-200) by a channel pair, also has additional
control signals for the following operations: (1) Master Clear,
(2) 110 Master Clear, (3) Dead Dump, and (4) Clear Parity
Error.

A full OM/MM custom link consists of a separate and
channel-independent path between the OM central processor
and the MM. It allows the readout of certain storage elements
or registers in the OM. The readout may be of two types.
Certain registers are read out to the MM continuously while
the OM is proceeding with its operation. Other readouts take
place statically, after the OM has been stopped and a com
mand has been issued from the MM. The MM also has direct
control signals that cause an immediate OM response (such as
stop), select registers to be displayed continuously, preset
conditions for stopping the OM, etc.

It is very probable that the major advantages offered by
OM/MM custom links will lead to their general acceptance in
the next generation of medium- and large-scale systems.
State-of-the-art illustrations or dedicated OM/MM links are

1. The Amdahl 470V/6 system, which has a custom link
with its console processor (Data General Nova 1200).

2. The CDC STAR-lOO system, which has a custom link
with its custom-designed Maintenance Control Unit
(MCU).

3. The IBM 4341 processor, which uses a service bus link
to its maintenance and support processor.

Fault Tolerance by External Monitoring 31

Access-Limiting Factors

For any given unmonitored OM system, the access that can
be provided for an MM is limited by both architectural and
physical factors.

From the architectural viewpoint, access is limited by the
properties of the I/O system of the OM and by the accessibility
of various internal OM registers to the OM software that will
supply the MM with status information from the OM. The
instruction set of the OM has a major role in determining the
ease with which the monitoring data flow from the OM to the
MM can be set up. The second architectural component of the
OM that may provide access to the MM is the system oper
ator's console, which provides the capability of sending direct
commands to the OM CPU and of displaying certain selected
OM status information.

From the physical viewpoint, very severe constraints to
access by the MM are imposed by (1) the OM packaging and
(2) the length of communication lines between the OM and
the MM, which determines the potential delays, synchroniza
tion problems, noise pickup, etc. An exceptionally emphatic
example of access difficulties is found in the Space Shuttle
computer system. 21 Four identical computers (IBM AP-101
CPU with an 1/0 processor) are used to provide fault toler
ance by means of the m-copy approach to MM design, as
described in the section "The M -Copy Approach." The use of
off-the-shelf hardware allowed a single serial bus for each
computer (the ICC bus). Instead ofbroadcastirtg (trans
mitting) all critical command outputs to the other three com
puters on this bus, only a checksum word is broadcast and
used as the means of verifying correct operation.

Retrofitting Modification of the OM for MM Access

The difficulties of accessing the OM for monitoring may be
alleviated by introducing certain modifications in the OM. For
convenience of discussion, we consider separately the cases of
(1) limited OM retrofitting and (2) major OM redesign (see
the section immediately following).

By the term limited retrofitting we designate changes that
can be introduced as engineering modifications into an exist
ing production model of the OM system. Most readily accom
modated are changes in system software. The addition of a
dedicated channel (or a high-priority MM device in an existing
one) is also relatively simple. A more basic form of retrofitting
is the introduction of new microcode fhat facilitates the deliv
ery of OM status data during OM operations or generates
diagnostic data under MM control.

Another very promising form of retrofitting is the moni
toring of the data that are being received at the operator's
console by linking the console display registers to the MM.
The console also offers the possibility of connecting the MM
to share the command lines and the data input lines that have
been provided for the operator's use on the console.

The most difficult form of retrofitting is the addition of new
hardware links from the OM to the MM. However, it is also
the most effective monitoring interface, as was discussed in
the section "Methods of Access." Here we encounter the

32 National Computer Conference, 1981

problems of high packaging densities and compact topologies
that are essential to insuring a high speed of OM operation.
Access is most readily gained at connectors; however, the
information passing these points is already rather readily
available for output. Furthermore, it is also usually monitored
by internal OM devices such as parity checkers. Direct hard
ware link access to the most critical system registers by retro
fitting does not appear to be a practical solution in most of the
currently existing systems.

Redesign of the OM for MM Access

The most fundamental approach to the introduction of a
good OM/MM interface is to perform a redesign of the OM
hardware so that a full custom link is provided to the MM.

The goal of the redesign is to provide a new model of the
OM that is in all respects fully compatible with the previous
OM model but contains a custom link to the MM. In addition
to the link itself, there may be architectural additions to the
OM that facilitate the monitoring process. Examples of such
features are error detecting and correcting codes, instruction
retry provisions, event counter hardware, and special oper
ation codes for monitoring and diagnosis. These features
will be discussed further in the section "Specification of
Monitoring. "

An example of a redesigned computer that has maintained
full architectural compatibility with an earlier (unmonitored)
system is the Amdahl 470V/6 computer. It has remained fully
compatible with the IBM System/370 and added a sophisti
cated monitoring capability, using both dedicated logic in the
OM and a custom link to its MM (Data General Nova 1200).

Effects of Monitoring on the OM-User Interface

In concluding the discussion of OM/MM interface, we note
that the introduction of real-time reliability monitoring by an
MM is very likely to become visible at the interface between
the OM and its users. The usual manifestation of the presence
of an MM will be the addition of some new constraints on the
user.

Without attempting to identify all possible implications of
adding the MM, we note the following two extremely visible
effects:

1. The set of OM manuals and the detailed OM documen
tation will need to be revised to reflect the existence of
the MM.

2. The presence of MM-related software in the OM may
change the system software timing; this may be a limita
tion in tightly scheduled real-time OM systems.

Looking at item 2 above from the converse side, we note
that a specific real-time application of the OM may become a
limitation on the application of real-time monitoring tech
niques that impose timing constraints on the OM.

SPECIFICATION OF MONITORING

The goal of the monitoring specification is to assure the cor
rect functional performance of the OM by means of real-time
monitoring that is carried out by the separate MM, given that
faults may occur in the OM. .

The correct OM performance is assumed to be implicitly
specified by the set of OM programs and the logic structure of
the OM hardware. The present discussion assumes that there
are no latent manmade (design) faults in OM software and
hardware. This issue of manmade faults in OM and in MM
will be discussed separately in the section "Identification of
Manmade Faults."

The concept of real-time monitoring implies a comparison.
The entities being compared are (1) subsets of operating
states of the OM and (2) reference states being stored or
generated in the MM.

To generate a monitoring specification, four questions need
to be answered:

1. Exactly which operating states of a given OM are poten
tially accessible for the purpose of monitoring by a func
tionally and physically separate MM?

2. What are the symptoms of incorrect functional perfor
mance that can be identified by observation of these
states?

3. Exactly which subset of those accessible states will be
selected for monitoring?

4. How are the selected states going to be interpreted by
the MM in order to decide whether the functional per
formance of the OM is correct?

A fifth major question, which is outside the scope of the
present discussion, is

5. How is the MM going to respond to the conclusion that
OM performance is not correct; i.e., what recovery ac
tion is to be taken?

The first four questions will be discussed in the following
parts of this section.

Potentially Accessible OM States

The potentially observable states of the OM are either of
static or dynamic nature. The static states consist of the digi
tally represented information that is at any moment held in
the OM. This includes all stored data, stored instructions, and
machine state variables that exist at any given time in the OM.
The dynamic state information retains a record of the se
quence of static states (from some previous time instant on)
through which the OM has arrived at the present static state.

An important distinction that needs to be made in identi
fying the potentially accessible states is whether the state is
being observed at a physical variable or at a logical variable
level. At the physical variable level the quantities being ob
served are voltages, currents, positions of moving devices,
temperatures, intensity of light, humidity, etc. At the logical
variable level the physical variables are being interpreted di-

rectly as the True and False (and possible Indefinite) values of
a two-state device, or as the n discrete states of an n -state
device (for example, of a tristate bus).

In current practice, an MM frequently receives information
at both the logical and the physical levels. For example, in
addition to an extensive set of logic variables of the CDC
STAR-100 system, the custom MM (designated MCU) re
ceives the following physical variables: heat sink tempera
tures, freon pressures, room dewpoint, external power input,
machine section power inputs, and presence of short circuits
in machine sections. 14

Although the set of potentially accessible OM states is very
large, we must note that not all OM states are potentially
accessible for monitoring. First, we have device constraints.
The internal states of an LSI logic circuit or a magnetic bubble
memory cannot be reached by an external probe. Second, we
have packaging constraints. Some designs are so densely
packaged that very few (if any) points other than external
connectors can be practically accessed without a redesign of
the OM. Third, we have architectural constraints. The system
architecture may specifically exclude access to certain internal
registers. The problem of choosing a subset of potentially
accessible OM states for observation is discussed separately in
the section "Choice of OM States for MM Monitoring."

Symptoms of Incorrect Performance

In order to perform monitoring, it is necessary to have the
means to distinguish correct-operation states of the OM from
faulty states. This is the single most important issue in devising
methods of OM monitoring. Two distinct cases need to be
discussed: (1) the MM is a copy (or m > 1 copies) of the OM,
and (2) the MM is distinct from the OM (usually it is consid
erably smaller).

The M-copy MM case

When the MM consists of (m ~1) copies of the OM, the
assumption is that during correct operation the corresponding
states of the OM and the MMs will be identical. Presence of
a faulty state is detected by a comparison. For m > 1, the faulty
machine is identifiable because it disagrees with the other
(two or more) machines. For m =1, a disagreement only indi
cates that either one of the two machines (OM and MM) is
faulty. The identification ofthe faulty machine requires either
supplementary real-time fault detection in each individual
machine or off-line testing-i.e., either externally applied di
agnosis or self-tests for each of the two machines. At the cost
of replication, the method of monitoring is reduced to its
simplest form (comparison), and the only remaining limita
tions are (1) the number of points accessible to be compared
and (2) the reliability or fault tolerance of the comparison
device itself.

Failure to resolve uniquely which one of two or more iden
tical machines is faulty may result for at least three reasons:

1. Latent faults or damaged information may accumulate
in each one of the machines. By the time a disagreement

Fault Tolerance by External Monitoring 33

is noted, either a majority of machines is faulty or none
is correct in the duplex case (m = 1). The probability that
latent faults and damaged information will remain unde
tected for longer times and therefore accumulate in a
majority of machines is higher when few comparison
points are available. It is very high when the comparison
device itself fails first (at least partially) in such a manner
that it does not indicate some of the disagreements that
occur.

2. There may be some faults that affect most or all m + 1
, machines simultaneously. The most likely of such faults
are those caused by external interference with system
operation-for example, power transients, electromag
netic interference, sudden changes in environmental
conditions. Such faults defeat the isolation provided be
tween the individual machines and cause all machines to
enter faulty (but probably not identical) states. The ef
fect of such faults is similar to that caused by latent
faults, as discussed in 1 above. Difficulties of the type
discussed above can be minimized by the choice of a
sufficient set of comparison points and by exercising
stored data and programs by periodically moving them
past comparison points.

3. In the case of m = 1, the self-test or external diagnosis
may not be sufficiently complete or accurate. In this
event, either there is no decision or (even worse) the
good machine is wrongly identified as the faulty one.

The distinct MM case

Ordinary comparison does not suffice for monitoring when
the MM differs from the OM. In cases of large general
purpose OM systems the MM is a much smaller system than
the OM. This is dictated by cost considerations, which pre
clude the use of the much simpler m -copy MM approach.
Both general-purpose minicomputers and custom-designed
maintenance processors have been used to serve as MM
systems.

Incorrect operation here cannot be identified by noting
bit-by-bit disagreements, and it is necessary to identify other
symptoms of incorrect Junctional performance (here called
faulty operation) of the OM that can be recognized by the
MM. The symptoms of faulty operation that can be looked
for fall into two categories: static and dynamic.

Static symptoms of faults

The static symptoms are noted by observing (Le., sub
jecting to a checking algorithm) arrays of binary information
that reside in the OM. The array may be one byte, one word,
or a block of words of arbitrary size. In order to distinguish
correct arrays from faulty arrays, the array is encoded in an
error-detecting code (ED C) or error-correcting code (ECC).
Complete duplication of the array is a limiting case of EDC
encoding; triplication is a limiting case of ECC encoding.

Besides such arrays, EDC or ECC encoding can also be
applied to selected sets of individual logic variables that co
exist simultaneously during OM operation. A very simple

34 National Computer Conference, 1981

example is the 2-out-of-5 (generally, "k-out-of-m") encoding
of the consecutive states of a counter.

In most cases the checker, i.e., the hardware that performs
the checking algorithm on the arrays or sets (parity checkers,
Hamming code error correctors, etc.), is located within the
OM itself, and only one output signal of the checker (indi
cating that detection or correction occurred) is available as an
input to the MM. The advantage of such checker location is
that there is no need to send the entire array to the MM for
checking there, and OM/MM data communication require
ments are kept small. The disadvantage is that checking is not
done in a separate location (isolated from the OM) and we
have to remain concerned about detecting OM faults that
affect the checker hardware itself.

Dynamic symptoms of faults

The checking of static symptoms (especially parity check
ing, cyclic redundancy checks on block transfers, Hamming
SEC/DED checking) is very widely used in current
generation computers. It provides highly useful information
about the OM; however, it will not indicate when faulty oper
ation alters the specified algorithm to some other algorithm.
Examples of such events are as follows: an addition is done
instead of a subtraction; a multiplication is terminated a few
steps prematurely; the wrong location is accessed in a mem
ory; the instruction counter is not incremented or is in
cremented twice. All such events may be caused by small
transient faults affecting the sequencing logic for a given algo
rithm, or causing a faulty address decoding to take place
within a memory.

The information that is contained in an instruction (opera
tion code, address, tag bits) contains the information on the
events that are expected to take place (information transfers,
calculating algorithms, condition code settings, memory reads
or writes, etc.) during its execution. This information allows
the monitoring of the execution of an instruction for dynamic
symptoms of a fault: incorrect sequences of events, failure to
perform expected events, time-bounds violations (too long or
too short), occurrence of unspecified events. Instead of dupli
cation, only certain key events can be monitored, thus very

significantly reducing the complexity of monitoring hardware.
An example of such monitoring is found in the JPL-ST AR
(Self-Testing-And-Repairing) computer,3 in which the test
and-repair processor (T ARP) serves as a custom-MM and the
rest of the computer is the OM. The OM part consists of
processor, memory, 110 channel, and read-only memory
modules. This part performs spacecraft guidance and control
computations that are being monitored in real time by the
MM (T ARP) for both the static symptoms (EDC encoding of
machine words) and the dynamic symptoms (as described
above).

In addition to the monitoring of the main events in the
execution of an instruction, faulty operation can also be rec
ognized because violations of software-controllable . con
straints on current program execution take place. Examples of
such violations are memory bounds violations, incorrect re
source requests, and unauthorized use of privileged instruc
tions. These violations are referenced to the execution of an

entire program rather than a single instruction. They may be
caused by programming errors (manmade faults) as well as by
physical faults, and an identification of the cause is essential
if recovery is to be attempted.

In conclusion, we note that dynamic symptoms may
be observed at several levels: microinstruction, single
instruction, application program, external control (from
MM). A judicious choice of the proper level is a key issue in
the implementation of the OM/MM system.

Choice of OM States for MM Monitoring

The number of potentially observable OM states is very
large. The OM states that are actually observed by the MM
are usually a small subset of this set. Several practical factors
limit the monitored set of OM states. They are

1. The OM design-Does it contain numerous built-in
checking provisions? Examples are parity checkers,
memory access monitors, and memory bound limit regis
ters. All such built-in checks are natural choices for ex
ternal monitoring. When built-in OM checks do not ex
ist, the alternative is to do that checking in the MM.

2. The interface constraints imposed by the OM/MM mon
itoring interface-As were discussed in detail in the sec
tion "The Monitoring Interface."

3. The cost of conveying information across the OM/MM
interface, especially where retrofitting or redesign of the
OM is involved.

4. The capability of the MM to interpret the OM states
the MM may be too slow, or it may have an instruction
repertoire insufficient to handle the OM states that can
be conveyed via the OM/MM interface.

The goal of the selection procedure is to select a set of OM
states that will give the best possible detection coverage
(probability of detection given that incorrect operation has
occurred in the OM) at an acceptable cost. A program that
automatically generates various sets of OM states and evalu
ates the available coverage and the cost would be a very
effective design tool.

In addition to the selection of OM states to be monitored,
the questions of their interpretation in the MM also requires
attention. Some states, such as parity error messages, are
already interpreted by the checking hardware in the OM and
need only a response to be programmed in the MM. Other
states may need more interpretation in the MM before a
decision can be made whether a symptom of faulty operation
is present. For example, consider the case when two memory
modules produce simultaneous outputs to a bus. If the two
modules are duplexed for protective redundancy, the opera
tion is correct; otherwise, one module has misinterpreted the
command and is operating incorrectly. In current practice, the
sets of OM states being monitored are usually very small.
They include constraint violation signals at the program level
and checking signals from the OM reporting parity errors and
similar static (error-code) symptoms, as discussed in the sec
tion "Static Symptoms of Faults."

Identification of Manmade Faults

Manmade faults that lead to incorrect performance of the
OM may be of two types: (1) design faults, including software
imperfections and latent hardware design errors, and (2) in
teraction faults, caused by inappropriate operator action. 8

The symptoms of both classes of manmade faults are fre
quently the same as those of physical faults. This is especially
true for faults that are recognized at the program level. The
symptoms are violations of program-level constraints (see the
section "Dynamic Symptoms of Faults"). A fundamental
method to handle manmade faults is software fault tolerance6

•

Software fault tolerance is still a topic of research, and it is not
available in current OM systems.

An alternate method to distinguish whether a fault is phys
ical or manmade is to employ retries and (usually MM-based)
diagnostic procedures that identify physical faults. Remaining
undiagnosed faults are then considered to be manmade. Final
ly, there is also the possibility of manmade faults in the MM.
Especially critical are MM faults that can cause the OM to be
unnecessarily interrupted or even to enter incorrect opera
tion. Systematic protection against the effects of manmade
faults in the MM is an important constraint in the design of the
MM and of the OM/MM interfaee.

The entire manmade fault problem is currently handled by
ad hoc procedures in both the OM and the MM. These proce
dures usually involve extensive participation and judgment
exercised by a maintenance expert. Some of the recent sys
tems (e.g, Amdahl 470V/6, DECSYSTEM 20) provide a re
mote diagnostic center, staffed by top maintenance experts, as
support to local maintenance personnel. The problem of auto
matic, MM-based handling of manmade faults in the OM (and
also in the MM itself) remains a high-priority topic for further
research and experimental implementation.

EFFECTIVENESS AND COST OF MONITORING

At present, the evaluation of the effectiveness and the assess
ment of the cost of monitoring remain wide-open issues for
research, systematic development, and experimentation. The
goal of this section is to outline the various alternatives in
approaching these two issues.

Monitoring effectiveness (ME) in this context means a
quantitative estimate of the success of a given OM/MM sys
tem in detecting an incorrect functional performance (also
called faulty operation) of the OM. The probability of suc
cessfully carrying out a recovery of the OM from the detected
faulty operation is not included in ME.

Fault Identification and Effectiveness Measurement

The first fundamental requirement for the prediction or
measurement of ME is to identify the classes of faults to be
considered in the prediction or measurement of the ME of the
OM/MM system.

We note that physical faults include the classes of transient
and permanent faults, local and distributed faults, and deter-

Fault Tolerance by External Monitoring 35

min ate and indeterminate faults. 8 Some classes may be ex
cluded as being too unlikely or unimportant in a given situa
tion. The ME may be considered for individual classes of
faults or for all fault classes (that were identified as significant)
at once.

Manmade faults include the major categories of design
faults (hardware and software) and interaction faults that are
introduced by inappropriate operator actions at the person
machine interface. If an attempt is to be made to establish ME
figures for manmade faults, great care is needed to describe
the expected faults in terms of their symptoms. Such a descrip
tion is a prerequisite for all ME prediction.

In general, once the classes of faults that are of interest are
identified, the next step is to generate a description of their
symptoms as they could appear in the OM. This procedure is
very difficult, since it requires the superimposition of the fault
onto the logic structure of a given part of the OM and the
derivation of its symptoms as they appear at points within the
OM at which too symptoms can be observed. The ebsefvatioo
can be made either directly by the MM or by checking logic
in the OM that reports its observations to the MM (e.g., a
parity checker within the OM). An illustration of an analytic
approach to symptom derivation (with respect to physical
faults in ·arithmetie processors) is found in Avizienis, 1971.4
The generation of fault symptoms is greatly facilitated by the
use of digital-logic simulation programs that can analyze the
behavior of faulty circuits.22 A good example of such pro
grams is the LAMP system 13 developed at the Bell Labs.

It must be noted that very frequently the fault identification
and symptom generation issues are entirely bypassed in the
description of existing OM systems. The description provides
only the list of error signals that are generated by the checking
mechanisms within the OM. These signals implicitly define
the fault classes that are considered as being of interest. An
explicit description of these faults requires a reverse analysis,
going from the symptoms to the causes, i.e., to physical or
manmade faults.

Four approaches that have been used to derive quantitative
predictions of system fault tolerance and that are applicable in
the prediction and evaluation of the ME of a given OM/MM
system are:

1. Analysis, using mathematical models of the system7

2. Simulation, using either functional-level or digital-Iogic
level system descriptions13

• 22

3. Experimentation, using a copy of the system that is in
strumented with fault injection and data acquisition
dev1cess

4. Field-data cottectton on the performance of systems af
ter their delivery to users9

Cost Assessment

In this paper the MM is defined as a functionally and phys
ically separate computer system. This separation of the MM
and the OM significantly facilitates the cost assessment of
monitoring. Major cost-contributing items of the real-time
monitoring by an MM are

36 National Computer Conference, 1981

1. The procurement, programming, and maintenance of
theMM

2. The setting up of the necessary OM/MM interface, in
cluding software modifications in the OM

3. Retrofitting or redesign costs associated with the OM
4. Introduction of monitoring-induced constraints at the

OM-user interface: changes in machine manuals, pro
gramming manuals, user procedures, etc.

5. Specification, evaluation, and later refinement of the
monitoring techniques

The cost items are readily identifiable, but the benefits
derived from the existence of an MM are much more difficult
to identify. Two principal benefits are

1. A reduction of the probability of an undetected OM
system failure and of the consequently incurred losses to
the system user

2. A reduction of the life-cycle operation cost of the OM
system by (1) the reduction of the expenditures for man
ual maintenance and repair and (2) the reduction of
down time, during which the OM is not avaiiable for use.

The accurate identification of benefits hils remained an im
portant issue in all applications of fault-tolerant computing
except in the cases in which human lives are severely endan
gered by faulty operation. The initial cost is readily apparent
as part of the procurement costs, whereas the operational
costs over the lifetime of the system (where the benefits are
accrued) are not readily evident. Even worse is the fact that
the organizational unit responsible for procuring a system
usually is not responsible for the life-cycle operational costs.
In this case the major benefits of monitoring (or general fault
tolerance) do not offer a direct incentive to the procurement
group and are given a relatively low weight in the competitive
selection process.

CONCLUSIONS

In retrospect, three conclusions are offered on the topic of
real-time reliability monitoring of computer systems:

1. In the current practice of computer system design and
operation, real-time reliability monitoring has two distinct
aspects of application: (1) as a fault-detection method in
fault-tolerant systems and (2) as a maintenance aid in
general-purpose installations.

In fault-tolerant systems the usual choice is m -copy moni
toring: duplex processors in ESS systems/ triplex operation
with voting in SIFf23 and in the Symmetric Ff MUltiproces
sor,19 four machines in the space shuttle computer.21 Excep
tions are the test-and-repair-processor (T ARP) in the lPL
STAR system3 and the CCU in its successor, the FfSC
system, II which are custom-MMs embedded in their OMs. In
addition, error-detecting and error-correcting codes are fre
quently used. The methods are usually considered to be too
costly for general application.

In general-purpose systems, real-time monitoring is slowly
entering system designs through the automation of mainte
nance procedures and through growing sophistic~tion and

automation of operator consoles. Its evolution is accelerated
by competition in the GP system market and is limited by cost
considerations and by the inertia encountered in the design
process. Limited-capacity general-purpose MMs are now
found, among others, in the AMDAHL 470V/6,1
DECSYSTEM-20,17 and CRAY-1 16 computer systems.
Custom-designed MMs are in the STAR-lOO,14 BSP,12 and
IBM 430015 systems. The last is an especially sophisticated and
advanced design.

2. The exposition of principles of real-time reliability moni
toring as presented in this paper had to be distilled from
many diffuse sources.

Fault tolerance literature deals with real-time monitoring as
a part of the entire problem, i.e., as one of several fault
detection techniques. Major insights are contributed by the
intensive use of real-time fault detection methods and by re
cent progress in analytic reliability modeling.

General-purpose systems treat real-time monitoring in the
maintenance sections of system literature. Other functions
assigned to the MM often obscure the extent of monitoring
and downgrade its treatment. There is absolutely no attempt
to present arty quantitative measures of monitoririg effective
ness. Implementation details are not revealed because of the
competitiveness of the market. Important insights are contrib
uted by the fact that relatively small MMs have to monitor
large OMs. Even a sketchy description of the existing moni
toring procedures inevitably offers a good look into machine
architecture and its limitations.

3. The time is here for significant advances in real-time reli
ability monitoring. This paper presents model outlines
for technical specifications of an OM and an MM, based
on the discussion in the sections "Properties of the Mon
itor Machine," "The Monitoring Interface," "Specifi
cation of Monitoring," and "Effectiveness and Cost of
Monitoring." Furthermore, several areas of research
and development are identified that should contribute to
rapid progress in the introduction of real-time reliability
monitoring as a key attribute of computer systems of the
future.

Model Technical Specifications

This section proposes the outlines of two technical specifi
cations, one for the OM and one for the MM.

The OM specification is based on the assumption that the
OM most likely is a large-scale, general-purpose computing
system, although the specification does accommodate other
types of computers. The current status of the OM is assumed
to be one of two alternatives:

1. The OM is already in existence as a manufacturer
specified computing system.

2. The OM is to be designed as an evolutionary improve
ment of an existing computing system.

The outline of a model OM technical specification is shown
in Table I. It covers only the monitoring-related information
that needs to be specifically identified about a given OM. This
information should serve two purposes:

Fault Tolerance by External Monitoring

TABLE I-Outline of a model technical specification: ¥onitoring-related attributes of the object machine OM*

Attributes of the
Object Machine OM

1. Built-In OM
fault signals
and their
accessibility
to the MM

2. Points accessible
for monitoring
by the MM

3. Points accessible
for introduction of
control signals
by the MM

A. Relevant Attributes of the OM

Detailed Aspects To Be
Identified for Each Item

1.1 Definition of signal
1.2 Classes of faults covered:
1.3 Form of external access:
1.4 Protection of external access:

2.1 Definition of point:
2.2 Form of access:
2.3 Entities observed at point:
2.4 Symptoms of faults:
2.5 Classes of faults covered:

3.1 Definition of point:
3.2 Form of access:
3.3 OM condition during access:
3.4 Effect of control signal:

B. Cost and Performance A5pects of Monitoring

(To be established for every attribute identified in A.1, A.2, A.3 above)

1. Cost of OM modifications (if any)
2. Cost of OM/MM interfacing
3. Cost of MM monitoring of this attribute
4. Effect on the OM/user interface
5. Proposed measure of effectiveness
6. Testing procedure of effectiveness

*l'hree versions. of this specification can be generated:
1. For the OM as it exists at the present time.
2. For a retrofitted OM, as defined in "Retrofitting Modification of the OM for MM Access."
3. For a redesigned OM, as defined in "Redesign of the OM for MM Access."

Examples of
Typical Items

Parity checkers,
Comparators,
Temperature
monitors, etc.

Buses,
registers,
microinstructions,
physical variables, etc.

External interrupt,
takeover of sequences

control,
forced readout

stopped OM, etc.

37

1. Provide the technical data to establish whether the given
system is a suitable candidate for real-time reliability
monitoring, or to choose the most suitable OM system
from among competing candidates.

chosen for the MM implementation because of very strict
reliability requirements for the MM/OM system. In this case
the specification becomes significantly simplified.

2. Together with the general OM technical specifications,
provide the definition of OM properties for the MM
technical specification.

The MM specification is shown in Table II. It assumes that
an OM specification is given and that an MM is to be ac
quired, either as an off-the-shelf item or as a custom design.
The outline of the model specification identifies the MM
properties that need to be selected. Detailed discussion of
these properties has been presented previously in this paper.

The underlying assumption is that cost constraints will lead
to the choice of an MM that is a smaller system than the OM;
that is, either the GP-MM or custom-MM approach (see
"Design of the MM") will be made. It must be stressed,
however, that the specification is also applicable when the
m-copy MM approach (see the section on this approach) is

The goal of the specification is to describe an MM in terms
of the following:

1. The monitoring tasks to be performed
2. The expected effectiveness of monitoring
3. The recovery assistance and other auxiliary tasks re

quired from the MM
4. MM reliability goals and constraints on the interfacing

with the OM
5. The maximum cost allowed for MM implementation

Objectives for Research and Development

Some goals for future R&D can be informally summarized
as ~he finding of good answers to the following four questions:

1. How can we design or retrofit the OM to make it very
well suited for real-time reliability monitoring?

38 National Computer Conference, 1981

TABLE II-Outline of a model technical specification: Required attributes of the monitor machine MM

This specification is referenced to a given OM specification.

Atttributes of the MM

1. Monitoring effectiveness (ME)

2. UM recovery assistance (RA)

3. MM fault-tolerance

4. OM protection against
interference by the MM

5.MM operational requirements

6. Cost constraints

7. Physical constraints

2. How do we generate a complete, correct, and unambig
uous specification of the monitoring operation (and pos
sibly also recovery assistance) that an MM is required to
carry out?

3. How do we implement the OM/MM monitoring inter
face and the MM itself to meet the goals of reliable MM
operation, IlOninterference with the OM, secure OM
operation, and additional application of the MM (for
purposes other than monitoring)?

4. How do we predict and measure the effectiveness of the
proposed or existing real-time reliability monitoring sys
tem (i.e., the OM/MM combination)?

A more specific discussion of the four R&D areas follows.

Problems of OM implementation

Four problems which are related to OM implementation
require investigation:

Detailed Aspects To Be Specified

1.1 Goals for the probabilities of detection of faulty
operation of the OM (Detailed for each class of Fault
Signals and Fault Symptoms given in the OM Specification)

1.2 Required Analytic ME prediction methods
1.3 Acceptance criteria for ME verification by simulation
1.4 Specification of acceptance experiments of OM/MM System
1.5 Procedures for field verification of ME

2.1 Specification of required RA procedures
2.2 Acceptance criteria for RA procedures

3.1 Reliability goal for the MM
3.2 Protection of the OM/MM interface
3.3 Fault-indication requirement in case of MM failure
3.4 Acceptance criteria for MM fault-tolerance

4,1 Isolation requirement against faults in the MM (physical
and/or man-made) that can cause faulty OM operation or
false alarms

4.2 Security and privacy protection requirements for the
combined OM/MM system

4.3 Acceptance criteria for MM security provisions

5.1 MM/Operator interface
5.2 MM/Remote Master-MM interface
5.3 Monitoring data collection and processing
5.4 Other required MM f\lnctions (exclusive of 1-4 above)

6.1 Absolute procurement cost limits
6.2 Cost vs. Monitoring Effectiveness (ME) tradeoff boundaries
6.3 Software support and custom program development cost limits
6.4 MM maintenance cost constraints

7.1 Relative locations of OM and MM
7.2 MM operating environment
7.3 Communication links to the OM

1. Identification of fault types that are observed in contem
porary OM systems and classification according to their
relative criticality to OM operation

2. Study of the applicability of the various known fault
detection methods to improve the coverage of significant
faults expected to occur in the OM.

3. Study of the methods for cost-effective and fault
tolerant communication of fault signals and data to be
monitored from the OM to the MM. In current systems
the communication links are not fault-tolerant. An im
portant part of this question is whether the fault signals
should be generated in the OM or whether data should
be independently monitored and fault signals generated
by the MM itself.

4. Study of the methods of retrofitting dedicated OM/MM
links into existing OM machines in which such links have
not been provided by the designer.

Specification of the monitoring function

In its full generality, this specification is the cataloguing of
all the symptoms of faulty operation that should be recognized
by the MM immediately upon their occurrence. In addition,
some recovery assistance functions may also be specified.

The difficulty of generating the monitoring specification
depends on how many fault classes are to be identified by the
MM. The area in which research contributions are most im
mediately needed is the recognition of dynamic symptoms of
faults (as discussed in "Dynamic Symptoms of Faults") and
the recognition of software design and interaction faults. A
second area of concern is the verification that a given moni
toring specification is correct, complete, and unambiguous.

Problems of interface and MM implementation

The aspect of the monitoring interface that has been left
relatively unexplored is the fault tolerance of OM/MM com
munication and the protection of OM security from interfer
ence via the monitoring link.

The second major problem in this area is the fault tolerance'
of the MM itself. Currently, the MM in large GP systems is
either a minicomputer or a custom-MM, both without fault
tolerance provisions. The lack of MM fault tolerance can be
accepted as long as occasional OM failures are acceptable. If,
however, the MM serves as the hard core of the OM/MM
system, which itself has a high reliability requirement, MM
fault tolerance becomes a critical issue, and cost-effective
methods for MM fault tolerance need to be developed.

Prediction and measurement
of monitoring effectiveness (ME)

This problem has remained the least explored of all the
aspects of real-time reliability monitoring. Research and de
velopment are urgently needed here, because an orderly de
velopment of the entire field of reliability monitoring depends
on the existence of objective measures of performance.

Work needs to be done in four areas: (1) analytic ME
modeling, (2) ME prediction by simulation methods, (3) ex
perimental ME evaluation, and (4) development of methods
for ME assessment during field operation.

Research by experiment: An experimental OM/MM system

The most promising vehicle for the focusing of research
efforts and the validation of new ideas on real-time reliability
monitoring would be an experimental OM/MM system
equipped with adequate provisions for continued evolution of
the designs and with extensive instrumentation for experi
mental ME evaluation.

Past experience, specifically the IPL-STAR experimental
computer / has shown that major benefits accrue from the
building of such systems. First, the building of a system does

Fault Tolerance by External Monitoring 39

not allow any difficult issues to be quietly ignored or post
poned, as frequently happens in paper studies of system archi
tectures. Second, the real-life demonstration of successful
performance removes many practical reservations by system
designers and accelerates the acceptance of new ideas into
general design practice. Third, a retrospective assessment of
the design experience almost inevitably leads to new insights
and a better second-generation design.

Because of the intense competitiveness of the computer
industry, an experimental project of this nature would be
most beneficial to the entire international user community as
part of a I university computer system research project. Such
location would allow a reasonable access to research results
and would allow proposals for experimentation by interested
researchers from industry, academic institutions, and govern
ment agencies throughout the world.

ACKNOWLEDGMENT

The research reported in this paper has been supported in part
by a contract with the National Bureau of Standards, U.S.
Department of Commerce.

REFERENCES

1. Ahmdahl Corporation, 470VI6 Machine Reference Manual. MRM 1000-1,
1976.

2. Anderson, J. E., and F. J. Macri. "Multiple Redundancy Applications in
a Computer." Proc. 1967 Ann. Symposium on Reliability. Washington,
D.C., January 1967, pp. 553-562.

3. Avizienis. A .• et al. "The STAR (Self-Testing-And-Repairing) Computer:
An Investigation of the Theory and Practice of Fault-Tolerant Computer
Design." IEEE Transactions on Computers, C-20 (November 1971). pp.
1312-1321.

4. Avizienis, A. "Arithmetic Error Codes: Cost and Effectiveness Studies for
Application in Digital System Design." IEEE Transactions on Computers,
C-20, (November 1971), pp. 1322-1331.

5. Avizienis, A., and D. A. Rennels. "Fault-Tolerance Experiments with the
JPL STAR Computer." Digest of COMPCON '72 (Sixth Annual IEEE
Computer Society Int. Conf.), San Francisco, California, 1972, pp.
321-324.

6. Avizienis, A., and L. Chen. "On the Implementation of N-version Pro
gramming for Software Fault-Tolerance During Program Execution." Pro
ceedings 1977 Int. Computer Software and Applications Conference, Chi
cago, Illinois, November 1977, pp. 149-155.

7. Avizienis, A., "Fault-Tolerant Computing-Progress, Problems, and Pros
peets." Proc. IFlP Congress 1977, Toronto, Canada, pp. 405-420.

8. Avizienis, A., "Fault-Tolerance: The Survival Attribute of Digital Sys
terns." Proc. IEEE, 66, (1978), pp. 1109-1125.

9. The Bell Systems Technical Journal, 56 (1977) (special issue on the IA
Processor), pp. 119-315.

10. Beuscher, H. J., et al. "Administration and Maintenance Plan of No.2
ESS." The Bell System Technical Journal, 48 (1969), pp. 2765-2815.

11. Burchby, D. D., L. W. Kern, and W. A. Sturm. "Specification of the
Fault-Tolerant Spaceborne Computer (FTSC)." Proc. 1976 Int. Sym
posium on Fault- Tolerant Computing, Pittsburgh, Pennsylvania, June 1976,
pp. 129-133.

12. Burroughs Corp. Introduction to Burroughs Scientific Processor, 1977.
13. Ch~ng, H. Y., G. W. Smith, Jr., and R. B. Walford. "LAMP: System

Description." The Bell System Technicallournal, 53 (1974), pp. 1431-1449.
14. Control Data Corp. Control Data STAR Computer System: Hardware Ref

erence Manual, 60256000-01, 1970.
15. Cordero, H., Jr. "4341's Infrastructure Is New from the Substrate Up."

Electronics (November 8, 1979), pp. 110-115.

40 National Computer Conference, 1981

16. CRA Y Research, Inc. CRA Y-l Computer System: Reference Manual,
2240004, Rev. B-02, July 1977.

17. Digital Equipment Corp., DECSYSTEM 20 Technical Summary. 1976.
18. Downing, R. W., J. S. Nowak, and L. S. Tuomenoksa. "No. 1-ESS Main

tenance Plan," The Bell System Technical Journal, 43 (1964), pp.
1961-2019.

19. Hopkins, A. L., Jr., T. B. Smith, III, and J. H. Lala. "ITMP-A Highly
Reliable Fault-Tolerant Multiprocessor for Aircraft." Proc. IEEE. 66
(1978), pp. 1221-1239.

20. Siewiorek, D., M. Canepa, and S. Clark. "c.vmp: The Architecture of a

Fault-Tolerant Multiprocessor." Proc. 1977 Int. Symposium on Fault
Tolerant Computing, Los Angeles, California, June 1977, pp. 37-43.

21. Sklaroff, J. R. "Redundancy Management Technique for Space Shuttle
Computers." 1MB Journal of Research and Development, 20 (1976), pp.
20-28.

22. Szgenda, S. A., and E. W. Thompson. "Modeling and Digital Simulation
for Design Verification and Diagnosis." IEEE Transactions on Computers,
C-25, (1976), pp. 1242-1253.

23. Wensley, J. H., et al. "SlIT: The Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control." Proc. IEEE, 66 (1978), pp. 1240-1255.

The fault-tolerant 3B-20 Processor

by L. E. GALLAHER and W. N. TOY
Bell Telephone Laboratories
Naperville, Illinois

ABSTRACT

The 3B-20 is the first Bell System general-purpose tele
communication processor designed to meet a broad range of
applications. New features such as memory management are
incorporated into its design to support a modern operating
system. Hardware supports are provided to efficiently execute
a high-level language. The 3B-20 Processor is designed to
meet ESS reliability requirements and the proven technique
of self-checking duplex operation forms its basic architecture
structure.

1. INTRODUCTION

The 3B-20 Processor is the first member of a family of pro
cessors designed for a broad range of Bell System applica
tions. Its development is a natural outgrowth of the continued
need for high availability, real-time control of Electronic
Switching Systems (ESSs), 1-3 including existing as well as new
telecommunication applications. With the rapid growth of in
tegrated circuit technology, the processor architecture is
evolving to include as many features as possible to signifi
cantly reduce software development and maintenance costs.

The 3B-20 architecture takes advantage of LSI technology
to expand its functionality and yet maintain a high reliability
standard. Some of the design goals are to

• Achieve highest performance that is consistent with sys
tem cost (e.g., provide hardware facilities such as data
cache, high speed interrupt stack, address translation
cache, and microprogram critical functions which require
too much time in software).

• Reduce software complexity (e.g., provide a modern
real-time operating system to manage system resources,
thereby creating a more useful and more reliable pro
gramming environment for the user).

• Reduce programming effort (e.g., provide both an effi
cient high-level language, such as C-language4 and a com
prehensive set of software development tools).

• Improve reliability and fault-tolerance (e.g., provide
built-in error detection and correction codes, recovery
features, and fault diagnostics.

41

• Improve integrity and security (e.g., implement hard
ware features such as memory management protection
and privilege instructions).

These goals are considered from the viewpoints of both hard
ware and software architecture in order to realize the most
cost effective system for a wide spectrum of applications.
Much of the development effort for the past four years has
been directed to achieve these goals. .

This paper gives an overview of the hardware structure of
the 3B-20 Processor. The operating system, software devel
opment system, software test facilities, maintenance architec
ture and other related topics will be presented and published
later.

2. GENERAL DESCRIPTION

As indicated earlier, high availability is one of the major
objectives in the design of the 3B-20 Processor. The successful
deployment and field operation of many ESS systems have
demonstrated the simplicity and robustness of duplex config
uration in meeting the ESS reliability requirements. 5 Hence,
duplex configuration forms the basic structure for both the
hardware and software architecture. Experience gained in the
design and field operation of the No. 3A Processor provided
valuable inputs for the 3B-20 Processor design. 6

The 3B-20 Processor falls into the category of a concurrent
self-checking design. Extensive checking hardware was incor
porated as an integral part of the processor. Faults occurring
during normat operation are quickty discovered by detection
hardware. This eliminates the need to both run the standby
processor in the synchronous and match mode of operation
and also the need to run the fault recognition program to
identify the defective unit when a mismatch occurs. Self
checking implementation simplifies the maintenance pro
gram. Reconfiguration into a working system is immediate,
without extensive diagnostic programs to determine which
subsystem unit contains the fault. Improved software re
liability has become an increasingly important factor in meet
ing the total system's reliability goal. Furthermore, the self
checking design will permit more straightforward expansion
from simplex to duplex, or multiple processor arrangements.

42 National Computer Conference, 1981

MEMORY

MEMORY

CENTRAL CONTROL

MEMORY
UPDATE

MEMORY
UPDATE

CACHE

DATA
MANIPULATING

UNIT

DATA
MANIPULATION

UNIT

CACHE

I/O
CH

\

MAINTENANCE
CHANNEL

I/O
CH

DDSBS

DUPLEX DUAL
SERIAL BUS
SELECTOR

DDSBS .. -~

Figure 1-3B-20 Processor general block diagram

a. Duplex Configuration

Figure 1 shows the general block diagram of the 3B-20
Processor. The Central Control (CC), the memory and the
liD disk system are duplicated and grouped as a switchable
entity although each CC can access each disk system. The
quantity of equipment within the switchable block is small
enough to meet the reliability requirement; therefore, the
complexity of a recovery program to manage additional work
ing states is avoided. Although each CC has direct access to
both disk systems, this capability is mainly used to provide a
valid data source for memory reload under trouble conditions.
The processors are not run in the synchronous and match
mode of operation as is done in early systems. I

-
3 However,

both stores (on-line and standby) are kept up-to-date by the
memory update hardware concurrent with instruction exe
cution. This is achieved by having the on-line memory update
circuit write into both memories simultaneously when memo
ry data are written by the CC. Under trouble conditions, when
the control is switched to the standby processor, its memory
will contain up-to-date information without performing a
complete transfer from one processor to another. The DMAs
interface directly with the memory update circuit in order to
have access to both memories. A DMA write also updates the
standby memory. In addition, it reads the cache to determine
whether the written word is in cache. If it is, the cache word
is invalidated to ensure consistent data throughout the cache
and memories. Communication between the DMA and the

peripheral devices is accomplished by using a high speed dual
serial channel (DSCH). The duplex dual serial bus selector
(DDSBS) allows both processors to access a single 110 device.
For maintenance purposes, the duplex 3B central controls are
interconnected via the maintenance channel (MCH). This
high speed serial path provides diagnostic access at the micro
code level. It has the capability of transmitting a stream of
microinstructions to exercise the processor from the on-line
processor or from an external unit for diagnostic purposes.

b. Central Control Structure

The 3B-20 Processor is a 32-bit machine with a 24-bit byte
address. Most of the data paths in the CC are 32 bits wide
(plus 4-parity check bits). The processor's design is based on
the register type of architecture with multiple buses to allow
parallel data transfers within the CC. Separate I/O and store
buses are provided to facilitate both the concurrent store and
liD operations. A detailed block diagram of the central con
trol structure is shown in Figure 2. The major components and
their associated functions are

(1) Microprogram Control (MC)

It provides nearly all of the complexcoiltrol and sequencing
operations required for implementing the instruction set. Mi-

crocode can support up to four different emulations in a 3B-20
Processor. Other complicated sequencing functions are also
stored in the microstore (MIS). Its address bus (MSA) is 16
bits. Although this allows addressing of 64K, 64-bit words
(K=1024), only 16K words can be equipped initially because
of physical space allocation. The microcontrol (MC) unit se
quences the microstore and interprets each of its words to
generate the needed control signals specified by the micro
instruction. To optimize the execution of microinstructions,
execution time depends upon the complexity of the micro
instruction. Each will be allocated only sufficient time
required in multiple of 50 nanoseconds to implement the
microinstruction. These times are 150, 200, 250 and 300
nanoseconds. The wide 64-bit word allows a sufficient number
of independent fields within the microinstruction to perform
a number of simultaneous operations. Some common and
high runner instructions are implemented with a single micro
instruction.

(2) Data Manipulation Unit (DMU)

The arithmetic and logic operations are carried out in the
Rotate Mask Unit (RMU) and the Arithmetic/Logic Unit
(ALU). These two units are connected in series to comprise
the Data Manulation Unit (DMU). The RMU provides the
capability to rotate or shift any number of bit positions from
o to 31 through a two-stage barrel switch network. In addition,
a selection of AND/OR operations can be performed on bits,
nibbles (4 bits), bytes, half-words, full words and miscel
laneous predefined patterns. The RMU outputs feed directly

TEST SUPPORT CIRCUITS

, PRo~~~J6R ISTS) ,

ML TS-MICROLEVEL TEST SET
MCH-MAINTENANCE CHANNEL
MIS-MICROINSTRUCTION STORE
MC-MICROCONTROL UNIT

DMU-DATA MANIPULATION UNIT
SREG-SPECIAL REGISTERS

SAC-STORE ADDRESS CONTROLLER
SDC-STORE DATA CONTROLLER

SAT -STORE ADDRESS TRANSLA.TOR
UC-UTILITY CIRCUIT

MASU-MAIN STORE UPDATE
STS-SOFTWARE TEST SET
IOC-INPUT IOUTPUT CHANNEL

DMAC-DIRECT MEMORY ACCESS CONTROLLER
DSCH-DUAL SERIAL CHANNEL

Figure 2-3B-20 Central control

The Fault-Tolerant 3B-20 Processor 43

into the ALU. Any bit fields within a word can easily be
manipulated and processed by the DMU. The ALU is imple
mented using AMD 2901 bipolar 4-bit processor slices. 7 The
chip contains two key elements: the two-port (A and B)
16-word random access memory (RAM) and the high speed
ALU. Data in any of the 16 words addressed by the 4-bit
A-address-field input can be used as an operand to the ALU.
Likewise, data in any of the 16 words defined by the 4-bit
B-address-field input can be simultaneously read and used as
a second operand to the ALU. The result can be directed to
the RAM word specified by the B-field. To take advantage of
the above feature, the internal 16-word RAM is dedicated as
general registers. This enables the arithmetic and logical oper
ation involving general registers and/or the output of the
RMU to be performed at the optimum speed.

(3) Special registers (SREG)

The 16 general registers reside inside the DMU and are
available to the programmer. A number of special registers
(SREG) associated with the operation of the CC are external
to the DMU. Most of them are not explicitly specified by the
instruction. They are characterized by their special dedicated
functions with additional inputs from sources other than the
internal data bus. Their outputs are used to control and direct
the operation of the processor. Some of the special registers
are grouped together as a functional block, i.e., error register,
program status word, hardware status register, system status
register, interrupt register, timers, etc. Others are separated
and grouped along with their functional blocks. For example,
the store output and address registers are dedicated to memo
ry operation. The program counter is used with program
sequencing. In addition, a 32-word RAM is provided within
the SREG block which is essentially available only at the
microcode level. It is used for scratch-pad space and pre
assigned registers to facilitate and enhance the power of
microprogram sequences.

(4) Store interface control

The store interface circuit controls the data from the main
memory to the CC for processing. As previously indicated,
several special registers are associated with the store inter
face. Associated with the store address control (SAC) are the
program address (PA), the program counter (PC), the store.
address register (SAR), and the store control register (SCR).
Associated with the store data control (SDC) are the store
data register, the store instruction register (SIR) and the in
struction buffer (IB). The SAC and SDC together make up
the store interface which handles the memory addressing, the
updating of the program counter, the fetching and prefetching
of instructions. The circuit ensures a continuous flow of in
structions to be interpreted by the microcontrol unit.

(5) Store address translation (SAT)

Memory mapping is important in the implementation of a
multiprogramming system. Address translation hardware is

44 National Computer Conference, 1981

LEGEND:
CC-CENTRAL CONTROL

DOSBS-DUPLEX DUAL SERIAL
BUS SELECTOR

DIO-DMA 1/0 BUS
DMAC -DIRECT MEMORY ACCESS

CONTROLLER
DSCH-DUAL SERIAL CHANNEL
MCH-MAINTENANCE CHANNEL

PD-PERIPHERAL DEVICE CH 6

•

15
DSCH

(CH 19) 0

15~------

•
•
•

en
w
()

5>
w
o
c{

~
o
<X)
C\I

15 -----..
en
::::>
II)

o
U
()

15
DSCH
CHOO

M03183003
38-20 1/0 Architecture

Figure >.-3B-20 1/0 architecture

provided to facilitate memory management in a more efficient
manner. The store address space is divided into 128 segments,
each having up to 64 pages, with a page containing 2K bytes.
Both the virtual and the physical address spaces are 24 bits.
The complete virtual to physical address translation tables are
stored in the main memory. A significant amount of time is
required by the CC in the repetitive task of dynamic address
translation in using the main store tables. This translation
time is reduced substantially by storing the Iikely-to-be-used
physical address translations in a high speed cache-like ad
dress translation buffer (ATB). The store address translation
facility containing the ATB is the mechanism which provides
a mapping between a program-specific virtual address and its
corresponding physical address.

(6) Main Store Update (MASU)

The memory update unit provides direct communications to
the memories as both DMA and CC attempt to use the

memory. The cross coupling between the memory update
units permits the on-line processor to access either memory or
both for concurrent write operation.

(7) Input/output interface

The primary communication path between the CC and the
110 channels is through the CCIO bus. It is a local high-speed,
direct coupled, parallel bus. Physical slots within the CC hous
ing are allocated to a number of circuits called I/O channels
(IOC). The 10Cs may be the dual serial channel (DSCH) or
the direct memory access controller (DMAC).

(8) Cache

The cache is an optional circuit equipped to improve the
overall system performance by reducing the effective memory

access time. The cache is a 4-way set associative memory
arrays, each containing 2K bytes, giving a total of 8K bytes.

(9) Maintenance channel

The maintenance channel (MCH), as described in the pre
vious section, provides diagnostic access to the CC at the
microinstruction level. The test support circuit is covered in
Section 4c.

3. 110 FACILITIES

The 110 facilities are designed to meet a wide range of ap
plications with different needs and capabilities. A modular
and flexible 110 communication structure is provided by
means of dedicated point-to-point serial channels. The loose
coupling of the processor to the peripherals allows consid
erable freedom to grow and expand the system without phys
ical constraints.

The 110 architecture is shown in Figure 3. Although the
channel address ranges from 0 to 19, the processor can be
equipped with as many as seven programmed 110 channels
and as many as eight DMA channels. Each channel can con
trol up to 16 devices. This means it is possible to equip the
system with 128 DMA devices and 112 programmed 110 de
vices for the maximum configuration. Programmed 110 chan
nels are directly controlled by microcode via the CCIO bus.
The DMA facility provides autonomous control of data trans
fer between the main store and peripheral devices (PDs), thus
alleviating the constant need for the CC to process 110 re
quests. A common DMAC controls up to four DSCHs with
each corresponding to a DMA channel.

a. Dual Serial Channel (DSCH)

All standard peripheral devices use the DSCH as means of
communication. It is a semiautonomous unit providing up to
16 private serial point-to-point data transmission paths, giving
a unique link for each device. Each link consists of two bi
directional data leads, a transmit clock, a receive clock and a
request lead. Each of the two data leads operate at 10 mHz for
cable distances of up to 100 feet. The normal data transfer
operation is a 32-bit word message. The dual serial channel
allows concurrent transmission of 16 data bits each to form
32-bit words. In addition to the 16-bit data, the transmission
includes 3 start code bits plus 2 parity (one for each byte).
When the DSCH operates in a word-transfer mode, its trans
fer time is about 4.5 microseconds per 32-bit word. The
DSCH can also operate in a block transfer mode of transfer
ring 16 32-bit words at a rate of 3.0 microseconds per word as
a single sequence. Although the addressing and loading of
data is performed under program control, the actual trans
mission is done autonomously under control of the DSCH
hardware.

The programmed 110 operation is controlled directly by the
processor, with no need for a device to initiate action on its

The Fault-Tolerant 3B-20 Processor 45

own except on DMA operation. The service request functions
are incorporated as part of the DSCH to allow a device to
signal the processor via the interrupt mechanism. This is im
plemented over the request line of the DSCH link. Further
more, the DSCH includes a feature which allows it to be used
for processor-to-processor communication in a multiple pro
cessor configuration. The interconnection of DSCHs requires
each circuit to look like a device to the other so that commu
nication can be initiated by either end of the DSCH.

b. Direct Memory Access (DMA)

The DMA structure provides the facility for moving data
between 110 devices and the main memory without having the
processor involved in the handling of each transferred word.
A DMA unit consists of a DMA controller (DMAC) and one
to four DSCHs. Each DSCH provides up to 16 private serial
links interfacing with just as many devices. This means a
DMA can accommodate up to 64 devices and all may be active
concurrently. The 110 structure can be optionally equipped
with two DMACs capable of handling up to 128 concurrent
DMA-controlled devices.

In virtual to physical address translation, the translation
page tables are stored in the main memory. The translation
process is the same as that used within the CC itself with the
tables shared between I/O and executing programs. Each
page is provided with protection bits defining DMA read and
write access capability. The maximum transfer size of a single
D MA transfer is one segment or 64 2K byte pages of memory.
The physical addresses of the 64 pages are not necessarily
contiguous. As part of the initialization process for a DMA
function, the processor passes the page table pointer to the
DMA. It in turn uses the page table pointer to obtain the
physical address of the page. As the DMA to memory transfer
crosses the page boundary, the DMA circuit automatically
accesses the page table to obtain the next physical address for
the new page. This is repeated until all pages specified by the
DMA operation are completed.

CC 1/0
CH -----------, rMCH I

! t1 :
cc 10 i CH ~ •
[MCH • I • t-'- I

I
I
I

1 I

~
.
:

1/0 I CC 1/0
CC CH ~ I CH

• I rMCH ~ ,
I t1 _________ ...J

Figure 4-Maintenance channel interconnection

46 National Computer Conference, 1981

c. Peripheral Devices

A broad range of general-purpose peripheral devices is pro
vided for the 3B-20 Processor system. High reliability and
maintainability continues to be the design philosophy of the
3B-20 peripheral system. The critical components are dupli
cated and the software ensures that valid data sources are
maintained. Duplex dual serial bus selectors (DDSBSs) per
mit controlled switching of a working standby device for a
faulty on-line device when duplication of peripheral devices is
needed. Some major peripheral devices developed for the
3B-20 system are as follows:

(1) Moving head disk system

The disk system provides a reliable and flexible mass stor
age medium for program and data. A backup copy of system
programs and critical parameters can be reloaded quickly in
the event of a duplex main store failure. The disk system is
comprised of the disk file controller (DFC) and the moving
head disk drive (MHD). The DFC interprets and executes
commands from the processor to cause information transfer
from and to the MHD. Each DFC occupies one of 128 channel
slots and supports up to 16 MHD drives which are available in
80 and 300 megabyte sizes.

(2) I/O processor (lOP)

The lOP provides the control for a wide range of data link
facilities and is the most flexible of the family of devices. An
lOP supports up to 16 peripheral controllers (PCs) with each
being a microprocessor base controller programmed to handle
a specific terminal or device. For example, one type of PC is
the line controller (LC); each LC can support up to four
independent lines (data links or terminals).

(3) Magnetic tape system

The tape drive accepts the industry-standard (IBM com
patible) 9-track tapes at a density of either 800 or 1600 bits per
inch. The tape controller is derived from the basic PC and
occupies one of the 16 slots of the lOP.

(4) Scanner/signal distributor (SC/SD)

This device is useful in monitoring and controlling power,
equipment states, environment conditions, etc. The SC/SD
circuit board provides 32 scan points and 32 signal-distribute
points. It occupies one of the PC slots of the lOP. When an
lOP is fully equipped with 16 SC/SD circuit packs, a total of
512 scan points and 512 signal-distributor points are provided.
The cables of the SC/SD to the external circuits can be as long
as 1000 feet.

4. SOFTWARE SUPPORT FEATURES

The excessive cost of designing, updating and maintaining
software dominates the cost of producing computer systems.
Considerable attention has been focused on providing various
supports, i.e., high-level language, operating system and soft
ware test, in the development of the 3B-20 Processor. The
combined software and hardware effort has yielded an inte
grated and cost-effective system.

a. High-Level Language Support

The most common approach to increasing software pro
ductivity and reducing software maintenance cost is the exten
sive use of a high-level language suitable for the applications.
The design of the 3B-20 Processor instruction set was based on
the fact that C-language programs would dominate the pro
gramming environment. Considerable studies were directed
to measure and determine the characteristics of a large, di
verse sample of C programs. Based on the result of these
studies, the instruction set was optimized to be space and time
efficient for compiled C programs. Some features provided
for the instruction set are concerned with: (1) symmetrical
resources; (2) addressing modes; (3) address manipulation;
(4) flexible data structure; (5) stack instructions; and (5) pro
cedural instructions.

From the compiler'S viewpoint, the most important attri
bute of a processor instruction set is regularity. It is the key
feature needed to abstract the various processor resources for
uniform treatment by the compiler. The 3B-20 instruction set
includes a wide range of address modes, i.e., indexing, direct,
indirect, covering various data structures. The identical treat
ment of the addressing modes applied to all data types (bytes,
half-words, full words, and instructions) without any excep
tions, makes it possible to compile compact and efficient
codes. The subroutine is one of the most important concepts
in software. The principal idea in modular, structural pro
gramming is the partitioning of large programs into many
small, understandable procedures or subroutines. Efficient
instructions have been provided to handle subroutine entry
and exit in addition to stack manipulation.

b. Operating System Support

The operating system provides a more useful and more
reliable programming environment for the users. Higher
productivity in application programming is made possible by
the high level, simplified facilities provided by the operating
system. The duplex multienvironment real-time (DMERT)
operating system for the 3B-20 Processor is a general manager
of processor, memory, input/output, and processes. Certain
hardware has been incorporated into the design to reduce the
overhead of an operating system.

As previously indicated, a high speed address translation
cache memory called the address translation buffer is pro
vided to reduce the overhead associated with the address
translation function. If only one ATB is provided, the ATB
must be "flushed" whenever a process switch occurs. This

would incur considerable overhead in the constantly flushing
and reloading of the ATB. To improve this situation, the ATB
is provided with eight sections, each composed of two sets of
128 entries; each entry can contain the virtual-to-physical
translation for one page (2K bytes) of memory. Eight special
registers in the CC (SBRO, SBR1, ... , SBR7) are used to
point to eight different segment tables in the main memory.
These eight registers define eight address spaces in the 3B-20
Processor and are assigned by software.

Context switching is necessary upon interrupt. A memory
stack is provided to facilitate the saving and restoring of the
hardware context. In the 3B-20 Processor, a local high speed
8K-byte RAM is provided for this function. The addressing of
the stack is part of the kernel virtual address space and has
been assigned a fixed segment number and pages O' to 3.
Whenever the kernel virtual address falls into this range, the
store operation is directed to the high speed RAM; otherwise,
the virtual address is translated by the ATB and pointed to the
main memory. The combination of fixed mapping by special
circuit and dynamic address translation by ATB allows the
high speed stack to be extended into the main memory when
the use of the high speed RAM is exceeded.

c. Software Test Support

The software test facility is an option provided at both the
microprogram level and the macro program level. As indicated
in Figure 1, the microlevel test set (MLTS) is attached to the
microcontrol section of the central control. It has the capabil
ity of direct access to a support computer system for assem
bling and loading the writable microstore through the MLTS.
The primary purpose of the MLTS used in the development of
the 3B-20 Processor is for initial debugging and trouble
shooting the processor core hardware and subsequently, the
microprogram sequences. Features incorporated into the
MLTS allow the stepping, freezing, examining and tracing the
execution of a microprogram sequence.

The utility circuit (UC), on the other hand, provides a
similar set of facilities, except that at the macroprogram level
for software debugging and troubleshooting. The UC and its
associated software form an extensive Test Utility System
(TUS) for software testing. A large number of matchers are
incorporated into the UC for the tracing and monitoring of a
variety of system conditions so that a programmer can observe
and follow the execution of a program sequence. Much of the
program debugging can take place in real time concurrent to
program execution. The UC thus directly extracts and records
information such as transfer trace from the internal data
buses, thereby "capturing" the history of the machine while it
is running at normal speed.

5. MAINTENANCE FEATURES

Increased support in this area is most appropriate to facilitate
a more reliable and more maintainable system, thereby reduc
ing the maintenance cost. It is the labor-intensive expense that
is most vulnerable to inflation. For real-time applications, as
in the electronic switching systems (ESS), high availability

The Fault-Tolerant 3B-20 Processor 47

and uninterrupted operation is essential. This requires the
system to function correctly even when a fault is present and
maintenance is being performed. The 3B-20 is designed to
meet the ESS standard so that the expected amount of accu
mulated processor downtime does not exceed an average of
two minutes per system per year. 5 Software and hardware are
designed to function jointly to insure the reliability objectives
are met. Software features include such components as fault
recovery programs, audits, and diagnostics. Hardware fea
tures include redundant processors, error detection circuits,
maintenance access and controls, and diagnostic microcode.
These components contribute to the effective maintenance
design.

a. Self-Checking Features

Self-checking is implemented in the 3B-20 design for con
current error detection. The maintenance philosophy is to
provide a sufficient amount of hardware to enable detection of
nearly all service-affecting single hardware faults. To min
imize the potential sources of errors in the main memory,
single-bit Hamming correction and double-bit error detection
is employed. Most software faults such as memory protection
violations, illegal instructions and out-of-range addresses are
also detected. Some of the fault detection techniques used in
the 3B-20 Processor are

• Parity per byte on data paths throughout the internal CC,
memory buses, and peripherals

• Single-bit Hamming correction and double-bit error de
tection on the main store data

• Duplicated arithmetic and logic unit and other control
logic

• Microprogram seqaence check
• Parity per byte on data in ATB, cache, microstore, inter-

rupt stack
• Clock timing check
• Decoder check
• Memory management hardware for detecting address er

ror such as a protection violation
• Memory address consistency check (half word and full

word)
• "Watchdog" timers for software faults

Faults detected by the processor check hardware are collected
together into a single error register. The action taken for a
particular fault depends on its impact on the system.

b. Hardware Fault Recovery Features

Fault detection is the first and most important step in real
izing a highly reliable system. Almost of equal importance is
the rapid recovery by the system. Recovery is achieved by a
combination of hardware and software so that continuity is
maintained. As soon as an error is detected, immediate action
takes place to reconfigure the system into an error-free work
ing system. The recovery process involves two steps: recon
figuration and initialization. To facilitate this rapid reco\o'ery

48 National Computer Conference, 1981

from system faults, the 3B-20 Processor provides the follow
ing:

• A memory update unit-It couples the on-line memory to
the off-line memory. The off-line processor's memory is
updated on each memory write operation to allow con
tinuous agreement with the on-line memory.

• A maintenance channel (MCH)-It directs the off-line
processor to initialize and recover when the on-line pro
cessor has detected critical error conditions

• Initialization microcode-The nondestructive microcode
makes critical recovery decisions when error conditions
are detected. This microcode is particularly important if
total software sanity is lost.

c. Diagnostic Hardware

Hardware has been integrated into the design of this system
to allow a systematic approach for identifying failures via
software. This diagnostic software depends heavily on the
maintenance channel and its associated circuitry. Its primary
function is the diagnosis of one processor by the other. The
MCH is an autonomous portion of the processor which, under
control of the other processor, can provide information about
the state of the machine. It thus exercises the machine at its
most basic level by direct access to the microprogram control.

The MCH characteristics are like those of the dual serial
channel (DSCH) and the access protocols are compatible with
each other. A 64-bit (plus 8-parity bits) MCH command is
formatted into two successive 32-bit messages in the standard
DSCH manner. This allows a master-slave CC configuration.
For example, in a multiple-processor configuration, a master
duplex CC can be given maintenance control over simplex
slave CCs by the DSCH-to-MCH cormection, as illustrated in
Figure 4. The dual-access provision of the MCH permits ei-

. ther CC of the duplex master to control the simplex CCs.

Summary and Status

The 3B-20 Processor is a general-purpose high availability
machine supporting a broad spectrum of applications. A com
prehensive set of software tools and facilities is provided to
improve programming productivity and also to reduce the cost
of software development and maintenance. The hardware ar
chitecture is designed to efficiently support high-level lan
guage, particularly C language.

The processor is a 32-bit machine with.a 24-bit addressing.
Hardware features have been provided to support a modern
general-purpose operating system, e.g., virtual-to-physical
address translation. Other features include microprogram im-

plementation, emulation capability, high speed data cache,
high speed interrupt stack, self-checking circuits, extensive
diagnostic access, craft interface for emergency manual con
trol, and high availability duplex operation.

The standard 110 communication between the CC and the
peripherals is by means of a dedicated point-to-point dual
serial channel, capable of transmitting an effective rate of 20
megabits per second. It can operate in a word transfer mode
or a block mode of 16 words per block. The loose coupling of
the channels between the processor and the peripherals per
mits considerable freedom in expanding a system. A wide
range of general-purpose peripherals have been provided with
the 3B-20 Processor. Some of these are the moving head-disk
system, magnetic tape system, high speed printer, scanner and
signal distributor and data terminals.

An important provision in the 3B-20 Processor is a com
plete set of maintenance facilities, from error detection
through fault recovery and diagnostics. Approximately 30
percent of the internal CC logic is devoted to self-checking.
This allows concurrent error detection and immediate recov
ery. The combined hardware and software features give an
integrated package of maintenance facilities to meet the high
ESS reliability requirements.

The development of the 3B-20 Processor started in early
1977. The machine is currently in production at Western Elec
tric Company. About a half-dozen projects requiring high
availability, real-time telephone related applications are un
der development using the 3B-20 Processor. The first applica
tion, called NCP (Network Control Point), is expected to be
cut into service in mid 1981.

7. ACKNOWLEDGMENTS

The design of the 3B-20 Processor was accomplished through
the combined efforts of many designers in Bell Laboratories
and Western Electric Company. The authors wish to acknowl
edge the contributions of all the team members. Their work is
summarized herein.

REFERENCES

1. "No.1 ESS Description," BSTJ, September, 1968.
2. "No.2 ESS Description," BSTJ, October, 1969.
3. No. 1A Processor Description," BSTJ, February, 1977.
4. Kernighan, B. W., and D. M. Ritchie. The C Programming Language,

Englewood Cliffs, NJ: Prentice-Hall, 1978.
5. Toy, W. N. "Fault Tolerant Design of ESS Processors," Proceedings IEEE,

October 1978.
6. Storey, T.F., "Design of a Microprogram Control for a Processor in an

Electronic-Switching System." BSTJ, February 1976.
7. AMD. The Am2900 Family Data Book. 1979.

Firmware engineering: Methods and tools for firmware
specification and design

by WOLFGANG K. GILOI and REINHOLD GUETH
Technical University of Berlin
Berlin, Germany

and

BRUCE D. SHRIVER
University of Southwestern Louisiana
Lafayette, Louisiana

INTRODUCTION

Microprogramming has become the means of implementing
the machine language instructions of a conventional com
puter. In the future, the vertical migration of functions from
the software levels of a system to the microprogramming level
may become equally important. The vertical migration of
functions of a computer-isundel"taken to realize ·architectures
having improved performance, functionality, reliability, or
data security. The increased volume of microcode brought
about by vertical migration tends to increase the complexity of
the firmware development process and calls for a firmware
engineering discipline that provides tools for the design and
specification, implementation, validation, and maintenance
of firmware. We present a rationale for the specification and
procedural design of firmware based on the use of an appro
priately defined specification language. The features of such
a language and the supporting software system are outlined
and demonstrated by the example of an existing APL-based
firmware development system.

Firmware Engineering versus Software Engineering

Modern software engineering methodology is characterized
by features such as: structured programming, hierarchical de
composition based on the use of abstractions for data, oper
ations and control, execution-independent definition of pro
gram semantics, and verification by correctness proof or by.
testing. The core of any software development system is a
formal specification method. Only formal specifications can
be tested for consistency, completeness and ambiguities. A
formal specification of the program modules of a software
system is the starting point for the process of hierarchical
decomposition in which a complex software system is decom
posed into a hierarchy of less complex modules. This results
in a more manageable design and validation process that can
be carried out at each stage of a stepwise refinement process.

49

The system decomposition is supported by the use of program
and data abstraction, allowing decisions concerning irrelevant
implementational details to be deferred until the appropriate
stage of the design process. The result obtained after each
refinement step must be validated with respect to the given
specifications. There exist three major approaches to software
specification: (1) the operational method, (2) the denota
tional method, and (3) the axiomatic method.

Only the denotational and the axiomatic specification
methods allow for execution-independent semantic defini
tions. The operational method requires the introduction of
representations that are already at the highest level of abstrac
tion. It thus has the potential danger of "overspecification"
i.e., the introduction of implementational details not perti
nent at the given level of abstraction. Any specification system
must be sufficiently abstract and precise. By "sufficiently ab
stract" we mean that no more information is contained in a
specification than absolutely necessary. By "sufficiently pre
cise" we mean that all abstractions used are completely and
unambiguously defined. In general, it should be possible to
define an abstraction without specifying its implementation
representation, thus avoiding premature binding.

Specification systems should meet some additional require
ments. A specification system should: (a) allow for specifica
tions to be given at all levels of abstraction in the design
process, (b) allow mappings to be defined between the objects
and functions at various levels of abstraction, (c) lend itself to
the application of automated checking of the completeness
and consistency of the specifications, and (d) lend itself to the
application of computer assisted verification of the system.
However, since verification by correctness proof requires an
automated theorem prover, validation by testing will still be
predominant. I

When seiecting a firmware specification system, an im
portant question to pose is whether software and firmware are
similar enough in nature so that existing software devel
opment systems (including their specification subsystems, in
particular) can be used in the firmware development process

50 National Computer Conference, 1981

as well. This would be very desirable because the vertical
migration of primitives to the microprogramming level sug
gests a view of firmware design as an extension of softWare
design, involving only additional levels of decomposition. As
shown in the following section, however, the firmware differs
in some decisive aspects from software. Consequently, what is
needed is an adaption of software development methods to
the tas}{ of firmware development, rather than a simple adop
tion. '

Characteristics of Firmware

There are some decisive differences between firmware and
software that affect the level of abstraction and the nature of
the design steps to be taken in the course of firmw(l.re· devel
opment. Firmware represents a "target machine" by imple
menting the data objects, operations, and control constructs
of the microprogramming language of a given" "host ma
chine". 2 All abstractions of a firmware design must eventually
be mapped onto real hardware resources. Both the hardware
and logical architecture of real machines are often based on
marketing considerations such as cost, hardware per
formance, backward compatibility (and also on tradition).
Therefore, the firmware interface provided by the hardware
usually is strongly determined by the underlying hardware
architecture rather than by the constructs fo~nd at the higher
levels of interpretation.'

The limited reservoir of hardware resources, especially
those available for the representation of data objects, is a
serious constraint imposed on tlle design of firmware. Con
sequently, a firmware specification system must provide
means for introducing bindings of data objects and operations
to specific real hardware resources. In contrast, in software
design it is usually sufficient to introduce bindings to virtual
resources and transformation and leave the mappings of the
virtual resources to the real o'~es to the compiler and oper
ating system. The elementary data objects of firmware design
are the contents of certain hardware resources for which the
generic name carrier is used. The basi~ data type of the data
objects of the firmware is the bit vect()r. More complex data
types can be defined to represent arbitrary information items
of the machine based on the bit vector.

A common feature of firmware data types, which is also
found in high-level microprogramming languages3 is that they
define data representation~ and not the semantics of the repre
sent~d information. Contrasted with software data types these
dat(l. types have no predefined semantics; their interpretation
thus is context-dependent. Theref9re, firmware specification
syst~ms must include models for the information inter~
pr~tation (the definition of semantics). '

The primary goal of~oftware engineering is to produce a
reliable and maintainable software system at minimal cost.
This is often a very eJaborate ~nd costly goal and, if the
penalty for failure is high, other important system character~
istics (such as executio!1 time) m,~y become of secondary im
portance. The performance of firmware, on the other hand,
determines directly the performance of a computer and,
therefore, execution time of the microprograms is of primary
c()ncern.

A firmware design process; including its specification sys
tem, should offer provisions for stating performance require
ments. For example, the firmware design system should allow
its user to describe parallel activities of the hardware and to
verify execution speed requirements. In the firmware design
process, the timing characteristics of microprogram execution
by the host machine may have to be considered, and the
microprograms must be validated with respect to freedom of
timing conflicts and resource contention. This distinguishes
firmware from software where the notion of run time gener
ally does not exist.

An operational specification readily allows for the intro
duction of models for the host machine semantics, and it lends
itself in a natural way to the definition of parallel activHies and
timing characteristics.

The operational specification method initially requires the
definition of representations. This is undesirable in software
development but is no serious disadvantage in firmware de
sign because the representations of data objects and oper
ations aierestricted by the host machine architecture. The
operational specification method can be combined with a pro
cedural design process to form a design 'system having the
advantage of allowing for design validations through testing.

OPERATIONAL FIRMWARE SPECIFICATION

For the reasons listed above, the operational specification
method is the preferred starting point in the firmware devel':'
opment process.

Operation Abstraction

A microprogram can be interpreted as a state transforming
function,j;,j of an abstract machine Mi' The operational speci
fication method requires the existence of a programming lan
guage L with semantically well understood constructs. These
constructs are used to define the semantics of the operations
of Mi. The data objects of Mare defined by algorithms formu
lated in L. To validate the construction, a program written in
L is executed, that is, validation is carried out by testing.
Therefore, an essential prerequisite of the operational specifi
cation method is the existence of an interpreter for L, to
perform the state transformations by which the semantics of
the operations and constructs of a microprogram are defined.

An operation j;,j of an abstract machine Mi is specified by
representingj;,j by a program, Pi-l,j, to be interpreted by an
abstract machine M i - 1• j;,j may be a transformation performed
on data objects di,u. Pi- 1•j may be a transformation performed
oh data objects di - 1,v. The program Pi - 1,j can be validated
with respect to the specification ofj;,j, if the values are defined
in terms of the data objects di - 1 ,v. Therefore, mappings mi"
must be given for all types of data objects of Mi so that
di,u=mi,,(di- 1,v).4 These mappings, together with the specifi
cations for the operations and control constructs of th~ micro
program, should be formulated in L in order to render them
executable by the interpreter for L.

A program P performs transformations in the state space
Si-l given by the values of the data objects di- 1,v. By virtue of

Figure I-Validation of a program implementing a higher-level function

mappings mi,(, S can be mapped onto S;, i.e., the initial state
S;-t and the final state in 'S;_t of a transformation in S;-t can
be related to S; and 's;, respectively. Conversely, if the exe
cution of operation f;,j by machine M; leads to the final state
* S;, then validation of the program P;-t,j implementing f;,j is
to demonstrate that * S; = 's;, as illustrated in Figure 1.

Data Abstraction

Data abstraction of both user defined and predefined data
objects is achieved by using abstract data types. 5 The defini
tion of an internal representation, in the cases where there is
not a predefined representation, is based on the elementary
data types of the host machine. To this end, one may start, for
example, with a state machine input-output specification of
the operations of a user defined abstract data type. 6 Sub
sequently, by introducing representations, the axiomatic
specification can be substituted by an appropriate operational
specification, and validation by execution becomes feasible.
This approach introduces internal representations even in
cases that are not yet predefined, resulting in an "over
specification" at this level. For the reasons given above, such
an approach that may be questionable in software specifica
tion seems quite acceptable in firmware specifieation.

Control Abstraction

Control constructs establish an ordering of execution of
operations. A control construct of an abstract machine M; can
be implemented by a program that transforms specific data
objects of the machine given at the next lower level. Examples
of specific objects are the instruction counter or semaphores.

Firmware Engineering 51

In contrast, the ordering of operations can be defined in
software in a more abstract manner, e.g., through iterators of
path expressions. This difference results from the early re
source binding of firmware data objects. For example, to mi
grate the calling sequence of a high-level programming lan
guage into firmware, certain hardware resources must be pro
vided in the host architecture from the beginning, such as
instruction counter, stack pointer register, and local base reg
ister. The extent to which control constructs may occur as part
of the firmware design task can be included in an operational
specification.

Anatomy of the Specification Language

A language to be employed in the operational specification
and procedural design of firmware should primarily satisfy the
requirements listed earlier. The language must allow for stat
ing resource bindings, for defining the semantics of all possi
ble interpretations of the elementary data types, and for stat
ing timing specifications. These requirements preclude the
unmodIfied adaption of existing operational software specifi
cation systems. Conventional hardware description languages
(CHDLS), which may satisfy some of these requirements,
exhibit deficiencies that make them unsuitable for the oper
ational firmware specification. CHDLS generally lack the ab
straction and expressive power needed for a specification lan
guage; in particular they lack the capability to provide precise
and abstract specifications of software oriented data objects.
Furthermore, they do not allow for the necessary mappings
between different levels of abstraction. An important attri
bute of a realistic firmware specification and design system is
for it to allow for a stepwise refinement of the specified firm
ware product. The similarity between the abstractions and
semantic models introduced at the higher levels and the func
tionality and structure of the host machine should be in
creased with each refinement step. If the designer finds out at
a lower level that certain specifications provided at a higher
level hinder the reaching of the desired proximity, the higher
level specifications should be modified. This makes firmware
design an iterative process in which phases of specification;
refinement, and validation alternate. Such an approach raises
two stipulations concerning L: (1) the language L should be
able to be used interactively and (2) it must allow for defini
tions of abstractions and models at all possible levels of refine
ment.

Meeting the second condition allOws the intermediate vali
dation steps to be performed on specifications in which differ
ent portions of the system are defined at different levels. The
representations of all the data objects, functions, and program
constructs at the next lower level need not be defined in one
step. The user can thus control the complexity of a refinement
step. The requirements for the data types, control constructs,
and operations that a suitable language L should satisfy are
discussed in the following section.

One-dimensional and two-dimensional arrays suffice as ele
mentary data structures in L, because the only data objects to
be represented are: melllory arrays and register files, repre
sented by boolean matrices; single register or memory cell

52 National Computer Conference, 1981

Clause

Indexing
Mask
Shift
Rotate
Catenate

TAB~E I-Operations on arrays

Operation

Selection of vectors of a matrix or of single array elements
Selection of subvectors (fields in a vector)
Shift and fill operation
Cyclic shift
Concatenation of vectors

contents, represented by boolean vectors; fields or single bits
in bit vectors, obtained by mask or indexing functions.

Table I lists the functions· of the basic type array. Data
objects of this type are specified together with their dimen
sion. Explicit reference data types such as "pointer" are not
needed; referencing is restricted to the naming of objects and
their substructures or elements.

Data dependencies and procedural dependencies establish
a partial ordering of the activities of a program. Two activities
that are not in a predecessor-successor relationship to each
other may be executed simultaneously, provided there are
independent hardware resources available for the parallel ex
ecution. In microprogramming, where a number of indepen
dent hardware resources exist, such parallel execution is ex
ploited for performance optimization. The operations of a
program may be grouped into several cooperating processes
to indicate asynchronous sequences of activities occuring in
independent hardware resources. Therefore, the language
should contain constructs for process declaration as well as
inter-process communication and synchronization. Such an
expressive power of L is unusual, but is essential to validate
performance requirements as well as the requirement that
hardware bindings are conflict free. To illustrate this point,
Table II lists the constructs as can be found in the FIT system,
a firmware development system that was designed and imple
mented at the Technical University of Berlin.7

A language L should facilitate the specification of the host
machine. Resource binding of microoperations to functional
hardware and control word organization should be supported
in a machine independent way. The specification language
should allow constraints, such as restrictions on parallel exe
cution of operations, to be expressed.

The interpreter of L should include virtual time facilities,
so that the time consumed by a specific operation may be
specified and its effect on the specified time behavior and
performance requirements may be validated. Virtual time
specifications also allow the recognition of possible resource
contentions among parallel activities and provide a basis for
the formulation of synchronization conditions. The time
raster used must be fine enough to allow subcycles to be
considered. The specification language L should be as syn
tactically simple as possible, containing no more than the
minimal number of types, operators, and constructs needed to
provide it with the required expressive power. Except for
standard operations, such as arithmetical, relational, and log
ical operations, functions and statements should be named in
a mnemonic and self-explanatory fashion. In other words, a
specification should be easily readable and intelligible.

THE LEVELS OF REFINEMENT

General

The syntactic framework of the language L outlined above
allows the user to formulate an operational specification in a
firmware design process at different levels of abstraction. Fig
ure 2 lists the levels of such a specification and design process,
together with the design decisions to be made and the refine
ments obtained at each level. The use of specification at the
problem-oriented level is primarily motivated as a vehicle for
the designer to develop a correct and complete understanding
of the design task and demonstrate this to other people in
volved.

In the data refinement portion of the firmware design pro
cess, two fundamental refinements may be distinguished: (1)
definition of binary representations of given data objects and
(2) mapping the formats of binary data objects to formats
available in the real machine. The resulting data objects can
be bound to carriers of the host machine.

There are two basic design steps in operation refinement:
(1) introduction of operations on binary data objects and (2)
refinement to operations similar to microoperations. The re
sulting operations can be bound to operations of the host
machine and thereby to functional units of the hardware.

,~The Machine-Independent, Hardware-Oriented Level

At the machine-independent level, microoperations are
specified in terms of carrier-to-carrier transfer statements. A
state change in a carrier is brought about by transferring a new
value to it, and a data transformation is performed by letting

TABLE II-Control Constructs in L

~FUNC

~ENDFUNC

~CALL

~RET

~GOTO

Clause

~IF ... ~DOTO ... (~ELSE)
... ~FI

~CASE ... ~ESAC
~ REPEAT ... ~UNTIL
~FOR ... FROM ... TO ... ~ROF
~DECLARE

~PROCESS

~FOREVER

~END

~PAR

~ON

~OFF

~WAIT

~LOCK

~FREE

~INIT ... ~EVENT

Purpose

Procedure h~ad
Procedure end
Procedure call
Procedure return
Unconditioned jump

Conditioned branching
Alternative branching
Iteration clause
Repetition clause
Opens declarative part of process
Opens procedural part of process
Reiterates process execution
Terminates process execution
Parallel execution of operations
Switches signals and state indi-

cators on or off respectively
Wait for signal to become true
Critical section lock
Critical section unlock
Initiation of a process on behalf

of another process by "no-wait
send"

Firmware Engineering 53

SPECIFICATION OF GIVEN DESIGN PROBLEMS

PROBLEM-ORIENTED

LEVEL

BINARY REPRESENT

ATION LEVEL

MACHINE-INDEPEND

ENT HARDWARE-

ORIENTED LEVEL

DATA OBJECTS OF PROBLEM-ORIENTED

DATA OBJECTS

I ~~TRODUCT I ON OF B I NARY

REPRESENTATIONS

BINARY DATA OBJECTS

AnJJSTMENT OF DATA FOR

MATS TO HARDWARE CARRIERS

BINARY DATA OBJECTS IN

YARDWARE-ADJUSTED FORMATS

RESOURCE BINDING OF DATA OBJECTS

OPERATIONS ON DATA OBJECTS OF

PROBLEM ORIENTED DATA TYPES

INTRODUCTION OF OPERATIONS

ON BINARY DATA OBJECTS

OPERATIONS ON BINARY DATA OBJECTS

ADJUSTMENT TO AVAILABLE

M ICROOPERATIONS

OPERATIONS SIMILAR TO MICRO

OPERATIONS OF THE HOST MACHINE

RESOURCE BINDING OF OPERATION

t
BOUND

HARDWARE-ORIENTED

LEVEL

BINARY DATA OBJECTS REPRESENTING

HARDWARE CARRIERS

OPERATIONS SIMULATING MICROOPERATIONS

OF THE HOST MACHINE WITH REGARD TO

EXCLUS ION OF S I MUL TANEOUS EXEC UTI ON

CAUSED BY COMMON FUNCTIONAL UNITS AND

CONTROL ~~ORD ORGANIZATION AND DESCRIP-

TION OF THING CHARACTERISTICS

SPECIFICATION OF THE HOST MACHINE T
Figure 2-Specification and fundamental design decisions in

data refinement and operational refinement

a value on a register transfer "pass" through an abstract func
tional unit. If the identity operation is included into the set of
operations that may be carried out on a register transfer, then
any register transfer defines an operation and vice versa. The
register transfer thus becomes the basic microoperation of a
machine. Within a microoperation, there may be a number of
operations performed by appropriate functional units. At the
machine-independent level, however, abstract functions
rather than actual functional units are specified. Table III
presents a sample of possible operations of a computer hard
ware. Besides such data-transforming operations there also
are operations, to be executed within a microoperation cycle,
to make possible the register transfers, i.e., establish the nec
essary connections between carriers and functional units via
switching facilities such as multiplexors and gates. At the
machine-independent level, these path-controlling operations
are not explicitly specified but are implied by the register-

transfer statements. There usually is no semantic connection
between the operations within one microinstruction. Only the
microoperations cause state changes of the machine, and it is
the control constructs in a microprogram which determines
the order of register transfers that must take place in the
execution of the underlying algorithm. It is a specialty of
microprogramming that several micro operations may be un
der execution during a given microinstruction cycle and,
therefore, micro operations may be executed concurrently,
partly overlapping or completely in parallel. The control con
structs listed in Table II in connection with the timing specifi
cations allow the designer to deal with such concurrencies.
Timing specifications allow the designer to deal with such
concurrencies. Timing specifications designate the execution
time of operations as a basis for synchronization and per
formance validation. Performance validation is carried out by
executing programs written in L which execute the same func-

54 National Computer Conference, 1981

TABLE III-A sample of abstract hardware functions

Operation

Addition or Subtraction
Multiplication
Division
Greater than
Greater equal
Equal
Less equal
Less than
Not equal
Logical and
Logical or
Logical not
Logical nand
Logical nor
Rotation

Shift and fill
Concatenation
Portion of a vector
Incrementation
Decrementation
Binary-to-decimal

conversion
Decimal-to-binary

conversion
Index generator
Register initialization
Register initialization

Notation

A ADD2 (B) CARRY C
A MULT2 B
A DIV2 B
AGTB
AGEB
AEQ B
ALEB
ALTB
ANEB
A AND B
AOR B
NOTA
ANAND B
A NOR B
KROTB

K SHIFT (B) FILL C
A LINK B
A MASK iLi2
INCR A
DECR A
DECB

KBIND

INDX iLi2
SET "list of register names"
RESET "list of register names"

tion (the same machine operation) at different levels of ab
straction. The time consumed by the execution of a program,
Pi-1,j, is measured against the time specification of the func
tion f;,j to which it is related by the mapping mi". In the same
manner it can be tested whether a certain operation is exe
cuted within a given subcycle.

The Bound Hardware-Oriented Level

At the bound level an appropriate model of the real ma
chine must be given as a prerequisite for the firmware design.
The documentation of the real machine behavior, as given by
the hardware designer, must be sufficiently precise, complete,
and understandable in order to provide the required model
without major deficiencies. Deficiencies in the model may not
be recognized until microprograms are executed on the real
machine. An essential assumption for any formal specification
method is that there exist a sufficiently well-defined model of
the operations, data objects, and control constructs. At the
hardware-oriented levels of a firmware design process, the
primary question is not whether the design should be verified
by correctness proof or validated by testing, but whether the
underlying hardware behavior is sufficiently well-defined. In
the design process depicted in Figure 2, this problem is miti
gated by the fact that the method allows for arbitrary mod-

Comment (in APL notation)

A,B are 2's-complement numbers, C is the carry-in
A x B, 2's-complement operands
A + B, 2's-complement operands
A>B
A~B

A=B
AsB
A<B
A~B

A/\B
AVB

-A
AAB
AVB
Rotates argument B k steps

for k > 0 to the left
for k < 0 to the right

k = number of shifts, B = argument, C = fill element
A,b (p(A,B) = (pA) + (pB)
A[it + l(i2 - i)] (0 - origin!)
a+-A + 1
A+-A-l
B = binary number in 2's-complement,

result = decimal equivalent
D-decimal integer, result = 2's-complement,

k-digit binary number representation
it + l (i2 - it) (0 - origin!)
all positions in the named registers are filled with l's
all positions in the named registers are filled with O's

ifications and refinements of the model of the real machine
and the consequent corrections of design decisions made at
the higher levels. Programs constructed at the higher levels of
firmware design have the inherent potential of parallel exe
cution, limited only by the existing data dependencies among
the operations. At the lower levels of the design process the
possibility of parallel operations are further reduced by the
constraints given by the microinstruction format and the need
to avoid resource contention. The mappings introduced by the
bindings of the higher level data objects to carriers of the real
machine consist in addressing functions or identities. The
operational specification can introduce the highest possible
degree of parallelism and subsequently restrict it according to
resource bindings and other constraints. In connection with
time specifications and mappings, this allows the designer to
carry out performance estimates for alternative resource bind
ings, providing data to optimize the system. The real machine
performs state changes by the clocking of registers. There
fore, in a microprogram specification at the bound level, the
register-transfer statements of the machine-independent level
are substituted for by clock statements. The data objects are
bound to real carriers, and the abstract operations are hound
to real functional units of the host machine, such as ALUs,
shift units, multiplexors, gates, and decoders. Since most of
these functional units have a control input in addition to the
data inputs, the microprogram specification must comprise

specifications pertaining to the generation of the control sig
nals. With each clock statement, the time elapsed since the
occurrence of the last clock statement must be specified.
These timing specifications, in connection with the clock
statements which mark cycle points of state transitions, indi
cate the beginning of cycles and subcycles. An example of a
machine-independent level specification of a microprogram
and its refinement to a bound level specification can be found
in Giloi et al. 7

CONCLUSION

The main goal of software engineering is to implement a re
liable and maintainable software system that provides a re
quired functionality. The performance aspect may be of sec
ondary importance. However, performance is the major goal
of firmware design. Emulators are, in general, less complex
than software systems and cannot be designed in a straight
forward top-down fashion, since there usually are rigid con
straints to meet as given by the underlying hardware. In our
opinion, the primary problem in firmware design is not so
much "decomposition of complexity" that is important in soft
ware design but rather the problem of resource binding. Dif
ferencesbetween firmware and software must be considered
when one adapts methods and techniques of software en
gineering to firmware engineering.

In particular, these differences affect the decision whether
to take an axiomatic or an operational approach to firmware
specification and design. Unquestionably, the axiomatic ap
proach offers the highest possible degree of abstraction. How
ever ,such a high degree of abstraction can be utilized only at
the higher levels of firmware design, e.g., in vertical migration
problems. At the lower levels of firmware implementation
there usually exist many predefined constraints to be taken
into account concerning data representations, resource bind
ings, and timing problems. Models for the definition of re
source binding, hardware-related semantics and timing char
acteristics, however, do not exist in the axiomatic specification
method in a practically usable form.

It has been predicted that eventually whole application pro
grams rather than just individual functions will be migrated
into firmware. In this case, it would be highly desirable to
have a uniform software/firmware development system. Such
a uniform approach, in which the firmware design is to be-

Firmware Engineering 55

come an additional refinement step in the software design
process, would not support the use of an operational firmware
specification. However, we do not expect the large-scale
migration of entire application programs into firmware to ma
terialize. The vertical migration of application programs of
fers a performance advantage only if the control store is con
siderably faster than the main memory. In future LSI based
architectures, this condition will not hold true. The firmware
development system based on an operational specification
and procedural design method presented in this paper has
been implemented at the Technical University of Berlin. The
core of the interactive system, named FIT (Firmware Imple
mentation Tool),' is a mnemonic, self-descriptive, and exten
sible specification language. A simulator interprets the micro
program specifications given in FIT at various levels of ab
straction and executes them. Simulation runs include time
bookkeeping and allow for performance measurements. A
report generator provides the user with a numerical and/or
graphical presentation of the results obtained. The realization
of a microcode generator for a particular host machine, which
will automatically translate the hardware-level specification of
a microprogram into microcode, seems feasible, but remains
yet to be done. The system is implemented in VSAPL and
thus portable to computers supporting that language.

REFERENCES

1. Miller, E.F. (ed.). Special issue on "Program Testing," COMPUTER 11,4
(April 1978).

2. Davidson, S., and B.D. Shriver. "An Updated Overview on Firmware En
gineering. " In W. K. Giloi (ed.), Firmware Engineering. Berlin-Heidelberg
New York: Springer-Verlag, 1980.

3. Davidson, S., "Design and Construction of a Virtual Machine Resource
Binding Language." PhD Dissertation, Computer Science Department,
University of Southwestern Louisiana, Lafayette, Louisiana, August, 1980.

4. Robinson, L.,and K.N. Levitt. "Proof Techniques for Hierarchically Struc
tured Programs." CACM 20,4 (April 1977), 271-283.

5. Liskov, B., and S. Zilles. "Specification Techniques for Data Abstraction,"
IEEE TRANS. SOFTWARE ENGINEERING 1,3 (March 1975), 7-19.

6. Liskov, B., and V. Berziens. "An Appraisal of Program Specifications." In
P. Wegner (ed.), RESEARCH DIRECTIONS IN SOFTWARE TECH
NOLOGY, MIT Press, Cambridge, Mass. 1979.

7. Giloi, W.K., P. Behr, and R. Gueth. "FIT-A System for Firmware Speci
fication, Implementation, and Validation." In G. Chroust (ed.), PROC. OF
THE IFIP WORKING CONF. ON FIRMWARE, MICROPROGRAM
MING, AND RESTRUCTURABLE HARDWARE, North-Holland, Am
sterdam 1980.

New directions for micro- and system
architectures in the 1980s

by HAROLD W. LAWSON, JR.
Linkopings University
Linkoping, Sweden

ABSTRACT

After approximately 30 years experience with micropro
grammed control concepts, we find ourselves at an interesting
turning point leading into the 1980s. Experience with various
microprogrammed control techniques has been obtained,
some experience has been obtained in recent years in the
redistribution of functions between various software and mi
croarchitectural levels and we have a better idea of methods
of timing and synchronization. This knowledge together with
the possibilities brought on by VLSI will meet in the 1980s and
have several interesting effects upon system architecture at
micro architecture and higher architectural levels.

We shall consider some of the opportunities and limitations
of VLSI and their potential effects upon microarchitecture
followed by a view of the future utilization of "programmed
logic." More specifically, we shall be considering the or
ganization of logic, synchronization, microarchitecture char
acteristics, target machine properties and special purpose mi
croprogrammed machines. Further, we shall touch upon re
lationships to function distribution, computer aided design
and the possibilities for architectural synthesis.

INTRODUCTION

The forecasting of what will happen in the future, particularly
in this dynamically changing field, can be dangerous. How
ever, experiences with microprogram mabie computers and
possible directions as a result of ongoing VLSI technology can
lead, at least in this author's point of view, to an indication of
some possible new directions in the area of microarchitectures
and system architectures.

Let us first clarify some of the important terminology and
concepts used in this paper. When we refer to architecture, we
mean the activities of design related to specifying the eventual
assembly of available or new "building blocks;" thus, con
structing a system or subsystem. In the computer environ
ment, we can observe many levels of systems and subsystems,
as indicated in Figure 1. Traditionally, we divide the computer
system architecture into software and hardware parts. The
architect's designing of a total computer system is the com
posite of many sub-architectural activities. Observe that we
can, and shall in this paper, also refer to architectural design

57

activities as the organizing and/or structuring of systems and
their parts.

In order to improve our view of global computer architec
tural activities, we shall abstract a common denominator of
the activities. We shall view the building blocks used at all
levels as processes and the architecture that is evolved at each
level of the system and the system as a whole as a system of
cooperating processes. For example, gates are processes,
which when combined into combinational and sequential cir
cuits form a system of cooperating processes. Likewise, col
lections of microsubroutines, subroutines (procedures, func
tions, etc.) of higher levels are processes that are organized
into systems of cooperating processes.

In observing Figure 1, we see that the cooperating processes
of higher levels are dependent upon the cooperating processes
of a lower level. This relationship has been referred to as an
interpretive hierarchy. 1 Going a bit deeper into this subject,
we can state that "One level's system of cooperating processes
forms a processor for the next higher level".

Consequently, we can say that architects design processors.
This point of view is valuable in forming an understanding of
computer systems2 as well as in considering the new concepts
presented later in this paper. The question, what is micro to
what in a system architecture, is not always clear, and in order
to achieve a uniformity in structure between various architec
tural levels, perhaps we should use the denotation pro
grammed logic as a general concept that can be applied at all
levels. Further, we can use the term base logic to refer to the
lowest level of processes (nonreduceable hardware actions in
this case). This point of view is quite useful, since the real
ization of programmed logic can indeed vary among architec
tural levels (e.g., Programmable Logic Arrays, micropro
grams, conventional programs written in lower or higher level
languages). We shall also return to this more general notion
of programmed logic in later sections of this paper.

The majority of the comments made in this paper are re
lated to micro architectures (see Figure 1) that are designed to
emulate conventional target system instruction repertoires
and interpret HLL (higher level language) oriented in
struction sets for uni-processor systems. However, some brief
consideration will be given to the role of microarchitectures in
special purpose systems. In a later section, we shall use the
process-processor concepts introduced above to consider
some possible new directions in the VLSI context. With these

58 National Computer Conference, 1981

APPLICATION SYSTEMS

DATA BASE SYSTE~l SOFTWARE

LANGUAGE TRANSLATORS ARCHITECTURE

OPERATING AND FILE SYSTEMS

TARGET SYSTEM ARCHITECTURE

MICRO ARCHITECTURE HARDWARE

COMPUTER CIRCUITS ARCHITECTURE

INTEGRATED CIRCUITS

Figure I-System levels

points in mind, let us first consider the existing views of micro
architectures and their possibilities for obtaining parallelism
in microprogram execution.

MICROARCHITECTURE STRATEGIES

Many of those active in the field divide microarchitecture
strategies into horizontal (minimally encoded) and vertical
(highly encoded) strategies. 3

, 4, 5 Further structuring, such as
in the Nanodata products,6 use a combination of micro
programs and nanoprograms with corresponding architectural
levels. Within these strategies, the introduction of parallelism
is made by the designer(s) of the micro- and/or nanoarchi
tecture. Activation and termination of parallel base logic is
accomplished in relationship to synchronous (single or multi
phase) clock cycles.

Let us briefly consider the principles of these traditional
micro architectural approaches, which will be essential to our
understanding and later comparison to an alternative ap
proach. In the horizontal strategy, the control of hardware
processes is determined by eliciting the activation of base logic
processes from a micro control word as exemplified in Figure
2. Each field of the micro control word can cause the activa
tion of a process and, in fact, several processes can be acti
vated simultaneously (parallel processes) during a single clock
cycle or docK cycTe-pliase. The designers of the processes must
assure that the execution of their hardware base logic pro
cesses (circuits) can be completed within the limits of the clock
requirements. This factor determines performance and fre
quently causes problems for designers when their logic does
not fit into the timing requirements. "Glitches" are frequently
introduced at this point to solve "the problem". In this au-

I MEt<ORY ALU SHIFTER IBUS-, IBUS-, 1-· . _. l--___J

Figure 2-The horizontal microinstruction approach

thor's opinion, experience has shown that this has led to com
plicated microarchitectures that are difficult to understand
and consequently difficult to microprogram, test, maintain,
etc.

The vertical strategy does not provide any inherent mech
anism for achieving parallelism in the microarchitecture.
Some architectures try to achieve the parallelism by dividing
the activities into processing and control parts. Where appro
priate non-conflicting combinations of consecutive microin
structions appear, they are executed in parallel (see Figure 3);
the next two microinstructions in this case activate different
base logic and thus can be executed in parallel. This approach
was used in the MLP-900. 4

Simple one-stage pipe lining of microinstructions is another
approach to improving performance, using the vertical strat
egy and is commonly found in bit slice microarchitectures. 7

The use of these commonly known microarchitecture strate
gies leads to what this author refers to as unnatural paral
lelism, that is, man-made parallelism. The possibilities for
parallelism are designed into the architecture and must be
thoroughly understood by the micro/nano programmer to be
exploited; often, with significant difficulties due to the mag
nitude and/or complexity of their structure.

It is possible to introduce natural parallelism at the micro
architecture level. That is, parallelism that is achieved auto
matically by the nature of the implemented instruction inter
pretation mechanism in relationship to base logic processes
that have not been designed with the type of design timing
constraints mentioned earlier. The microprogrammer, while
possibly being aware of potential parallelism, is not faced with
the complexities of understanding and exploiting man-made
parallelism that has been determined by stringent clock time
requirements and possible "glitches." This natural form of
parallelism was used successfully in the Datasaab FCPU. 8,9,10

Since this latter form of parallelism at the microarchitecture
level has not received widespread description in the technical
literature and since it has an important extrapolation to poten
tial new directions of VLSI-based microarchitectures, we shall
devote the next section to considering the general principles
behind this strategy. For those readers not familiar with the
FCPU, the collected published papers 11 are available from the
author upon request.

THE ASYNCHRONOUS APPROACH
TO MICRO ARCHITECTURE

The use of asynchronous control as an architectural technique
is well known and is well developed, particularly for input/out
put systems. The advantage is that asynchronous control pro
vides a convenient mechanism for coupling processes that are
executed by their processors at different rates of speed. It is
possible and, as we shall see, useful to use this architectural
strategy at the microarchitecture level. This is precisely what
was proved by the implementation of the FCPU. In this sec
tion, we shall not present the exact FCPU methodology; in
stead, we shall consider a general model of the approach.

The model of this approach to micro architecture is given in
Figure 4. We divide the conventional components of a micro
architecture into processes. The processes cooperate by pass-

LOCATION _____ ~ PROCESSING OR MEt~ORY
COUNTER 7 MICROINSTRUCTIO~

CONTROL
MICROINSTRUCTION

Figure 3-A vertical microinstruction approach

ing "data" and status information to each other in producer
consumer relationships over synchronization registers. Micro
instructions are distributed to the execution process by way of
a microinstruction pipeline mechanism that prefetches micro
instructions from the control memory. Let us consider an
example of the activation of the processes by considering
three microinstructions that fetch the contents of a memory
location and add these contents to the contents of a register in
the ALU and test for overflow.

READ FROM<memory address> TO<synchronization regi-
ster-I>

ADD <synchronization register-I> TO <ALU register> STA
TUS <synchronization register-2>
TEST OVERFLOW <synchronization register-2> TRUE
<overflow label>

This example illustrates the point that producer-consumer
relationships exist between the base logic processes and that
the designers of the Memory, ALU, and Control processes
are not inhibited in their design by having to meet a stringent
clock cycle requirement. Their base logic process executions
take as long a time as (naturally) required. The asynchronous
execution permits prefetching and parallel microinstruction
execution to the extent that progress is not directly inhibited
due to waiting for previous results (including status).

The approach indicated here involves a centralized micro
instruction control and distributed base logic processes exe
cution. Other models with less central control of micro
instruction supply and truly autonomous distributed control
amongst the processes may be possible; however, the full
implications of this distribution in the context of conventional
and higher level language oriented instruction-set inter
pretation remains a problem for further research. The use of
producer-consumer relationships in the operating system
mileu is well known and is also, in that environment, a means
to synchronize process execution where processes execute at
different rates of speed. An additional area for research con
cerning asynchronous control for micro architectures involves
the use of monitor concepts as, for example, described by
Hoare12 for handling more than the one-level producer
consumer relationships (as described above) and the possible
introduction of several processes of equal capability (e.g.,
several ALU processes). This asynchronous form of micro
architecture control has its cost in synchronization logic. How
ever, even at the time the FCPU was designed and constructed
(1971-73) when custom LSI was not widely available, the par
titioning of the design, implementation, and testing provided
significant project related advantages that have been docu-

Micro- and System Architectures in the 1980s 59

men ted by Lawson and Magnhagen. 13 With VLSI, such mech
anisms become trivial and, in fact, desirable and probably
necessary, as we shall show in the following section. The units
of an asynchronous microarchitecture like the FCPU are in
deed self-timed circuits, and corresponding advantages for the
design, implementation and testing for VLSI circuits have
been described by Seitz. 14 These are the techniques that allow
for what has been referred to as natural parallelism.

NATURAL PARALLELISM
IN THE VLSI ENVIRONMENT

The availability of VLSI and especially CAD tools for VLSI
will lead to the possibility of realizing new approaches to the
programming of base logic. Synchronization mechanisms, for
example, implemented by newly defined logic cells will relieve
the problem of costly implementation by standard MSI and
SSI components.

A major research area for the future will involve methods
for evaluating alternative "processor" architectures to sup
port the processes to be implemented. In many situations,
particularly when the process is not complicated, it may be
useful to construct a processor per process. In other cases~
where the process is more complicated and/or a family of
related processes are to be supported, more sophisticated
programmed logic processors may be justified. This pro
grammed logic can then be shared (multiplexed) amongst the
higher level processes to be executed by the processor. One
trend that may well evolve from these advances is that compli
cated general purpose processors of the type we have built
earlier may well be replaced by a "network" of special pur
pose processors. Note that this trend is already underway with
the expansion of computer network technology. What is being

MEt~ORY ACCESS
PROCESS

"DATA" ~D STATUS

~
r~I CRO INSTRUCTIONS

MEt~ORY
PROCESS

SYNCHRONIZATION
"DATA"

AND
STATUS

CONTROL
PROCESS

]J I NSTRUCTI ON
ROUTING

(PIPELINING)

CONTROL
~lEMORY
PROCESS

Figure 4--The asynchronous approach to microarchitecture

60 National Computer Conference, 1981

pointed to here is that this trend can well be extended down
into chip architectures. The PLA as one keystone of VLSI
programmed logic is already well established owing to the
regularity of physical structure. It is clear that the use of this
programming form for base logic will continue to be an im
portant factor for low level processor realization and in many
cases will provide an alternative to more conventional micro
architecture control strategies.

How about the organization of several base logic processes,
particularly when the processing of less regular "data"
(including instructions) is required? Shall we resort to the use
of unnatural parallelism with all its possibilities for creating
complicated structures that are difficult to microprogram,
test, maintain, etc.? In this author's opinion, that approach
asks for trouble. With VLSI, one will attempt more compre
hensive architectures, and to be able to design, implement,
and test these architectures, one needs to reduce, at all costs,
the complexity of the structuring of processes and their pro
grammed base logic processors.

It seems quite clear that VLSI design rules such as the IBM
LSSD (Level Sense Scan Design) IS will be essential for under
standability and testability. With this strategy, feedback loops
in circuit logic are not permitted. Transformations take place
from register to register in well-defined steps. Logic "tricks"
are not possible. The step from these design rules to achieving
true possibilities for natural parallelism is not a long one. This
basic type of asynchronous chip organization has already been
proposed. 16

A general view of a chip organization for realizing natural
parallelism (cooperating process execution) is shown in Figure
5. Here we see that logic close to the PADs (external chip
connections) is used for PAD IN/OUT control. In this envi
ronment, signals are not delivered directly to and from the
processors in their execution of processes but are delivered to
and from synchronization registers. Consequently, the use of
external connections to other components is multiplexed
among the on-chip implemented processes. External con
nections to other components of similar skeleton structure
would permit processes to cooperate in a logical system envi
ronment across physical component boundaries by a system
bus. Two internal busses (for "data" and control signals), the
V (vertical) and H (horizontal) busses, are proposed in this
chip architecture, which can be used for connecting processors
and thus the processes they execute to the synchronizing
memory. Placement algorithms in the CAD system can be
used to attach the processors to the most convenient bus.
Processes dedicated to monitoring and testing must be in
cluded in this highly structured environment so that internal
"data" and status can be delivered in and out of the chip for
testing and failure analysis.

While we have, in the previous section, been discussing the
use of asynchronous control for microarchitectures, which
could be implemented using this VLSI strategy, the reader
will observe that the structure proposed here can well apply to
process realization in general. It is quite possible that with
appropriate CAD tools and appropriate descriptive languages
for expressing base logic (or convenient synthesis to base
logic), newer forms of systems architectures may well, in
many situations, avoid a microarchitecturallevel of the form
we have been considering, be it horizontal or vertical (syn-

00000000 ...
I N/OUT CONTROL

~ v I7WA B
U
S

:0 ~ SYNCHRONIZATION ~
o HBUS MEMORY o

~
~ ~ • ~ o

o o
o o
o
o

PAD IN/OUT CONTROL o
0000000

/11/ - BASE LOGIC PROCESSORS

Figure 5-Chip organization for natural parallelism

chronous or asynchronous). Programmed logic for processor
realization will only be introduced when deemed necessary for
supporting families of similar processes and/or when advan
tages for design, testing, maintenance, etc. can be obtained.

Diverging for a moment from the subject of micro
architectures for emulation and HLL instruction interpreta
tion, we can observe that interesting applications of VLSI
technology involving systolic algorithmsl7 have been proposed
where there is inherent natural parallelism in the application
that permits the design of regular arrays of logic, normally
with homogeneous "data" pipelined synchronous control of
processing. Unfortunately, emulation and HLL instruction
interpretation do not fit into this class of "application" paral
lelism. Process execution in this environment is extremely
heterogeneous. However, with asynchronous approaches as
described above, we can hope to put some order into these
complex processes.

To give a better idea of the new concepts introduced in this
section, let us consider some processes of varying complexity
with an idea of the type of processors required.

Process
Real time clock

Bus arbitration
Input/Output control

High level language
machine interpretation

Processor
Sequential circuit with

registers and random logic.
Programmable Logic Array
Programmable Logic via a

static "control memory"
Programmable logic via a

dynamic "control memory"

The key point to be made here is that the processor architec
ture complexity need only be as complex as required for the
processes that it supports (executes). We can observe that the

VLSI architecture concepts presented here provide for a form
of distributed control. We have discussed cooperating process
execution within a chip and among two or more physically
near chips. The principles however, can well apply, in general,
to remotely located network process execution. Remember,
asynchronous control is the natural mechanism for permitting
process execution at their own rates of speed, regardless of
their physical location. Of course, this is already known and
done in the world of packet-switched communication net
works. 18

IMPLICATIONS OF IMPROVED ARCHITECTURES

The possibilities of redistribution of functions between pre
vious levels of hardware, firmware and software architectures
can be expanded with the introduction of a clearer notion of
programmed logic and resulting process and processor or
ganization. The view that all system architectural levels are
composed of subsystems of cooperating processes, with clean
intra- as well as interlevel interfaces, allows us to begin to
understand redistribution possibilities (perhaps in some cases,
as mentioned above, eliminating what we know as micro
architectures today).

Global design rules can, one hopes, be evolved to allow a
uniform view of activities at all levels and thus permit us to
encapsulate redistribution possibilities into the CAD (in a
broad sense) systems of tomorrow. In this environment, as
suming the availability of powerful simulation engines, the
necessary evaluation and insight can be gained. The synthesis
of the programmed logic of processors of all levels (hopefully
fewer levels than today) can be accomplished in a natural
symbiosis between human and machine.

Tomorrow's integrated CAD system will hopefully provide
the basis for not only attacking structural problems, designer
manufacturer problems, testing problems, etc., but will also
provide the basis for more understandable architectures. One
hopes that, in addition to other byproducts of the CAD sys
tem, the system will produce its own educational training aids
in the form of animations of the static and dynamic structure.
Such animations, developed from simulation, in this author's
opinion will be possible in the future. A pedagogically de
signed system will definitely provide improved economical
results by reducing complexity, and consequently costs, for
users and maintainers. Work on tomorrow's CAD systems, as
well as the design of VLSI based applications, is a major
research activity of the Computer Architecture Laboratory at
Linkoping University.

SPECIAL PURPOSE SYSTEM ARCHITECTURES

--The use of micro architectures in various types of special pur
pose machines, that is, the use of microprogram control for
applications other than emulation and HLL instruction inter
pretation, has become popular in the last several years. Sev
eral of these projects have been possible due to the availability
of bit-slice ALUs and related microsequencers. In order to
round out our view of activities in system architecture with
respect to the use of microprogrammed control we shall brief
ly review a few application areas in this regard.

Micro- and System Architectures in the 1980s 61

Microprogrammed systems involving bit-slice logic have
been introduced in a wide scale in signal processing. The
requirement, as always here, is high processing capacity by
use of relatively simple algorithms, perhaps applied over
several signal sources in parallel. Due to the homogeneity of
the algorithms involved and the possibilities to develop even
greater processing capacity, signal processing applications are
good candidates to be realized in VLSI without the use of
microprogrammed base logic. These developments are al
ready well under way. 19

Another interesting area is that of database machines,
where the "data" of the application is normally highly hetero
geneous even though many attempts have been made to regu
larize data in order to apply associative searching. 20 Moving
more conventional database approaches into database ma
chines will result in a definite need for highly structured pro
grammed logic. The ideas provided in previous sections of this
paper definitely apply to this environment.

Let us now consider the area of array processing systems of
the type used in image processing and analysis. Convenient
and efficient implementation of, for example, picture oper
ators in this environment has required the use of micro
program control. In this case, the microinstructions are routed
to equal parallel base logic processes in a synchronous man
ner. Each base logic process interprets the same micro
instruction with its "local data." The main problem here is
handling conditional transfers of control. Consequently, the
architecture of this type of machine is usually constructed to
execute short sequences over several microcycles without
branching. Due to the regularity in the data structures, the use
of the systolic algorithm VLSI approach mentioned earlier17

seems quite appropriate in this area.
During the 1970s, research attention has been drawn to

Data Flow Architectures and Dennis21 and Patif2 have made
basic contributions leading to this research activity. The very
nature of processing in this environment is asynchronous and
the ideas presented in previous sections are definitely appro
priate. Processing demands for a Data Flow Architecture to
replace conventional machines are, of course, heterogeneous.
Certain control aspects in this environment can utilize more
regular forms of logic representing the realization of Petri
nets. 23 Ongoing experiments in this area use bit-slice
microarchitectures24 as well as planning for the use of VLSI
base logic. 25 It will be interesting to see if practical systems
using the data flow strategy become accepted during the
1980s.

SUMMARY AND CONCLUSIONS

The approaches used in realizing microarchitectures have
been presented and compared in respect to parallelism and
complexity. It has been argued that the use of asynchronous
control, even in the microarchitectural environment, has
many advantages for emulation and HLL instruction interpre
tation. The structuring possibilities provided by the asyn
chronous strategy lead very conveniently into structuring
ideas in the VLSI area. Possibilities for using systolic algo
rithms, where homogeneous data structures are to be pro
cessed, have been mentioned and contrasted to the hetero-

62 National Computer Conference, 1981

geneous world of emulation and HLL instruction interpreta
tion. Some implications of simplifying and unifying notions of
programmed logic for redistribution and CAD have been
presented. Finally, some areas where microarchitectures have
been used in producing special purpose systems architecture
have been summarized, and some trends for developments in
these areas have been considered.

We can conclude that the 1980s will probably be an era of
change for system architectures (including microarchitec
tures) due to the possibilities made available by VLSI and
CAD systems. We must move in the direction of producing
highly structured systems that will be easier to design, imple
ment, test, maintain and utilize. Further, we can conclude that
the systems of tomorrow will be easier to understand and will
provide for widespread education for new categories of
"users" and laymen. The generalization of the process
oriented approach advocated in this paper has been used suc
cessfully in presenting a well structured overview of computer
systems concepts and terminology for people (laymen as well
as professionals-to-be) from a variety of walks of life. 2 Hope
fully, our architecture activities and educational activities will
become closer to each other in the future.

REFERENCES

'1. Lawson, H.W., "Function Distribution in Computer System Architec
tures," Proceedings of the Third Annual Symposium on Computer Architec·
ture, January 1976.

2. Lawson, H.W., Understanding Computer Systems, Lawson Publishing
Company, Linkoping, Sweden, 1979.

3. Rosin, R.F., Frieder, G. and Eckhouse, R., Jr., "An Environment for
Research in Microprogramming and Emulation" Communications of the
ACM 15, no. 8, August 1972.

4. Lawson, H.W. and Smith, B.K., "Functional Characteristics of a Multi
lingual Processor," IEEE Transactions on Computers C-20 no. 7, July 1971.

5. Bell, C.G. and Newell, A., Computer Structures: Readings and Examples,
New York, McGraw Hill, 1971.

6. Salisbury, A.B., Microprogrammable Computer Architectures, New York,
American Elsevier, 1976.

7. Alexandridis, N.A., "Bit-Sliced Microprocessor Architecture," Computer,
June 1978.

8. Lawson, H.W. and MaIm, B., "A Flexible Asynchronous Micro
processor," BIT Volume 13, Number 2, June 1973.

9. Lawson, H.W. and MaIm, B., "The Datasaab Flexible Central Processing
Unit (FCPU)," Infotek State of the Art Series, Report 17 on Computer
Design, 1974.

10. Lawson, H.W. and Blomberg, L, "The Datasaab FCPU Micropro
gramming Language," Proceedings of the SIGPLANISIGMICRO Interface
Meeting, May 1973.

11. Lawson, H. W., "The Datasaab Flexible Central Processing Unit: Collected
Published Articles (1973-75)," Linkoping University, Report LiTH-ISY-1-
0330.

12. Hoare, C.A.R., "Monitors: An Operating System Structuring Concept,"
Communications of the ACM 17, no. 10, October 1974.

13. Lawson, H.W. and Magnhagen, B., "Advantages of Structured Hard
ware," Proceedings of the Second Annual Symposium on Computer Archi
tecture, January 1975.

14. Mead, C. and Conway, L., Introduction to VLSI Systems, Reading, Mass.,
Addison-Wesley, 1980.

15. Eichelberger, E.B. and Williams, T.B., "A Logic Design Structure for LSI
Testability," Proceedings of the Design Automation Conference no. 14,
1977.

16. Alves Marques, J.M.C., "A Multiprocessor Architecture Adapted to VLSI
Custom Design," Microprocessor Systems: Software, Firmware and Hard
ware, Proceedings of EUROMICRO 80, September 1980.

17. Kung, H.T. and Leiserson, C.E., "Systolic Arrays (for VLSI)," Pro
ceedings of the Society of Industrial and Applied Mathematics on Sparse
Matrices, 1978.

18. McNamara, J .E., Technical Aspects of Data Communication, Digital Press,
Maynard, Mass., 1977.

19. Wanhammar, L., "The Implementation of Wave Digital Filters Using
Vector-Multipliers," Proceedings of EUSIPCO, Signal Processing:
Theories and Applications, 1980.

20. Batcher, K.E., "STARAN Parallel Processor System Hardware," National
Computer Conference, AFlPS Conference Proceedings, 1974.

21. Dennis, J.B., "Modular Asynchronous Control Structures for a High Per
formance Processor," Record of Project MAC Conference Concurrent Sys
tems and Parallel Computation, ACM, N.Y., 1970.

22. Patil, S.S., "Coordination of Asynchronous Events," MAC TR-72, Project
MAC, MIT, June 1970.

23. Peterson, J., "Petri Nets," Computing Surveys, Vol. 9, no. 3, September
1977.

24. Dennis, J.B., Misunas, D.P. and Leung, C.K.C., "A Highly Parallel Pro
cessor Using a Data Flow Machine Language," Computation Structures
Group Memo 134, Laboratory for Computer Science, MIT, Cambridge,
Mass., January 1977.

25. Arvind, Gostelow K. and Ploute W., "An Asynchronous Programming
Language and Computing Machine," TR 114a, University of California,
Irvine, December 1978 (Minor Revisions June 1980).

Microprogramming-The challenges of VLSI

by ALICE c. PARKER
University of Southern California
Los Angeles, California
and
WAYNE T. WILNER
Xerox Corporation
Palo Alto, California

ABSTRACT

Digital system design has been affected dramatically by very
large-scale integration (VLSI). Microprogramming will be af
fected most greatly by the VLSI design problem. Hardware
performing specific functions will be. replaced by regular ar
rays of logic and memory. Design time for VLSI systems will
depend on sophisticated design aids for hardware and micro
code, and concurrent systems will be common. Microcode will
be used in virtually all highly integrated systems.

INTRODUCTION

"So what everyone is expecting from VLSI systems is nothing
less than a complete revolution in computer science. A revolu
tion on the Copernican scale, in which what we have been
calling the 'central processing unit' is seen to be not central at
all, but just one of many similar units. And what we have been
calling 'control programs' will not really be in control but will
negotiate with other control programs.,,1

Progress in integrated circuit technology is affecting micro
programming and microprogram mabie control structures.
The reverse is perhaps even more important: Progress in very
large scale integration of digital designs will be enhanced by the
use of microprogramming. As chip densities increase, inno
vative control structures will be introduced and the nature of
the microprogramming task itself will change.

VLSI designers are constrained by objectives, the most im
portant of which are

• To minimize cost by minimizing silicon area and pin
count.

• To maximize performance in terms of either opera
tions/second or bits of data/second.

• To increase chip functionality by adding newer, more
powerful instructions.

• To increase chip fault-tolerance.
• To enhance the user interface.

63

• To achieve reasonable design turn-around time and min
imize design costs.

• To minimize power consumption.

These objectives are conflicting. Usually silicon area is
traded off against performance, functionality, fault tolerance,
ease of use, and quick design time. If silicon area (and pin
count) are held constant, the remaining objectives (except
power consumption) compete and only one can be optimized
for a given design; the rest will have been traded off, since
they all require increased silicon area.

A number of techniques will be used by VLSI designers in
order to achieve the above goals, including

• The use of regular structures to replace random logic.
• The exploitation of concurrency by the partitioning of

processing into separate functional units as predicted by
Wilkes. 2

• The minimization of detail which must be dealt with.
• The addition of extra hardware or ROM in order to

provide fault tolerance.

Regular structures provide many advantages to the VLSI
designer. They can be tightly compacted on the layout and
tend to minimize silicon area. The MIT SCHEME chip3

makes extensive use of such structures. The compact arrange
ment of regular structures can minimize the length of inter
connections, a significant use of area now and a more signifi
cant source of delay in the future. Properly designed, regular
logic structures can be used to execute parallel algorithms,
enhancing performance (e.g., Bentley and Kung's tree
machine4

). If ROMs or RAMs are used to provide regularity,
microcode can be written to support extensive, powerful in
struction sets (as in the VAX 111780), diagnostic programs,
and interpreters of high-level languages (Western Digital's
PASCAL machine, for example). In fact, it is universally
agreed that future single-chip processors will be microcoded;
random logic becomes too complex a design problem to be
feasible. Much of this complexity comes from the relative
difficulty of design changes with random logic. Finally, design

64 National Computer Conference, 1981

) Next-address
-S-en-s-e-,.J'I Logic

Signals
(from data paths)

Microaddress
Register

Control
Store

Microi ns truction
Register

Control
Signals
(to data paths)

, ~

Figure la-A Basic microprogrammed controller

time and design costs are related directly to the irregularity of
the structures used to implement a given design. Massive use
of logic arrays and memory will be required to slow the ex
ponential growth in design times for VLSI. 5

Concurrent operation can be achieved by functional par
titioning at any of a number of levels. At a primitive level, the
fetch-execute cycle of the microcontroller is already being
overlapped, or pipelined, as in the PDP-1l/40. At the
machine-instruction level, a similar pipeline can be construc
ted. At the data-processing level, activities can be functionally
partitioned and in some cases can be subdivided to be exe
cuted by an interconnected network of primitive processing
elements, which may in turn provide a regular structure to the
design. Concurrent operation, at any level, implies separate
hardware, and as a consequence it may require distributed
control.

As VLSI systems become more complex, there is a com
peting goal to make them easy to design. High-level or
machine-independent descriptions of microprogrammable
machinery will reduce the amount of detail VLSI designers
must supply. Automated tools are already necessary to cope
with the complexity of contemporary designs. In order to
handle the additional complexity due to increased circuit den
sity and concurrency, many design steps and optimizing pro
cedures will be relegated to tools. Some such design systems
are being reported.6

•
7

•
8

DIRECTIONS IN MICROPROGRAMMING

Because the design goals described earlier are competing,
microprogramming and microprogrammed controllers will
change· along many different directions, depending on the
constraints of each design problem. In general, however, mi
croprogrammable hardware will become increasingly complex

Instruction
Register

Address ,
Micro Control

.. Instruction Store -- Decode

Estimated Size
640xlO

J

tBmnCh Select;on I Register &
Function Address
Transfer

./ Conditionals

Control Nono Control
Execution Unit

Estimated Size
280x70

MC68000 Control Structure
Figure Ib-MC68000 control structure

with significantly larger control stores, and will support com
munication with concurrent devices, as well as concurrency in
its own operation. The microcode itself will become more
sophisticated. Unfortunately, design time and cost will in
crease. Microcode production (now informally estimated at
one line of optimized microcode per person per day) may
reach even lower levels. After exploring the pathways
microprogramming is going to take, we will propose solutions
to the problems of design time and design costs.

The Shape of Future Microcontrollers

Obviously, complex micro architectures are not recent de
sign innovations (the QM_19 and B170010 are striking exam-

Control
Signals
(to floating
point unit)

Floating
Point

Control
Store

F looting Point
Microoperations

Figure lc-A microprogrammed controller with separate floating-point control
store

pies). However, the use of sophisticated microcontrollers to
achieve VLSI design goals is on the increase.

Of course, complex digital devices can be controlled with
basic microcoded structures like that shown in Figure la. The
next-address logic is primarily combinational, forming or mul
tiplexing the next micro-address. The advantage of this struc
ture is that the control store itself, regular and compact, dom
inates the controller chip area. This structure therefore opti
mizes design time. If silicon area or performance takes pre
cedence over design time, however, more complex structures
may be required. Stritter and Tredennick have shown that the
Motorola 68000 two-level control storell is smaller than a
single-level implementation would have been. (See Figure
lb). Similar results are reported in Holloway et al. 3

Another frequently used technique is the partitioning of
machine instruction decoding or next address generation into
separate PLAs or ROMs, as done in the PDP-11l60. 12 (See
Figure ld). This technique allows concurrent operation of the
fetch, decode and execute cycles at the machine-language
level but makes the job of code optimization more difficult.

When specialized sequences of microinstructions are par
titioned into separate PLAs or microstores, a similar per
formance enhancement or a savings in silicon area can occur.
An example of this is shown in Figure lc, where long floating
point sequences are isolated in their own microstore. Exe
cution might be faster because the smaller microstore may be
more parallel, or may sequence at a faster rate. In the ex
treme, the entire floating-point timing may be different, or
even self-timed, as proposed by Seitz. 13 Further performance
enhancements are possible when these control stores and
PLAs execute concurrently.

If silicon area is the hardest constraint, such partitioning
can result in narrower microinstructions, perhaps as a result of
more vertical microcode in the second control store. The sav
ings in silicon area is not a simple relationship, however, since
the overhead logic involved in control of the second micro
store or PLA may very well consume more area than is saved
by the partition.

Control
Store

From
Instruction

Register

Instruction
Decode

PLA

Branch Signals to Opcode Execution Routines

Figure Id-Separation of instruction decoding in a microprogrammed
controller

Microprogramming-The Challenges of VLSI 65

CONTROLLING CONCURRENT PROCESSING

Complications in traditional microarchitectures occur when
these micro architectures must support real-time response to
external devices and communication between concurrently
executing functional units. The introduction of interrupt
based concurrency and communication affects the microarchi
tecture differently than an alternative approach, message
based communication.

Synchronization between functional units within and across
VLSI chips is likely to occur at a higher level than the micro
program level. Ideally, each functional unit will possess its
own clock and communication between functional units will
be asynchronous. Furthermore, a message-based commu
nication scheme allows communication to occur concurrently
with processing, and the microcode deals with the commu
nication mechanism asynchronously or even indirectly via ma
chine instruction execution. The main difference in the micro
architecture will be the addition of many more CGRtrol and
sense signals extending beyond the processing unit and con
trolling the communication mechanism. Direct control over
communication will belong in the microcode when cost and
design time are important constraints. When performance is
to be optimized, separate interface logic will generate the
necessary signals under microcode commands. Such a situ
ation is shown in Figure 2. We have a lot to learn about how
to control many functional units concurrently but it will be
come very important when multiple functional units are
placed on a single chip. Fortunately, there are many familiar
systems to model, such as freeways, markets, and companies.

Distribution of clock signals to multiple functional units,
even on the same chip, will be replaced with self-timed circuits
because problems with clock skew and signal degradation will
make design times and costs unreasonably great. Only with
high-performance, real-time processing requirements will it
be necessary to provide central control with a single clock.

Furthermore, microprogrammed controllers are naturally
sequential and synchronous. Therefore, the control over asyn
chronous communications will likely be PLA-based, instead,
with microprogrammed hardware controlling each commu
nicating unit's internal operation. In some cases the dis
tinction between the control and data paths used for such
asynchronous operation may become blurry. In these situ
ations, arrays of gating and storage (SLAsl\ for example)

Sense Signals
(from data paths)

F'-' Sense from /Exterr.ol \
\ Communication Logic Data

\ /

Microprogrammed Communication
Controller Control to \ Logic

Communication Logic /
/External--".

Control
)

\ /

Control
Signals Data
(to data paths) (to/from internal

data paths)
v

Figure Z-Separation of processing control from 110 control

66 National Computer Conference, 1981

provide regular structures containing both control logic and
data-path hardware so that design time is reasonable.

Interrupt-based concurrency will most frequently be used
when real-time response is important. In these cases, long
sequences of microcode executing a single complex machine
instruction will themselves need to be interrupted, and micro
interrupt hardware will be introduced. (See for example, IBM
Systeml370.15

)

Changing Tradeolls

Traditional implementation tradeoffs are still valid for
VLSI designs. The choices of PLA versus ROM and nature of
microinstruction format still remain. However, the goals of
minimal silicon area and reasonable design times complicate
the implementation decision process, producing substantially
different price-performance characteristics from previous dig
ital systems.

Performance will be optimized primarily, as it has been
traditionally, by evoking operations in parallel, which pre
cludes significant encoding of microwords. The role of PLAs
to replace random logic in high-performance systems is grow
ing as PLAs become faster. Local control of specific functions
is likely to be implemented with PLAs since their operation is
inherently parallel and can be asynchronous with respect to
the central control. In the extreme performance cases, rela
tively simple functional units controlled by small PLAs will be
appropriate for executing inherently parallel problems, such
as image enhancement. (See Figure 2). In most environments,
however, the justification for a central control is that it reflects
the "problem" being executed, where the "problem" is com
monly instruction-set interpretation and execution. Further
more, large PLAs are not as likely to be used for centralized
control as microstores are. This is partly due to the difficulty
the designer will face in thinking of larger, complex systems in
a nonprocedural manner, and partly because of the sequential
nature of the control task itself.

In competitive microprocessor designs, where design costs
are absorbed in volume business, cost optimization means
area minimization. Because control stores are regular struc
tures, there will be a tendency to replace random logic with
microcode. An example of this is the collapse of complex 1/0
device controllers into the microcode. Performance in these
cases may be degraded since the opportunity for concurrency
is lost, and providing more horizontal microinstructions in
creases silicon area again. Breaking a central microstore into
local PLAs and control stores can supply the necessary paral
lelism and regularity of structure, while reducing silicon area.
The ratio of microstore width to data path width should be
close to one in order to cleanly route control signals to the
data paths. Encoding of the microstore can shift the width
ratio significantly. Also, if the control signals are run in poly
silicon instead of metal, time considerations in routing the
control signals to their destinations may become significant if
the connections are not straightforward.

Exotic formats and encoding techniques are not likely to be
employed. An example of an exotic format is the following:
imagine a definition field in the microword which determines

Control
Store

'

Microinstruction Register

"Evoke" Bit \'Select"
Signals Steering Signals

... ~ I Field (to data

Decoder (paths)

(to data
\

paths)
... I.-

Figure 3-A novel encoding technique

the field sizes and boundaries to be decoded by a bit-steering
field, also specified in the definition field. These techniques
may consume more silicon in decoding than they save in en
coding, or may degrade performance if simple decoding struc
tures are used. Design time is increased since the microcode
is harder to write, design changes in the microcode may re
quire redesign of the entire controller, and the decoder's ran
dom logic itself takes time to design.

Straightforward encoding techniques, particularly along
functional boundaries, will always be useful when conserving
silicon. An encoded destination field, for example, may con
tain mutually exclusive destinations and therefore parallelism
is not sacrificed. Design changes only affect this field and its
decoder. Furthermore, migration of decoders out into the
data paths saves silicon area, since the routing of log n, in
stead of n, signals is done. This can only be done, however,
if the encoded signals are related topologically.

Some variations in encoding techniques are possible.
Nagle16 has proposed a scheme for overlaying mutually exclu
sive control signals in the same fields. A bit steering field
demultiplexes the signals to the correct destinations. (See
Figure 3). The innovation in this technique is that only fields
which contain control signals causing state changes (evoke
signals) need be multiplexed. Select signals, which select mul
tiplexer inputs and ALU functions, can merely be overlaid in
the same microinstruction field, provided the partitioning and
overlaying is carefully done. In addition, these select signals,
which reach the data paths first, are not delayed by decoders.
Evoke signals are delayed by the demultiplexer but are not
used until the end of each cycle anyway. The degree to which
signals are overlaid in this scheme controls the amount of
parallelism in the resulting microprogram.

Encoding in general can conserve silicon area if the micro
store contain n words, the encoded fields contain I bits each
and n is greater thanf. The simplest decoding of ani-bit field
requires 1(2,) PLA cells. Additional space for unencoded sig-

nals would require (2/ -f)n ROM cells. Thus, for example,
encoding fields less than 8 bits wide will save considerable
silicon area when the number of words in the microstore is
greater than 10. Larger encoded fields require longer micro
programs in order to be cost-effective, of course. (In this
example, random logic replacing the PLA would consume
more area due to the irregular structure, use of logic gates,
and increased number of transistors per gate, but may be
faster). As data paths support higher degrees of parallelism,
however, microcode will become more parallel in most cases,
and significant encoding will not be considered. (Colleagues
have suggested a transmission gate decoder may be more
silicon-efficient than the techniques described above.)

MICROPROGRAM DESIGN AIDS

Design times must be decreased in order to produce more
complex integrated circuits. While regular structures alleviate
this problem in some cases, the problems of correct microcode
and optimal microcode for a given task remain. VLSI hard
ware and microcode design problems are large and
technology-dependent; a human alone cannot handle the de
tail and explore enough alternatives involved in correct, opti
mal design. Design aids which explore alternatives and keep
track of necessary details will be an integral part of future
microprogramming projects. Research involving these design
aids falls into three classes:

• microcode verification.
• microcode generation from a high-level language.
• synthesis of microcode and microcontroller hardware

from a higher-level specification.

Although a survey of these research areas is not possible
here, we will briefly present example projects.

An example of microcode verification is the work by van
Mierop, Marcus and Crocker at lSI. 17 Formal descriptions of
both the host and target machines for a fault-tolerant comput
er were written in ISPS 18 and the proof system verified that
microcode running on the host machine correctly imple
mented the target instruction set.

Compilation of microcode from a high-level language is
another approach to the production of correct microcode. The
STRUM system 19 was an early research project that produced
verification conditions as it compiled microcode from a struc
tured high-level language.

Machine independence is a highly desirable feature of mi
crocode compilers. 20 While research in universal micropro
gramming languages is not new21

, the problem of machine
independent compilation is, in general, unsolved. Some
recent results reported on by Marwedel and Zimmerman6 are
optimistic .. They describe a system for the generation of mi
crocode from a high-level language. The system is machine
independent because it is driven by a tabular description of
the hardware. Although their proposed optimization algo
rithm is not yet implemented, hand-compiled examples indi
cate good results with word compaction and hardware allo
cation.

Microprogramming-The Challenges of VLSI 67

Optimal speed or cost can only be obtained in a digital
system when crucial design decisions are made simulta
neously. For example, once the number of registers in the data
paths has been fixed, limiting the parallelism, completely hor
izontal microcode may be useless, since the data path hard
ware limits the design. On the other hand, adequate data-path
resources are wasted if the microcode can only control a sub
section of the hardware in each cycle. Therefore, microcode
optimization a posteriori may produce less-optimal designs
than if the entire design process occurs concurrently. The
MIMOLA system8 allows a designer to interactively restrict
data-path hardware and the system generates microcode for
the available resources. The designer iterates, changing the
hardware restrictions, until the desired price and performance
goals are met. The resulting microinstructions contain pre
cisely the amount of parallelism allowed by the data paths.
Recent research22 shows that optimal designs can be achieved
only if ordering of microoperations and design of data paths
occurs simultaneously.

A more rigorous attempt at microcode optimization has
been undertaken by Nagle et al. 7 In this research, the micro
controller hardware and microcode are generated auto
matically for a fixed set of data paths. A convex cost-speed
curve can be obtained for microcode controlling a given set of
data paths, as the parallelism is changed. In this case, also, the
microcode supports the degree of parallelism provided by the
data paths. The designer restricts the microinstruction width
and the optimization algorithm, then produces microcode
ranging from horizontal to vertical, depending on the word
width restrictions and on each design problem. If the per
formance bounds are not met, the designer can loosen the
width restrictions and iterate.

Some research issues must still be resolved in order to apply
the design automation research described here to general
VLSI design problems. Furthermore, much of this research
does not include complicated branching schemes, pipelined
microarchitectures, and other VLSI system features. Howev
er, these techniques provide a glimpse into the future of mi
croprogramming.

CONCLUSION

Microprogramming will be affected most highly by the VLSI
design problem. Hardware performing specific functions will
be replaced by regular PLAs and control stores. Many special
purpose integrated circuits will appear on the market, custom
ized via PLA's or microcode. Bit-slice microprocessors will
increase in sophistication, replacing random logic. The under
lying geometry of VLSI systems is growing in importance, and
should be studied closely.

The role of PLA's in the future is becoming clearer. While
they will not replace large microstores, they certainly have a
role in support of a large control store and are ideal for con
trolling local events and asynchronous communications.

Design aids for microprogrammers and hardware designers
will become widely used, allowing generation of correct, near
optimal microcontrollers. Virtually all digital systems which
will be highly integrated will be microprogrammed.

68 National Computer Conference, 1981

REFERENCES

1. Wilner, W. T., "Microprogramming in Silicon," Keynote address, 11th
Annual Microprogramming Workshop, Nov. 1978.

2. Wilkes, M., "Computers Then and Now," Journal of the ACM, 15 (1968),
1, pp. 1-7.

3. Holloway, J., et aI., "The SCHEME-79 Chip," AI Memo No. 559, M.I.T.,
January 1980.

4. Bentley, J. L., and Kung, H. T., "A Tree Machine for Searching Prob
lems," Proceedings of the 1979 International Conference on Parallel Pro
cessing, Wayne State University and IEEE Computer Society, August
1979.

5. Moore, G., "VLSI: Some Fundamental Challenges," In Rex Rice (Ed.),
The Coming Revolution in Applications and Design, New York: IEEE,
1980.

6. Marwedel, P., and Zimmerman, G., "Target-Machine-Independent Micro
code Generation System for a High-Level Language," unpublished manu
script, Institute fUr Informatik und Praktische Mathematic der Universitat
Kiel, West Germany.

7. Nagle, A, "Automatic Design of Digital-System Control Sequencers from
Register-Transfer Specifications," dissertation, Carnegie-Mellon Univer
sity, Dec. 1980.

8. Zimmerman, G., "The MIMOLA Design System: A Computer-Aided
Digital Processor Design Method," in Proceedings of the 16th Design Auto
mation Conference, ACM and IEEE, June 1979, pp. 53-58.

9. Nanodata Corporation, QM-l Hardware Level User's Manual, 1974.
10. Wilner, W. T., "Design of the Burroughs BI700," inAFlPS Proceedings of

the Fall Joint Computer Conference, 41 (1972), pp. 489-497.
11. Stritter, S., and Tredennick, N., "Microprogrammed Implementation of a

Single Chip Microprocessor," In Proceedings of the 11th Annual Micro
programming Workshop, ACM SIGMICRO and IEEE Tech. Comm. on
Microprogramming, November 1978, pp. 8-16.

12. Bell, G., Mudge, c., and McNamara, J., Computer Engineering, Maynard,
Massachusetts: Digital Press, Digital Equipment Corporation, 1978.

13. Mead, C., and Conway, L., Introduction to VLSI Systems. Reading, Mas
sachusetts: Addison-Wesley, 1979.

14. Patil, S. and Welch, T., "A Programmable Logic Approach for VLSI,"
IEEE Transactions on Computers, 28 (1979), 9, pp. 594-601.

15. Davis, C. et aI., "IBM System/370 Bipolar Gate Array Microprocessor
Chip," In Proceedings of the IEEE International Conference on Circuits and
Computers, October 1980, pp. 669-673.

16. Nagle, A., "Automatic Design of Micro-controllers," in Proceedings of the
11th Annual Microprogramming Workshop, ACM SIGMICRO and IEEE
Tech. Comm. on Microprogramming, November 1978, pp. 112-117.

17. van Mierop, D., Crocker, S., and Marcus, L., "Verification of the FTSC
Microprogram," In Proceedings of the 11th Annual Microprogramming
Workshop, ACM SIGMICRO and IEEE Tech. Comm. on Micro
programming, November 1978, pp. 118.

18. Barbacci, M., Barnes, G., Cattell, R., and Siewiorek, D., "The Symbolic
Manipulation of Computer Descriptions: The ISPS Computer Description
Language." Technical Report, Dept. of Computer Science, Carnegie
Mellon University, August 1979.

19. Patterson, D., "STRUM: Structured Microprogram Development System
for Correct Firmware, IEEE Transactions on Computers, 25 (1976), 10, pp.
974-985.

20. Mallet, P., "Methods of Compacting Microprograms," dissertation, Uni
versity of Southwestern Louisiana, Dec. 1978.

21. Eckhouse, R., "A High-Level Microprogramming Language," in AFlPS
Proceedings of the Spring Joint Computer Conference, 40 (1971), pp.
169-177.

22. Hafer, L., and Parker, A, "A Formal Method for the Specification, Anal
ysis, and Design of Register-Transfer Level Digital Logic," In Proceedings
of the 18th Annual Design Automation Conference, ACM and IEEE, June
1980 (in press).

Vertical and outboard migration-a progress report*

by ANDREW HELLER
IBM Corporation
Santa Theresa, California

and

ANDRIES VAN DAM
Brown University
Providence, Rhode Island

ABSTRACT

The primary method for gaining performance improvement
on a fixed-hardware architecture is to tailor the soft com
ponents, i.e. the application program, the operating system,
or the firmware, to the performance requirements. This paper
deals with two specific forms of performance tuning called
vertical and outboard migration. These terms refer re
spectively to migrating (pieces of) functions from higher levels
to lower levels in a software/firmware/hardware hierarchy and
to migrating such functionality to auxiliary processors such as
110 processors which can run in parallel with the CPU to
offload it. The performance gains in vertical migration result
from the elimination of CPU overhead, while those in out
board migration result from the ability to offload the CPU and
have separate (special-purpose) processors execute the mi
grated code asynchronously and in parallel with CPU exe
cution.

INTRODUCTION

Motivation

Performance is a continuing concern in the design of com
puter systems, despite the great advances that have been
made in hardware technology which provide ever-greater
computing and storage capacity at decreasing price. Rising
expectations simply absorb increased capability to provide,
for example,

• faster response,
• more user-friendly interaction,
• handling of more variables and exceptional conditions,
• more robustness, security and protection,
• greater "RAS": Reliabilty , Accessibility/Availability

and Serviceability
• an increase in the number of simultaneous users of a

* Portions of this paper have been adapted from an informal paper by Heller. I

69

timesharing system with a decrease in the actual multi
programming level (number of concurrently executing
tasks and context switches), and

• capacity for new, larger problems which could not be
handled previously.

The primary method for gaining performance improvement
on a fixed-hardware architecture is to tailor the soft com
ponents, i.e. the application program, the operating system,
or the firmware, to the performance requirements. This paper
does not deal with such tuning in general, but with two specific
forms of tuning called vertical and outboard migration. These
terms refer respectively to migrating (pieces of) functions
from higher levels to lower levels in a software/firmware/hard
ware hierarchy and to migrating such functionality to auxiliary
processors such as I/O processors which can run in parallel
with the CPU to offload it. A third form of migration, called
horizontal migration, is the migration of tasks between more
or less equal peer processors, typically CPUs connected in a
distributed network, each of which may have its own periph
eralprocessors. Horizontal migration is in effect a synonym
for cooperative distributed processing, and is the subject of
intensive research in its own right, most of which is not related
to microprogramming and is therefore not directly relevant
here.

The primary purpose of vertical and outboard migration is
to achieve a better division of labor and therefore a
price/performance improvement by migrating tasks to the real
or virtual processors best equipped to handle them. In addi
tion to such functional specialization, migration may be used
to provide greater isolation and protection of critical modules
by making them inaccessible to direct or indirect user mod
ification, effectively "burying them in the silicon/hardware."
The performance gains in vertical migration result from the
elimination of CPU overhead, while those in outboard mi
gration result from the ability to offload the CPU and have
separate (special-purpose) processors execute the migrated
code asynchronously and in parallel with CPU execution.

70 National Computer Conference, 1981

(This is traditionally done, for example, with I/O channels and
arithmetic processors attached as peripherals.)

Vertical migration is effected in architectures which can b.e
largely structured as hierarchies, starting with the hardware,
then up to the firmware level and then building up with the
operating-system kernel level, higher levels of operating sys
tem, and finally levels of application program. The software
part of such a hierarchy is effectively induced by using
subroutine/procedure modularization, whereby each call pro
duces another micro-level in the hierarchy; it is customary,
however, to group functionally related procedures and micro
levels into a few, relatively large (macro) levels, each with
potentially differing entry/exit/invocation conventions. At
higher levels in the hierarchy, these conventions tend to be
increasingly more general and powerful, but they also require
increasingly more processor cycles and memory space for
status-saving and context-switching.

Primitives at any level of a hierarchy have two types of
components: mapping actions and execution actions. 2 Map
ping actions are those actions performed to map flow-of
control and data parameters from the invoking level to the
level of the invoked primitive and back. Execution actions are
those actions which perform the semantic operations for the
invoked primitive.

A function which is migrated downwards (towards the hard
ware) in the hierarchy can reduce overhead and improve per
formance in two distinct ways: first, its execution actions are
implemented on a faster and more efficient but more prim
itive level, and second, a more efficient, less general-purpose
mapping action may be used to invoke it. Thus individual
functions are speeded up by as much as an order of magnitude
while the speed of the application program, as a whole, may
improve by 25-50%.3 As an example of the first type of sav
ings, implementing the execution actions of an algorithm in
microcode is much faster than having the equivalent software
instructions perform the same execution actions because,
minimally, target-instruction fetch and decode are replaced
by microinstruction fetch and decode, even if target operand
fetch cannot be altered.

The second type of savings can occur, for example, when an
entire target subroutine invoked by a procedure call is re
placed by a microcode subroutine invoked by a single target
instruction (e.g., a matrix multiply or an array reference), or
when the mapping action overhead of setting up task control
blocks is replaced by a simpler, cheaper, lower-level in
vocation mechanism that does not allow parallelism. This can
be done if a function's ability to run "in parallel" with other
tasks is not needed for a given application, i.e., if its previous
(higher-level) impfementation underutffizes the more general
functionality (provided by the higher-level mapping action)
available to the function at the higher level.

As described in the section "Operating System Migration,"
vertical migration of software to software or software to firm
ware can improve performance not only by eliminating over
head iJ;1curred by unused functionality, but also (for software
to firmware migration) by introducing savings as a result of
basing the migration on a more efficient algorithm (and its
data structures) to take advantage of data and control flow
possibilities at the more primitive levels.

Another application of vertical migration is to migrate

down to firmware (with hardware assistance) supervisory
functions such as software for monitoring, checking, fault di
agnosis, etc., to allow them to run (nearly) continuously with
out impacting CPU performance. 4

,5,6 At a critical time (e.g.,
after hardware failure), this logic thus has access to data and
control paths not accessible at the target level (e.g., scan rings
for reading and resetting low (chip) level status). This type of
vertical migration leads to machines with higher reliability,
availability and serviceability.

Selection criteria

What are the problems faced in selecting highly-used candi
date functions to migrate into firmware or hardware and in
selecting the target implementation media? In selecting new,
highly-used software functions as candidates for migration,
several criteria must be employed. The frequency of use is key
in determining the potential performance benefits which
might accrue from various alternatives. The locality of refer
ence to the data used by a function is critical; that is, if the
function references a large number of storage locations spread
across the processor memory and is limited by storage acces
sing rather than by the processor, simply placing the function
in microcode or hardware will do little to improve its per
formance. On the other hand, if a function uses small self
contained tables as its primary source of data (high locality of
reference), or if the data can be restructured or can be repre
sented by compact representations (lookasides and tables), or
if it accesses memory serially, it may benefit significantly from
migration into microcode. In fact, these data may even be
candidates for placement in special, high-speed read/write
storage areas accessible only to microcode or hardware. In
such a case, functions having high locality of reference may
benefit greatly from microcode or hardware implementation.
On the other hand, functions that appear to be CPU-bound
and have locality of reference may in fact be memory bus
bound, so that moving them to a lower level won't help signifi
cantly. Another important consideration in evaluating the de
sirability of migrating a function centers around the interlocks
which the function places on other functions or processes that
may be competing for use of the same data. If this intersection
with other functions is large, the complexity of isolating the
function is high and therefore the interface should probably
be reconsidered. This leads to a more difficult point, interface
selection, an area which requires more planning, thought and
good taste (system thinking) than any other area in system
design today. It is important also to consider the stability of
the function being considered for migration into either micro
code or hardware. If the function is still undergoing frequent
changes in either its interfaces or its algorithms, it is not ripe
for" casting into silicon."

PROGRESS TO DATE

Operating system migrations

Vertical migration has been used frequently in modern
operating systems. In IBM's MVS, for example, it was ob-

served that the locking function was executed frequently and
that the data referenced by this function was highly localized.
Consequently, the LOCK and UNLOCK microcode assists
were added to the MVS system extension feature for certain
system locks. The SVC ASSIST facility enhances the per
formance of the entry into a supervisor call routine by provid
ing most of the housekeeping and lookups necessary in the
first level of the SVC handler; this processing occurs as part of
the execution of each supervisor call. Such facilities as register
saving, acquisition of necessary MVS locks, and setup of the
proper environment for execution of the service routine are
all accomplished by the microcode. In addition, facilities in
the MVS assist such as SVC ASSIST, PAGE FIX, Invalidate
Page Table Entry (IPTE), etc., are of value not only because
of the high frequency of use of these functions but also be
cause the data referenced by these functions can be organized
to a large extent into tables that provide for high locality of
reference (a small number of cache fetches results in a large
number of useful data references).

Often in migrations of system functions, rethinking of actu
al desired use by the software of the architecture can cause
substantial performance gains in the migration of functions.
Functions like the recently announced cross-memory feature
in the MVS System Extensions significantly reduce the com
plexity and expense that the multiple memory operating sys
tem supervisor (MVS) has in providing multiple memory ser
vices in a machine that provides simultaneously only single
memory addressing. The cross memory feature is a significant
step in the direction of hardware/firmware recognition of the
unanticipated use the operating system has placed on the
original architecture. It results in greatly enhanced security
and protection, reduction in use of globally shared address
space. As well, it provides significant performance improve
ments in transfer of control for applications residing in one
private memory using systems/subsystems services residing in
another.

Similar performance enhancements were provided for an
other of IBM's operating systems, VM/370. Here again many
functions were migrated into microcode in various assists.
These include the Virtual Machine ASSIST, the Shadow Ta
ble Bypass ASSIST, the Control Program ASSIST, the Ex
tended Virtual Machine ASSIST, the Virtual Interval Timer
ASSIST, and others. Other manufacturers' operating systems
provide assists/accelerators for frequently used functions such
as memory management, dynamic storage allocation, and
FORTRAN or COBOL operations such as range checking,
DO loops, array and record/structure accessing, etc.

Performance improvements on the order of a factor of 5 to
10 have been observed in migrating individual software prim
itives to firmware, while application programs using the prim
itives have gained 25% or more. Furthermore, similar results
have been obtained for software-to-software migration, as de
scribed in papers by Stockenberg3 and Stankovic,7 done by
using a methodology and tools which treat firmware and soft
ware migrations in an identical manner.

More is not necessarily better in vertical migration, how
ever. When all of VM's Control Program (CP) was migrated
to microcode in an experiment, only an 8%-10% gain in
throughput was realized, whereas VM ASSIST microcode,
including approximately 5% of the critical code, produced a

Vertical and Outboard Migration 71

20%-50% increase in throughput on the 3701148. The reason
for this seemingly baffling result lies in the nature of the
architecture of each layer of the hierarchy; primitives, data
paths, data and storage structures, and control paths at each
level may be reflected to or hidden from successively higher
levels. A host (micro) machine typically has access to many
special-purpose resources and data and control flow possi
bilities (register, writeable control stores, busses, multiway
branches and condition testing, etc.) while the target machine
has fewer but more general purpose possibilities. Thus the
target architecture in conjunction with hardware assistance
may have access to control information which is not as easily
accessed by the host. Migrating a software algorithm as is to
firmware thus may provide no improvement; it may even cre
ate a performance loss. What is required is to redo the algo
rithm (and, if necessary, its associated data structures) to take
advantage of the host architecture. The non-migrated soft
ware in turn may have to be adapted to the newly migrated
primitives, and the interfaces between migrated and non
migrated functions then must be changed for optimal results.

In the case of the 370/148 and the totally migrated CP, for
example, the micromachine went through the software logic,
took an interrupt on a privileged instruction detection just like
the software, went through initial status save and determined
at that point in a micro subroutine, whether or not the oper
ation would be allowed. If so, it re-issued the instruction after
resetting state information. By evaluating the actual require
ments of the function it was determined that many of the
actions taken by the algorithm were unnecessary in many
cases. In VM ASSIST, tables accessible to the firmware AS
SIST program allow the firmware prior to the execution of an
interrupt to determine whether the specified privileged oper
ation is allowed and, if it is, to dispatch it, essentially without
overhead. In this way the target machine was restructured
hardware/firmware was made "smarter" to allow software at
higher levels to be smarter. Thus designing an interface to a
function chosen for migration may require extensive planning
and re-specification in order to ensure that the migration cri
teria of this section are met.

Indirect vertical migration and hardware/firmware/software
redesign

Often the function that is migrated into microcode or hard
ware has no real or specifically identifiable software counter
part, but rather is created in response to the recognition that
the software usage of the hardware implies a function that can
be effectively realized only in hardware or microcode. Here
one speaks of indirect function migrations. For example, in
the MVS operating system, shared segments and all pages in
them (common storage area, page able link pack area, nucleus
area, etc.) are always assigned to the same virtual addresses in
all address spaces. Advantage was taken of this fact by provid
ing an interface between the software and the hardware which
allows the operating system to indicate to the hardware which
segments at any instant are shared in this manner. This infor
mation permits the hardware to use only a single entry in its
translation lookaside buffer to map the same segment or page
in each virtual memory (rather than using a lookaside entry

72 National Computer Conference, 1981

for each occurrence of a shared segment or page in each
virtual memory). It makes it possible to eliminate alias check
ing (which would otherwise be required by the architecture) in
the hardware lookaside buffer for all segments or pages
shared in this manner. Another way to view this is that by
eliminating the alias checking for shared pages and segments,
we cause the number of "hits" to the lookaside to increase and
the number of changes to the lookaside to decrease, and
hence the performance to improve.

This change required a pair of symbiotic changes; first, the
software had to be changed to indicate which pages had the
property described, and second, the hardware had to be
changed to take advantage of this information. This was done
as part of the MVS System Extension feature (the "common
bit"). In this case, then, system functions were not directly
migrated; rather their use of the machine architecture implied
a corresponding hardware function.

Sometimes machines are designed at the architecture level
without a thorough understanding of how specific hardware
features really will be used by the system, and this can result
in a mismatch of function among hardware, firmware and
software. These mismatches will continue to surface as the
software system continues to evolve, and machine design/
architecture changes that recognize the actual uses of the
architecture can have significant system performance impact.
Another example of this kind of evolution in system usage
occurs because of a change in software usage of hardware
functions, coupled with a change in hardware economics. This
is especially relevant for high-speed storage, i.e. in CPUs'
cache memories and main store. Because of the increasing
disparity between processor speed and main storage speed (at
the high end, commercial CPU speeds have increased by near
ly 10 times in the last 12 years, while memory speeds for main
storage have only doubled or tripled) the importance of lo
cating data in lookaside buffers has increased. As a result of
this, it has become more important to increase the efficiency
of lookahead and look aside functions such as translation di
rectory lookasides and cache memories. Segment table origin
stacks (STO stacks) were introduced in 370 hardware so that
address space changes did not cause the loss of all existing
lookaside entries, and in the MVS System Extension feature
the ability to purge specific lookaside entries selectively was
added to the microcode and hardware (IPTE, Invalidate Page
Table Entry). This type of function (designed to improve
lookaside ratios) is also an indirect rather than direct function
migration implemented to complement the software structure
and its use of the architected interface.

OUTBOARD MIGRATION

Many of the more interesting candidates for function mi
gration do not fall into the category of simple assists or impli
ed speciallookasides, but are rather functions removed from
the central processor altogether. Many system functions that
now execute in a serial fashion can be migrated into micro
code or parallel hardware with great benefits realized by ex
ploiting natural parallelism and natural breakpoints. Usually,
though not always, significant restructuring is necessary to
obtain the desired interfaces and to yield the potential per-

formance improvements. Many key system functions need not
be performed in a precise, serialized or interlocked manner.
Typical of such functions are the heuristics frequently employ
ed in operating systems to improve performance. Specifically,
aging and sorting of the real page frames in a virtual storage
system need not be done in a serialized or interlocked process
as it is in any case only an approximation.

Another class of candidates for such migration are functions
which must be precise but whose operation need not be syn
chronized or coupled with the operation of the main pro
cessor. Examples of this type of processing are many. The
processing of 110 support functions, access methods, auto
matic data backup or journaling, and reallocation of storage
are but a few of the possibilities. Since these functions need
not be executed serially with the main-line processing, they
can be implemented in totally parallel microcode and hard
ware.

In addition to the obvious performance benefit of the in
structions which are now not executed in the central processor
other benefits are also accrued. The hardware interfaces to
the "page management" process, for example, can be opti
mized to acquire large blocks of status information about
many pages with a single reference to the storage control
element or hardware memory management facility, or could
be built directly into the storage controller. The output re
sulting from the execution of a request to the storage control
ler could result in a significant reduction of the total number
of references to the key array by not requiring that the keys be
accessed individually. The output resulting from the exe
cution of this function could be placed in addressable queues
that the in-line page fault function could utilize. This type of
migration results not only in the offload but potentially in a
significant improvement in the total performance of this func-

. tion: it would be possible, for example, to provide such a
function with the ability to retrieve several keys (and their
associated reference bits) in a single hardware storage cycle,
thus improving overall performance of the function.

Specialized, often inexpensive, hardware can be used for
many of the parallel function candidates due to the simplicity
of the functions executed (i.e., no floating-point or complex
variable operations are required).

The above are representative of the type of function that is
likely to migrate, but it is important to understand the criteria
used in selecting specific functions and interfaces. In looking
at functions that could be asynchronous to determine their
potential for offloading, and in designing the interfaces to the
offloaded function, it is important to exercise great care in
finding "natural" breakpoints. Natural breakpoints are log
ical boundaries in the process that (a) have only small
amounts of required shared state information with the in
voking process, and (b) occur at or after a detected and re
quired task or major state change so that, for example, the
cache disruption in a mainframe CPU and the overhead of the
communication is not added to the disruptive effects in the
system.

An example is the sequence of functions involved in pro
cessing data requests from an application program or a main
frame CPU to a database stored on an external disk. Here,
there are many obvious breakpoints at which one could envi
sion offloading all subsequent processing to a parallel process

APPLICATIOJDATA REQUEST

(POTENTIAL BREAKPOINT)

INTERPRET REQUEST
DETERMINE PHYSICAL BLOCKS NEEDED

(POTENTIAL BREAKPOINT)

SEARCH BUFFERS

(POTENTIAL BREAKPOI NT)

ACQUIRE LOCKS, ETC.

(POTENTIAL BREAKPOI NT)

IF DATA IS IN BUFFERS, RETURN --->

(NATURAL BREAKPOHH)

CREATE COr~MAND STRINGS TO RETRIEVE DATA

(POTENTIAL BREAKPOINT)

BUILD CONTROL BLOCKS FOR I/O CONTROL SYSTEM

(NATURAL BREAKPOINT)

APPLICATION PROGRAM

r
(POTENTIAL OFFLOAD END)

r
ASSEMBLE LOGICAL RECORD FOR APPLICATION

(POTENTIAL OFFLOAD END)

DISPATCH REQUESTOR IF ALL DATA
NEEDED IS AVAILABLE: OTHERWISE RETURN
TO DISPATCHER AND WAIT

(POTENTIAL OFFLOAD END)

QUEUE REQUEST BLOCKS FOR I/O CONTROL SYSTEM SCHEDULE REQUESTOR'S UNIT OF WORK

(NATURAL BREAKPOINT)

SCHEDULE PATH (CHANNEL, CONTROL UNIT, ETC.)

(POTENTIAL BREAKPOINT)

INITIATE I/O OPERATION

(NATURAL BREAKPOINT)

PERFORM I/O FUNCTIONS

(POTENTIAL OFFLOAD END)

EVALUATE STATUS OF REQUEST, AND
RE- ISSUE IT I F NECESSARY

(POTENTIAL OFFLOAD END)

I NTERRUPT HOST CPU

l'

Figure I-Possible breakdowns

or parallel hardware. But after examining these candidates
carefully, there are several which have significant negative
impact upon the performance of the system and therefore are
not "natural breakpoints." Figure 1 shows some of the possi
ble breakpoints that occur during the processing of a typical
data management request on a System/370 under the MVS
operating system.

In evaluating each of the possible breakpoints where paral
lel function might commence, it is important to look at the
potential impact upon the system as well as the potential
benefits. The first and most obvious breakpoint is the applica
tion interface. This interface, often referred to as the "data
base/machine" interface, would at first glance provide the
easiest and cleanest possible breakpoint, but on closer exam
ination, it is found that in today's large-scale processors this is
not really the case. Large CPUs with instruction lookahead,
pipelining, storage caches, etc., operate best when executing
instructions in a sequential fashion. Breaking the pipe, dis
patching new units of work that would clear the cache, over
laying the translation lookahead buffers and resetting the sta
tus of the machine are expensive in execution performance. In
most data base systems, large in-storage buffers are used to
store significant portions of the actively used data and index
es. As a result of this (and the clustering or packing algorithms
employed in many systems to allow placing related items to
gether in physical storage), many of the data requests find the
data already in the buffers and require no asynchronous ex
ecution. Often more than 98% ofthe total data accesses to the
data base are resolved without additional 110 processing. Be
cause of all the hardware penalties mentioned above, it would
be far better not to take a breakpoint at the request interface
if the data is already in storage, but rather to continue re
solving the reference and return in an in-line processing se-

\

Vertical and Outboard Migration 73

quence. In smaller CPUs without much pipe lining this trade
off becomes more difficult to evaluate, since the impact of a
transition from one unit of work to another is relatively less
costly to system performance than it is on larger machines
where the impacts are obvious.

Creating a breakpoint at the physical record selection inter
face will have the same drawbacks as doing so at the applica
tion program data/request interface. After physical record
selection has occurred·, a local buffer search is performed to
determine if the data required currently resides in high-speed
storage. It is only at the point where buffer miss is detected
(data not in storage, or page fault on the data if the machine
is built on a "one-level store" virtual memory model) that this
process has reached an interface in this sequence where a
disruption is assured. This interface crossing indicates then
that at some point asynchronous 110 processing will occur.
The interface corresponds to the need to obtain-data from an
external device, and the system is consequently forced to
make the transition to other work at some time as a result
since the external devices are very slow relative to internal
processor speeds. Creating a breakpoint here incurs no dis
ruptions beyond those occurring in any case due to this exter
nal I/O processing. This is to say that a change to another unit
of work, status saving, pipeline breaking, and cache dis
ruption will occur in any case as a result of not finding the data
in storage. Thus, this is a natural breakpoint unless the data
resides on a device whose access time and transfer rate are
such that the data could be made available in less time than it
would take to perform the transition to another unit of work.
(If such a large, fast store were available, no asynchronism
would be implied anywhere in the entire process, and this
device could be viewed as part of the memory buffer.)

This interface probably provides the cleanest breakpoint
considering the machine architectures, software systems, and
implementations in use today. The drawbacks in choosing this
interface as a breakpoint are related to the diversity of under
lying access method functions, stored data formats and se
quences that would have to be programmed in the parallel
engine(s). Although this interface is attractive technically,
pragmatically it is improbable that it will be implemented
quickly as a new breakpoint in the 110 process because of
implementation complexity; we suspect that it will rather be
gin to appear in an evolutionary fashion. Additional strategies
for asynchronous processing/outboard migration, including
detailed 110 breakpoint strategies are examined in a paper by
Heller.'

PROBLEMS TO BE SOLVED

Like micro coding in general, vertical and outboard migration
applied in industry and university projects have often been
done without adequate support in methodologies and tools,
based on ad hoc techniques and much special casing. Some
typical problems include: - .

1. Identifying bottlenecks on a particular system, a very
difficult measurement problem, requiring intimate
knowledge of workload characteristics as well as of hard
ware and software behavior. Seldom does simply identi-

74 National Computer Conference, 1981

fying CPU-intensive processes suffice, especially in to
day's multiprogramming and multiprocessor target and
host configurations with much shared use of busses,
memories, buffers, lookasides and peripherals.

2. Predicting and verifying performance improvement due
to migrations, especially when migrations interact. 3

,7

That is, migrating one primitive typically affects the po
tential improvement to be expected from migrating a
related primitive in ways that are not immediately obvi
ous.

3. Doing software-to-firmware migration in ways other
than recoding in a lower-level language-the ideal of a
high-level language compiler which compiles both to op
timized target code and to vertical (let alone horizontal)
microcode is far from generalized due to both current
host machine idiosyncracies and the language level at
which most systems code is currently written. (Com
piling design automation directives for actual hardware
construction is even more unrealized today).

4. Finding systematic techniques for migrating functions
and their data structures which minimize shared state
and potential interlocks and do not impactthe interfaces
to related nonmigrated functions functions--or, alterna
tively, migrating and improving the migrated and non
migrated functions and their interfaces simultaneously.

5. Verifying the correctness of a migration (assuming that
the original code was either formally or experimentally
verified to be correct). Establishing modularization
techniques and interface design which create more op
portunities for migrating functions is a related problem.

6. Creating technology transfer-since user-friendly tools
and methodologies can give an enormous boost to the
speed with which migrations can be done, they tend to
remain· company-proprietary, rather than being put in
the public domain via official publications.

FUTURE DEVELOPMENTS

We can expect that all the techniques which have been applied
to tune main-frames will now come into use in the design of
today's sophisticated microprocessor chips; these chips may in
fact afford even more opportunity for vertical migration in
that some have lower levels of nano~ and even pico
programming Designers of small-scale systems may have to
deal with design rules or constraints that may not apply to
larger systems, however. For instance, the dispari~y between
processor and memory speeds in NMOS or CMOS systems is
not as great as in large-scale systems; this will affect interface
boundaries and placement of functions. Furthermore, the
temptation to migrate large numbers of functions directly into
logic is strong for microprocessor designers, yet the impact on
overall system performance may be quite different from that

of placing those same functions in microcode, because more
complex circuitry and longer data paths are required for ran
dom logic than for more regular memory.

As chips become more complex, increasingly more micro
coded operating system support will be seen, for instance for
object, process, and capability management. 8

,9 Also, control
stores will become large enough to allow direct compilation to
microcode rather than interpretation of a compact inter
mediate language code. Many higher-level facilities will be
migrated after a period of eXI>-erimentation at the software
level. For this reason chip manufacturers have· left uncom
mitted (PLA) areas on their chips or have separate control
store chips, as on the Motorola 68000. A third trend will be
increasingly parallel architectures using outboard migration as
a way of seeking architectural remedies to technological lim
itations. It is hoped that increasing integration of all three
migration techniques will be seen, using as much as possible
the same tools and methodologies.

As a final note, it is expected that unfortunately there will
be no equivalent in the migration field of the Mead/Conway
phenomenonlO of do-it-yourself (amateur) VLSI chip specifi
cation (at least for simple chips). A deep knowledge of
hardware-firmware-software architecture will continue to be
needed to understand where migration can be useful and how
it can be accomplished with minimum restructuring. The lack
of broadly educated computer professionals who can deal with
this complex problem area will continue to be a major bottle~
neck to progress in the field.

REFERENCES

1. R.A. Heller, "Experiences and opportunities in vertical migration of com
puting functions", in Proceedings of a Conference on Information Pro-
cessing, Kiel, March 1980. '

2. S.H. Fuller, V.R. Lesser, C.G. Bell and C.H. Kaman, "The effects of
emerging technology and emulation requirements on microprogramming" ,
IEEE Trans. Computers, vol. 25, no. 10, October 1976.

3. John Stockenberg and Andries van Dam, "Vertical migration for per
formance enhancement in layered hardware/firmware/software systems",
IEEE Computer-vol. 11, pp. 35-50, May 1978.

4. Amdahl Corporation, Amdahl 5860 product announcement, November
1980.

5. G. Chroust, A. Kreuzer and K. Stadler, "A microprogrammed page fault
monitor", Kepler University, Linz, Informatik-Berichte: SYSPRO 1980.

6. E. Feilmair and K. Stadler, "A CSECT monitor to measure program flow" ,
Institute for Informatics, J. Kepler University, Linz, 1980.

7. J. A. Stankovic, "Structured systems and their performance improvement
through vertical migration", Ph.D. thesis and Technical Report CS-41,
Dept. of Computer Science, Brown University, May 1979. .

8. G.J. Myers and B.R.S. BuckIngham, "A hardware implementation of
capability-based addressing", Computer Architecture News, vol. 8, no. 6;
pp. 12-24, October 1980.

9. J. Rattner and G. Cox; "Object-based computer architecture", Computer
Architecture News, vol. 8, no. 6, pp. 4-11, October 1980.

10. C. Mead and L.Conway, Introduction to VLSI Systems, Addison-Wesley,
1979. .

Firmware testing and test data selection

by HELMUT K. BERG
Honeywell, Inc.
Bloomington, Minnesota

INTRODUCTION

Loosely stated, program verification is the task of system
atically demonstrating that a program achieves its intended
purpose, i.e., the task of proving the absence of errors from
a program. This task may be considered as a backward map
ping from a given program to a statement of the requirements
for that program. There exist two fundamental approaches to
establishing such mappings. A program may be exercised for
a specific set of input values; the successful completion of
program execution constitutes a necessary condition for the
correctness of that program. A more rigorous approach is to
provide an argument that a program satisfies its requirements
for all legitimate input values, thus constituting a necessary
and sufficient condition for the correctness of that program.
In this paper, we are concerned with the first of these two
fundamental approaches.

Verification techniques are dependent on the notations and
concepts used to express requirements and programs. Central
to verification is the availability of a specification, i.e., an
unambiguous representation of the requirements definition.
It embodies the system requirements in the sense that any
system which fits this description will satisfy the requirements.
With respect to verification, specifications constitute redun.:.
dant information which is necessary for the construction of a
backward mapping from a program. or program system to a
statement of the system requirements, i.e., to carry out the
verification.

Verification methods are related to the approach taken to
specify the semantics of program systems, programs, and pro
gramming constructs. Three main approaches to semantic
definitions of programming constructs (i.e., programming
languages) have developed. These approaches are: the oper
ational approach, the denotational approach' and the axiom
atic approach. 2

,3 All three approaches have been applied to
firmware verification.4 In this paper, we are concerned with
the operational approach.

In the operational approach, the semantics of the pro
gramming constructs of a programming language are defined
by virtue of a more primitive programming language. The
semantic definition specifies, for each programming con
struct, a translation into the constructs of the primitive lan
guage. With respect to verification, the operational approach
requires the execution of (a trace through) programs written

75

in the primitive programming language. The effect of program
execution may then be determined by observing how the state
is changed by the individual transformations. Obviously, this
method of determining the semantics of programs is applica
ble only to specific sets of input values. Hence, a program is
verified by demonstrating the equivalence between results of
program executions for specific sets of input values and corre
sponding execution-independent specifications of the ex
pected results. The concept underlying this verification meth
od, which maps between individual program states, is the
commonly known concept of program testing. The specifica
tion of the particular sets of input states and corresponding
output states constitutes the definition of test data.

We offer the following definitions of correctness proof and
testing,5 noting that both verification methods must be sup
ported by techniques and tools for debugging.

• Correctness proof is the attempt to show the absence of
errors from a program.

• Testing is the attempt to show the presence of errors in
a program.

• Debugging is the attempt to locate and correct known
errorS in a program.

Theoretically, correctness proof is a stronger argument about
the correctness of a program than testing. Correctness proofs
demonstrate correctness for the domain of all legitimate initial
states, whereas a test can demonstrate the correct behavior of
a program only for a particular initial state. Consequently,
testing is inherently limited, because the number of test cases
required to completely exercise even a small program may be
prohibitively large or even infinite. Nevertheless, testing is by
far the most widely used verification technique. However,
neither proofs nor tests can, in practice, provide complete
assurance that programs will not fail. 6 Tests actually provide
information about a program's behavior in its actual environ
ment; whereas proofs are limited to conclusions about behav-
ior in a postulated environment.

DIFFERENTIATING METHODS OF TESTING

Testing techniques in general, and firmware testing tech
niques, in particular, may be differentiated by:

76 National Computer Conference, 1981

• . the types of errors,
• the level at which tests are carried out,
• the approach used to carry out tests,
• the environment in which tests are carried out,
• the test strategy,
• the test data selection.

To elaborate on these criteria, we provide the following defi
nitions. We call the deviation of a system's behavior from its
specification afai/ure. An error is caused by afault and leads
to an erroneous state which, in turn, indicates a failure. By
error detection we mean the recognition of the effect of an
error, i.e., of an erroneous state; by error location we mean
the recognition of the cause of an error, i.e., of a fault.

Errors can be classified as performance errors and logic
errors. 6 Performance errors lead to results which are not with
in specified time and space limitations. Logic errors lead to
erroneous results and may be classified further into:

• requirement errors, which lead to failure with respect to
real requirements as given by the purpose of a system;

• specification/design errors, which lead to failure with
respect to understood requirements as given by the re
quirements definition; and

• construction errors, which lead to failure with respect to
the specification or the design.

At higher levels of abstraction software testing does not
deviate essentially from firmware testing. Therefore, we con
centrate on microprogram tests, which are carried out at the
following three levels:

• Tests at the microprogram level consider complete mi
croprograms by either analyzing their code or in
vestigating the machine states resulting from their exe
cution.

• Tests at the microinstruction level consider single micro
instructions by either analyzing the assignment of
microoperations to them or investigating the machine
states resulting from their execution.

• Tests at the microoperation level consider individual
microoperations by monitoring their execution.

Two major approaches to testing have developed. 7

• Static analysis is concerned with investigating the logical
structure of a program.

• Dynamic testing is concerned with investigating the ex
ecution of a program.

The following two test environments may be distinguished
for firmware tests.

• The test environment for on-line tests is the physical
processor upon which the microprograms under test are
executed.

• The test environment for off-line tests is independent of
the physical processor upon which the microprograms
under test are executed.

There are three general testing strategies.7

• Bottom-up testing starts with low level test modules that
are gradually integrated into higher level test modules
until the integration of the entire system is tested.

• Top-down testing starts with tests at the system level,
using dummy lower level modules, and gradually em
bodies the lower level modules until all test modules at
the lowest level are tested.

• Mixed Testing is predominantely top-down, but
bottom-up testing is used on certain test modules.

Two fundamental properties of test data selection criteria
have been identified. 6

• Reliable test data criteria ensure selection of test data
which are consistent in their ability to reveal errors as
opposed to necessarily being able to detect all errors.

• Valid test data criteria ensure that for every error there
exists a complete set of test data capable of revealing
the error as opposed to necessarily being able to select
such a set of test data.

A FUNDAMENTAL THEOREM OF TESTING

Before we proceed to descriptions of program correctness and
the concepts of test reliability and validity, we introduce the
notions of abstract machines and abstract programs.

Abstract Machines, Abstract Programs, States, and
State Spaces

An abstract machine, A, is defined by a pair, A = (d,F),
where d is the state of A , and F is a set of transformations for
effecting state changes. The transformations f;E F act upon a
set of data objects (0), ... ,On); the state d is given by the
states of the data objects, Oi.

A data object, 0, is defined by a triple, 0 = (n,v ,t), where
n is its name, v is its value, and t is its type. The name of a
data object may be used to reference the obJect in a trans
formation description. The value of a data object defines the
state of the object. The type of a data object defines the form
of its value (e.g., integer, real) and the operations which may
legitimately be performed upon it. The state of an abstract
machine depends upon the execution of an abstract program
on that abstract machine, as the state is given by the collection
of the values of the data objects referenced by that abstract
program.

It is convenient for the treatment of verification, to associ
ate a state with an abstract program, rather than with the
appropriate abstract machine. Then, the state defines the ef
fect of executing a program for a specific set of input values up
to a certain point. Additionally, a state space, D , of a program
may be defined as the cartesian product, D = Dl X •.• x Dn, of
the sets, Di of the legitimate states (value ranges) of all the
data objects, 0;, referenced by that program. Legitimate sets
of input and output values of a program, which are of the form
(v), ... ,vn), may then be identified by defining subspaces of
the state space, D.

Tests, Test Cases and Program Correctness

A (micro)program, M, consists of a set of (micro)instruc
tions, mj, i.e., M =ml; ... ; mn • The execution of a program,
M, is a function, E, whose domain is the set of legitimate
initial states and whose range is the set of legitimate final
states of M .8 We call the function, E, the execution function,
and denote the set of legitimate initial states and the set of
legitimate final states of a program, M, by 4> and \jJ, re
spectively. Let the initial state as defined by a particular set of
input values be denoted by do. Then, the final state, d" re
sulting from tb~ execution of a program, M, for an initial
state, do, is defined, df=E(M,do). The execution E(M,do), of
a program, M, is defined if doE4> and M terminates; the exe
cution, E(M,do), of a program, M, is undefined, if doi4> or M
does not terminate.

A test case is a triple, (dj,mp ; • •• ; mr,dd, which specifies
that the execution of a code segment, mp; ... ; mr, of a pro-

, gram, M = m,; . .. ; mn , is to terminate with state, db when
executed starting with state, d;. A test is the attempt to verify
a test case, (dj,mp ;' •• ; mr,dk), i.e., the attempt to establish
the equivalence, E(mp; ... ; mr,dj) = dk , by execution of
mp; ... ; mr for dj. A program test attempts to verify test cases
of the form, (do,M,df).

We are now in the position to define the correctness of a
program. A program, M, is correct, if (V doE.) (E (M, dn) =
df). We recognize that program correctness cannot readily be
established by testing, as the set 4> may be infinite, and con
sequently, an infinite set of test cases would need to be speci
fied and verified. Hence, testing can validate programs only
by verifying an appropriate set of test cases. Therefore, we are
interested in finding a finite sample of the set of legitimate
initial states which can be used to establish program cor
rectness.

An ideal test of a program M is defined by a subset T k 4>,
if

(VdOET) (E(M, do) = df)~(VdoE4» (E(M, do) = df),

for 4>, do, and df as defined above.

That is, if from successful execution of M for all initial states
in T, we can conclude the program correctness, then T consti
tutes an ideal test.

The Goodenough-Gerhart Theorem

The primary problem in testing reduces to the question as
to which test data set T constitutes an ideal test for a given
program M, or how thoroughly does T exercise M. Usually,
a thorough test is equated with an exhaustive test, i.e., with
T = 4>.9.10 However, as seen above, exhaustive tests generally
are not feasible, hence this definition of a thorough test does
not provide insight into problems of test data selection. Good
enough and Gerhard developed a formal basis of testing6

which is aimed at the definition of criteria for test data selec
tion that ensure thorough tests. This theory is based on the
following concepts.

Let T be a set of test data and let C be the criterion for

Firmware Testing and Test Data Selection 77

selecting T, then the completeness of a test data set is defined
by the predicate COMPLETE (T ,C), which ensures that the
successful execution of all test cases derived from T implies no
errors in the tested program. That is, C defines what proper
ties of a program must be exercised to constitute a thorough
test. A test is successful, if the execution of a program M for
all test cases (do,M, df) derived from a set of test data conforms
with the specification of the program M. This property is
denoted by the predicate, SUCCESSFUL (T)=(VdoET)
(E(M, do)=df).

To ensure that a successful test with a complete set of test
data implies the correctness of an ideal test, the test data
selection criterion C must be reliable and valid. A test data
selection criterion C is reliable, if and only if for every set of
test data Twith COMPLETE(T,C), we have SUCCESSFUL
(T) or not SUCCESSFUL(T). Reliability of a test data selec
tion criterion is defined by the predicate, RELIABLE(C)=
('ITt, T2k4» «COMPLETE(Tt,C) and COMPLETE
(T2,C}}~{SUCCESSFUL(TI)~(SUCCES-SFUL{T2»)' A
test data selection criterion C is valid, if and only if for every
error in a program there exists a set of test data T with
COMPLETE(T,C) such that we have not SUCCESS
FUL(T). Validity of a test data selection criterion is defined
by . the predicate VALID(C) = (VdoE4» (E(M,do)=df~
(3Tk 4» (COMPLETE(T,C) and not SUCCESSFUL(T»).

We are now in the position to state the-ftmdamentu{ theurem
of testing 6

:

(3T k 4» «3C) (COMPLETE(T,C) and RELIABLE(C)
and VALID (C) and SUCCESSFUL(T»~(VdoE4»

(E(M,do) = df).

The theorem demonstrates that tests with complete test data
sets that have been derived by reliable and· valid test data
selection criteria are thorough in the sense of ideal tests.
Although the theorem may alleviate the need for exhaustive
testing, it leaves us with the problem of demonstrating the
reliability and validity of the test data selection criteria. In
effect, the theorem states that in some cases a test is a proof
of correctness. 6

LEVELS OF MICROPROGRAM TESTING

The application of the Goodenough-Gerhart theorem to firm
ware may lead to formal techniques of firmware testing and
test data selection-. Formal rrwthods necessitate an abstfaet
view of program semantics in which semantic definitions need
to be restricted to program execution on some abstract ma
chine that models the behavior of a real machine. In software
verification, high level programming languages are generally
considered as the abstract programming language of the ab
stract machine by which the behavior of the real machine is
modelled. For firmware verification, hardware-independence
cannot be achieved. Therefore, firmware verification requires
less abstract models of machine behavior that capture all ef
fects in the hardware that affect the .. semantics of micro
instructions. In particular, the parallel execution of micro
operations and the synchronization of asynchronous oper-

78 National Computer Conference, 1981

ations require considerable elaboration in firmware semantic
definitions.

Testing of microprograms, microinstructions
and microoperations

Following the discussion in the section "Tests, Test Cases,
and Program Correctness" a test at the microprogram level
attempts to verify test cases of the form (do,M,df), i.e., it
attempts to establish equivalences, E(M, do) = df . A test at the
microinstruction level then attempts to verify tests cases of the
form (dj_"m;,dj) where dj- I and dj are the states reached
before and after the execution of the microinstruction, mj,
respectively.

A microinstruction, mj, consists of a set of microoperations.
!J..i, i.e., mj = (!J..I, ... , !J..m). The execution of a single micro
instruction may be divided into several subcycles in which
individual microoperations are executed. Hence, during the
execution of a microinstruction, substates may be reached that
result from the execution of microoperations in a particular
subcycle. We define a subcycle by a pair, (Cps,CPe), where cps
and cPe denote the cycle points at which the subcycle starts
and ends, respectively. A cycle point is a time instant within
a microinstruction execution cycle at which the input to a
functional hardware unit or register must be present, or after
which the output of a functional hardware unit or register is
available for use." In general, cycle points are defined by
clocks. We identify the individual microoperations, !J..i, in a
microinstruction, mj, by the notation, E(!J..j,dj-l,cpd =dj
(CPk), ke [1:S], where S is the number of subcycles in the
execution of mj' That is, E(m"dj-l,cPk) denotes the substate
reached after the execution of the k -th subcycle in the exe
cution of the mieroinstruction, mj. The substate, dj(cpd, is
effected by oilly those microoperations, !J..i (CPi p CPi 2)' with
CPi2::;::; CPk, i.e., whose execution terminated before the cycle
point, CPk. Obviously, we have, E(mj,dj-I,cps) = E(mj,
di-tJ = dj, i.e., the substate reached after the last subcycle is
the state reached after microinstruction execution.

The effect of executing a single microoperation, !J..i (CPi I'
CPi2)' in a microinstruction, mj, for a given state dj(CPiJ, is

'denoted E(mj,dj(cpiJ, CPi 2) = dj(!J..i(CPil,CPi2»' Using this
notation, we obtairi the following definition. A test at the
microoperation level attempts to verify test cases for the form,
(di(cPil), mj, d(!J..i (Cpil,Cpi2»)' i.e., it attempts to establish
equivalences E(mj,dj(cpil)' CPiZ) = dj(!J..i(CPil,CPiz».

The effect of asynchronous micro operations may be ob
served as follows. For an asynchronous tnicrooperation, !J..i,
the cycle point, CPiz, at which it terminates is not known a
priori. Therefore, we denote an asynchronous microoperation
by !J..i(CPil' ?). Nevertheless, the termination of an asynchro
nous microoperation needs to be synchronized with an inter
nal clock. Hence, if the execution of an asynchronous micro
operation terminates, there exists a cycle point, cpa, at which
the effect cali be recognized. That is, tests of asynchronous
microopet:ations involve test cases of the form (dj(CPil)'
m;.dk(!J..i(CPil' ?»), whose verification requires the determina
tion of the cycle point, cp", to establish (E(mj,dj (CPil),CPll) =

dk(!J..i(CPi I' ?», k > j.

The Goodenough-Gerhart Theorem and
,Microprogram Testing

The fundamental theorem of testing described above re
quires that the predicates COMPLETE(T,C), RELIABLE
(C), VALID(C), and SUCCESSFUL(T), be established for
sets of test data, T, which have been selected according to an
appropriate test data selection criterion, C. The major con
cern of this activity is the proof of the reliability of the test
data selection criterion, C. Studying this problem, it has been
found6 that reliable tests need to be designed not so much to
exercise program paths as to exercise paths under circum
stances such that an error is detectable if one exists. Tests
based solely on the internal structure of a program are likely
to be unreliable. Rather, in order to find test data which
reliably reveal errors, all conditions relevant to the correct
operation of a program must be known. The existing theories
of testings are not sufficiently powerful to identify, for any
program, criteria for test data selection which can hope to
yield reliable tests.

For microprograms, the characteristics of their imple
mentation, including special conditions relevant to data repre
sentation and the internal structure of the program represent
ations, need to be used to ensure that all combinations of
conditions relevant to their operation can be identified. Par
ticularly, the following characteristics need to be considered:
grouping of microoperations in microinstructions, the micro
instruction sequencing mechanism, the timing of micro
operation executions, the resource binding of micro
operations, etc. Consequently, microprogram tests need to
consider microprogram implementations at all three levels of
abstraction described above.

The following relationships between microprogram cor
rectness, error detection, and error location can be estab
lished. An error which is detected at the microprogram level
may be caused by any number of combination of faulty micro
instructions or microoperations in the microprogram. A test
ing technique must support the location of such errors. An
error is located at the microprogram level, if the set of faulty
microinstructions or microoperations can be identified. To
identify faulty microinstructions or microoperations in an er
roneous microprogram, tests at the microinstruction level may
become necessary. Such tests allow the tester to trace through
the computation. Thus, tests at the microinstruction level pro
vide insight into microprogram control flow and states
reached after the individual steps of microprogram execution.
This information may facilitate error location. An error de
tected at the microinstruction level is located, if the set of
faulty microoperations in mj can be identified.

For firmware tests at these levels, test data selection meth
ods as the one defined by Goodenough and Gerhart6 may be
applied. Their method distinquishes between test data and
test predicates. Test data are the actual values for which the
tests are performed. Test predicates describe conditions and
combinations of conditions which are relevant to the pro
gram's correct operations. That is, the test predicates define
the aspects which are to be tested, whereas the test data cause
the aspects to be tested.

An evaluation of this method shows that the primary source
of test predicates are the program specifications. A test pred-

icate analysis must be carried out so as to prove their re
liability. This analysis forces analysis towards the abstract
properties of a program and its specifications. It has been
recognized that knowlege of the internal program structure by
itself is insufficient to yield adequately reliable tests. In partic
ular, it might become necessary to add further conditions and
test predicates to those obtained from program specifications
and the program's internal structure, when the program im
plementation is considered. On the other hand, test predi
cates may be eliminated without impairing test reliability,
when knowledge of the actual implementation is used.

The impact of implementation details on the abstract prop
erties of microprograms is crucial to firmware testing and test
data selection. These implementation details refer primarily
to the execution of the microoperations contained in a micro
instruction. Let us assume that faulty microinstructions have
been detected. Analysis of faulty microinstructions may be
successful in locating the faulty microoperations that cause the
error. However, in certain cases, analysis of faulty micro
instructions cannot provide sufficient insight into the seman
tics of microinstructions. For example, errors may be caused
by violations of time-dependent relationships between indi
vidual microoperations, yet these violations may not be recog
nizable from the microcode. The location of such errors re
quires insight into the transiency of microoperation execution.
As a result, test cases must be defined that specify the ex
pected functional behavior as well as the transient behavior of
a machine during microinstruction execution. This informa
tion may be furnished by defining test cases in terms of sub
states that are reached due to microoperation execution in
subcycles of the microinstruction execution cycle.

Errors that are detected at the microoperation level may
either be firmware errors or hardware errors. The test cases
used incorporate semantic definitions of microoperations as
well as specifications of the associated transiency of the hard
ware. Consequently, the inability to verify a test case may be
due to a faulty microoperation or to the fact that the behavior
of the controlled hardware resources is not consistent with the
specifications given in the test case. In order to be able to
distinguish between firmware and hardware errors, tests at the
micro operation level must lend themselves to error location.
An error detected at the microoperation level is located, iithe
logical fault in the specification of a microoperation or a
failure of the controlled hardware can be identified.

Note that the identification of a hardware failure does not
correspond to the location of the underlying error. However,
in firmware testing, we are not concerned with the location of
hardware errors but are content with locating firmware errors.
Theoretically, tests at the microoperation level are sufficient
to locate firmware errors, as they allow us to observe the
effects of executing microinstructions in the framework of
control signals sent to individual hardware resources and sub~
cycles that define the execution times of the initiated elemen
tary operations.

Obviously, systematic test data selection methods do not
readily apply to tests at the microoperation level. Questions
such as how to incorporate the transiency of microoperation
execution have not yet been considered in testing theory.
Furthermore, predicates such as COMPLETE(T,C), RE
LIABLE(C), VALID(C), and SUCCESSFUL (T) can hard-

Firmware Testing and Test Data Selection 79

ly be established at the level of microoperations. For example,
to establish the fundamental predicate SUCCESSFUL(T), all
the substates reached at the different cycle points during the
execution of each microinstruction would have to be verified
by appropriate test cases. No formal approach to the solution
of this problem has been proposed to date. Rather, in prac
tice, the ability to detect and locate errors at the micro
operation level is heavily dependent on the tester's skill in
defining test cases and the facilities available for observing the
execution of microoperation. As an overview of firmware test
ing techniques12 demonstrates, the typical strategy is that of
mixed testing, which incorporates static analysis and dynamic
testing. Usually, top-down testing is used, until un locatable
errors are encountered and then traced down using bottom-up
testing at the microoperation level.

Although the mixed test strategy reduces the number of test
cases to be verified~ it is unsatisfactory from the theoretical
view of establishing microprogram correctness. However, as is
outlined in the concluding remarks, the knowledge available
in high-level microprogramming language design, testing
theory, and firmware correctness proofs may be exploited to
develop a theory of firmware testing. Work towards this aim
will be reported in a forthcoming paper.

CONCLUDING REMARKS

Although testing is the predominant firmware verification
method, many software test practices 7 have not· yet been
adapted to firmware testing. Resulting deficiencies of firm
ware test methods concern in particular the development of
systematic test strategies, ttie ability to carry our firmware
tests at the level of high-level microprogramming languages,
and the ability to combine firmware tests with execution time
measurements. Further work on theoretical foundations of
firmware testing is needed in order to establish afirin basis for
the development of solutions to these· problems. Theoretical
approaches to software testing may be an appropriate starting
ground for such an endeavor. However, it must be realized '
that to date we know less about the theory of testing than
about the theory of correctness proofs.

Despite the fact that approaches to firmware testing are in
their infancies, trends in firmware engineering look promis
ing. The development of firmware engineering disciplines
concentrates on rules for the systematic execution of working
procedures in the specification, design, construction, veri
fication, documentation, and maintenance of firmware. 12

Progress in this area will have a decisive impact on firmware
testing, as testing is in fact performed in one way or another
at every stage of the firmware development process. This need
for testing in all stages of the development process requires
the integration of techniques for specification, design con
struction and certification into comprehensive strategies. 13

Most important in this respect is the development of high
level microprogramming languages that make the idio
syncrasies of the microprograIll running environment trans
parent to the microprogrammer. To be successful with respect
to firmware testing, high-level microprogramming languages
must allow for the application of machine-independent soft
ware verification techniques. However, at the same time ac-

80 National Computer Conference, 1981

cess to target machine data and functional resources must be
provided to facilitate resource binding, microcode opti
mization must be supported, and machine-specificities of the
microprogram running environment need to be incorporated
into the language concepts. Testing and test data selection at
a machine-independent level must ultimately be related to the
specific microprogram running environment.

Approaches to solutions to these problems include axiom
atization of the running environment, 14.15 explicit descriptions
of the microprogram environment, 16 correctness proofs of mi
croprogram source code,17.18.19 and machine virtualiza
tion. 2o.21 It will be interesting to see to what extent these
efforts will alleviate some of the problems identified in this
paper and how these approaches could be integrated into a
comprehensive theoretical basis for firmware testing.

ACKNOWLEDGMENT

The author wishes to express his graditude to Professor T.G.
Lewis of Oregon State University for his help in the planning
phase of this paper and valuable discussions on the subject
matter. These discussions led to the start of joint in
vestigations of theoretical foundations of firmware testing.

REFERENCES

1. Stoy, J.E., "Denotational Semantics: The Scott-Strachey Approach to Pro
gramming Language Theory", The MIT Press, Cambridge, MA, 1977.

2. Floyd, R.W., "Assigning Meaning to Programs", Proc. of Symposia in
Applied Mathematics, American Mathematical Society, Vol. 19, 1967, pp.
19-32.

3. Hoare, C.A.R., "An Axiomatic Approach to Computer Programming,"
Comm. of the ACM, Vol. 12, No. 10, 1969, pp. 576-583.

4. Berg, H.K., "Correctness of Firmware-An Overview", Firmware En
gineering, Informatik Fachberichte, Vol. 31, Springer-Verlag, 1980, pp.
173-224.

5. Dijkstra, E.W., "Notes on Structured Programming," Technical University
Eindhoven, Tech. Report EWD 149, April 1970.

6. Goodenough, J.B.; Gerhart, S.L., "Toward a Theory of Test Data Selec
tion", IEEE Trans on Software Engineering, Vol. 1, No.2, 1975, pp. 20-37.

7. Fairley, R. E., "Tutorial: Static Analysis and Dynamic Testing", Computer,
Vol. 11, No.4, 1978, pp. 14-23.

8. Berg, H.K.; Boebert, W.E.; Franta, W.R.; Moher, T.G., "A Survey of
Formal Methods of Program Verification and Specification", Digital Sys
tems Program, University of Minnesota, DSP-79-02.

9. Poole, P.C., "Debugging and Testing" Advanced Course on Software En
gineering, Springer-Verlag, 1973, pp. 278-318.

10. Stucki, L.G.; Svegel, N.P., "Software Automated Verification System
Study", McDonnell Douglas Astronautics Corp., Rep. AD-784086, 1974.

11. Berg, H.K., "A Model of Timing Characteristics in Computer Control",
EUROMICRO Journal, Vol. 5, No.4, 1979, pp. 2067-218.

12. Davidson, S.; Shriver, B.D., "Firmware Engineering: An Extensive Up
date", Firmware, Microprogramming, and Restructurable Hardware,
North-Holland Publ. Co., 1980, pp. 1-40.

13. Lewis, T.G.; Malik, K.; Ma, P.-Y., "Firmware Engineering Using a High
Level Microprogramming System to Implement Virtual Instruction Set Pro
cessors", Firmware, Microprogramming and Restructurable Hardware,
North-Holland Publ. Co., 1980, pp. 65-87.

14. Dasgupta, S., "Some Implications of Programming Methodology for Mi
croprogramming Language, Design", Firmware, Microprogramming, and
Restructurable Hardware, North-Holland Pub I. Co., 1980, pp. 243-252.

15. Berg, H.K.; Franta, W.R., "Firmware Engineering: Critical Remarks and
a Proposed Strategy", Firmware, Microprogramming and Restructurable
Hardware, North-Holland Publ. Co., 1980, pp. 41-64.

16. Richter, L., "High-Level Language Extensions for Micro-Code Generation
and Verification", Firmware, Microprogramming and Restructurable Hard
ware, North-Holland Publ. Co., 1980, pp. 233-242.

17. Crocker, S.D.; Marcus, L.; van-Mierop, D., "The lSI Microcode Veri
fication System", Firmware, Microprogramming and Restructurable Hard
ware, North-Holland Publ. Co., 1980, pp. 89-103.

18. Patterson, D.A., "STRUM: Structured Microprogramming System for
Correct Firmware", IEEE Trans. on Computers, Vo!' C-25, No. 10, 1976,
pp. 974-986.

19. Carter, W.C.; Joyner, W.H.; Brand, D., "Microprogram Verification Con
sidered Necessary," Proc NCC 1978, AFIPS Conference Proceedings, Vol.
47, 1978, pp. 657-664.

20. Malik, K.; Lewis, T.G., "Design Objectives for High Level Micro
programming Languages", Proc MICRO II, IEEE Cat. No. 78CHI411-8,
1978, pp. 154-160.

21. Davidson, S., Shriver, B.D., "MARBLE: A High Level Machine Indepen
dent Language for Microprogramming", Firmware, Microprogramming,
and Restructurable Hardware, North-Holland Pub!. Co., 1980, pp. 253-266.

Specifying target resources in a machine independent
higher level language

by SCOTI DAVIDSON
Western Electric Engineering Research Center
Princeton, New Jersey

and

BRUCE D. SHRIVER
University of Southwestern Louisiana
Lafayette, Louisiana

INTRODUCTION

Each Higher Level Language (HLL) defines a virtual ma
chine. A compiler for aHLL translates a program written for
this virtual machine into a program for a lower level target
virtual machine, which could be at the operating system, ma
chine language, microcode, or other level. The space and time
needed to run the compiled program are influenced by the
difference between the functionality and semantics of the
source and target virtual machines (semantic gap). As part of
the translation process, a compiler binds source language con
structs to target language constructs. For example, a variable
in a program will be bound to a memory location, and an
operator in a program (such as Plus) will be bound to a target
machine functional unit (such as an Adder).

This binding is under compiler control in a machine inde
pendent HLL. This has two disadvantages. The first is that
current HLLs generate code that makes use of only a subset
of the available target virtual machine resources. I This means
that the compiler for a HLL will often not be able to generate
code that makes use of the target resources that would most
efficiently implement the source program. Consider a FOR
TRAN program to do matrix multiplication. The semantics of
FORTRAN requires that code must be written to do this
operation component by component. Now consider a target
machine having matrix multiplication hardware available. The
object code produced for this program will take many instruc
tions to perform a task for which one specialized instruction
would be adequate. The resulting program is inefficient when
compared to a program produced by a programmer writing in
a language that allows use of the matrix multiplication hard
ware. No amount of optimization would eliminate this ineffi
ciency.

One way of solving this problem would be to construct a
compiler that would recognize that a segment of the source
program was doing matrix multiplication and compile this
segment into a matrix-multiply instruction. As will be argued
below, this procedure is generally infeasible. Another solu-

81

tion would be to incorporate a matrix-multiply operator into
the source language. This does solve the problem, but the
resulting language is no longer machine independent. This is
not a general solution to the problem, because a language
based on this principle would have to include every possible
target resource of every possible target machine.

A second difficulty with contemporary machine indepen
dent HLLs is that at times the language will not allow the
construction of a program that requires the use of certain
target machine resources. For instance, a Pascal program does
not have access to the interrupt vector of a minicomputer. For
this reason, operating systems written using ma
chine-independent HLLs have had to include some routines
written in a machine-dependent language, such as assembly
language. These routines have access to the full instruction set
of the target.

The problem of how to recognize the similarities between
source and target constructs and how to bind the source con
structs to the appropriate target constructs is called the
resource binding problem.

This paper describes a machine independent solution to the
resource binding problem. The Virtual Machine Resource
Binding Language (MARBLE) has been designed and imple
mented to allow experiments to be performed to test the
usefulness of this solution. This paper describes MARBLE,
experiments conducted with the MARBLE compiler and the
results of these experiments.

A SOLUTION TO THE RESOURCE
BINDING PROBLEM

Placing Resource Binding

We begin our attempt at finding a solution to the resource
hinding problem by examining where binding is done in cur
rent translation systems. Figure 1 shows the phases of a typical
HLL compiler.

82 National Computer Conference, 1981

1
\)ir:Lr< < ______ T_A_RG_ET--J LJ7 _ CODE

HLL

IML code
Generation

Target Code
Generation

Figure I-Phases of a typical HLL compiier

When the HLL is machine independent, a program in the
HLL is usually translated into an Intermediate Language
(IML) form. The IML, which is usually also machine indepen
dent, serves to simplify the compiler writing process by reduc
ing the semantic gap between source and target. an(t serves to
improve the: portability of the compiler by < making only the
construction of a new IML to target translation phase neces
sary in order to move the compiler to a new machine.

For the case ofa machine independent HLL, binding takes
place in the IML to target translation phase. IML instructions
are mapped into sequences of target instructions, and IML
data resources are bound to target resources. It is also possible
that a sequence of IML instructions can be mapped into a
single target instruction.

Pattern matching techniques such as those used by Leverett
et al. 2 can be used to .recognize that some simple sequences of
IML code represent specific target resources. However, more
complex resources«such as a matrix-multiply functional unit)
can be described in a number of ways in the source, and are
therefore impractical to recognize.

For machine dependent HLLs, binding is done in the lan
guage itself, by building the resources into the language. Pro
grams written in such languages are not portable except with
great difficulty. <

Where should binding be done in a resource binding lan
guage? Binding language constructs to target constructs at
language definition time is not acceptable in a machine inde
pendent language. Waiting until machine independent IML
code is generated from the source program is not acceptable
because too much information about the intended use of tar
get resources has been lost. A combination of both ap
proaches must be used.

In order for the language to be machine independent, and
thus allow programs written in the language < to be portable,
programs written in the language must be compose~ of'ma
chine independent constructs. For the reasons given above,
the compiler should include an IML, and therefore a path
from the HLL through the IML to the target code. Suppose
a method was found for doing resource binding before· the
source code was < translated into IML code. Bound code (code
using data or functional resources to be bound to a specific
target resource) cannot be translated into IML code, or else
the information on binding will be lost. Therefore, jl method
must be devised by which the information on target constructs
identified as being bound in the source pr()gramc~n be trans
mitted to the target code generation.phase.

A solution to this prpblem lies in the definition of a Trans
mittal Phase (TP) around the IML phase. Those portions of

the source <program representing target constructs are trans
lated directly into these target constructs by the TP. Figure 2
shows the TP added to the compiler system. Note that a High
Level Intermediate Language (HLIML) and a Low Level
Intermediate Language (LLIML) have been added. The path
through the compiler containing the IML is called the un
bound path, and the path including the TP is called the bound
path. <

As mentioned above, machine dependent constructs cannot
be built into the HLL without violating the goal of machine
independence. However, it is possible to build models of ma
chine dependent resources using only machine independent
components. These models can be associated with the appro
priate target constructs, and source code using these models
can be efficiently translated into target code using the target
resources. The responsibility for determining which target
resource is to be used in a given situation is thus placed with
~he user, not with the translation system. However, the user
should not be required to construct models of all parts of the
target machine. A library of MARBLE representations of
target resources could be available for this purpose. A novice
user should be able to use target resources, but the more
experienced the user, the more efficient will be the resulting
code. 'A user not wishing to make explicit use of target re
sources need not use the models at all. Since the user can turn
binding on and off, the user can direct the compiler to use
specific resources, thus solving the seco<nd part of the resource
binding problem.

Modeling Target Resources

There are three types of target virtual machine resources
that can be modeled: data resources, functional resources,
and control resources. In this section we briefly describe how
these resources can be modeled in MARBLE. Some MAR
BLE features will be introduced for this purpose. A complefe
description of the syntax and semantics of MARBLE is givert
by Davidson.3

<

A natural way to model a data resource is with a data type.
A type defines the size of the resource, which operators and
{unctions can use the resource, and the structure of the re
source. This mechanism keeps the use of a data resource in an
algorithm distinct from the structure of that resOUrce defined
by the type.

Transmittal Ph~se

HLli'!L-LLIl'lL

Translation-> Dr HLlML BT LLlML
Tar!1€t

Code

HLIML Code I~L Code: LLlI-iL Code Tar<Q:et Code

Generation Generation Generatiqn GE'neration

Figure 2-Transmittal phase added to compiler system

As a simple example consider a 16-bit target machine regis
ter, named reg a. Using a type specification with the MAR
BLE base type- bit, this register should be modeled as

~ reg_ a = bit 16;

The type-definition facility of MARBLE is similar to that of
Pascal.4 This definition serves as a template, stating that any
variable declared to be of type reg_a will be allocated 16 bits
of storage. The declaration

makes this connection.
We bind a type to a target data resource through the use of

the MARBLE construct named bound or "%" placed before
the type name. If reg a is to be bound, the type definition
above would be written

and the variable declaration would be written

var counter: bound reg_a;

The effect of declaring a variable to be of bound type is that
the variable is allocated to the target data resource represent
ed by the type. All values assigned to the variable are stored
in the target resource. In this way bound variables are dis
tinguished from unbound variables, which are allocated space
in the main store of the target machine.

Target functional resources can be modeled by MARBLE
procedures and functions. The set of target functional re
sources is composed of the instruction set of the target virtual
machine, excluding target control operations. The input and
output resources; required by a target functional resource ate
specified by the parameters of the MARBLE procedure or
function that models this resource. The header of a multiply
function that multiplies the numbers in the 16-bit registers
reg a and reg b, and that places the results in the 32-bit register
reg~c can be -Written

function boun<i multiply (in mier: bound reg a;
-- iii mcand: bound reg b)

returns bound reg.;. c; -

The keyword pound before the function name means that if
binding is turned on~ this function is associated with a target
functional resoutce, and parameters of bound type are associ
ated with the proper input and output target data resources.

the semantics of a bound function are implemented by the
target machine. When binding is turned on, the body of the
fundion is ignored. A call to the bound function will compile
into the appropriate target instruction, which will be inserted
tn-line; therefore there is no procedure call overhead. If bind
ing is turhed off, the body of the function will be compiled,
and a call to the function will compile into a target machine
subroutine call. If the function is never to be unbound (per
haps because the program is never to be ported) the body of
the ftinction can be replaced by the keyword boum!. This

Target Resources in a Machine Independent HLL 83

makes unnecessary the sometimes difficult job of writing code
to model the semantics of the target-functional resource if that
code will never be executed.

Target control resources, unlike data and functional re
sources, can be neither modeled nor bound in MARBLE.
There are two reasons for this policy. The first is that the
effect of a target control resource may not be limited to a well
defined area of the program; For instance, the destination of
a PDP-ll JMP instruction can be taken from a register, and
therefore may be an unconstrained run-time value. This
makes control flow analysis of the program impossible, and
therefore makes the analysis necessary for register allocation
and optimization difficult or impossible.

Second, those control coristructs usually identified with
"structured programming" can be easily translated into con
trol constructs implemented by mechanisms that are fairly
uniform over a wide range of target architectures (conditional
and unconditional branches). The IML contains these con
structs, which allows the bitiding of source control coristructs
to target constructs to be done efficiently at IML code gener
ation time.

In summary, target data resources are modeled by MAR
BLE types, target functional resources are modeled by .
MARBLE procedures and functions, and target control re
sources are available only through high level control con
structs. The models defined in a MARBLE program are
models of the constructs of a specific virtual machine. These
models are mapped into the appropriate target resources
When they are bound by use of the keyword bound. Since all
programs are built from machine independent constructs, the
resulting program is guaranteed to be a valid MARBLE
program.

Previous Work on Resource Binding

One field in which a solution to the resoUrce binding prob
lem is particularly necessary is that of microprogramming. At
present, no widely accepted machine independent higher level
microprogramming language exists. 5 The diversity of micro
programmable architectures, and the requirement for the
generation of efficient microcode, have contributed to this
lack. In order to make efficient use of low level machine
resources. the resource binding problem must be solved. Pre
vious work in this area I)as been done by DeWitt,6 Dasgupta/
Richter,8 and Giloi. 9 Davidson3 reviews this work in detail.

AN IMPLEMENTATION OF MARBLE

This section describes an implementation of MARBLE as a
microprogramming language. As noted in the previous sec
tion, the lack of an acceptable high level language for micro
programming has motivated research into resource binding.
Thus, the implementation of a successful microprogramming
language would be an indication of the validity of a solution
to the resource binding problem. Here successful means both
machine-independent and efficient.. Ihough this imple
mentation of MARBLE is as a microprogramming lariguage,

84 National Computer Conference, 1981

it could be used for other types of target machines; thus
MARBLE is not inherently a microprogramming language.

The MARBLE Language

The goal of the design of MARBLE was to produce a
language that solved the resource binding problem and also
kept the advantages of current HLLs. MARBLE is based on
the language Pascal. 4 A complete description of MARBLE is
given by Davidson. 3 The choice of Pascal to serve as a basis for
the design of MARBLE was due to the usefulness of Pascal in
the support of systematic programming. Other languages can
be adopted to serve as resource binding languages, however;
the major requirement is that the language have the facility to
model target resources.

The type definition facilities of Pascal have been extended
in MARBLE. The bit type, introduced above, allows a un
signed bit string to be declared. Arithmetic and logical oper
ations are defined on variables of bit type. The view type
allows several views of a data structure to be defined, with
perhaps overlapping fields. Unlike most microprogramming
languages, MARBLE has no bit extraction operator. Fields of
a variable to be extracted must be defined in a view definition
in the definition of the variable's type. This allows the fine
structure of a target data resource to be modeled by a
MARBLE program.

Shift operators have been added to MARBLE, and logical
operators have been extended to work on variables of bit type.
The goto has been replaced by the structured statement exit
facility. An assert statement and case otherwise clause have
been added to MARBLE.

The MARBLE compiler was implemented in four passes.
and resembles the compiler of Figure 2~ The HLIML was
called the Intermediate Language I (ILl), and consisted of a
control flow graph of the source MARBLE program. The
IML consisted of the instruction set for a simple abstract
microprogrammable machine. The LLIML closely resembled
the code for the target machine, the Microdata 3200.10 The
code produced by the compiler was both unoptimized and
uncompacted. Davidson3 gives further information about the
MARBLE compiler.

EXPERIMENTS WITH THE MARBLE COMPILER

This section describes several experiments performed with the
MARBLE compiler and the results of these experiments.
Conclusions derived from: these experiments will be presented
in the next section.

Experiments

The purp03e of the experiments with the MARBLE com
piler described in this section was to determine whether the
solution to the resource binding problem implemented by the
compiler was satisfactory, both in allowing user-specifiable

TABLE I-Results of experiments with MARBLE compiler

Microprogram:

Prime Microdata

Unbound Bound

MARBLE statements 128 133 133
ILl nodes 304 347 347
IML statements 684 709 113
Microdata instructions 856 885 264
IML registers used 7 8 2

resource binding and in being machine independent. The ma
chine independence of the solution could be determined by
writing a program using the target resources of one micro
programmable machine, and porting it to another micro
programmable machine. The success in allowing user
specifiable resource binding can be determined by examining
the code produced by the compiler for a program using bound
resources.

To meet these objectives, two MARBLE programs were
designed and coded. The first was an implementation of a
microprogram for the Prime 300 given as an example by
Agrawala and Rauscher. II This program was to be compiled,
unbound, into Microdata 3200 microcode. The second pro
gram constructed was a microprogram for the Microdata
3200, also taken from Agrawala and Rauscher. 11 The experi
ment consisted of compiling this Microdata 3200 program with
binding turned both on and off. When compiled bound, the
resulting Microdata 3200 program should make use of the
target data and functional resources specified in the MAR
BLE program. The code resulting from the bound program
can be compared with the code from the unbound program to
determine whether resource binding resulted in an improve
ment in the efficiency of the generated microcode. The code
can also be examined to confirm that binding is being done,
and that the compiler is producing code that makes proper use
of the target resources.

Results

The results of the experiments performed with the MAR
BLE compiler are given in Table I. These results are pre
liminary, in that only these two programs were compiled, and
in that changes to the compiler pointed to by the results of the
experiments were not made.

An examination of the IML and Microdata code produced
for the Prime 300 microprogram revealed many places where
optimization would be valuable. Although the code produced
for the Prime 300 microprogram was not especially efficient,
an examination of the resulting code (produced in the CAP-32
assembly language of the Microdata 3200) indicated that the
semantics of the Prime 300 resources were accurately repre
sented by the Microdata microprogram.

An examination of the code produced by the compiler for
the Microdata microprograms bound and unbound "indicates
where the savings originate. Fifty-four percent of the savings

in IML code arises from discarding the bodies of bound func
tions and procedures when the program was run bound.
Seventy-nine percent of the savings in Microdata microcode
arose from this source. Eighty-one IML microinstructions
were generated in order to call these procedures and functions
when the program was run unbound; ninety-six Microdata
microinstructions were required for this purpose. When this
overhead is included, 62% of the savings in IML code and
94% of the savings in Microdata microcode results from the
elimination of function and procedure calls. This is due to the
simple types used by this program, which reduced the savings
due to the use of bound data resources.

Discussion of Results

It is clear from Table I that the code produced by the MAR
BLE compiler for the Prime 300 program was not very good,
in the sense that it was excessively long. Optimization and
compaction would improve the code considerably, but the
microprogram would still not be close in size to the assembly
level microprogram, which was 22 Prime 300 horizontal
microinstructions long. The greatest cause of this size is the
procedure bodies and calls for the Prime 300 microoperations
implemented -as unbound functions. This expense was ex
pected. The most significant result of the first experiment was
that machine-dependent code for one microprogrammable
computer was automatically compiled into code for another
microprogrammable computer without alteration.

The code produced from the unbound version of the Micro
data 3200 microprogram was also long and inefficient. This
was for much the same reason as for the Prime 300 code. An
examination of Table I indicates this quite clearly. Once the
modeling overhead (procedure call overhead, procedures to
implement bound functions, and code to extract components
of data resource models) is removed, 264 Microdata micro
instructions remain.

The assembly level microprogram to implement the Micro
data 3200 microprogram used as data for the second experi
ment required 38 microinstructions, only 14% of the micro
code generated by the compiler. There are several sources of
this inefficiency. The most significant was that ALU registers
were needlessly saved and restored. Optimization of the ob
ject code would reduce this problem. We estimate that this
improvement, along with other optimization and compaction
techniques, would produce code that would be approximately
100 microinstructions in length, three times the size of the
assembly level microprogram.

There were two major results of these experiments. First, it
was found to be possible to port a microprogram for one
machine to another machine, with no changes to the micro
program required. Second, binding produces a microprogram
30% of the size of the microprogram when unbound. Most of
this improvement is from the use of bound functions. The
code generated when the program is compiled bound, un
optimized, and uncompacted is 7 times the size of the equiv
alent assembly level microprogram. We believe that this gap
could be reduced through the use of microcode compaction
and optimization.

Target Resources in a Machine Independent HLL 85

CONCLUSIONS AND FURTHER RESEARCH

The experiments described in the last section indicate that
MARBLE provides one machine independent solution to the
resource binding problem. The machine independence of the
solution stems from the fact that all MARBLE programs are
written using only machine independent constructs. An iden
tifiable sequence of these constructs, representing a model of
a target data or functional resource, can be bound to that
resource. In this case, the code for the resource is discarded,
and the code to use the appropriate target resource is inserted
in the object code instead.

This mechanism allows a user access to specific target
resources, as long as those resources can be modeled in MAR
BLE. Access to control resources is not allowed. All other
resources of the target machine may be used.

The construction of the MARBLE compiler and the experi
ments performed with the compiler indicated several prob
lems. The first is the difficulty of restricting access to variables
of bound type to what is allowed by the target architecture.
Though some such restrictions can be expressed in MAR
BLE, further mechanisms are required. The second problem
is conflict in the use of resources by code generated by the
bound and unbound paths. Restricting resources used by the
unbound path to those that could be saved and restored would
ease this problem; however this is not always possible.

We have presented a solution to a long-standing problem in
the design of programming languages that must make efficient
use of the resources of the target virtual machine. Much more
work need be done in assessing the practicability of this
approach.

REFERENCES

I. Kuck, D. J., The Structure of Computers and Computations: Volume One.
John Wiley and Sons, New York, 1978.

2. Leverett, B. W. et aI., "An Overview of the Production-Quality Compiler
Compiler Project," Computer, Vol. 13 No.8, pp. 38-49, August 1980.

3. Davidson, S., "Design and Construction of a Virtual Machine Resource
Binding Language," Ph.D. Dissertation, Computer Science Department.
University of Southwestern Louisiana. August 1980.

4. Jensen, K. and N. Wirth, Pascal User Manual and Report. Second ed.,
Springer Verlag. New York, 1975.

5. Davidson, S. and B. D. Shriver. "Firmware Engineering: An Extensive
Update." IFIP TC-/O Conference on Microprogramming. Firmware. and
Restructurable Hardware, North-Holland. Amsterdam. 1980.

6. DeWitt, D. J .. "'A Machine Independent Approach to the Production of
Optimal Horizontal Microcode," Ph.D. Dissertation. The University of
Michigan. 1976.

7. Dasgupta. S .• "Towards a Microprogramming Language Schema." Proc.
lIth Annu. Microprogramming Workshop. pp. 144-153.

8. Richter. L., "High-Level Language Extensions for Micro-code Generation
and Verification." IFIP TC-/O Conference on Microprogramming. Firm
ware. and Restructurable Hardware. North-Holland, Amsterdam. 1980.

9. Giloi, W. K., P. Behr. and R. Gueth. "FIT-A System for Firmware
Specification. Implementation. and Validation." IFIP TC-IO Conference on
Microprogramming. Firmware. and Restructurable Hardware. North
Holland. Amsterdam, 1980.

10. Microdata Corporation, 3200 Microprogramming Reference Manual.
Irvine, 1976.

II. Agrawala, A. K. and T. G. Rauscher, Foundations of Microprogramming.
Academic Press, New York. 1976.

The design of a firmware engineering tool: the
microcode compiler

by PERNG-YI MA
TRW Systems Group
Redondo Beach, California

INTRODUCTION

The explosive rate of progress of hardware technology has
made the microprogrammable processor characterized by
horizontal microcoding extremely attractive for many high
speed and real time applications, such as signal processors.
However, the human microprogrammer currently has little
but assembly language and text editor to help with code devel
opments. I The lack of software tools to support microcode
generation results in high costs and poor reliability especially
when the volume of microcode increases. The application of
software tools to microprogramming will be termed firmware
engineering in the remainder of this paper.

. The most obvious solution is to increase firmware tool capa
bility by encoding the intended application program in a high
level language (HLL) , and developing a translation system
for conversion of the HLL into horizontal microcode. 2 How
ever, the general problems of firmware engineering using a
high level language compiler are found in several studies. 3

.4,5,6

1. Machine variety and complexity7,8,9- The object code
of the microprogr~mming system is the hardware
oriented and timing critical horizontal microcode. The
gap from HLL to the microcode is extremely large.

2. Concurrency utilization-One benefit of microprogram
ming is that the horizontal· microinstruction formats
offer added speed of machine operation only if concur~
rent micro operations can be combined into a single
microinstruction.-10,11,12,13,14,15 The concurrency detection

rules reporteq in the literature are usually machine de
pendent,3 and the optimization algorithms which deter
mine optimal comp~ction of a sequence of micro
operations is an NP hard probl,em. 16 Devising a practical
compaction algorithm is still an open research question. t

To study these probl~ms, we designed and implemented a
compiler to produce microcode. This compiler, denoted mi
crocpmpiler, is shown in Figure 1. The application program is
encoded in a HLL. A machine-independent partial compiler
is used to perform the lexical, syntax, and data flow analyses
of the HLL and produces a stream of machine-independent
intermediate language (IML) statements. The IML version of
the intended application program and the underlying machine
information are input to the machine dependent translation

87

sub-system. The underlying machine is described by a set of
microoperations (MJi = 1..n). Each microoperation is a rna":' .
chine primitive operation and represented by (OP, I, 0, F,
P), where OP = function, I = input data set, 0 = output data
set, F = microinstruction field, and P = clock phase. This is
called the field description model and is the collection of
microoperations along with a methodology for checking the
concurrency among microoperations.

The translation system requires three passes over the IML
representation of the source code to produce compact micro
code. In pass 1, a macro table is used to translate the IML into
a set of machine dependent statements (MOIL). For each
MOIL statement, some operands are bound to machine units;
other operands still hold the symbolic variables from IML.

Pass 2 allocates the remaining symbolic operands of MOIL
to one of the target machine general purpose registers. In
general, the number of symbolic variable operands in a given
program is greater than the number of machine registers.
Thus, each register must be shared by more than one symbolic
operand. A register allocation and de allocation scheme swaps
operands between the machine's main memory and its general
purpose registers. After all operands of the MOIL statement
have been allocated registers, the field value and ti~ing phase
are assigned to each statement. The resulting codes from pass
2 are called microoperations.

Pass 3 is used to increase the system throughput by com
pacting the sequence of microoperations into th~ least number
of horizontal microinstructions. However, complete opti
mization of microoperations is known to be an NP-complete
problem. r6Thus, a linear order algorithm is developed which
may not produce optimum compaction, but produces a best
possible compaction given linear time to s!=an the str~am.

Finally, the microcompiter was tested and studied uSing a
HLL called VMPL and the PDP l1/40E as the target machine.
VMPL (Virtual Machine Programming Language) is a ma
chine independent structure programming language used to
imph!ment emulators. However, the design of a micr9-
compiler discussed here is not restricted to a particular HLL
or a specific microprogrammable machine. Any IML can be
designed for a class of problems and freed from a specific
ha,rdware operation set. In fact, it is desirable to alter the IML
instruction set to better reflect the HLL being translated. This
field description model is intended to be machine independent
and separate from the compiler. Only the contents of the
model and the macro table are redefined in_order to imple-

88 National Computer Conference, 1981

"1" ,S""if,;" <h, '''ffided Applk,,;oo,

Machine { I Partial Compiler

Independent Syntax, Lexical and
Compiler Data Flow Analyses

IML (Machine Independent Intermediate Step)

t
I Pass 1

Using the Macro Table
to Decode the IML

Macro Table

Using the Microoperations
To Define the IML Instruction
Set

MDIL (Machine Dependent Code)

Machine
Dependent
Translation
System

Pass 2

• Allocating the IML
Variable into Target
Registers

• Linking the Control
Flow

(Microopcrations)

Allocating Micro
Operations into
Microinstructiom

• Addrc" Assij!nll1cnt

l
Tafj!ct Madlin,'
Microcod,'

Fiei'd Description Model

• Define the Target
Machine Microoperations

Define the Microoperations
Parallelism Detection Rules

Figure I-General structure of microcode compiler

ment the microcompiler for another microprogram mabie ma
chine.

PARTIAL COMPILER

The partial compiler translates the HLL source program into
intermediate form by lexical scanning and syntax analysis just
as any other compiler does, however, the unusual demands
placed on the performance of a microprogram means we must
use additional information to produce the best possible object
microcode. Thus, code optimization is aided by the partial
compiler in three general areas.

1. Attaching register allocation "clues" to symbolic vari
ables in order to guide the microcode generator into a
"least amount of swapping" pattern.

2. Attaching flow-of-control tags to the segments of
straight-line microcode so that a program flow analysis
can be done. This assists both variable-to-register bind
ing and microcode compaction algorithms.

3. Producing an IML format which provides opportunities
for subsequent code optimization.

The first area is satisfied by the partial compiler using a
3-character clue attached to each entry in the symbol table:

i-Scope
Local variable
Global variable
Subprocedurc name

2-Activity
Temporary variable
Permanent variable

3-Type
Simple variable
Memory
Stack

Parameter (formal)
Procedure
Concatenated variable

Field Constant
Flag (condition code)
Parameter (actual)

The second area is accommodated by the partial compiler
using additional tags or modifiers which aid the code com
paction algorithms:

Tags
Block code start/stop
Label of IF-THEN-ELSE branch
Label of a GO TO
Lable of a FOR loop
Label of an EXIT (from a procedure)
Label of a CASE selector

Finally, the design of an IML (machine independent inter
mediate language) is guided by the application, class of under
lying machines, and overall firmware engineering goals.
Malik l7 ,18 studied several candidates for a suitable IML, they
are: 3-operand format, 2-operand format, I-operand format
(stack), Polish Notation, and Program Tree. He studied these
five formats with respect to the number of instructions, in
struction "size," stack and register requirements, complexity
of interpretation, and Halstead's information theoretical mea
sure of "level. ,,19

The 3-operand format (quadruples) yielded the least exe
cution time estimates, the highest level in Halstead's mea
sure,19 and provided the greatest opportunity for subsequent
economization of microcode.

The results of the partial compiler are machine independent
intermediate code (IML). The IML overall structure consists
of a program portion and delayed information portion. The
program portion has a declaration part and main body. The
main body is in single entry/multiple exit block structure and
used to represent the application program. The declaration
part declares all variables used in the main body. The delayed
information portion is created to contain information speci
fied in the HLL program but cannot be directly supported in
the IML main body due to infeasibility or highly machine
dependent features, e.g., machine implicit I/O request.

The partial compiler passes this form of the translated HLL
program to a 3-pass code generator that binds symbolic vari
ables and instructions to the real machine, compacts the re
sulting bound instructions into the machine microinstructions.
This 3-pass process is the subject of the following sections of
this paper.

FIELD DESCRIPTION MODEL TO DESCRIBE THE
TARGET MACHINE

The Field Description Model (FDM) is a compact representa
tion of the machine hardware capability. From the functional

behavior viewpoint, a microprogram mabie machine consists
of a set of microoperations encoded and stored in a control
memory. We adopt the notation and schema first proposed by
Dasgupta11

,20 to describe this model. An FDM is simply the
collection of these microoperations.

FDM = {Mi Ii = 1. .n}

Each M i , identified by a unique index i, is in turn defined by
a set of five tuples,

Mi = {OP, I, 0, F, Ph

and each tuple is expanded by specifying its domain. Each
domain enumerates all the legal values which the component
can assume. The tuple components are:

OP: Designates the primitive operation to be performed.
I: Denotes the resource used as the input to the OP.

0: Denotes the resource used as the output to the OP.
F: Denotes the set of fields which are occupied in the

microinstruction format when (OP, I, 0) is executing.
P: Denotes the set of timing phases at which the (0 P, I,

0) can execute.

This model also provides concurrency detection rules between
microoperations. Some definitions are explained first.

Microoperations Mi and Mj , are said to be data-inde
pendent, if I j n OJ = I j n Oi = Oi n OJ = empty set. Other
wise, there is an 110 conflict between Miand Mj • Mi is said to
precede Mj in sequential order if they are in separate control
store (CS) cycles and Mi is executed prior to executing Mj • A
field conflict between microoperations occurs if the same field
is used by these microoperations in the same CS cycle. But
there is a special kind of field tuple which can be shared by
more than one microoperation in the same CS cycle as long as
the values assigned to the field of each microoperation are the
same. For example, a literal field can be shared by micro
operation in the same CS cycle if the field values are the same.
Obviously, if the literal field value of one microoperation is
different from the others, it will cause a field conflict. Micro
operations Mi and Mj are in parallel, denoted M;// M;. if they
can be executed in the same control store cycle and produce
the same output as if executed sequentially in separate control
store cycles. Two microoperations, Mi and Mi+ I, are said to be
invertible, denoted by Mi > < Mi+ 1" if the execution of Mi
and Mi+ I yields the- same result as the execution of Mi+ I and
Mi.

Machine constraints on the microoperation may be differ
ent for each machine. Therefore we seek general rules that
work for a class of horizontal machines. This is done by gen
eralizing the structure of an arbitrary machine by describing
the machine as a set of microoperations in 5-tuple format.

General Rules

We assume every microinstruction is completed within a
control store cycle. This cycle is divided into several minor
phases and each microoperation is assigned to the correspond
ing phases. Given two microoperations, M; and M;. and Mi
precedes Mj in sequential order, the timing phases used to

The Design of a Firmware Engineering Tool 89

execute Mi and Mj are denoted by Pi and p;. respectively.
The general rules are:

Begin
CASE "THE RELATIONSHIP BETWEEN Pi AND P/'
OF:

WITHIN THE SAME CONTROL STORE CYCLE, Pi
IS PRIOR TO Pj:

IF THERE IS NO FIELD CONFLICT THEN M;/lMj

WITHIN THE SAME CONTROL STORE CYCLE, Pi
IS NOT PRIOR TO Pj:

IF THERE IS NO FIELD CONFLICT AND DATA
ARE INDEPENDENT FROM EACH OTHER,
THEN M/IMj •

ENDCASE
IF Mi AND Mi + 1 ARE DATA INDEPENDENT, THEN
Mi ><Mi+l.

End.

Example. We use the PDPll/40E as the target machine and
the following cases to illustrate these general rules. Pulses P2

and P3 are the first phase and second phase within the control
store cycle CL3. 21

,22 In the following cases, one reference3

shows that there is no field conflict between Ms and M6,
neither in M7 and M8.

Case 1: Ml : R2~D, P2 : copy R2 to register D in phase P2.
M2 : ~R3, P3 : copy register D to R3 in phase P3.
M3 : R3 + B~D, P2 : add R3 and register B to

register D in P2 •

M4 : D~D4' P3 : copy register D to R4 in P3.
M2 and M3 are examined to detect parallelism. P3
is not prior to P2, M2 is not data independent from
M3. This implies M2 not II M3. (If M2 and M3 are
executed in one CS cycle, and M3 is executed prior
to M 2, it will give the wrong result.)

Case 2: Ms : PS~stack, P3 : copy the contents of the "PS-
register" to stack in P3 •

M6 : R3~D, P2 : copy R3 to register D in P2.
(Fs n F6 = 0) and (Ms is data independent from
M6) imply MsIM6 which is independent of timing
sequence.

Case 3: M7: R3 + B~D, P2: add R3 and B to register D in
P2.

M8 : D~R3' P3 : copy register D to R3 in P3.
The pulses used by M7 and Ms and P2 and P3,
respectively.
F7 n F8 = 0 implies M711 M8 ,which is independent of
110 conflict.

End example.

Machine Constraints

Some examples from PDPl1140E are now used to illustrate
the effect of machine dependency on the parallelism detection
rule.

Example. In the FDM of the PDPl1140E, the micro
operation FLAG is used to set the machine flags for the pre
vious ALU operation. Microoperation FLAG must be the

90 National Computer Conference, 1981

next one after the ALU operation, and it cannot be moved
even if invertibility is possible.

Microoperation NOOP, which is used in an N-way branch
operation on the PDP11140E machine, has its own fixed pos
ition. It cannot be moved and/or be made parallel with other
microoperations even if the general rule indicates parallelism.

End example.

The microoperations used for these special purposes lead to
restrictions on the parallelism detection rules. Therefore, the
users of this model must provide these kinds of machine
dependent rules in addition to the general rules.

PASS 1

Pass 1 maps the IML version of the application program into
a machine dependent intermediate code (MDIL). The MDIL
instruction is defined from the field description Model with
the format (0 P, I, 0) which excludes the field and timing
tuples from the 5-tuple (OP, I, 0, F, P) representation.

This microoperations defined in the machine field descrip
tion model are used t() decode the instruction set of the IML.
The delayed information portion of IML, which contains the
items specified in the HLL but cannot be directly supported
by the IML, are emulated by the machine microoperations.
All the mappings from IML facilities to the machine micro
operations are stored in the macro table. Pass 1 allocates the
variables in the IML declaration part into data memory and
uses the macro table to decode the IML main body and the
delayed information.

The output of Pass 1 is a collection of machine-dependent
code (MDIL) consisting of a set of blocks. The operands in
MDIL are either the machine units defined by the FDM or the
symbolic variables which will be bound to the machine general
purpose registers in Pass 2.

PASS 2

This pass accepts a set of blocks of MDIL from Pass 1 and
allocates target machine registers to the symbolic variables
remaining in the microcode. Furthermore, Pass 2 produces
binary microoperations ready to be compacted by Pass 3.

This pass- would be trivial if the target machine guaranteed
an unlimited supply of registers and there were no branches
within the object code. However, each block of MDIL is likely
to contain more variables than the machine registers, and
there are always branches generated from the partial com
piler.

The general idea of this register allocation scheme3 is to
keep the variables in their assigned registers as long as possi
ble. When no register is available for a newly encountered
variable, the variable replacement priority is applied to deter
mine the least likely used variable which will be moved out of
the register. The newly encountered variable is then assigned
the free register.

The replacement priority is determined by the status (active
or passive) and the kind (local or global) of each variable. If
the contents of a variable held in a register is different from

a. n Final States FS1• FS2 •••.• and FSn are to determine ISm'

b. Final State FSq is Determined from ISp '

Figure 2-Forward and backward branching

the contents of its main memory location, then it is said to be
active. Otherwise, it is called passive. When an active status
variable is to be deallocated, a memory write is needed to
swap it back to memory. However, memory write is not nec
essary for a passive status variable. In order to reduce redun
dant swappings, a passive status variable is assigned a higher
priority to be replaced. A local variable is assigned a higher
priority to be replaced than the global variable, since local
variables are available only in the current block.

In particular, the register allocation algorithm handles for
ward and backward branches as shown by the program flow
graphs of Figure 2. In minimizing the "thrashing" of register
allocation and deallocation, the blocks of MDIL codes can be

analyzed for the flow of control governed by branch state
ments and labeled statements. These two statement types di
vide the blocks into a set of straight line codes (SLCs) which
are sets of single-entry single-exit segments.

We define the state of an SLC as the assignment of oper
ands to registers for the given SLC. Upon entry to the SLC we
must define an initial state lSi for SLC, and the final state FSi
as the state of SLC when register allocation is completed.

The initial state of SLCm , denoted by ISm, is defined as the
assignment of symbolic variables to registers immediately be
fore entering this SLCm • Every SLC segment uses the pre
vious segment's final state as its initial state, except in the
cases shown in Figure 2. Referring to Figure 2a, the initial
state of SLCm is actually determined from the final states of
SLCli= I to n, and used· as the basis to perform the register
allocationldeallocation scheme on the current SLCm •

The final state of an SLC is translated from the initial state
by employing the least number of memory references for each
SLC segment in the microoperation sequence. However, the
final state determination of the SLC with backward branch is
different.

Refer to Figure 2b, showing the SLCq backward branch to
SLCp • The state immediately before the branch statement
must be the same as the starting state of the SLCp • It implies
the final state, FSq, is also dependent on initial state of SLCp '

Finally, Pass 2 produces an output as a collection of 5-tuple
format microoperations consisting of a set of SLCs. This
5-tuple format provides a convenient way to allocate the
microoperations to microinstructions, which are then used in
Pass 3.

PASS 3

This pass uses a set of rules to detect the concurrency of
microoperations and combine sequences of microoperations
into shorter concurrent microinstruction, or what we abbrevi
ate as MIs.

The MI sequence is optimized if it is impossible to re
arrange the sequence of microinstructions in a manner that
will produce fewer microinstructions. DeWitt l6 proved that
this kind of absolute minimal reduction problem is an NP
complete problem. Here, by seeking a near-optimal solution
rather than the absolute, we get a fast algorithm of complexity
proportional to mn where m is a pragmatically determined
constant less than n.

Linear Order Compaction Algorithm

Given an SLC = {M., M2 , •• • Mk' .. . Mi" . . Mn }, and Mli
refers to the ith microinstruction. (Note: Mi is a single micro
operation, while Mli is a microinstruction with several MiS).
As Mk is allocated, the possible relationships between Mk and
Mli are

Case 1: Mk not> < MI;, and Mk not II MI;
Case 2: Mk not> < Mli, and Mk II MI;
Case 3: Mk> < Mlj , and Mk not 1/ Mlj

Case 4: Mk> < MI;, and Mk IIMlj

The Design of a Firmware Engineering Tool 91

If Mk is invertible with MI; (Case 3 or 4), it may be moved
past Mli and the same test applied to Mli- I. On the other
hand, if Mk is not invertible with Mli (Case 1 or 2), it is
blocked by this microinstruction. II

Early indication3 showed that invertibility caused the prob
lem to be NP-complete. However, the data dependency
among microoperations is obvious and limits the invertibility
considerably. In this case, it is hard for a microoperation to
cross too many microoperations ahead of it. A limitation of
the times of comparing a microoperation with other micro
operations is necessary.

In order to get a practical and efficient compaction, we
impose the following restrictions:

1. The position of microoperation Mk is computed by
searching backward over the previous microinstructions
leading up to microoperation M k •

2. The following restrictions are made:

Case 1: {Mk~Mli+1
Case 2: {Mk~Mli

In the next two cases, we compare Mk m times with the
previous microoperations. In other words, Mk can compare
with h MIs from Mli to Mli- h +1 where h is a number of MIs

h-I

and I !Mli - j ! is nearest to m. (lMhl means the number of
j=O

microoperations in Mh.)

Case 3: If Mi is invertible with all MIs and not parallel,
then {Mk~Mli+I'

Case 4: Compare Mk with Mli - b O::;;;.j::;;;.h - 1, until we
find the MI nearest to MIl that can accept Mh

The compaction algorithm can be implemented by the use
of invertibility and parallelism between microoperations and
Mls.3 Now we consider the computational complexity to allo
cate n microoperation, using the number of comparisons be
tween pairs of microoperations as a measure of this complex
ity. In the above restriction, Mk is limited to make m com
parisons with the preceding microoperations. If K::;;;. m, at
most k comparisons are necessary to optimally place M k • If
k> m, Mk requires a total of m comparisons before (sub
optimal) allocation. Indeed, if this occurs for each micro
operation: Mr .. . Mm the total number of compalisoIIs is

T(n)=Ij+ i m=m(m+1)+m(n-m)
i_=l j=m+l 2

1 1 2
=nm +2m -2m

Therefore, the algorithm complexity is proportional to n.
Now we will pragamatically determine the value of m.

Determination of m in the Linear Algorithm

The compaction algorithm3 was applied to the abstract Hus
son machine23 and the PDPl1140E to determine the best width
of the MI and the best value of m in the linear algorithm. The

92 National Computer Conference, 1981

width of the MI means the number of microoperations al
lowed in the MI.

Early results indicate that four microoperations is the lim
iting width of a MI for a microprogrammable machine. 3 Be
yond this number, data dependency among microoperations
limits the compaction of microoperations into MIs. This con
straint leads to the following conjecture in the determination
of the value of m. While we have no way of proving this
conjecture, it is in line with independent work by Mallett. 24

Conjecture- Given a horizontal microprogrammable mi
croinstruction width W, and a linear com
paction algorithm that locally compacts the
straight line code segments of length n, using
peephole size m of time complexity mn, then

m=2W

produces compact code within 10% of opti
mal.

For example, applying our conjecture to Mallett's results/4

W = 4, so m = 8. Thus, 8n comparisons are required for a
code segment of length n. In the 10 tests reported by Mal
lett,z4 an average of 5.6n comparisons were performed to
compact code to within 3% of optimal. Thus, the conjectured
value of m = 8 appears to be safely conservative when used to
explain Mallett's results. 24

CONCLUSION

The techniques described in this paper have been successfully
applied to the design and implementation of a HLL compiler
for microprogramming. 3,17 The main goal of efficient com
paction of parallel microcode in a horizontal microprogram
mabie machine has been demonstrated.6 The system runs as
a cross-compiler on a Cyber machine which downloads to a
PDP-11/40E. The system is not portable, but produces trans
portable code. The HLL syntax can be changed by specifying
new syntax rules. The object machine is changed by specifying
a new FDM and the set of macros. The system includes a
simulator for testing IML code before Passes 1, 2, and 3 are
completed.

Clearly the work reported here is experimental and ten
tative. Many questions remain unanswered, for example:

1. HLL determination-How to determine a micropro
gramming HLL as to its capabilities such as (a) to de
scribe the intended application algorithm; (b) to be com
piled to microcode efficiently?

2. Hardware mapping-How to sufficiently use the hard
ware features to decode the machine independent inter
mediate language (IML)?

3. Target machine selection-How to select a machine
which can produce the minimum object code for the
application algorithm coded in HLL?

4. A machine description language is needed to describe
the target machine in high level terms which produces
the FDM automatically.

The earlyjndications are that register allocation schemes
and microcode compaction as described in this paper and
elsewhere are solved problems. 10, 11,12,14,16,24,25 However, pre-
liminary experience gained from using this system suggests
that allocation and compaction are minor sources of ineffi
ciency when compared with the problems listed above. A
casual examination of several tested program running on a
target machine, PDPl1140E, indicates that the number of mi
crooperatiolls generated from the hardware mapping is often
2 to 3 times larger (counting the instruction words) than the
number of IML codes. However, it is unlikely that compaction
algorithms will be able to improve code by more than 30%
unless target machines are designed to encourage greater
levels of concurren_cy. Machine selection is a particularly im
portant factor to minimize the object code. More experi
mental studies on a variety of machines are needed to make
conclusive statements about coding efficiency.

REFERENCES

I. Davidson, S., and B.D. Shriver, "An Overview of Firmware Engineering,"
Computer, Vol. 11, No.5, May 1978, pp. 21-33.

2. Mallett, P.W., and T.G. Lewis, "Considerations for Implementing a High
Level Microprogramming Language Translation System," Computer, Vol.
8, No.8, Aug. 1975, pp. 40-52.

3. Ma, P.Y., "Optimizing Microcode Produced From a High Level Lan
guage," Ph.D. Dissertation, Oregon State Univ., Electrical and Computer
Engineering Department.

4. Ma, P., and T.G. Lewis, "Design of a Machine Independent, Optimizing
System for Emulator Development," ACM TOPLAS, Vol. 2, No.2, April
1980.

5. Lewis, T.G., K. Malik, and P. Ma, "Firmware Engineering Using a High
Level Microprogramming System to Implement Virtual Instruction Set Pro
cessors," IFIPS Workshop, April 1980.

6. Lewis, T.G., P. Ma, K. Malik, and C. Liu, "On the Problem of Portable
Microprogramming," Technical Report, TN79-3, Oregon State Univ.,
Computer Sci. Dept.

7. Agrawala, A.K., and T.G. Rauscher, "Foundations of Microprogramming
Architecture, Software, and Applications," Academic Press, Inc., 1976.

8. Katzan, Jr., H., "Microprogramming Primer," McGraw-Hill Book Com
pany, 1977.

9. Husson, S.S;, "Microprogramming: Principles and Practice," Prentice
Hall, Englewood Cliffs, New Jersey, 1970.

10. Agerwala, T., "Microprogram Optimization: A Survey," IEEE Trans.
Comput., Vol. C-25, Oct. 1976, pp. 962-973.

II. Dasgupta, S., and J. Tartar, "The Identification of Maximal Parallelism in
Straight Line Microprograms," IEEE Trans. Comput .. Vol. C-25, Oct.
1976, pp. 986-991. --

12. Tabendeh, M., and C.V. Ramamoorthy, "Execution Time (and Memory)
Optimization in Microprograms," Preprints Supplement, 7th Annu. Work
shop on Microprogramming, pp. 119-127.

13. Tsuchiya, M., and C.V. Ramamoorthy, "A High Level Language for Hor
izontal Microprogramming," IEEE Trans. Comput., Vol. C-23, Aug. 1974,
pp. 791-802.

14. Tsuchiya, M., and M.J. Gonzalez, "An Approach to Optimization of Hor
izontal Microprograms," Proceedings of the Seventh Workshop on Micro
programming, Palo Alto, California, Sept. 1974.

15. Yau, S.S., A.C. Schowe, and M. Tsuchiya, "On Storage Optimization of
Horizontal Microprograms," Preprints, 7th Annu. Workshop on Micro
programming, pp. 98-106.

16. DeWitt, D.J., "A Machine Independent Approach to the Production of
Optimal Horizontal Microcode," Ph.D. Dissertation, The University of
Michigan, 1976.

17. Malik, K., "Optimizing the Design of a High Level Language for Micro
programming," Ph.D. Dissertation, Oregon State University.

18. Malik, K., and T.G. Lewis, "High Level Microprogramming Language,"
COMPCON, 1978, pp. 88-91.

19. Halstead, M. H., "Elements of Software Science," Elsevier North-Holland,
1977.

20. Dasgupta, S., "Parallelism in Microprogramming System," Ph.D. Thesis,
University of Alberta, Aug. 1976. Tech. Rept .• Dept. of Computing Sci
ence.

21. Fuller. S.H., et aI., "PDPll/40E Microprogramming Reference Manual,"
Dept. of Computer Science, Carnegie-Mellon Univ., Jan. 1976.

22. Fuller, S.H .• et al.. "The PDPll/40E Maintenance Manual." Dept. of
Computer Science, Carnegie-Mellon Univ., June, 1977.

The Design of a Firmware Engineering Tool 93

23. Ma, P., and T.G. Lewis, "On the Design of a Machine Description Model
and a Compaction Algorithm for Microcode Generation." to appear on the
Proceedings of Euro Micro 80 Symposium. London British. Sept. 1980.

24. Mallett, P.W., "Methods of Compacting Microprograms." Ph.D. Dis
sertation, University of Southwestern Louisiana. Computer Science De
partment, Lafayette, La., 75401. Dec. 1978.

25. DeWitt. D.J., "A Control Word Model for Detecting Conflicts Between
Microprograms," Proc. 8th Annual Workshop on Microprogramming, pp.
6-13.

Microcode compaction: looking backward and
looking forward

by JOSEPH A. FISHER
Yale University
New Haven, Connecticut

and

DAVID LANDSKOV and BRUCE D. SHRIVER
University of Southwestern Louisiana
Lafayette, Louisiana

INTRODUCTION

The past decade has seen significant advances in the state of
the art in microcode compaction. Microprograms are com
pacted by placing several microoperations into each micro
instruction, subject to the constraints of data dependency in
the program and legal resource usage in the machine on which
the microcode will execute. I The compaction process at
tempts to make the code run as fast as possible. In this paper
we will not only survey the most recent past in microcode
compaction but will also speCUlate about the near future.

The classical microcode compaction problem considered
basic blocks of code for machines in which: (a) all operations
have fixed cycle time, (b) data precedence may be described
by a partial order on the operations, and (c) the choice of
representations for an operation may be fixed before com
paction begins.

A basic block of code can be entered only at its beginning
and is jump-free, except possibly at its end. Compaction re
stricted to a basic block is called local compaction. Basic
blocks are also known as straight-line microcode segments, or
SLMs. This classical compaction problem was posed a decade
ago~ 2 The word "compaction" is now preferred to the word
"optimization. ,,3

The classical compaction problem is analogous to deter
ministic processor scheduIing.4 As such, it is NP-complete,
and thus it is believed that any algorithm that produces opti
mal results must be of at least exponential complexity.
Despite this belief, there are techniques that apparently per
form so well that for all practical purposes the classical prob
lem may be regarded as solved.3

Research in microcode compaction continues in two direc
tions. The first relaxes the classical problem's restriction to
basic blocks, while the second relaxes the restriction to a
simplified machine architecture.

Compaction that is not restricted by block boundaries is
called global microcode compaction. Two relatively complete
methods have been suggested for global compaction. Both

95

approaches apply techniques used in the solution of the local
microcode compaction problem, but differ markedly in their
methods of choosing operations to move past the block
boundaries. The method of Tokoro et a1. 5 separately com
pacts individual blocks and then considers the motion of oper
ations from their current blocks to adjacent blocks, as allowed
by a "menu" of legal moves. However, Fisher6 argues that if
each block is compacted separately, too many arbitrary deci
sions are made during a block's compaction that adversely
affect the ability to move operations from block to block. His
method starts by using dynamic information to pick a "main
trace" of several blocks that might be executed one after the
other for some choice of data. The trace is then compacted as
if it were one large basic block. Traces are discussed in more
detail later.

To the authors' knowledge, there have been no published
implementations of global compaction; however, simulation
results on small code samples have been encouraging.5

,6 An
important short-term research priority is the coding of global
compaction methods in a system On which reasonable mea
surements may be made.

Many aspects of the compaction problem have not been
well analyzed.. For example, although speeding up a loop that
is executed many times may significantly speed up a program,
loops have not been extensively investigated in the literature.
In conventional compiler optimization, faster loop execution
can sometimes be achieved by "unrolling" the loop, a process
that constructs more than one copy of the loop body. We will
present a highly speculative method for speeding up micro
code loops by unrolling them and rerolling after compaction
has been done.

Data Precedence

Given a basic block of microoperations, hereafter called a
block, the compaction process places every microoperation
(MO) into a microinstruction (MI). The final sequence of MIs

96 National Computer Conference, 1981

must be semantically equivalent to the original block in its
effect on data resources. A data resource is a register or,
viewed on another level of abstraction, a variable. When an
MO writes a value to a data resource, that resource must not
be changed until that value has been read by all MOs that
would read that value in the original microprogram. This
motivates the following definition.

Definition. Two MOs, A and B, have a data interaction if
they satisfy any of the following conditions:

1. An output resource of A is also an input resource of B.
2. An input resource of A is also an output resource of B.

(This prevents B from interfering with A's read.)
3. An output resource of A is also an output resource of B.

A section of microcode will generally have fewer data inter
actions if its reads and writes are stated in terms of program
variables rather than registers. This occurs because several
variables may have to share the same register, potentially
introducing data interactions that are not required by the
original program. Since these extra interactions can artificially
restrict the compaction process, register allocation should be
delayed at least until compaction time, as discussed in a later
section.

The data interaction concept can be used to define a partial
order over the MOs of a basic block:

Definition. Given two MOs, A and B, where A precedes B
in the original basic block, A directly data precedes B (writ
ten A ddp B) if the two MOs have a data interaction and if
there is no sequence of MOs, Cl, C2, ... , Cn, n ;:::: 1, such
that A ddp Cl, Cl ddp C2, ... , Cn ddp B.
The relation A ddpB may also be worded, "B is directly

data dependent on A." The transitive closure of the ddp rela
tion is the data-precedence relation: A dp B if A ddp B or if
there exists an MO C such that A ddp C and C dp B. If a dp
relation does not exist between two MOs, they are said to be
data independent.

As long as data precedence is not violated, a compacted
microprogram will preserve data integrity. A few integrity
preserving compactions that do violate precedence can some
times be obtained by moving each write MO and its associated
reads as a group, but this is widely regarded as an excessively
complicated technique offering little gain.

The representation of the direct data-precedence relation
as a graph forms a directed acyclic graph (DAG). Each node
on a DAG, e.g. node i, corresponds to a unique MO in the
basic block, Mi. If there is a link from Mi to Mj on a DAG,
then Mi ddp Mj.

THE CLASSICAL COMPACTION PROBLEM
AND ITS SOLUTION

The classical compaction problem restricts itself to simplified
models of machine behavior and to essentially jump-free
microcode.

The Model Constraints

In the simplified machine model, each MI takes one ma
chine cycle to execute. The number of fields in an MI and the

valid contents for each field are bound by the MI format. The
classical problem restricts itself to one predetermined format
per machine. Each MO requires one or more fields to exe
cute. In addition, there are machine resources (ALUs, BUSs,
etc.) that an MO can use. Fields are normally considered as
resources. For compaction purposes, a legal MI is regarded as
a set of MOs that do not conflict in their resource usage. Most
of these assumptions can be straightforwardly extended to
more general cases.

The Classical Problem

The classical microcode compaction problem may be for-
mally stated as the following scheduling problem:

Given
1. a set BB = {Ml, ... , Mn} of microoperations,
2. a partial order < < on BB (i.e. data precedence),
3. that each microoperation requires one time unit, and
4. a conflict function, c: BB* ~ {false, true}, where an

element of BB* is a set of MOs from BB,
then
minimize tmax, the total number of time units required,
under the constraints that if Mr < < Ms, then Ms does not
execute until at least one time unit after Mr, and that if S
is a set of microoperations executed in the same time unit,
then c (S) = false.
The conflict function must test for MI format compatibility,

as well as for other conflicts in resource usage. A typical way
of doing this is to associate each MO with a resource vector,
with the kth component being the proportion of resource k
used by the MO. For most microprogram mabie machines, the
resource vector suffices to test all possible conflicts. It is not
difficult to prove that the classical compaction problem is
NP-complete.3 In spite of the exponential complexity of NP
complete problems, extensive experiments in microcode com
paction have demonstrated that heuristic algorithms find
acceptable compactions in a reasonable amount of time. 7

.4.8

List Scheduling

Four approaches to compacting a block of microcode have
been identified (see Landskov et al. 3 for a survey). Of these
the most important are the following:

(1) A branch and bound (BAB) algorithm. This well
known scheduling algorithm is the only approach that
can search exhaustively to find a guaranteed-optimal
solution. BAB is usually run with heuristics, since ex
haustive searches are prohibitively expensive in exe
cution time. BAB is also the most difficult to program
of these three approaches.

(2) A list scheduling algorithm. This is another algorithm
from scheduling theory, in which MOs are assigned
priority values before scheduling begins. Each MI is
formed by considering in order the unscheduled MOs
whose parents have all been scheduled (the data-ready
MOs) and adding them to the MI if no conflict exists.
List scheduling can be considered as a particular heuris
tic version of BAB.

~
NO RESOURCES USED NO PRIORITY

1 f 0, 1, 1, 1 ~ 1 3
2 1, 0, 0, ° 2 2
3 1, 0, 0, ° 3 2
4 [0, 1, 1, 1] 4 1

(a) DAG. (b) Resource vectors. (c) MO priorities.

DATA READY MOs RESULTING MI LIST OF HIs

m1 m1 m1

m2, m3 m2 * m1
m2

m3 m3 m1
m2

m4 m4 m1
m2

~a
(d) Resulting schedule.

* m2 and m3 have same priority. Tie was broken using source
order. There was a resource conflict between m2 and m3.

Figure I-List scheduling applied to a simple block

(3) A first-come, first-served (FCFS) algorithm that con
siders the MOs in source order and adds them one at a
time to an initially empty list of MIs. Each MO is added
as high as possible in the MI list. This method is used
in Dasgupta9 and in Tokoro et al. 5 With a minor mod
ification, the FCFS algorithm is semantically equivalent
to list scheduling with source order priority.

The effectiveness of source-order analysis is somewhat con
troversial. It is easy to construct trivial examples for which
FCFS produces more MIs than necessary, although com
parison tests on actual microprograms have always found
FCFS results comparable to those of the other heuristic ap
proaches. 8

,4 Various heuristics have been studied for BAB and
list scheduling.7.4 A good heuristic for list scheduling is assign
ing the level of an MO in the DAG as the MO's priority. In
this scheme, the priority of an MO is 1 more than the largest
priority of any of its children in the graph. The higher priority
MOs (i.e. those at higher levels in the DAG) are considered
first in building MIs.

Figure 1 shows the effect of applying list scheduling to a
simple block. In this example, two MOs conflict if they both
have a 1 in the same element of their resource vectors. A list
scheduling algorithm written in a PASCAL-like language may
be seen in Figure 2. In this figure, except for DAG, cycle, and
CurrMO, all of the variables are sets, with the imple
mentation of the set type remaining unspecified. This figure is
intended to outline the steps of the algorithm and should not
be taken as an exact implementation.

GLOBAL COMPACTION

The typical compacted block is full of unused microinstruction
fields (holes) that can potentially hold additional micro
operations. Much better parallelism can be achieved if the
partitioning can combine MOs from different blocks into the
same MI, rather than being artificially restricted by block
boundaries. Several global compaction techniques have been
developed that allow the "motion" of MOs between blocks.

Microcode Compaction 97

The Rules for Moving Microoperations

A set of rules will be developed that define the conditions
under which an MO can be moved from one block to another.
But first some additional terms must be defined.

The flow of control between basic blocks can be analyzed
using flow graphs. 11 A flow graph is a directed graph with the
basic blocks of a program as nodes. An edge is drawn from
block Bm to Bn if upon exit from Bm the block next executed
may be Bn. A cycle in the graph is called a loop. A data
resource is live at the entrance to a block in a flow graph if the
value stored in it may be read in that block or in some succes
sor block without having been overwritten. A data resource
which is not live at some point is dead at that point.

An MO is said to be free at the top of its block if no MO data
precedes it, i.e. it is a root in the DAG. An MO is said to be
free at the bottom if it does not data precede any MO, i.e. it
is a leaf in the DAG.

Figure 3 shows the rules for moving an MO from one block
to an adjacent block on the flow graph. Rule Rl states, for
example, that an MO free at the top of a block can be re
moved from that block if a copy of the MO is added to the end
of each parent block.

Block-Oriented Methods

Perhaps the simplest approach to global compaction is that
of Dasgupta. 9 He defines a symmetric pair of basic blocks in
a loop-free microprogram as two blocks with the property that
the second block is executed whenever the first one is, and
vice versa. Blocks that are between a symmetric pair of blocks
in the flow graph are called internal blocks. MOs which are
free at the top of the second block and which are not data
preceded by any MO in an internal block are· added where
possible to an existing MI in the first block. This method is

begin

prioritiesFort10s : = CalculatePriorities (DAv)

cycle := 0

DRS := FormlnitialDRS (DAG) (* Data Ready Set:=roots on DAG *)

remainingMOs := SetSubtract (DRS, (*from*) AlltlOs)

while not empty (DRS) s!£
cycle := cycle + 1

MIlcycleJ := EmptySet ()

Candidatet10s := UrderMUsByPriority (DRS, prioritiesForNOs)

while not empty (CandidateMOs) and not MIisFull (MI[cycle]) s!£
CurrHO := PluckNextHO (CandidateMOs)

l£ ResourceCompatible (Currl10, MIlcycle]) then

Addt10 (CurrMO, MIlcycle])

end

end

RemoveMO (CurrMO, DnS)

newReadyMOs := AllParentsUsed (remainingl-l0s, DAG, r1I[cycle])

DRS := SetUnion (DRS, newReadyl-10s)

remainingl10s := SetSubtract (newReadyt10s, (*from*) remainingMOs)

Figure 2-A PASCAL-like specification of list scheduling

98

RULE
NUMBER

R1

R2

R3

R4

R5

R6

National Computer Conference, 1981

FLOI, ~10 CAN MOVE
DIAGRAM FRO~l TO UNDER THE CONDITIONS

V A & B 110 is free at top
of C

V
A & B ~~~n}~~~l atOr~~\gft~~; MO

\ I of A and B

C

A
E & F MO is free at the bottom

of D

A
E & F identical copies of the MO

are free at the tops
of E and F

E F

A
MO is free at the bottom
of D and data resources
written b¥ the MO
are dead ln F

A
MO is free at the top
of E and data resources
wri tten by t he NO
are dead in F

Figure 3-Rules for the motion of MOs across block boundaries

equivalent to applying rules R1 and R4 of Figure 3 as needed,
starting with the second block of the symmetric pair and end
ing with the first.

The method of Tokoro et al. 5 is based on a more general
application of the rules for MO motion. In this method the
blocks are compacted one by one in flow graph order. Legal
motions between the current block and previously compacted
blocks are considered. MO motions are made that appear
"worthwhile" and that do not increase the number of MIs in
a block.

For global methods that compact blocks individually, each
MO motion between blocks requires recompacting the blocks
involved, a time-consuming process. To alleviate this prob
lem, Tokoro's method takes advantage of the first-come, first
served nature of its FCFS local compaction technique. Adding
an MO at the bottom of a compacted block does not require
reanalyzing the relationships between the already compacted
MOs, since the new MO is the "last to come." This consid
erably simplifies the recompaction. A similar savings of time
can be found for adding an MO to the top of an already
compacted block. It should be remembered, however, that
the effectiveness of the FCFS algorithm is still disputed and is
little-tested in this context.

Another global method has been developed by Wood. 12 His
method does not directly apply the rules of MO motion. In
stead, he uses the concept of a composite microoperation,
which is essentially a compacted block. Wood breaks up a
microprogram into nested blocks, where a composite MO is
treated as a node in a data precedence graph. The nested
decomposition is always possible because his programs are
written in a high level language with nested control structure.
In Wood's approach, MOs are able to be moved above and
below a compacted loop as long as they do not have a data
precedence relation with an MO in the loop. This approach
does not detect many of the motions which are possible ac
cording to the MO motion rules of Figure 3.

A Trace-Oriented Method

This global compaction method6 operates on traces instead
of basic blocks. A trace is a path through a microprogram's
flow graph, representing a sequence of microinstructions that

MO
NUMBER

1
2
3
4
5

6
7
8

9
10
11
12
13
14

1~
1'(

81

BLOCK
NUMBER
=
B1
B2
B3
B4
B5

BLOCK
NAME

81 :

B2:

B3:

B4:

85:

EXIT:

REGI::iTJ::RS TARGET BLOCK (S)
READ WRITTEN IF JUMP MO RESOURCE VECTOR

R1,R2 R3 [0, 1, 1, 0]
~j' R4 ~~ f 1; 8; 8: 8 ~
R5,R6 R7 [0, 1, 1, 0]
R7,R3 R8 [1, 0, 0, 0]

R9 R10 [1, 0, 1, 0]
R\j R11 [0, 1, 1, 0]
R10 B3,B5 [0, 0, 1, 0]

R12 R1::J [0, 0, 0, 1]
R10 R15 [0, 0, 0, o]
~16:~1~ R16 [0, 0, 0, 1]

~n f 8: 8; 8: 1 ~ R17,R5
R18 R19 EXIT [0, 0, 0, 1]

:1:~j ~~ B2 f 8: 8: 8; 1 ~
R13 R12 [1, 0, 0, 0]

~~e th~l~~~~gR~:~:s~§~~ l~e~~ 3~t R1~iS point

(a)

E XI T
(b)

MOS FREE AT
TOP BOTTOM

m5

~TO~~14
m15,m16
m17

(c)

B4

REGISTERS
LIVE AT TOP

Rl-2 ,R4 ,R5 ,R12-17
R8 R9 R12-17
R5;R8;Rl0-12 R14
R3, R4!.,R7,r.R9, R12-14
R8,R15-11

Figure 4--Example microprogram (a) The microoperations
(b) The flow graph (c) Flow Graph Information

, , , , , , , ,
\ ,

:""'@)
I :
I • I • ;
• •

(j) ,
1 , , ,

i , , ,
1

I , ,
I ,

I
, ,
\ , , I

\ , , , , ,
\ , ,

\ , , , , , , ,
\ , , , , , , ,

\

,
I

I
1
I ,

1
I

I'
I

I ,
1

I
I

I
I , ,

I

Figure 5-The DAG for trace BI-B2-B3

might be executed for some choice of data. Information about
the dynamic behavior of the code is used to concentrate on
traces that represent the most likely paths. This information
includes estimates of the probability of each conditional jump
being taken, which can be obtained from benchmark runs on
uncompacted microcode.

Figure 4 shows an example microprogram that will be used
to illustrate the global compaction technique. Assume that the
trace BI-B2-B3 has been chosen for the first compaction. The
first step of the trace compaction technique is the construction
of a DAG for the entire trace. Conditional jumps require
special handling, since moving an MO from below a jump to
above it might change a value needed in the block that is the
target of the jump. The following must be added to the normal
definition of data precedence:

Jump Precedence Rule. Suppose MO J is a conditional
jump to block Bt, where Bt is not the immediately following
block in the trace. When testing J for data preceding other
MOs, any register live at the entrance to Bt is considered to
be read by J. The extra reads are not used when testing
whether other MOs data precede J.

The DAG obtained from the example trace is shown in Figure
5. The edges between MOs originating in different blocks are
shown as dotted lines but do not receive any special treatment
during compaction. The edge from M8 to M9 arises from the
use of the jump precedence rule.

Once the DAG is formed, the trace is compacted using list
scheduling. The microinstructions resulting from. the com-

Microcode Compaction 99

Has FROM BLOCK:
B1 B2 B3

HI
1 M6

2 M8 M10

3 M1 M9

4 M2 M'(M11

5 M3 M12

6 M4 M13

7 M5 M14
Figure 6-The compacted MIs for trace B1-B2-B3

paction of trace BI-B2-B3 are shown in Figure 6. For illustra:'
tion purposes, the MOs in each MI have been aligned in
columns according to their original block. The actual order of
the MOs in an MI depends on the MI format.

The microprogram is not legal until a bookkeeping step has
been done after the trace has been compacted. In general, the
compaction process has moved many MOs according to the
motion rules of Figure 3. The motions corresponding to rules
Rl and R3 were made without moving the MO to both affect
ed blocks, leaving the off-the-trace block without a copy of the
MO. The bookkeeping step is explained as follows.

Consider rule Rl applied to blocks Bl, B4, and B2 of
Figure 4 (b). Since an execution of block B4 cannot be fol
lowed by the execution of any MO originally from Bl, the
"after B4 finishes" entry point in the new trace must come
after the last MO originally in B1. As can be seen in Figure 6,
the lowest MO in the Bl column is MS. Thus any MO original
ly in blocks B2 or B3 and now at or above M5 is above the new
entry point and must be copied to block B4. These MOs are
above and to the right of the line marked "Rl for M5" in
Figure 7.

Mas FROM BLOCK:
B1 B2 B3

MI
1 M6

2 MB M10

3 M1 M9

4 M2 M7 M11

5 M3 M12

6 t44 M13

7 M5 M14
R1 for M5

R3 for M8
Figure 7-The MIs of Figure 6, with lines delineating MOs

affected by the patch-up operation

100 National Computer Conference, 1981

Table I-A summary of the different approaches to global compaction

Fundamental Composite
algorithm MOs

Dasgupta FCFS no
source order
dependent

Tokoro Extended FCFS no
source order
dependent

Wood List yes
Scheduling

Fisher List yes
Scheduling

Consider rule R3 applied to blocks B2, B3, and B5 of
Figure 4b. Any MO originally in block B1 or B2 but now
below the jump MO (M8) must be copied into block B5.
These MOs are delineated by the line marked "R3 for M8" in
Figure 7.

After the bookkeeping step for this trace has been com
pleted, a new trace of uncompacted blocks is selected. The
process is then repeated until all of the blocks have been
compacted. The example microprogram has a main trace of
length 12 when individual blocks are separately compacted
and has a main trace of length 7 when this global method is
used. However, the space used rises from 16 to 20 micro
instructions. Tradeoffs can be made between program space
and execution time. 6

In trace scheduling, loops are handled similarly to Wood's
approach. Compacted loops may be treated as special MOs in
the surrounding blocks. When these special MOs are con
tained in a trace, the scheduler has the ability to move MOs
around the compacted loop to achieve the best result. The
major features of the different approaches to global com
paction are contrasted in Table I.

EXTENSIONS TO GLOBAL COMPACTION

Several extensions to global compaction techniques are cur
rently being researched.

Compaction Techniques for Loops

A special case of global methods is the compaction of tight,
innermost loops of microcode. Tight loops are relatively small
(under 50 lines, say), are expected to have very many iter·

Recompaction
MOs can cross needed after Imple-
block boundary each motion mentation

symmetric yes no
pairs only

general rules yes hand
for MO motion simulations

no nonproduc-
tion imple-
mentation,
small
example

general no hand
compaction simulations
of multi block
trace

ations, and have few jump instructions in the loop body.
These loops are frequently found in physical device input/
output handlers and in compute-bound scientific code; small
improvements in the speed of loops in compute-bound code
may be far more significant than other global compactions.

An initial approach to loop compaction using trace sched
uling begins by making K copies of the loop body. Each copy
except the last is made to jump to the next copy instead of
back to its own first instruction. The last copy is made to jump
back to the first copy. Optimizing compilers can sometimes
use a similar technique, called loop unrolling, to reduce the
number of loop tests. The path from the old loop entrance to
the last copy of the loop body is loop-free code and may be
regarded as a trace. Trace scheduling can then be employed to
compact this loop-free code. Since this allows operations that
were originally in different loop iterations to appear in paral
lel, a significant speedup may be achieved.

The above technique suggests the following generalization.
Rather than considering as fixed the number of iterations, the
code is unwound "as needed" during the compaction process.
This unwound code is considered a trace, and a data-prece
dence DAG for it is updated as the trace continues to expand.
Some of the operations in the trace are jumps; extra edges are
drawn from them according to the jump precedence rule. The
code unwinding continues until a repeating pattern is recog
nized, i.e. until there is a cyclic schedule.

For a schedule to show a repeating pattern, the operations
in any microinstruction, M(c), must be identical to the oper
ations in microinstruction M(c + P), where P is the period.
Number the copies of the loop body in the unwound code and
let the number of the copy that an operation comes from be
called its iteration. Then any operation in M(c + P) and its
counterpart in M(c) must be the same number of iterations
apart, e.g. W. The number of operations in this pattern will

be W times the number of operations in the original loop.
Methods for producing schedules with this property are the
subject of current investigation.

The reason for seeking a repeating schedule is that it may
be rewound into a single loop. Each sequence of P in
structions, such as M(c), M(c + 1), ... , M(c + P - 1), is iden
tical to every other sequence of P instructions. This sequence
forms the body of the rewound loop. All of the instructions
that were scheduled before the pattern started are placed into
a loop header. Both the header and the new loop body may
contain conditional jump instructions in addition to the origi
nalloop tests, but the bookkeeping of normal trace scheduling
assures that the schedule is legal.

Distinguishing Among Memory References

Unless there is absolute knowledge of the addresses of
memory references when one is attempting to compact long
sequences of code, there will be an implied data dependency
between any write to memory and any subsequent read. This
is due to the fact that the write may have been to the location
being read. If this is the case, the read must follow the write.
If there is a conceptually small enough quantity of code, the
clever hand coder may know when two memory references are
certain to be different.

This is especially important in loops. Loops commonly con
tain references tied to the loop index, and the above methods
would be forced to produce a DAG with little available paral
lelism in order to assure that the references Were done in the
stated order. Researchers into multiprocessor systems have
considered this problem. 13 There, the aim is to notice that
each loop iteration is data-independent from the others or to
apply some transformation to cause that to be the case. Each
loop iteration may be thought of as a process and assigned to
its own processor. This problem is described as transforming
FOR loops into FORALL loops.

In the loop compaction methods discussed above, it is not
necessary to go quite so far. After the periodic schedule is
rewound into a new loop, it is expected that there will be some
data dependency between elements of different iterations.
But the techniques to do a FORALL transformation are use
ful in eliminating many of the edges that would otherwise be
obtained, and are applicable to microcode compaction. Simi
larly, registers are often referred to indirectly. Methods for
distinguishing different register references would be useful for
eliminating edges from the DAG.

Renaming Variables

Consider the following short section of code:

A:= BIC
IF A > = 1 THEN

A: = CI B
END

The "single identity principle"2 states that a variable should
only be assigned a value once. Variables in existing code can

Microcode Compaction 101

be renamed to achieve this. This renaming of variables allows
computations to be made whenever the inputs are ready, even
if the old value is still live. When code joins, as it does after
the END of the IF statement above, it is impossible to use
renaming to its fullest, since the code after the END would
have to know which A was being referenced. We may, howev
er, write:

A := BIC
A' : = C I B
IF A > = 1 THEN

A A'
END

If division takes far longer than assignment and if two dividers
(or one pipelined divider) are available, the two divisions may
be overlapped to obtain faster execution. The same general
technique has the potential of removing many of the DAG
edges between operations originating in separate blocks.

Delayed Microoperation Binding

The act of assigning an abstract representation of an object
to a concrete representation is referred to as binding. Typical
bindings on the microcode level include: binding an abstract
task description to a sequence of Mas, binding a variable to
a memory location, etc. Research has been done on the im
portant questions involving binding on the microcode level. In
Davidson et al. 14 high-level microprogramming language con
structs may be bound via the use of specific programmer
described model bindings, while other constructs are bound in
programmer-independent ways. The related question of how
the compaction process might influence binding is considered
here. Since microcode is very idiomatic, there are often sharp
ly different sequences of micro operations that can carry out a
given task. The extent to which tasks overlap will often de
pend upon a careful choice of bindings of the tasks. Some
times choosing a long version of a task realizes the greatest
overlap.

Work carried out in this area operates on a sequence of
tasks rather than Mas. A task may be realized by a short
sequence (often 1) of MOs. Before compaction, tasks are not
bound to any particular sequence. Instead, attached to each is
a set b 1, ... , b k of possible bindings. Each binding consists
of the leading MO followed by a (possibly empty) sequence of
tasks. Scheduling a task in a particular cycle means selecting
a binding from b, scheduling the leading MO in that cycle,
and placing the rest of the tasks from that binding on the
DAG. Delayed binding makes scheduling a much more com
plex process. For example, simple list scheduling is unlikely to
suffice. A list scheduler will always prefer the binding that
allows the earliest scheduling of a task. Sometimes this is
disastrous.

Register Allocation

If register allocation is done before compaction and there
are more microprogram variables than registers, many arbi-

102 National Computer Conference, 1981

trary bindings will be made that influence the compaction
process. For example, two operation streams that happen to
use the same register cannot execute in parallel, but parallel
activity may be possible with a change of register assignments.
Besides register assignment, the choice of which variables are
kept in registers at any moment influences compaction. Oper
ations may be unnecessarily delayed in the schedule if vari
ables they reference are temporarily not in a register. Further
more, the variables needed for an MI become precisely known
only at compaction time. Thus register allocation at com
paction time may help minimize the number of changes in
allocations. Since allocation changes require adding load and
store operations to the original code, minimizing them can
lead to shorter compactions.

Register allocation can occur as part of compaction by ex
tending the "several version task" concept of the previous
section. This is done with two changes to the compaction
process. First, each binding that assumes that a piece of data
is in a particular register is replaced by a set of bindings. This
set is the original binding with the register replaced by a
template that extends over all the permissible registers that
may contain that data. When the task is bound, the specifica
tion of the selected register is inserted. Second, whenever a
variable is removed from the registers, all bindings that read
that variable are dynamically updated. The new bindings con
sist of the old ones preceded by appropriate fetches. The fetch
is then a template that is only filled in when the variable is
bound to a new register. To schedule well, then, the standard
heuristics of register allocation will have to be included in the
heuristic scheduling techniques.

CONCLUSIONS

The idiomatic nature of microcode makes its production a
notoriously difficult problem surrounded by popular myths.
Contrary to popular belief, the classical local microcode com
paction problem is essentially solved. It is only the global
compaction problem, which is in the initial stages of investi
gation, that still poses major research questions. We believe
the most promising global technique is trace compaction,
which automatically moves MOs across block boundaries in a
structured fashion.

An important extension to trace scheduling is loop unroll
ing/reroIling, which might yield significant improvements in
the speed of compute-bound code. Delayed binding may
achieve effective code compaction for architectures on which
a variety of alternatives are available for carrying out a task.
Architectures designed for machine emulation are particu
larly idiomatic and often offer such a choice. As a special case
of delayed binding, register allocation is apparently best done
in conjunction with compaction. Other extensions are also
promising.

Recent trends in attached processors have included the use
of the horizontal microcode level for user programming.
While these machines are usually not as idiomatic as those

intended for emulation, they are often considerably more hor
izontal. Experiments for hardware with a related kind of par
allelism have suggested that a significant speedup may be
obtained;5 but we are unlikely to use such machines well
without effective compaction techniques.

We believe the well-known advantages of high-level lan
guag~s have not been widely applied in the microprogram
ming community because of the mistaken belief that micro
code improvement is an impassable obstacle. It is true that for
machines with horizontal architectures the added burden of
compaction makes compilation more difficult. Nevertheless,
development tools such as high-level language compilers are
sorely needed in the horizontal environment. Perhaps their
development may even serve as impetus to the development of
high-level language compilers for machines with vertical ar
chitectures. The fact that the lower complexity of these ma
chines permits programming at the microassembler (or lower)
level has retarded the development of more reasonable tools.

REFERENCES

1. Davidson, S. and B. D. Shriver. "Firmware Engineering: An Extensive
Update." In Informatik-Fachberichte, Vol. 31: Firmware Engineering,
Springer-Verlag, 1980, pp. 25-71.

2. Ramamoorthy, D. V. and M. Tsuchiya. "A High-Level Language for Hor
izontal Microprogramming." IEEE Trans. Comput. C-23, 8 (Aug. 1974),
pp. 791-801.

3. Landskov, D., S. Davidson, B. Shriver, and P. W. Mallett. "Local Micro
code Compaction Techniques." Comput. Surv. 12, 3 (Sept. 1980), pp.
261-294.

4. Fisher, J. A. The Optimization of Horizontal Microcode Within and Beyond
Basic Blocks: An Application of Processor Scheduling With Resources. U.S.
Dept. of Energy Report, Mathematics and Computing COO-3077-161,
New York Univ., Oct. 1979.

5. Tokoro, M., T. Takizuka, E. Tamura, and I. Yamaura. "A Technique of
Global Optimization of Microprograms." In Proc. 11th Annual Workshop
on Microprogramming, ACM, IEEE, New York, 1978, pp. 41-50.

6. Fisher, J. A. "Trace Scheduling: A Technique for Global Microcode Com
paction." IEEE Trans. Comput., to appear.

7. Mallett, P. W. "Methods of Compacting Microprograms." Ph.D. dis
sertation, Univ. of Southwestern Louisiana, Lafayette, Dec. 1978.

8. Davidson, S., D. Landskov, B. D. Shriver, and P. W. Mallett. "Some
Experiments in Local Microcode Compaction for Horizontal Machines."
IEEE Trans. Comput., to appear.

9. Dasgupta, S. "The Organization of Microprogram Stores." Comput. Surv.
11, 1 (March 1979), pp. 39-65.

to. Landskov, D. "The Equivalence of FCFS Compaction to List Scheduling
With Source Order." Dept. of Computer Science Technical Report, Univ.
of Southwestern Louisiana, Lafayette, Jan. 1981.

11. Aho, A. V., and J. D. Ullman. Principles of Compiler Design. Addison
Wesley, Reading, Mass., 1977.

12. Wood, W. G. "The Computer-Aided Design of Microprograms." Ph.D.
dissertation, Univ. of Edinburgh. Scotland, 1979.

13. Padua, D. A., D. J. Kuck, and D. H. Lawrie. "High-Speed Multiprocessors
and Compilation Techniques." IEEE Trans. Comput. C-29, 9 (Sept. 1980),
pp. 763-776.

14. Davidson, S. and B. D. Shriver. HA Solution to the Resource Binding
Problem." In Proc. 1981 AFIPS National Computer Con! AFIPS Press,
Arlington, Va.

15. Riseman, E. M. and C. C. Foster. "The Inhibition of Potential Parallelism
by Conditional Jumps." IEEE Trans. Comput. C-21. 12 (Dec. 1972), pp.
1405-1411.

V -Compiler: A next-generation tool
for microprogramming

by DAVE PAITERSON
University of California
Berkeley, California

and

ROSS GOODELL, MICHAEL D. POE, and SIMON C. STEELY, JR.
Digital Equipment Corporation
Tewksbury, Massachusetts

INTRODUCTION

Microprogramming has always been a difficult task. Related
to hardware and software, it seems to have inherited diffi
culties from both. Microprogramming has the classic re
liability and maintainability problems of software and from
hardware it has inherited size and speed efficiency as prac
tically the only measure of success .. This legacy has made
microprogramming a very difficult task. 1 Falk summarized the
state of microprogramming today:

At present, microprogramming is an elite activity, per
formed effectively only by a small number of expert prac
titioners. The work is detailed, precise, time-consuming,
and considerably more expensive than present-day software
programming. 2

In this environment, it is not surprising that the two character
istics of microprogramming that have the biggest impact on
products are development time and microcode errors. Devel-·
opment time has its. biggest impact in products that are built
from off-the-shelf technology. This occurs occasionally in
CPUs and frequently in special purpose devices. Alm<;>st .by
definition these projects are paced by the microcode devel
opment time.

The microcode problem that impacts all projects is errors.
As microprograms have become more complex, clerical errors
in assembly level coding become more expensive to locate and
debug.

The current design methodology results in microarchi
tectures and microprograms that are designed largely by intu
ition. Although some fine tuning is performed, there is no
time for experimentation. It would clearly be advantageous if
design ideas are quantitatively investigated before they are
incorporated into the final product.

The V -Compiler project began as an investigation into im
proving the situation described above. The characteristics that
distinguish this project are a common format to interface all
pieces of the system, the use of production systems to achieve

103

retargetability, global microword packing, and use of an inter
mediate level microprogramming language. We intend to
build a practical tool for a practical environment.

This paper first presents the goals of the V-Compiler
project and then mentions the research on which the V
Compiler is based. The structure and key ideas of the F
Compiler are then explained. The final portion includes the
current status, the results of some simple examples, and an
analysis of this current system in light of our goals.

SYSTEM GOALS

The long range goals of the system are the following.

Efficiency

This system should produce code for large microprograms
by automated means which is within 15% of the size and speed
of microcode that would be produced by hand. Important
sections could be optimized by hand.

High Level

The microcode should be written in a form that is easy to
read and write, simplifying maintenance and improving re
liability. This increases the programmer's productivity, and
makes it easier to deal with increasingly complex algorithms.

Simple Retargeting

In a practical environment adapting to and learning a new
tool for each project is not feasible. It must be easy to make
the system produce microcode for different microarchi
tectures. Our long term goal is to reduce this retargeting to
one month for a CPU.

104 National Computer Conference, 1981

Transportable Microprograms

One of the major advantages of the system is the potential
for reducing microcode development time within a family of
CPUs, or for experimentations with hardware/firmware trade
offs. If the previous goals are reached, then it is possible to
support a microarchitecture independent language. Experi
ence with transportable BLISS programs at Digital indicates
that highly efficient programs can be transported, although
transportable programs must be written more carefully than
nontransportable programs.3 Clearly the development time
and the error rate would be reduced if we could reuse micro
programs. Perhaps even more important, the ability to modify
the microarchitectures without rewriting the microcode would
allow designers to see how these modifications affect per
formance. Experimentation could then check intuition in
evolving future microarchitecture designs.

User Directed Compilation

The aim of the V-Compiler is to assist in creating efficient
microprograms, but the microprogrammer must be able to
override any compiler decision.

RELATED RESEARCH

Space restrictions allow us to only mention research that has
had a direct influence on our work. Several recent papers
provide an excellent survey of related microprogramming re
search.4, 5, 6, 7 The work by Patterson8

, Goode1l9, Fisher7,
Sager10

, and Cattellll have directly influenced our research.
Patterson2

,8 demonstrated that machine dependent, high level
microprogramming languages can produce efficient micro
code. Goode1l9 pointed out there is not enough time to devel
op a new compiler during each project development cycle,
since microprogramming is so time consuming that it cannot
wait. Fisher's 7 approach to global optimization is presented
elsewhere in this proceedings. Sager'slO work on an internal
Digital project proved the usefulness of algorithms for com
paction of basic blocks, moving micro-operations past condi
tional branches, and loop unrolling in the production of mi
crocode. Cattell'sll research is the basis for the retargetability
of the Production Quality Compiler Compiler project at Car
negie Mellon University. 12 His goal was to automatically de
rive code generators for algorithmic high level languages from
machine descriptions of register oriented instruction sets. The
high level language problem was simplified by choosing an
appropriate intermediate level language. This research has
several important ideas, but the most relevant to V-Compiler
are listed here:

1. Distinction between Compile time and Compile-Compile
time. An obvious idea, this distinguishes between work done
once per compiler (Compile-Compile time) and work done
once per compilation (Compile time). The former can be
relatively expensive but the latter must be relatively efficient.

2. Compile-Compile time uses machine independent
axioms to provide a code sequence for every intermediate

language statement. If an instruction can be found that per
forms the intermediate language statement exactly, then it is
used. If more than one instruction is required, a heuristic
search is used to find the matching sequence. For example, his
technique found a minimal sequence of operations to perform
AND on the PDP-ll (which only has inverted AND) and
SUBTRACT on the PDP-8 (which only has ADD and TWOs
COMPLEMENT).

3. Compile-time uses the prederived sequences to generate
code from the intermediate language programs. Cattell uses
the largest match ("maximal munching method") when more
than one sequence can be applied.

Cattell 11 also uses productions and we have incorporated
this idea in the V-Compiler. Productions systems are com
monly used in artificial intelligence research. A well-known
example of productions is the use of BNF (Backus-Naur
Form) to describe the grammars of programming languages.
Production systems represent an alternative programming
methodology to procedure oriented languages. 13 A pattern
(antecedent) describes the sequence of code or data tokens
that invoke the production. A second pattern (consequence)
describes what replace the tokens. When a pattern matches
the antecedent, a body of code is executed, which may con
struct variables for the consequence.

Recent work 14 has demonstrated the use of productions to
preprocess source text. Complicated strategies are used in
artificial intelligence to decide which production is to be
applied, when more than one production could be simulta
neously invoked. 15 Production systems have been used suc
cessfully to synthesize complete programs. 16

V-COMPILER TECHNIQUES

Productions

Productions must be easy to write and must execute effi
ciently. To simplify the writing of productions, we added the
necessary capabilities to the microprogramming source lan
guage, rather than introducing a specialized notation. Pro
duction systems can be created much as macros would be
created in an assembler language. Productions can be inter
actively written and applied to simplify their development.

Several techniques are used to reduce the overhead of using
productions. Although backtracking and production nesting
are supported, only a single pass is made over the input for a
set of productions. Pattern matching is reduced by only allow
ing semantic productions which are matched against the
parsed input trees, rather than matching the characters of the
input sytax. 17 Finally, the productions are precompiled into
threaded code to accelerate their interpretation.

Packing

This packer differs from the trace approach by Fisher. 18 A
method of ordering the compaction of code blocks 19 allows
tight loops to receive the strongest compaction. This approach
also avoids the problem found in an ordering method based on
a complete trace through the microprogram. 18 As multiway

(SOURCE PROGRAM) -)

1

PRODUCTION 1 (- (HARDWARE AXIOMS)
GENERATOR 1 (- (MICROENGINE DESCRIPTION)

1 1 ----r---
1 (ALLOCATION DATABASE) -)
1

1

1

(PROGRAM OPTIMIZATION PRODUCTIONS) -)

-) (MICROENGINE SEMANTIC PRODUCTIONS) -)

------------) (MACHINE DEPENDENT
OPTIMIZATION PRODUCTIONS) -)

---) (STORAGE ALLOCATION PRODUCTIONS) -)

-----) (MICROINSTRUCTION DESCRIPTION) -)

-----) (ASSI::MBLER F'ORtIlAT PRODUCTIONS) -)

1------1
1 H. L. L. 1
1 FRONT '-NO 1
1 1 -----1--

(STRUM3 CODE)
1 1-----1

1 EXTERNAL 1
1 ALLOCATOR 1
1 1 --1----
1------1
1 MACHIN E 1
1 INDEPENDENT 1
1 OPTIMIZER 1
1 1 ----r-----

(STRUM2 CODE)
1

1 1
1 CODE 1
1 GENERATOR 1
1 1 -----1--
1-----1
1 MACHINE 1
1 DEPENDENT 1
1 OPTIMIZER 1
1 1
----~

1 1
1 INTERNAL 1
1 ALLOCATOR 1
1 1 ----,-----
1------1

1 PACKER
1 ----r-------
1
1 FEI::DI:lACK
1 ANI\LYZER
1 - --------1 --
1--------1

1 ASSEMBLER 1
1 1 --------r--

(MICHOCODE)
(CROSS HEFERENCE)

(LISTING)

Figure I-The V-Compiler components

(-

(-

(-

E

C
(- U

T
I
v
E

(-

(-

-)

branches are common in microcode investigated by the
authors, a single path through a multiway branch is never
shortened at the expense of the other paths in that set, when
elements of the set are individually less likely to be executed
but collectively represent a majority of the execution time.

The packer of the V-CompilerI9, allows incremental bind
ing of resources. This approach can also allow a form of reg
ister allocation to be made at compaction time, if identical
elements of a register class are allocated as resources. With
careful writing of productions, the packer currently is able to
reverse the order of control flow fork-join pairs, although it
has not been measured how often this optimization is im
portant. The packer implements the write-read group motion
mentioned by Fisher. 7 Loop unrolling and possible rerolling,
also mentioned by Fisher 7 , has been performed by hand in a
commercial environment.1o We intend to try this with the
executive, packer, and machine independent optimizer.

V-COMPILER SYSTEM

Figure 1 shows the components of the ultimate V-Compiler.
Our design philosophy was to make each logical step of the
translation process correspond to one V-Compiler com
ponent. As each component in Figure 1 requires substantial
development time, we decided that we must tackle the most
important components first. Our reasoning is that it is not
worthwhile to develop the complete system if the critical com
ponents do not achieve satisfactory results.

1
1
1
1

begin
FIELD.SIZE := reg[0);
BIT.POSITION := reg[l);
BYTE.POS := reg[2);
BASE.ADR := reg[3);
FIELD.START := reg[4);
7. := const.reg[7);
32. := const.reg[32);
RES.OPND.FLT := xrtn;

V -Compiler 105

! (defines FIELD. SIZE as register 0)

! (def ines 7. as reg ister wi th constant value 7)

! (define RES.OPND.FLT as an exit routine)

if FIELD.SIZE gtru 32. ! if more than 32 bits then take error exit
then !exit must specify an exit routine (allows common tails)
exit(RES.OPND.FLT) ;

BYTE.POS = BIT.POSITION srd 3; !get byte offset by Shifting right 3
BASE.ADR = BASE.ADR + BYTE.POS; !get byte address of start of field
FIELD.START = 7. and BIT.POSITION; !get relative address of start of field

~~d~

Figure 2-Microcode fragment in external (STRUM2) format

The V-Compiler system is being built in phases. Each phase
extends rather than replaces the previous system. Before de
scribing the system, it is useful to describe what may be the
most important aspect of a multi-phase system; the interfaces
between the components. As the components of a hardware
system can be interfaced by a common bus, the components
of the V-Compiler are interconnected by a common inter
mediate data representation called the Software Bus (S
BUS).20 All data shared between components uses the S-Bus
structure.

Like the GDB intermediate representation used by ISPS21

and the TCOL intermediate language of the PQCCI2, the
S-Bus provides a common intermediate representation for
expression trees. The advantage of a standard interface is that
a single set of routines can be used by all programs. Using the
idea of data abstraction, the S-Bus extends this concept by
making these primitive routines the only way to access S-Bus
functions. This allows the S-Bus to use data structures which
fit the application without disturbing the rest of the sys
tem.22, 23 It also carefully separates semantics from syntax to
allow unanticipated extensions to be easily added.

In addition to the obvious advantages of a standard inter
face, the S-Bus supports user conveniences. We have devel
oped a tool which transforms list formatted S-Bus into a more
readable form and vice versa. Figures 2 and 3 have been
included to give the reader a feeling of the S-Bus syntax as
seen by the programmer and program respectively.

Now that we have specified the interface language, we can
proceed to describe the components of the V -Compiler shown
in Figure 1. The Executive, the long block on the right, con
trols t!Ie special purpose components on the left. Starting at
the top, we will explain each of these components and
comment upon the difficulty of implementation and current
status:

The high level language front end is a compiler front end
which will translate from a high level language into an inter
mediate level, machine independent S-Bus variant called
STRUM3. This language consists of arithmetic logical and
field operators, simple assignment statements, jumps, IF
THEN and IF-THEN-ELSE, and WHILE. It also allows the
definition of blocks and procedures.

One of our early important decisions was to delay the high
level language front end to the very end of the project. We
consider translation of high level to intermediate level lan
guage to be a well understood problem and certainly not the
most difficult problem on the list. It is also possible that future
improvements in language design and compiler technology

106 National Computer Conference, 1981

%%BLOCK (%%DEF FIELD.SIZE ,
REG (%%FIELD (") ,

%%DEF BIT.POSITION ,
REG (%%FIELD (1) ,

%%DEF BYTE.POS ,
REG (%%FIELD 2) ,

%%DEF BASE.ADR ,
REG (%%FIELD 3) ,

%%DEF FIELD.START ,
REG (%%FIELD 4) ,

%%DEF 7. ,
CONST.REG (%%FIELD 7)) ,

%%DEF 32. ,
CONST.REG (%%FIELD 32))) ,

%%DEF RES.OPND.FLT ,
XRTN) ,

%%IF (%%GTRU (FIELD.SIZE ,
32.) ,

EXIT (RES.OPND.FLT) ,
%%ASSIGN (BYTE.POS ,

%%SRD (BIT.POSITION ,
3)) ,

%%ASSIGN BASE.ADR ,
%%SUM (BASE.ADR

BYTE.POS) ,
%%ASSIGN FIELD. START ,

%%AND (7. ,
BIT. POSITION) ,

) ,

Figure 3-Microcode fragment converted to internal S-Bus format

will dictate selection of a different language than we might
have originally selected.

The external allocator is needed to allocate resources to the
external variables of separately compiled microroutines. We
must eventually support separate compilation in our practical
environment. The external allocator has not been imple
mented and it is not a trivial problem. Our current idea is that
it will at least provide the bookkeeping function (normally
associated with linking) of which resources are used by each
routine and may eventually cause recompilation and reallo
cation of conflicting components.

The machine independent optimizer will perform the classic
compiler optimizations, such as constant folding, removing
common subexpressions, and elimination of chained jumps.
This was not implemented, but we again believe that the tech
niques are well known. Others are using productions to speci
fy such optimizations. 11

, 24

The next box is the code generator which reads the internal
form of the STRUM2 programs and the microengine semantic
production table. STRUM2 is generated by the machine inde
pendent optimizer and is a lower level language than
STRUM3. Figure 2 shows an example of STRUM2 code. The
code generator applies the productions to STRUM2 programs
to produce microoperations for the machine. This is essen
tially a translator, but this component is made much more
simple by the STRUM2 language. An initial version of the
code generator was implemented and translated list structured
STRUM2 program (Figure 3) into machine dependent micro
operations (Figure 4). We believe the simplicity of STRUM2
will allow a relatively small number of productions to generate
efficient sequences of microoperations.

An advantage of this approach, which holds for any higher
level translation system, is that the efficiency of the object
code can be improved by enhancing the translation process
rather than by rewriting the source. The table that drives the

function generator can be improved~ver the whole microcode
development cycle. Since this table contains productions
which are to be generated by senior microprogrammers, it will
be much easier for this to occur in the V-Compiler than in
traditional translators. As the few lines of a production are
applied over the thousands of lines of microcode, this tech
nique may be more effective than hand optimization of the
object code. Several of the components (the machine inde
pendent optimizer, code generator, machine dependent opti
mizer, and internal allocator) are implemented by produc
tions which are interpreted by a common production
handler.!7

The machine dependent optimizer takes advantage of
micro architecture idioms to produce better code; for exam
ple, incrementing a counter rather than using an adder. This
component is analogous to the peephole optimizer found in
many compilers. As the optimizations are again specified as
productions, there is very little difference between the pro
grams that implement the code generator and this component.
By separating these components the code generation produc
tions can be easily changed for a new microarchitecture and
only the machine dependent optimization productions would
need to be recreated. This optimizer, however, was not part
of our initial system.

The internal allocator binds any local variables to fixed
registers. The resource allocation' problem is difficult; this
program is not part of our initial V-Compiler. Our approach
(incremental binding) is to have the microprogrammer de
clare variables as certain classes and to have the code gener
ator accumulate a set of constraints about each variable. This
information will be used by the internal allocator. Since exter
nal use of resources has already been established, we believe
this subproblem of the general resource allocation problem
will be manageable with simple heuristics.

%%BLOCK (%%VDEF (1) ,
%%VDEF (CC) ,
%%VDEF (PC) ,
%%VDEF (%LEQU) ,
%%VDEF (%REG0) ,
%%VDEF (%REGl) ,
%%VDEF (%REG2) ,
%%VDEF (%REG~) ,
%%VDEF (%REG4) ,
%%VDEF (%CONST.REG7) ,
%%VDEF (%CONST.REG32) ,
%%VDEF (RES.OPND.FLT) ,
%%ASSIGN (CC ,

%%%COMPARE (%REG0 ,
%CONST.REG32) } ,

%%FLOW (%%ASSIGN (PC ,
%%%SKIP.IF (%%%TEST (CC ,

%LEQU) ,
PC } } ,

%%%EXIT (RES.OPND.FLT) } ,
%%ASSIGN (%REG2

%REGl) ,

%%ASSIGN (%REG2
%%SRD %REG2,

1) } ,
%%ASSIGN (%REG2

%%SRD %REG2 ,
1) } ,

%%ASSIGN (%REG2
%%SRD %REG2

1) }

%%ASSIGN (%REG 3
%%SUM %REG3

%REG2
%%ASSIGN (%REG4 ,

%CONST. REG 7) ,

%%ASSIGN (%REG4 ,
%%AND (%REG4

)

%REGl),
} ,

Figure 4--Microcode fragment in machine dependent micro-operations

The packer first reads the micro-operation sequences to
form a data dependency graph based on reads, writes, and
tests of registers. Using this graph, a sequence of micro
operations is scheduled into parallel microinstructions. An
initial version of this component was implemented. Figure 5
gives a sample packing of the microoperations in Figure 4 for
a fictional microengine with dual input and output ports on
the register storage, with a separate ALU, shifter, and con
stant ROM.

A problem of most microcode improvement systems is pro
viding a system that allows microarchitecture independent
compaction. Our pragmatic approach is to require the user to
supply two custom subroutines:

1. FIT-The two inputs to this subroutine are a micro
operation and a partially formed microinstruction. This
routine simply returns a Boolean value indicating wheth
er micro-operation will fit into the microword.

2. COMBINE-This subroutine uses the same input but
returns the microinstruction with the new micro-opera
tion placed within it.

This approach allows complete generality of format of the
microword and packer without introduction of an elaborate
notation in the initial system. To keep the packer machine
independent, we have also created packer directives that relay
control flow and therefore the packer does not have to under
stand the semantics of the microarchitecture. For example,
the directive EXIT identifies the micro-operations that cause
an unconditional transfer of control.

The next component is the analyzer which digests informa
tion from the functions above it and feeds it back to the
executive in the form of directives for a more optimal com
pilation of the same code. Perhaps the most difficult com
ponent in Figure 1, this was not part of the initial system. The
idea is that by providing information from lower levels, the
V -Compiler can iteratively produce better microcode. As ex
perience is gained from the earlier V-Compiler, we will better
understand how to take advantage of feedback. This is clearly
an open research problem and is part of the dissertation re
search of Poe at University of Massachusetts at Amherst.

The assembler takes the internal S-Bus form of the micro
instructions with the format production table to produce the
final microinstructions. This is a necessary but conceptually
simple component. Probably the most difficult part is linking
micro addresses from separately compiled microroutines. Al
though the initial V-Compiler system used an existing micro
assembler, we expect later versions to include assembly in

uWORD (%%ASSIGN(%REG2,%REG1),
%%ASSIGN(CC,%%%COMPARE(%REG0,%CONST.REG32))),

uWORD (nASSIGN (%REG2,nSRD(%REG2,1)),
%%ASSIGN(%REG4,%CONST.REG7)),

uWORD (nASSIGN(%REG2,nSRD(%RF.G2,1)),
%%ASSIGN ((PC) , %USKI P. IF' (% UTEST (CC, %LEQU) , PC))) ,

uWORD (%%%EXIT(RES.OPND.FLT)),

uWORD (%%ASSIGN(%REG4,%%AND(%REG4,%REG1))),

uWORD (%%ASSIGN(%REG2,%%SRD(%REG2,1))) ,

uWORD (UASSIGN(%REG3,%%SUM(%REG3,%REG2)));

Figure 5-Microcode fragment in packed microwords

V-Compiler 107

order to avoid a second machine description for the micro
assembler. We would expect that a future version would also
provide cross references which map STRUM2 statements into
microinstructions and vice versa. It should provide the infor
mation needed for microcode simulation programs. 25

In the upper left corner of Figure 3 is the production gener
ator. This program runs at compile-compile time. It reads a
formal machine description and uses a set of axioms to derive
the machine dependent productions for the compiler. This is
again an open research problem being studied by Poe and is
not part of our initial implementation. The advantage of this
approach is that it would take much less time to define a new
microarchitecture, facilitating practical experimentation with
micro architectures and higher level microprogramming.

Summarizing the description above, we ultimately rely
upon the executive to supply intelligence in the system. As
components are implemented, we expect the executive to vary
their parameters, and call components repeatedly to achieve
the best results. An obvious example is trying variations of
register allocation by the internal allocator and recording the
resulting number of microinstructions produced by the pack
er. A final comment is that, as part of the multilevel design
philosophy, users may add subroutines to tailor the system to
particular microarchitectures.

EXAMPLES

As of this writing, the prototype system does basic com
pilation and packing of STRUM2 programs. It includes a
production driven. code generator, a simple "internal allo
cator" which binds variables to registers as specified explicitly
in the input STRUM2 code, a preliminary packer which al
lows some movement of micro-operations past basic blocks,
and a conversion routine (written in productions) which con
verts packer output to source code for an existing micro
assembler. The sample code in Figures 2,3,4, and 5 was used
and generated by the components of this current system.

In order to test our ideas, we produced by hand an example
for a real architecture before we began implementation. The
subroutine selected extracts a bit field from memory. We used
both Fisher's18 height and Sager'slO heuristic scheduling ap
proaches. The result was that Fisher's schedule was 18% (five
extra microinstructions) and Sager's 11 % (three extra micro
instructions) longer than the hand-coded example. Since the
experience of Patterson 1 and Tokoro26 have been that small
examples are usually more efficient when done by hand and
large examples are usually more efficient when done auto
matically, these are encouraging results. On the other hand,
since these examples were done knowing the hand-coded
microcode, the results are still preliminary.

While this is an interim report, it is interesting to compare
our current results to the goals for the whole system presented
in the first part of the paper.

Efficiency

The example in the figures produced code as good as that
produced by hand for a paper machine. An example done by

108 National Computer Conference, 1981

hand for a real machine wastl % to 18% larger than hand
coded microcode. These results appear to meet our goal.

High level language ...
The human readable version of STRUM2 has proved to be

a useful low level microprogramming language and is a consid
erable improvement over traditional microassembly language.

Simple retargeting and transportability

As we have not tried to retarget the V-Compiler we have no
definite results. We do, however, have indications that writing
the productions is reasonable. The example in Figure 2 re
quired six productions occupying less than 30 lines of code.

User direction

This initial system allows the microprogrammer to include
explicit microinstructions in the STRUM2language. Actions
of the packer can be controlled by including directives in the
productions. For example, TIE, specifies that a pair of micro
operations must appear in sequential microinstructions.

A second concern was performance of production based
translators and packing. Since the primary purpose of the
prototype V-Compiler is to establish the feasibility of the
V-Compiler, little effort has gone into programming it effi
ciently. Care was taken, however, to make the basic algo
rithmsefficient; and the code was written in BLISS, which has
a highly optimizing compiler. It took the prototype system 35
seconds to compile and pack the program fragment shown in
Figure 2 on a lightly loaded VAX 111780. Precompiling the
productions reduced this time to 23 seconds.

SUMMARY

The ideas and current status of the V-Compiler system have
been described. Each phase will make the microprogramming
task easier with little loss of efficiency. Four basic concepts
underlie the V-Compiler effort:

S-Bus

All components of the system use this common structure for
input and output. The analogy is made to a hardware bus
which allows various devices to communicate easily.

Productions

The V -Compiler achieves retargetability by using a power
ful semantic production system for the machine dependent
translations required during compilation.

Microword Packing

Beginning with the work of Fisher18 and SagerlO, we are
implementing a system of building microwords out of vertical
sequences of microoperations. A key feature of this program
is machine independence.

Critical Components First

Our development strategy is based upon solving the most
critical problems first. For instance we have ignored the prob
lem of selecting high level microprogramming language. In
stead, we have concentrated on developing an intermediate
language that simplifies the V -Compiler and which could be
produced by a high level language front end.

Simple examples done by hand and by the initial V -Com
piler yield promising results. We are encouraged and will
continue to evolve the V -Compiler.

ACKNOWLEDGMENTS

The authors are indebted to the reviewers and to Cheryl
Wiecek and Tom Eggers for their careful reading.

REFERENCES

1. Patterson, D. A., "An Experiment in High Level Language Micro
programming and Verification," to appear, CACM, 1981.

2. Falk, H., "Hard-soft Tradeoffs," IEEE Spectrum, Vol. 11, No.2, February
1974, pp. 34.

3. Brender, R F., "A Survey of BLISS-16, BLISS-32, and BLISS-36" Pro
ceedings of the Digital Equipment Computer Users Society, DEC, April
1978, pp. 1113-1127

4. Dasgupta, S., "Some Aspects of High-Level Microprogramming," Com
puting Surveys, Vol. 12, No.3, September 1980, pp. 295-323.

5. Landskov, D., Davidson,S., Shriver, B., and Mallett, P. W., "Local Micro
code Compaction Techniques," Computing Surveys, Vol. 12, No.3, Sep
tember 1980, pp. 261-294.

6. Davidson, S., and Shriver, B. D., "Firmware Engineering: An Extensive
Update", in Firmware, Microprogramming, and Restructurable Hardware,
Chroust, G. and Mihlbacker, J. R (Eds), North-Holland Publishing Co.,
Amsterdam, 1980, pp. 1-36.

7. Fisher, J. A., Landskov, D., and Shriver, B., "Microcode Compaction:
Looking Backward and Looking Forward", this proceedings, 1981.

8. Patterson, D. A., "STRUM: Structured Microprogramming System for
Correct Firmware," IEEE Transactions on Computers, Vol C-25, No. 10,
October 1976, pp. 974-985.

9. Goodell, R, "An ISPS Micro-assembler," Proceedings Computer Hard
ware Description Languages, Palo Alto, California, October 8-9,1979, pp.
62-68.

10. Sager, D., private communication, 1977.
11. Cattell, R G., "Formalization and Automatic Derivation of Code Gener

ators," PHD thesis, Department of Computer Science, Carnegie-Mellon
University, April 1978.

12. Leverett, B. W., et aI., "An Overview of the Production Quality Compiler
Compiler Project," Department of Computer Science, Carnegie-Mellon
University, February 1979.

13. Davis, R, and King, J., "An Overview of Production Systems," Machine
Intelligence, 8, 1977, pp. 300-332.

14. Greenwood, S. R., "Macro: A Programming Language," SIGPLAN
Notices, Vol. 14, No. 12, December 1979, pp. 80-91.

15. Nilsson, N. N., Principles of Artificial Intelligence, Tioga Publishing Co.,
Palo Alto, California, 1980.

16. Barstow, D. R., "Automatic Construction of Algorithms and Data Struc
tures Using a Knowledge Base of Programming Rules," Stanford Artificial
Intelligence Laboratory, Memo AIM-308, November 1977.

17. Goodell, R., "Using Semantic Productions to Compile Microcode in the
V-Compiler", in preparation, 1981.

18. Fisher, J. A., "The Optimization of Horizontal Microcode Withing Basic
Blocks and Beyond," PHD thesis, Courant Institute, New York University,
New York, New York, October 1979.

19. Poe, M. D., "Heuristics for the Global Optimizations of Microprograms,"
Proceedings of the 13th Annual Workshop on Microprogramming, Colora
do Springs, Colorado, November 30-December 3, 1980, pp. 13-22.

20. Goodell, R., "The Software Bus," unpublished DEC Internal Document,
December 1979.

21. Barbacci, M. R., Barnes, G. E., Cattell, R. C., and Siewioreik, D. P., "The

V-Compiler 109

ISPS Computer Description Language," Technical Report, Department of
Computer Science, Carnegie-Mellon University, 1977.

22. Liskov, B. H., "A Design Methodology for Reliable Systems", Proceedings
FlCC, 1972, pp. 191-199.

23. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems
Modules", Comm. ACM, Vol. 15, No. 12, December 1972, pp. 1053-1058.

24. Sethi, R., "Semantic Directed Compiler Generation", SICPLAN meeting,
Boston Chapter, October 2, 1980.

25. Wiecek, C. A., and Steely, S.C, Jr., "Performance Simulation as a Tool in
-- Central Processing Unit Design," Proceedings of the Conference on Simu

lation, Measurement and Modeling of Computer Systems, University of
Colorado, Boulder, Colorado, August 13-15, 1979, pp. 41-47.

26. Tokoro, M., et aI., "An Approach to Micro-program Optimization Consid
ering Resource Occupancy and Instruction Formats," Proceedings 10th
Annual Workshop on Microprogramming, 1977, pp. 92-100.

Adflptable pipeline system with dynamic architecture*

by SVETLANA P. KARTASHEV
University of Nebraska
Lincoln, Nebraska

and

STEVENI.KARTASHEV
[)ynamic Computer Architecture, Inc.
Lincoln Nebraska

ABSTRACT

This paper describes a pipeline system with dynamic architec
fure that performs cost;.effective adaptations to the algorithm
being executed. The system performs the following pipeline
a~aptatioiis: (1) thenumber of stages in the pipeline changed
to', allow each instruction !o activate the numbetof stages that
matches the numb~r of operations it realizes; (2) the oper
atio~' sequences~n the pipeline modified to allow any se
quence of operations to execute without reconfiguration and
thus eliminate the tiIne overhead caused by tPis' recon
figuration; arid (3) the operation time in each~tage adjusted
to' the minimum·.~equiredfor that operation because'it may
shorten th~ time of the total ope'ration. This paper also dis
cusses fasfand. flexible 'information exchanges between pipe
line stages that can be dtm:ewhile the pipeline is working.
Namely',· each pipeline stage Ci may obtain during pipeline
computations a temporary result that was computed by any
other' stage Cj • It is' shown' that such a pipeline may be or
ganized from DC groups an~ thu~ be amenable to LSI imple-
mentation. ' , ,

A. INTRODUCTION

Pipeline sys~ems may employ f".'o kinds of pipelin~s---:illstruc
tion and arithmetic. In an instruction pipeline, the fetching of
instructioqs' and operands is 'fragmented into several short
()terlapped.' processes (Instruction address generation, in
struction fetch, instructiotl decode, qpenlnd address gener':
ation, apd operClndf~tch). . . ,"
. 'The main' problems faced in an instruction Plpeline are
those of ti~e ovet:q~a~s causeq byconditioIUll branches and ()f

~. This work was suppprted by Subcontract NQ. 481-79-35 of the Prime Contract
No', 'DASG60-78-C-0058 between General Research Corporation and U.S.
A~my Ballistic Missile Defense A.dvanced Technology Cepter,Huntsville,
;\h'q~mll"· ' ., ,',' ,

111

variations in the number of operand addresses and addressing
procedures used in instructions. 1

,2 '

In existing C instruction pipelines reconfiguration is used
mostly to' offset' the' time overheads caused by the last men:';
tioned factor. For instance, in the instruction pipeline of the
MUS3

, . instructions may bypass unneeded pipeline stages.
This, however, creates dummy time intervals associated with
resolving conflicts when the instruction encounters operands
prepared for precedirig instructions as a result of such by':
passing.

In an arithmetic pipeline an instruction containing several
consecutive operations propagates through pipeline stages SQ

that each stage 'executes one operation of this instrllction.
Since the operation phase of the i th instruction overlaps the
phase of operand fetch for the next (i + 1st) instruction, the
time requited to propagate an instruction through oI1:e stage
equaJs the time of the operation assigned to the stage. All the
times for operand fetches are therefore eliminated from the
time of prqgram e~ecution. This is the source of t~ee~e"
cutiQnal spe~dup achie,ved by an arithmetic pipeline. '

The rmij()f problem with arithmetic pipelines is the ti~e
overhead introduced because of the disparity between the
pipeline(~) aIld.the algorithm being executed. As a res~lt,
pipeline systems tend to become dedicated to certain types of
computations: and· usually have a limited applicability.

To broaden the range of their cost-effective applicatiQIl'
arithmetic· pipelirtes offer various software controllable recon
figurations of the available hardware resource. The ~eneral
idea is to [(!corifigure the resource by means of softwar~ tp
reduce the dissimilarity between the arithmetic pipeline and
the sequences of operations assigned to different instructiolls .

Let us l()ok at some existingsyste,ms and consider th~ir use
pf reconfiguration. 'n the TI. ~~C4, re,configuration· of the
arithmetic pipeline' means bypassing unneeded pipe,line
stages, I.e.., the instruction propagat~s through a stage only if
it implem~nts the operatiQn encountered in the instru.ction.
Otherwise this stag~ is bypassed. This is similar to the way th~
MU':S re,configures its instruction pipeline. The weakness pf

112 National Computer Conference, 1981

this technique is in the time lost solving conflicts among in
structions implementing different sequences of arithmetic
operations.

In the CRA Y _1 5
, 12 functional units are organized into

dedicated pipelines. These are partitioned into four catego
ries: address, scalar, vector, and floating point. Although
each pipeline cannot reconfigure, reconfiguration is used to
chain several pipelines together to form pipelines with a larger
number of stages. This allows the pipelined execution of in
structions with long sequences of operations to be organized.
Reconfiguration is thus used in existing pipeline systems in a
limited sense, as a means of bypassing or chaining pipeline
stages.

Several authors have proposed theoretical pipeline systems
with a deeper level of reconfiguration. Reddi and Feustel6

describe a restructurable pipeline system that may reconfigure
into different sequences of resource units. The architecture of
such systems provides that programs to be executed be de
composed into separate program blocks, and the compiler
determines which interconnections must be established
among the operational units assigned to the execution of each
block. This pattern of interconnections is then encoded into a
program instruction that activates the required interconnec
tions among hardware units during execution of said program
block.

Thomasian and Avizienis7 proposed a reconfigurable pipe
line system consisting of an array of pipelined arithmetic pro
cessors that can employ different configurations between pro
cessors. To carry out pipelined computations, the tasks
requiring the same configuration are arranged together. After
executing all tasks appropriate for that configuration, the sys
tem reconfigures and starts execution of a new block of tasks
in the next configuration.

B. PROBLEMS OF PIPELINE COMPUTATIONS

Since many programs have different sequences of operations
following each other, a pipeline that executes such a program
must reconfigure each time it switches from one sequence of
operations to another. If at is the time required for each
reconfiguration and N is the number of different operation
sequences, then the pipeline loses time at . N reconfiguring its
resource. If at or N is large, then the speed advantage of
pipelined computation may be lost and there is no sense in
computing this program in a pipeline. To reduce N, programs
are sometimes rearranged into tasks where each task may be
computed by a single configuration of the pipeline. But this
requires special programming which may again restrict the
class of programs that can cost-effectively be pipelined.

Next it is quite difficult to compute by means of pipeline
programs that require broad exchanges of temporary results
between tasks. Indeed, each stage of a pipeline has to receive
two operands to execute an operation: one from the preceding
stage and another one from the local memory attached to the
stage. Each local memory is therefore engaged in continuous
fetches of operands required by that stage while the pipeline
is working. Thus during computation it is impossible to load
this memory with temporary results needed by the stage, oth
erwise access to operands stored in the local memory stops.

Therefore all local memories may be loaded with data words
only before computation begins. Hence, if a pipeline stage
needs a temporary result computed earlier, it must fetch this
result from another memory designated for temporary results.
Since a pipeline stage may require a temporary result com
puted by any other pipeline stage!, it has to be provided with
fast information exchanges between stages that do not de
grade pipeline performance. Since such exchanges are poorly
developed in existing systems, many programs are eliminated
from consideration for pipeline computation. This again nar
rows pipeline applicability. Limited applicability is therefore
the most severe drawback of all pipeline computations.

Their other drawbacks are associated with the following
causes. Frequent disparity between the number of consecutive
operations in the instruction and the number of pipeline
stages connected into a pipeline creates additional dummy
time intervals associated with instruction propagation through
unneeded stages or with conflict resolution when an instruc
tion bypasses the unneeded stages and encounters operands
prepared for some of its predecessors. 3,4

In existing pipelines, the time for processor dependent
operations (addition, subtraction, >, <, etc.) is permanent
and does not depend on operand size; however, selection of a
permanent operation time in each stage requires that it be
selected as the time of the longest operation (addition involv
ing words of maximal size). It follows that all faster operations
(processor dependent operators handling smaller word sizes,
Boolean operations, etc.) are slowed down because they are
given the same length of time as the longest processor depen
dent operation.

A general weakness of pipeline architectures is pipeline
drains due to conditional branching. A pipeline may have
dummy time intervals when no processing is performed if, as
a result of a conditional test, the program switches to another
instruction sequence that was not already being processed by
the pipeline stages. The problem of conditional branch may
be solved if one uses the solution adopted in the IBM 360/91,8

based on the use of two pipelines. For this case true (incre
mental) and false (specified by a jump address) program se
quences may be computed by two independent pipelines,
main and subsidiary, where the subsidiary pipeline is switched
into operation only during a conditional branch instruction,
that is, its instruction memory replicates a portion of the
program. If the conditional branch is made to the instruction
sequence computed in the subsidiary pipeline, it transfers all
computational results necessary for further computation to
the main pipeline and stops.

C. INTENT

Since dedication is the main shortcoming of pipeline com
puters, a major thrust of an architectural research in pipelines
has to be directed at broadening their applicability. Ideally, a
pipeline system must be able to compute any program as
cost-effectively as a general purpose computer.

Let us now show some architectural properties that may
expand the applicability of pipeline systems, speed up com
putations, and simplify programming.

1. Universality of a pipeline stage: Each pipeline stage must
be capable of executing any operation encountered in
the instruction.

2. Variable number of stages in the pipeline activated by
different program instructions: Each instruction must
propagate through the number of consecutive stages in
the pipeline that matches the number of operations it
realizes. Consequently two instructions that realize a
and b operations respectively must activate a and b con
secutive stages in the same pipeline.

3. Connection of each pipeline stage with main memory:
Inasmuch as the instructions may activate a variable
number of stages in the pipeline, each pipeline stage may
function as the end stage of some instruction. Therefore
each stage must be capable of sending its computational
results not only to the next stage but also to the main
memory.

Properties 1, 2, and 3 together allow one to obtain pipelines
capable of executing any sequence of operations in a program
with no reconfiguration of pipeline stages.

This will eliminate all problems associated with pipeline
reconfiguration such as time overhead for reconfiguration;
conflict resolution during bypassing; programming difficulties
associated with regrouping instructions into separate blocks
executed by different pipeline configurations; synchronization
of these blocks and sequencing them; etc.

4. Fast access of one pipeline stage to temporary results com
puted by other pipeline stages: In order to have rapid
access to temporary results each pipeline stage must be
equipped with a register memory that stores temporary
results needed by the stage. Data exchanges need to be
developed that will allow each pipeline stage to send its
computational results not only to the next stage but also
to the register memory of any other pipeline stage.

5. Update of the local memory of a pipeline stage with new
data, when it fetches the operands it needs: Each local
memory assigned to a pipeline stage must be capable of
performing two concurrent actions: fetch operands
needed by the stage and receive new data words from the
main memory. This requires partitioning the local
memory M into two levels 1-M and 2-M and separately
connecting each level with the processor of the stage. If
1-M fetches operands for the stage, the second memory,
2-M, may receive data words from the main memory.
Subsequent fetches of operands from 2-M ,lre accom
plished via changes in operan-u addresses. A tocatmemo
ry M of a pipeline stage may in general be partitioned
into r submemories, 1-M, . .. , r-M. Each memory i-M
may then update its contents during the period
Tup = (r - 1)T M, where T M is the time when each i-M
fetches operands needed for the stage. By increasing r,
one increases T up. One may therefore connect each i-M
to a slower memory storing initial data and still cause no
degradation in pipeline's performance.

Architectural Properties 4 and 5 will solve the problem of
pipeline degradation caused by the absence in a stage of tem-

Adaptable Pipeline System 113

porary results or initial data words that it needs for uninter
rupted performance. Programmers will then be able to work
with both the registers and local memories assigned to a stage
just as they work with these memories in conventional
computers.

6. Variable time intervals for operations assigned to a stage.
Each stage must be capable of executing its operation
during the minimal time. To implement this feature, the
processor of a stage has to reconfigure into the word size
that matches the maximal word size of an operand or
computed result, and the control unit in the stage has to
generate a variable time interval that depends on the
word size for processor dependent operation and that
assumes a minimal permanent duration for processor
independent operations. For example, if the ith in
struction in a pipeline stage adds 64-bit words, its pro
cessor has to reconfigure into a 64-bit size and the con
trot unit has to generate the minimal time required for a
64-bit addition. If the next instruction subtracts 16-bit
words in the same stage, the processor assumes a 16-bit
word size and the control unit generates the time for a
16-bit subtraction.

The performance gain obtained from the variable time
interval property is due to the ability of the pipeline to
work at a variable rate and to fan out results much faster
if it is filled with short operations.

A pipeline system that implements Architectural Properties
1 through 6 has a widely expanded area of applicability com
pared to existing systems, requires no special programming,
and speeds up pipe lined computations.

Such a novel pipeline organization may be created by as
sembling it from Dynamic Computer Groups (DC-groups)
discussed in Kartashev and Kartashev. 9,10 The pipeline system
assembled from DC groups was called a universal dynamic
pipeline architecture or simply dynamic pipeline. It was brief
ly discussed in Kartashev et al. (1979)11 as an illustration of the
adaptation properties shown by dynamic architectures in
general.

This paper describes the generic concepts of a dynamic
pipeline architecture and introduces the architectural orga
nizations that allow the implementation of Properties 1
through 6.

D. DYNAMIC PIPELINE: BAS-IC CONCEPTS

The dynamic pipeline is assembled from F + 1 stages Co,
Ct, ... , CF, where each stage is implemented as a single DC
group (Fig. 1). The initial stage Co stores instructions in
memory Mo and fetches them to processor Po. Its size matches
that of one instruction. Each pipeline stage C; (i = 1, ... , F)
has memory Mi for storing initial data words and addresses,
processor Pi and general register memory RMi that stores
temporary results required by processor Pi. These are either
computed by stage C; or by other stages. Since each Ci is a
single DC group, the word size of its processor varies in h- bit

114 National Computer Conference, 1981

,---------- ------1 ,-----------------1 ,-----------------
I I I I

I Ap I I

I I

Instruction
Generator

L _________________ ~ L _________________ ~L __ _

C1 Pipeline Stage C2 Pipeline Stage C3 Pipeline Stage

Figure I-Hardware diagram of a dynamic pipeline

increments from h to h . n bits. For example, for fz = 16 and
n = 4, each processor P j may assume one of the following
word sizes 16, 32, 48, 64 bits, i.e., it changes in 16-bit incre
ments.

Each instruction fetched from Mo to Po of the initial stage
Co includes two portions: the pipeline instruction, PI, and the
address instruction, AI. The instruction PI progagates
through a bus made of (F - 1) memory connecting elements,
MSE, and activates one operation in each pipeline stage.
Concurrently instruction AI propagates through the bus made
of F address connecting elements, ASE, so that each ASEj

may generate the address of any register memory RM that
should receive the temporary result computed in stage Cj •

Each MSE j separates two pipeline stages Cj and Ci+ I and
may assume two modes of transfer: right or no transfer. For
right transfer, MSE j propagates the pipelined instruction PI
to the next stage to the right, Ci + I, with a delay of one interval.
For QSl transfer, MSE j blocks further instruction propagation
in the pipeline. The MSE element is a universal module UM,
that is used as the unique building block of a DC group. 12,9,10

Each ASE element may modify the addresses stored in the
instruction AI. It includes a universal module U M equipped
with the memory AM that stores constants needed for address
modification. Each time a pipeline stage C receives PI in
struction, the address element with the same position i, ASE;,
receives the instruction AI shifted from ASEj - l • The ASEj is
synchronized by stage C and stores the AI instruction during
the time that C executes an operation. If the result of this
operation is a temporary result for another stage Cj , to use in
the future it is written to its register memory RMj • To do this,
ASEj generates the address for RMj so that the computational
result obtained by C may be sent not only to the next stage
C+ I but to any other stage that may use it in the future. The
logical circuits E (i) and H (i) respectively, broadcast the ad
dress and the temporary result obtained in stage C to any
register memory RM.

E. ADAPTATION CAPABILITIES OF
A DYNAMIC PIPELINE

Let us now discuss how a dynamic pipeline adapts to an exe
cuting algorithm. This is accomplished by several adaptation
codes stored in the PI instruction.

1. Adaptation to a Sequence of Operations

Since each PI must be capable of executing any sequence of
operations, it has to store the code of an operation sequence,
SOP. When a SOP propagates through the pipeline stages,
however, it will activate the same operation in each stage. In
order that each stage, C, execute an individual operation, its
processor P j should store a position code d; that is the binary
value of its position within the pipeline. These two codes,
SOP and d j , achieve the selective activation of the operation
assigned to stage Cj by the instruction PI.

Example. Suppose instruction PI has been assigned the
sequence of operations (+ , - ,/\, x , +) encoded as SOP25 •

This instruction is executed in the pipeline stages C., C2 , ••• ,

and C5 • As the instruction passes through the pipeline it en
counters position code d = 001 in the first stage, Ct, and to
gether d = 001 and SOP25 activate addition; in the second
stage, C2 , d = 010 and SOP25 activate subtraction; etc.

2. Dynamic Variation of a Pipeline's Length

Since each PI instruction may be assigned a variable num
ber of consecutive operations, a dynamic pipeline must
change the number of pipeline stages activated. This means
that if instruction PI realizes a sequence of w operations, it

P.
1

Adaptable Pipeline System 115

~_.---------------3h-bitprocessor------------~.~

h bits h bits h bits h bits

MEa

:;-. -..-------3h-bit memory ------~ ... ~

Figure 2-Reconfiguration of the Pi processor

must propagate only through w consecutive pipeline stages
C1, C2 , ••• , Cw and obtain its computational result in stage Cwo
Such a variation in the number of pipeline stages activated by
the PI instruction is accomplished by another adaptation
code, W, stored in PI that shows the number of operations that
PI realizes. When the PI instruction propagates through each
connecting element MSE j , containing position code d;, W is
compared with d;. If d; < w, MSE; propagates this instruction
to the next stage. with a delay of one time interval. If d;;::: W,

MSE; stops further instruction execution and sends this PI and
its result to the next Cw + I. In the next time interval, the
computational result received by Cw + 1 is sent to the main
memory. The two adaptations mentioned above allow a dy
namic pipeline to execute quite· different sequences of oper
ations one after the other without requiring reconfiguration
between pipeline stages. Therefore eliminated are (a) the
time overheads introduced by pipeline reconfiguration, when
no processing can be performed, and (b) the need for special
programming to· restructure programs into tasks that can be
assigned to single pipeline configuration.

Example. Suppose a dynamic pipeline executes consecutive
instructions PIt, Ph, etc. Instruction PII calls for three oper
ations (+ , - , x) and stores code w = 3. PI1's computational
result is obtained in C3 and is transferred first to C4 and then
to the main memory. The next instruction, PI2 , realizes five
operations (-, +, 1\, +, x) and stores w = 5. Thus its
result computed by Cs, is sent to the main memory via C6 , etc.

3. Variable Time Intervals for a Pipeline Stage

All operations executed in the processor of a pipeline stage
are divided into two groups: (1) The operations that include
the carry propagation microoperation (add, subtract, etc.).
The time for such operations depends on the word size. (2)
The operations that do not include the carry propagation
microoperation, (addition module 2, logical addition, etc.).
The time of such operations does not depend on the word size
and for most operations can be very short.

To speed up operations of the first group, the PI instruction
in each stage C; must reconfigure its processor into the min
imal word size and cause the control unit to generate the
minimal time interval compatible with the selected processor
size. Speeding up operations of the second group requires that
the control unit in a stage generate the minimal time interval
of permanent duration. Consider now speed up of the first
group of operations.

Recontiguration of the processor

This can be easily accomplished inasmuch as each pipeline
stage is realized as one DC group and its processor P; contains
n processor elements PEt, PE2 , ••• , PEn (Fig. 2). Each PE
handles h -bits. Selection of the minimal processor size for P;
can be performed with adaptation code k, stored in instruc-

116 National Computer Conference, 1981

tion PI. The code k shows the number of PE elements that are
to be connected into the k· h-bit processor of the stage. For
instance, for k = 1, the processor is formed from a single PE
and handles h-bit words; for k = 2, it is formed from two PE's
and handles 2h -bit words, etc.

Such reconfiguration of the resource into k· h -bit pro
cessors may be accomplished if the carry signal ex produced by
the local adder in each PEi , is routed either to carry-out pin
1 connected to carry-in pin 3 of the next more significant PE
or to overflow pin 2 if it is the overflow in a k . h -bit adder. All
2-pins are connected together with pin 3 of the least significant
PE so the ex overflow is routed as the end-around carry to the
LSB of k . h -bit adder.

Selective activation of the (l signal to pins 1 or 2 of each PE
is accomplished by comparison of two codes stored in each
PE: the processor position code i (p) which shows the relative
position of this PE inside a k·h -bit processor and adaptation
code k brought to the PE by the PI instruction.

. If k > i (p);-ihe ex signal is routed to pin 1.
If k = i (P), it is routed to pin 2.
If k < i(P), the ex signal is routed to no pin.
Example. Let the processor resource be PEl through PE4

storing the following processor position codes: in PEl,
i(P) = 1, in PE2 , i(P) = 2, etc. (Fig. 2). Suppose that the PI
instruction requires that a 3 . h -bit processor be formed from
the available PE's. It includes adaptation code k = 3. When PI
is fetched to each PE of the stage, it compares code k with the
local processor position code i(P). In PEt, i(P) < k(1 < 3)
and signal ex is routed to pin 1. Similarly in PE2 , i (p) < k
(2 < 3) routes ex to pin 1. In PE3 , i(P) = k (3 = 3) and ex is
fanned out to overflow pin 2 connected with the LSB of the
3h-bit adder. In PE4 , i(P) > k (4) 3) and ex is routed to no
pin. A correct end-around-carry path has therefore been
formed.

Organization of a minimal time of operation

Since a DC group uses the modular control organization, 12

it allows one to obtain a variable time of operation in a pipe
line stage. For the pipe lined mode of operation, however, the
modular control organization has to be modified. Indeed,
when a DC group works as a multicomputer system, each
instruction is entirely executed in one computer based on the
interaction of two sequencers, CAD-I and CAD-M, where
CAD-I activates a sequence of operations and CAD-M speci
fies the time of each operation. 9

, 10, 12

For instance, if an instruction activates the sequence
(D + B - H) < F, the first state of CAD-I fetches the in
struction, the second state executes D + B, the third state
performs (D + B) - H, and the fourth state executes the com
parison (D + B - H) < F. All of these operations are distrib
uted among separate stages, however, in a pipeline so that
stage Co fetches the instruction, stage Cl executes D + B,
stage C2 executes (D + B) - H, and C3 stage compares
(D + B - H) and F. Each stage therefore executes only one
operation out ofthe whole sequence. Furthermore, two stages
C and Ci+ 1 may concurrently execute two operations acti
vated by instructions PIj and PIj + l respectively. The CAD-I
sequencer of each stage must therefore acquire any of its

states for the time intervalit keeps instruction PI. At the next
time interval a new PI instruction will be written to this stage,
and the CAD-I must establish another state that corresponds
to that instruction.

It then follows that for noniterative operations (addition,
subtraction, Boolean) the CAD-I functions as a decoder,
CAD-ID, and for iterative operations (multiplication, divi
sion, etc.) it works as a sequencer, CAD-IS (Fig. 3). The
functioning of the CAD-land CAD-Mis controlled by several
codes either stored in PE or brought by instruction PI, and
they may lead to changing the time, T, assigned to an oper
ation executed in a stage. Let us see how this may be accom
plished.

The time of operation, Tis T= to·b, where to is the time of
h -bit addition in one PE, and b depends on the opcode SOP
and processor code p specifying the time of processor de
pendent operations. Since to is the minimal time interval, it is
assumed that it is the period of a synchronization sequence.
Then code p shows the number of clock periods, to, that a
processor dependent operation needs to execute in a k· h -bit
processor.

For linear carry propagation, p = k, for non-linear carry
propagation with CLA circuits, p < k. If CLA circuits are
used in a k· h-bit processor, two codes, k and p, are required
to organize the minimal time of a processor-dependent oper
ation: k reconfigures the processor into the minimal size
needed, and p generates a minimal time interval. To reduce
the bit size of the PI instruction, it will be taken as accepted
that a set of all possible p codes is stored in a register Yl of
each PE, so that the k code brought by the PI instruction
selects the necessary p code (Fig. 3).

The variable time T for a processor dependent operation is
generated as follows: T = P . to: i.e., b = p. If p > 1, it in'itiates
the CAD-M into passing a loop containing p states. Each
state lasts one to. During this time, the decoder CAD-ID
maintains microcommand MIC which activates operation in
the processor. When CAD-M completes its loop it issues a
completion signal, CS. This terminates the microcommand. If
no CLA circuits are used, then T= k· to, and CAD-M passes
a loop containing k states. Therefore by changing the adapta
tion code k stored in the PI instruction, one changes the time
T of a processor dependent operation executed in a stage.

If the operation is independent of the processor, then it is
activated via decoder CAD-ID only, i.e., CAD-M is not ini
tiated and the operation takes the time T = to of one small
clock period, i.e., b = 1. If stage C executes iterative oper
ation (multiplication, division), CAD-IS sequencer executes a
sequence containing severa) states. If a state in this sequence
has to last p' to or k· to, then the CAD-IS initiates CAD-M
and performs transition to the next state under the completion
signal CS issued by the CAD-M.

Example. Let the processor of the C stage reconfigure its
size in 16-bit increments from 16 to 64 bits. Assume that the
k . h -bit adder uses 4-bit CLA circuits. This gives the time
to= 12td of one clock period (16-bit addition), where td is one
gate delay. Suppose that the C stage executes three con
secutive instructions PI1, Ph, PI3 , which activate respectively
64 bit addition (PI 1) 16-bit subtraction (Ph) and 32-bit logical
multiplication (PI3). The PI instruction stores adaptation code
k = 4, (64/16 = 4) that selects processor code p = 3 (more de-

Adaptable Pipeline System 117

MIC's

CAD·M CAD-IS

Y,

Figure 3--Control unit in pipeline stage C j

tails on finding p are given in Kartashev and Kartashev
(1979)10 and Kartashev et al. (1979)11); the p code activates
CAD-M into passing a loop containing three states so the
64-bit addition is executed during the time T = 3to • The next
Ph instruction stores k = 1 (16/16 = 1) that selects p = 1 and
the 16-bit subtraction takes the time T = to. The Ph in
struction activates logical multiplication independent of the
processor size. The instruction stores no k and the operation
takes the time T = to.

F. ORGANIZATION OF A PIPELINE STAGE

Generally, computation in a stage C; performed by PI in
struction is similar to that of a 3-addressed instruction in a
conventional computer. Symbolically it can be presented as *,
AI, A2~A3, where * stands for an operation assigned to
stage Ci ; AI, A2, A3 are the addresses respectively of first
and second operands and computational result. Beginning
second stage, i.e., for i > 1 the first operand is transferred to

SOP w k

stage C, from the preceding stage C-I, the second operand
is fetched via address A2 from data memory Mi if it is initial
data word, or from register memory RMi , if it is a temporary
result. For this case Mi stores address of the second operand
which then accesses the RMi . The computational result of
stage C may be sent in two directions: to the next stage Ci + I
and to the register memory RMj of some other stage Cj • For
this case the connecting element ASE i generates the A3ad
dress of RMj .

For the stage CI (i = 1), both operands must be fetched
from memory since computation of the PI instruction begins
since CI. Further, since RMI memory is small, it cannot store
all first operands for CI stage, otherwise it will ,be required
that its size be equal to that of data memory MI. Thus the PI
processor in stage CI (Fig. 1) must be connected in parallel
with two data memories Mt, and MI*; so that MI stores the
first operand accessed by address A 1. MI * stores either the
second operand or its address, if the second operand as a
temporary result is stored in RMI.

Such organization of computations in one stage of a dynam-

f(M) AD

Basic instruction

SOP w k

PI instruction AI instruction
Figure 4-0rganization of pipeline stage Cj

118 National Computer Conference, 1981

............

d

r···········

illiL · · .

... L.
A2

Zs

Z4 ::::::::::

iiiiiE!!:!:ii:!i!:!iii!!!ii!!!!:!:!:!:!i!!:!!!!i!!iii!iii:::::

Ap

B~

..............

..................................

...............

................

from main
memory

Figure 5-Registers in Pi used for pipelined mode of operation

to main
memory

ic pipeline leads to the following hardware diagram of each C;
(CI in addition to all hardware units contained in any stage Ci
must contain an additional data memory M*). One pipeline
stage C; contains the processor Pi (Fig. 4), data memory Mi
for storing initial data words, register memory RMi for storing
temporary results, the MSEi connecting element for propa
gating PI instruction, the ASEi connecting element for prop
agating AI instruction, the Hand E logical circuits for broad
casting respectively temporary results and their addresses to
register memories RM, and the logical circuit TSi which acti
vates the address transfer from Mi to RMi memory.

The Pi processor is assembled from n h -bit processor ele
ments PEt, ... , PEn and may assume h, 2h, . .. , n' h-bit sizes.
To organize pipelined mode of operation, a Pi should contain
the following registers (Fig. 5): instruction PI is received to R5
register through pins Z3; the first operand computed in the
previous stage is received through pins Zl to R3 register; R4
register stores the second operand if it is fetched from data
memory Mi through Z2 pins; Rl and R2 registers may store
alternatively second operand if it is fetched from register
memory RM; (partitioned into two levels) through Z6 and Zs
pins respectively. (For the stage Ct, when fetched from data
memory M * the second operand may be written to R 1 or R 2
registers.)

The data memory Mi stores either initial data words for the
Pi processor or the addresses A 2 of second operands provided
these are fetched from RMi. The logical circuit TSi broadcasts
the A 2 address fetched from Mi to RM; register memory. It
is activated by a special tag bit e stored in the AI instruction
that shows which memory M or RM stores the second operand
needed by Pi processor. In order to be capable of updating its
content without degrading the pipeline performance, each Mi
is partitioned into two levels I-M; and 2-M;; each level is
connected in parallel with the processor Pi of the same stage
and the common main memory of the pipeline. Consequently,
when one level (I-M or 2-M) is used for fetching addresses or
operands, another level updates its content by receiving new
block of initial words from the main memory. (In stage Ct,
both MI and MI * memories are partitioned into two levels
I-Mt,2-Mt, I-MI * ,2-MI *). Thus a dynamic pipeline does not
stop due to the absence of initial data words.

To increase the update time during which the memory Mi
may update its content, Mi may be partitioned into r levels,
I-M;, 2-M; . .. , r-Mi. Then if T M is the time when one level is
working in the pipeline, it may update its content during the
time (r - 1) T M. A switch from one level to another is per
formed by generating a new base address B.

The effective address of the M; memory is E = B + Ap,
where the base address B is sent continuously from initial
stage Co to all data memories of the pipeline, Ap is a relative
address stored in PI instruction. The memory M; that receives
£ = B + Ap either fetches the second operand directly
(£ = A2) or indirectly, i.e., E fetchesA2 which then accesses
second operand from RM.

The RMi register memory stores the temporary results for
Pi that may be computed by a local P; or by any other pro
cessor Pj in the pipeline. During the same time interval, one
RMi may be accessed twice: when PI instruction writes tem
porary result into this RM and the next PI fetches the second
operand from the same RM. It then follows that the register

Adaptable Pipeline System 119

memory in a stage must be also partitioned into two levels
1-RMi and 2-RM; to perform these accesses in parallel.

In stage C; data exchanges between the P; processor and
register memories, RMt, RM2 , ••• , RMF belonging to stages
Ct, C2 , • •• , CF respectively are performed via logical circuits
HI, . .. , H F respectively so that H j connects P; with RMj

(j = 1, ... , F). The address A3 of a memory cell in RMj that
has to store a temporary result computed by the Pi processor
is sent to RMj as follows. The ASEi element which stores the
AI instruction during the time Pi processor executes its PI
portion generates position code dj and destination address A 3
in RMj • This address is sent concurrently to F logical circuits
E I , • •• , EF where each Ej (j = 1, ... , F) broadcasts the desti
nation address to RMj • Selection of Ej is performed with
position code dj • Thus the same position code dj selects Ej and
Hj for broadcasting both address and data word to RMj •

Example. Let PI instruction compute the formula
(A + B - D)2 - K and the temporary result (A + B - D) be
sent to register memory RMI of stage CI into a cell, say #57,
because stage CI will use this result for another instruction.
The PI instruction executes A + B in stage CI and A + B - D
in stage C2 • The A + B - D result is sent in two directions: to
stage C3 which performs (A + B - D)2 and to RMI of stage
CI. To send a temporary result to RM1, the ASE2 connecting
element generates position code d = 1, (i.e., signal d l is acti
vated) and destination address A3 = 57. Signal d1 activates £1
and HI circuits in stage C2 which connect C2 with RMI via
address and data bus respectively. Thus RMI receives both the
address #57 transferred via EI and the result (A + B - D)
transferred via HI.

The final result of each PI instruction may be written to the
main memory of the pipeline system. This will require that the
PI instruction in addition to relative address Ap of M; data
memories store the destination address of the main memory.
To eliminate storage of this address from the PI instruction,
the following organization is proposed. A PI that implements
sequence of w operations obtains the final result in stage Cwo
Therefore the next stage Cw+ I has an empty cell in address
B + Ap . of M w+ I accessed by this PI. It then follows that a
programmer may store in the B + Ap address of M w+ I the
destination address of main memory that has to receive the
final result of this PI. When the PI instruction is transferred
to Cw + I, this address is fetched from M w+ I to the R4 register
of P w+ I processor. Thus P w+ I receives both the final result into
its R3 register and the main memory address of this result into
the R4 register. Therefore P w +1 may transfer both data word
and its address to the main memory through pins Z6 and Zs
and logical circuit HF+I (in Fig. 3, H F+ I = H II , since F = 10).
This circuit is activated by equality signal w produced in the
last connecting element MSE w which propagates the PI in
struction to stage Cw+ I. The last MSEw which propagates PI
instruction is recognized via equality d = w between its posi
tion code dw and the code w stored in PI which shows how
many stages execute PI.

G. ADDRESSING PROCEDURES FOR
TEMPORARY RESULTS

Each instruction PI realizing w operations may obtain w tem
porary results. To preserve flexibility of programming a pro-

120 National Computer Conference, 1981

Zs

...

I Rl I R2 I

p.
1

I

............................

R3 I

I R4

.

I Adder I
::::1
: : : :l :
. : : : -.-;-.
••••••• " • eo •••••••••

I Rs
li~ilZ
15551 3 ,
-!;

I

::: :::: ::: ::;1

Figure 6-Address elements ASE

grammer should be allowed to send these results to any regis
ter memory RM. Since a separate destination address A3 and
position code dj of RMj may be required for the temporary
result computed in each stage C;, to send all w temporary
results of instruction PI to register memories will require an
addresses field in d x w x A3 bits. For instance, in a pipeline
with 10 stages (code d = log21O =4 bits) and with a register
memory of 256 cells per stage (A3 = 8 bits), the instruction PI
containing 10 operations (code w = 4 bits) will require an
address field of d x w x A3 = 4 x 4 x 8 = 128 bits.

Let us introduce one organization that eliminates the stor
age of these addresses from the instruction fields (AI and PI).
Instead each instruction AI stores only one 8-bit address am
but the capability of each stage to generate new meanings of
A3 and dj is preserved.

Each stage C; of a dynamic pipeline is provided with the
address element ASE;. The ASE; stores AI instruction during
the time stage C; stores the PI instruction; i.e., the propaga
tion of the AI instruction through the connecting element
ASE is synchronized by the propagation of the PI instruction
through pipeline stage C. Each ASE consists of a micro
processor UM and memory AM (Fig. 6) partitioned into two
levels I-AM and 2-AM. One level works with the pipeline and
the second updates its own contents. A switch from one level
to another is accomplished by changing the base address D

produced by stage Co. This results in a new effective address
E= D + an·

The relative address an is stored in the AI instruction and
accesses the cell of AM memory (I-AM or 2-AM) that stores
the following information.

1. The position code dj of register memory RMj that is to
receive the temporary result.

2. An address modification constant AMC selected by the
programmer as follows: If A3 is the address of the tem
porary result then A3 = an±AMC.

3. An indexing increment f(RM) of register memory RM
for the case that the PI instruction in stage C; performs
vector computations and C; computes an array of tempo
rary results that should be sent to several addresses A3
of RMj differing from each other by an indexing in
crement f(RM). Namely, each next address A3 =
A3 * + f(RM), where A3 * is the current address.

4. Two tag bits e(A2) and e(A3). Bit e(A2) shows whether
memory RM; or M; stores the second operand needed
by stage C;; i.e., it activates broadcast of the A2 address
fetched from M; through circuit TS;. Bit e(A3) shows
whether or not stage C; should generate addresses dj and
A3 for the temporary result.

When the instruction AI is received by the ASE element it
is written to UM, and the address an stored in the instruction
field fetches one cell of memory AM. As a result, UM gener
ates dj and destination address A3 as A3 = an ± AMC for sca
lar computations or A3 = A3* + f(RM) for vector com
putations. By writing different values of CMA, d, e, and
f(RM) to the same cell an of each memory AM accessed by
instruction Alone accomplishes variation in the addresses dj

and A3 generated by each ASE element. The instruction PI
implementing w operations may therefore send all its tempo
rary results to w different addresses dj and A3.

Since the minimal operation time in every stage is the time
of 16-bit addition, whereas the A3 address modification pro
cedure in each ASE takes the time of an 8-bit addition (inas
much as each A3 is an 8-bit address), the access time of any
AM memory should not exceed the time of an 8-bit addition.

For vector computations executed over an array of data
words having array dimension AD, the Co computer blocks
further instruction fetch while the same instruction propa
gates through the pipeline ,AD times to perform the vector
computation. Each time its PI portion begins to travel through
the consecutive pipeline stages, the Po processor generates a
new meaning for the relative address Ap+f(M), where f(M)
is an indexing increment for the data memories M. This allows
memory to be accessed by a new effective address E =
Bo+Ap+f(M). The AI portion likewise obtains new meaning
of address A3 in the ASE connecting element as A3 = A3* +
f(RM), where f(RM) is an indexing increment for memory
RM.

Example. Let instruction PI, computed in stages Ct through
C4 , send computational results of stages C2 and C4 to RM3
(address A3 = 127) and RM t (address A3 =98) respectively.
The remaining results are not sent to register memories. Let
the AI portion of this instruction store relative address an =71.
Then in ASEt, cell #71 of memory AM stores e(A3) = 0, i.e.,
ASE t generates neither A3 nor dj • In ASE2, cell #71 stores
AMC = 56, dj = 3, e(A3) = 1, because A3 = 127 and an=71,
give AMC = A3 - an=56. ASE3 has e(A3) = 0 in cell #71,
and no A3 and no dj are generated. ASE4 has cell #71 of its
AM storing AMC = 27 and dj = 1, because AMC = A3 - an
= 98 -71 = 27.

H. INSTRUCTION FORMATS

In a dynamic pipeline there are two instruction formats: basic
and auxiliary. A basic instruction performs computations, and
an auxiliary instruction brings to the pipeline new base ad
dresses Bo , D, and some other values. Every instruction
(basic or auxiliary) occupies one cell of the memory Mo. The
basic instruction is partitioned into three portions PI, AI, and
VI, where PI propagates through the MSE bus; AI propagates
through the ASE bus; VI does not propagate in the pipeline
but is stored in processor Pu. It is used for vector com
putations.

Instruction PI stores adaptation codes (SOP, w, k) and
relative address of data memories, Mi. Instruction AI stores
a two-bit opcode OP and relative address an of AM memories
assigned to ASE elements; Instruction VI stores array dimen
sion AD and indexing incrementf(M) for memories Mi. We

Adaptable Pipeline System 121

will need to find the bit size of the basic instruction format. If
the dynamic pipeline realizes an instruction set containing not
more than 256 instructions, SOP = log2 256 = 8 bits. The code
w = log2F where F is the total number of stages; for w = 4,
one obtains pipelines with up to 16 stages. The code k is
determined by the number n of processor elements PE assem
bled into a single processor Pi, i.e. k = log2n. If the Pi con
tains four 16-bit PE's, k = log2 4 = 2. Such a Pi may assume
word sizes ranging from 16 to 64 bits in 16 bit increments (16,
32,48,64). The address Ap is the relative address in one page
of memory Mi. If Ap=12 bits, this will allow the use of pages
containing 2,048 cells. The indexing incrementf(M) =7 bits;
and the array dimension AD = 12 bits. This will allow one to
compute with one instruction a data array occupying an entire
page. The address an is an 8-bit address that allows com
putation of 8-bit addresses in RM memories. The two bit code
OP is not included into the basic instruction since it is formed
by opcode SOP for vector computations. Thus the overall bit
size BI of a Basic instruction is:BI = 8+ 4 + 2 + 12 + 7
+ 12 + 8 = 53 bits. Of those bits PI = 8 + 4 + 2 + 12 = 26 bits
and AI = 10 bits.

In spite of their insignificant bit sizes, instructions PI and AI
bring to each stage all the information about operands and
operations needed to accomplish effective pipeline adapta
tions to the algorithm executing and to perform fast trans
mission of temporary results computed by pipeline stages
without degrading pipeline performance.

I. SYNCHRONIZATION OF COMPUTATIONS
IN A DYNAMIC PIPELINE

At each time interval pipeline stage C; performs two phases of
the computation concurrently: (a) basic phase, aimed at exe
cution of the operation provided by current PIj instruction;
and (b) preparatory phase, aimed at preparing operands for
the next PIj + t instruction in the same pipeline stage.

Let us consider the actions executed in pipeline stage C; by
b~sic and preparatory phases respectively.

1. Basic Phase

This phase executes the operation assigned by instruction
PI to stage C;. The PI instruction is stored in register R5 of the
Pi processor. It was written there during the clock pulse mark
ing the end of the PIeceding time interval. The operation is
performed over two operands stored in registers of processor
Pi. The result of the operation may be sent to any combina
tion of the following destinations:

a. P processor of the next stage: By passing through the Z4
pins of processor Pi, the result is written to the R3 reg
ister of the next processor, Pi+ t. This occurs when pro
cessor Pi+ t completes its basic phase.

b. Register memory RM of any pipeline stage: This transfer
is performed through the pair of circuits Hand E de
scribed above and activated by position code d.

c. Main memory of the pipeline: The transfer is made
through the circuit H F+ t •

122 National Computer Conference, 1981

AI
::!:!:!:::!:!:!:::!:!:!:::.

~~~~ -:.:. an-71 

llll an 

UM 

e AMC dj 

o 10 ••• 0 000 

l-AM 

:::: '" :.:. r-;1_~-------1 

2-AM 

AI UM 

e AMC dj 

J--....,. .... 1 I 56 3 
an=71 

l-AM 

.............. 

2-AM 

AI UM 

::::~:...:..:. 

l-AM 

F":~ 
.............. .............. .............. 

2-AM 

AI UM 

. ............ . 

e AMC dj 

1 I 27 1 

l-AM 

. ............ . 

2-AM 

AI D 
Figure 7-Instruction formats 

2. Preparatory Phase 

In each pipeline stage, the preparatory phase of the next 
instruction is executed concurrently with the basic phase of 
the present instruction. The objective of the preparatory 
phase is to prepare operands for the next PI instruction to be 
executed in the same stage. Let us establish the actions exe
cuted in pipeline stage C; during the preparatory phase: 

a. Fetch of an operand from data memory M or register 
memory RM attached to the stage. An operand needed for 
stage C; may be fetched either from data memory M or regis
ter memory RM. To this end memory M is accessed by the 
effective address B + Ap where Ap is the relative address 
stored in instruction PI in the beginning of the preparatory 
phase. If the operand is stored in M, it is fetched to the R4 
register by using the address B + Ap (Fig. 5). If it is stored in 
RM, then the B + Ap address of M fetches the address A2 
and address A2 accesses memory RM via logic TS;. Writing of 
the operand to a register of processor P; (R4, Rl, R2) is 

performed at the clock pulse that signals the end of the prep
aratory phase. 

b. Writing the next PI instruction. Every PI instruction is 
written to register R5 of stage P; from the left connecting 
element MSE;-I at the last clock pulse of the preparatory 
phase. 

c. Writing the result of the operation executed in stage 
C-l. Processor P; receives this operand to its register R3. 

Since the actions (a) to (c) prepare all the information 
necessary for the next basic phase, the preparatory phase ends 
on completion of these actions. 

3. Synchronization of Basic and Prepatory Phases 

Since each pipeline stage is equipped with the modular 
control organization, it may generate the minimal operation 
times for all the operations it executes. However, imple
mentation of a variable operation time in a stage requires 



synchronization of the preparatory and basic phases of two 
consecutive instructions Plj and Plj + I. Any next Plj + I and its 
two operands can be written to processor registers of a pipe
line stage only at the moment of time when the present in
struction Plj has ended its basic phase in this stage. Therefore, 
for any pipeline stage, the preparatory phase for instruction 
Plj + I cannot be shorter than the basic phase for the preceding 
instruction Plj • 

Furthermore, since the preparatory phase in a stage pre
pares two operands for the next basic phase, its time cannot 
be shorter than the times of preparing both operands. One 
operand to be fetched from memories M or RM can be made 
available during the basic phase of instruction PI j provided the 
time of direct access for M or indirect access for RM is shorter 
than the time of the shortest basic phase in a stage (16-bit 
addition). This is the basis for selecting the memory access 
times for M and RM. As for another operand being received 
from the preceding stage, C-h it may be written to stage C 
only when C-I completes its operation. It then follows that if 
C-I executes a shorter operation than C, the result from C-I 
appears before C; completes its basic phase. For this case the 
preparatory phase in Ci coincides with its basic phase since the 
operands prepared by the preparatory phase may be written 
to Ci only when it completes its basic phase. 

Therefore, for two pipeline stages Ci- I and C executing 
shorter and longer operations respectively, the time for the 
preparatory phase in Ci coincides with the time of the basic 
phase in the same Ci • If, on the other hand, stage C-I exe
cutes a longer operation than C, then the operand from stage 
C-I appears after Ci completes its operation. Then the prep
aratory phase in C is determined by the basic phase in Ci- I 

and will last longer than the basic phase in C. Hence, for two 
pipeline stages C-I and C executing longer and shorter oper
ations respectively, the time of the preparatory phase in Ci 
matches that of the basic phase in C-I. 

It then follows from the above that the preparatory phase 
for stage C either coincides with the basic phase of the same 
Ci or with the basic phase of the preceding Ci- I • The prepara
tory phase thus introduces no additional delay into the rate of 
pipeline operation as determined by consecutive durations of 
its basic phases, provided the memory access times for M and 
RM do not exceed the time of the shortest basic phase. 

Thus we have shown that for a pair of stages Ci - I and C;, the 
right stage, Ci, must synchronize its left neighbor Ci- I if C 
executes a longer operation than C-h and the left stage, C- h 
must synchronize Ci if Ci- I executes a longer operation than 
Ci does. 

Consider how such synchronization may be accomplished. 
In each pipeline stage, the completion of its basic phase occurs 
when the operation sequencer, CAD-M ends its loop and 
performs a transition to its initial state recognized by com
pletion signal, CSi. If stage Ci synchronizes Ci- 1, it must delay 
transition to the initial state of CAD-M in Ci- I until CAD-M 
in Ci establishes the state that immediately precedes the initial 
one. At the next clock period both CAD-M's perform concur
rent transitions to their initial state, which will mean concur
rent with the end of basic phases in Ci - I and C;. Namely, any 
transition of CAD-M in C-I to the initial state has to be 
activated by signal PRi produced in CAD-M of Ci by the state 
which precedes the initial one. This means that in the pipeline 

Adaptable Pipeline System 123 

each right processor Pi has to be connected with its next left 
processor Pi-I via a one-line connection, sending signal PRi 
produced by CAD-M to Pi. This signal activates transition of 
each left CAD-M to the initial state. This will accomplish 
synchronization of shorter and longer basic phases executed in 
C-I and Ci respectively. 

If Ci- 1 and C execute longer and shorter basic phases 
respectively, then the PRi generated in CAD-M of Ci cannot 
be used for synchronization, since CAD-M in Ci finished its 
operation much earlier than that in C-l. For this case the time 
when C-I completes execution and issues an operand for C 
can be determined by the PRi- 1 signal generated by CAD-M 
in Ci- I. Indeed, at the next clock period C-I will send the 
operand to register R3 of Ci causing completion of the prep
aratory phase in Ci • This can be accomplished if each left 
processor Pi-I is connected with its next right neighbor Pi via 
a one-line connection sending signal PRi- 1 produced by 
CAD-M in Pi-I. This signal will enable writing of two oper
ands and PI instruction to registers of processor Pi' 

Thus the synchronization of phases considered here re
quires that every pair of neighbors Pi-I and Pi be connected 
with two lines, so that using one line Pi synchronizes Pi-I with 
signal PRi generated in Pi and using another line Pi-I syn
chronizes Pi with signal PRi- 1 generated by Pi-I. 

J. CONCLUSIONS 

A dynamic pipeline performs a high degree of architectural 
adaptation toward executing algorithms. It eliminates the 
need for pipeline reconfiguration and its immediate con
sequences-time overheads and program restructuring. Pro
gramming for a dynamic pipeline is very simple and, prac
tically, it does not deviate from programming for conventional 
computers. 

One can state that a dynamic pipeline is a new type of 
general-purpose computer that may perform pipelined com
putations. It allows elimination of the time of memory acces
ses from the time of program execution, bearing no penalty 
for dedication, which is the price all existing pipe lined systems 
pay for the performance gains they achieve. 

REFERENCES 

1. Ramamoorthy, C. V. and Li, H. F., "Pipeline Architecture," ACM Com
puting Surveys, Vol. 9, No.1, March 1977, pp. 61-102. 

2. Irwin, M. J., "Reconfigurable Pipeline Systems," Proceedings 1978 ACM 
Annual Conflorence, Vol. 1. pp. 86-92. 

3. Ibbett, R. N., and Capon, P.c., "The Development ofthc MU5 Computer 
System," Commwiications of the ACM, Vol. 21, No.1, January 1978, pp. 
13-24. 

4. Watson, W. J., "The TI ASC-A Highly Modular and Flexible Super 
Computer Architecture," In AFlPS 1972 Fall Jt. Computer Conf.. AFIPS 
Press, Montvale, N.J., 1972, pp. 221-228. 

5. Russell, R. M., "The CRAY-l Computer System" Communications ACM, 
Vol. 21, January 1978, pp. 63-72. 

6. Reddi, S. S. and Feustel, E. A., "A Restructurable Computer System," 
IEEE Transactions on Computers, Vol. C-27; No.1, January 1978, pp. 
1-20. 

7. Thomasian, A., and Avizienis, A., "A Design Study of a Shared-Resource 
Computer System," Proceedings of the Third International Symposium on 
Computer Architecture, 1976, pp. 105-111. 



124 National Computer Conference, 1981 

8. Anderson, D. W.,Sparacio, F. J., and Tomasulo, R. M., "IBM System 360 
Model 91, Machine Philosophy and Instruction Handling," IBM Journal of 
Research and Development, January 1967, pp. 8-24. 

9. Kartashev, S. I. and Kartashev, S. P., "Dynamic Architectures: Problems 
and Solutions," Computer, Vol. 11, July 1978, pp. 26-40. 

10. Kartashev, S. I. and Kartashev, S. P., "Multicomputer System with Dy
namic Architecture," IEEE Transactions on Computers, Vol. C-28, No. 10, 
October 1979, pp. 704-721. 

II. Kartashev,S. I., Kartashev, S. P: and Ramamoorthy, C. V., "Adaptation 
Properties for Dynamic Architectures," J979 National Computer Con
ference, AFlPS Conference Proceedings, AFlPS Press, 1979, Vol. 48, pp. 
543-556. 

12. Kartashev, S. I. and Kartashev, S. P., "A Microprocessor with Modular 
Control as a Universal Building Block for Complex Computers," Proc. 3rd 
Euromicro Symposium on Microprocessing and Microprogramming, Am
sterdam, 1977, pp. 210-216. 



Modular crossbar switch for large-scale multiprocessor 
systems-structure and implementation* 

by BERNHARD QUATEMBER 
Johannes Kepler University 
Linz, Austria 

ABSTRACT 

This paper describes the architecture of an innovative modu
lar crossbar switch for large-scale multiprocessor systems; its 
modular design principle is given a particularly thorough 
treatment. The crucial points of this design principle are the 
utilization of bit-serial buses and an integration of a combina
tion of crosspoints with its own microprogrammed controller, 
(which is designated as "configurational processor") into a 
single building block, preferably an IC. This innovative con
cept allows the implementation of full crossbar switches for 
systems up to about 128 processors at relatively low cost. The 
expense of a crossbar for a system with approximately 1024 
processing elements is then comparable to that of the other 
parts of the whole system. 

A particular implementation of such a crossbar switch is 
embedded in a large-scale multi microprocessor system being 
built at the Johannes Kepler University in Linz, Austria. This 
implementation is discussed in detail; emphasis is given to the 
complexity of its functional elements and its hardware ex
pense. Since no ICs have yet been produced for the realization 
of the new building block for the crossbar mentioned above, 
this building block is realized on a printed circuit board using 
standard LSI-circuits. 

INTRODUCTION 

Up to the present, most multiprocessor systems have been 
built with relatively small numbers of processors. However, 
there is substantial interest in systems with a larger number of 
processors. Bearing in mind the decreasing cost of hardware, 
it has become reasQ,tlable to consider the implementation of 
large-scale mUltiprocessor systems wherein the most chal
lenging problem would now be the realization of a high per
formance interconnection subsystem (processor-to-memory 
switch). This problem has not yet been solved satisfactorily. 
There are very few concepts that could be applied for large
scale systems. Probably the best known among them and the 
only one which can be regarded as efficient is the ~rchitectural 
concept of the CM*-system. I-4 The usefulness of this concept 

*This work was supported by Grant No. 3896 from Fonds zur Forderung der 
wissenschaftlichen Forschung (Austrian Research Council). 

125 

is based mainly on the assumption that memory references 
proceeding across cluster boundaries occur very infrequently. 
This assumption is of course justified in numerous fields of 
application. Nevertheless, there are further opportunities for 
possible utilization of a large-scale multiprocessor system 
where this assumption is not true. 5 In these cases, the 
processor-to-memory switch of the CM*-system would not 
suffice to fulfill the requirements. Examining the known de
sign concepts for interconnection networks,I-4,6-19 we have 
reached the conclusion that they do not form a useful basis for 
the realization of a large-scale multiprocessor system with a 
very wide range of applicability. In our latest investigations we 
have focused on the availability of a crossbar switch, since this 
type of processor-to-memory switch would have definite ad
vantages, particularly for large-scale systems. Unfortunately, 
its realization for large-scale systems based on the known 
design conceptslO

-
17 would be much too complex and ex

pensive, as shown below. It is the purpose of this paper to 
present an innovative design concept that allows an inexpen
sive implementation of crossbar switches for multiprocessor 
systems with several hundreds of processing elements. 

STATE-OF-THE-ART CROSSBAR SWITCHES AND 
THE APPLICABILITY OF THEIR DESIGN PRINCIPLES 
FOR LARGE SCALE MULTIPROCESSOR SYSTEMS 

The known design principles for the extraordinarily well
suited crossbar switch have been thoroughly described in the 
literature. 10-17 These descriptions are confined to systems with 
a relatively small number of processing elements (up to about 
16 processing elements). The question naturally arises, 
whether these design principles could be utilized for large
scale systems. So far, there are several remarks in the current 
literature18

-
2o to the effect that the use of these principles as a 

basis for the implementation of a large-scale crossbar would 
result in much too complex and expensive hardware. How
ever~ the reasons for this difficulty have not been clearly 
pointed out. For this reason we have carried out a thorough 
and careful analysis of this topic. 21 We were able to show that 
the hardware expense is caused not only by the complexity of 
functional elements (switches, decoders, etc.) but also (and 
mainly) by the complexity of wiring and cabling (as sum
marized below), particularly for the architectures of the 



126 National Computer Conference, 1981 

C.mmp-system and the Multi-Interpreter-System of Bur-~ 
roughs. The well-known design concept of the C.mmp
system12

-
14 requires an extraordinarily high number of 

switches due to the considerable bus width and the quadratic 
complexity of crosspoints. Even worse would be the complex 
wiring needed for realization of the buses and for the requisite 
large number of interconnection lines between the control 
units of the switches and the switches themselves, since in 
both cases expensive "off-chip/on-board"-interconnection 
lines and even more expensive "off-board" -interconnection 
lines would be predominant. The design principle of the 
Multi-Interpreter-System of Burroughs15

,16 makes full use of 
bit-serial buses provided for the crossbar. Nevertheless, the 
quadratic complexity of the required interconnection lines 
between the single control unit for the switches and the 
switches themselves, which, unfortunately, have to be very 
expensive "off-board" -interconnection lines, precludes this 
concept from the implementation of large-scale systems. 

As both the C.mmp-system and the Multi-Interpreter
System of Burroughs were proposed several years ago, it is 
reasonable to ask whether the progress in IC technology in 
recent years and the progress predicted for the future could 
influence the implementation of large-scale crossbars. An ear
lier discussion of this21 shows that the gigantic progress in IC 
technology cannot be fully exploited when the known design 
principles for crossbars are applied, mainly for the following 
reasons: 

1. due to the fact that the number of pins on an IC is limited 
(the maximum is about 60 pins), it is impossible to imple
ment the whole crossbar on a single chip. Hence it is 
necessary to subdivide the crossbar into smaller building 
blocks; and 

2. there is no conceivable way of subdividing the crossbar 
in an advantageous manner so that the expense of wiring 
and cabling would remain within a reasonable limit. 

Thus the system organization has become the only area in 
which major improvements are conceivable, and the following 
discussion should be regarded as an attempt in this direction. 

RATIONALE OF THE INNOVATIVE, 
MODULAR CROSSBAR SWITCH 

Design Goals 

(1) The prime design goal is to guarantee the feasibility of 
the crossbar switch for large-scale multiprocessor sys
tems. It has been shown that the manner in which the 
required subdivision into smaller building blocks is car
ried out plays an important role in connection with the 
applicability of the respective design concept for large
scale systems and there is no doubt that to achieve this 
goal (feasibility) one must solve the problem of dis
covering a new organization that will be based on a 
more appropriate subdivision of the crossbar. 

(2) As in all computer systems, a high degree of modularity 

with a minimal number of types of building blocks 
would be desirable. Thus, a further goal of this design 
concept is to allow the implementation of a crossbar 
with a minimal number of types of building blocks, 
preferably a single type (that is, with a multitude of 
identical building blocks). 

(3) Another design goal, whIch is to some extent related to 
those mentioned above, is the good extensibility of the 
crossbar, since in large-scale multiprocessor systems we 
have to reckon with varying numbers of processors or 
processing elements. Thus the ease of growth without 
major changes of the hardware design (particularly 
without changes in the arrangement of card frames and 
the housing of these frames in the cabinets) is of great 
importance. 

(4) As seen above, predictions for future improvements 
within the framework of known design principles in the 
implementation of crossbar switches by LSI technology 
are not optimistic. Nevertheless, it is important to look 
for ways to implement the advances in LSI technology 
in order to reduce the size of the crossbar switch and the 
expense of wiring and cabling. It is therefore a further 
important goal of our proposed design concept to 
achieve major improvements in this way, in contrast to 
the known concepts. 

Design Philosophy 

The innovative concept presented here is mainly based on 
the present advances in LSI (VLSI) technology. 

Before presenting the details of this new design approach 
for large-scale crossbar switches, it should be noted that even 
with the new concept it will of course be impossible to avoid 
the quadratic complexity of essential functional elements 
(switches) and of interconnection lines that is typical of the 
crossbar scheme. 

The pivotal points of the new design approach, on the con
trary, are: 

1. to endeavour to distribute the above-mentioned com
plexity, which is inherent in every large scale crossbar 
system, among the separate elements of the physical 
structure so that more complex chips can be employed 
and correspondingly less expensive wiring and cabling 
for the "on-board/off-chip" and especially the "off
board" interconnections can be used; 

2. to keep down the amount of "on-board/off-chip" and 
especially "off-board" interconnection lines and of cer
tain functional elements at the expense of introducing 
additional functional elements and complex functional 
units that have not been used before in crossbar designs; 

3. to implement these new functional elements and units on 
LSI chips as far as possible, together with the requisite 
functional elements that are normally contained in con,. 
ventional crossbar designs and are also necessary in our 
design, in such a manner that the expense of these addi
tional new elements and units will be considerably lower 
than the corresponding savings from the reduced 
amount of costly wiring and cabling. 



Modular Crossbar for Large-Scale Multiprocessor Systems 127 

CONFIGURATIONAL 
BLOCK 

CONFIGURATIONAL 
UNIT 1'-[0_'- -.-._. 

I r~-=-=. r,--=--==::::;-, 
(J) 
w (J) 
::J 
I1l 

o 
w 
:r: 
u 

.. 

-'"' 

i 
I 

i 
I 

j 

I I I .. i. I i I 
• I· • I I • I • 

I i I , i I I i I 
Ii· •• • I II I I Iii Ii. I . I 
. I' II I i I • I . 
I II .i I I i I 

Ii. 
• I I • • • I I ! I 
.1 I 
I i I 
I' I 
II I 

Ii' 

I II I • . I 

I I . I I t I 
i I 

I I . I •. I I . l •. I 
L:. f-.f- .f-~.~ I I ~. f-f- . f-- . f--.:J ~ « I 

I ! • 

I L..:. f-r .-f-. 1-' 

I 

0:: 
a (J) (J) 
w 
u 
a 
0:: 
0.. 

I ~z 1I111111 
OlQ 1111I111 0 

I~glllllill ~ 

1
5 (J)11111111 

I ~z I1111111 
1112 I I I I I I I I 

I ~~ I I " I I I I ~ 
1
5 (J) I I I I I I I I 

I ~zlllllill ffiQ I I I I II11 
I~w III1I11I 

1
5 (J) I I II I I I I 

I111 II I I I I I I I II I II II I III 

i I ~ I I I ~ ! I .. I I I I i I I II I I I 
I : c .I~I 

I I ~ I • ~ I I . I I ~ I 

I L:':- .- .-~=-J L~' f- . -t- . r-.J..,j 
I I J I I I . l . 

L~'---' r-t-. t--'~J 

L. 'r----. _. '-r- r--'--' --_._--.-_. -- -r-.-.--1 
It, if 

II MEMORY - ATTACHED" - BUSES 
Figure l-Canonical crossbar switch structure 

The prime measure for achieving these central aims is to dras
tically decrease the hardware complexity-the number of 
switches and, in part, the amount of "off-board" wiring in
herent in conventional crossbar designs-by employing bit
serial buses at the expense of more complex functional units. 
However, this measure does not suffice. As already re
marked, there is a second reason for hardware complexity, 
namely the complexity associated with the realization of the 
required interconnection lines for control of the switches. 
Conventional crossbar designs provide a single control unit 
(e.g., Burroughs Multi-Interpreter-System) or several control 
units (e.g., C.mmp-system) for control of the switches. This 
unit (or these units) is (geographically) separated from the 
array of crosspoints. In addition, the control information for 
setting and opening the switches (configurational informa
tion) is transferred to the array of switches in a decoded form 
and in a bitparallel manner, resulting in a large number of 
interconnection lines that are, owing to their considerable 
distance, very expensive "off-board" -interconnection lines, in 
many cases even extremely expensive intercabinet cables. Re
turning to the above main points of the design approach as a 
basis, the hardware expense caused by the necessary control 
of the switches can be reduced to a minimum by the following 
two measures: 

1. introducing new functional units with inherent intel
ligence to-control the switches22

•
25 (we call them "con

figurational processors,"* and they are ge<>graphically 
distributed among the whole crossbar); 

2. transferring the configurational information from the 
processors or the processing elements to the config
urational processors in binary coded form and in a bit
serial manner via the bitserial "processor-attached" 
buses of the crossbar switch discussed above. 22·25 

To apply these measures for reduction in wiring expense, the 
crossbar has to be subdivided in an adequate manner. 

Figure 1 depicts how this subdivision is carried out. Several 
crosspoints have been combined to a unit. The number of 
these crosspoints is, in principle, arbitrary, although powers 
of two are preferable. For the number of combined cross
points, we shall now introduce the term "subdivision
number." The 8 crosspoints shown in Figure 1 seems to be a 
reasonable choice for the first implementation of a crossbar 

* We have chosen the term "configurational" (e.g., configurational processor) 
due to the capability of such processors to establish data paths so that the 
totality of established data paths can be regarded as configurations of the 
crossbar or configurations of the whole multiprocessor system. 



128 National Computer Conference, 1981 

"SAMPLE· -I NPUT 

, 

... -

CONFI GURATIONAL 
PROCESSOR 

v 
SWITCHES 

"PROCESSOR - ATTACHED·-.................. ..-.... ...-__ 
BUS 

"MEMORY -ATTACHED" -BUSES 
Figure 2-Block diagram of a configurational unit 

based on the proposed design concept (this implementation 
will be discussed below in detail). However, in other circum
stances it could be more advantageous to combine 16 or 32 
crosspoints. Each of these combinations of crosspoints is pro
vided with its own configurational processor, which is closely 
attached to the switches in the crosspoints. 

This integration of switches and configurational processors 
produces a functional unit, which is depicted in Figure 2 and 
will be referred to as a configurational unit. In this concept, 
such a configurational unit is the smallest unit that could be 
taken into consideration for realization as a single building 
block. However, it is desirable to combine suitable numbers 
of configurational units to form a building block (c.f. Figure 
1), preferably an IC. We refer to such an element as a config
urational block. Figure 3 shows the structure of a config
urational block. For the number of configurational units in 
such a configurational block we shall now introduce the term 
"blocking number." 

Thus as we see from Figures 1 and 4, the whole crossbar 
switch can be realized with building blocks of a single type. It 
is in this implementation with one type of identical building 
block, which can, in addition, be reproduced with ease, that 
the highest conceivable degree of modularity is attained, thus 
fulfilling optimally our design goal of good modularity. 

To weigh the advantages of the new design concept on the 
wiring expense, we have to remember: 

1. that the transfer of the configurational information takes 
place via the "processor-attached" buses, so that no sep
arate wiring has to be provided for this purpose; and 

2. that the only interconnection lines that have to be real
ized are those between the configurational processor and 
switches. This wiring is of course subject to quadratic 
complexity, but the interconnection lines will be either 

"on-chip"-, or in the most unfavourable case, "off
chip/on-board" -interconnection lines (depending on the 
particular form of implementation), in contrast to the 
mainly "off-board" interconnection lines for the pur
pose of control of the switches in a conventional cross
bar. 

As the cost and also the size of the "on-chip" - or "off-chip/on
board"-interconnection lines, which are the only ones now 
required, are essentially lower than the "off-board"-intercon
nection lines that are mainly required otherwise, our goal of 
strongly reducing the expense of the wiring for this purpose 
seems to have been attained. 

The basic hardware structure of a configurational processor 
is depicted in Figure 5 (certain less important details for the 
assessment of the practicability of the new design have been 
omitted, e.g., circuitry for the solution of the bus/memory 
port-contention problem, extension to bidirectional switches, 

r---------------. 
I CONFIGUR- CONFIGURATIONAL I 
I - A~~L BLOCK I 
I ~~ 

..... -+-1' - ...... --I~SWITCHES I 

I IIIIP : 

I 
CO~IGUR-

r-- ATIONAL I 
PROC. 

~ I~} I 
V') ..... -t--...... - ... I.SWITCHES I 
~ - I 111111 I 

~ I I 
So:: I CONFIGUR- I 

r- ATIONAL 
PROC. 

~ I H I 
~ I: SWITCHES I 
• I 11111' I 

I I 
I CONFIGUR- I 

r-- ATIONAL 

I PROC. I 
I ~J, 

.... -+---~--I: SWITCHES I 

I 1111'1'~~mm I L_____ __J 
lit I 

II MEMORY. ATTACHED II. BUSES 

Figure 3-Structure of a configurational block 



Modular Crossbar for Large-Scale Multiprocessor Systems 129 

" PROCESSOR- ATIACHEO"- BUSES 
... 

1--- ------------ 1----------

~ I Iii 11r- Iii I I G> G> g 

I 
c n !ij OJ ::0 OJ 8 CD ::0 (") 

I 
5~ 

0 5 ~ R ~ 0 z • • • z z n - ~ ~ 6 !l 6 ~ :,.;;0 .---- z r;:::::= z - '" z 

I 
,..- » » r-;::::= » r-;:= r r-- r r 

I 
r-- r--

I I 
I 
I I 

I 

I 
I 

I CROSSBAR SECTION I L-______ ._ 
----------- ------ ------- ~ 

Figure 4-Structure of a crossbar section 

adaptions to the special features of the particular multi
processor system). 

As shown in Figure 5, the configurational processor has all 
the essential parts that are usually provided in a micro
programmed processor. However, these parts are not as 
sophisticated as, for example, those of the processor of a 
general purpose computer because of their intended purpose 
as components of a relatively simple controller for the closely 
attached switches. As also shown in Figure 5, for every control 
input of the switches in the configurational processor a sep
arate output is provided, which delivers a signal to these con
trol inputs via a separate line. By means of these output 
signals the switches are set or opened, resulting in each case 
in the establishing or removal of a communication path (or 
possibly-as we will later show in more detail-several com
munication paths) for a memory reference across the cross
bar. 

In contrast to conventional crossbar designs, we have to 
distinguish between two consecutive phases (sequences of 
operations) in every communication via the crossbar: 

1. the establishment of a communication path, 
2. the transfer of the address and data required for a 

memory reference to a memory module (memory bank) 
across the crossbar, and 

3. the removal of the communication path after use (which 
involves operations similar to those in 1). 

It should be noted that once a communication path has been 
established, more than one memory reference to the same 
memory bank can be· effected. 

The communication via the buses of the crossbar occurs in 
an asynchronous, bitserial manner. Therefore no central 
clock is needed. Every processing element and every config
urational processor has its own clock. These clocks are not 
synchronized; however, they do have to be calibrated. 

In order to establish or remove a particular communication 
path, the relevant information (configurational information), 
which is provided by the respective processing element, has to 
be transferred via its "processor-attached" bus to the config
urational processors attached to this bus. During this process 
only the configurational processor that is concerned will ac
cept this information by setting or closing the switch. 

The communication via the bus in the course of the transfer 
of the configurational information takes place on the basis of 
a relatively simple protocol. Among other things that this 
protocol provides is a data format of fixed length with a start 
bit and a stop bit framing a header with the control informa
tion, a body that specifies the crosspoint (in binary coded 
notation), and, as an option, a trailer for error detection and 
correction (the latter will not be considered in this paper). 

The configurational information that is transferred to the 
configurational processor is transmitted to its "sample" input 
(Figure 5). The configurational processor works with a clock 
rate that is considerably higher than the baud rate of the 
information transferred via the bus. Thus, at the ends of suc
cessive time intervals, which are short compared with the 
length of the bits of the information transferred via the bus, 
the configurational information transmitted to the conditional 
input of the control unit decides the branching behavior of the 
(running) microprogram. Hence it is possible to identify a 



130 National Computer Conference, 1981 

FROM 
" PROCESSOR - ATTACHED· -BUS en 

z~ 
"'tJ~ 

~------------------------------~----------------------------------------,c~ ~~ r---, r---------------~-, 
I I I ! ~. ! § ~/ I 

, I )(,1 L • - EXE - ~!4l ~ I 
~ I ~ I CUTIONAl ~ ~~ n 

:;::' '\LJ- J I UN I T ~ ~ es ~ ~ I 
~ ,I /'- 0 ~ n (j) n 
§t--I, ......... a'lJ-l I "-r- - - -1 0 rn~ 0::0 !!! ::0 I 

' ~~+----+---~~~ n ::0 ~ 0 ::;, 'lJ- -I 0 -U /'-- c-u 
~ b, I:(]: I ;0 ~ /Al ___ --I § ~ ~ 13 v---- 52 13 I 
~ ~,! Jll-H-+-... ----tt-----~I__t ~ ~ ~ § '-.J'Ir-------t ~ ~ !!! -< ~ ~ §j I 
~ '\L.J- iTl ~ -i n -n ("") ~» ::0 » 
rn , ;0 6 ..-----'---1 ~ ~ ~ ~ 

~ I 0; ~ ~ ~ I 
"I I I ~~ - I 
I I I It ~I 
'-__ ..I L-______________ :.:.J 
SWITCHES CONFIGURATIONAL PROCESSOR 

Figure 5-Details of a configurational unit (configurational processor) 

start bit, establish synchronization, and thereby sample the 
subsequent bits by firmware means. 

The sequence of bits involved in the transfer of information 
via the bus is sampled and then interpreted by the micro
program. At this point, the header in this configurational 
information enables the microprogram to distinguish, for in
stance, between a transfer of configurational information for 
the establishment (removal) of a communication path and 
other kinds of information transfer. In addition, the header 
also contains the information concerning the establishment or 
removal of a communication path. Suppose that the inter
pretation of the header implies that a communication path is 
to be established or removed. Then the body in the data 
format of the configurational information is also interpreted. 
First the microprogram examines whether there are cross
points attached to the respective configurational processor 
that should be activated or not. If such a crosspoint is to be set 
or opened, a sequence of operations in its executional unit are 
put into action. These operations will be treated after the 
following short discussion of the structure of this unit. As 
represented in Figure 5, the executional uriit contains a so
called configurational register. In this register a single flip-flop 
is provided for each crosspoint. The outputs of these flip-flops 
are also outputs of the whole executional unit. They are con
nected with the switches in the crosspoints belonging to them. 
To establish (remove) a single data path, the respective flip
flop has to be set (reset). An advantage of this new design is 

the ease with which one can design the configurational pro
cessor so that arbitrary bit patterns can be stored in this regis
ter. Thus data paths can be established in which one 
"processor-attached" bus is connected with several "mem
ory-attached" buses, allowing the processing element to write 
in several memory modules (memory banks). This feature will 
be very useful in certain applications and is completely new in 
the field of mUltiprocessor systems. Thus a comparatively 

, complex interconnection structure is established (removed) 
step by step. At each step', a "memory-attached" bus is con
nected (removed) by means of a single item of configurational 
information with the data format discussed above. The com
mand to carry out a connection or a disconnection has to be 
contained, as already mentioned, in the header of the corre
sponding item of configurational information. The body of the 
configurationalinformation contains in binary coded form the 
information which of the crosspoints should be activated. 
After interpretation of this body by the microprogram, the 
control unit delivers this information in a bitparallel and de
coded form to the logic unit represented in Figure 5. This unit 
carries out a suitable boolean operation (for example "or" for 
a connection) on this information and the current content of 
the configurational register. The configurational register is 
then updated, whereby the connection or disconnection of the 
respective bus is directly attained. For the important cases 
where all of the crosspoints are set (opened), two separate 
special procedures, which require only a single item of config-



Modular Crossbar for Large-Scale Multiprocessor Systems 131 

SWITCH 

r---j ----LOCAL - NONLOCAL 

I 
I 
I 
I 

~ 
en O 
(J)-t 
o§3 <Do 

£: 

-u 
:0 
o~ 
(')-m(') 
(/):0 
(/)0 
o' 
:0 

3: 

I 

II r r '(I 
JI I 

~ I~ 
I 

--

in 7-

II 

r----, 
• -o--'~- I :0 ZI Z 

o i111 i11 
f;l.:o I I'll :0 I • (fl ~ (fl:t1 

~1;I(/)~ 

I 
,.---::... 

(TI I §3 (TI 

~ I J 
~ l> W 

I . 
1t I 

I.~ I . 

I 
ATTACI-E 

BUS 

DO. 

I 
I 
I 
I 
I 
I 

» 
mm 
»3: 
zo 
A~ 

y 

I 
A 

P I 
t. I 

I 

,. 
¥yl I 

r ~ ~ 

ADAPT ION 

I L...- UNIT A 

I 
I-~ ---. 

I Zm 
I rGt- IL 

-t(/) m(/) 
I I~~ I r-t ADAPTION 

(')m 
I m» 

IA UNIT B 
(/) 

3: 
J 

m 
mm -. 

iYh LII 
I I 

0 
m »3: • L_ zo .. 

! A:O 
-< -. 

I I I • 
___ -..I 

I I - ffiOCESSQR-ATTAO£D- - BUS ___ ...1.-____ ---1 -L 
L-MODULE 

Figure 6-Details of a processing element with an L-module in the 
multiprocessor system at Johannes Kepler University 

urational information with -the data format discussed above, 
are provided. The information concerning the occurrence of 
two-special cases is provided in the header. Since information 
about particular crosspoints is no longer necessary, the body 
in the data format is of no significance. Once a data path has 
been established, the transfers in the course of memory ref
erences are carried out based on a protocol which is similar to 
the one for the transfer of the configurational information. It 
should be noted that both the address and the data for a 
memory reference are transferred via the same (physical) 
communication path. 

Implementation Approaches 

Our construction forces us to realize a configurational block 
as a single building block. In this way it is possible to construct 
the complete crossbar from such identical building blocks (c. f. 
Figure 1) 

In order to achieve an advantageous solution for the con
struction of a multiprocessor system with this new crossbar, a 
crossbar section (c.f. Figure 1 and 4) should be housed to
gether with those processing elements that are interconnected 
with it by its "memory-attached" buses, together with a suit
able portion of shared memory within the same cabinet. 
Hence a suitable subdivision-number should be chosen so that 

a maximal number of processing elements can be housed to
gether with portions of the above-mentioned subsystems. We 
use the term "canonical construction" to indicate that a COD

figurational block is implemented as a building block and that 
the above-mentioned method of housing and subdivision of 
the crossbar are applied. 

As mentioned above, it is a goal of this research to exploit 
LSI technology for the implementation of the crossbar switch 
in order to keep down expenses and size. Hence it would be 
desirable to investigate whether the implementation of such a 
building block (configurational block) utilizing this tech
nology is practicable. Figures 1, 3 and 4 indicate that in a
crossbar produced by an arrangement of such building btocks, 
these components will have high circuit complexity and low 
external connecting wiring requirements. These design char
acteristics are regarded as the most important technical cri
teria for a promising exploitation of LSI technology. Another 
criterion is the possibility of production at a tolerable cost 
level. There is a good chance of fulfilling this criterion, since 
only one type of basic building block _ will be required for the 
whole crossbar. In addition, large numbers will be needed, 
which would justify mass production of this component, the 
principal prerequisite for low-cost production. For this rea
son, our research is based on the expectation that integrated 



132 National Computer Conference, 1981 

n-l 
n-2 
n-3 

i +1 
i 

i -1 

3 
2 
1 
o 

"RRO 

CROSSBAR 

• • • • • • 
o 1 2 3 i -1 ' ~i i+1 

CESSOR-ATTACHED"-
BUSES ~ " 

t 
P-BASED I--

INTERFACE 

< >.,,~ 
... ~'IIIi >' 

L-MODULE 

• 
• 
• 

• • 
• 

n-3 n-l 
n-2 n 

0 
LIJ 
:::c 
u 

~~ 
<t:V) 
.=> 

>-al 
0:: 
0 
~ 

~ . 
/,,1. , ..... 

, , 

Figure 7-0rganization of the mUltiprocessor system at Johannes Kepler 
University: arrangement of a processing element 

circuits for this purpose will be produced in the future. This 
implementation approach aims at a realization of the config
urational blocks with the highest possible subdivision number 
and blocking number. However, there are limitations due to 

1. the limited number (60) of pins; 
2. the limited degree of complexity of a chip; 
3. the upper limit on the subdivision number imposed by 

the number of processing elements in a cabinet. 

Taking present-day LSI technology as a basis, limitation 2 is 
the (still) crucial one. However, it is already possible (and 
reasonable) to realize an IC with a subdivision number of 16 
and a blocking number of 4 in a 24-pin DIP. Supposing that 
such an IC is available, a multiprocessor system (employing 
single-chip microprocessors) with 256 processing elements 
could be implemented in 8 cabinets. 

No ICs ha"e yet been produced for the realization of the 
configurational block of the new crossbar. Nevertheless, this 
building block can be realized on a printed circuit board using 
standard ICs (mainly standard LSI ICs). This implementation 

approach would allow a cost-effective implementation of a 
multiprocessor system with up to 64 processing elements. But 
the practicability of this implementation approach does not 
affect the importance of the previous goal of producing a 
special purpose IC, since a volume reduction by a factor of 
about 25 could be achieved. 

AN IMPLEMENTATION OF THE INNOVATIVE, 
MODULAR CROSSBAR SWITCH 

In order to demonstrate (among other things) the usefulness 
of the innovative design concept of the crossbar, a large-scale 
multiprocessor system is now being built at the Johannes Kep
ler University in Linz, Austria. 22

-
24

,26-28 This system is a pure 
research vehicle and is intended as a testbed for further devel
opments. 

Characterization of the Multiprocessor System 
in which the Implemented Crossbar is Embedded 

There is no fundamental limit on the size of the crossbar. 
However, a particular realization has to be based on the max
imal size of the system. In this realization, the size of the 
system is limited to 256 processing elements on account of the 
software-management and the interfacing to the crossbar. The 
mechanical construction, the packaging, the wiring and cab
ling, though, are designed only for a modular extensibility of 
up to 64 processing elements. 

In addition to the new crossbar, the multiprocessor system 
consists of the processing elements (whose memory is a shared 
memory) and a synchronization logic. The synchronization 
logic is described elsewhere and will not be treated here. 5,28 

The processing elements contain an L-module and a pro
cessor-based interface. The logical concept of an L-module 
has been introduced by B. Buchberger.5 

As illustrated in Figure 6, the L-module contains a single
chip microprocessor (Motorola 6809), two memory banks, 
and a local-nonlocal switch. The whole memory of an 
L-module can be regarded as a shared memory; both local and 
nonlocal references can be made for both memory banks. In 
this organization, the following advantageous mode of oper
ation is also possible: The processor of an L-module can refer 
to memory bank A and a remote L-module can simultaneous
ly refer to memory bank B. The L-module is closely attached 
adjacent to a processor-based interface for the crossbar. 

In Figure 7 the arrangement of such a processing elemen~ 
with respect to the crossbar is shown. Further details concern
ing the L-module have been given in earlier studies. 5

,27 The 
software management in the system is adapted in the follow
ing way to take into account the operational behavior of the 
new crossbar: In a nonlocal reference, we have to distinguish 
between the following two independent phases, each of which 
is produced by a separate instruction: 

1. the establishment or removal of a communication path 
in the crossbar, and 

2. the transfer of information to the corresponding remote 
processing element across the crossbar. 



Modular Crossbar for Large-Scale Multiprocessor Systems 133 

,--------------------, 
I ---- I 
I t1 !lJR~';"" 1 ....... a:'~ 16 COM=~~TI~AL. BlOCKS .1 :.;.... I 
I - BLOCK ~ BLOCK (16 PRINTED CIRCUIT BOARDS) -==: BLOCK I 

I II rl III I 

I 
I L ___ ~ARD~AM~WIT~N~ROSSBARSECTIO~ ___ J 
'-----------------------l 
I CARD FRAME WITH 8 PROCESSING ELEMENTS + INTERFACES 

I 
I 
I 

I I 
I P.-BASED 

I INTERFACE 

P.-BASED' r 
INTERFALE ~ 

P.-BASED' f 
INTERF.tCE ~ 

.. -BASED' I .. -BASED' I .. -IWiED' I 
INTERFACE tJ INTERF~ f1 INTE~ f1 

P.-BASED' f 
INTERFACE~ 

P.-BASED' f I 
INTERF~f11 

I Jti :1 ,fi JJ '11 l1 Jl, U J1 Jl 11 f I 
I 
I 

L-KD1.£ L-KOl-E L-MOOLlE L-KIlll.E L-t«DU..E L-KQ.lE L-KIlU.E L-KIlU.E I 
I 

L------ ---- ------ --------- --~----
Figure 8-Wiring and cabling between card frames in a cabinet of the 

mUltiprocessor system at Johannes Kepler University 

Each item of information transferred across the crossbar con
tains the data and an address referring to the destination 
memory bank. Thus the addressing of the shared memory 
uses the mailbox principle. 

The Implementation of the Basic Building Block 
of the Crossbar Switch 

The basic building block in this implementation is a config
urational block with the subdivision number 8 and the block
ing number 4. 

As no special ICs for the new crossbar have yet been built, 
this basic building block is implemented on a printed circuit 
board (233.4 x 220 mm) with standard LSI circuits and a few 
SSI circuits. The design is mainly based on the employment of 
LSI circuits of the family Am 2900 (Advanced Micro De
vices). In addition, a bipolar field programmable logic se
quencer (Signetics 82S105) was used for the realization of the 
executional-unit (c.f. Figure 5). This had the advantage of 
allowing a reduction in volume compared with alternative 
implementations (for example, with MSI and SSI circuits). 
However, simple SSI-circuits were used for the switches. 

Physical Configuration 

The complete multiprocessor system consists of 8 identical 
cabinets. The above-mentioned canonical design is applied. 
Each cabinet contains 8 processing elements together with 
their attached crossbar section. This crossbar section consists 
of 16 printed circuit boards in a separate card frame. The 
processing elements are packaged in an adjacent card frame. 
These two card frames and the requisite wiring and cabling in 
this area are shown in Figure 8. 

In Figure 9, the physical structure of a cabinet is depicted. 
The "out-card frame/in-cabinet" wiring is clearly represented. 
The numbers above the diagonal strokes indicate the numbers 
of pairs of conductors (twisted pairs, two conductors in a 
flatband cable). We indicate pairs, not single conductors, 
since it is preferable to use pairs of conductors in the real
ization of buses in the crossbar. 

Figure 10 depicts the required intercabinet cabling in the 
complete system. Once again, the numbers above the diag
onal strokes represent the required numbers of pairs of con
ductors. Figures 9 and 10 allow an assessment of the wiring 
and cabling expense, which appear to be very low compared 
with the expense of wiring in other design concepts for multi
processor systems. 



134 National Computer Conference, 1981 

~-/.:\] 
, r- ' I' 

, ~ 

• ~ 

~ CD W 

S!! 
N 

r 1----- 1 r-f~ -, r-----, r--- [l r----, r-----, 
I I I I 

~ - I I I I ~ 1 

I I ~ - ")< I 
I ~ 1 .. >< 

-4 I 
I ~ 

ITI 

~ ~ 
::c I 

I I I ~ ~ z ~ 
n I I 

" z 
I l> I 

I + CD .. -4 ITI r ::c 
I 0 zPl~ Ul£ 

, " z ::c 
~ 

0 
I I ~ ldl 

Z -41T10 ITIOo Q Ul 
n N I lTI~n ("')Ulz I c 

I ~ 
::C ITIITI 6~1TI ::c "'U - ~zUl I ITI "'U 

6 I Zl> Ul r 
I ("')-4 Ul ::c I (fl -< z I rn Ulz -I 
I (j) I 0 

I I ::c 

~ 
(j) 

I I - I 
~ ~ I I I 

L I L- __ -i L_-

f
:--1 ---- L 

____ .J L- ____ L ____ .J 

~ 

~~l 
~ 

-

OD 

TERMINATING RESISTORS 
+ BUS DRIVERS 

CD 

CD 
CD 

CD 

Figure 9-"Out-card frame" wiring and cabling in a cabinet of the 
multiprocessor system at Johannes Kepler University 

PERFORMANCE REFERENCES 

w I IV 

~ 

~ld 

The access time in a nonlocal reference in this implementation 
is about 6 microseconds but could easily be improved at the 
cost of more expense and effort, which did not seem justified 
at this experimental stage. 

1. Swan, R.J., S.H. Fuller, and D.P. Siewiorek. "Cm*-A modular, multi
microprocessor." AFlPS Proceedings of the National Computer Conference 
(Vol. 46), 1977, pp. 637-644. 

32 

2. Swan, R.J., A. Bechtolsheim, K. Lai, and J.K. Ousterhout. "The imple-

I CAB7NETI321 CABs NET 132/ CAB~NET 132/ CAB~NET 132/ CABINET 132/ CABINET 132/ CAB~NET 1321 CABINET I 
< <~< <~< <~< <fK< 3 <~< 2 <1t:K< <~< 0 ~ 

32 

~-----' ,----, ' ___ I ' ___ I ' ___ I , _____ , ' ___ I '---bs 
~ ~ ~ ~ ~ ~ ~ 

< <~< <~< <~< <+;« <~< <~< <~< ~ 
c=:======~', " I, " ',,' I, " " " " " " " " 

Figure 10-Intercabinet cabling of the multiprocessor system at Johannes 
Kepler University 



Modular Crossbar for Large-Scale Multiprocessor Systems 135 

mentation of the Cm· multimicroprocessor." AFIPS Proceedings of the 
National Computer Conference (Vol. 46), 1977, pp. 645-655. 

3. Jones, A.K., R.J. Chansler, Jr., I. Durham, P. Feiler, and K. Schwans. 
"Software management of Cm·-A distributed multiprocessor," AFIPS 
Proceedings of the National Computer Conference (Vol. 46), 1977, pp. 
657-663. 

4. Fuller, S.H., J.K. Ousterheut, L.. Raskin, P. Rubinfeld P.L Sindbll, and 
R.J. Swan. "Multi-Microprocessors: An Overview and Working Example~" 
Proceedings of the IEEE (Vol. 66), No.2, February 1978, pp. 228. 

5. Buchberger, B., and K. Aspetsberger. "A Universal Variable-Topology 
Multi-Microprocessor-System." Proceedings of the 6th International Sym
posium on Mini- and Microcomputers and their Applications, Budapest, 
1980, pp. 136-140. 

6. Enslow, P .H., Jr. Multiprocessors and Parallel Processing. New York: John 
Wiley & Sons, Inc., 1974. 

7. Enslow, P.H., Jr. "Multiprocessors and other Parallel Systems-an Intro
duction and Overview." In W. Handler (Ed.), Computer Architecture, 
Workshop of the Gesellschaft fur Informatik, Erlangen, May 1975, 
Informatik-Fachberichte. Berlin, Heidelberg, New York: Springer-Verlag, 
1975. 

8. Enslow, P.H., Jr. "Multiprocessor Organization-A Survey." Computing 
Surveys (Vol. 9), No.1, March 1977, pp. 103-129. 

9. Weitzman, C. Distributed Micro/Minicomputer Systems: Structure, Imple
mentation, and Application. Englewood Cliffs: Prentice-Hall, Inc., 1930. 

to. Porter, R.E. "The RW -400-a new polymorphic data system." Datamation 
(Vol. 6), January/February 1960, pp. 8-14. 

11. Anderson, J.P., S.A. Hoffman, J. Shifman, and R.J. Williams. "D825-A 
MUltiple-Computer System for Command and Control." AFIPS Pro
ceedings of the Fall Joint Computer Conference (Vol. 22), 1962, pp._8~96. 

12. Bell, e.G., and P. Freeman. "e.ai-A computer architecture for AI re
search." AFlPS Proceedings of the Fall Joint Computer Conference (Vol. 
41), Part II, 1972, pp. 779-790. 

13. Wulf, W.A., and C.G. Bell. "e.mmp-A multi-mini-processor." AFIPS 
Proceedings of the Fall Joint Computer Conference (Vol. 41), Part II, 1972, 
pp.765-777. 

14. Wulf, W., and R. Levin. "A weal-Network." Datamation (Vohlt},Feb
ruary 1975, pp. 47-50. 

15. Davis, R.L., S. Zucker, and e.M. Campbell. "A building block approach 
to multiprocessing." AFIPS Proceedings of the Spring Joint Computer Con
ference (Vol. 40), 1972, pp. 685-703. 

16. Davis, R.L., and S. Zucker. "Structure of a multiprocessor using micro
programmable building blocks." Proceedings of the National Aerospace 
Electronics Conference, Dayton, Ohio, May 1971, pp. 186-200. 

17. Bell, C.G., and A. Newell. Computer Structures: Readings and Examples. 
New York: McGraw-Hill Book Company, 1971. 

18. Patel, J.H. "Processor-Memory Interconnections for Multiprocessors." 
l!roceed~ 01 the 6th Annual Syml'osium on Computer Architec11Ue. April 
1979, pp. 168-177. 

19. Sullivan, H., and T.R. Bashkow. "A large scale, homogeneous, fully dis
tributed parallel machine, I." Proceedings of the 4th Annual Symposium on 
Computer Architecture, March 1977, pp. t05-117. 

20. Giloi, W.K. "Rechnerarchitektur." Informatik-Spektrum (Vol. 3), No.1, 
January 1980, pp. 3-18. 

21. Quatember, B. "A Hardware Realization of a variable-topology Multi
processor System-The Implementation P!inciples." Proceedings of the 6th 
International Symposium on Mini-and Microcomputers and their Applica
tions, Budapest, 1980, pp. 141-147. 

22. Quatember, B. Rekonfigurierbares Verbindungsnetzwerk mit bitserieller 
Ubertragung der Konfigurationsinformation and iiber seine riiumliche Aus
dehnung verteilten Konfigurationsprozessoren. Patent Application, Oster
reichisches Patentamt (Austrian Patent Office), 1980. 

23. Quatember, B. Kreuzschienenschalter mit aber seine riiumliche Aus
dehnung verteilten Konfigurationprozessoren. Patent Application, Oster
reichisches Patentamt (Austrian Patent Office), 1980. 

24. Quatember, B. Konfigurationsprozessorfardigitale Verbindungsnetzwerke. 
Patent Applieation, Osterreichisches Patenamt (Austrian Patent Offiee); 
1981. 

25. Quatember, B. Als Integrierte Schaltung ausfiihrbare Baueinheit ~l4m Auf
bau von rekonfigurierbaren Verbindungsnetzwerken, insbes~ von 
Kreuzschienenschaltern. Patent Application, Osterreichlsches Patentamt 
(Austrian Patent Office), 1981. 

26. Buchberger, B., and B. Quatember. Rekonfigurierbares Multiprozessor
system. Patent Application, Osterreichisches Patentamt (Austrian Patent 
Office), 1980. 

27. Buchberger, B., and B. Quatember. Universelle Funktionseinheit mit einem 
P¥.ozessor undeiner Speicheranordnung mn ~ zwei Speicher
biinken und mindestens zwei Speichereingiingen. Patent Application, 
Osterreichisches Patentamt (Austrian Patent Office), 1981. 

28. Quatember, B. Einrichtung zur bitseriellen Ubertragung, Speicherung und 
zur bitseriellen Abfrage von Statusinformation im Bereiche der digitalen 
Informationsverarbeitung. Patent Application, Osterreichisches Patentamt 
(Austrian Patent Office), 1981. 





Some potential deadlocks in layered 
communications architectures* 

by JOSEPH HELLERSTEIN and WESLEY W. CHU 
University of California 
Los Angeles, California 

ABSTRACT 

Since their introduction in the early 1970s, layered commu
nications architectures have become widely used. Un
fortunately, the limitations of these architectures have not 
been generally recognized. Specifically, if caution is not exer
cised in their design, deadlocks can occur. This paper presents 
several examples of such errors. 

INTRODUCTION 

The use of layered communications architectures first became 
popular with the development of the ARPA network. 4 Since 
then, layering has been employed by CYCLADES8

, Digital 
Equipment Corporation's DECNET5

, and IBM's System Net
work Architecture.6 This almost universal acceptance of lay
ered architectures has resulted from their ease of under
standing, service sharing, and modification. 

Partly because of the widespread success of layered commu
nications architectures, there has been a lack of understanding 
of their limitations. In particular, we have frequently encoun
tered the mistaken belief (in both industry and academia) that 
if two protocols contain no deadlock, then when these proto
cols are layered, no deadlock will be present. The con
sequences of this fallacious belief can be dire. 

In this paper, we present examples to illustrate some areas 
in which caution must be exercised when protocols are lay
ered. However, to put these examples in proper perspective, 
we first define layering and then explain the underlying cause 
of layering induced deadlocks. 

Given a set of services to be performed, a layered architec
ture can be obtained by partitioning this set into a number of 
distinct layers. 7 Each layer provides services to the layers 
above it and is in turn served by the layers below it. For any 
given layer, there may be a number of service providing enti
ties. Communication between entities at the same layer is 
accomplished by the use of protocols. 

A fundamental principle in layered architectures is that of 
data hiding. According to this precept, a layer knows nothing 
about the format or content of the messages supplied to it by 

*This research is supported by the U.S. Army Contract No. GASG 
60-70-C-0087. 

137 

higher layers. Thus, control information exchanged between 
layer n + 1 entities (such as connects, disconnects, and ac
knowledgments) is treated as data by layer n entities. 

The reader should note that it is because of service par
titioning and data hiding that so many of the benefits of lay
ering result. However, service partitioning makes higher lay
ers dependent on the services of lower layers. Data hiding 
extends the scope of this dependency by prohibiting lower 
layers from distinguishing between higher layer control and 
data messages. It is from these dependencies that the layering 
of deadlock free protocols can result in a deadlock. 

The next three sections present examples of deadlocks in
troduced by layering. t In each case, we give possible resolu
tions for these errors. 

DEADLOCK 1: INTERLAYER RESOURCE 
CONTENTION 

Here we address the implications of two protocol layers con
tending for the same set of resources. Instances of such re
sources are buffers, processes, and logical names. It is quite 
common for such contention to exist, since by having two 
layers share a resource pool, throughput can be increased. 
(For example, sharing buffer pools can greatly improve 
throughput over that achievable by having separate pools.2) 

Below we illustrate how a deadlock can occur when such 
resource contention exists. Consider a two layer architecture 
as one might find in a network communications processor, like 
the ARPA IMP. The lower layer handles the communications 
line (we ignore the electrical interface), and the higher layer 
controls the transport protocol. We assume that each layer can 
permit multiple outstanding transmissions before an acknowl
edgment is required. Furthermore, we assume that the proto
col handlers share the same buffer pool so as to maximize 
buffer utilization. Finally, note that if the architecture is truly 
layered, then the link protocol will treat acknowledgments 
returned to the transport protocol as data. 

tThe reader familiar with protocol verification lietrature will note that some of 
the errors that we classify as deadlocks are technically instances of tempo 
blocking. I Because we are interested in addressing a broad audience and this 
distinction does not impact our paper, we have chosen to ignore the difference 
between these two categories of protocol errors. 



138 National Computer Conference, 1981 

a 

TRANSPORT LAYER -
.. LINK LAYER --

a - The transport layer must use link layer services 
b - Buffer dependency 

Figure I-Dependencies in Deadlock I 

b 

Now consider the following scenario. The transport proto
col has a large number of unacknowledged messages in tile 
buffer pool. Since its handler shares the same pool as the link 
protocol handler, the link protocol goes into a "flow control" 
mode, in which no more data messages are accepted' from 
adjacent nodes. But, the buffer shortage will never be relieved 
until a transport layer acknowledgment is received, which is a 
data message to the link protocol. Hence, a deadlock exists. 

We suggest two ways of dealing with deadlocks resulting 
from interlayer resource contention: prevention and min
imization of occurrence. 

With regard to prevention, since layered architectures cause 
higher layers to be dependent on lower ones, the goal of 
prevention is to insure that resource contention does not also 
make a lower layer dependent on a higher one. The use of 
directed graphs can aid in this examination.3 Figure 1 is an 
instance of such a graph. A directed cycle is indicative of a 
deadlock. To eliminate the cycle in Figure 1, one might design 
the system so that the transport layer will always (1) have a 
receive buffer available for the link layer or (2) provide one 
within a finite period of time. 

While proper use of prevention will guarantee that dead
locks never occur, the analysis required can be complicated. 
An alternativefor those resources that are explicitly allocated 
is to minimize the probability of a deadlock. This can be 
accomplished by employing usage thresholds. With specific 
reference to the problem of shared buffer pools, we may want 
to give priority to buffer requests made by the link receive 
handler over those made by the transport layer output-han
dler. This policy can be enforced by insuring that once the free 
pool has fewer than B buffers remaining, further requests by 
the transport layer output handler will be rejected. In this 
way, one could minimize the possibility of outstanding trans
port layer transmissions preventing the receipt of a transport 
layer acknowledgment by the link layer. 

DEADLOCK 2: LOWER LAYER RESOURCE TIMEOUT 

This section discusses the effect of a higher layer being crit
ically dependent on a resource allocated and deallocated by a 
lower layer. A common example of such a resource (and the 
attendant dependency) is that of transport layer connection 
ports (sockets in ARPA terminology). The dependency on 
transport layer connection ports results from the fact that only 

by establishing a pair of connection ports can two processes 
communicate. 

The manner in which transport layer connection ports are 
allocated and deallocated varies a great deal. Here, we as
sume that a transport layer connection abides by the following 
rules: 

Rule 1. When a connection request arrives for a particular 
host and/or process, the transport protocol allocates a port 
and forwards the request with a unique port identifier to the 
appropriate host. 

Rule 2. When the host and/or process responds to a con
nection request, the transport layer completes the connection 
and forwards the response to the requesting party. 

Often, the transport protocol handler is in a separate com
puter from the host(s) it serves. So, there is considerable 
concern about insuring that a host failure or degradation does 
l10t have a severe impact on the communications network. 
With regard to connections, in particular, the communications 
network should guard against the host or host process being in 
an infinite loop. The standard approach to detecting failure in 
a communications environment is by use of a timeout. Thus, 
the communications network might add to its transport layer 
connection protocol the following rule: 

Rule 3: If the host does not respond within a timeout peri
od, the connection port is deallocated and a disconnect is 
returned to the requesting party. A host reply after the port 
has been deallocated is treated as an error. 

Suppose we have a terminal that makes use of a commu
nications network to access a host for time sharing services. 
We assume that the communications network transport layer 
connection protocol operates according to Rules 1-3. Further
more, we assume that the time sharing system processes new 
logon requests by placing them in a low priority queue, there
by assuring users already logged on of a certain level of re
sponsiveness. (If the system'is too heavily loaded, new logons 
will not be performed.) 

Now consider the following scenario. A user logs on to the 
time sharing system via the communications network. He 
starts a job and tlien logs off. This job forks several processes, 
each of which makes heavy CPU and 110 demands on the time 
sharing system. Even worse, because of, a bug, each proc~s~ 
goes into an infinite loop of these resource demands. 

Realizing his mistake, the user tries to log pn and kill the 
job. However, to do so he must use the services of the commu
nications network (i.e., we have the layering service par~ 
titioning dependency). But, whenever the user attempts to log 
on to the network, the time sharing system will fail to reply 
before the transport layer' connection timeout occurs, since 
the host is heavily loaded due to the user's job. Thus, the user 
cannot log on until the time sharing system becomes less 
loaded. However, system load will not be reduced until the 
user can log on. * So, a deadlock exists. 

*In commercial time sharing systems, it is often possible to set ~ime limits on job 
execution. However, this is clearly an unsatisfactory way of resolying the dead
lock, since the time requirements of jobs vary a great deal. 



TIME SHARING 
SYSTEM 

TRANSPORT 
LAYER 

a - Relieve overload condition 

TERMINAL 

TRANSPORT 
LAYER 

b - The terminal must use transport layer services 
c - Wait for connection acceptance 
d - Wait for reply to connection request 

Figure 2-Dependencies in Deadlock 2 

Solutions to this deadlock are not easy if the design goals of 
the time sharing system and the communications network are 
to be maintained, and layering is not to be violated. One 
approach would be to provide the user with a network com
mand repertoire that includes the ability to override the stan
dard transport layer connection timeout. 

DEADLOCK 3: HALF DUPLEX LOWER LAYER 

In addition to the problems presented in the previous two 
sections, if a lower layer protocol is half duplex, then still 
other difficulties may arise. By half duplex, we refer to proto
cols in which at one instant only a single party may transmit 
data messages, although either party may send control mes
sages. The party permitted to transmit data is referred to as 
the line owner. A line owner relinquishes control of the line 
by performing a line turn around sequence. 

With the proliferation of interactive systems, half duplex 
protocols have become less popular. However, half duplex 
protocols frequently have the advantages of simplicity of con
trol (especially if the send and receive handlers share a lot of 
data) and often require fewer resources (particularly buffers 
and processes). This simplicity and need for fewer resources 
may be particularly attractive for microprocessor-based appli
cations. 

To show why caution should be employed when a half 
duplex lower layer protocol is used, we examine an architec
ture with two layers. The higher layer consists of a number of 
batch streams. The lower layer is a half duplex link protocol 
used by these batch streams. We assume that the batch stream 
protocol permits N outstanding transmissions before an ac
knowledgment is required. Also, if no acknowledgment is 
received within a timeout period, the unacknowledged mes
sages are retransmitted. We further assume that the half 
duplex link protocol operates under the rule that line owner
ship (i.e., permission to transmit data) is not relinquished 
until all data messages have been transmitted. Of course, link 
layer acknowledgments are expected, and if they fail to arrive 
in a timely manner, link level retransmissions will be invoked. 

Deadlocks in Layered Communications Architectures 139 

Now consider the following scenario. Initially, only a few 
batch streams are present. So, once they transmit up to N 
messages, the link protocol releases control of the line so that 
batch stream acknowledgments may be received. (Recall that 
if this is truly a layered architecture, then batch stream ac
knowledgments are treated as data by the link handIer.) How
ever, as the number of batch streams approaches some num
ber, say M, then the time to transmit M* N messages becomes 
greater than the batch stream retransmission timeout, thereby 
causing batch stream retransmissions. Even worse, these re
transmissions further delay performing a line turn around. 
Indeed, if M is sufficiently large, the link handler will never 
yield control of the line. In other words, the batch streams will 
persist with their retransmissions until batch stream acknowl
edgments are received. Since a batch stream acknowledgment 
is a data message to the link handler, a line turn around is 
required. However, a line turn around will not take place until 
the batch streams end their retransmissions. Hence, a dead
lock exists. 

One way to resolve this deadlock is to require the link 
protocol to release control of the line periodically. While this 
may reduce throughput under situations that would not lead 
to deadlocks, it preserves the independence of the two layers. 

CONCLUSIONS 

In this paper, we have presented some examples to demon
strate that caution must be used when layered commu
nications architectures are designed. Specifically, since lay
ering introduces a dependency in higher layers for the services 
of lower layers, care must be exercised to avoid deadlocks. 
Despite this potential problem area, we believe that layering 
remains an effective method for structuring large systems. 
However, its usage requires some caution. 

REFERENCES 

1. Bochmann, Gregor V., "Finite State Description of Communication Proto
cols," Proceedings of Symposium on Computer Network Protocols, Liege, 
Belgium, February 13-15, 1978, pp. F3-1-F3-11. 

d 

BATCH 
STREAMS 

LINK 
LAYER 

a - Wait for batch stream acknowledgement 

BATCH 
STREAMS 

LINK 
LAYER 

b - The batch streams must use link layer services 
c - Wait for line turn around 
d - Can not turn line around until retransmissions caase 

Figure 3-Dependencies in Deadlock 3 

b 



140 National Computer Conference, 1981 

2. Chu, W. W., "Dynamic Buffer Management for Computer Commu
nications," Proceedings of the Third Data Communications Symposium, 
Tampa, Florida, November 1973, pp. 68-72. 

3. Chu, Wesley, and G. Ohlmacher, "Avoiding Deadlock in Distributed Data 
Bases," ACM National Symposium, Vol. 1, November 1974, pp. 156-160. 

4. Crocker, S. D., et aI., "Function-Oriented Protocols for the ARPA Comput
er Network," AFIPS Proceedings, SJCC, 1972, pp. 271-279. 

5. Digital Equipment Corporation, "DECNET," 1976. 

6. Gray, J. P., and C. R. Blair, "IBM's Systems Network Architecture," Data
mation, April 1975, pp. 51-56. 

7. ISO TC97/SC16/N34, "Provisional Model of Open-Systems Architecture," 
March 1977. 

8. Zimmerman, H., and N. Naffah, "An Open Systems Architecture," Pro
ceedings of the Fo-urth International Conference on Computer Commu
nication (ICCC-78), Kyoto, September 1978, pp. 669-674. 



General-purpose integrated indexing circuits-a proposal 

by A.C.D. DE FIGUEIREDO 

Universidade de Coimbra 
Coimbra, Portugal 

ABSTRACT 

For applications requiring irregular forms of addressing, the 
high speed of operation of present day random-access memo
ries and large-scale-integrated arithmetic structures can hard
ly lead to any significant improvements over conventional 
techniques unless appropriate means are used for addressing 
the operands at comparable speeds. This paper proposes the 
architecture for an integrated indexing unit intended for high
speed generation of the addressing patterns required for a 
wide range of such applications. Reference is made to the 
usefulness of the proposed unit for the organization of fast 
array processing attachments to conventional minicomputers 
and microcomputers. 

INTRODUCTION 

Whatever the approach one takes when organizing a pro
cessor intended for operating on arrays of data, it is helpful to 
differentiate two basic types of functions: 

• Data processing functions, which relate to the arithmetic 
and logic operations performed upon or between arrays 

• Data manipulating functions, which concern the organi
zation or reordering of array elements that may be re
quired before or after processing 

A large body of knowledge has been accumulated over the 
past few years on the speed-critical aspects of data processing, 
such as computer arithmetic; and this has led to a number of 
successful implementations at the integrated-circuit level. 5,7 

The same cannot be said, however, of data-manipulating func
tions. Although one may find in the literature the proposal of 
hardware-controlled techniques for the organization of infor
mation,1,2 the general trend is still to relegate this task to the 
software, which makes it depend for many applications on 
rather involved and time-consuming address calculations. 

The integrated indexing circuit proposed in this paper, 
which evolyed from a hardware data-shuffling principle pre
sented in de Figueiredo,2 enables the generation, without any 
address calculations, of a large range of addressing patterns 
that permit the manipulation of an array to take place while 
the array is stored into or fetched from memory. 

141 

PRINCIPLE OF OPERATION 

The principle of operation of the proposed indexing circuit 
can be easily described in terms of the simplified four-bit unit 
depicted in Figure 1, where the four multiplexers are used to 
permute the counter outputs according to some binary pattern 
that is applied to the multiplexer select inputs. If the counter 
is reset or preset, the select inputs of the multiplexers are 
driven with an appropriate control word, and the counter is 
then forced to count up or down, a sequence of binary num
bers is obtained that may be used to address a random-access 
memory. For instance, if the outputs of the binary counter are 
permuted as shown in Figure 2 and the counter is forced to 
count from 0 to 15, the resulting addressing sequence causes 
the elements of a 16-word array to be stored or fetched in 
shuffied oreter. 

The application of this counter/multiplexer principle to the 
generation of a variety of shuffled addressing sequences has 
been discussed in detail in de Figueiredo,2 where it has been 
shown that a very significant saving of control words can be 
achieved if the higher-order outputs of the circuit can be 
masked so as to permit the use of a single control word for a 
number of different manipulations. The ability to mask one, 
two, three or more of the higher-order outputs is then one of 
the desirable features of an indexing circuit based upon this 
principle. 

PROPOSED ARCHITECTURE 

Figure 3 illustrates a block diagram description of the pro
posed indexing circuit, which is intended for accessing data 
memories with up to 64K words. Apart from a 16 bit counter 
and a set of sixteen 16-input multiplexers, the unit possesses 
a mask circuit that controls the inhibition of the multiplexer 
outputs and a set of eight 8-bit registers that hold the current 
control word. These registers are loaded from the outside 
through a common 8-bit bus, W,Wo, which is also used to 
carry preset information to the counter. The selection be
tween each one of the eight registers and between the two 
8-bit halves of the counter is achieved by means of a 4-bit 
address, SrSo. The loading of informatjon into the registers 
or into th~ counter is clocked by a LOAD signal. The mask· 
circuit receives a 4-bit word, MrMo, and decodes it into com-



142 National Computer Conference, 1981 

X3 

PRJ;:SET 
JT</PUTS 

LOAD 

UP/DOWN 

r---rtt+------~~~-----++++--------B3 
r-tM~-;==~~====~~=====A3 r---rrr+---,..-_~-~~1-1-lL-_-_-_-_~-_-_-~~ Sf 

,---HH-oI------ A f 

X2 Xl XO 

Figure 1-Simplified 4-bit indexing circuit 

BO 
AO 

mands that inhibit output XIS, outputs XI5 and X14, outputs 
XI5 to X13 , ••• , outputs XI5 to X2, all outputs, or none of the 
outputs. 

Taking into account the inputs mentioned above plus the 16 
outputs of the unit and the CLOCK, RESET and UP/DOWN 
inputs to the counter, the total number of signal pins for a 
large-scale-integrated implementation of this circuit amounts 
to 36, which means that the circuit can be accommodated 
within a standard 40-pin package. 

A discrete TTL version of the proposed circuit has been 
implemented and has shown that the successive addresses in 
a sequence can be produced at a rate of over one address every 
100 nanoseconds. Compared with conventional addressing 
techniques that rely upon the calculation of the successive 
addresses, this represents an improvement that may exceed 
two orders of magnitude. 

The setting up of the proposed circuit may require the load
ing of eight registers, and in some cases the presetting of the 
counter. When the time available for this operation is not 
critical, the control words may be supplied by a general con
trol microprocessor. Otherwise, a fast ROM lookup table may 
hold locally all critical control words, and a three-bit counter 

4 BIT 
COUNTER 

o 0 0 0 
1 0 0 0 
000 1 
1 0 0 1 

o 1 1 0 
1 1 1 0 
o 111 
111 1 

Figure 2-Generation of shuffled addressing patterns 

must be used to su.pp.4r the three least significant bits of the 
addresses to the ROM while simultaneously driving S2, SI, 
and So. 

APPLICATION 

The use of the addressing patterns resulting from the per
mutation of the outputs of a binary cbunter constitutes a 
subject that remains to be fully understood and formalized. 
Apart from the aspects relating to the sequential generation of 
shuffled patterns, which have been the object of a study in
spired by the parallel processing properties of the perfect 
shuffle/ very little seems to have been investigated so far. It 
is not surprising, therefore, that most of the known advan
tages of a unit that implements the counter/multiplexer prin
ciple result at present from its ability to produce shuffled 
addresses. 

The applicability of the shuffle function is nevertheless ex
tremely general. As shown by Stone for the case of parallel 
processors,6 the shuffle function can be exploited in a variety 
of applications, including the computation of the fast Fourier 
transform, polynomial evaluation, sorting, and matrix trans
position. All these applications can be dealt with without 
much difficulty in a sequential processing environment, pro
vided the proposed unit is used for the generation of the 
required shuffled addressing patterns. 
O~e important application of the unit relates to the design 

of hIgh-speed processing peripherals that upgrade the per
formance of general-purpose minicomputers and microcom
puters. by taking over the highly repetitive, computationally 
mtensive array processing tasks. In these processing periph
erals the counter/multiplexer principle can be used, not only 
for controlling the read and write transfers between fast data 
memory and high-speed arithmetic/logic unit, but also for 
implementing refined forms of direct memory access that 
enable the manipulation of a block of data to take place on the 
fly while a block is transferred between host computer and 
processing peripheral.3

•
4 

The number of indexing circuits that should be incorpo-

,--------------------------, 
I I 

CL.ocd I 
RESET I 

UP/DOWN I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L_ 

4 
8 by 8 

I 4 

~so 
I 
I 

Figure 3-Block diagram description of a 16-bit integrated indexing circuit 



rated in a processor is mainly dietated by the required per
formance. Although it can be stated, on the basis of experi
ence acquired, that two units-one for fetching the operands 
and another for sending the results back to store-suffice for 
producing all forms of data manipulation required in standard 
array processing applications, it can easily be figured that 
much higher performances are likely to be obtained from a 
parallel type of architecture that employs a large number of 
such units. 

CONCLUSIONS 

A proposal has been presented for the architecture of an 
integrated indexing circuit that generates at very high speed a 
variety of addressing patterns required for array processing 
applications. Some suggestions have been put forward con
cerning the use of this circuit as a functional part of array 
processing attachments to small general-purpose computers. 

Although the circuit can be used very effectively in applica
tions requiring the shuffled manipulation of array elements, it 
is believed that the scope of its use can be enlarged consid
erably if some effort is put into the investigation of all relevant 
addressing patterns that result from the permutation of the 
outputs of a binary counter. 

General-Purpose Integrated Indexing Circuits 143 

ACKNOWLEDGMENT 

This work was supported by Instituto Nacional de 
Investigac;ao Cientifica under Grant EC1 and by Junta Na
cional de Investigac;ao Cientifica under Research Contract 
No. 108.79.53. 

REFERENCES 

1. Feng, T. "Data manipulating functions in parallel processors and their imple
mentations." IEEE Trans. Computers, C-23 (1974), pp. 309-318. 

2. de Figueiredo, A.C.D. "High-speed addressing technique for digital signal 
processing." Proc. of the 1979 Int'l. Symp. on Circuits and Systems, Tokyo, 
Japan (New York, USA: IEEE 1979), July 1979, pp. 977-978. 

3. de Figueiredo, A.C.D. "Towards a generalized concept of direct memory 
access." Abstracts of the 1980 ACM Compo Sc. Conf., Kansas City, USA, 
Feb. 1980, p. 46. 

4. de Figueiredo, AC.D., E. Sa Marta, and J.G.c. e Silva. "Fast transposition 
technique for microprocessor array processing attachments." Proc. of 
EUROMICRO 80, London, Sept. 1980, pp. 25-30. 

5. Schirm, L., IV. "Packing a signal processor onto a single digital board." 
Electronics, Dec. 20, 1979, pp. 109-115. 

6. Stone, H. "Parallel processing with the perfect shuffle." IEEE Trans. Com
puters, Feb. 1971, pp. 153-161. 

7. Waser, S. "High-speed monolithic multipliers for real-time digital signal 
processing." Computer, Oct. 1978, pp. 19-29. 





The VALl (Variable Language Interpreter) 

by JAMES D. MOONEY 
West Virginia University 
Morgantown, West Virginia 

ABSTRACT 

The Variable Language Interpreter (VALl) is a high-Ievel
language computer architecture. The language definition is 
not fixed, but can- be easily changed to process many popular 
languages. The languages may be complete, so portable pro
grams can be handled. 

VALl makes use of parallel processors to achieve its objec
tives. Parsing is carried out by an array of identical units called 
token processors. These generate a high-level intermediate 
form called an execution tree. This tree is then interpreted by 
additional processors, exploiting its parallelism whenever pos
sible. 

A version of this design has been simulated. Suitable imple
mentation methods are discussed. 

INTRODUCTION 

The Variable Language Interpreter (VALl) is a high-level 
language machine (HLLM) in which the language definition 
can be easily changed. HLLMs make use of hardware solu
tions to improve program throughput, especially in compiler
intensive applications. Greatly simplified system software and 
more opportunities for run-time checking are usually added 
benefits. The cost is not negligible, but it can be justified ifthe 
system is of benefit in a wide range of applications. Current 
HLLMs have been criticized in part for the rigidity of the 
languages they can process. With VALl, the language is de
fined by tables in memory, and the definition can be changed 
or extended at any time. 

HLLM architectures have been studied frequently. Bash
kow et al.' designed an early FORTRAN machine. The 
SYMBOL2 machine was built and used commercially. Chu3 

has done extensive work and published a textbook. Carlson4 

surveys the field through 1974. A recent conferences has pro
duced additional proposals. This is but a small sample of the 
work in this area. 

Proposals exist for many languages. However, most ma
chines have been designed to implement a single language, 
and~ they are not easily adaptable to others. Moreover, the 
language accepted is usually a specially designed one or a 

145 

subset of a popular language. Thus the application areas are 
limited and portability of progt'ams-is-not available. 

In 1975 Fournier6 proposed a system in which the language 
is defined by an interpretive microprogramstructured~1lS a 

. syntax network. In 1977 the author7 proposed a design with 
passive tables as the language representation. VALl is an 
evolution of this previous, unpublished system. By use of a 
flexible language representation, a variety of popular lan
guages can be interpreted. Implementation of FORTRAN 
and ALGOL 60 was described earlier. 7 A complete PASCAL 
definition has been prepared, and an ADA definition is under 
development. 

The main components of the VALl system are shown in the 
block diagram of Figure 1. A set of language definition tables 
(LDTs) is initially loaded to specify the language to be used. 
Program source text then enters the analysis section as an 
input stream. The heart of the analysis section is an array of 
identical processing units called Token Processors- (TPs). 
These units scan and parse the text in parallel, generating a 
high-level intermediate form called the execution tree or E
tree. The E-tree is interpreted directly by the execution sec
tion. An array of Oper~nd Evaluators (OEs) traverses the 
tree, extracting semantic actions to be performed. A collec
tion of Execution Processors (EPs) carries out these actions, 
thereby executing the program. 

Each of these sections communicates with a main store 
managed by the Storage Control Unit. This unit facilitates 
access to stacks, queues, associative tables, and other high
level data structures. 

The remaining sections of this paper will discuss the parsing 
mechanism, language representation, E-tree generation and 
processing, and-implementation aoo--use of the system. 

SYNTAX AND PARSING 

The job of the analysis section is to scan and parse the pro
gram text, using the LDTs, and generate an E-tree. In the 
following we describe the representation of syntax and the 
parallel parsing method of the TPs. 

Sequential parsing algorithms have been studied exte~ 
sively. Well-known methods include general backtracking, 



146 National Computer Conference, 1981 

1----------------------------------------------
1 LANGUAGE DEFINITION STORAGE 
I 
I 
I 
I 
I 
1 

1 

I 
I 
I 
1 

1 

1 

~-------------------
ANALYSIS 

Figure I-VALl system block diagram 

recursive descent,8 predictor-corrector,9 LL(k),1O LR(k),1I 
and others. Each method is applicable to certain broad sub
sets of context..;free grammars (CFGs). They differ in the spe
cific -subset, processing speed, complexity of the tables that 
must be produced, etc. 

The parsing process must deal with the fact that at any point 
in the input stream there may be several interpretations of the 
current symbol that could lead to a valid program. Sequential 
methods either try the possibilities one at a time, backing up 
in case of fai~ure, or :look ahead some number of symbols and 
require the grammar to contain enough information in those 
symbols to resolve the meaning of the current one. The latter 
method is often favored; e.g., an LR(l) grammar is derived 
for the language, the required parse tables are generated, and 
the LR algorithni is used. This ·has been feasible foimost 
popular languages. 

Although LR(l) grammars can usually be found, they are 
not necessarily the most natural grammar~ for a language nor 
those which most easily model the. desired semantics. They 
must also be represented by large tables whose relation to the 
language is obscured. Backtracking and recursive descent can 
often use very'- natural grammars directly. However, these 
methods are not used because they are very slow, and the 
complexity of backing out of all the effects of a wrong try can 
be unmanageable: .. . - " 

Parallel parsing provides an additional option. Instead of 
trying possibilities and backing up, we may try all possibilities 
atthe same time. This is tlie option explored here for VALL 
In this apprmlch, one processor keepstnick of each possible 
parse atany time. At most one ofthese parses will survive, but 
we do not greatly care how long the others keep trying. 

The syntax of a language for VALl is described initially by 
a set of syntax graphs (SGs) similar, for example, to the 
transition diagrams described by Aho and Ullman. 12 Each arc 
is stored in memory as an ordered pair of nodes and an asso
ciated symbol. No further manipulation is needed for parsing 
purposes. Terminals in this grammar are tokens in the lan
guage. The tokens in turn are described Qyseparate tables 
that have all the information necessary for lexical scanning. 

During parsing each active TP is given a goal token. Its task 

is then to see if such a token appears next in the input stream. 
The token may be a single character or a string. Each TP 
maintain's a stack of information describing its current posi
tion in the syntax graphs. If the token is found, the TP uses 
this stack and the LOTs to determine what next transitions are 
possible. For each such transition it activates a new TP with 
the appropriate goal symbol. There is no problem if several of 
the transitions have the same goal. An updated control stack 
is passed to each new TP. These stacks are linked with point
ers·to their common base to avoid unnecessary copying. 

If the original token was not found~ the TP fails and be
comes inactive. The process continues until no TPs are active 
or until one TP reaches the final node of the root syntax 
graph. 

The logic required of a TP seems complex; however, be
cause most actions are table-driven, a rather simple processor 
is sufficient, and all can be of the same design. The basic TP 
flowchart is shown in Figure 2. This flowchart includes the 
semantic functions discussed below. A possible TP implemen-
tation is discussed in a later section. . 

PERFORM 
MSI 

GET ARC 
FROM LOT 

YES 

TERMINATE 
TASK 

YES 

ACCEPT 
NEW TASK 

YES 

Figure 2-Token processor flowchart 

PART 

NO 



We are thus providing a variation of recursive descent, yet 
it is recursive descent in which the correct productions will 
always be (among) the first chosen. The method does not 
backtrack, yet it has the same power as general backtracking. 
It accepts the same class of grammars: any CFG that is not 
left-recursive. Left recursion is both easier to discover and 
easier to correct than a non-LR(l) property. It can always be 
removed. In contrast to the exponential time characteristics of 
backtracking, VALl will accept-or reject-any string in 
linear time. 

The tradeoff concerns the maximum number of TPs that 
may be needed. This number depends on the grammar, not on 
the program text. Formal grammars can be constructed for 
which the number of TPs is unbounded. For known program
ming languages, however, the limit has always been small 
( < < 100). By extending the power of the TPs, the limit may 
be made smaller still; however, as discussed below, this may 
not always be desirable. 

THE EXECUTION TREE 

The output of the analysis process is an E-tree which repre
sents the semantics of the program. We now describe the tree 
structure and the way it is generated by the TPs. 

An E-tree is a connected tree of cells with no cycles and a 
single root. A cell is a sequence of fields. The contents of a 
field may be a value, a control code, or a link to another cell. 
The tree may be augmented with links to groups of cells that 
will be processed as a table. 

Cells are of two semantic types. Active cells represent ac
tions to be performed. They contain a function designator in 
the first field and operands in subsequent fields. In general, 
the operands may be evaluated in any order. Special function 
types-e.g. SEQuence, CONDitional-are introduced to 
control the order or choice of evaluation when required. Pas
sive cells. represent data objects. They contain an object class 
designator as their first field and component information in 
subsequent fields. 

As generated by the analysis section, an E-tree embodies 
the static semantics of the program text. A simplified E-tree 
is shown in Figure 3. This tree models a program to select the 
largest eiement in a one-dimensional array. A complete tree 
contains aspects such as name tables and typed data items that 
are not shown in the figure. 

To generate the tree, each arc in the SGs may be augment
ed with one or more metasemantic instructions, whose func
tion is to create and update cells in a subtree. As far as 
possible, the gramm~lf is chosen so that distinct token se
quences always correspond to specific developments in th~ 
tree. Each path through a particular SG leads to generation of 
a distinct subtree; this subtree is attached to one at a higher 
level when and if the SG is exited after successful recognition. 

An E .. tree in this form can be saved and archived. This 
would be appropriate, for example, for a library of subrou
tines. More often, however, the tree is passed directly to the 
execution section for interpretation. 

Execution of the program is achieved by evaluating the root 
cell of the tree. This leads to recursive evaluation of other 

The VALl (Variable Language Interpreter) 147 

Figure 3--Example of art execution tree 

cells, and this process is controlled by the OE array .An active 
cell is evaluated by first evaluating each. of its operands; tlien 
applying the specified function to yield a result. A passive cell 
is evaluated by first evaluating each of its components, then 
composing the object as required. 

Initially, an OE is assigned to the root celL This OE at
tempts to evaluate the operand fields, which it can do for 
simple values and links to passive cells. When a link to an 

. active cell is encountered, the OE assigns its evaluation to 
another OE, then waits for the result. Meanwhile, it continues 
to process the available operands. 

All the OEs are identical. The number of OEs required; in 
contrast to the TPs, depends on the depth of the tree and thus 
on the complexity of the parti~ular program. 

When all operands are available for an active. cell , the furic-· 
tion is applied. This is a job for an EP, which is speCialized to 
handle the particular function. The EP applies the necessary 
algorithm and passes the result to the OE for propagationup 
the tree. When a result is achieved for the root cell of the tree, 
the program has been fully executed. 

During execution, the E-tree changes dynamically: Name 
tables are developed, user data are attached and modified, 
etc. The tree thus models the complete environment of the 
program at any time while it is executing. 

IMPLEMENTATION 

The VALl system coinponen~s discussed here consist primar
ily of the TP and OE arrays and the EPs. The first two of these 
share many characteristics. They consist of moderate numbers 
of identical processors, operating cooperatively but indepen
dently on the same or related data. They must communicate 
with each other and with. external units. The degree of inter
cOlmectiort can be traded off against processing speed. 

One version of each of these units has been defined to the 
level of register and signal equations. These definitions are 
available elsewhere. 7 

These arrays can be constructed initially from available 
logic or perhaps microprocessor chips. However, they are 



148 National Computer Conference, 1981 

reasonable candidates for VLSI implementation. In this case 
we would favor the simplest logic in each unit, although a 
larger number may be required. Several tradeoffs of this 
nature are available. Several TPs or OEs could reside on a 
chip; eventually a complete array could be placed on a single 
chip, greatly easing the pinout problem. A generalized parser 
and interpreter would have broad application that should 
make this approach feasible. 

The EPs require a different approach. They are intended to 
perform a variety of specialized functions. The functions vary 
in complexity-e.g., arithmetic, name table processing, 110 
control. The collection should be extendible from time to time 
as additional hardware functions become cost-effective. For 
generality, a means of providing arbitrary algorithms is re
quired. All of this leads to a mixed implementation approach, 
in which the functions are provided by means ranging from 
specialized chips to conventional sof~ware simulation. Despite 
this, all functions can be accessed by common interface con
ventions; therefore the implementation may be changed with
out affecting the rest of the system. 

A memory system with many interesting features is a goal 
for the future. Initially, the memory can be based on well
known techniques. 

CONCLUSIONS 

We have presented an architecture for an HLLM that differs 
from its predecessors in degree of parallelism and of general
ity. It can be configured to interpret portable programs in 
most popular programming languages. 

The system has been simulated for a simple language to 
demonstrate its feasibility. This simulation is described in de
tail elsewhere.7 A more extensive simulation implementing 
PASCAL and ADA is in progress. 

High-level-language machines can give considerable gains 
in processing speed for compiler-intensive applications, e.g., 
program development, one-shot problem solving. The cost 
can be most easily justified when the possible application area 
is broad. One way to insure this is to provide processing for 
many languages, especially those in common use. VALl takes 
a step in this direction. 

The per-copy cost of implementing the TP and OE arrays 
can be low if VLSI methods are used. The chip design costs, 
currently high but being attacked in various ways, can be 

offset by the broad applications of the device. The implemen
tation costs of the Eps-spc,.n a spectrum, in which performance 
may be traded for economy. 

Finally, the analyzer is driven by a straightforward and 
uniform type of language specification, which incorporates 
syntax and semantics and leads to a common intermediate 
form. This will motivate the definition of a variety of lan
guages in this form, which may then be of interest in other 
investigations. 

ACKNOWLEDGMENTS 

I am grateful for fruitful discussions with Bill Wulf of 
Carnegie-Mellon University and with my colleagues Frances 
Van Scoy and Malcolm Lane, which helped to clarify some of 
the ideas in this paper. 

REFERENCES 

L Bashkow, T. R., A. Sasson, and A. Kronfeld. "System Design of a FOR
TRAN Machine." IEEE Transactions on Electronic Computers, EC-16 
(1967), pp. 485-499. 

2. Rice, R, and W. R. Smith. "SYMBOL-A Major Departure from Classic 
Software Dominated von Neumann Computing Systems." AFlPS Proceed
ings of the Spring Joint Computer Conference, Vol. 38 (1971), pp. 575-587. 

3. Chu, Y. (Ed.). High Level Language Computer Architecture. New York: 
Academic Press, 1975. 

4. Carlson, C. R "A Survey of High-Level Language Computer Architec
ture." In Y. Chu (Ed.), High Level Language Computer Architecture. New 
York: Academic Press, 1975. 

5. University of Maryland. Proceedings of the International Workshop on 
High Level Language Computer Architecture. Department of Computer 
Science, University of Maryland, 1980. 

6. Fournier, S. "The Architecture of a Grammar-Programmable High Level 
Language Machine." Ph.D. dissertation, Ohio State University, Colum
bus, Ohio, 1975. 

7. Mooney, J. "Design of a Variable High Level Language Computer Using 
Parallel Processing." Ph.D. dissertation, Ohio State University, Columbus, 
Ohio, 1977. 

8. Conway, M. E. "Design of a Separable Transition Diagram Compiler." 
Communications of the ACM, 6 (1963), pp. 396-408. 

9. Earley, J. "An Efficient Context-free Parsing Algorithm." Communica
tions of the ACM, 13 (1970), pp. 94-102. 

10. Lewis, P. M., and R. E. Stearns. "Syntax-Directed Transduction." Journal 
of the ACM, 15 (1968), pp. 465-468. 

11. Knuth, D. "Oothe Translation of Languages from Left to Right." Informa
tion and Control, 8 (1965), pp. 607-639. 

12. Aho, A. V., and J. D. Ullman. Principles of Compiler Design. Reading, 
Mass.: Addison-Wesley, 1977. 



The architecture of MANIP-a parallel computer 
system for solving NP-complete problems 

by BENJAMIN w. WAH 
Purdue University 
West Lafayette, Indiana 

and 

Y.W.MA 
University of California, Berkeley 
Berkeley, California 

ABSTRACT 

In this paper, we study the network architecture of MANIP, 
a parallel Machine for processing Non-determInistic Poly
nomial complete problems. The most general technique that 
can be used to solve a wide variety of NP-complete problems 
on a uni-processor system, optimally or sub-optimally, is the 
branch and bound algorithm. We have adapted and extended 
the branch and bound algorithm for parallel processing. The 
parallel branch and bound algorithm requires a combination 
of sorting and merging. A common memory to sort for a large 
number of processors can become a bottleneck in the system. 
We have proposed a system with distributed intelligence so 
that sorting can be carried out in a distributed fashion. A 
uni-directional ring network is proved to be· the optimal and 
most cost-effective inter-processor communication network 
when sorting is done by a hardware priority queue in each 
processor. 

I. INTRODUCTION 

A class of common, deterministic problems defined in com
puter science, operations research, and other application 
areas is the NP-complete problems. 35 This class of problems is 
characterized by a deterministic algorithm that computes a 
function from a countable domain into a countable range, and 
it generally involves the optimization of an objective function. 
The computation time for all known optimal algorithms for 
this class of problems increases exponentially with the prob
lem size, i.e., if n represents the size of the problem, then the
computation time goes up as k n where k > 1. There is a sub
class of NP-complete problems called strong NP-complete 
problems 16 such that there is no "pseudopolynomial" algo
rithm which solves the problem in a time bounded by a poly
nomial in the input length and the magnitude of the largest 
number in the given problem instance. The implication of a 
problem being strongly NP-complete is that there is no fully 

149 

polynomial time approximation scheme which solves the prob
lem in a time bounded by a polynomial in the input length and 
the reciprocal of the prescribed degree of accuracy. Many 
problems in areas like deterministic scheduling, graph theory, 
routing, database, mathematical programming, automata and 
language theory, image processing, microprogram optimiza
tion, etc., have been proved to be either NP-complete or 
strongly NP-complete. 17 The set of NP-complete problems 
therefore spans a wide spectrum of application areas. 

We are presenting in this paper the architectural design of 
a parallel computer system that can be used to solve NP
complete problems without fully polynomial time approxi-' 
mation schemes. Since the time complexity to solve these 
problems optimally is exponential, the common approach is to 
solve optimally for small problems and to solve sub-optimally 
using heuristics for large problems. The most general tech
nique that can be used to solve a wide variety of these prob
lems, optimally or sub-optimally, is the branch and bound 
algorithm.44 The branch and bound algorithm will be dis
cussed in detail in Section II. Conventionally, the branch and 
bound algorithm has generally been studied with respect to 
limited memory space, the selection and bounding criteria, 
the theoretical behavior, and the adaptation to a single com
puter system. What little work that has gone on from the 
viewpoint of parallelism has been directed toward a general 
purpose computer network. The problem of the necessary 
parallel computer architecture and its associated operating 
system to provide an execution environment for a branch and 
bound algorithm has been little studied or less understood. 
The significance of this study therefore lies in two aspects. 
First, it can result in the design of a special purpose VLSI 
parallel computer system to execute the parallel branch and 
bound algorithm. The number of computers can be designed 
to fit the need of the applications. Second, with a better 
understanding of the parallel branch and bound algorithm, it 
can be designed into existing computer networks and distrib
uted computer systems. 

The feasibility of this study has greatly increased with re-



150 National Computer Conference, 1981 

cent changes in the state of the art in memory, VLSI, and 
communication technologies. The cost per unit of memory is 
decreasing and a wide variety of new storage devices, such as 
CCD memory, bubble memory are available. A number of 
other technologies are undergoing intensive study, including 
holographic, laser and other optical, and magneto· optical , 
and have the potential for commercial development within the 
next decade. At the same time, the number of components 
per chip is doubling each year and there is a trend of increased 
specialization in the functions of the VLSI chipl5. 40 and the 
design of a single chip computer system. 55 A conference was 
held in Cal tech in 1979 to investigate the potential of VLSI 
technology.62 Lastly, the improvement in wide band communi
cation technology allows local or remote computers to be 
interconnected together using optical fibers and satellites. 

With the economic feasibility and consequent existence of 
these new technologies, more powerful search strategies can 
be used in the branch and bound algorithm. Traditional imple
mentation of branch and bound algorithm is faced with the 
problem of limited memory size. With larger and inexpensive 
secondary storage, the branch and bound algorithm can be 
designed with a virtual backing store. Candidate problems 
unlikely to lead to the optimal solution can be stored in the 
secondary storage. The conventional virtual memory system 
does not work very efficiently here because the access charac
teristics of a branch and bound algorithm are significantly 
different from the access characteristics of a program. The 
complexity of the problem is compounded as parallel com
puters are used. Another problem faced in the efficient imple
mentation of branch and bound algorithm is sorting. In order 
for the execution time to be minimum, single processor imple
mentation sorts the intermediate sub-problems by the lower 
bounds in ascending order and the sub-problem with the min-

. imum lower bound is picked up for expansion (best first 
search). Other heuristic search strategies may also involve 
searching through a set of values generated by heuristic func
tions. 29 In a parallel computer system, the requirement that 
the global set of subproblems are completely sorted by lower 
bounds can be relaxed. Suppose there are n processors, it is 
sufficient to place one of the n sub-problems with minimum 
lower bounds in each processor and not important which one 
of these n sub-problems is evaluated in a particular computer. 
This relaxed sorting requirement can be incorporated into the 
design of a more efficient architecture than conventional ar
chitectures that perform complete sorting. 

In this paper, we study the network architecture of MANIP, 
an architecture using VLSI technology to implement a parallel 
branch and bound algorithm. We want to design special pur
pose processors for evaluating the bounds and simple inter
connection network for interconnecting the processors. The 
system is designed with the following design objectives: First, 
the system should be modularly expandable to include a very 
large number of processors. Second, the design must have 
high performance and the cost should be low by replicating 
simple cells. Third, the system should use distributed control 
so that there would not be a controller that becomes the 
bottleneck in future system expansion. Fourth, efficient load 
balancing strategies should be implemented so that the pro
cessors can be kept busy most of the time. Lastly, the system 
should be recoverable from hardware failures. 

This paper is divided into five sections. Section II presents 
the branch and bound algorithm and the parallel version of 
the branch and bound algorithm and discusses the previous 
work on parallel computer architecture for branch and bound 
algorithm. Section III identifies the architectural alternatives 
in implementing the parallel branch and bound algorithm. 
Section IV presents the network architecture and its opti
mality. Lastly, section V provides some discussions on the 
problem of implementation, the performance of the network, 
and gives some concluding remarks. 

II. PREVIOUS WORK 

A. Parallel Branch and Bound Algorithm 

An NP-complete problem is usually put into the form of a 
constrained optimization problem*: 

minimize 
subject to 

and 

Co(x) 
gl(X)~O 

g2(X) ~ 0 

where X represents the domain of optimization defined by the 
m constraints, normally an Euclidean n-space, and x denotes 
a vector (X.,xx,' . . ,xn ). A solution vector that lies in X is said 
to be a feasible solution and a feasible solution for which Co(x) 
is minimal is said to be an optimal solution. 

Many methods exist to solve for the optimal solution in the 
aforementioned optimization problem. Some of these are 
specially designed techniques like Gomory's cutting plane 
method for solving integer programming problems. However, 
the most generat algorithm, although sometimes not the most 
efficient, is the branch and bound algorithm. In this section, 
we describe the branch and bound algorithm and expand the 
algorithm into a parallel version so that it can be implemented 
on a parallel computer system. 

1. Previous work on branch and bound algorithm 

The branch and bound algorithm is an organized and intel
ligently structured search of the space of all feasible solutions. 
It has been extensively studied in areas such as artificial intel
ligence and operations research. 27, 44, 48. 53 It has been applied 
extensively to solve problems in scheduling,41. 46 knapsack,33. 
34 traveling salesman/8. 24. 25 facility allocation ,11. 59 integer 
programming,19.20 and many others. Dominance relation sim
ilar to that used in dynamic programming has been used to 
prune search tree nodes. 

Theoretical properties of the branch and bound algorithm 
have been developed in several studies.28-32. 37. 53 One study29 
shows that depth-first search, breadth-first search and best-

* There are also problems which are not NP-complete and are put into this 
form. 



first search are special cases of heuristic search. In heuristic 
search, an evaluation function f(n) for a sub-problem n is 
computed as the sum of cost of an optimal path from a given 
start node to n and cost of an optimal path from n to a goal. 
An ordered search algorithm picks up a sub-problem with the 
minimum value of f for expansion each time. Any general 
heuristic functions can be included in the computation and the 
choice of a heuristic function depends on the application. 

2. Essential features of branch and bound algorithm 

In branch and bound algorithm, the space of all feasible 
solutions is repeatedly partitioned into smaller· and smaller 
subsets and both the lower and upper bounds are calculated 
for the cost of solutions within each subset. After each par
titioning, these subsets with a lower bound (in the case of 
minimization) that exceeds either the cost of a known feasible 
solution or the least upper bound of all the subsets, are ex
cluded from all further partitioning. The partitioning process 
continues until a feasible solution is found such that the cost 
is no greater than the lower bound for any subset. The state 
of the partitioning process at any time can be represented as 
a partial tree (Figure 1). Each node in the tree represents a 
partition and is termed sub-problem. The partitioning process 
selects a partition and breaks up this partition into smaller 
partitions which in essence extends the node in the partial tree 
representing this partition by one level and using the sons to 
denote the smaller partitions. In Figure 1, node j is expanded 
in the partitioning process into k other partitions which are 
represented as sons of node j in the partial tree. 

There are two essential features of a branch and bound 
algorithm, namely, the branching rule and the boundingrule. 
Let us discuss these with respect to the tree in Figure 1. Each 
node in the partial tree has two numbers associated with it
the upper bound and the lower bound of the sub-problem. 
The leaf nodes in the partial tree are candidates for parti
tioning. We say that a leaf node of the partial tree whose lower 
bound is less than both the value of a known feasible solution 
and th~ greatest tiPper bound of all leaf nodes is active; other
wise it is designated as terminated, and need not be considered 
in any further computation. 

The branching algorithm examines the set of active leaf 
nodes and selects one for expansion based on some pre-de
fined criterion. If the set of active nodes is maintained in a 
first-in-first~out (FIFO) list, the algorithm is called a breadth
first search. If the set is maintained in ahlst-in-first-outlist, 
then the algorithm is termed depth-first search. Lastly, if the 
node selected for expansion is one with the minimum lower 
bound, then the search algorithm is called a best-first search. 
In a breadth-first search, the nodes of the tree will always be 
examined in levels; that is, a node at a lower level will always 
be examined before a node at a higher level. This search will 
always find a goal node nearest to the root. However, the 
sequence of nodes examined is always predetermined and 
therefore the search is "blind." The depth-first search has a 
similar behavior except that a sub-tree is generated com
pletely before the other sub-trees are examined. In both of 
these alogrithms, since the next node to be examined is 
known, the state of the parent node leading to the next [lode 

The Architecture of MANIP 151 

Figure I-A branch and bound tree 

does not have to be kept because the path to the next node 
from the root node is easily found and unique. These two 
algorithms are therefore somewhat space-economical. On the 
other hand, the best-first search is space consuming because 
all the active sub-problems must be stored as intermediate 
data in the computer. However, the total number of nodes 
expanded is minimized in the sense that any branching oper
ation performed under this policy must also be performed 
under other policies, provided that all the bounds are 
unique.44 Since time is a critical factor in evaluating large 
NP-complete problems, we will implement the best-first 
branching algorithm in MANIP. The large intermediate stor
age problem can be solved by moving sub-problems with large 
lower bounds to the secondary storage. ' 

Once the sub-problem has been selected for partitioning, 
the next task is to select some undetermined parameters in the 
sub-problem in order to define alternatives for these parame
ters and create multiple sub-problems. For example, in the 
traveling salesman problem, the undetermined alternatives 
are the set of untraversed edges. In expanding a sub-problem, 
an untr~versed edge (i,j) is selected and two alternatives can 
be created, namely, the edge is traversed and that the sales
man goes directly from city i to city j and vice versa. The 
parameter chosen to be expanded is usually done in a rather 

. ad hoc fashion. 
After new sub-problems are created, the bounding algo

rithm is applied to evaluate the upper and lower bounds of a 
sub-problem. In general, only the lower bound is evaluated 
because the merit of using the upper bound is very small. The 
bounding algorithm designed is highly dependent on the prob
lem. For example, in an integer programming problem, a 
linear program with the integer constraints relaxed can be 
used as a lower bound;43 in a traveling salesman problem, an 
assignment algorithm 10 or a spanning tree algorithm can be 
used as the bounding algorithm. We present an example of an 
NP-complete problem, the vertex covering problem 17 in order 
to illustrate the parallel branch and bound algorithm. 

In the vertex covering problem, the problem is to find, in an 



152 National Computer Conference, 1981 

2 7 

Figure 2a-An example graph 

undirected graph, the minimum number of vertices that are 
needed to "cover" all the edges in the graph. (Cover means 
that all the edges in the graph emanate from at least one of the 
included vertices.) The branching rule uses the best-first 
search and branches on an unselected vertex with the largest 
out-degree. Two sub-problems can be created, one including 
this vertex in the set and one excluding it. The lower bound in 
the bounding rule is chosen to be the minimum number of 
unselected vertices such that the total out-degree is greater 
than or equal to the number of uncovered edges. Notice that 
edges emanating from different vertices in the lower bound 
calculation may overlap and therefore this vertex does not 
necessarily cover all the uncovered edges. Further, if a vertex 
has been excluded in a previous stage and there are uncovered 
edges emanating from this excluded vertex in the current sub
problem, the unselected vertex covering these edges must be 
included in the minimal set first. As an example, the branch 
and bound tree for the· graph in Figure 2a is shown in Figure 
2b. 

3. The parallel branch and bound algorithm 

We identify three sources of parallelism in the branch and 
bound algorithm. . 

a. Parallel evaluation of subproblems. Since multiple sub
problems are available, they can be evaluated simultaneously. 
Due to overheads in inter-processor communications and sor
ting, and because some sub-problem evaluations are unneces
sary, the improvement in execution time is usually less than n 
times (n is the number of processors). For example, Figure 2c 
shows the parallel evaluation of branch and bound algorithm 
on the graph in Figure 2a using two processors. It is seen that 
the parallel evaluation of node 2 in Figure 2c is not useful, 
since the corresponding node 3 in Figure 2b is not evaluated. 
When the problem size is large, the parallelism will contribute 
to better improvement in execution time. 

b. Parallel sorting of subproblems. In the best-first search, 
the list of sub-problems must be maintained in a sorted order 
by the lower bounds. This sorting can be done by parallel 
architecture such as Batcher's sorting network. 2 In Section III 
we give a discussion on the type of interconnection network 
required for parallel sorting. 

c. Parallel execution of the bounding algorithm. Specially 
designed architecture can be used to implement a bounding 
algorithm. For example, if the simplex algorithm is used, then 
matrix manipUlation hardware is helpful. However, the archi-

4 

Terminated 
Feasible 
solution 

5 

Figure 2b-The branch and bound tree for Figure 2a. (The number in the 
node indicates the order of evaluation; the number outside the node 

indicates the lower bound, the number on the edge indicates the included or 
excluded node.) 

tecture is designed for solving general NP-complete problems, 
therefore the bounding algorithm has to be changed for dif
ferent problems. In this case, software implementation of the 
algorithm is more cost effective. 

4. Efficiency considerations 

Many results have been proved for the non-parallel version 
ofthe branch and bound algorithm.28

• 31. 37 It has been shown 
that the best-first search is the best branching rule and min
imizes the number of sub-problems expanded.44 Furthermore, 
the branch and bound algorithm can be used as a general 
purpose heuristic to compute solutions that differ from the 
optimum by no more than a prescribed amount.44 Suppose it 
was decided at the outset that a deviation of 10% from the 
optimum is tolerable. If a feasible solution of 150 is obtained, 
then all sub-problems with lower bounds of 136.4 or more 
( = 15011.1) will be terminated. This technique significantly 
reduces the amount of intermediate storage and the time to 

terminated optima 1 
501 ut ion 

Figure 2c-The parallel branch and bound tree for Figure 2a 
with two processors 



arrive at a sub-optimal solution. Technique is also available to 
find the best solution in a given length of time. 44 It consists 
basically of searching for an optimal solution for a length of 
time equal to T/2. If one is not found, then search is continued 
for a sub-optimal solution that differs from the optimal by no 
more than 5% in time of length T/4. The time for searching is 
halved each time while the precision of the solution is reduced 
until a solution is found. All these can be incorporated into 
the parallel branch and bound algorithm. 

Unfortunately, very little can be said about the efficiency of 
the parallel branch and bound algorithm. It was found in one 
study44 that only those sub-problems with lower bounds 
smaller than the optimal solution will be evaluated in a branch 
and bound algorithm. For a parallel branch and bound algo- . 
rithm, the improvement in execution time will be n times (n 
is the number of processors) if the number of sub-problems in 
the intermediate list with lower bounds smaller than or equal 
to the optimal solution is always greater than or equal to n. 
However, this number is highly dependent on the problem 
and the partitioning being carried out earlier. Simulations are 
used to find the speed improvement using n processors. 

B. Parallelism in NP-Complete Problem Evaulation 

Many studies have been made to design multiple computers 
to speed up problems in searching. Kuck39 has provided a 
survey on using parallelism to evaluate arithmetic expressions 
and linear recurrences, and execute programs. Tree struc
tured architectures are proposed to solve problems in 
searching6 and database.63 One of the tree architectures pro
posed to solve a wide variety of problems is the X-tree.7 

Alpha-beta algorithm has been proposed to be evaluated on 
a tree architecture 1 and a general purpose network com
puter. 14 Decision tree evaluation is also speeded up by using 
associative processors.47 A variety of SIMD and MIMD inter
connection networks have been proposed for processor
processor communication or processor-memory communica
tion. Examples of these include Benes,5 indirect binary n
cube,56 banyan,21 STARAN's flip network,3 Omega,45 data 
manipulator,13 ILLIAC IV's mesh,38 perfect shuffle,64 
PM21,62 delta,54 reverse exchange network,67 etc. However, 
these networks are usually designed for general purpose appli
cations and therefore the necessary features for processing 
NP-complete problems are not identified. Our study identifies 
the necessary architectural features and therefore would pro
vide insights to evaluate NP-complete problems on these 
computers. 

Harris and Smith22 proposed a tree architecture to solve the 
traveling salesman problem. Basically, the system dedicates 
one subproblem to each processor and this processor reports 
to its parent processor when the evaluation is complete. 
Because of the limited degree of communication, some 
processors may be working on tasks that can otherwise be 
eliminated if a better interconnection network is designed. 
Desai8, 9 also proposed a staged MIMD system to solve an 0-1 
integer program using implicit enumeration. Nevertheless, 
implicit enumeration is time consuming and wasteful, and for 
NP-complete problems, the critical issues of exponential 
space or exponential time must be addressed in the algorithm. 

• • • 

5]----I 

The Architecture of MANIP 153 

.>t 

i 
~.I 
S c: 

l~ 
• u 

u .... c 
~ g 
III U 
U ... 
g:l 
... c: 
A.-

·GJ 
"2 

• • • 

G 
A Secondary '-'---"U1 Storage 

Figure 3a-Common memory 

The only published work on applying branch and bound 
algorithm to solve NP-complete problems is by EI-Dessouki 
and Huen. 12 A general purpose network computer is as
sumed. Due to memory space limitation, depth first search is 
used to evaluate sub-problems. Because the network is as
sumed to be slow and possibly distributed geographically, 
extensive inter-processor communication cannot be done. No 
performance results are given on the evaluation of example 
NP-complete problems. However, depth first search has been 
shown to be sub-optimal in minimizing the execution time of 
the branch and bound algorithm.44 In the light of VLSI tech
nology, larger and inexpensive memories, and faster commu
nication media, the consideration of reducing the execution 
time (at the expense of larger memory space requirement) is 
a more critical problem. 

In the next two sections, we present the architecture re
quired to support the parallel branch and bound algorithm. 
We first compare two architectural alternatives and prove that 
the uni-directional ring network is the optimal interconnec
tion network. 

III. ARCHITECTURAL ALTERNATIVES 
SUPPORTING THE PARALLEL BRANCH AND 
BOUND ALGORITHM 

There are basically two architectural alternatives to imple
ment a parallel branch and bound algorithm, that is, the 
parallel processors can be interconnected either through a 
common memory or directly to each other. 

A. Common Memory (Figure 3a) 

In this implementation, the memory to store the sub
problems is separated from the processors. Because a single 



154 National Computer Conference, 1981 

memory would become a bottleneck in the accesses, multiple 
memory modules would have to be used. There is a processor
memory interconnection network that connects the proces
sors and memories together. The number of memory modules 
used depends on the frequency of accesses from the proces
sors which in turn depends on the complexity of the bounding 
algorithm. Sub-problems generated by the processors are 
stored through the interconnection network in the memories. 
A secondary storage is also connected to the network for 
extended storage. 

Since it is required to order the sub~problem in ascending 
order by their lower bounds, the memory must be capable of 
order retrieval of the sub-problems. This means that each 
memory module must be capable of order retrieval of the 
sub-problems, and an external interconnection network must 
be capable of merging the extrema obtained from each mod
ule. The memory modules can be implemented with associa
tive memory, 58 or they can be implemented as VLSI priority 
queues. *40 The processor-memory interconnection network 
can be designed for merging the sub-problems with minimum 
lower bounds from each memory module. Suppose there are 
n processors and p memory modules, then n sub-problems 
with minimum lower bounds in each memory module are fed 
to the sorting network. Sorting algorithms have been devel
oped on mesh computers,52,65 perfect shuffle,64 Batcher's odd
even merging network,z,61 and others.42

,49 Optimal sorting 
networks have been investigated by Muller and Preparata,51 
Baudet and Stevenson,4 Hirschberg,26 and Preparata.57 It was 
found that sorting of n numbers can be done in time O(log n) 
with n 2 intermediate processors. Since sorting networks do 
not allow intermediate results to be used until the sorting is 
completed, the maximum speed improvement that we can 
have is O(.oi-;;), assuming that the number of iterations is 
improved by a factor of n. 

The above sorting process IS carried out in a decentralized 
fashion in the common memory. On the other hand, it is 
possible to perform sorting in a distributed fashion by sorting 
the sub-problems locally in each processor and exchanging 
messages among the processors. This leads to the second ar
chitectural alternative. 

B. Private Memory (Figure 3b) 

In this alternative, each processor has a private memory and 
is implemented as a unit. Sorting of sub-problems by lower 
bounds is carried out locally within each processor. Since it is 
not sufficient for the processor to work on local minima only, 
a processor-processor interconnection network is used so that 
local minima from different processors can be sent over the 
network and distributed. The objective of the distribution is to 
disribute the n global minima so that each processor has one 

>I< A VLSI priority queue is a distributed logic device that maintains the sub
problems in a sorted order. The logical structure is a two input, two output 
device (deque) such that tags can be input or output from the top or bottom. 
Comparators are inserted between consecutive elements in the queue. For any 
two consecutive elements, if the top element is greater than the bottom ele
ment, these two elements are exchanged. By this means, larger elements are 
"dropped" to the bottom of the queue and smaller elements "float" to the top 
of the queue. Further, elements can be inserted into the queue continuously 
without waiting for the previous element to be sorted in the queue. 

Secondary 
Storage 

M P 

Jot P 

• • • 

M P 

~' 

~ .... 

..... ~ 

Figure 3b-Private memory 

.,:,t. 
t.;. 

t.;. i 0 
III .., 
III QJ 
QJ Z 
U 
0 c 
t.;. 0 

Q.. .-.., 
I U 

QJ 
t.;. c 
0 C 
III 0 
III U 
QJ t.;. 

U QJ 
0 .., 
t.;. C 

Q.. -

of the global minima. Expansion of the global minima, as 
mentioned earlier in Section II, is the most effective criterion 
of the parallel branch and bound algorithm. 

The parallel branch and bound algorithm is implemented in 
this architecture as follows. Each processor keeps a list of 
sub-problems that are sorted by the lower bounds in ascending 
order. At the beginning of a cycle, each processor picks up the 
sub-problem with the minimum lower bounds in its list and 
expands it into two or more sub-problems. The lower bounds 
for the expanded sub-problems are evaluated and the sub
problems are inserted back into the list. The local minima 
from each processor are sent to neighboring processors and 
inserted into the local lists there. This process repeats until the 
n global minima are distributed one to each processor. The 
cycle then starts anew until each processor has one of the n 
global minima. This procedure can be improved by over
lapping the distribution with ,the expansion of the sub
problems. Two possibilities can occur. First, the distribution 
time can be smaller than or equal to the lower bound evalu
ation time. So, although the distribution is completed, the 
distribution must be carried out again when the lower bounds 
for the currently expanded sub-problems are available. Sec
ond, the distribution time can be greater than the lower bound 
evaluation time, so the processors remain idle until the distri
bution is complete. In both of these cases, complete overlap 
is not attained due to the different processing and distribution 
times. A compromise can be made by overlapping the sub
problem expansion with the sub-problem distribution. In the 
case that the distribution is completed first, a local sorting can 
be performed when the sub-problems are evaluated and the 
processors expand the local minima without waiting for a 
complete distribution. In the case that the sub-problems eval
uation is completed first, the next sub-problem in the local list 
can be evaluated immediately without waiting for the distribu-



tion to complete. It is shown in Section IV that this strategy 
is actually very effective. 

C. Discussion 

There are advantages and disadvantages associated with 
each of the architectural alternatives presented in this section. 
The first approach can either be fast (the processor-memory 
interconnection network is a hardware sorting network such 
as Batcher's network36

) and expensive or slow and not quite 
expensive (an external software sorter is used). Nonetheless, 
the interconnection network available today generally 
possesses properties of substantial delays, high cost and is 
difficult to evolve. Furthermore, the sorting network orderly 
retrieves the n sub-problems that have the minimum lower 
bounds. Since this is not required by the system, this may lead 
to unnecessary degradation in performance. Another charac
teristic of the sorting network is that sorting has to be com
pleted before the list is available. On the other hand, the 
second alternative can utilize the current VLSI technology to 
implement the processor and memory on a single chip. Al
though the processor-processor interconnection network may 
be expensive and incurs substantial overhead in sub-problem 
distributions, it is shown that sorting does not have to be 
completed before sub-problem expansion can begin and this 
causes a relatively small degradation in performance. This, 
together with a few other nice properties, make this a more 
cost-effective design. We therefore select the second alterna
tive in our design. 

IV. NETWORK ARCHITECTURE 

The objective of the network is to have a complete distribu
tion; that is, to distribute the sub-problems in the local memo
ries of the processors so that the n global minima can be 
distributed, one to each of the n processors. The locations of 
these n global minima are not known a priori; otherwise the 
problem is very simple and the processor with more than one 
global minima can send one of these sub-problems to pro
cessors without any. Since predetermined distribution oper
ations are unknown, we can allow all the processors to carry 
out the same distribution operations (e.g., distribute to the 
nearest neighbor), or to carry out different distribution oper
ations (e.g;, one processor may be distributing to its nearest 
neighbor while the others are not). The former type of distri
bution possesses the property that each processor is connected 
to and from the same number of neighboring processors and 
has the state preserving property. That is, if the global minima 
have been distributed to the processors, continual re
distribution would not disturb the state and the global minima 
would remain distributed to the processors. On the other 
hand, each processor may be connected to and from a differ
ent number of neighboring processors in the latter case and it 
is rather difficult to preserve the state. For this reason, we 
choose to investigate the former case only. 

The design of the interconnection network ranges from a 
simple uni-directional ring network where each processor can 
communicate with one of its neighbors to a fully connected 

The Architecture of MANIP 155 

network where communications can be carried out simulta
neously with all the processors. Analysis in this section shows 
that a simple uni-directional ring network is the optimal inter
connection network. In order to do this, an urn model must 
first be developed. 

A. The Urn Model 

The n processors in the system are represented as n urns 
that contain n white marbles which stand for the global min
ima and S - n yellow marbles where S is the total number of 
active sub-problems. The white marbles are originally distrib
uted randomly to the urns. The distribution process moves the 
marbles around so that eventually, one white marble is distrib
uted to each urn. The white marbles are always "lighter" than 
the yellow marbles so that they always "float" to the top of the 
urn. During the distribution process, one or more marbles are 
taken from each urn and distributed to one or more urns in the 
system. If a white marble exists in the urn, it is always distrib
uted first. The ordering of the yellow and white marbles in the 
urns models the ordering of the sub-problems by lower 
bounds in ascending order in the processors. If one of the n 
global minima (white marble) exists in a processor (urn), it is 
always ordered before the other sub-problems (yellow mar
bles) and is always distributed first. It should be noted that this 
model does not take into account the ordering of the white 
marbles which is important in a conventional sorting and 
merging problem. It is sufficient for exactly one white marble 
to be distributed to each urn whereas in a sorting and merging 
problem, the white marbles are ordered before they are dis
tributed to the urns. It is hoped that the relaxation induced in 
this problem can help to reduce the amount of marble move
ments. 

We investigate distribution strategies that correspond to 
different degrees of interconnection. The first strategy shifts 
a white marble, if there are any, to the urn on the right. This 
corresponds to a uni-directional ring network (Figure 4a). A 
more general strategy distributes the jth marble (j < k) in the 
ith urn to the ([i + j] mod n )th urn in parallel. This corre
sponds to a k-connected network (Figure 5a). When k = 1, 
this becomes the uni-directional ring network. In Figures 4 
and 5, we have also shown the state of the system after a 
number of distributions. 

In evaluating the interconnection network, all the over
heads must be accounted for in the distribution process. The 
overheads in a distribution include the time to shift and the 
time to let the white marbles "float" to the top (which cor
responds to merging the newly arrived sub-problems into the 
original list). The lower bounds for the number of distribu
tions to achieve complete distribution are shown in the next 
section. 

B. Lower Bound for a Complete Distribution 

In evaluating the lower bound, the sorting method in each 
processor must be taken into account. The overhead for 
sorting depends on the implementation. The complexity is 
O(m log m) for sorting m numbers by software (e.g., heap 



156 National Computer Conference, 1981 

(a) Unl-directlonal ring network connecting four urns with 
Initial state (0,3,0,1) 

.-. - - - - - - - - - - - - - - - - - - - - - - - - - - - -, 
I 

u-~ W---LJ 
(b) State after left shift 

U--~---G---u 
(e) State after 2 left shifts 

r------ ----- ------_ .. _-------. 
I 

LJ- --LJ- --LJ-_: 
(d) State after 3 left shifts 

---- .. distribution of marbles 

Figure 4--Uni-directional ring network connecting four urns 

sort,36), O(m) for sorting by a hardware priority queue, and 
O«(1og m )2) for sorting by Batcher's odd-even merging net
work. 36 In the following theorem, we evaluate the lower 
bound of a complete distribution for the three sorting 
methods. 

Theorem 1 
Let K be the communication time to transfer one or more 

sub-problems in parallel to the other processors, m be the 
maximum number of sub-problems that can be stored in a 
processor, and n be the number of processors in the system. 
Depending on the degree of connection, the lower bounds on 
the number of operations for a complete distribution is be
tween O(K + n log m) and O(nK + n log m) for sorting by 
software, is between O(K + fl) and O(Kn) for sorting by 
hardware priority queues and is between O( K + log2m) and 
O(Kn + n log2m) for sorting by Batcher's networks. 

Proof 
Suppose each urn is connected to nX other urns (0 ~x ~ 1), 

that is, urn i is connected to urn (i + k) mod n (1 ~ k ~ nX). 
The maximum delay to transfer a marble from one urn to 
another is n I-x. Assuming all the n marbles reside in one 
single urn and transfers can be made in parallel to n x other 

urns, it would take n I-x transfers to take all the marbles out 
from this urn. Since all the transfers are carried out simulta
neously, each urn would be receiving n x marbles in a time 
interval K. 

After each transfer, the marbles must be inserted into the 
local lists before another distribution can take place. For 
sorting by software, the time needed is the time to insert n x 

numbers into a priority tree that may contain as many as m 
numbers. The total sorting overhead is therefore O(nXlog m). 
For sorting by a hardware priority queue, each insertion takes 
constant time and n x numbers can be inserted into the priority 
queue in time O(nX). For sorting by Batcher's network, all the 
m numbers in a processor are connected to a network. The 
sorting overhead is therefore 0(1og2m). 

To summarize, n I-x iterations are needed, and each iter
ation takes time K for communication and additional over
head for sorting. The lower bound on the total overhead is 
therefore O(n I-X[K + nXlog m]) for sorting by software; 
O(n l-X(K + n x» for sorting by hardware priority queues; and 
O(n '-X(K + log2m) for sorting by Batcher's network. For an 
n -connected network, x = 1 and the lower bounds are 
O(K + n log m), O(K + n), O(K + log2m) for sorting by 
software, hardware priority queue and Batcher's network re
spectively. For a uni-directional ring network, x = 0 and the 
corresponding lower bounds are O(Kn + n log m), O(Kn), 
and O(Kn + n log2m). 

From the above theorem, it is obvious that sorting by hard
ware priority queues is better than sorting by software and 
Batcher's network for a uni-directional ring network. How
ever, depending on the relative sizes of K, m, and n, sorting 
by priority queues may be better than sorting by Batcher's 
network or vice versa in an n-connected network. In general, 
K is very small because of the advances in communication 
technologies; n is usually large because it governs the degree 
of parallelism; m is also large, and in an n-connected net
work, m ;;::: n. Taking these into account, the lower bounds for 
an n -connected network are O( n log m ), O( n ) and o (1og2m ) 
for sorting by software, hardware priority queues, and 
Batcher's network. Batcher's network has less overhead if 
m ~ O(c Vii), where c > 1. On the other hand, Batcher's net-

(a) 2-connected network connecting four urns with Initial 
state (0.3.0.1) 

~:,--~ :-.L0-~ 
~ - - - - - - - _, I 

- - - - ~ 

(b) State after I shift. 

----. dIstribution of marbles 

Figure 5--2-connected network connecting four urns 



work uses O(m log2m) hardware,36 as compared to O(m) for 
a hardware priority queue. For the present time, we favor the 
use of a hardware priority queue because of its reduced hard
ware complexity. In the next section, we prove that the uni
directional ring network is the optimal network if hardware 
priority queues are used. 

C. The Optimal Interconnection Network with 
Hardware Priority Queue 

In this section, we show that the uni-directional ring net
work is the optimal interconnection network by showing that 
the amount of work needed for a complete distribution is 
O(n - 1) and therefore equals the lower bound evaluated 
earlier. 

Theorem 2 
The number of distributions for a complete distribution in 

a k-connected network (1 ~ k ~ n) is at most n - 1. 

Proof 
We first prove the case of the uni-directional ring (I-con

nected) network. The proof is by contradiction. Suppose a 
white marble cannot get to the top of urn i in n - 1 distribu
tions and remains in the second position, that is, after n - 1 
distributions, urn i still contains at least two white marbles 
and the distribution is not complete. An urn that starts with 
o or 1 marbles can never get more than one marble after n - 1 
distributions. Hence urn i must have started with at least two 
marbles. And in n - 1 distributions, n - 1 distinct white 
marbles must have passed over the top of urn i, because if not, 
the second white marble in urn i would have a chance to get 
to the top of urn i. This implies that there are altogether 
n - 1 + 2 = n + 1 white marbles in the system, which con
tradicts the original assumption that there are n white marbles 
in the urns. Complete distribution can always be achieved in 
n - 1 distributions. The proof for a k -connected network with 
k > 1 is similar and will not be repeated here. 

The overall amount of work is therefore (n - 1)*(sorting 
overhead). Since the sorting overhead is the smallest in a 
uni-directional ring network, the overall complexity to 
achieve a complete distribution is therefore O(n). As we have 
proved in Theorem 1 that the lower bound of distributions 
using hardware priority queues is O(n), the uni-directional 
ring network is the optimal interconnection network. Al
though the number of distributions to achieve a complete 
distribution in a k -connected network (k > 1) may be smaller, 
as evidenced in the simulation results shown later. The per
formance can only be improved by a constant factor because 
the lower bound is also O(n). Furthermore, the number of 
network links in a k -connected network (k > 1) is n k, as 
compared to n in a uni-directional ring network. We conclude 
that the uni-directional ring network is the optimal and most 
cost-effective way. of implementation. 

In the remainder of this section, we present some results on 
the average fraction of urns containing white marbles using 
the k ~connected network and try to answer the question we 
raise in Section III-namely, what is the degradation in per-

The Architecture of MANIP 157 

formance if a complete distribution is not attained before the 
processors pick up sub-problems for expansion. The evalu
ation results are obtained by generating all the possible com
binations of n white marbles in the n urns as initial distribu
tions. It is seen in Figure 6 that the increase in the average 
fraction of urns containing white marbles due to increasing k 
is rather small. Furthermore, the sorting overhead is not in
cluded in the evaluation. The final performance for k > 1 is 
expected to be less than the performance of the uni
directional ring network. In Figure 7, the fraction of urns 
containing marbles for the different number of distributions in 
a uni-directional ring network is shown. It is seen that these 
curves approach different asymptotic values as the number of 
urns is increased. The asymptotic average fraction of urns 
containing white marbles as the number of urns is increased 
for no distribution (s = 0) has been shown to be 0.5. The 
analyses for cases where s > 0 are similar but more difficult. 
It is also seen that the improvement is significant for the first 
few distributions, but the improvement is diminishing as the 
number of distributions is increased. This implies that the 
fraction of urns containing white marbles is significantly im
proved by a small number of distributions. In general, less 
than half of the urns do not contain white marbles for an 
incomplete distribution. 

D. Technology Dependent Considerations 

We have assumed in the urn model that each marble repre
sents a sub-problem. Actually, a sub-problem is characterized 
not only by a lower bound, but also by the state of the prob
lem. For example, let a graph of p nodes be represented in the 
form of a p by P connectivity matrix, and each sub-problem 
include a partial assignment of the nodes and edges. In a 
distribution, the partial assignment must also be transferred 
with the lower bound of the sub-problem. If p is large, the 
transfer time can be in the order of milliseconds or seconds. 
On the other hand, sorting in the processors has a relatively 
small overhead as compared with the distribution time. If we 
examine the complexity measure of the uni-directional ring 
network again, we discover a more serious problem. The over
heads for complete distribution is O(n). Suppose the number 
of cycles in a parallel branch and bound algorithm improves by 
a factor of n, and in each cycle, there is an overhead for 
distribution of O(n); this implies that there is no overall im
provement in performance as (ar as complexity measure. is 
concerned. These observations imply that it is necessary to 
design additional hardware or strategies in order to reduce the 
distribution overhead so that distribution can be overlapped 
completely with sub-problem expansion. There are several 
alternatives. 

The first alternative considers sending the tags- (each con
sisting of the urn number and the lower bound) instead of the 
white marble (the entire sub-problem) in a distribution. After 
O(n) distributions, complete distribution is obtained. These 
tags are then gated to an external controller which counts the 
number of white marbles in each urn and decides on the 
optimal transfer sequence of white marbles from one urn to 
another. A k-connected network may be used in order to 
allow k parallel sub-problem-transfers to be made from each 



158 National Computer Conference, 1981 

1.00 

.875 

V') 
L&J 
.;J .750 CD 
ex:: 
< x: 
L&J 
t-

5 .625 

" z 
::: 
< t- .500 ::: 
0 
u 
V') 

z 
c:: 

.375 => 
I.L.. 
0 

Z 
0 

to-: .250 u 
< c:: 
I.L.. 

.125 

0.00 

NUMBER OF SHUFFLES 

Figure 6-Performance of the k-connected network for 12 urns 
(k = 1 for uni-directional ring network) 

urn. Of course, the value of k has to be determined so that the 
response time requirement is satisfied. 

The second alternative considers sending n marbles from 
each urn and passing them through a sorting network such as 
Batcher's sQrting network. The first n marbles coming out 
from the sorting network must be white, and they are returned 
in parallel to the n urns. As we know, the complexity for 
sorting n 2 numbers using Batcher's network is 0(4 log2n). 
The overall improvement of the parallel branch and bound 
algorithm is at most 

0(lo;2n) 
Further, this scheme uses extensive hardware and may not be 
practical when n is large. 

None of the above schemes is perfect and requires addi
tional hardware support. However, when hardware becomes 
sufficiently inexpensive, it may be possible to use more pro
cessors and allow them to operate at over 50% efficiency (the 
average number of urns containing white marbles without any 
distribution is over 50%). Furthermore, we have assumed so 

far that the system operates in a coupled fashion; that is, the 
sub-problems are evaluated while the distributions are made 
and the evaluation of the next set of problems does not start 
until part or all of the distributions are done. In practice, the 
sub-problems have different sizes and different processing 
times and therefore it would be inefficient for the system to 
wait until all the processors are finished: Each processor 
would behave independently and execute the lower bound 
evaluation function in its local memory. When th~s evaluation 
is finished, it picks up a sub-problem with the minimum lower 
bound from its local list of sub-problems. Since the time when 
one processor picks up a sub-problem to the time when 
another processor picks up a new sup-problem can be rela
tively short, the distribution process may not be completed 
and the system would be operating at less than optimal 
performance. 

Finally, if an urn does not contain a white marble (one of 
the first n global minima), it may contain a marble of different 
color (which may correspond to one of the jn + 1 th to 
(j + l)nth global minima, j > 0, and this is distributed accord-



The Architecture of MANIP 159 

1.00 

.875 
5-4 

5=3 

5-2 
.750 

'" L&J s=J -J 
c:c 
a:: « 

.625 x: 
L&J 
~ 

:: 
5=0 ~ 

'" .500 z 
::;:: 

« 
~ z 
0 

.375 (,.) 

V) 
z 
a:: 
::> 

14. 
0 

.250 z 
0 -
~ 
(,.) 

~ 
14. .125 

0.00 
12 

NUMBER OF URNS 

Figure 7-Performance of the uni-directional ring network (k = 1) 
for different number of urns (s = distributions) 

ingly. So although a processor may not be working on one of 
the nth global minima, the expansion of a sub-problem with 
the minimum lower bound may still contribute to the speedup. 

One interesting point to notice is when a small number of 
distributions are made, the distribution of the first global 
minima improves; that is, the number of urns containing white 
marbles increases. However, the distribution of the n + lth to 
2nth global minima which are represented as black marbles 
may be worse. This distribution is important because it 
governs the distribution of the white marbles in the next iter
ation (when the black marbles in this iteration become the 
white marbles in the next iteration). It is shown that the aver
age number of urns containing black marbles after a complete 
distribution is actually smaller than the average number of 
urns if the marbles were distributed randomly. This phenom
enon is illustrated in Figure 8. Fortunately, the difference 
between these two average numbers for large n is insignif
icant. The simulation results are not included here. 

The problem discussed in this section for speeding up the 

distribution time can be solved by faster technology. The ring 
network can run up to several hundred mega-bits per second 
and can be used as a "barrel" as in Control Data Cor
poration's 6000 and 7000 series computers.66 It can be realized 
with sub-nanosecond emitter coupled logic that can operate at 
rates up to 100 MHz. Off-the-shelf parts, such as Fairchild's 
FlOOK, are available to implement the uni-directional ring 
network. 

V. CONCLUSION 

In this paper, we have proposed and studied the network 
architecture of MANIP, a parallel computer system for pro
cessing NP-complete problems. NP-complete problems have 
the unique property that the computation time for all known 
optimal algorithms increases exponentially with the problem 
size. Thus a small increase in the problem size may cause a 
very large increase in the problem space needed for the opti-



160 National Computer Conference, 1981 

.--------- ---------------, 
~ill--·u·--u--D-' 
---- - distribution of marbles 

Figure 8-The decrease in the number of urns containing black marbles 
when the shuffle is complete (the white marbles represent the first 

n global minima; the black marbles represent the n + 1st to 2nth global minima) 

mal algorithm to completeJhe examination. Due to the inher
ent difficulty in solving NP-complete problems, parallelism in 
processing is proposed to expand the size of solvable prob
lems. The most general technique that can be used to solve a 
wide variety of NP-complete problems on a uni-processor 
system, optimally or suboptimally, is the branch and bound 
algorithm. We have studied in this paper a parallel version of 
the branch and bound algorithm which can be executed effi
ciently on a parallel computer system. 

The parallel branch and bound algorithm requires a combi
nation of sorting and merging. The sub-problems are evalu
ated to produce new sub-problems which are inserted into a 
list of previously created sub-problems. This list is maintained 
in a sorted order by the lower bounds of the sub-problems so 
that the minima can be picked up for expansion in the next 
cycle. The process is terminated when a feasible solution is 
found with a value smaller than the lower bounds of all the 
sub-problems in the list. Since it is important to maintain a 
global sorted list of sub-problems, a common memory shared 
by all the processors can be used. However, this can become 
a bottleneck when the number of processors is large. We have 
proposed an alternative such that each processor has a local 
memory and the processors communicate with each other 
through an inter-processor communication network. When 
the processors have created new sub-problems, they are first 
inserted into the local list, and then sub-problems with min
imum lower bounds from each processor are distributed until 
a set of n global minima are obtained. These n global minima 
are distributed to the n processors in the system for processing 
(complete distribution). 

We have proved that the lower bound for the amount of 
work to achieve a complete distribution is O(n) when sorting 
is done by a hardware, priority queue within each processor. 
We have also shown that the uni-directional ring network is 
the optimal and most cost-effective way of implementing the 

inter-processor communication network. Sorting by other 
sorting methods gives different performance. Sorting by soft
ware, such as heap sort, has a worse performance, while 
sorting by Batcher's odd-even merging network has a better 
performance at the expense of increased hardware complex
ity. The proposed interconnection network is reliable because 
of its simplicity and it reconfigurability. Faulty processors can 
be switched off the network without affecting the per
formance of other processors. Redundant rings can also be 
used to increase the reliability of the network. 

The architecture of the processors and the performance 
evaluation of the system is given in a different paper. The 
simulation results there show that with complete distributions, 
the number of iterations reduce by a factor of n using n 
processors. With no distribution, the performance is very 
poor. However, when one or more distributions are applied in 
each iteration, the total number of iterations is the same as if 
a complete distribution is used (with very small variations). 
One major problem encountered in the simulations is the 
problem of insufficient memory space. The branch and bound 
algorithm has to switch from best-first search to depth-first 
search when memory space is exhausted. This significantly 
degrades the memory performance. A method to increase the 
virtual space of the branch and bound algorithm is to use a 
virtual memory management system. This will be presented in 
a future paper. 

REFERENCES 

1. S. G. Aki, D. T. Barnard, and R. J. Doran, "Simulation and Analysis in 
Deriving Time and Storage Requirements for a Parallel Alpha-Beta Algo
rithm," Proc. of 1980 Int'l. Conf. on Parallel Processing, Michigan, pp. 
231-234, 1980. 

2. K. E. Batcher, "Sorting Networks and their Applications," Proc. AFlPS 
Spring Joint Computer Conference, Vol. 32, pp. 307-314, Apr. 1968. 

3. K. E. Batcher, "The Flip Network in STARAN," Proc. of 19761nt'l Conf. 
on Parallel Processing, Michigan, pp. 65-71, 1976. 

4. G. Baudet and D. Stevenson, "Optimal Sorting Algorithms for Parallel 
Computers," IEEE Trans. on Computers, Vol. C-27, No.1, pp. 84-87, Jan. 
1978. 

5. V. E. Benes, "Optimal Rearrangeable Multistate Connecting Networks," 
Bell System Technical Journal, Vol. 48, No.4, pp. 1641-1656, July 1964. 

6. J. L. Bentley and H. T. Kung, "A Tree Machine for Searching Problems," 
Proc. of 1979 International Conf. on Parallel Processing, Michigan, pp. 
257-266, 1979. 

7. B. C. Desai, "The BPU, A Staged Parallel Processing System to Solve the 
Zero-One Problem," Proc. of 1CS78, Taipei, Taiwan, pp. 802-817, Dec. 
1978. 

8. B. C. Desai, "A Parallel Microcessing System," Proc. of 19791nt'l. Conf 
on Parallel Processing, p. 136, 1979. 

9. A. M. Despain and D. A. Patterson, "X-tree: A Tree Structured Multipro
cessor Computer Architecture," Proc. of 5th Symp. on Compo Arch.,- Palo 
Alto, CA, 1978, pp. 144-151. 

10. W. L. Eastman, "A Solution to the Traveling Salesman Problem," 
presented at the American Summer Meeting of the Econometric Society, 
Cambridge, Mass., Aug. 1958. 

11. A. Efromyson and T. C. Ray, "A Branch and Bound Algorithm for Plant 
Location," Operations Research, Vol. 14, pp. 361-368, 1966. 

12. EI-Dessouki and W. H. Huen, "Distributed Enumeration on Network 
Computers," Proc. of 19791nt'l. Conf. on Parallel Processing, Michigan, 
pp. 137-146, 1979. Also published in IEEE Trans. on Computers, Vol. 
C-29, No.9, pp. 818-825, Sept. 1980. 

13. T. Feng, "Data Manipulating Functions in Parallel Processors and Their 
Implications," IEEE Trans. Computers, Vol. C-23, No.3, pp. 309-318, 
Mar. 1974. 



14. J. P. Fishburn, R. A. Finkel, and S. A. Lawless, "Parallel Alpha-Beta 
Search on ARACHNE," Proc. of 1980 Int'l. Conf. on Parallel Processing, 
Michigan, pp. 235-243, 1980. 

15. Foster, M. J. and H. T. Kung, "Design of special-purpose VLSI chips," 
IEEE Computer, Vol. 13, No.1, pp. 26-40, 1980. 

16. M. R. Garey and D. S. Johnson, "Strong NP-completeness Results: 
Motivations, Examples, and Implications," JACM, Vol. 25, No.3, pp. 
499-508, July 1978. 

17. M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to 
the Theory of NP-completeness, W. H. Freeman and Company, San Fran
cisco, 1979. 

18. R. Garfinkel, "On Partitioning the Feasible Set in a Branch and Bound 
Algorithm for the Asymmetric Travelling Salesman Problem," Operations 
Research, Vol. 21, No.1, pp. 340-342, 1973. 

19. R. S. Garfinkel and G. L. Nemhauser, Integer Programming, John Wiley 
and Sons, Inc., New York, 1972. 

20. A. M. Geoffrion and R. E. Marsten, "Integer Programming Algorithms: A 
Framework and State-of-the-Art Survey," Management Science, Vol. 18, 
No.9, pp. 465-491, May 1972. 

21. L. R. Goke and G. J. Lipovski, "Banyan Networks for Partitioning Multi
processor Systems," Proc. 1st Annual Compo Architecture Conf, pp. 21-28, 
Dec. 1973. 

22. J. A. Harris and D. R. Smith, "Hierarchical Multi-processor Orga
nizations," Proc. 4th Annual Symp. on Compo Arch., pp. 41-48, 1977. 

23. M. Held and R. Karp, "A Dynamic Programming Approach to Sequencing 
Problems," Jr. of SIAM, Vol. 10, pp. 196-210, 1962. 

24. M. Held and R. Karp, "The Travelling Salesman Problem and Minimum 
Spanning Trees," Operations Research, Vol. 18, pp. 1138-1162, 1970. 

25. M. Held and R. Karp, "The Travelling Salesman Problem and Minimum 
Spanning Trees, Part II," Math. Prog., Vol. 1, pp. 6-25, 1971. 

26. D. S. Hirschberg, "Fast Parallel Sorting Algorithms," CACM, Vol. 21, No. 
8, pp. 657-601, Aug. 1978. 

27. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Com
puter Science Press, Maryland, 1978. 

28. T. Ibaraki, "Computational Efficiency of Approximate Branch and Bound 
Algorithms," Math. of Oper. Research, Vol. 1, No.3, pp. 287-298, 1976. 

29. T. Ibaraki, "Theoretical Comparisons of Search Strategies in Branch and 
Bound Algorithms," Int. Jr. of Compo and Info. Sci., Vol. 5, No.4, pp. 
315-344, 1976. 

30. T. Ibaraki, "On the Computational Efficiency of Branch and Bound Algo
rithms," J. of Oper. Res. Soc. of Japan, Vol. 20, No.1, pp. 16-35, 1977. 

31. T. Ibaraki, "The Power of Dominance Relations in Branch and Bound 
Algorithms," JACM, Vol. 24, No.2, pp. 264-279, 1977. 

32. T. Ibaraki, "Depth-m Search in Branch-and-Bound Algorithms," Int. Jr. of 
Compo and Inf. Sci., Vol. 7, No.4, pp. 315-343, 1978. 

33. G. Ingargiola and J. Korsh, "A Reduction Algorithm for Zero-one Single 
Knapsack Problems," Management Science, Vol. 20, No.4, pp. 460-663, 
1973. 

34. G. Ingargiola and J. Korsh, "A General Algorithm for One Dimensional 
Knapsack Problems," Operations Research, Vol. 25, No.5, pp. 752-759, 
1977. 

35. R. M. Karp, "Reducibility Among Combinational Problems," Complexity 
of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum 
Press, New York, pp. 85-104, 1972. 

36. D. E. Knuth, The Art of Computer Programming, Sorting, and Searching, 
Vol. 3, Addison-Wesley, 1973. 

37. W. Kohler and K. Steiglitz, "Chara1.1erization and Theoretical Comparison 
of Branch and Bound Algorithms for Permutation Problems," JACM, Vol. 
21, No.1, pp. 140-156, 1974. 

38. D. J. Kuck, "ILLIAC IV Software and Application Programming," IEEE 
Trans. on Comp., Vol. C-17, pp. 746-757, Aug. 1968. 

39. D. J. Kuck, "A Survey of Parallel Michine Organization and Program
ming," Computing Survey, Vol. 9, No.1, pp. 29-59, 1977. 

40. H. T. Kung, "The Structure of Parallel Algorithms," Advances in Com
puters, Vol. 19, Yovits, M. C. ed., Academic Press, New York, 1980. 

The Architecture of MANIP 161 

41. B. Lageweg, J. Lenstra and A. Rinnooykar, "Job-shop Scheduling by 
Implicit Enumeration," Management Science, Vol. 24, No.4, pp. 441-400, 
1977. 

42. E. A. Lamagna, "The Complexity of Monotone Networks for Certain 
Bilinear Forms, Routing Problems, Sorting and Merging," IEEE Trans. on 
Computers, Vol. C-28, No. 10, pp. 773-782, Oct. 1979. 

43. A. H. Land and A. Doig, "An Automatic Method for Solving Discrete 
Programming Problems," Econometrica, Vol. 28, pp. 497-520, 1960. 

44. Lawler, E. L. and Wood, D. W., "Branch and Bound Methods: A Survey," 
Operations Research, Vol. 14, pp. 699-719, 1966. 

45. D. Lawrie, "Access and Alignment of Data in an Array Processor," IEEE 
Trans. Computers, Vol. C-24, No. 12, pp. 215-255, Dec. 1975. 

46. J. Lenstra, "Sequencing by Enumerative Methods," Math. Centre. Tract 
69, Mathematisch Centrum, Amsterdam, 1976. 

47. D. D. Marshall, "A Parallel Processor Approach for Searching Decision 
Trees", Proc. of 1977 Int'l. Conf on Parallel Processing, Michigan, pp. 
199-201, 1977. 

48. L. Mitten, "Branch and Bound Methods: General Formulation and Proper
ties," Operations Research, Vol. 18, pp. 24-34, 1970. 

49. H. P. Moravec, "Fully Connecting Multiple Computers with Pipelined 
Sorting Nets," IEEE Trans. on Computers, Vol. C-28, No. 10, pp. 795-798, 
Oct. 1979. 

50. T. Morin and R. Marsten, "Branch and Bound Strategies for Dynamic 
Programming," Operations Research, Vol. 24, pp. 611-627, 1976. 

51. D. E. Muller and F. P. Preparata, "Bounds to Complexities of Networks 
for Sorting and Switching," JACM, Vol. 22, No.2, pp. 195-201, Apr. 1975. 

52. D. Nassimi and S. Sahni, "Bitonic Sort on a Mesh Connected Parallel 
Computer," IEEE Trans. on Computers, Vol. C-27, No.1, pp. 2-7, Jan. 
1979. 

53. N. J. Nilsson, Problem Solving Methods in Artificial Intelligence, McGraw 
Hill, New York, 1971. 

54. J. H. Patel, "Processor-Memory Interconnections for Multiprocessors," 6th 
Annual Symposium on Computer Architecture, pp. 168-177, 1979. 

55. D. A. Patterson and C. H. Sequin, "Design Considerations for Single Chip 
Computers of the Future," IEEE Trans. on Computers, Vol. C-29, No.2, 
pp. 108-116, Feb. 1980. 

56. M. C. Pease, "The Indirect Binary n-cube Microprocessor Array," IEEE 
Trans. on Computers, Vol. C-26, No.5, pp. 458-473, May 1977. 

57. F. P. Preparata, "Parallelism in Sorting," Proc. of 1977 Int'l. Conf on 
Parallel Processing, Michigan, pp. 202-206, Aug. 1977. 

58. C. V. Ramamoorthy, J. L. Turner, and B. W. Wah, "A Design of a Fast 
Cellular Associative Memory for Ordered Retrieval," IEEE Trans. on 
Computers, Vol. C-27, No.9, pp. 800-814, Sept. 1978. 

59. G. Sa, "Branch and Bound and Approximate Solutions to the Capacitated 
Plant Location Problem," Operations Research, Vol. 17, No.6, pp. 
1005-1016, 1969. 

60. S. Sahni, "General Techniques for Combinational Approximation," Oper
ations Research, Vol. 25, No.6, pp. 920-936, 1977. 

61. R. Sedgewick, "Data Movement in Odd-Even Merging," SIAM Journal of 
Computing, Vol. 7, No.3, pp. 239-272, Aug. 1978. 

62. C. L. Seitz, Proceedings of the Caltech Conference on Very Large Scale 
Integration, California Institute of Technology, Jan. 1979. 

63. S. W. Song, "A HIghly Concurrent Tree Machine for Database Applica
tions," Proc. of 1980 Int'l. Conf. on Parallel Processing, Michigan, pp, 
259-268, 1979. 

64. H. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Trans. on 
Computers, Vol. C-20, No.2, pp. 153-161, Feb. 1971. 

65. C. D. Thompson and H. T. Kung, "Sorting on a Mesh-Connected Parallel 
Computer," CACM, Vol. 20, No.4, pp. 263-271, Apr. 1977. 

66. J. E. Thornton, Design of a Computer: The Control Data 6000, Scott, 
Foresman and Company, Glenview, Illinois, pp. 141-153, 1970. 

67. C. L. Wu and T. Y. Feng, "The Reverse-Exchange Interconnection Net
work," IEEE Trans. on Computers, Vol. C-29, No.9, pp. 801-811, Sept. 
1980. 





Parallel sorting machines: 
their speed and efficiency 

by LEON E. WINSLOW and YUAN-CHIEH CHOW 
Wright State University 
Dayton, Ohio 

ABSTRACT 

A unified approach for analyzing and classifying parallel sort
ing machines is discussed. The approach accounts for a num
ber of important factors that have significant impacts on the 
measure of the size and complexities of parallel sorters. These 
factors include the sorter architectures, sequential/parallel in
put, single/multiple passes, and the base of the comparitors. 
An efficiency measure is also introduced to describe the opti
mality and other general characteristics of the sorters. Finally, 
a new sorter with the time complexity of O(e*logbN), where 
b is an arbitrary base, is proposed. Its efficiency is indepen
dent of the number of processors, the size of the list, and the 
maximum value in the list. 

INTRODUCTION 

There are sorting algorithms, such as Quicksort, which re
quire sort times of 0 (N *log2N) on a single-processor system. 
Ideally, using parallel processors to perform a sort should 
reduce the sorting time by a factor equal to the number of 
processors used. No published parallel-processor sorter 
achieves this ideal. This paper presents two parallel-processor 
sorters whose speed is directly proportional to the number of 
parallel processors used, and it shows how sorters with sort 
times of O(N), O(logbN), and 0(1) can be obtained. 

Published parallel-processor sorters fall into two categories, 
the ladder and the network. I The ladder uses N parallel 
comparitors and sorts a list of N items in the time O(N). The 
bitonic sorter, the fastest of the network sorters, uses 
0(N*[log2N]2) comparitors and sorts in time o ([log2Nf). 
Increasing the number of comparitors in either the ladder or 
bitonic sorter increases the size of the list that can be sorted, 
but it has no effect on the time required; that is, the time is in 
some sense independent of the number of comparitors. 

If P processors are working in parallel for time T, then they 
should produce PT units of work. Information theoretic argu
ments show that sorting a list of N items is equivalent to 
computing N * 10gbN digits where the base b is arbitrary. A 
single processor can sort a list in time O(N *log2N); so the 
efficiency, the ratio of the actual work produced to the theo
retical work that can be produced, is essentially 1. The ladder, 
however, requires N units working for time N, so the effi
ciency is 

163 

[N * log2N]/ N 2 = [log2N]/ N 

By a similar calculation, the efficiency of the bitonic sorter is 
[log2Nr 3

• In both the ladder and the bitonic sorter, the effi
ciency decreases as the size of the list and/or the number of 
units increases; that is, the units are doing useful work a 
smaller and smaller fraction of the time. An optimally de
signed sorter has an efficiency of 1, which is independent of 
the list size, the values in the list, and the number of proces
sors used. The single-processor sort is essentially optimal, but 
neither of the parallel-processor sorters even approach opti
mality. 

The next section uses the radix sorter to consider where and 
how parallelism can be introduced so that a range of sort 
times, from o (N*logbMAX) to 0(1), can be obtained where 
MAX is the largest value in the list. The efficiency of the 
sorter is independent of the number of processors used; that 
is, doubling the number of processors doubles the sort space. 

The third section presents a new sorter with sort times 
ranging from 0 (eN *logbN) to 0 (e *logbN), where e is a con
stant between 1.0 and 1.5 and the efficiency is (l/e), which is 
independent of the number of processors, the size of the list, 
and the maximum value in the list. 

THE RADIX SORTER 

Before introducing parallelism, we consider the standard 
radix sorter in some detail to illustrate where and why paral
lelism is used. The mechanical punched card sorter is a radix 
sorter with base 12; that is, the sorter is set to a particular card 
column, and, as each punched card enters the sorter, it uses 
the hole in the prespecified card column to determine which 
of the 12 buckets to place the card in. To sort a deck of cards, 
a series of passes is necessary. During each pass the pre
specified card column is shifted forward one position in the 
columns used for sorting (the units position is used for the first 
pass, the tens position for the next pass, and so forth), all the 
cards are sorted (or placed) into the correct bucket, and the 
cards are collected for the next pass. Obviously, for a deck of 
N cards, each pass requires time O(N), and the number of 
passes is equal to the number of card columns necessary to 
store the largest value. 

To construct a more general radix sorter, we assume the 
existence of the "base b element." A base b element inputs 



164 National Computer Conference, 1981 

o 0 1 1 2 2 (tr1) (tr1) 
Figure i-A parallel radix sorter 

an item and outputs the item into one of b buckets using a 
prespecified digital position in the item to determine the cor
rect bucket. One can visualize, if desired, a base b element as 
a memory with b words or buckets of storage. Incoming data 
is stored in the bucket, whose address is determined by some 
digit in the incoming data. 

A single base b element can be used as a base b radix 
sorter. During each pass all the items in the list are entered, 
one item at a time, and stored in the proper bucket; then the 
bucket contents are collected for the next pass. For a list of N 
items, the time required for a single pass is O(N) , and the 
number of passes is [logbMAX], where MAX is the value of 
the largest item in the list. The total time required for a sort 
is then 0 (N *flogbMAXl). The speed of a base b radix sorter 
is limited by the time required for a pass and the number of 
passes required. The number of passes required is a function 
of B and MAX; increasing b decreases the number of passes 
until the limiting value of b = MAX is reached, at which point 
the number of passes is one and the total time for a sort is 
O(N). 

Fundamental speed increases in the time required for a pass 
are limited by the need to enter the whole list sequentially. 
Introducing parallel (simultaneous) input of the items and 
using parallel processors or elements is the only way to obtain 
fundamental speed increases. 

One can use, say, two base b elements in parallel and 
process two list items simultaneously; but either both ele
ments must use the same buckets or there must be some way 
to merge the two sets of buckets. The first option introduces 
resource conflicts, so we choose the second. We consider first 
the design of this merging capability and then return to the 
design of a parallel sorter. 

Figure 1 shows two parallel base b elements with their 
outputs lined up so that the Os are together, the Is are togeth
er, and so forth. Assuming each of these outputs is a bucket 
capable of storing a single item, after the two items have been 
processed by the elements, two of the buckets contain values 
and the remaining (2b - 2) buckets are empty. To merge the 
contents of the two nonempty buckets onto the first two out
put lines, we use the network shown in Figure 2. In this 
network there is one line and one series (or level) of switches 
for each bucket. If a bucket is empty, its corresponding level 
of switches are all set to the right. If a bucket is nonempty, the 
switches are vertical. A standard inductive argument can be 

used to show that if the switches are set as soon as the buckets 
are filled, and then the buckets' contents are output onto the 
lines, the contents of the two nonempty buckets are output on 
the two zero lines with the smaller value to the left. 

Assuming two base b elements working in parallel followed 
by the network of Figure 2, it is clear that the time for a single 
pass is halved. In general, assuming P base b elements work
ing in parallel followed by a similar network, the time for a 
single pass is divided by P; that is, the time required is directly 
proportional to the number of parallel elements or processors. 
Since increasing the number of elements has no effect on the 
number of passes required, the total time for a P element 
radix sort is o ([NIP] * f!ogbMAXl) , where MAX is the value 
of the largest item in the list. In the limiting case, when P 
equals N, the total sort time is 0 (logbMAX). If both P equals 
N alld b equals MAX, the sort time reduces to 0(1), the 
ultimate limit. 

To compute the efficiency of a parallel radix sorter with P 
elements, we note that the actual work performed is still 
N*f!ogbNl. Dividing this by the potential work, P processors 
working in parallel for time 10gbMAX, gives an efficiency of 

N*logbN -10 N 
P*(NIP)*logbMAX - gMAX 

which depends only on the ratio of N and MAX and is inde
pendent of the number of processors; that is, the useful work 
produced by each element is independent of the number of 
elements. 

THE BALANCED TREE SORTER 

A basic difficulty with the radix sorter is the dependence of 
the sort time upon the maximum value in the list rather than 
the number of items in the list. If the items in the list are 
20-character employee names, even a short list requires many 
passes or large values of b. This section presents a sorter with 
the number of passes depending upon N rather than the max
imum value in the list. We first consider the concept of sorting 
by using a balanced tree and then the design of a balanced tree 
sorter. 

In a balanced tree all subtrees have the same height. As
sume each node in a balanced tree contains (b - 1) values and 
has b sons. An item in the list to be sorted is compared to all 
(b - 1) values, and the nearest value is used to determine 
which son node is used for the next comparison. As the item 
descends the tree, always using the nearest son for the next 
comparison node, sooner or later it reaches a node where a 
match is found or it reaches the bottom of the tree. Assuming 
that the node values have been correctly chosen so that the 
tree remains balanced, when all the items in the list have been 
inserted in the tree, the sorted list can be obtained from the 
node values. Since the tree is balanced, it contains [logbN] 
levels. 

The assumption that the exact node values are known in 
advance can be avoided by using a variation on Quicksort. 3 

Starting with original list and choosing (b - 1) values at ran
dom from the list as the node values for the root node of the 
tree, this node can be used to insert each item in the list into 
a bucket corresponding to the correct son. The result5i_ of the 
first pass are then a set of b buckets or sub lists with every item 
in one sublist preceding every item in the next sublist; that is, 



InputUnes 

00 (b-2) (b-2) (b-l) (b-l) 

••• ••• • •• 

11-
Switch 
levels 

(b-l) 

......... ..1~-- (b-2) 

..1TI--- (b-2) 

fr-r- --- (b-3) 

I I I I • I I I I • 1 1 I • t 1 0 

Outputs 
Figure 2-A network to collect the contents of the nonempty lines onto the 

beginning lines 

the first pass generates b sublists with a sort ordering between 
the sublists. 

Each sublist (the contents of one bucket) is now processed 
the same way the original list was processed with (b - 1) node 
values chosen at random from the sublist. This generates b 2 

sublists with a sort ordering between all the sublists. Con
uing this process reduces the size of the sublists at each pass 
until they all contain a single item, at which point the list is 
sorted. (In practice, the process usually stops when each sub
list contains less than b items.) Note that this process assumes 
that the b node values are themselves sorted by some means; 
we assume in the following that this is done and that b is small . 
enough in comparison to N that this additional sort time is 
negligible. 

This is essentially Quicksort, using (b - 1) comparisons at 
each step rather than 1. As in Quicksort, choosing node values 
at random rather than using the exact values affects the time 
required less than one might assume. If the exact values were 
used so that the tree remained balanced, then DogbNllevels 
are required to store the tree and DOgbNl passes are required. 
If the node values are chosen at random from the sublists, 
then simulation studies show that the mean number of passes 
becomes e * DogbNl where the value of e depends upon the 
value of b and the precise way the node values are chosen. If 
the node values are simply the first (b - 1) values chosen at 
random from the list and b equals, say, 20, then e is about 1.3; 
in the worst case, for b equals 2, e= 1.39 and e decreases as 
b increases. While these values of e are mean values and the 
exact number of passes or comparisons depends upon the list 
values, the standard deviation in the number of comparisons 
is typically a few percent of the mean, so the time variation 
from sorting one list to the next is typically a few percent of 
the mean time. 

To implement a balanced tree sorter, we use a b way com
pari tor , a device that inputs an item, compares the value of 
the item to all (b - 1) previously stored node values, and 
outputs the item to the bucket or position corresponding to 
the nearest node value. If a single b way comparitor is used, 

Parallel Sorting Machines 165 

the e *DogbNl passes are necessary, so, assuming the time to 
sort the node values themselves is negligible, the total time to 
sort the list is 0 (eN *DogbNl). Although the constant e can be 
adsorbed in the big 0, including the e makes explicit the 
dependence of the sort time on the method of choosing the 
node value. 

As in the radix sorter, fundamental speed increases in the 
single-element balanced tree sorter can be obtained by in
creasing b or introducing parallel elements processing parallel 
input. Increasing b to the limiting value of N reduces the 
number of levels or passes to 1, but the time to sort the values 
used in the nodes is no longer negligible; indeed, it becomes 
the sort time. The time required to sort the values used in the 
nodes sets a practical upper limit on the value of b that re
quires further study. 

Parallel elements can be introduced the same way they were 
introduced in the radix sorter, with the merging network of 
Figure 2 to collect the output. In the first pass, a single set of 
(b -1) node values is chosen and all the comparitors use this 
set of node values. In the second and later passes, the com
paritors can use the same node values and the same sublists, 
or each comparitor can be working on a different sublist with 
node values chosen from that sublist. Obviously during the 
first pass (and, on the average, during all passes) the time for 
the pass is reduced by the number of parallel comparitors. On 
the average the sort time is o ([eNIP]*logbN) where P is the 
number of comparitors. The efficiency is lie, which is always 
greater than 0.5 and is independent of the number of com
paritors and the list to be sorted; that is, this sorter approaches 
the optimal possible design. 

Increasing the value of P to the limiting value of N reduces 
the sort time to 0 (e * 10gbN). Note that to attain this limiting 
value, after the first pass each comparitor must be working on 
the sublist containing the item assigned to the processor. This 
requires some careful assignment of the workload. 

CONCLUSION 

The complexities of parallel sorting machines depend heavily 
on the sorter architectures, processors, data, and the software 
algorithm used. In this paper we have shown how sorters with 
sort times of O(N*logbMAX), o (logb MAX) , 0(1), O(N* 
10gbN), and 0 (logbN) can be achieved. The efficiency mea
sure of the parallel sorters is proved to be useful in describing 
the behavior of the sorters. A new sorter with sort time of 
O(e*logbN) and efficiency (lIc) > 0.5 is proposed. This sorter 
could achieve near optimum with software support. Some 
hardware for the implementation of the new sorter is dis
cussed. More implementation detail is reported in a separate 
paper.4 

REFERENCES 

l. Batcher, K. E. "Sorting Networks and Their Applications." Proc. 1968 
SJCC, AFIPS, Vol. 32, pp. 307-314. 

2. Chen, T.e., V.Y. Lum, and e. Tung. "The Rebound Sorter: An Efficient 
Sort Engine for Large Files." Proc. 1978 International Conf. on Very Large 
Data Bases. pp. 312-318. 

3. Knuth, D. E. The Art of Computer Programming. Vol. 3, Sorting and 
Searching. Addison-Wesley, 1973. 

4. Winslow, L. E., and Y. e. Chow. "The Analysis & Design of Some New 
Sorting Machines. 





NETWORK TECHNOLOGY 





Packet communication of online speech* 

by DANNY COHEN 
USC/Information Sciences Institute 
Marina del Rey, California 90291 

ABSTRACT 

The rapid progress of both communication and processing 
technologies in recent years constitutes a challenging tech
nological revolution, epitomized by the photographs sent by 
Voyager from Saturn. 

This revolution offers new opportunities for many avenues 
of technology. Real-time speech communication is one of 
them. This paper discusses the use of packet switching, the 
emerging computer communication technology, for online 
·speech application. 

The paper reviews the computer communication tech
nologies such as packet and circuit switching, datagrams, and 
virtual circuits. It mentions the voice encoding (vocoding) 
algorithms and their implementation and discusses the inter
action ofvocoding and packet-switching technology. It argues 
about the issues of network voice protocols and introduces 
applications of online speech. 

After describing the experience with packet speech, the 
paper concludes with several ideas about the future of the 
field. 

. INTRODUCTION 

The rapid revolution in computer communication technology 
in recent years has enabled computer networks to offer a new 
means of communication for online speecht in addition to the 
conventional data communication for which they are typically 
designed. 

To communicate speech over computer network~, it is nec
essary to digitize the speech. Until recently the process of 
digital speech encoding ("vocoding") was either prohibitively 
expensive or resulted in data rates that were impractically high 
for the available computer communication networks. There-

*This research is supported by the Defense Advanced Research Project Agency 
under Contract No. DAHC15-72-C-030S. Views and conclusions contained in 
this report are the author's and should not be interpreted as representing official 
opinion or policy of DARPA, the U.S. government, or any person or agency 
connected with them. 
tThroughout this note online speech is understood as interactive speech com
munication between people such that they have the ability to interrupt each 
other at any time':"-unlike push-to-talk systems. 

169 

fore, online digital speech communication was possible but 
not practical until several breakthroughs took place in com
munication technology, in processing technology, and· in the 
mathematical understanding of the signal processing neces
sary to support it. 

The cost of digital speech is decreasing at a remarkable rate, 
matched only by processing power and communication. In 
this inflationary world these may be the only two commodities 
whose prices keep dropping. Therefore, even though the cost 
of digital speech may still appear prohibitive, the situation is 
bound to change in the near future. 

The advantages of digital speech are many. Basically, digi
tal speech can be processed by computers for a wide variety of 
applications, such as speech understanding, storage and re
trieval, sophisticated editing, and security. Digital speech can 
be reamplified indefinitely without any loss of signal fidelity, 
and it also can benefit from the use of many error correction 
schemes for overcoming low-quality communication lines. 

Traditional voice communication (telephone) networks 
have failed to provide the required services for computer com
munication, giving rise to the existence of computer commu
nication networks. Now that these computer communication 
networks exist, the dual question arises: Are computer com
munication networks adequate for online speech? 

The positive answer to this question is probably due more 
to the fact that data networks are more modern than voice 
networks and benefit from all the experience accumulated so 
far in the field of communication, especially from the modern 
concept of augmenting the conventional online commu
nication subsystems with processing (and storage) capabili
ties. 

In the second section, circuit switching and packet switching 
are compared. This issue is akin to the comparison of voice 
and data networks. 

The process of digitizing voice provides several oppor
tunities for engineering tradeoffs, such as processing vs. qual
ity, communication data rate vs. quality, and processing vs. 
data rate. For any given communication data rate, the more 
processing applied, the higher the quality. The more data 
communicated with a given amount of processing, the higher 
the quality. Consequently, since more processing is applied, 
fewer data must be communicated to achieve a certain voice 
quality. Hence, high-quality voice communication requires a 
high rate of communication or high-level processing. 



170 National Computer Conference, 1981 

This gives rise to the question of how much to compress the 
speech to optimize the overall speech communication system. 
One extreme is minimizing the processing requirements by 
using PCM (pulse code modulation). This yields approxi
mately a 64Kbps data rate for achieving telephone quality. 
The other extreme is minimizing the data rate while achieving 
similar quality. This results in computational requirements of 
about a million instructions per second (1Mips) and a data 
rate of about 2Kbps. Between these two extremes there are 
many points best suited to certain system requirements-for 
example, CVSD (continuously varying slope delta modu
lation) technique at 8, 16, or 32Kbps. 

To make packet speech practical, it is necessary to have 
vocoding algorithms that guarantee high-quality speech com
munication at a reasonable data rate and that may be imple
mented by practical hardware. Issues about both the vocoding 
algorithms and the hardware for their implementations are 
discussed in the third section. 

Packet communication has cost and reliability advantages 
when compared with circuit switching. This is due to the abil
ity to augment the communication subsystem with processing 
capabilities that can increase the reliability of the total end-to
end communication beyond that of any of its individual sub
systems, as well as to the ability to exploit the statistical prop
erties of the activity distribution, thus catering to the 
averages, not to the maximal (worst-case) levels. 

Unfortunately, the same processing capabilities that in,.. 
crease both the system reliability and the cost effectiveness 
tend also to introduce variable delays into the end-to-end 
communication. The variability of the delay is due to the 
dependence on the total level of activities ("load") in the 
network, which depends on the quantity of traffic caused by 
all other users of the same network. 

The ability to cope with these delays and their variability is 
one of the major issues in handling packet speech. The inter
action of the packet-switching technology and speech com
munication is described in the fourth section. 

One of the most important lessons learned has been that 
software is as complicated and important to the total system 
as hardware. In the early days of computing many believed 
tbat once the computer hardware was operational, the rest 
was just a small matter of programming. We have learned that 
this is not so, and that the software of significant systems is as 
difficult (clOd expensive) as the hardware. 

A similar lesson was learned about communication. The 
mere delivery of bits from one computing system to another 
is only the beginning, just as computer hardware is only the 
beginning. After accomplishing this delivery one has to make 
sure that the higher-level meaning is communicated and that 
information is transferred, not just data. 

The technique of getting the meaning (information) across 
the communication system is handled by the communication 
protocols, which may be described as the software, or the 
programming language, of the communication system. 

Since data-oriented protocols are not suited for online voice 
communication, new network voice protocols have to be de
vised. Such protocols are described in the fifth section, with 
the rationale leading to their developmenL 

The ability of computers to handle online speech, together 

with the large body of already existing capabilities of compu
ters, may be used for a variety of new applications, discussed 
in the sixth section.· . 

The seventh section describes some of the experience 
gained and some of the milestones in the short history of 
packet speech. . 

The last section states several conclusions about the future 
of packet speech communication. 

ON COMPUTER COMMUNICATION NETWORKS 

The ability to communicate data (i.e., bits) over communi
cation lines is relatively old. Modems fora variety of com
munication lines (especially telephone lines), at a variety of 
speeds, have existed for many years. 

The switching capability is what' makes a collection of such 
communication lines a communication network. This switch
ing allows the interconnection of N users without having to 
use facilities of N 2 size. The total capabilities of a communi
cation network depend on both the communication capabili
ties of the individual links and the processing capabilities of 
the switching nodes. 

There are two basic approaches to the switching issue. One 
is to select a set of physical links and to dedicate them to the 
desired communication path as long as they may be needed. 
The other is to dynamically timeshare the communication 
links as required. The former approach is called circuit switch
ing (CS), and the latter is called packet switching (PS) .. 

Hence, circuit switching requires that communication paths 
be set up before they are actually used. However, once such 
a path is established, it is guaranteed to be available for the 
entire duration of the communication, even in periods when 
it is not in use. 

These circuits are not necessarily implemented by distinct 
hardware. They could be implemented in that way (as in old 
manual telephone exchanges) or be multiplexed on the same 
hardware by using any of the many available multiplexing 
techniques, such as frequency- or tim~~multiplexing (e.g., 
TASI). For this discussion they appear Cis if they are distinct. 

An important feature of these circuits is that they consume 
certain resources, namely a portion of the communication 
bandwidth (actually data rate). As mentioned before, this has 
the a(jvantage that once a path is set up, there is no delay 
associated with each further use; but it also has the disadvan
tage that these dedicated resources are consumed when there 
is no need for them. Hence, resource management and utiliza
tion always appear as a worst-case sit~ation. 

On the other ha!ld, packet switching employs a totally dy
namic resource allocation computed according to the actual 
demand. This has the advantage that the resource allocation 
can adapt to the dynamic performance and, for example, give 
all the available resources to a certain user if he/she is the sole 
active one at the time~ Hence, under favorable statistics, such 
as a high peak-to-average ra,tio, packet switching can offer 
much better performance than circuit switching. 

In addition, in situations where communication lines may 
change their performance at a very rapid rate-failure& 
included-packet switching hCiS the advantage that it can re
cover faster than circuit switching and reestablish connection 
in alternate routes. ' 



The choice between circuit and packet switching depends 
on the traffic distribution and the characteristics of the re
sources in each particular situation. Typical computer com
munication is bursty and requires a low-duty cycle of high
data-rate communication. Therefore, in nearly all circum
stances packet switching is the preferred technology for imple
menting cost-effective computer communication. 

There are two ways of providing communication services on 
top of either CS or PS systems. One is by virtual circuits (VC) 
and the other by datagrams (DG). 

Note that even though the services of virtual circuits and of 
datagrams are akin to the implementation schemes of circuit 
switching and packet switching, respectively, it is possible to 
implement either service (VC and DO) on either imple
mentation scheme (CS and PS). 

Virtual circuit communication is a discipline of communi
cation where the communicating processes set up a virtual 
circuit between themselves, which has all the properties of a 
reliable error-free circuit. However, performance, as mea
sured by data rate and delay, may vary. 

The processing-power of the switching nodes of the commu
nication subsystem is used to guarantee the error-free reliable 
delivery of the data at the receiving end. This is accomplished 
by using a variety of techniques, such as software checksums, 
sequence numbers, and exchange of acknowledgments. In this 
mode of communication there is no concept of data granu
larity, bits, bytes, or records of any arbitrary size. 

Datagram communication is the discipline in which the end
to-end communication is packaged in units of datagrams. The 
processing power of the switching nodes may be used to guar
antee the integrity of each individual datagram, but it does not 
guarantee that all of them are delivered necessarily in the 
proper order. As a matter of fact, both loss and duplication of 
datagrams are possible under this discipline. 

One of the important characteristics of datagram commu
nication is the totally independent treatment of each indi
vidual datagram, without the use of any stored state informa
tion regarding the connection to which this datagram may 
belong. This differs from virtual circuit systems, which require 
that (in addition to the data communicated) the system inter
face must support the handling of a priori information about 
the connection, such as the connection setup. 

Note the similarity between the virtual circuit concept and 
circuit SWitching and between the datagram concept and 
packet switching. Note also that in spite of these similarities, 
in many situations virtual circuits are implemented either by 
lower-level datagrams2 or directly by packet switching,3 which 
in turn may be implemented by lower-level circuit switching. 

This may sound confusing, but in practice it is very simple 
because of the modularity of the system design, which sep
arates processes from details and idiosyncrasies of the pro
cesses on the other side of these well-defined interfaces. 

A complete description and thorough treatment of virtual 
circuits and packet switching can be found in the IEEE Pro
ceedings, Special Issue on Packet Communications ,1 which 
includes many articles on the subject. 

As mentioned above, the use of processing makes it possi
ble to achieve reliable end-to-end communication through 
software checksums, acknowledgments (both positive and 
negative), retransmissions, and sequencing. The key concept 

Packet Communication of Online Speech 171 

is that the receiving node does not deliver to its customer any 
data unless it is absolutely sure about the data's integrity~at 
the same time, the sending node keeps retransmitting the data 
until it is convinced that the data have arrived properly at the 
receiver .. 

It is possible to prove mathematically that if the probability 
of a packet to traverse the communication link successfully is 
positive, even arbitrarily small, then its-probability of being 
correctly delivered to the end receiver may be made arbi
trarily high by using checksums, acknowledgments, and re
transmissions. Unfortunately, this augmentation of the com
munication sybsystem with processing introduces random de
lays, and distribution is highly dependent on the overall net
work performance. 

In any well-designed network the performance parameters 
are tuned so that the disadvantages of the extra delay, intro
duced to increase the communication reliability, are out
weighed by the advantages of the achieved reliability. 

It is typical of most computer data transactions that no 
communication errors can be tolerated. In some applications 
the communication is decoded sequentially so that any error 
may cause a chain of undesired effects. In other applications, 
such as file transfer, the use of the data may be most sensitive 
to any error, such as missing a pointer in a database or jump
ing to a wrong location in a program. 

Therefore, data integrity is typically the dominant factor in 
the design of computer communication networks. Perfor
mance is considered a secondary factor. 

IMPLEMENTATION: 
ALGORITHMS AND HARDWARE 

To make packet voice communication practical, it is necessary 
to perform real-time vocoding with hardware of reasonable 
size and cost. Until recently this task was not well understood 
mathematically, and it required computations at rates that 
could be provided only by super-computers. 

As a result of the work of many researchers in several 
institutes, a better algorithmic understanding of the vocoding 
task has recently been achieved. Recent developments in 
computer technology and architecture as well as in the VLSI 
field allow the implementation of these algorithms by a com
pact hardware configuration. 

The major classification of the vocoding techniques are the 
time and the frequency domain techniques. The former class 
includes techniques like PCM and CVSD and is designed for 
the reproduction (at the receiver's end) of voice signals that 
look as close as possible to the original input signals (at the 
transmitter's end). 

On the other hand, the frequency domain techniques, also 
called the acoustic or spectral techniques, are designed for the 
reproduction of voice signals that sound as close as possible to 
the original input signals. A variety of such vocoding tech
niques may be found in Flanagan6 and Rabiner and Schafer;8 

In recent years linear prediction coding (LPC) (Markel') 
has emerged as the dominant vocoding technology for (rel
atively) low-data-rate (narrowband) applications in general 
and packet speech in particular. LPC may be viewed as a 
hybrid between the time domain and the frequency domain 



172 National Computer Conference, 1981 

techniques. It has some features that are best understood in 
the time domain, like the prediction, and some that are best 
understood in the frequency domain, like its logarithmic spec
tral matching. 

The companion paper4 describes the highlights of the ef
forts of a cooperative group of researchers, spread across the 
country from Massachusetts to California, collaborating on 
the algorithmic issues for packet speech. 

The computation rate required for most of the vocoding 
techniques is of the order of magnitude of millions of in
structions per second. The development of special- and 
general-purpose peripheral-array processors made the real
time pursuit of these algorithms feasible. 

Recent development of VLSI components further reduced 
the size of the vocoder to just a few chips. The Speak-&
Spell ™ toy (made by TI) was the first entry of this technology 
into the consumer market. Since then it has been followed by 
other devices by various vendors, implementing LPC and 
other speech synthesis systems. Chips with both full LPC 
synthesizers and storage of many canned words are available 
on the market at low cost. 

The companion papers describes the architectural consid
erations for using modern technology in the implementation 
of a practical (i.e., small and low-cost) packet voice terminal. 

SPEECH AND PACKET SWITCHING NETWORKS 

In the second section, packet communication was discussed. It 
explained how computer communication networks achieve a 
high degree of data integrity by using processing power. 

These systems typically are designed for computer data 
where timeliness (Le., delays and data rate) is secondary to 
data integrity. Unfortunately, this is not always the right pri
ority for online speech communication. In online speech com
munication the loss of a short burst of speech may be less 
harmful to overall voice quality than the time that may be 
required for retrieval of a better copy across the network. This 
important difference between data and online speech commu
nication is also reflected in the way the flow control should be 
applied. This example is an instance of the difference between 
real-time and non-real-time applications. (Note: real-time, 
not online. Some discussions about these real-time issues may 
be found in Cohen's work. 11.12) 

These differences necessitate the use of communication 
protocols designed to cater to real-time applications, rather 
than the more conventional protocols, such as those used for 
file transfer and terminal connections. Such a protocol is de
scribed below in the fifth section. 

The variability of the delay may cause intermittent gaps in 
the reconstruction of speech at the receiver's end. Such dis
continuities have a negative effect on the quality of speech 
communication. Techniques for overcoming this problem are 
discussed by Cohen.9 

A frequent question is: How long can the absolute delay be 
between the instant an utterance is spoken and the instant it 
is heard? 

The answer is that for a noninteractive (e.g., push-to-talk 
[PIT]) spe-ech -communication system any practical delay can 
be tolerated. But for interactive speech communication it is 

important to minimize this delay. A delay of up to about 200 
milliseconds is unnoticed. However, noticeable delays de
grade only slightly the interactive nature of the commu
nication. There is no absolute critical value beyond which the 
system fails to be interactive. This may be up to several sec
onds! 

By using more resources the total end-to-end delay can 
typically be reduced. The engineering decision about the val
ue of this delay is a simple matter of economics, equivalent to 
the question of quantitative evaluation of the cost of the delay 
(or: How much are you willing to pay to reduce the delay 
further?). 

As mentioned before, the delay variance (not its value) is 
the more difficult issue to deal with. This delay variance is 
introduced into communication systems by the packet switch
ing nodes, which are time-shared between several commu
nication tasks and whose performance depends on the total 
traffic served. 

Multihop communication systems with several commu
nication nodes tend to introduce more delay variance than 
single-hop systems, independent of the actual value of the 
delay itself. 

Both local networks (e.g., the Ethernet lO
) and satellite 

channels provide high data rates with fixed delays (the former 
very small and the latter very large). On the other hand, 
terrestrial networks typically have lower data rates but tend to 
introduce delays with significant variance as a result of the 
multitude of processing nodes used by these networks. 

In situations where communication resources are plentiful 
and processing is limited,1O there is no need to use any speech 
compression, and raw samples can be transmitted. However, 
in most practical situations this is not the case, and vocoding 
is essential. 

The difficulties associated with handling the variable delay 
may suggest the use of circuit switching instead of packet 
switching for voice communication, or some hybrid combina
tion of the two. The rationale behind this suggestion is that by 
establishing virtual circuits the dynamics of datagram hand
ling (by the communication nodes) may be reduced, hence 
improving the delay variance. 

The question of the proper mix of pure packet switching 
and virtual circuits for packet speech is very controversial. 
The results of any scientific treatment of this subject are sen
sitive to the choice of assumptions, e.g., communication 
parameters and traffic distribution. Several such discussions 
are cited in the reference section. 21

-
26 

A detailed analysis of the subject was performed by NACI3 

for the expected data and voice communication requirements 
of DOD (consistent with Autodin and Autovon). For the 
assumptions chosen for that study, probably typical of some 
terrestrial networks, the results favor pure packet switching 
over hybrid configurations with virtual circuits. This analysis 
shows a very low sensitivity to the exact traffic distribution. 

However, under the assumption of very high setup cost 
(measured in units of time), such as exists in networks based 
on satellite channels, it is not clear that the same result still 
holds. 

For that reason experiments are being conducted now in . 
order to identify ( and verify) the optimal strategy for satellite
based communication networks under a wide variety of traffic 



loads, especially when these networks are operating in con
junction with terrestrial nets. 

Currently it is expected that a mixed mode will be used, one 
that employs pure packet switching over the ground and some 
reservation scheme for the satellite links. 

PROTOCOLS FOR ONLINE PACKET SPEECH 

Protocols may be viewed as the programming languages used 
by communicating processes in order to program each other. 
It is the task of the protocols to convey the information to be 
communicated by using the bits actually delivered across the 
network. 

Protocols, like programming languages, are used to offer 
virtual services on top of existing ones of lower levels. For 
example, by using the right protocols a lower-level datagram 
service may become a higher-level virtual circuits service. 

It is advantageous to fit the protocols (like programming 
languages, again) to the specific problems they are expected 
to solve. However, protocols very efficient for a certain prob
lem may be less efficient, or even totally unfit, for a different 
class of problems. 

Counter to the move to tailor protocols to specific prob
lems, there is a move toward the use of general-purpose pro
tocols, for exactly the same reasons that programming 
languages are designed as general-purpose rather than 
special-purpose tools. Protocols should be designed in a lay
ered and modular way that lends itself well to a variety of 
applications without much loss of efficiency, while being able 
to take advantage of a large body of existing solutions to 
previous problems. 

As mentioned above, it is the task of protocols to offer 
higher-level services on top of existing ones of lower level. For 
example, TCP2 and X.2S14 are protocols that provide reliable 
virtual circuits on top of less reliable packet switching systems. 
Both these protocols are very important, because most of the 
transactions typical to computer communication cannot toler
ate any damage to the data integrity. 

Figure 1 shows the three most important attributes (dimen
sions) of computer communication: reliability, data rate and 
end-to-end delay. These attributes are shown as a triangle, 
rather than three-dimensional Cartesian coordinates, in order 
to emphasize that it is ,not possible to achieve all these attri
butes simultaneously and that in order to improve one, any of 
the other attributes may be compromised. 

Typical online computer file transfer requires both high 
reliability and high data rate, as depicted by Point A in the 
figure. On the other hand, other online applications, like 
terminal communication, require high reliability and low de
lay, as depicted by Point B. 

Speech communication, like most real-time applications, 
requires both high data rate and a low delay, even at the 
possible expense of reliability, as depicted by Point C. 

As Cohen 11 notes, the typical property of real-time commu
nication is that once newer information is available, older 
information is of less importance and is not necessarily worth 
pursuing at any delay (and data rate) cost. This is not so for 
the non-real-time, more conventional computer commu
nication. Any information that is sequentially decoded ("un-

Packet Communication of Online Speech 173 

c 

Reliability 
A~------------------------~B Figure 1-The major attributes of computer communication 

derstood") must be delivered reliably and in the proper 
sequence. For such a communication, newer information is 
totally worthless until all the previous information is properly 
received. 

In typical non-real-time communication one process sends 
another process information that changes its state. Any dam
age to such information may yield loss of synchronization 
between these processes and lead to severe undesired results. 
Therefore, when the integrity of any part of the commu
nication is not assured (e.g., when any error is discovered), it 
is necessary to halt progress until the missing part is reliably 
recovered. However, for real-time applications (such as 
weather reporting) it is wrong to delay updated information in 
order to retrieve old information. 

Speech communication is of the real-time type. Damaged 
short speech bursts may be less harmful to the total commu
nication process than the retrieval of an undamaged version of 
them, especially through networks with relatively long delays. 

Real-time speech communication, unlike non-real-time ap
plications, requires certain communication data rates. Lower 
data rates cannot support the task, and access rates do not 
provide any advantage. File transfer, on the other hand, has 
no intrinsic requirements for bandwidth and data rate except 
that higher data rates obviously yield a more rapid transfer of 
large files. No data rate is too low for file transfer, and any 
access rate is always useful. 

This intrinsic bandwidth has important implications to the 
flow control schemes used for such communication, as de
scribed by Cohen.11 

Because of these important differences between non-real
time computer communication and real-time speech commu
nication, the traditional standard computer communication 
protocols were not suitable for speech applications. This fact 
gave rise to the development of special speech-oriented proto
cols. 

Since speech is a particular instance of the more general 
class of real-time applications, a typical network voice proto-



174 National Computer Conference, 1981 

col should be viewed as another layer on top of a more general 
real-time communication protocol layer. 

A network voice protocol, NVP, should have the following 
features: 

• Separation of the handling of data and control 
• Independence from vocoding techniques 
• Real-time binding of vocoding data format 
• Support of higher-level application protocols 
• Ability to adapt to variable network performance 

A network voice protocol designed according to these objec
tives is described by Cohen. 15 

Any network voice protocol has to deal with the following 
issues: call progress, real-time communication, and handling 
of speech data. These issues are discussed below. 

Control deals mainly with call establishment, monitoring, 
and termination. It is also responsible for basic decisions 
about addressing and routing, choice of cOllu'nunication 
modes and parameters (if any), and the support of higher
level protocols for various applications--conferencing, for ex
ample. These issues are independent of the p~lrticular choice 
ofvocoding technique in use, of the details (e.g., formats) of 
the underlying supporting communication network, and of the 
specific real-time communication issues. 

An important attribute of voice protocols is their ability to 
support a variety of local features through different systems. 
For example, different styles of user-interface schemes may be 
used by different systems while being supported by the same 
protocol. 

The loss of control messages causes severe problems. But 
the loss of voice data messages causes only intermittent (tran
sient) glitches. Damage to control messages can cause major 
problems, from which the system may not recover by itself. 
For example, errors in addressing or in comrtlUnicating the 
choice of vocoding technique can make communication im
possible over that connection. 

The integrity of control messages is more important than 
that of voice data messages. On the other hand, the timeliness 
of the control messages is less critical than that of the voice 
messages. Therefore, it is advantageous to separate control 
and data .. handling processes (or protocol layers), using re
liability mechanisms (like acknowledgments and retransmis
sions), even at the cost of significant delays, for assuring the 
integrity of the control while using other faster real-time 
mechanisms for the voice data. 

Several vocoding techniques may be used for packet 
speech. Each vocoding technique may have several dialects, 
which differ in the particular values of certain parameters, 
such as sampling rate (for PCM and CVSD) or a number of 
poles (for LPC). The incompatibility of vocoding techniques 
and their parameters is as severe as the incompatibility of 
languages: A perfect match is necessary to establish intel
ligible communication. 

Modem voice terminals are capable of using more than just 
one vocoding technique with several parameter settirtgs. It is 
the task of the control protocol (actually, the control portion 
of the voice protocol) to assure the compatibility of the vocod
ing technique in use. 

Even with the variety of vocoding techniques in use, the 

control protocol is essentially the same. Therefore, it is im
portant that it be designed so that it is independent of the 
vocoding technique. 

The actual binding of the vocoding technique should be 
deferred to the time when the communication is established 
(runtime). This allows the use of higher-data-rate vocoding, 
for better quality, when the communication system can sup
port it, and of lower-data-rate vocoding When so dictated by 
lack of communication resources. It is interesting to note that 
the same control protocol can manage not only voice con
nections but also connections of different modalities, such as 
graphiCs. 

One important part of the voice protocol is the interface to 
the lower-level communication system. The same control pro
tocol should be able to operate on top of several different 
communication disciplines while using possibly different 
parameters for each. The binding of the actual commu
nication system used should also be deferred to runtime. 

When the network interface is kept as a separate module, 
the transitions from the use of a particular network to another 
one are (relatively) easy to implement, since the details of the 
lower-level transport mechanism do not have to affect the 
other issues handled by the protocol, such as call progress and 
handling of vocoding data. Network voice protocols can and 
should be designed for operation in a general internetworking 
environment by using specific networks through a layer of 
internet protocol. 29,30 

Since voice communication is an instance of real-time com
munication, the voice protocol should be real-time-oriented. 
This includes issues like time-stamping, the ability to recover 
from damage and loss of data (also known as robustness), and 
flow control. Since real-time communication is typically rate
based, rather than data-based (like file transfer), a different 
flow control strategy should be used. This flow control shOUld 
be based on maintaining timely levels of resources (like buff
ers) rather than on quantities ("windows"). 

The flow control mechanism may occasionally fail to pro
tect the communication data. Typically this failure is caused 
by unforeseen changes of the total system load on the commu
nication, which are due to the activities ,of the other users. 
Any flow control mechanism that never. fails must be over
protective, hence limiting the overall performance of the net
work by treating all situations as worst cases. (Note that this 
is a typical type-1/type-2ertor tradeoff.) 

When such intermittent failures occur, data must be dis
carded. In the case of teal-time communication it is the older 
data that are discarded in favor of newer data. 

Generally, the performance that packet-switching networks 
offer to their users may fluctuate as a result of the changes of 
activities by other users. Since voice communication depends 
on network performance, it is important that the voice proto:" 
col be capable of monitoring this performance and adapting to 
it dynamically. For example, under.heavier network load it 
may be advantageous to use fewer, longer messages ih order 
to achieve a certain data rate-at the possible cost of delay. 
Under a heavier load the proper thing may be to switch to a 
vocoding scheme of a lower data rate; if possi61e~ _ 

An important task of the voice protocol is to extract as 
much performance as possible from the supporting commu
nication networks and to make it available for its users. This 



may require the introduction of a multiplexing capability to 
the protocol in some' cases, and the establishment of con
nection over virtual circuit networks. A new real-time proto
col capable of performing these tasks is now under devel
opment. 16 

In summary , the function of a network voice protocol is to 
augment the native capability of packet-switching networks in 
order to provide the support of real-time packet speech. Such 
a protocol .should be designed and implemented in a struc
turedway by modules that independently handle the separate 
issues of control, real-time communication, and vocoding 
technology. 

APPLICATIONS 

There are many applications for speech, ranging from person
person communication to person-machine and machine-per
son interfaces. 

Person-person communication consists mainly of inter
active speech between people. However, in some situations 
offline speech is required. Since such voice messages are not 
communicated in real time, it is possible to employrdiable 
communication data transfer protocols, "since the resulting 
additional delay does not degrade the (already lost) inter
active nature' of the communication. ' 

In some applications~ voice messages may be used just like 
any other conventional data file. In these applications, a voice 
me'ssageis recorded locally into a file; then this data file is 
communicated across the network, using any standard reliable 
file transfer protocol,' and finally it is played back by the 
receiVer's system." However, if either the originator or the 
receiver, or both, are not capable of storing the entire voice 
message, there is the need to communicate it in real time, 

, even though the voice communication is no longer interactive. 
A protocol for a network voice message system (VMS)17 

was developed and interfaced to anotherall-texrnetwork elec
tronic mail system. 

Multiuser' real-time voice conferencing over a packet
switching communication network is another application. Un
fortunately, it is not possible to add narrowband vocoded data 
tog~t the combined voice, as is done for analog conferencing. 
LPC and other efficient speech compressing techniques are 
not linear, and'their data are not additive. This causes some 
difficulties in 'devising narrowband packet speech confer
encing schemes, which can be circumvented by using appro
priateconferencing'proto~ols. 18 Experiments with' such nar
rowbandpac~et conferences have been successfully conduc
ted across the United States by using the AE,PAnet and across 
the Atlantic by llsing the ARPA Atlantic Satellite network. 19 

In addition, to conferencing and to voice messages used 
between people, packet voice maybe used for the cross
net",ork support of advanced person-machine (and machine-
p~rson) interlaces. ' 

In 6rqer to support person-machine voice communication 
("voice input"), itis necessary to communicate the voice with 
such quality that the voice recognition' process can still be 
applied in spite of the transformations occurring to the voice. 
Many voice recognition systems20 perform the recognition 
ta~k by 'using t~e very same parameters communicated by 

Packet Communication of Online Speech 175 

LPC vocoders. Hence, the packet communication of voice 
does not degrade its recognition capabilities, if LPC is used. 

The 'dual-application, machine-person communication is 
the easier of the two. This interface is typically a compufer
controlled scheme of playing back stored (canned) voice data, 
and the computer task is to choose which portions of this 
stored voice should be played and in which order. Such appli
cations are already in the consumer market, from spelling aids 
arid chess-playing machines to voices in cars. 

Because of the efficiency (compressedness) of vocoded 
voice it is typical to find that stored speech is LPC-vocoded 
and is sent via any available communication lines to an inte
grated (single-chip, typically) synthesizer for playback. The 
same speech, of course, could just as well be communicated 
across packet-switching networks to remote devices. 

In summary, voice applications that can be implemented on 
local systems can also be implemented across packet
switching communication networks. 

EXPERIENCE 

In October 1973 ARPA initiated a packet speech program. Its 
objective was to develop the technology required for practical 
narrowband digital packet voice. The program pursued sev
eral research avenues: the development of the vocoding algo
rithms for packet speech,4 the development of hardware for 
implementing these algorithms,S and the packet commu"" . 
nication technology required for this task. 

In order to develop the packet technology support for on
line speech applications, several experiments were conducted 
with medium-band vocoding technology. In August 1974 real
time packet voice communication was demonstrated over the 
ARPAnet between lSI (California) and Lincoln Laboratory 
(Massachusetts) by using CVSD at 8Kbps. In December 1974 
narrowband LPC was demonstrated over the ARPAnet be
tween CHI (Santa Barbara, California) and Lincoln Labora
tory. 'In January 1976 online conferencing' capabilities were 
demonstrated between lSI, CHI, SRI and Lincoln Laborato
ry. In' November 1979 online conferencing capabilities were 
demonstrated between Washington D:C., Norway and Lon
don, over the ARPA Atlantic Satellite network. 27 Since then 
many other applications, such as voice messages, were devel
oped and demonstrated by several organizations. 

One of the most popular media for packet speech is a ~igh
band local network. 28

,lO Sinc~ highband local network:s 
typically can support data rates one to two orders of mag
nitude higher than what is needed for telephone-quality non
compressed speech (64Kbps), many of these s}'Stems do not 
use any speech compression techniques fortheir oWn local 
voice traffic. ' 

From all the experience gathered so far, it is evident that 
packet-switching computer communication networks are 
capable of supporting real-time speech application. 

CONCLUSIONS AND SUMMARY 

Packet-switching communication technology has proved cap(l~ 
qle of supporting real-time ~peech applications. Recent devel-



176 National Computer Conference, 1981 

opments in signal processing, vocoding algorithms, and hard
ware have made the implementation of packet voice terminals 
a very practical means of voice communication. The interest 
that several telephone companies have shown in packet 
speech and the amount of effort they are investing in it are a 
significant testimony to its importance and potential. In the 
near future we can expect to see more applications of voice, 
not only for human communication but also in many new 
aspects of person-machine communication. We expect appli
cations like multimedia conferencing, multimedia electronic 
message systems, and voice (telephone) based access to data
bases. We also expect packet voice to be carried by integrated 
networks that will carry both data and voice. 

REFERENCES 

1. Kahn, R.E., ed., Proceedings of the IEEE, November 1978. Special Issue 
on Packet Switching Networks. 

2. Postel, J.B., ed., "DOD Standard Transmission Control Protocol", lEN 
129, RFC 761, USC/Information Sciences Institute, NTIS ADA082609, 
January 1980. Appears in Computer Communication Review, Special In
terest Group on Data Communications, ACM, 10:4, October 1980. 

3-. Opderbeck, H. and Hovey, R.B., "Telenet-Network Features And Inter
face Protocol", NTG-FACHBR (Germany) Vol. 55, 1976. pp. 145-56. 

4. Markel, J.D., "Highlights of a Group Effort in Algorithmic Development 
for Packet Switched Voice Networks", in these proceedings. 

5. Blankenship, P., et al. "Hardware Modularity for Packet Voice Terminals" , 
in these proceedings. 

6. Flanagan, J.L. Speech Analysis, Synthesis, and Prediction, New York, 
Springer-Verlag, 1972. 

7. Markel, J.D., and Gray, A.H., Jr., Linear Prediction o/Speech, New York, 
Springer-Verlag, 1976. 

8. Rabiner, L.R., and Schafer, R.W., Digital Processing 0/ Speech Signals, 
Englewood Cliffs, N.J., Prentice-Hall, 1978. 

9. Cohen. D., "Issues in Transnet Packetized Voice Communication", Pro
ceedings of the 5th Data Communication Symposium, September 1977. 

10. Shoch, J.F., "Carrying voice traffic through an Ethernet local network-a 
general overview," Xerox Parc Technical Report, Aug. 1980. Proceedings 
of the IFIP WG 6.4 International Workshop on Local-area Computer Net
works, Zurich, August 1980. 

11. Cohen, D., "Flow Control for Real-Time Applications", Computer Com
munication Review, January 1980. 

12. Cohen, D., "The Oceanview Tales", lSI Report ISI/RR-79-83. 
13. Frank, H., and Gitman, I., "Economic Analysis of Integrated DOD Voice 

and Data Networks", a NAC report for ARPA, September 1978. 
14. Rybczynski, A., et aI., "A New Communication Protocol for Accessing 

Data Networks-the International Packet Mode Interface" NCC. 1976. pp. 
477-482. 

15. Cohen, D., "A Protocol for Packet-Switching Voice Communication" 
Computer Networks, September 1978. 

16. Forgie, J.W., "ST-A Stream Oriented Protocol", an unpublished memo
randum. 

17. Cohen, D. "VMS-Voice Message System", Proceedings of the Inter
national Conference on Computer Message Systems, Ottawa, April 1981. 

18. Cohen, D. "Network Voice Conferencing Protocol-NVCP", NSC note 
113. 

19. Chu, W.W., et aI., "Experimental Results on the Packet satellite Net
work", Proceedings of the NTC, Washington, D.C., November 1979. 

20. Reddy, R., ed., Speech Recognition, Academic Press, New York, 1975. 
21. Ross, M.J., and Sidlo, C.M., "Approaches to the Integration of Voice and 

Data Telecommunication", Proceedings of the NTC, Washington, D.C., 
November 1979. 

22. Forgie, J., and Nemeth, A., "An Efficient Packetized Voice/Data Network 
Using Statistical Flow Control", Proceedings of the ICC, Chicago, June 
1977. 

23. Ross, M., Tabbot, A., and Waite, J., "Design Approaches and Perfor
mance Criteria for Voice/Data Switching", Proceedings of the IEEE, Sep
tember 1977. 

24. McAuliffe, D., "An Integrated Approach to Communication Switching" 
Proceedings of the ICC, Toronto, June 1978. 

25. Rudin, H., "Studies on the Integration of Circuit and Packet Switching", 
Proceedings of the ICC, Toronto, June 1978. 

26. Forgie, J. W., "Speech Transmission in Packet-Switched Store-and-Forward 
Networks", Proceedings of the NCC, 1975, pp. 137-142. 

27. Mills, D.L., "SATNET Demonstration", Proceedings of the NTC, Wash
ington, D.C., November 1979. 

28. O'Leary, G.c., "Local Access Area Facilities for Packet Voice", Pro
ceedings of the ICCC-80, Atlanta, October 1980, pp. 281-286. 

29. Postel, J.B., ed., "DOD Standard Internet Protocol", lEN 128, RFC 760, 
USC/Information Sciences Institute, NTIS ADA079730, January 1980. Ap
pears in Computer Communication Review, Special Interest Group on 
Data Communications, ACM, 10:4, October 1980. 

30. Boggs, D.R., Shoch, J.F., Taft, E.A., Metcalfe, R.M. "Pup: An Inter
network Architecture" IEEE Transactions on Communication 28:4, April 
1980, pp. 612-624. 



Highlights of a group effort in algorithmic 
development for packet-switched voice networks 

by J.D. MARKEL 
Signal Technology, Inc. 
Santa Barbara, CA 93101 

INTRODUCTION 

Since 1973 the Defense Advanced Research Project Agency 
(DARPA) has sponsored seyesal research groups engaged in 
a program of developing new and improved algorithms for 
demonstrating low bit-rate speech transmission across a 
packet-switched network. The first real-time packet-switched 
voice system was demonstrated by this group in 1974. 1 

The purpose of this paper is to present a few of the high
lights of the program from the perspective of one of the par
ticipants. It is based upon inputs from a number of researchers 
listed in the acknowledgments section. The opinions ex
pressed in the conclusions section, however, are strictly those 
of the author. 

The focus of this presentation will be on linear predictive 
coding (LPC) approaches since these have become dominant 
during the 1970s and are likely to remain so during the 1980s. 

After a brief review of the structure of an LPC analyzer/ 
synthesizer system, various components of the system will be 
discussed. Due to the amount of research and publications 
that have been developed from this work and others, the focus 
here will be on major aspects that relate either to the packet
switched characteristics of the system or to those that have not 
been discussed in detail elsewhere. 

Finally, the author ventures an opinion on the status of the 
field: its successes, failures, and future directions. 

STRUCTURE OF ANALYSIS/SYNTHESIS SYSTEM 

The primary focus during the 1970s was towards linear predic
tive coding (LPC) systems, due to their perceived promise of 
better quality and ease of hardware implementation as faster 
processors were developed. This focus is likely to remain un
changed through at least the early 1980s since hardware has 
been developed for both governmene and commerciae use. 

A simplified block diagram of an LPC voice-coder (vo
coder) is shown in Figure 1. The incoming speech is first 
processed by speech conditioning algorithms to produce a 
signal more closely matching the idealized speech analysis 

* This work was sponsored by the Defense Advanced Research Projects Agency 
(DARPA) and monitored by the Office of Naval Research under Contract 
N00014-78-C-0214. 

177 

model. In many systems this topic is not considered, since the 
input signal is assumed to be speech of good quality with little 
or no degradation (due to carbon-button telephone dis
tortion, and additive background noise, for example). How
ever, these idealized conditions are seldom met in practice. 
Parameter analysis consists of linear predictive spectral pa
rameter and gain analysis, and excitation analysis. 

The spectral analysis algorithms process the speech signal to 
produce a small set of coefficients (usually 8-12 in number) 
and amplitude or gain term which represent a spectral model 
of a short speech segment (such as 10-20 msec). The ex
citation analysis algorithms produce estimates of whether the 
speech segment is "voiced or unvoiced" and then pitch period 
estimates for voiced segments. 

Finally, these results are compressed and coded for trans
mission through the packet network. The compression utilizes 
a unique variable frame rate transmission feature that allows 
efficient low-bit rate interfacing into a packet-switched net
work (rates not exceeding 2400 bits per second [bps]). 

Each of these areas . will be discussed in more detail in the 
following sections. Completing the vocoder system is the 
decoding and synthesis process, illustrated in Figure lb. The 
received codes are decoded and decompressed, and the syn
thesis filter driving function is reconstructed. The filter coeffi
cients are updated according to the received code at a uniform 
rate and used for LPC speech synthesis. 

SIGNAL CONDITIONING 

During the DARPA program, two major directions in signal 
conditioning have been explored with the goal of improved 
intelligibility and naturalness in a realistic packet-switched 
communications environment: 

1. Conditioning of signals with noise corruption, e.g., 
acoustic ambient noise. 

2. Conditioning of signals with frequency distortion, e.g., 
. connection into a packet voice network via the switched 
telephone network with its local loop and carbon button 
telepho~e frequency domain distortion. 

Degradation of speech by noise arises in a variety of con
texts. For example, the speech of a pilot in a plane commu-



178 National Computer Conference, 1981 

Signal 
Condi tioning 

L 'np"' "gno1 
(Speech & Noise) 

Parameter 
Analysis 

Compression 
and 

Coding 

Tnn..u".,J 
Parameters 
for Packets 

- Analyzer Portion -

Figure la-Block diagram of LPC analysis system 

~Re"i"" 
Parameters 

Driving 
Function 

Reconstruction 

Synthesizer 
Filter 

outPut~ 
- Synthesizer Portion -

Figure 1 b-Block diagram of narrowband speech processor 

nicating with the ground control is degraded by the airplane 
noise. Another example is the speech of a lecturer recorded 
in a noisy lecture hall. The corrupting noise generally reduces 
both the intelligibility and quality of speech. Furthermore, the 
performance of many narrowband speech communication sys
tems such as a linear prediction vocoder degrades quickly in 
the presence of corrupting noise. Thus, the enhancement of 
degraded speech has a variety of practical applications. 

In the past few years, the speech enhancement problem has 
received considerable attention in the literature and a variety 
of algorithms have been developed.4.5 Most of these algo
rithms attempt to capitalize on some aspects of Qur knowledge 
about speech and the corrupting n()ise. For example, algo
rithms such as Wiener filtering anq .spectral subtraction are 
based on the notion that the short-time amplitude of speech 
is very important for spe~ch intelligibility and that the crarac-:
teristics of the corrllPting noise do not vary rapidly .. Algo
rithms such as comb filtering and speech enhancement by 
harmonic selection ca'pitalize on the periodicity of voiced 
speech;6 Algorithms based on -all-pole modeling of speech 
capitalize on the notion that speech can be reasonably well 
modeled as the response of a quasi-stationary all-pole or pole
zero system representing the human vocal tract excited by 
pulse-like or noise-like sources. 

Due to efforts involved in the performance evaluation of 
speech enhancement systems, only a few algorithms have 
been carefully evaluated and then only'for some selected envi
ronments.5 The r~sults obtained so far indicate that the vari
ous speech enhancement systems that have been developed 
improve speech quality, but do not improve speech intel
ligibility when the speech is degraded by additive wideband 
random noise. When the speech enhancement systems are 
used as preprocessors for bandwidth compression systems 
such as a linear prediction vocoder, however, some im
provement in intelligibility as well as quality has been ob
served over the bandwidth compression systems that do not 
include such a pre-processor, 5 

Although users of the telephone are generally insensitive to 
the distortion introduced by local loop or subscriber loop 

mismatches and the telephone handset (the carbon button 
mouthpiece in particular), LPC algorithms are not. It has 
been demonstrated that in the absence of a "robust pitch and 
voicing detector," severe degradation occurs in the synthetic 
speech. 

Since it is believed that end terminations in packet speech 
networks of the future will typically be telephones, proper 
interfacing between them is an important area of research. 

A recent study7 has shown that as much as 15 dB variation 
in the voice spectrum can occur due to the local loop tele
phone characteristics, without considering the guard-band fil
ters that suppress the 0-300 Hz region for T-carrier trans
mission. A blind-deconvolution problem is defined here since 
neither the speaker nor telephone channel characteristics are 
known to the system. However, some success has been dem
onstrated in attempting to recover a "non-telephone voice" as 
input to an LPC processor by making use of long term spectral 
averages over a population of speakers.6 

A second problem presently being studied is the effect of 
echo on vocoded speech in a packet-switched environment 
where the "tails" are connected to the switched telephone 
network. Due to imperfect 2-4 wire conversion of analog 
hybrids,a rather strange synthetic quality can result from the 
analysis and resynthesis of synthetic recirculating echos. Sub
stantial success in this area has been achieved with the use of 
different echo cancellation algorithms. 8 

PARAMETER ANALYSIS/RESYNTHESIS 

In narrowband speech processing, there are three primary 
parameter sets of interest. The first set is of the spectral pa
rameters that define a mathematical model of the spectrum 
for a short interval of speech. Typically 8-12 parameters ob
tained by linear prediction analysis are used. The second pa
rameter set consists of just the gain parameter, which defines 
the amplitude or energy of the speech segment being ana
lyzed. The third set is the pitch and voicing parameters. 

Initial parameter analysis is usually performed at a rate of 
40-100 frames or segments per second. For synchronous com
munication, lower values are usually chosen (the government
sponsored system for synchronous communication2 has a 44.4 
frames/sec. analysis rate), whereas for packet transmission, a 
higher rate such as 100 frames/sec is recommended') since a 
variable frame rate compressor (described in the next section) 
can follow. After the transmission parameter sets are ex
tracted, they are quantized and coded into an appropriate bit 
stream for insertion into the transmission packets. At the far 
end, a reverse process takes place whereby variable frame rate 
parameter sets are used to update the synthesizer filter coeffi
cients and generate the synthesizer excitation signal. 

Several of the major results obtained by the participants in 
this area are as follows: (1) discovery of the rich mathematical 
structure of the linear prediction equations 11 and development 
of alternate synthesis filter structures,12 (2) an understanding 
of the fixed point implementation characteristics of the most 
important numerical algorithms in the system,13 and (3) the 
development of robust pitch and voicing detection algorithms 
for complementing the signal conditioner algorithms. 14.15 

A large number of contriblltions by many researchers have 



been published in the general area of LPC analysis and syn
thesis. Interested readers are referred to the IEEE ASSP 
Transactions, the IEEE Proceedings paper by Makhoul, 16 and 
the book by Markel and Gray. II 

COMPRESSION AND CODING 

Data compression systems resulting in nonuniform trans
mission of parameters are generally able to achieve lower data 
rates than uniform-rate parameter transmission. However, for 
transmission on synchronous lines, the necessary buffering 
would cause excessive delays due to the time varying nature of 
speech. 

Since packet-switching systems readily accept asynchronous 
data, there is substantial interest in variable frame rate param
eter compression algorithms. During the course of the DAR
PA project, this topic was initially explored at SRI I7 and later 
examined in detail at BBN.9,1O 

Briefly, the compression algorithm determines, using some 
distortion measure, when it is necessary to update the LPC 
(reflection, or log area ratio) coefficients. The distortion mea
sure compares the ratio of two different one-step prediction 
error energies. The numerator is the error energy of the one
step prediction using the last transmitted set of LPC coeffi
cients (or their equivalent). The denominator is the error 
energy of the optimal one-step prediction. The performance 
measure, which must be greater than or equal to one, is com
pared with a threshold value that determines whether new 
LPC coefficients need to be transmitted or not. If the thresh
old is exceeded, new values for the LPC coefficients are trans
mitted. The higher the threshold value, the greater the com
pression-but the greater the degradation in the synthesized 
speech. 

In one variable frame rate (VFR) scheme,9 the input speech 
is analyzed at a fixed rate (e.g., 100 frames per second [fps], 
or once every 10 ms) to extract the vocoder model parameters: 
spectral coefficients (log area ratios or LAR's), pitch, voicing 
and gain. 

However, the model parameters are transmitted only when 
the properties of the speech signal have changed sufficiently 
since the preceding transmission; the parameters for the un
transmitted frames are regenerated at the receiver through 
linear interpolation between the parameters of the two adja
cent transmitted frames. For example, speech parameters may 
be transmitted less often during steady-state portions of 
speech and more often during rapid speech transitions. Thus, 
the VFR scheme minimizes the redundancy in parameter 
transmission by minimizing the average frame rate of param
eter transmission, under the constraint that the speech quality 
of the VFR system is preserved at the level achievable from 
the unreduced (100 fps) fixed rate system. The transmission 
data tate-of the VFR system thus varies in accordance with the 
changing properties of the input speech; this property of asyn
chronous data rates makes the VFR scheme ideally suited for 
a packet-switched communication channel. 

In the above experiment, the VFR scheme produced an 
average transmission rate of 1650 bps for continuous speech 
(i.e., not including silences). In a formal subjective speech 

A Group Effort in Algorithmic Development 179 

quality test, the speech quality of this VFR system was found 
to be equivalent to that of the 5650 bps fixed-rate (100 fps) 
reference system. 18 

Coding, as defined here, is the process of taking a single 
frame of analyzed parameters and quantizing them into a 
specified number of bits for transmission across the channel. 
During this research program major new results were ob
tained towards understanding how a number of diverse char
acteristics such as sampling frequency, pre-emphasis, and the 
types of speech sounds relate to the number of bits allocated 
to each parameter. 19,20 These studies in scalar quantization 
(single parameter at a time) have also led to a new area of 
research called vector quantization, which holds promise for 
even further bit-rate reductions for a specified "quality" in 
low bit-rate systems.21 . 

EXTENSIONS FOR VARIABLE BIT-RATES 

In a telecommunications system there is a finite probability of 
having more channel requests than instantaneous available 
channel capacity. The standard flow control mechanism for 
accommodating this situation is to block call requests during 
overload. However, advanced speech coding techniques offer 
several flow control alternatives in the form of multi rate or 
variable rate algorithms. The ability to automatically select a 
rate at dial-up or to vary the rate during a conversation in a 
manner that is transparent to the user (other than detectable 
changes in quality) provides an additional degree of freedom 
in the design of future integrated networks. 

There are several advanced network design problems that 
may be best served by multirate or variable rate speech co
ders. These include the flow control of voice traffic by means 
of network-induced bit-rate adjustments and the almost uni
versal problem in interoperability between users with differ
ent fixed bit-rate systems. For the latter, multirate algorithms 
offer very attractive alternatives to tandem connections of two 
sets of analyzers and synthesizers, which typically result in 
unacceptably poor speech quality and compromised security 
measures. 

To illustrate the vocoder concepts implied by these ad
vanced approaches to network design problems, we shall de
scribe an extension of the LPC system described above. 

The approach described here involves a Residual Excited 
Linear Prediction Vocoder (RELP)22 as an extension of the 
LPC vocoder idea, wherein a coded version of the LPC error 
signal (residual) is used as the excitation for wideband oper
ation instances and a standard LPC vocoderconfiguration 
with pitch or noise excitation IS used for narrowband oper
ation. 

Figure 2 depicts a simple block diagram of an LPC/RELP 
form of multirate voice coding. LPC analysis is carried out in 
the same manner as for the LPC source coder described ear
lier, wherein the coefficients necessary for characterizing the 
synthesis (or vocal tract) filter and pitch and voicing decision 
parameters are transmitted to the receiver as in narrowband 
voice coding. If the unfiltered residual signal were PCM coded 
directly, a transmission rate of approximately 20,000 bps 
would be required. Instead, the residual is low-pass filtered to 



180 National Computer Conference, 1981 

CO[ffIClfNTS 

slnl LPC 
ANALYZ[R VOlcrD/UNVOlcrD 

PilCH 

Figure 2-LPC/RELP multirate voice coding block diagram 

approximately 800 Hz to limit the required coding rate to 
approximately 5,000 bps while preserving the baseband pitch 
harmonics of the excitation signal. At the receiver, the low 
pass filtered residual signal must be processed by a non-linear 
distortion operation to regenerate the high frequency har
monics. For narrowband operation, the coded residual signal 
would not be transmitted and the synthesizer would operate in 
a pitch-excited mode. For wide band operation, the transmis
sion rate would be increased to accommodate the coded re
sidual signal and the synthesizer would operate in a residual 
excited mode. 

Other related approaches being studied are a combined 
channel vocoder and sub-band coder, 23 and a multi rate adap
tive transform coder (ATC) approach that can collapse to the 
standard LPC system. 24 

CONCLUSIONS 

Accomplishments 

In the author's opinion, the principal pioneering accom
plishments in algorithm research during this program were 
that 

• The first real-time software implementation of packet
switched voice was demonstrated in 1974, using LPC 
algorithms implemented in commercially available array 
processors on the Arpanet. I 

• A fundamental understanding of the fixed-point arith
metic characteristics of major algorithm components 
such as autocorrelation calculations, matrix solutions, 
and synthesis filter structures was developed. 13 

• Concepts of variable-frame-rate algorithms for efficient 
interface into packet voice systems were thoroughly in
vestigated and demonstrated to provide substantial bit 
savings with minimal loss in perceived quality.9.10.17 

• Concepts of a higher level structure for trading off bit 
rate against quality were developed for variable and mul
tirate voice coders.22.24 

• During this program, experimental and later theoretical 
investigations were initiated which provided a funda
mental understanding of the process of scalar parameter 
quantization in linear predictive coding. 19.20 

• Analytical and experimental procedures for various sig
nal conditioning methods were thoroughly inves
tigated.4.8 

Lessons Learned and Future Directions 

Among the most valuable aspects of research are not only 
its accomplishments but also the difficulties and the future 
directions it discovers. 

The most sobering news from the last decade of research is 
that the achievement of consistently good quality speech syn
thesis through the use of narrowband voice processors has 
proved elusive. Impressive quality speech demonstrations are 
possible when processing occurs in a laboratory environment 
with high signal-to-noise, read text samples, analysis with 
floating point hardware, and possibly hand-corrected pitch 
and voicing decisions. Experience has shown, however, that 
the same system will often generate fair to poor quality speech 
output when it is used for processing casual or "sloppy" 
speech in a noisy environment or "telephone speech" after 
telephone transmission by way of the local subscriber loop. 

The bandwidth and usage statistics of the Arpanet have yet 
to conclusively demonstrate the acceptability of packet
switched voice, because of the packet delay characteristics of 
the Arpanet test-bed. Users could only reliably communicate 
in a half-duplex mode due to occasional 4-5 second packet 
delays. Thus, one of the future research efforts should focus 
on defining what the realistic parameters of a network have to 
be to satisfy both packet data and voice requirements, and 
then on verifying the assumptions through actual operation. 

It is clear that the spectral subtraction algorithms (or vari
ations of them) lead to a substantial reduction in perceived 
noise background in the processed (but not vocoded) speech 
signal. What is not clear is whether the resultant vocoded 
signal is more acceptable to the listener. In place of the spec
tral artifacts due to the noise background, a music-like (al
though discordant and seemingly random) quality appears. 
Although the mechanism of this anomaly is now well under
stood, there does not appear to be a complete solution to the 
problem. 

The area of parameter analysis has gained substantial re
search success because of the fact that linear prediction mod
eling turns out to be very rich analytically, with many useful 
properties. Elegant formulations for optimal scalar parameter 
quantization, various solution algorithms, indefinite expan
sions of synthesis structur~s, and even new generalized filter 
structures with superior roundoff noise characteristics25 have 
been developed. In one sense, whatever problems remain in 
this area can be shrugged off by stating that any modeling 
errors will show up in the residual signal. It is the business of 
the pitch and voicing mechanism to extract whatever else must 
be extracted. However, this approach does not shed much 
light on the problem of "quality." 

One of the serious and apparently fundamental difficulties 
in spectral modeling of speech is that small variations in spec
tral structure, i.e., variations from an absolutely flat trend 
characteristic in the residual or error spectrum cannot be ex
tracted by the model, but are easily extracted by the human 
ear. 

Sophisticated attempts such as pole-zero modeling have 
met with a resounding failure when one estimates benefit 
gained versus complexity added. 

The principal difficulty in estimating pitch and voicing 
parameters is that even though research has gone on for many 



years before this project and substantial research effort was 
expended during this project, our accomplishments were 
more towards efficient real-time implementation than towards 
"solving the pitch and voicing problem." Realistically, with 
our current (and foreseeable future) knowledge of modeling 
speech, we have an inherently unsolvable problem, since 
when we are asking for "pitch periods" of speech, we are 

. attempting to estimate abstractions of a physical process that 
does not precisely exist. It is simply as a result of many years 
of experience that the model we use appears to be quite ade
quate for many applications. 

Overall, it has been a very fruitful prior decade of research 
into algorithm development for narrowband voice processors 
and the area of linear predictive coding. We have witnessed 
changes from processing one 20 msec frame of speech on a 
PDP 11120 in 20 sec to real-time processing (1,000 times 
faster) from devices no larger than a cigar box. 

Our knowledge in algorithms has increased to the point 
where we can specify how many bits should be assigned to a 
spectral model coefficient to achieve an average dB spectral 
distortion level. The precursor to commercial packet-switched 
voice systems that will probably exist in the mid to late 1980's 
was developed and demonstrated. Nonetheless, there are still 
many unsolved or unresolved issues, as discussed above, that 
will challenge us in the decade ahead. 

ACKNOWLEDGMENTS 

Several colleagues contributed material for this summary 
paper. The contributors are as follows: Dr. Steven Boll, Uni
versity of Utah; Dr. A.H. (Steen) Gray, Jr., Signal Tech
nology, Inc.; Dr. Tom Magill, Stanford Research Institute, 
Int'l.; Dr. John Makhoul, Bolt Beranak and Newman, Inc.; 
Mr. AI. McLaughlin, Lincoln Laboratory; Prof. Alan Oppen
heim, MIT; Dr. Vishu Vishwanathan, Bolt Beranak and New
man, Inc. In addition, the careful reading and constructive 
criticism of the text from Dr. D.Y. Wong is greatly appre
ciated. 

REFERENCES 

1. Cole, R., "A Proposed LPC Analysis System for the SPS-41," NSC Note 
No. 46, Oct. 1974, unpublished memorandum. 

2. Tremain, T., et aI., "Implementation of Two Real-Time Narrowband 
Speech Algorithms," IEEE Eastcon, Sept. 1978, pp. 698-708. 

A Group Effort in Algorithmic Development 181 

3. International Communication Sciences, Chatsworth, Ca. and Time and 
Space Processing, Inc., Palo Alto, Ca. 

4. Lim, J.S., and A.V. Oppenheim, "Enhancement and Bandwidth Com
pression of Noisy Speech," invited paper, Proceedings of IEEE, Vol. 67 
(Dec. 1978), pp. 1586-1604. 

5. Boll, S.F., "Suppression of Acoustic Noise in Speech Using Spectral Sub
traction," IEEE Trans. ASSP, Vol. ASSP-27, April 1979. 

6. Frazier, R.H., et aI., "Enhancement of Speech by Adaptive Filtering," 
Proceedings of IEEE, Conf. on ASSP, Philadelphia, Pa., April 1976 . 

7. Davis, S.B., and J.D. Markel, "Telephone Channel Equalization for Nar
rowband Speech Processors," submitted for publication, 1981. 

8. Parikh, D., et aI., "Study of Echo Cancelling Algorithms for Full Duplex 
Telephone Networks with Vocoders," Proceedings of IEEE, Conf. on 
ASSP, Atlanta, Ga., April 1981, to be published. 

9. Makhoul, J., et aI., "Natural Communications with Computers: Speech 
Compression Research at BBN," BBN Report No. 2976, (NTIS No. AD/A 
003478/5GA, Vol. II, Dec. 1974. 

10. Viswanathan, R., et aI., "Variable Frame Rate Narrowband Speech Trans
mission Over Fixed Rate Noisy Channels," Proc. EASCON '77, Paper 23, 
Washington, D.C., Sept. 1977. 

11. Markel, J.D., and A.H. Gray, Jr. Linear Prediction of Speech. Springer
Verlag, Berlin, 1976, Ch. 3. 

12. Op. cit., Ch. 9 
13. Markel, J.D., and A.H. Gray, Jr., "Fixed-Point Truncation Arithmetic 

Implementation of a Linear Prediction Autocorrelation Vocoder," IEEE 
Trans. ASSP, Vol. ASSP-22, No.4 (Aug. 1974), pp. 273-281. -

14. Paul, D.B., "Homomorphic Pitch Detection," MIT/LL Tech. Note No. 
1978-32, 1978. 

15. Juang, F., and J.D. Markel, "Spectrally Based Pitch and Voicing Esti
mation with Statistical Assistance," NSC Note No. 140, Signal Technology, 
Inc., Santa Barbara, Ca., uapublishe4 memorandum, Oct. 1979. 

17. Magill, D.T., Adaptive Speech Compression for Packet Communication 
Systems, National Telecommunications Conf, 1973, Atlanta, Ga., Conf. 
Record, Vol. 2, pp. 290-1 through 5. 

18. Huggins, A.W.G., et aI., "Speech-Quality Testing of Some Variable
Frame-Rate (VFR) Linear-Predictive (LPC) Vocoders," J. Acoust. Soc. 
Amer., Vol. 62 (Aug. 1977), pp. 430-434. 

19. Viswanathan, R., and J. Makhoul, "Quantization Properties of Transmis
sion Parameters in Linear Predictive Systems," IEEE Trans. Acoust., 
Speech and Signal Processing, Vol. ASSP-23, June 1975, pp. 309-321. 

20. Gray, A.H. Jr., and J.D. Markel, "Quantization and Bit-Allocation in 
Speech Processing," IEEE Trans. ASSP, Vol. ASSP-25, No.6 (Dec. 1976), 
pp.459-473. 

21. Buzo, A., A.H. Gray, Jr., R.M. Gray and J.D. Markel, "Speech Coding 
Based Upon Vector Quantization," IEEE Trans. A SSP, Vol. ASSP-28, 
No.5 (Oct. 1980), pp. 562-574. 

22. Un, c., and D.T. Magill, "The Residual Excited Linear Prediction Vocoder 
with Transmission Rate Below 9.6 Kbs," IEEE Trans. on Communications, 
Vol. COM-23, No. 12, Dec. 1975. 

23. Gold, B., "Multiple Rate Channel Vocoding," EASCON '78 Record. 
24. Berouti, M., and J. Makhoul, "An Embedded-Code Multirate Speech 

Transform Coder," Int'l. Conf. Acoustics, Speech and Signal Processing, 
Denver, Co., April 1980, pp. 356-359. 

25. Markel, J.D., and A.H. Gray, Jr., "Roundoff Noise Characteristics of a 
Class of Orthogonal Polynomial Structures," IEEE Trans. Acoust., Speech 
and Signal Processing, Vol. ASSP-23, No.6 (Dec. 1975), pp. 473-486. 





A modular approach to packet voice terminal 
hardware design* 

by G. C. O'LEARY, P. E. BLANKENSHIP, J. TIERNEY, and J. A. FELDMAN 

Massachusetts Institute of Technology 
Lexington, Massachusetts 

ABSTRACT 

In addition to encoding and decoding speech, packet voice 
terminal functions include packetization and depacketization; 
the application and interpretation of voice, internet, and local 
network protocols; dialing, ringing, ancillary signaling; and 
interface to local network transmission media. In this paper 
we describe a modular packet voice terminal design in which 
the partitioning of the hardware is effected along these basic 
functional lines. Interfaces are provided between the speech 
processing, protocol handling, and local network interfacing 
functions such that each of these is implemented in a phys
ically independent module with considerable freedom for 
modifying or replacing anyone module independently of the 
otliers. This allows for a broad choice of voice coders on the 
one hand, and a variety of local network types on the other. 
Specific modules discussed include a microprocessor-based 
protocol-handling section, an interface module to a local area 
coaxial cable network which uses a contention-based .mech
anism for packet voice communication, and a variety of voice 
coder/decoder designs covering the rate spectrum from 2.4 to 
64 kbps. 

INTRODUCTION 

The success of packet networks for transmitting data has led 
to a great deal of interest in the potential of using packet 
techniques for the transmission of voice. The feasibility of 
transmitting speech on a packet network has been demon
strated by experiments performed on the ARPANETl

, 2 and 
in the Atlantic Packet Satellite Experiment (SATNET). 3 In 
both these experiments the limited channel bandwidth avail
able restricted the class of packet voice experiments that could 
be performed. In particular, it was not possible to experi
mentally demonstrate the statistical multiplexing possible 
with a large number of voice circuits. A new experiment, 
which will provide a wideband packet sate_ll~te channel, is now 
being planned.4 The 3 Mbps capability of this channel will be 
sufficient for many voice connections even if 64 kbps PCM is 
used. 

>I< This work was sponsored by the Advanced Research Projects Agency. The 
U.S. government assumes no responsibility for the information presented. 

183 

A wide band packet voice network should have a number of 
advantages over a circuit-switched network. A recent study5 

showed that the transmission and switching costs of a packet 
voice network should be lower than those of a circuit-switched 
network. Thissaving is obtained mainly because in the packet 
system the channel capacity is used only when a speaker is 
actually talking, which is typically about half of the time. By 
multiplexing many users on a common wide band channel a 
factor approaching two in bandwidth saving is obtained. In 
addition, other benefits are obtained with packet voice. Since 
a packet network has the flexibility to asynchronously accept 
packets of arbitrary sizes, it becomes easy to mix terminals 
with different frame and data rates. If vocoders are used to 
further reduce the bandwidth utilization, each vocoder would 
use only the channel capacity necessary to transmit its infor
mation rather than a fixed minimum bandwidth increment as 
is used in circuit-switched networks. It is also possible to de
sign systems in which the transmission rate varies dynamically 
with channel conditions.6 

As part of the wideband satellite testbed, Lincoln Labora
tory is developing a packet voice terminal as the mainstay of 
integrated voice/data network experimentation. This terminal 
is designed to access the long haul satellite network through a 
local access network. The local access aspect of the problem 
has been described elsewhere. 7, 8, 9 In this paper we concen
trate on the terminal functions as opposed to the transmission 
functions. 

TERMINAL REQUIREMENTS 

The voice terminal must provide the interface between the 
user and the network much as the ordinary telephone instru
ment. Besides converting between acoustic and electrical sig
nals, the terminal must provide the full range of signaling 
capabilities such as dialing, ringing, dial tone, busy signal, and 
the like, that the user has come to expect from the telephone. 
In addition, the voice terminal on a digital network should be 
able to include a variety of special features. The voice termi
nal design must include a great deal of flexibility in order to 
meet the requirements of the wide range of applications in 
which it might be used. Because of the experimental nature of 
the-program, the terminals must be able to accommodate 
evolving system requirements as the experiment progresses. 



184 National Computer Conference, 1981 

In addition, the terminal should be able to deal with a 
variety of voice coders. Choices range from very simple but 
highbir-rate PCM-based coders to the more elabora~e nar
rowband or multiple rate systems. The lack (thus far) of a 
universal voice digitization algorithm that can function opti
mally in all acoustic andlor channel environments imposes a 
requirement for terminals that can accommodate a variety of 
algorithm types. In the long run the potential interoperability 
problems posed by this multiplicity of bit rates and speech 
algorithms might be solved via programmable or multirate 
coders. Speech might then be digitized using coding strategies 
and bit rates most appropriate to local conditions, while re
ceiving and decoding in accordance with the algorithm and bit 
rate combinations that best suit the remote end of the con
nection. The apparently simple requirement of a digital 110 
formal for telephones thus introduces in the terminal a host of 
problems relating not only. to the basic speech digitization 
process, but to the formatting of input and output data 
streams and the inclusion of control mechanisms for algorithm 
selection, voice bit rate, etc. 

TERMINAL DESIGN 

The experimental terminal was designed to provide a 64 kbitl 
sec PCM capability, and in addition provide a flexible inter
face for any of a number of single card narrowband speech 
processors being designed to explore some of the possible 
voice processor options. Also provision has been made for 
connecting to external vocoders or programmable speech pro
cessors. 

The required flexibility is achieved in several ways. First, 
the terminal hardware is partitioned along functional bound
aries with clearly defined interfaces so that changes in one 
section would have minimal impact on other parts of the ter
minal. Second, each major functional ~block is controlled by a 
microprocessor. This permits changes to be made by adapting 
only the software. Figure 1 shows the basic partitioning of a 
general terminal. There are three functional units. The voice 
processor performs the conversions between the analog 
speech and digits but is independent of the transmission pro
cess. The protocol processor forms the packets and provides 
the necessary layers of protocol to insure that the packet can 
be delivered to a distant network and be played out at the 
proper time. It is independent of the transmission medium. 
The access controller accepts packets from the protocol pro
cessor and transmits them across the network to the access 
controller in another terminal. It deals only in packets and 
knows nothing about voice or higher-level protocols. The de
tailed· functions of each module as realized for our experi
mental network are described below. 

Access Control 

The access controller provides the network-dependent 
packet transport mechanism for the terminal. The access con
troller receives packets from the protocol processor and trans
mits them over the network. The access controller in our 
terminal is designed for a local access area which funnels 

PACKET 
NETWORK 

ACCESS 
CONTROLLER TELEPHONE 

INSTRUMENT 
,-- - ------l 

I I 
I DIAL I 

PROTOCOL 
AND I 

PROCESSOR DISPLAY I 
I 
I 
I 

PCM CODEC 
HANDSET I 

AND CONTROL I 
I I 
L ________ ..J 

EXTERNAL 
VOCODER 

NARROWBAND 
VOCODER 

Figure 1-Modular packet voice terminal architecture 

packets to a traffic concentrator. The details of this design can 
be found elsewhere.7

, 8, 9 A generalized packet interface is 
provided between the access controller and the protocol pro
cessor, and it is possible to connect to other packet networks 
such as the packet radio network by changing the design of the 
access module. 

Protocol Processor 

The protocol processor contains the main intelligence in the 
terminal. It has the task of forming the outgoing packets and 
interpreting the incoming ones. It also handles transfers to 
and from the speech processing devices. The protocol pro
cessor has two main functions. The first is to establish the call. 
Thus the processor must include an interface with the user 
input (key-pad) and must be able to generate and interpret 
packets necessary for establishing the call. Once the call is 
established, the protocol processor must generate and receive 
the speech packets. On transmission, it forms packets from 
the input voice bit stream whenever the voice processor indi
cates the speaker is active. To this it adds an address header, 
protocol information, and a time stamp according to a Net
work Voice Protocol (NVP).lO The completed packet is then 



A Modular Approach to Packet Voice Terminal Hardware Design 185 

transferred to the access controller. On reception, the header 
is checked and the time stamp is used to put the packet in its 
proper place in the queue of packets going to the voice pro
cessor. If no packet arrives to fill a particular output frame, 
then it is assumed that a silence interval has occurred, and the 
voice processor will be signaled to generate a silent interval in 
its output. 

The protocol processor is a microprocessor-based card con
sisting of an 8085 CPU, a data memory, a program memory, 
a DMA controller, and a USART port. An extension memory 
card to handle the protocol programs is connected. The total 
program memory could be as large as 40K bytes if the cards 
were fully populated. The current protocol program requires 
about 12K bytes. The DMA controller is used to pass data in 
both directions to the access controller and to the speech 
processor. The USART is used as a serial channel to the 
telephone instrument for signaling and display. 

Communication between the protocol processor and the 
speech processors is via two pairs of byte parallel channels. 
The first pair is used for the speech data and is controlled by 
the protocol processor's DMA chip. The second pair has 
several possible uses depending on the speech processor. At 
start-up the speech processor presents an identification code 
on the control input channel. The protocol processor uses this 
code to determine which speech algorithm is active and to 
select the program parameters necessary for the selected 
vocoder. The control channel can also be used for passing 
control parameters to variable rate vocoders or for loading 
programs into programmable voice processors. 

Telephone Instrument 

The telephone instrument provides the user interface to the 
terminal. The interface between the telephone and the proto
col processor was designed to allow the addition of a wide 
range of special user functions and displays. 

The telephone instrument is a standard touch-tone phone 
modified for this application. Internally, the phone contains a 
small micro-processor system consisting of an 8085 CPU, 
ROM memory, keypad, and a USART. Communication with 
the protocol processor is via an RS-232 serial interface. 

The drivers and receivers for the analog signals to and from 
the handset are contained in the telephone set. Tone gener
ators in the set are used to add dial tone, busy signals, and 
ringing signals into the analog signal sent to the earpiece. 
These tones are controlled by commands transmitted over the 
serial line from the protocol processor. The transmit and re
ceive analog signals are kept separate throughout, providing 
a 4-wire end-to-end connection capability and eliminating the 
need for hybrids and echo suppressors in the system. 

Voice Processor Control Card 

The Voice Processor Control Card has three functions. 
First, it provides each terminal with a 64 kbit PCM capability 
so that all terminals on the network will have at least one 
common back-up voice digitization mode. Second, it provides 
a switching function between the PCM and any other speech 

TO PROTOCOL PROCESSOR 

t====='''''=========-. 
CONTROL \ SPEECH 

8 8 8 

ANALOG SPEECH CONTROL 

~===========-vF============~/ 
TO EXTERNAL SPEECH PROCESSOR 

Figure 2-PCM subsystem and external speech processor interface 

processor that is connected. Finally, it handles the analog 
signals coming from the telephone instrument. The analog 
signals are also switched between the PCM Co dec and the 
peripheral speech processor. A block diagram is shown in 
Figure 2. 

The speech processors send and receive speech data in 
groups of 8-bit bytes called parcels. The number of bytes in a 
parcel is dependent on the speech processor. Typically, a par
cel represents about 20 ms worth of speech. Each parcel is 
headed by a control byte, one bit of which indicates the pres
ence of speech in the parcel. Otherwise, silence is assumed. 
The remaining control bits may be used in vocoder-specific 
ways to pass control information which must be synchronized 
to a particular byte. 

The PCM capability is implemented with a single chip Jl.-255 
law PCM Codec (Intel 2910). Bandlimiting filters are pro
vided for the input and output. Silence detection is provided 
by a threshold detector with a 100 ms hold time after a thresh
old is exceeded. 

The voice processor control card provides a general inter
face for a separate vocoder or speech processor mounted 
either internally or externally. The digital and analog signals 
required for this interface are routed to a back panel con
nector to service external speech processors and are wired to 
one of the remaining internal card slots to accommodate a 
suitably packaged single card speech digitizer module. The 
external connection has been used to transmit LPC speech 
generated by a Lincoln Digital Signal Processor (LDSP). 

Hardware 

Figure 3 shows a packet voice terminal prototype. The ter
minal is constructed on 7" x 7" wirewrap cards in a standard 
rack-width cabinet. The basic basket has room for six cards 
with expansion option to nine. The access controller consists 



186 National Computer Conference, 1981 

Figure 3---Prototype packet voice terminal 

of two cards. The protocol processor and its extension memo
ry comprise two more cards. A fifth card contains the PCM 
Codec and the voice processor switching mechanism. The 
sixth slot is wired to accommodate any of the single card 
vocoders which are described in the following sections. 

NARROWBAND SPEECH PROCESSORS 

Three single card speech processors are currently being de
signed for use in the packet voice terminal. Two of these are 
different 2400 bit/sec channel vocoder realizations. The third 
is an embedded waveform coder designed to explore the is
sues that arise when a variable rate feature is available to the 
network. 

Sampled Data Analog Channel Vocoder 

One of the narrowband speech processor options in the 
process of development is a filter bank-based system, mod
eled after the UK JSRU channel vocoder11

, which features 
two highly sophisticated custom NMOS sampled data analog 
LSI devices. 12 The spectrum analyzer is realized as a single 
chip and relies mainly on the charge coupled device approach 
for implementing the 19 band pass filters required. The filter 
bank synthesizer is contained on a second chip which uses 
solely the switched capacitor signal processing approach. 
These devices are under development by the Texas Instru
ments Central Research Laboratory. 13 

An overall block diagram of the vocoder is depicted in 
Figure 4. It is a full duplex system featuring four transmission 
rate options selectable at power-on. The essential features are 
,a simple analog conditioning system, custom NMOS LSI 
devices for analysis and synthesis, and two microprocessor 
,complexes for performing pitch extraction and controller 
functions. Connections are provided for both handset and 
tape inputs, and a parallel I/O port is provided for the termi
nal interface. 

On the transmit side, analog inputs are cOllpled to the CCD 
analyzer through a 5th order elliptic pre-sampling filter·and a 

switch-selectable preemphasizer. The CCD analyzer imple
ments a sampled data bandpass filter bank after Sproull and 
Cohen lO at a 10 kHz sampling rate and outputs log PCM 
encoded spectral envelope estimates upon demand from the 
controller. The analog signal is tapped prior to the preempha
sizer and connected to the pitch conditioner. The conditioner 
drives the pitch extraction microprocessor whose output is 
reported on each frame boundary to the controller. The pitch 
and voicing information so derived are incorporated into the 
output data buffer prior to transmission. 

At the receiving end inputs from the protocol processor are 
unpacked and decoded by the controller. Reconstructions of 
the spectral envelope estimates as well as excitation informa
tion are then passed to the synthesizer device in digital form. 
The synthesizer receives a full update each frame time and 
converts the digital data to analog form for processing by the 
synthesis filter bank. Synthetic sampled-data speech thus pro
duced is then passed to a simple second order low pass filter 
and finally to a switch switchable deemphasizer with five roll
off choices. 

The spectral analysis chip (Fig. 5) implements a sampled 
data version of the classic JSRU channel vocoder filter bank 
at a 10 kHz rate. The analyzer is comprised of 19 bandpass 
filters, half wave rectifiers, and low pass filters which provide 
a smoothed estimate of the spectral energy in each frequency 
band. The bandpass filters are realized as 100 tap FIR struc
tures implemented using the CCD split gap electrode tech
nique. 

The low pass filters are of the third order Butterworth type 
with a 35 Hz cutoff and are realized using the switched capa
citor technique. The real pole is used as a decimation stage 
permitting a 10:1 sample rate reduction prior to the complex 
pole thereby tending to decrease sensitivity to coefficient inac
curacies. 

At frame boundaries, a trigger pulse issued by the control
ler initiates a read-out sequence wherein the 1910w pass filter 
outputs are simultaneously sampled and sequentially encoded 
via a 5-bit logarithmic A/D converter. The converter, at 1.5 
dB per step, affords 48 dB of dynamic range and requires T
msec per conversion. An interval of 19 msec is therefore nec
essary to report all 19 encoded spectral envelope estimates 
sampled at the frame boundary. 

The synthesizer subsystem approximates the vocal tract 
spectral envelope by summing together in anti-phase a set of 
19 suitably weighted filter responses (Figure 6). The filter 

HANDSET 
IN 

HANDSET 
OUT 

PITCH AND VOICING XMT I Rev 

p~g~~~~5R 

SYNTHESIS PARAMETERS 

Figure 4-NMOS vocoder architecture 



A Modular Approach to Packet Voice Terminal Hardware Design 187 

OUTPUT VALID 

Figure S-:-Spectrum analyzer 

bank is of the JSRU vocoder type which is characterized by a 
set of simple second order resonators. The resonator center 
frequencies correspond with those of the analyzer filters on a 
one-to-one basis, but the bandwidths are fixed at either 45 or 
65 Hz to approximate the shape of a formant. Due to the 
relatively high Os involved, CCD FIR realizations were im
practical, and a recursive, switched capacitor approach oper
ating at a 40 kHz rate was used instead. 

The filter bank excitation assumes the form of either a fixed 
amplitude impulse train during voiced frames or a noise-like 
sequence comprised of random polarity impulses during un
voiced frames. The period of the voiced excitation is deter
mined by the transmitted pitch word, that of the noise is fixed 
at 1 msec. 

The filter bank gains are provided by the controller in a 
5-bit log PCM format. The gains are sequentially converted to 
analog voltages and buffered via an exponentiating D/ A and 
analog delay line. At frame boundaries the 19 gain parameters 
are passed simutaneously to a set of identical 35 Hz Butter
worth low pass interpolating filters whose outputs drive the 
gain modulators. 

The pitch/voicing subsystem is of the Gold type14 with a 
modified final decision algorithm.1s The analog preprocessing 
section consists of a 600 Hz 3rd order Butterworth low pass 
filter, a peak detection circuit, and an 8-bit AID converter to 
capture waveform extrema. Waveform extrema and timing 
information are communicated to an. 8085A microprocessor 
where the pitch detection algorithm is implemented. Pitch 
period data are resolved in 100 f.1sec increments and are log
encoded to 6 bits. Pitch period and voicing data are reported 
to the control processor once per 20 msec. 

The controller is realized using a second 8085A and per
forms the functions of maintaining overall timing, coding, and 
formatting the transmit data, communicating with the proto
col processor, decoding received information, and driving the 
synthesizer device. Combinations of one-bit and two-bit PCM 
coding techniques are applied to the 19 log spectral data to 
achieve the several desired bit rates (1200, 2400, 3600, 4800 
bps). 

The entire system is mounted on a single 7" x 7", 72-socket 
wirewrap board and occupies one slot in the PVT mainframe. 
The assembly comprises 28 commercial devices, 15 discrete 
component carriers, and 2 custom NMOS sampled data de
vices. Power dissipation is approximately 5W. 

DIGITAL 
INPUT 

STROBE 

WEIGHT SAMPLING CONTROL 
: ______ (at 50 Hz) 

Figure 6--Spectrum synthesizer 

Digital Channel Vocoder Implementation 

e. SAMPLED 
• + ANALOG 

OUTPUT 

The architecture has been developed for a digital imple
mentation of a JSRU type filter bank vocoder that interfaces 
to the packet voice terminal protocol processor. A package 
count of about 13 devices is projected for the design composed 
entirely of commercially available or soon-to-be-available in
tegrated circuits. The analysis/synthesis tasks are imple
mented with a distributed signal processing architecture using 
five Nippon Electric Company (N.E.C.) f.1PD7720 DSP chips. 
This is a single chip, signal processing oriented micro
computer which could be used to implement a variety of 
speech digitization systems, including linear predictive-type 
coders. Communication among the N.E.C. processors is. 
achieved via a standard 8-bit microcomputer bus coordinated 
by an Intel 8051 micro controller . A compact analog sub
system based on the Hitachi HD44212 single chip Codec-with
filters has also been designed, which in acoustically benign 
applications results in vocoder performance equivalent to that 
obtained with laboratory quality audio conditioning. 

The channel vocoder architecture is shown in Figure 7. The 
analog input speech is processed through the analog-to-digital 
conversion (ADC) subsystem which produces a serial data 
stream coupled to a 3-chip analyzer array. The analyzer signal 
processing task is distributed such that one N.E.C. chip com
putes the weights for the lower 10 spectral channels while a 
second computes the upper 9 spectral weights. A third N .E.C. 
device implements the Gold pitch detector providing frame
wise pitch estimates and voicing decisions. Each analysis 
frame, the resulting coded 19 spectral weights, and two pitch 
detector outputs are transferred over an 8-bit (Intel 8080 type) 
microcomputer bus under the control of an Intel 8051 micro
processor system to the PVT external vocoder port. In a sim
ilar fashion, the control processor receives coded synthesis 
parameters each frame from the protocol processor and trans
mits them to an N.E.C. chip synthesizer array. One f.1PD7720 
synthesizes the lower 10 spectral channels of the output 
speech while a second chip synthesizes the remaining upper 9 
spectral channels. By making use of the 7720's input and 
output ports, the upper and lower spectral portions are digi
tally summed and transferred to the digital-to-analog con
verter (D.\C). 



188 National Computer Conference, 1981 

ANALOG 
SPEECH IN 

r----
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

HITACHI HD44212 I 
SINGLE CHIP CODEC: 
WITH FILTER I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L ___ _ 

ANALOG 
SYNTHESIZED-+-----I 
SPEECH OUT 

N.E.C. 

CHANNELS 

Figure 7-Digital channel vocoder 

The vocoder will be packaged on a single 7" x 7" board, will 
comprise 7 LSI and 6 MSI devices, and will dissipate about 
7W. 

Embedded Waveform Coder 

A compact embedded waveform coder is being developed 
to be interfaced to the Packet Voice Terminal and used for 
variable-rate speech experiments on the wideband channel. 16 

The coder is designed to be interoperable at 16 kbps with 
present standard CVSD encoders used in various military 
communication systems, but when higher channel capacity is 
available, produces a speech quality comparable to PCM at 64 
kbps. The basic encoder-decoder (Fig. 8) consists of a CVSD 
encoder at 16 kHz with filtered input x(t), data stream ben), 
and integrated loop signal x(t). The backbone encoder is aug
mented with the open loop encoding of the difference signal 
d = x(t) - x(t) at an 8 kHz sample rate. This extra information 
serves as an additive correction to the CVSD approximation 
to x(t). At the receiver-decoder the CVSD data stream, ben), 
is used to recreate the output signal x(t). If no more data are 
available (i.e., the receiver rate is 16 kbps), the final output is 
simply the CVSD signal x(t) low pass filtered to produce set). 

Each 20 ms four separate groups of data words are output 
from the encoder to the protocol processor. The highest prior
ity group consists of simply the CVSD bits packed into byte 
form. The next highest priority group is comprised of the most 
significant two bits of the six-bit d word packed four to a byte, 
the next group of the middle two bits, and so on. If only the 
two highest priority packets are received, a decoder can pro
duce speech at a 32 kbps enhanced CVSD rate. If the next 

lowest priority packet is received, 48 kbps speech will be out
put. Finally all four received packets will support a 64 kbps 
output speech signal for that 20 ms period. 

A 7" x 7" single board hardware realization of the enhanced 
CVSD device based on current commercial PCM, CVSD, and 
8085 microprocessor devices comprises 32 chips and is near 
completion. The input and output low pass filtering is per
formed by a single chip containing a pair of switched capacitor 
filters designed for PCM Codec use. Two separate CVSD 
chips are used, each of which implements the CVSD encoding 
loop including the two smoothing filters. In one case the chip 
is used for encoding, in the other for decoding. Finally the d 
low pass filtering, sampling, and logarithmic quantizing is per
formed by one half of a commercial /-1-255 law Codec chip. 
The digital-to-analog conversion of the d signal in the decoder 
is performed by the other half of the Codec chip. Timing 
circuitry and interface logic is implemented with several MSI 
TIL packages. Power dissipation is projected at 8W. 

SUMMARY AND CONCLUSIONS 

A modular packet voice terminal design has been presented
based on a unique functional partitioning concept capable of 
supporting a variety of voice digitizers in an equal variety of 
communication network contexts. Each subsystem is micro
processor-controlled, which offers further flexibility potential 
through micro~ode alterations. Additionally, several specific 
voice digitizer )Subsystem designs have been discussed span
ning the data rate spectrum from 2.4 to 64 kbps and in!)ne 
case featuring a multiple rate capability through an embedded 
coding approach. It is expected that these voice ,terminals will 
provide a very powerful experimental tool for exploring issues 
relating to integrated voice/data communications over ad
vanced, wideband transmission media. 

REFERENCES 

1. Casner, S. L., Mader, E. R., and Cole, E. R., "Some Measurements of 
ARPANET Packet Voice Transmission," 1978 NTC Convention Record, 
pp. 12.2.1-5. 

sO) 

16 kbps 
CVSD 

48} 32 kbps 
16 
o 

16 kHz 

6 bits/sample (48 kbps) 

(0 ) 

16 kbps 

~ (t) 

8 kHz 

Figure 8--Embedded waveform coder 



A Modular Approach to Packet Voice Terminal Hardware Design 189 

2. Gold, B., "Digital Speech Networks," Proc. IEEE, 65, November 1977, 
pp. 1636-58. 

3. Chu, W. W., et aI., "Experimental Results on the Packet Satellite Net
work," 1979 NTC Convention Record, pp. 45.5.1-12. 

4. Kahn, R. E., "The Introduction of Packet Satellite Communication," 1979 
NTC Convention Record, pp. 45.1.1-6. 

5. Gitman, I. and Frank, H. "Economic Analysis of Integrated Voice and 
Data Networks," Proc. IEEE, 66, November 1978, pp. 1549-70. 

6. Bially, T., Gold, B., and Seneff, S., "A Technique for Adaptive Voice Flow 
Control in Integrated Packet Networks," IEEE Trans. Comm.,Vol. COM-
28, pp. 325-333, March 1980. 

7. Johnson, D. H. and O'Leary, G. C., "A Local Access Network for Pack
etized Digital Voice Communications," National Telecommunication Con
ference, pp. 13.4.1-5 (1979). 

8. O'Leary, G. C., "Local Access Facilities for Packet Voice," Proc. Fifth 
International Conference on Computer Communication, pp. 281-286 
(1980). 

9. Johnson, D. H. and O'Leary, G. C., "A Local Access Network for Pack-

etized Digital Voice Communication," IEEE Trans. Comm. Syst. (to be 
published). 

to. Sproull, R. F. and Cohen, D., "High Level Protocols," Proc. IEEE, 66, 
November 1978, pp. 1371-86. 

11. Holmes, J. N., "The JSRU Channel Vocoder," lEE Proceedings on Com
munication, Radar, and Signal Processing, (127) February 1980, pp. 53-60. 

12. Blankenship. P., "Custom NMOS LSI Channel Vocoder ," Record of SPIE 
Tech. Symposium East, SPIE Vol. 180, pp. 25-32, April 1979. 

13. Hewes, C. R., et aI., "A CCDINMOS Channel Vocoder," Record of the 
lEE International Specialist Seminar on "Case Studies in Advanced Signal 
Processing," 18 September 1979, Peebles, Scotland, pp. 134-139. 

14. Gold, B., "A Computer Program for Pitch Extraction," JASA, 34,9, 16, 
1962. 

15. Kingsbury, N. and Amos, W., private communication, Marconi Space and 
Defense Systems, October 1978. 

16. Tierney, J. T., and Malpass, M. L., "Enhanced CVSD-An Embedded 
Speech Coder for 64-16 kbps," Proc. of the IEEE International Conference 
on Acoustics, Speech and Signal Processing, March 1981, Atlanta, GA. 





Engineering computer network (ECN): A hardwired 
network of UNIX* computer systems** 

by KAI HWANG, BENJAMIN W. WAH, and FAYE A. BRIGGS 
Purdue University 
West Lafayette, Indiana 

ABSTRACT 

This paper reports the design and operational experiences of 
a packet-switched local computer network developed at Pur
due University. Hardwired communication links (1 mega
baud) are used to interconnect seven UNIX computer systems 
(two PO 11170 , one VAX 111780, and 4 PDP11/45). Over 20 
microprocessors and 210 timesharing CRT terminals are con
nected to the seven hosts. Instead of using the UUCP proto
cols for dial-up UNIX networks, several protocol programs 
are locally developed to make possible the hardwired UNIX 
networking. The network provides the capabilities of virtual 
terminal access, remote process execution, file transfer, load 
balancing, and user programmed network I/O. Only at the 
lowest protocol level is the DDCMP of DECNET used. The 
network is expandable and provides appreciable bandwidth 
with moderate cost and low system overhead. Described in 
this paper are the network architecture, system components, 
protocol hierarchy, local UNIX extension, load balancing 
methods, and performance evaluation of the Purdue ECN 
network. 

INTRODUCTION 

This paper presents the implementation experience, opera
tional lessons, and performance assessments of a moderate
cost local computer network developed at Purdue University. 
The distributed computing system, named Engineering Com
puter Network (ECN), is presently composed of seven Digital 
Equipment computers of various models (V AX 111780, PDP 
11170, and PDP .11145). All the DEC computers in ECN run 
with UNIX operating systems. Hardwired communication 
links with one megabaud rate are used to interconnect these 
UNIX computer systems, which are located in three adjacent 
buildings at the main campus of Purdue University. The ECN 
UNIX network differs from the dial-up UNIX network devel
oped by Bell Laboratories13 in communication links and net
work application protocols. The dial-up UNIX network is 
interconnected mainly by telephone lines with rate of 300 

* *UNIX is a trademark of Bell Laboratories. 

* *The research reported herein was supported in part by Department of Trans
portation Research Contract No. R92004 and in part by National Science Foun
dation Research Grant No. MCS-78-18906. 

191 

baud or 1200 baud. The ECN has hardwired connections pro
viding much faster communications between the network 
hosts. Another hardwire-connected UNIX network has been 
reported by Chesson. 2 In general, hardwired connections are 
required to have up to 3 megabaud for local computer 
networks. 20 

Instead of using the UUCP communication protocols be
tween UNIX systems as described in Nowitz,14 the ECN net
work group at Purdue University developed several high-level 
application programs, called con, csh, and rxe. These pro
grams provide the following network functions: 3,7,18 

• Virtual terminal access. A user can connect the physical 
terminal to a pseudoterminal on any other host computer 
in ECN. The con program provides the virtual terminal 
protocol. 

• Remote execution environment. The csh and rxe pro
grams provide the capability of executing a string of com
mands on a remote host machine with apparent load 
balancing and local 110 standards. 

• File transfer/remote device access. The csh program, to
gether with several specially developed network func
tions, provides simple file and directory transfers 
between hosts. 

• User programmed network I/O. By issuing set teletype 
(stty) functions on an open file in a pool of special UNIX 
files, any user-written program can directly connect to 
any machine in ECN, disconnect, wait for connection, 
send signals, etc. 

The ECN network differs from the DECNET in the fact 
that DECNET must run with DIGITAL operating systems 
like the RSX-ll series, DEC-I0/DAS 85, and lAS systems. 
DECNETuses the digital network architecture (DNA) proto
cols: DDCMP, NSP, and DAP, as described inDECNET.5 
ECN uses DDCMP protocol fornode-to-node communica
tions only at the physical-link level. The NSP and DAP func
tions of 0 ECNET are not used in ECN. Special advantages of 
ECN network are distinguished by the following features: 

• Appreciable network bandwidth with moderate system 
cost. Using the DMC-l1 network links,6 the ECN has 
demonstrated the bandwidth of 400 Kbaud between pro
cesses residing in the same host and 250 Kbaud between 
processes at different hosts. 



192 National Computer Conference, 1981 

• Relatively low system overhead in message routing. Inter
nal buffering and copying are minimized. The network 
buffer pool resides outside the kernel space. 
Packet of variable, lengths up to 512 bytes of data can be 
sent with a short header of at most 12 bytes. 

• Reconfiguration flexibility for future expansion. The in
terconnection structure is quite flexible to allow up to 256 
DEC machines in the network. DMCll line driving 
codes are shared over mUltiple units, and simple static 
routing tables are used for packet routing. 

This paper is divided into three parts. Architectural devel
opment, system features, and communication links of ECN 
are presented in the second and third sections. Hierarchical 
ECN communications protocols and local UNIX software ex
tension are described in the fourth and fifth sections. The sixth 
section provides some analysis and measurements on network 
performance. Lessons we have learned and continued R/D 
efforts on ECN are given in the concluding section. 

NETWORK TOPOLOGY AND SYSTEM COMPONENTS 

The engineering computer network (ECN) at Purdue Univer
sity is a packet-switched computer network of seven Digital 
Equipment VAX and PDPll minicomputers connected with 
20 Intel, Southwest Technical, and Motorola microprocessors 
and over 200 CRT terminals. The seven DEC computers in 
ECN include one VAX-1l1780, two PDP 11170's, and four 
PDP 11/45's. These computers are interconnected by 1-mega
baud digital communication links. The network presently as
sumes a star structure, as depicted in Figure 1. Each computer 
runs a separate UNIX interactive timesharing operating sys
tem (Version 7).1,15 The networking of these UNIX-based 
minicomputers is made possible with the use of coaxial cables 
and the Digital Equipment DMC-ll interface drivers. 6 

ECN is a packet-switching network with decentralized con
trol. Instead of implementing the switching and routing func
tions in interface message processors (IMPs), as done in 
ARPA net, the IMP functions are distributed directly inside 
the host machines. The motivation for choosing this IMP-in
host architecture is to reduce the total system cost and to 
shorten the development period of a working subnet in a 
university environment. Of course, this architecture presents 
the shortcoming of an added switching burden for each host, 
which would otherwise concentrate on computation duties. 
The star structure with the embedded IMP functions may also 
pose the problem of reduced network reliability. However, 
when cost effectiveness has been weighed against potential 
disadvantages, the architecture has been sustained, in the 
areas of both performance and availability, since 1978. 

The seven host computers in the ECN-system a.re coded A, 
B, P, AARL, EEG, VE, and LISP machines in Figure 1. Basic 
components and functional features of these host computers 
are specified in Table 1. The host machine A, being at the 
center of the net, is directly connected to four other host 
machines. All seven hosts are hardware/software inter
connected at the highest level. A user at a terminal connected 
to any of the hosts can access the remaining hosts as if his/her 
terminal were directly'connected to those host machines. A 

"left" ~ 

(b). Di rected graph 
representation of 
message rout i ng 
paths in ECN. 

~: All net",ork I inks are 
I Megabaqd Coax i a I 
cables. 

(a). Engineering Computer 
Network (ECN) at 
Purdue Un i vers i ty 

I "up" 

----.... I'right'l 

I ".~". 
Figure I-Architectural interconnections of the Purdue engineering computer 

network 

user may have programs simultaneously running in several 
host machines transmitting data from one to another. 

Topologically, the net can also be viewed as a three-level 
"tree" system, with Node A as the root, four hosts (B, P, VE, 
and LISP) at the second level, and two hosts (AARL and 
EEG machines) at the third level. The hosts Band Pare 
directly connected to the AARL and EEG machines, re
spectively. These two "leaf" machines, at the third level, are 
xesearch laboratory computers and are network hosts; but 
they do not serve as switching nodes. With the distributed 
control among the hosts, the message routing in the network 
is done on an interrupt basis. In other words, multiple traffic 
paths may exist concurrently by timesharing use of some com
mon intermediate nodes. 

Being at the center of the network, Machines A (PDP 
11170) and B (PDP 11145) support high-speed communication 
links to five other PDP-ll machines and to the PUCC (Purdue 
University Computing Center) CDC 6500/6600 computers. 
The three hosts (VE, A, and B) support 136 serial data lines 
connected to CRT terminals, 20 microcomputers, and various 
data acquisition devices throughout the network, operating at 
rates ranging from 1.2 Kbaud to 38 Kbaud. An automated 
document preparation facility is also implemented in the 
UNIX network for entering/editing text and equation materi
al. Besides word processing, the ECN is also connected with 



POP-11170 wIth UNIX Version 7 
512 Kilo words of main memory 

FP-llC Floating-Point Processor 

Figure 2-System components of the A machine in ECN 

I Mbaud 
ToP 
Machine 

a graphics laboratory. The detailed configuration of the cen
tral host, Machine A, is shown in Figure 2. The DH-l1s are 
interfaces for connecting 70 terminals, three line printers, and 
20 microprocessors to the UNIBUS of A machine. The VAX 
111780 hardware includes 2 megabytes of main memory and 
two 267-megabyte disks. The PDP 11145 (B machine) hard
ware includes 128K words of main memory, two disk drives 
totaling 272 megabytes of online storage, and a high-speed 
floating-point array processor (AP-120B). The 210 time
sharing terminals connected to seven hosts in ECN are pri
marily Lear-Siegler ADM-3/3A and Hewlett-Packard 2640 
CRT terminals. 

The UNIX (Version 7) operating system includes the high
level language C, F77, DEC's Fortran IV plus, BASIC, 
Macro-II, APL, PASCAL, cross-assemblers for various 
microcomputers, and many other software development 
tools. l

.t8 To the PUCC computers, the ECN serves simply as 
a remote job entry (RJE) station. The EE microprocessor 
laboratory is supported by A machine (PDP 11170). Currently 
connected to the ECN are the following microcomputer sys
tems: 8 Southwest Technical 8K systems based on Motorola 
6800; one Intellec 8 Model 80 8K system, one Intel 800 MDS 
with 32K RAM and 16K ROM with dual-drive floppy disc, 
one Intel 848 MCS with 1K RAM, 10 Prompt 80/85 lK design 
systems based on Intel 8080, an SKD 8086 system, and one F8 
32K system based on Fairchild F-8 microprocessor. All the 
microprocessor systems have RAM, monitors on ROM, and 
connections for downloading from the PDP 11170 A machine. 
The A machine has cross-assemblers for both the 8080 and 
6800 microprocessors. 

In the near future the present star ECN will be recon
figured, with the addition of another VAX 111780 computer 
(VM), into a double.-Ioop computer network, as depicted in 
Figure 3. The two V AX systems (VE and VM) and the two 
PDP 11170 (A and P machines) will form the main loop, 
serving as the backbone of the system. The four PDP 11145 
laboratory machines will form the secondary loop. The VE 
and the A machines will then serve as a gateway between the 
two loops. A proposal is being considered that would even
tually extend the current ECN to an even larger network of 
minicomputers and microprocessors to serve nine engineering 
schools at Purdue University. 

NETWORK LINKS AND INTERFACE LOGIC 

Local communications between two computers on the UNIX 
network are controlled by a pair of DMC-11's,6 one on each 

Engineering Computer Network 193 

Secondary 
Loop 

LI SP Mach i ne 
PDP 11/45 

AARL Mach i ne 
PDP 11/45 

Figure 3-Double-Ioop configuration being considered for the next phase of 
ECN 

computer. At present, with full-duplex and one-megabaud 
operations, each DMC-l1 consists of a DMC11-AL micro
processor-module and a DMCl1-MA line unit module con
nected by a one-foot cable. A pair of coaxial cables (Belden 
8232 double-shielded coaxial cable) are used to connect two 
DMC-l1's. The DMCl1-AL microprocessor module is a hex
sized single PC board that fits into a hex small peripheral 
controller (SPC) slot. It contains a 300-nsec bipolar micro
processor, a read-only-memory implementing the DDCMP 
protocol, local scratchpad memory, and UNIBUS interface. 
The DMCl1-MA line unit module is also a hex-sized PC 

Table 1-Architectural features in each host computer of the en
gineering computer network 

Host Architectural Features 

A PDPl1l7O-UNIX Version 7 
1 megabytes main memory, 355 megabytes disk memo
ry tape drive, 70 terminals, 4 printers, printer/plotter 
(See Figure 2) FP-llC floating point processor, 20 
microprocessors 

B PDPl1/45-UNIX Version 7 
256 kilobytes main memory, 292 megabytes disk memo
ry, AP-120B array processor, paper tape punch, 25 
terminals 

VE VAX 111780-UNIX Version 7 
2 megabytes main memory, 590 megabytes disk memo
ry, 32 terminal lines 

P PDP11170-UNIX Version 7 
1 megabytes main memory, 443 megabytes disk memo
ry, 3 printers, 65 terminals 

AARL PDPl1145-UNIX Version 6 
256 kilobytes main memory, 192 megabytes auxiliary 
memory, 270 megabytes disk memory, image robotics 
110, 1 printer, 6 terminals 

LISP PDPl1/45-UNIX Version 7 
256 kilobytes main memory, 316 megabytes disk memo
ry, 2 image display systems, 10 terminals, 1 printer 

EEG PDPl1/45-UNIX Version 7 
256 kilobytes main memory, 73 megabytes disk memo
ry, video display, 9 terminals, analog I/O 



194 National Computer Conference, 1981 

board for use in SPC slots. It includes serial-to-parallel 
conversion and a built-in modem for local operation at one 
megabaud over coaxial cable up to 6,000 feet long. The 
DMCll-AL implements the ODCMP protocol in hardware; 
this makes efficient data communications possible. The 
DMC-ll is also responsible for character and message syn
chronization and header and message formatting. These· re
lieve the programmer from many low-level details in data 
communications. 

All communications between the PDP-ll and the DMC-ll 
are through eight bytes of control and status registers (CSRs). 
These registers are addressed as 76XXXY, where Y ranges 
from 0 to 7, and are implemented with random access mem
ory. Four bytes of these registers are multipurpose data port 
registers. Their meaning is controlled by the other registers, 
and their use is governed by the DMC-l1 microprocessor. The 
format and contents of the data port registers depend on the 
transfer type (input or output). They are loaded by the POP
lIon input transfers and are loaded by the microprocessor on 
output transfers. The other four bytes of the CSRs contain 
commands, status information, and definition for the type of 
transfer. All commands, command completions, and status 
information pass through these registers. 

The PDP-ll program is completely insulated by the OMC-
11 from the communications link and the ODCMP protocol. 
The program initializes the DMC-ll by supplying the base 
address of a 64-word table in PDP-II memory, which is called 
the base table. Once the base table is specified, it belongs to 
the DMC-ll and is readable only to PDP-ll programs. The 
base table is used by the DMC-ll to keep a snapshot of 
protocol activity for power fail recovery and defining the char
acteristics of the data link. Immediately after the base address 
is defined, the PDP-ll program performs another input trans
fer to define the characteristic of the link (full or half duplex). 
The DMC-ll's will then automatically start up the DDCMP 
protocol and synchronize themselves in a few time intervals. 

From this point on the PDP-II program can request and use 
the mUltipurpose CSRs to provide the bus address and byte 
count of messages to be transmitted or buffers to be filled on 
reception. Transmit commands will be reposted as completed 
when successfully acknowledged. Receive commands will be 
reported as completed when an entire message has been suc
cessfully received in correct sequence. Successful command 
completions will interrupt the PDP-ll processor, if enabled. 
The POP-'ll program may queue up to seven buffers for trans
mission and seven empty buffers for reception by supplying 
buffers to the microprocessor faster than it returns them. This 
allows the transmission and reception of messages to be pipe
lined. Data integrity may be lost when more than seven buf
fers are queued. 

The DMC-ll is designed with a number of features for 
reliable operation and ease of maintenance. During normal 
operations, the DMC-ll keeps counts of communications and 
transmissions. These counts are recorded in PDP-ll memory. 
Occasional retransmissions are handled by the DMC-ll. The 
microprocessor informs the PDP-ll program of unusual or 
error conditions involving the communications channel, re
mote end of the link, DMC-ll hardware, or PDP-ll program. 
For reliable data transmission at one megabaud, buffer size is 
limited to 512 bytes. 

Host A Host VE 

Processes 

(}-

Application {)p CD 
x --- ----- u ••• v 

Protocols 

C\ (£2!:l,csh, VAX Q 
PDPll 170 V rxe) 111780 P 

UN I X UN I X W 

DMC-I I 

(CON, DIS, 
NEXT, etc.) 

COrrlfl'lun i ca t i cnS 

Subnet 

Node-To-Node P rotoco Is 
(OOCIIP) 

(a) ECN Communication Protocols 

DMC-I I 

(b) Packet Format Used in ECN 

Node-To-Node 
Protocol 

Header for 
Host-To-Host 
Protocol 

Data 
Field 
(up to 
512 bytes) 

{ 

i 
J 

C 

.. ,,------4 bytes 

SOH Sequence 
NUr:1ber 

Source Source 
Host Socket 

Host-Control I MP-Contro I 
OpCode OpCode 

I I 
I 

I I 

'I 
CRC-If, Il Check sum (optional) 

Dest i nat ion Destination 
Host Socket 

( 
Byte Count 

Envelope 

(up to 512) 

< ) 

I 
I 
I 
I 

( 
Message 

) 

Figure 4-Communication protocols and packet format used in ECN 

Some codes were written at Purdue for sequence numbers 
and general consistency checking and the issuance of idle 
packets that are used to detect the activation of the line. 
Although not serious, a number of minor bugs have been 
found in our DMC-ll hardware. On rare occasions, the 
DMC-ll will loose a buffer with no error status. Strange traps 
have occurred on one CPU when the CPU at the other end is 
halted. Defective devices on the UNIBUS which keep the bus 
too long cause problems. The sequence and timing of com
mands to first-time initialize the DMC-ll were found to be 
critical. Internal UNIX errors that lock out console error 
messages cause the DMC-ll to malfu,nction. The DMC-ll 
also spuriously issues RDYO interrupts (with RDYO bit 
clear) when under very heavy load. All these errors have been 
corrected, and the DMC-lls are now operating satisfactorily. 

COMMUNICATIONS HIERARCHY AND SYSTEM 
PROTOCOLS 

A hierarchy of communication protocols has been developed 
at Purdue University to allow resource sharing between host 
DEC computers and terminals in ECN and to perform various 
network functions as listed in the introduction. Processes 
within host DEC computers communicate with processes ei
ther in other host computers or in terminal handlers by means 



Engineering Computer Network 195 

TABLE 2-Augmented function library for the protocol programs used in ECN 

Mnemonics 

fd = mxfile( ) 

mxwait (fd,socket) 

mxcon (fd,host,socket) 

mxscon (fd,host,socket) 

mxdis (fd) 

read (fd,buffer, count) 
write (fd,buffer,count) 

mxsig(fd,signal) 

mxgrp (fd) 

mxeof (fd) 

mxserve (socket) 

resulting system call 

stty (fd, {3,socket ,O}) 

stty (fd ,{I,host, socket}) 

stty (fd, {2,O,O}) 

stty (fd,{6,signal,O}) 

stty (fd ,{5,O.O}) 

stty (fd, {7 ,O,O}) 

of several specially developed programs. In this -section we 
present a functional characterization of the ECN protocol 
hierarchy. Detailed software constructs of network applica
tion programs will be described in the next section. 

Each host in ECN is identified by a one-byte host number. 
Processes residing in each host are uniquely identified by a 
socket number. A connection between a process in the local 
host and a process in a foreign host is specified by four one
byte numbers: source host, source socket, destination host, 
and destination socket. This naming convention will allow 
multiple connections to the same local host/socketpair, anal
ogous to the telephone PBX service where multiple calls can 
be directed to the sa.!11e unique phone number. A subset ofthe 
socket numbers at each host is reserved for connection ser
vices by system processes. Variable-length packets are used in 
ECN to allow hosts to communicate with each other. The 
packet format used in EeN is illustrated in Fig. 4b. The first 
four bytes in the host-to-host header form the connection 
number. The next two bytes are integer opcodes used for 
host-host and IMP-host controls, to be described below. The 
byte-count indicates the number of bytes being transferred in 
the data field, which may contain a maximum number of 512 

Functions Performed 

Finds, opens and returns a free network file 
fd from the pool "/dev/mnln" 
Waits for connection to local socket number 
socket from any host in the network; reruns 
when connection arrives. 
Connects local network file fd to foreign 
host, foreign socket; returns if a process at the 
foreign host has issued mxwaitl) and 
connection is complete. 

Similar to mxcon except host is a string of 
characters. 

Disconnects file fd; occurs automatically 
on a close (fd). 

Reads and writes buffers; reads a minimum 
of whatever is written in the buffers or 512 
bytes and does nol.waiLfor. the buffer to fill. 
Sends the process or process group (see 
mxpgrp) at the other end of connection, a 
UNIX signal number signal see (11) 
Places the current process and all its 
children by forks in the same unique 
process group. 
Write an end of file (EOF) onto the 
connected file fd; all reads at the other end 
receives a zero byte count (EOF); all writes 
at this end are ignored. 
Answers requests for service on socket by 
the con and csh servers (described in the 
fifth section). 

Error Control 

path does not 
exist, tim.e 
out. 

host does not 
exist in table 

bytes. The choice of this maximum size of 512 bytes matches 
the capacity of a typical disk block. 

ECN uses a multilevel protocol similar to that implemented 
in the ARPAnet. The major difference lies in the way packet
switching functions are being implemented. ARPAnet uses a 
separate IMP as a switching processor, whereas in ECN the 
IMP functions are implemented by the hosts with the aid of 
the interface microprocessor DMC-11. The ECN communi
cation protocols consist of three layers, as illustrated in Figure 
4a. These protocols are implemented in C programming lan
guage, augmented with a user-callable function library for 
performing various network functions. Most of these func
tions reformat the arguments into the appropriate stty call on 
the open network file descriptor, supplied as the first argu
ment. A brief listing of these functions and the reSUlting sys
tem calls are given in Table 2. 

In the kernel space the network software in each machine 
is split into two parts. The mx device driver/deve/mx/x ap
pears as special files to UNIX. Open, close, read, write, and 
stty calls on mx files pass control to the mx driver, which 
generates packets containing host-to-host protocol and passes 
them to the IMP process for delivery. The IMP process re-



196 National Computer Conference, 1981 

ceives buffers (packets) from the local and neighboring hosts. 
The IMP examines the destination address on each arriving 
packet and looks up the host number in its routing table, 
which maps host numbers to external link numbers. The pack
et is then enqueued for output via the appropriate line driver. 

Node- To-Node Protocol 

In the lowest level of line control, the interface micropro
cessor DMCll implements the same DDCMP (digital data 
communication message protocol) protocol used in DEC
NET.5 A common type of IMP-to-IMP envelope is prefixed to 
the host-to-host packet header, as described in Figure 4b. This 
envelope contains an SOH (start of header), a sequence num
ber, and an optional check-sum. The DDCMP protocol de
tects channel errors using CRC-16 (16-bit cyclic redundancy 
check). Errors are corrected by automatic retransmissions. 
Sequence numbers in the envelope insure that messages are 
delivered in proper order without omissions or duplications. 

Host- To-Host Protocols 

In the middle level is the protocol for packet exchanges 
between the hosts. The packet header contains two function 
control opcode fields. Described below are opcode mne
monics used in these fields and the corresponding packet con
trol functions to be performed.3 The host-to-host operations 
performed include the CON (connect), DIS (discount), 
NEXT (ready for next packet), SIG (sigrial interrupt), and 
RST (broadcast reset). The IMP-control field when nonzero 
indicates an IMP-to-host or host-to-IMP control opcode. A 
dead code indicates a dead host. All packets sent to a dead 
host should be bounced back to its source host or destroyed 
when both source and destination hosts are temporarily dis
connected. 

The CON operation requests that the connected name in 
the first four bytes be established. Connection is established 
when a pair of these is exchanged, one in each direction. If 
receiving host has a process with matching mxwait (fd, socket) 
pending, the matching CON is sent. If not, the CON is queued 
and picked up later by a mxwait. After connection, a CON 
with the same connection name results in timeout. The DIS 
function breaks the connection named in the first four bytes. 
Disconnection is complete when a pair of DIS is exchanged. 
The NEXT is sent by the consumer of the data packet and 
indicates that the data has been transferred from kernel into 
user space and is ready for the next data packet. The SIG 
sends an interrupt signal number in the first data byte to the 
receiving process at the other end of the connection. The RST 
causes the source host to inform the destination host to reset 
all known connections between the two. 

Application-Level Protocols 

In the highest level are the interprocess communication 
protocols. So far, three application programs have been writ
ten at Purdue University to facilitate the UNIX networking. 

The con program allows a user to connect his physical termi
nal to a pseudoterminal on any other host machine. This 
virtual terminal protocol provides local/remote echoing by the 
use of sttylgttyfunctions to be described in the next section. 
The csh program (for connected shell) is used to control re
mote process execution. It takes the host name and a se
quence of commands as its· arguments. The commands are 
executed on the specific host computer with standard JlO 
redirected to the local host. The con and csh are also used 
under programmed network 110, and file transfer/remote de
vice accesses. The rxe program performs a load-balancing 
algorithm and sends jobs to the network machine with the 
least load average. 

APPLICATION PROTOCOLS AND UNIX EXTENSION 

In this section we descrilie the three application protocols 
developed at Purdue: con (connect virtual terminal), csh 
(connected shell), and rxe (remote execution environment). 

Virtual terminal program (<;on) 

Con is an extended shell command that takes a terminal 
connected to the local host to act like a terminal connected 
directly to a remote host. The synopsis of the command is con 
hostname. When this command is entered into the shell with 
a valid host name, login messages such as password prompt 
are communicated from the remote host to the local host. 
From this time on, the local terminal acts like a terminal 
connected directly to the remote host. The base level shell 
exits when a final control-D is typed and the connection is 
broken. Con is also designed so that the actions of escape 
(hold terminal output) and the rubout (interrupt) key are 
immediate and not "squishy" because of network buffering. 

The sequence of actions performed on the local host when 
a valid con command is entered from the terminal is as fol
lows: A free network file is obtained by using the function 
mxfile ( ) (see Table 2) at the local host. The function mxscon 
( ) (see Table 2) is called to connect this local network file to 
the remote host on Socket 1. When the connection is estab
lished, the con at the local host is split into two parts: One 
reads from the termil1al (fdO) and writes to the network file; 
the other reads from the network file and writes to the screen 
(fd1). As described in the read/write commands in Table 2, 
reading can be done without waiting for the entire buffer to be 
written. At the remote host, the con server S-con is respon
sible for establishing the connection when a connect arrives on 
Socket 1. S-con forks once to generate a child process. The 
child S-con then finds a free pseudoterminal and forks into 
two parts. One part is reading from the net and writing to a 
pseudoterminal while the other part is reading from the same 
pseudoterminal and writing to the net.·A pseudo terminal at 
the remote host consists of two sides that are named /dev/ttyx 
and /dev/ptyx. Anything written on /dev/ptyx looks as if it has 
been typed in at /dev/ttyx, while everything printed out at 
Idev/ttyx can be read at /dev/ptyx. 

Certain escape and command character sequences, such as 
an stty command, when issued on /dev/ttyx, are first trans-



lated into a command sequence before it is read by Idev/ptyx. 
This command sequence is then sent or other operations are 
performed. The format of such a command consists of an 
escape byte called lAC (interpret as command), followed by 
a command code byte, possibly followed by data for that 
command. The commands currently implemented include ST 
(set teletype), GT (get teletype), IN (interrupt signal), QU 
(quit signal), EF (end of file), and DM (data mark). The 
S-con is only responsible for data transfers and never inter
prets the commands. 

Remote process protocol (csh) 

Csh is an extended shell that runs a shell on a remote host, 
with its standard 110 the same as csh's standard 110. The 
synopsis of the command is, 

csh hostname [ - I user password] "commands" 

The quotes are not needed if special characters for the shell 
(such as I, 1\, etc.) do not exist in the commands. If the -I 
option is omitted,'the commands are run under userid = user, 
dir = lusr/user on the remote machine. Interrupt, quit, or 
hangup signals on the local host will send a hangup to the 
remote process. 

The use of the csh command can be illustrated by the fol
lowing examples. Suppose the local host is the A machine, 

nroff filename 1 csh p opr 
processes the file on the A machine and prints it on the 

P machine. 
csh p -I username password "cat> file 2" < file 1 

transfers file 1 on the local machine to file 2 on the 
remote machine. 

Other capabilities of csh include transferring a directory of 
files. 

The sequence of actions performed on the local host when 
a valid csh command is entered is as follows: The local csh 
connects to Socket 2 on the remote host by using the functions 
mxfile ( ) and mxscon ( ) (see Table 2) and writes three lines 
containing name, password, and command, each terminated 
by ",""n," in a single write. When the connection is estab
lished, the csh attne local host is split into two parts: one 
reads from standard input and writes to the net while the other 
reads from the net and writes on standard output. When the 
half that is reading from standard input gets an EOF, it writes 
an EOF to the net and exits. The other half that is reading 
from the net will exit when the command exits at the remote 
host and sends an EOF to the local host. At this time the local 
csh-exits.At the remote host the csh server (S-csh) listens for 
a connection on Socket 2. When one arrives, the connection 
is established and a child is forked to handle it. The child S-csh 
opens file descriptors 0, 1 and 2 (standard 110 a~d error) as 
net files and reads three items: name, password, and com
mand line. If the name is non-null, "/etcll-csh l-csh name" is 
invoked and does the lengthy job of looking up and verifying 
the password (still in the kernel net buffer) and executing a 
shell with the command line. The command performs its 110 

Engineering Computer Network 197 

from the net. If the name is null, the command is run under 
user name user. All the children of this process are placed and 
executed in a separate process group. To speed things up, the 
snell is not called if no special characters exist in the command 
line. When the-oommand ev@tually-exits-atthe-remote host, 
an EOF is sent to the local host to terminate the csh. 

Remote Execution Environment (rxe) 

Rxe is a scheduling routine developed to run a selected set 
of commands on the most idle machine available in an (al
most) transparent manner. These commands are generally 
CPU-bound programs that require a relatively small amount 
of file transfers. Therefore it would be cost-effective to exe
cute the job in a remote host. The commands 'currently imple
mented include the compilers for c(cc.) and FORTRAN 
(f4p., fortran. ,177 . ), microprocessor cross assemblers 
(masBO.,mot68.) and word-processing programs (nroff., 
troff.). The period at the end of the command is used to 
distinguish jobs to be run in rxe against jobs to be run on the 
local host. The synopsis of rxe is 

command [- V] { - H include-file} arguments ... 

When one of the above commands is executed, rxe first pre
processes the command line arguments. The . is stripped off 
from the command. Any argument that does not start with a 
- is assumed to be a file that will be transferred with the 
command to a remote host if the command is executed there. 
The - V flag causes a verbose listing of rxe 's operations to be 
printed (the machine used and the files transferred). The - H 
include-file causes include file to be copied to the remote host 
with the command. The - H include-file can be repeated if 
several files are to- be included. The-H option forces 
include-files to be transferred together with the command. 
Since the command may be executed on a remote machine, 
files included but not transferred would not be found at the 
remote host. Some examples of the use of this command are 
as follows: 

ce. f1.c f2.c f3.0 f4.0 -H vars.h 
executes the C compilation command ee fI.c f2.c f3.0 

f4.0 with an include file vars.h on a remote machine 
nroff· paper 1 opr 

runs the word processing program "nroff paper" on the 
most'idle machine and prints it at the local host. 

To effectively select a machine that is ~~e most idle," the 
machines must be characterized to indicate the degree of idle
ness. This is represented by a single number, called a load 
average, that is maintained in each network machine's kernel. 
The load average is a number that can characterize the load at 
a computer. Therefore, computers with higher load averages 
are more heavily loaded. Load average of the current machine 
is defined as the approximate factor of increase for the phys
ical time it would take a given process to run on the current 
machine over the physical time needed for the same process 
to run on a completely idle PDP-11170. It is calculated from 
several factors, including number of running processes, num-



198 National Computer Conference, 1981 

ber of background processes, number of disk transfers, 
amount of swapping, amount of interrupts, and a site-depen
dent constant. The site factor is used to characterize machines 
with different architectures and speeds. It was developed ex
perimentally by running compilers on all the network ma
chines and takes into account disks, the network, memory 
speed, and other system dependencies as they apply to run
ning compilers. Currently, the PDP 11170's have a site factor 
of 1. The B machine, which is a PDP 11/45 with a cache, has 
a site factor of 1.5; and the AARL machine, which is a PDP 
11145 without a cache, has a site factor of 2.5. 

The computation of the load average takes into account 
only a finite number of characterizing parameters and makes 
assumptions about things like the average mixes of CPU/IO
bound jobs, the number of child processes a process forks, the 
amount of memory used, etc. It is only an approximate char
acterization of the machines. Very few results can be reported 
now regarding improvement in response time; but in general, 
it is much faster to run the command on a less idle machine 
than on the local host. Experimentation is still needed in lhe 
future to further improve the performance. 

The sequence of actions performed in the local and remote 
hosts are described here. First, rxe preprocesses the command 
by stripping off the . Next, rxe connects successfully to each 
network machine on Network Socket 3.·ln each network ma
chine, the rxe server (S-rxe) is waiting (mxwait ( » for a 
network connect to Socket 3. When S-rxe receives this con
nect, it sends a two-byte load average (from /dev/kt) to the 
originating host. The host rxe picks the computer with the 
minimum load average and sends a 40-byte "idline" with host
name, uid, command, and mxscon () to this machine's Socket 
4. If the host does not want the command to be processed at 
this machine, a disconnect is sent to disconnect Socket 3, and 
S-rxe goes back to wait for another connect on Socket 3. Two 
network channels are used here to avoid a race condition. 

For the machine that receives the 40-byte "idline," a mxwait 
( ) is executed to wait for a connect to Socket 4 (mxscon ( » 
from the originating host. This wait is timed out in case a 
connect is not received in 15 seconds. When the line is con
nected, S-rxe forks a child S-rxe to become the new S-rxe 
server, which goes back to wait for a new connect on Socket 
3. The parent S-rxe sets up a scratch disk directory, waits and 
receives the source files from the host on Socket 3, and copies 
them to the scratch directory. The argument files follows in a 
similar manner. On receiving all the files, the parent forks 
again, with the child processes executing the command and 
argument files received with file descriptors fd 0, 1, 2 con
nected to the net (like csh). When the command terminates, 
S-rxe closes Socket 3, and any resulting files created are sent 
to the originating host over Socket 4. Finally the parent re
moves the scratch directory and exits. The above descriptions 
have only touched the basics of the design. Interested readers 
should refer to the program listings of con, csh, 1,3 and rxe 7 for 
details. 

PERFORMANCE ANALYSIS AND MEASUREMENTS 

In evaluating the performance of the 'ECN, we focus our 
attention on estimating the mefln response time of a job issued 

from a node of the network. It IS assumed that each job can 
be processed on any node ofthe network. The objective of the 
model is to compare the performance of two scheduling stra
tegies for dispatching jobs to nodes of the network. Currently, 
only a few commands, such as cc (compilation) and moff (text 
formatting) are implemented on the system for load-balancing 
purposes. Since the ECN performs load bahmcing for a small 
class of jobs, the results obtained below would be optimistic 
on the whole, since some nodes would still have high work
loads and hence encounter high response times. 

Figure 1b shows a directed graph representation of the 
ECN. For communication between any two adjacent nodes (1 
hop), the maximum throughput experienced by a single user 
is about 250 Kbaud. Although a three-hop communication 
requires an intermediate node, it was also found from mea
surements on the system that the processing performed by the 
intermediate node is negligible and does not contribute sig
nificantly to the workload at that node. This is expected, since 
the only processing required by the intermediate machine is to 
transmit the packet from the input DMA to the output DMA 
device. These measurements permit us to assume that the 
intermediate processors cause negligible delays in forwarding 
the bypassing packets. Several snapshot throughput measures 
on the current ECN were obtained, as shown below: 

Path Hops Throughput in Kbaud 

p-p 0 384 
A-B 1 273 
P-B 2 180 
P-AARL 3 136 

With time sharing use of the communication links by multiple 
users, the above throughput per single user can be increased 
to approach the maximum rate of 1 megabaud. 

Most performance evaluation of computer networks con
siders only the behavior of the communication channels and 
not the behavior of the model processors. 9 Delay at the chan
nels contributes most to the total delay. Others have devel
oped analytical models based on the destination probability of 
a job from a source node. 16 The model developed here evalu
ates scheduling strategies for jobs based on the workload 
characterization of both the channels and the node pro
cessors. 

It is assumed that a job is formatted as a message that 
consists of a command identifier and a list of arguments. The 
command message is dispatched to the communication inter
face (CI), where it is queued to await transmission over a 
physical link to the CI of another node. The message delays 
encountered vary in going from a source to a destination as 
the workload on the intermediate links changes. The desti
nation processor executes the process specified by the com
mand identifier using the list of arguments. A result message 
generated at this node is routed back to the initiating node 
processor. It is assumed that the command and result message 
lengths are independent and exponentially distributed ran
dom variables. The overall response time of the job would 
depend on the channel delays and the workload at the desti
nation processor. 

Let N represent the set of nodes in the graphical repre-



P Mach i ne (Node 4) 

1----------------, 
I I 
I. Terminals Communication I 
I Interfaces II 
I c 2 (4) I 

I JIIO-ot (~ ~~~~I~e) 
I I I c i (4) I 

I :IIID-OtTo,Node 5 I I (EEG Mach I ne) 

I I L_______ _ ___ J 

:y:: 1 

~ i <,'" 

I f 
From node 5 From node 3 
(EEG Machine) (A Machine) 

Figure 5-Queueing network model of Node 4 (P machine) 

sentation of the ECN shown in Figure lb. Hence 
N ={1,2, ... , 7}. The communication device, em(i), routes a 
message from a node i to its immediate neighbor node j; if 
i i= 3, m = 1, if node j is the "right" or "down" neighbor of 
node i; and m = 2, if node j is the "left" or "up" neighbor of 
node i ,as labeled on Figure lb. Figure 5 shows a queuing 
network of Node 4 (P machine) and its associated commu
nication devices. 

The intermediate nodes of a message path can be found by 
using an n x n routing table, R (n = 7, for the ECN). The 
routing model creates a static nonadoptive logical path from 
source i to destination j. Specifically, R (i ,j) contains the in
dex (k = 1, 2, ... , 7) of the next node (or "hop") on the 
logical path from i to j. Hence, given the source and desti
nation nodes as i and j respectively, the sequence of inter
mediate nodes visited by a command message describes the 
forward path (i~j) iteratively as 

I(i,j)={i, ik +!, h+z, ... ,j} 

where ik+, = R(i,j), ik+2 = R(ik+ h j) ... , and so on until 
R(ip ) = j for ipE [(i,j). Similarly, the return path V~i) can 
be obtained as IV ,i). -In order to evaluate the performance 
network, the effects of two scheduling strategies were studied 
for the ECN. The first strategy S, sends a job from a node i 
to node j for processing, if node j has the minimum estimated 
response time at time t (lrt) of a job processed at Node j, 
using a processor sharing model. Hence, 

1 - Pi(t) 

where Xj is the mean service time of the processor at node j 
and Pi(t) is the measured processor utilization at time t and is 
defined as the fraction of time the processor was busy during 
the interval [0, t]. Hence the first strategy can be specified as 

Engineering Computer Network 199 

follows: dispatch job that arrives at time t from node i to a 
node j, where j is the processor node with a min {lrtk(t)}. The 

kEN 

system provides a status report of the network in which the 
load average and utilization of each processor are updated 
periodically. This information can be used for scheduling pur
poses. 

The first scheduling strategy does not consider the overhead 
of message transmission from a source node to a destination 
and the return path. In the second strategy, Sz, we define an 
estimated response time of a job at time t dispatched from 
node i and to be processed at node j. The estimated response 
time at time t is given by 

Wij(t) = 2: TC(m)(k)(t) + 1rtj (t) + ~ TC",(k)(t) 
ke/(i.j) kelU,i) 

for i i= j. When i = j, Wii(t) = 1rti (t) Wij(t) consists of three 
components, namely, the estimated delay time of the com
mand message in the forward path, the estimated response 
time of the job processed remotely at Node j, and the esti
mated delay time of the result message in the return path, all 
at time t. The delay of a message in each communication 
channel can be modeled as an MIMI1 queuing system, as 
shown in Figure 5. Hence, the estimated delay time in channel 
cm(k) at time t is 

where mk is the mean message length of jobs departing from 
node k and (Pcm(k)(t» is the measured utilization of channel 
Cm (k) at time t and is defined as the fraction of time channel 
cm (k) was busy in the interval [O,t]. 

Figure 6-Response time disbribution for scheduling strategies S1 and S2 

The second strategy can then be summarized as follows: 
dispatch job that arrives at time t from node i to a node j, 
where j is the processor node with min {Wik}. Figure 6 

kEN 

illustrates the response time distribution of the two scheduling 

1.05100 

.919625 

I .788250 

~ .656875 
o 

~ .525500 

;5 
~ i .394125 

1.262750 

.131375 

S2 

0.00000 -'----.---..----.---...----,----.:::-.,r---~"--""'O; 

0.00 6.25 12.5 18.8 25.0 31.3 37.5 43.8 50.0 

RESPONSE TIME (SEC) 

Figure 6-Response time distribution for scheduling strategies S1 and S2 



200 National Computer Conference, 1981 

strategies discussed above for a given system load. It can be 
seen from the distributions that the scheduling strategy taking 
into consideration the channel delays in dispatching the jobs 
has a smaller mean and standard deviation of the response 
time. 

Two measurements were performed on the ECN to evalu
ate the effect of job classes on the response time under varying 
workload. The first job class consists of a channel-bound job 
in which a large file is transferred from the VE (Node 1) 
periodically to a "null" device at the node with the smallest 
load average. The second job type consists of a processor
bound job (an executable tight-loop program) that is dis
patched periodically for execution to a node with the least 
load average. These transactions are performed under a wide 
variety of workloads, and a record is kept on the effect of the 
destination processor utilization on the response time. The 
measurements showed that the response time of the channel
bound job was virtually independent of the utilization of the 
destination processing mode. This is expected, since the chan
nelloads were generally light, although the node utilizations 
varied considerably. 

CONCLUSIONS 

The experiences accumulated from developing the UNIX net
work of DEC computers at Purdue University are sum
marized below: 

1. Hardware components and communications links of the 
networks are readily available from standard DEC prod
uct lines. No special hardware designs are needed to 
construct such a modest but effective local computer 
network. This off-the-shelf approach saves significant 
development overhead with a controlled budget. 

2. No major changes of the UNIX operating system were 
made to establish the network functions. A small num
ber of changes, however, required an in-depth under
standing of the operation of UNIX. Only a handful of 
specially written system programs (con ,csh ,xre) at the 
highest protocol level, together with a library of host-to
host network functions (see the fourth and fifth sections) 
are needed to establish the virtual terminal, remote pro
cess execution, file migration, and user-programmed 110 
capabilities. 

3. The ECN is being reconfigured to a double-loop com
puter network (Figure 3). Over 210 CRT terminals and 
20 microprocessors are currently connected to the seven 
minicomputers in ECN. The two PDP 11170 computers 
(A and P machines) are also connected via 0.2 mega
band lines to the Purdue Computing Center, which itself 
has over 250 connected terminals. Users at terminals 
connected to ECN c~m use the computing center facili
ties (CDC 6500/6600) in batch mode. The CDC com
puter users cannot use the ECN facilities from their 
terminals This restriction is enforced to insure the net
work services to engineering users. 

4. The ECN performs satisfactorily for research and teach
ing usage by engineering schools at Purdue. The per
formance analysis given in the sixth section shows that 

the communication line utilization per user is only at 
15% to 40% of its maximum baud rate. This means the 
performance of the network can be further upgraded by 
timesharing use of the communication links. This is defi
nitely an area worthy of further R&D efforts. 

5. The reliability of each host in the ECN net is rather high. 
However, whenever a host fails, all the terminals con
nected to it are disabled and all the data flow paths 
containing this failing node are broken. In this sense, the 
availability of the star network (Figure 1) is expected to 
be much lower than that of the loop network (Figure 3). 
Fault tolerance capabilities built into the Ohio State 
double-loop network lO are being considered to enhance 
the availability of ECN. 

ACKNOWLEDGMENTS 

The engineering computer network project was initiated and 
supervised by Professor Clarence L. Coates of the School of 
Electrical Engineering at Purdue University. Staff members 
directly involved in the network installation, development, 
and maintenance include William R. Simmons, Bill Croft, 
George H. Goble, Craig Strickland, Michael Marsh, Joe 
Royeis, Curt Freeland, and Peter Miller, all of whom are with 
the EE Digital Service group at Purdue. The local extensions 
of UNIX software for network operations are also attributed 
to the digital service group. In particular, Mr. Croft devel
oped the library of network functions and the con and csh 
programs. Mr. Goble wrote the rxe program and made some 
modifications to the UNIX kernel. The authors wish to ex
press their gratitude to Professor Coates, Mr. Simmons, Mr. 
Goble, and other staff members for sharing their firsthand 
experiences, on which this paper is based. Assistance from P. 
Loomis, V. Hill, and V. Johnson in preparing the manuscript 
is also appreciated. 

REFERENCES 

1. Bell Lab. Technical Staff, UNIX Time-Sharing System: UNIX Pro
grammer's Manual Seventh Edition, Vol. 1, Vol. 2A, 2B; January 1979. 

2. Chesson, G. L. "The Network UNIX System," Operating Systems Review, 
Vol. 9, No.5, 1975, pp. 60-66. 

3. Croft, B. "UNIX Networking at Purdue," Technical Report (unpublished) 
School of Electrical Engineering, Purdue University, Lafayette, Indiana 
1979. 

4. Davies, D. W. et aI, Computer Networks and Their Protocols, John Wiley 
& Sons, Inc., New York, 1979. 

5. Digital Equipment Co., The DECNET, Chaps 1-3, Maynard, Mass. 1976. 
6. Digital Equipment Co., Terminal and Communications Handbook, 1978, 

pp. 2-78 to 2-97. 
7. Goble, George H., "RXE Program and Load Balancing in ECN," Private 

Communications, 1980. 
8. Hwang, K., Distributed Processing and Computer Networks, EE660 Class 

Notes School of Electrical Engineering, Purdue University, Lafayette. Ind. 
1980. 

9. Kleinrock, L. Queuing Systems, Vol. II, Computer Applications, Wiley 
Interscience, New York 1976. 

10. Liu, M. T., "Distributed Loop Computer Networks," Advances in Com
puters, Vol. 17., Academic Press, Inc., 1978, pp. 163-22l. 

1l. McOuillan, J. M. and Cerf, V. G., A Practical View o/Computer Commu
nications Protocols, IEEE Computer Society, Catalog No. EHO-137-0, 
1978. 



12. Newkirk, J. and Mathews, R. A Guide to Array Processing Under UNIX, 
Peninsula Research, Palo Alto, Calif., 1978. 

13. Nowitz, D. A. and Lesk, M.E., "A Dial-Up Network of UNIX Systems," 
Bell Laboratories, Murray Hill, N.J. August 1978. 

14. Nowitz, D. A., "Uucp Implementation," Bell Labs., Murray Hill, N. J., 
Oct. 1978. 

15. Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System," 
The Bell System Tech. Journal, Vol. 57, No.6, August 1978, pp. 1905-1930. 

16. Samari, N. K. and Schneider, G. M., "The Analysis of Distributed Com
puter Networks Using M/D/Y and MIM/I Queues," Proc. of The First Int'l. 
Conf Dist. Compt. Systems, Oct. 1979, pp. 143-155. 

Engineering Computer Network 201 

17. Schwartz, M. Computer Communication Networks Design and Analysis, 
Prentice Hall, Englewood Cliffs, N. J. 1977. 

18. Staffs of Digital Service Group, "Introduction to EE UNIX," School of 
Electrical Engineering, Purdue University, September 1980. 

19. Strickland, C. "EED (editor)," Supplement to UNIX Programmer's 
Manual, School of Electrical Engineering, Purdue University, Lafayette, 
Indiana, 1979. 

20. Thurber, K. J. and Freeman, H.A., "Architecture Considerations for 
Local Computer Networks," Proc. of The First Int'l Conf. on Distributed 
Computing Systems, October 1979, pp. 131-142. 





A protocol for a new double-loop 
computer network and its implementation 

by S. LEVENTIS 
G. PAPADOPOULOS 
S. KOUBIAS 
and 1. CONSTANTINIDES 
School of Engineering 
University of Patras, Greece 

ABSTRACT 

In this paper a new double-loop computer network is 
presented, as well as its hardware implementation. The pro
posed protocol permits simultaneous transfer of variable
length messages even between interfering segments of the 
network. Various concurrent transmissions can also take 
place with this protocol. These operations, together with a 
completely distributed control mechanism, make this new 
network capable of providing automatic traffic regulation. In 
addition, the reliability of the system is improved. The nodes 
of the network can be implemented by existing programmable 
LSI communication protocol controllers. This simple hard
ware implementation and the above capabilities make the 
proposed network very attractive fo~ local networks with high 
traffic demands. In this paper a node realization, based on the 
808SA microprocessor chips, is also presented. Every node 
consists basically of two SDLC Chips, one DMA controller 
and the Interrupt Controller. 

INTR()DUCTION 

In recent years a variety of loop networks has been 
presented. I

-
7 The main effort of the researchers has been 

directed to the improvement of the reliability and the 
throughput of the system. A list of the most representative 
loop networks is shown in Table I, where the loops are com
pared with respect to (1) concurrent transmission, (2) service 
of variable-length messages, and (3) distributed control 
mechanism. 

The reliability of a network depends strongly on the sim
plicity of the nodes, the modularity of the system, and the 
existence of distributed control. The loop networks-combine 
the above properties and thus have become very attractive in 
applications that are geographically contained. They are es
pecially well suited to the development of distributed control, 
and many researchers have addressed their attention-to such 
protocols. 

The network throughput depends on tne degree of use of 
thel1nes, capacity connecting the nodes, and the simultaneous 

203 

service of the network users. Full use of line capacity depends 
on efficient use of the line bandwidth. One cause of band
width waste is the headers that are added in the messages. A 
significant percentage of bandwidth is also wasted for stuff 
bits with protocols that use messages offixed length. For these 
protocols the packet size must be computed by taking into 
consideration the leader size in such a way that the bandwidth 
waste is minimized. The optimum packet size is obtained by 
minimizing the product of the average number of packets per 
message and the length of the packet. 13 That is, 

d 
dBp [J(Bp)· (Bp + H)] = 0 

where B" is the packet size and H is the header of the packet. 
The above expression, however, is very restrictive, be

cause, on one hand, it requires very good a priori knowledge 
of the demand statistics and, on the other hand, it does not 
permit an easy readaptation of the network to changes in the 
network loads. In general we can say that protocols that han
dle messages of variable length are dynamically self-adaptive 
for a greater range of load servicing. 

Analytical and simulation results of the loops Newhall, 
Pierce, and DLCN I2

-
16 show clearly that the performance of 

the network with respect to channel use, message delay, user 
response time, system throughput, etc., improves significantly 
for protocols that have the following characteristics: 

1. They permit the transmission of variable length mes
sages. 

2. They permit simultaneous loop access to multiple users. 

Although simultaneous loop access to many users is a highly 
desirable fe(lture of loop networks, an unlimited increase of 
this capability would result in a waste of the channel band
width for control. In addition, the complexity of the nodes 
would increase considerably. 

To overcome these problems lafari and colleagues7 con
structed a double-loop network in which one loop is used for 
message transmission, the other for control. The addition of 
a control loop considerably improves the network response. 



204 National Computer Conference, 1981 

TAB l E 

l 0 0 P concurrent transmis. packets of var. leng, distributed control 

FARMER INEWHALl NO YES YES 
WEllER NO NO NO 
FARBER NO YES YES 
PIERCE YES NO NO 
Ole (1.1- YES YES YES 
SPIDER YES NO NO 
SOL C NO YES NO 
JAFARI YES YES NO 

The drawback of this structure, however, is that one loop, the 
control one, is underused. 

The double-loop structure we have proposed, in addition to 
having the flexibility of concurrent service to many users, uses 
both loops fully by allowing message transmission in both of 
them. One loop transmits messages clockwise and is called 
forward; the other transmits counterclockwise and is called 
back. The proposed double loop also gives another highly 
desirable property, better trafficregulation. This is ~o because 
it can achieve 

1. Concurrent service on overlapping segments 
2. Compensation for asymmetrical demands by means of 

the backward loop 

In addition, the proposed structure retains all the advan
tages of the previous loop structure, such as 

1. Distributed control 
2. Transmission of variable-length messages 
3. Simple nodes 
4. High reliability 
5. Cost and space modularity 

DESCRIPTION OF THE NEW LOOP 
STRUCTURE AND THE PROTOCOL INTERFACE 

As was mentioned already, the proposed network consists of 
two loops. The outside loop carries traffic clockwise (forward) 
and the inside loop carries traffic counterclockwise (back
ward). Both of these loops transfer information frames and 
control frames. The topology of the network is shown in Fig
ure 1. Also depicted in this figure is a combination of concur
rent loop accesses, from which it is clear that communication 
between interfering node pairs is permitted. II 

Generally every node acts as a relay with one-bit delay in 
the forward and backward directions. In Figure 2 the rough 
schematic of each node is shown. It is seen that two SDLC 
chips (one for each loop) under microprocessor control form 
the basic hardware for each node. The SDLC chip was found 
very convenient because it combines the relay mode, the 
transmit and receive functions, assembly disassembly of pro
tocol frames, and digital PLL synchronization all in one unit. 

The information packets traveling in the loops have the 
format of the frames of the bit-oriented SDLC communica
tion protocol,9 except that the address and control fields of the 

frame have different meaning here, since both of these fields 
are used as addresses. The address field -defines the desti
tion address of the packet, and the control field contains the 

. source address of the packet. The actual use of these fields for 
all kinds of packets used in the interfacing protocol is shown 
in Figure 3 and described in the following paragraphs. 

Two kinds of frames travel around in the forward and back
ward loops: 

1. Control frames 
2. Information frames IF~ IF~ 

The control frames are characterized as general frames, since 
they are recognized by all the nodes and play an important 
role in the traffic regulation of the network. The control 
frames are distinguished in 

1. Pass control frames (PCF) 
2. Start frames (SF) 
3. Forward subcontrol frames (FSF) 
4. Backward subcontrol frames (BSF) 

The PCF, SF, and FSF circulate in the forward loop, while 
in the backward loop only the BSF general frames circulate. 

Besides the control frames, the proposed protocol makes 
use of two more special control characters. These are the EOP 
(01111111) and the IDLE (more than 15 continuous Is). The 
PCF followed by an EOP character makes it possible for the 
next node it will go through to gain control of the loop, if it 
has a message to transmit, by converting the EOP character 
to an opening flag. 

In the beginning of a cycle of operation, all nodes are in the 
I-bit delay mode except for the node that is the current con
troller of the loop. This node sends an SF that denotes to all 
the other nodes down the line the identity of the controller for 
this current cycle of operation. Right after the SF, the control
ler sends a message for node n in the forward loop (IF c->,,). 
As soon as node n recognizes its address in the IFc~", it exits 
from the I-bit delay mode and assumes the role of a subcon
troller. In this capacity it sends an FSF message in the forward 
loop and a BSF message in the backward loop followed by an 
EOP character. At the same time it continues to receive infor
mation from the co_ntroller. The FSF and BSF frames contain 
in the field A2 the address of the subcontroller and in the field 
Al a general address that is recognized by all the nodes of the 
network. 

----- .... --- IFg .. ,7 -----

Q)node ®controller 

IFi_i forward transmission 
I Fi_ i backward 

Figure 1-The new loop structure 



lSaekward 
Output 

Baeward 
Input 

I F 

I F 

I GIG I 
I G I C I 

A New Double-Loop Computer Network 205 

C R C I F I I 
PCF 

F : Flaqs 01111110 

C R C F I 
I 

A1: Destinations 

Sf 
A2: Source Addr.,Contr. Subeontr. 

I : Information Field 

G : General Address (00 H) 

BSF 

Controller 

o Subeontroller 

Figure 2-Node structure Figure 3-The frame format 

The nodes between the subcontroller and the controller can 
transmit messages IF~ in the backward loop responding to 
the BSF frame and the Eap character. These backward mes
sages can go all the way up to the controller, but not beyond 
it. 

Every node forward of the subcontroller responding to the 
FSF and the Eap can function in one of the following two 
ways: 

1. It can become a second subcontroller if it has a message 
to be transmitted in the backward loop up to the first 
subcontroller. 

2. It can send a forward message all the way up to the 
controller. In this case this node keeps the SDLC chip of 
the backward loop in the I-bit delay mode. In case it has 
messages for both directions, it decides which one to 
send according to a local algorithm. All the nodes 
beyond the second subcontroller that receive the IF~ 
can function in a manner similar to that described for the 
second subcontroller. 

The current loop cycle ends when every node in the loop 
has responded to the processes initiated by the IF~ of the 
main controller and has returned to the I-bit delay mode. In 
the meantime the main controller, as soon as it completes the 
transmission of the IE'-~n' begins to send IDLE characters 
in the forward loop. Also, as soon as it receives an Eap 
character in the forward loop, it begins to send IDLE charac
ters in the backward loop. These IDLE characters will return 
to the main controller only when all the nodes have returned 
to the I-bit delay. When that happens, the controller sends a 
PCF frame followed by an Eap character in the forward 
direction and flags in the backward. Thus, control is trans
ferred to the next node in the forward direction that has a 
message to transmit, and the current controller returns auto-

matically to the I-bit delay mode. (More details of these 
above functions can be found in a previous work by the 
authors. I 1) 

To determine the performance of the proposed double-loop 
structure in comparison to other existing structures, an ex- -
pression is written for the time required to execute complete 
loop cycle, 

where 

tc = 8· MAX(/) + MAX (/*) + 10 + A + kj· tGF 

A = tSYN + tSF 

B = tIDLE + tSYN + tpCF 

1 is the length of the information field of the frame. 
1 * is the number of zero bit insertions per frame required 

by the SDLC protocol. 
10 is the number of bits required for the fields AI, A2 and 

CRC and the flags of the frames. 
A is the time required for the synchronization of the 

nodes. 
B is the time required to pass control to another node. 
kj is the number of subcontrollers in the current cycle of 

operation. 
tGF is the length of the general messages FSF or BSF or PCF 

or SF. 
Consequently, if n is the total number of cycles required for 

the service of a set of demands, then the total servicing time 
will be 

to = n ·{8·MAX(/) + MAX(/*) + tGF} + nA + (n -1)B 
n 

+ tGF2: kj 
j=! 

Preliminary studies have show that for the case of fixed
length messages and for a dense set of demands the servicing 
time is improved with the proposed protocol up to a factor of 



206 National Computer Conference, 1981 

R 

I 
Y3 Y, Y2 Y4 

reA, 

B2 B, r tl 'K 

'" co 
I 

::<: 
o 

~ 

« 
D--0 

-® 

C/J INTR -0 
INTA ~ 

RESET OU T~ 

74258 A2 

~ A3 B3 

B4 A4 

In OE 

t 
-" 

OATA B'US ) 

V ~rc ,K 

DO'" D7 ill 

DS2 

8212 STB 

MD 

OS; 1®-GND ®--

I 
J1 
lOW lOR M.R MW 

DR02 --
READY DACK2 

DROO 

DACKci 

?O 

D7 DMA 
8257 

AEN 

ADSTB 

HRO 

HIDA 

lLJ 
B 

MONO , 
--~ "l...J 

-V-

....... - Forward In 

t 19~ 
MODEM L llt I C1 

Forward aU 
'ow lOR CIK RESET CTS CD RTS RxD TxDPij Tr 

r----' 

TKDRQ PB2 -~-
8273 SDLC/F fa OACK ~o Y"---

RKDRQ ~7 'v-
RxOACk AO-

is 32xClk lxlNT R.INT F.D DPlI i7C 
_A, -- ~ 

R,e 

~ 1 ~ 
I t t 

>--~ ~, ~ 
i 

lOW lOR IR4 IR2 IRI> INT INTA 

IRO AO I---

8259 PIC ~0V-
DATA BUS 

IR' ~71'v--

I cs IRS IR3 IR7 Si>/fN 

elK 

~'5 

~7 

~- I ..... 
I .... 

V -r--..- @---

~~ 
-- ---_.-
- ------------------~ 

I ~ t lvee ~--0 

~~~ 
elK

MONO
RESET 2

'!<7 TLr
MODEM

~3 !T1 Ao
DAeK'

lOW lOR eLK RE!lIU blNT blNT F:'D eTS CD RTI
R.OACK

DRO,
RxOAQ

AO I-- ~
es, el

SDLC/ B
A, I--0A'CK3

(52 r---®
hOACi(8273 ?o K=-8205 DRo3

eS3 ~
hDRQ

D7

e14~
cs lliC"ik I----

PB, TxD RxD imi TiC RiC v---,
Tr I f t C2 "'

C1 Backward In

Backward Out

Figure 4-Node design

3 in comparison to the corresponding times for the Pierce and
Newhall loops. Analytic and simulation studies of the new
protocol are currently under way.

HARDWARE IMPLEMENTATION OF
THE PROPOSED DOUBLE LOOP

One realization of the proposed double-loop network is
presented here. As shown in Figure 2, the heart of the node
is two SDLC chips. These two chips, supported by a micto
cessor, carry out all the functions of the node in response to
general frames. From the discussion in the preceding section
we can summarize the possible functions of these nodes as (1)
controller, (2) subcontrollerType 1, (3) subcontrollerType 2,
(4) transmitter in the forward direction, (5) transmitter in the
backward direction, (6) receiver in the forward direction, (7)
receiver in the backward direction, (8) I-bit delay forward,
and (9) I-bit delay backward. It must be emphasized that a
node can be one or more of these states, since we have two
loops.

Although many decisions must be taken in each node, the
work that must be carried out by the microprocessor is not so
heavy, because the SDLC chips perform many of the node
tasks by themselves. The SDLC chips we use in this design are
the INTEL g273 , which may be programmed in one of

the following modes of operation:20 (1) Frame assembly
disassembly, (2) 1 bit-delay, (3) automatic DPLL syn,;
zation of the loop, (4) NRZI coding-decoding, (5) DMA
handshaking, (6) selective frame reception, (7) automatic
checking, (8) frame error detections, (9) modem hand
ing. It can be seen that one of the tasks of the microprocessor
is to program the SDLC chips in the appropriate mode. This
is done with a few instructions in time interval small in com
parison to the maximum bit rate of the SDLC chip (64KHz).

The programming of the SDLC chips is dictated by the
protocol we are proposing. Thus, the microprocessor must
continuously read the fields Al and A2 of the control frames
that are detected by the SDLC chips so that it can keep a
running file for the current states of the other nodes of the
network. On the basis of this information the microproq~ssor
decides whether it can send a message in the forward or back
ward direction and programs the SDLC chips accordingly.

For the network to operate at the maximum r.ate of the
SOLC chips, these chips must be programmed in DMA data
transfer mode. In this mode all data transfers occur directly
between the SDLC chip and the memory, and the micro
cessor is free for other operations. It returns to the control of
the SDLC chip when it is notified by means of the signals
TxINT or RxINT of this chip to examine whether the trans
mission or reception was successful.

Another important point in the implementation of the pro-

posed protocol is that the microprocessor must read the fields
Al and A2 as soon as they are detected by the SDLC chips so
that it can determine the nature of the frames and/or their
destination. To accomplish this function, the SDLC chips are
programmed in the non-buffered mode. In this mode the
fields AI, A2 are transferred to the memory by means of the
DMA controller, as if they were information bytes, and are
not buffered in the 8273 until the reception of the frame. Since
the microprocessor must examine these fields as soon as they
arrive and take the appropriate decisions, a logical circuit was
designed that generates two interrupts for the CPU syn
nous with the first two RxDACK signals.

The schematic for the circuit is shown in Figure 4. It is seen
that the rising edge of the DACK pulse of the forward loop at
the time the DMA transfer has been completed generates
another narrow pulse through a monostable that is applied to
the interrupt request input IRO of the programmable interrupt
controller (PIC) 8259. A similar pulse from the backward loop
is applied to the input IRI. The PIC recognizes only the first
two interrupt requests IRO (lR) and ignores the rest until it
recognizes the interrupt request that is received from line
RxINT/F (RxINT/B).

Although the SDLC chips support the new loop protocol,
there are nevertheless some requirements for the hardware
implementation of the protocol that need special attention.
These requirements are critical and are summarized below:

C1
r'-'-'-'-'-'-'-'-'-'-'-'-'"

r----f---+tO

Tr
(PBt/)

.....
,. I J.,-._._._._._._.j

TxO I (a)

TxD/

Tx INTI

Tr(PB1j)

Q1

DPLL/

Q2

DPLI:Q2

R

lOut

A New Double-Loop Computer Network 207

1. The asynchronous capture of the loop by a node for BSF
transmission.

and
2. The interruption of the one-bit delay mode by a subcon

troller for the transmission of FSF or BSF followed by an
EOP character. Thus, the problem is the imple
mentation of these operations without disturbing the bit
stream on the loop, or, put another way, without
disturbing the synchronization of the loop.

The above requirements are implemented by means of the
circuit Cl, which is placed between the transmission lines and
the TxO output of the SOLC chip, a-nd circuit C2, which is
placed between the transmission line and the RxO input of
SOLC chip in the backward loop, as shown in Figure 4. Cir
cuit Cl generates an EOP character right after the trans
mission of an FSF or aBSF control frame without disturbing
the synchronization of the nodes. The circuit diagram of Cl is
shown in Figure 5a, and its operation is described by means of
the timing diagrams of Figure 5b.

Circuit C2 is used only in the backward loop. Once it is
activated by the PB2 port of the forward SOLC chip, it con
verts the flag of the backward loop into an artificial EOP
character that causes the backward SOLC chip to exit from
the one-bit delay node and to transmit a BSF. Once the BSF
is transmitted, the backward SOLC chip automatically returns

~~_~_~_~ __ ~~ __ ~_+-__ ~ln~~_~I __ -+_~

l" _ ~)<"",---,----,' ;--Tis/ 1 1
114-.------ EO P

• FSF or BSF
(b)

R x D / F --:1-1-: h""~l.I..'i/l;,-,-ZI..l.72.u.'II ____ I...;;F -;;..cAI.L..I ___ ...L.lh,-,-ZI-L'lihu..hu..7hu..VI..I.'/I..L.I./2~'//~/.I..I.'j !~/_

RxO/B!

J
!
I ;
i_._._._._._._._._._·;·

(c)

RXDACK/F--1:~l ~ __ ~ ___ ~ __ ~ ____ ~~ __ ~ __ +-~ __ ~ __

En(PB0'!B) __ --'
Backward

Input Back. In

DPLL/B

Ck

Q

RxD/B

RxINT/ B

.fI

Figure 5-Description Of circuits Cl and C2

(EOP)

(d)

208 National Computer Conference, 1981

to the one-bit delay mode. The circuit diagram of C2 is shown
in Figure 5c, and its operation is described by means of the
timing diagram of Figure 5d.

CONCLUSIONS

In this paper a new double-loop structure and its protocol
have been presented. Both loops carry information and con
trol messages. This structure combines all the desirable prop
erties of loop networks, such as concurrent servicing of
variable-length messages, distributed control mechanism, re
liability, cost-space modularity, simple node structure,dy
namic reconfiguration, and traffic regulation. Preliminary
evaluation has shown that it improves significantly the
throughput of the classical loop networks. A dynamic simu
lation of this structure is under way and the initial results
support the conclusions of the preliminary evaluation. The
complete simulation results will be presented in a subsequent
paper. The design of the nodes of this loop net
work is also presented. The implementation is based on the
SOLC chip, thus resulting in a very simple and modular node
structure.

REFERENCES

I. Pierce. J.R. "Network for Block Switching of Data." BSTJ. 51. (1972). pp.
1133-1145.

2. Farmer. W.W .. and E.E. Newhall. "An Experimental Distributed Switch
ing System to Handle Bursty Computer Traffic." Proc. ACM Symposium
"Problems in the Optimization of Data Communications System." Dience
Mtn .• Georgia. October 1969.

3. Farber. D.J .• and K. Larson. "The Structure of a Distributed Computer
System-The Communication System." In Proc. Symp. on Computer Com
munications. Networks and Teletraffic. Brooklyn. New York: Polytechnic
Institute of Brooklyn Press. 1972. pp. 21-27.

4. Fraser. A. G. "Spider-A Data Communication Experiment." Computing
Science Technical Report No. 23. Bell Telephone Laboratet'ies.

5. Liu. M.T .• and C.C.Reames. "The design of the distributed loop computer
network" Proc. Int. Comput. Symp .. I (1975). pp. 273-282.

6. Liu. M.T .• and c.c. Reames. "Message Communication Protocol and
Operating System design for DLCN." Proc. Annu. Symp. Comput. Arch.
4th. 1977. pp. 193-200.

7. Jafari. H .. J. Spragins. and T. Lewis. "A New Modular Loop Architecture
for Distributed Computer Systems." Trend and Application. 1978. Distrib
uted Processing.

8. Jafari. H. "A New Loop Structure for Distributed Microcomputing Sys
tems." Ph.D. dissertation. Oregon State University. 1978.

9. IBM Synchronous Data Link Control General Information. Report No.
G A27 -3093-1.

10. Liu. M.T .• R. Pardo. D. Tsay. J.J. Wolt. B.W. Weid. and C. Chou.
"System Design of the Distributed Double-Loop Computer Network."
First International Confer. on Distr. Compo Systems. Huntville. Alabama.
October 10. 1979.

II. Papadopoulos. G.D .• C. Leventis. and S.A. Koubias. "A New Protocol for
a Distributed Loop Communication Network." A Selection of Papers from
INFO II. 2nd International Conference on Information Sciences and Sys
tems. University of Patras. Greece. Advances in Communication. Vol. I.
pp. 297-304. D. Reidel Publishing Co .• 1980.

12. Hayes. J.F .• and D.N. Sherman. "Traffic Analysis of a Switched Data
Transmission System." BSTJ. 50 (1971). pp. 2947-2978.

13. Anderson. R.R .. J.F. Hayes. and D.N. Sherman. "Simulated Performance
of a Ring-Switched Data Network." COM-20. No.3 (1973). pp.576-591.

14. Carsten, R.T., and J.M. Morton. "Simulated Statical Models of Single and
Multi Newhall Loops." National Telecom. Confer., 3, (1978), pp.
44.1.1-44.5.7.

15. Reames. c.c.. and M.T. Liu. "Design and Simulation of the Distributed
Loop Computer Network (DLCN)." Third Annual Symp. on Compo
Archit.. 1976.

16. Babic. G.A .. M.T. Liu. and R. Pardo. "A Performance Study of the
Distributed Loop Computer Network." Proceedings of Compo Network
Symp. Gaiserbury. 1977. pp. 66-75.

17. Kropf!. W. J. "An Experimental Data Block Switching System." BSTJ. 51
(1972). pp. 1147-1165.

18. Liu. M.T. "Distributed Loop Computer Networks." Advances in Com
puter. 17 (1978). Academic Press. ISBN 0-12-012117-4. pp. 163-221.

19. Leventis. S .• S. Koubias. and G. Papadopoulos. "A Performance Study of
a New Double-Loop Computer Network." Unpublished.

20. INTEL Peripheral Design Handbook. 1979.
21. Motorola SDLC chip.

ILLINET -A 32 Mbits/sec. local-area network*

by W.Y. CHENG, S. RAY, R. KOLSTAD, J. LUHUKAY, R. CAMPBELL, and J.W-S. LIU
University of Illinois at Urbana-Champaign
Urbana, Illinois

ABSTRACT

ILLINET is a fiber-optical ring network designed to provide
wide band linkages between host computers for the purpose
of facilitating file transfers at speeds near those of fast 1/0
devices in the hosts. Its structure is similar to the Distributed
Computing System. ILLINET will eventually connect several
PDP-I1's, a PRIME computer and a network of microcom
puters. These computers are used in a variety of real-time and
batch processing applications. Currently they are already in
terconnected via 9600 band lines in a star configuration to
provide access to simple terminals. This paper describes the
network architecture, control structure, and hardware config
uration of ILLINET.

INTRODUCTION

The rapid development in VLSI technology has made host
computers and terminals smaller and cheaper. In recent years
it has become rather common for an organization to have
several computing systems with substantial processing and
memory capacity operated and maintained within the same
building or in several closely located bUildings. These com
puting systems may each serve a wide range of simple and
intelligent terminals. The need to share data, programs, pro
cessing power, and 1/0 facilities invariably makes it necessary
for the computers and terminals to be interconnected in the
form of a local area network. Indeed, many local area net
works have been designed and implemented. Among the well
known local area networks are Xerox ETHERNETl

, Bell
SPIDER2

, and LSCNET3
• These networks have been de

signed to provide low delay access via interactive terminals to
host computers at relatively low cost per interconnection and
with ease for network extension and reconfiguration. Since
the effective link bandwidth in such a network is divided
evenly among all terminals and hosts, it is often impossible to
facilitate transfer of large files between host computers at high
speeds required in many applications.

Many studies have shown that the performance of a local
resource sharing network and distributed data base system

'" Supported in part by Grant NSF MCS79-06945.

209

depends critically on the communication bandwidth between
hosts.4 In particular an effective resource sharing environ
ment can be achieved only when wide band data links between
hosts are available to allow file transfers at speeds near those
of fast 1/0 devices in the hosts. ILLINET is a local area
network designed to accomplish this goal. Its structure is sim
ilar to the Distributed Computing System (DCS) at the Uni
versity of California, Irvine. 5 This paper describes ILLINET
which has been designed and is currently being implemented
in the Department of Computer Science at the University of
Illinois at Urbana-Champaign.

In section 2 the design objectives of ILLINET are dis
cussed. These objectives impose several constraints on the
network configuration and control structure. Section 3 gives
an overview of ILLINET. In section 4 the link level data
packet format is described together with the hardwired net
work access and link control protocols. Finally, the hardware
architecture is presented in section 5.

DESIGN OBJECTIVES

ILLINETwill eventually connect several PDP-II's, a PRIME
computer, and a network of microcomputers. These compu
ters are operated and maintained by the Department and are
used in a variety of real-time and batch processing applica
tions. Currently they are already interconnected via 9600
baud lines in a star configuration to provide access to 50-60
simple terminals. All of these computers are located within
one building although ILLINET is designed to allow intet
building connections. It is envisioned that one of the nodes on
ILLINET will be a PDP-ll which will serve as a gateway to
the main campus computing facility.

The primary purpose for the design and implementation of
ILLINET is to enhance existing computation facilities so that
the resultant computer network will support effectively a vari
ety of research activities in the areas of distributed operating
systems, distributed data base systems and file servers. In
order to assure that transmission links between the nodes and
link-control level protocols will not be the bottleneck in inter
processor communication and data flow, it was decided that
ILLINET is to be constructed using the latest cost effective
technology. The transmission medium used in ILLINET is
fiber optics because of its ability to support high bit rates and

210 National Computer Conference, 1981

,- -I ,
I

Ring Adaptor

I , , ,- --- -- ---8--------J

Figure I-The configuration of ILLINET

allow reasonable interfaces. A link bandwidth of 32 Mbits per
second is achieved with the use of ECL circuits. Since mos~ of
the network access and link control protocol functions are
implemented in hardware, nearly all this bandwidth will be
available for interprocessor communication.

The need to avoid the difficult task of providing bi
directional signal transmission and proper termination of the
optical fibers dictated that ILLINET be a ring network. The
packet switching discipline and distributed network control
structure are used. Because of the high data link bandwidth
and the relative short loop delay in ILLINET, it is not neces
sary that the most efficient network access control scheme be
used. The version of token control scheme implemented in
ILLINET is described in sections 3 and 5. It is similar to the
scheme used in DCS. It will undoubtedly provide sufficiently
low access delay and high network throughput.

In' order to support high-level process communication in
broadcast mode and to allow transparent transfer of desti
nation process from one node to another, associative address
ing is used in ILLINET. Address recognition hardware and
link control protocols are both designed to support efficient
broadcast communication in the network

NE1)VORK OVERVIEW

The configuration of ILLINET is described in Figure 1. It
contains no central contro~ler or primary station to carry out
clock synchronization and access control functions. In each of

the ring adaptors (RA) on the ring, there is a 16-bit active data
path (hereafter referred to as front-end window) between the
optical receiver and transmitter in the front end: More specif
ically, a RA functions as a repeater which retransmits the
incoming data stream. The portion of the data stream appear
ing in the front-end window may be examined by the RA.

A host can gain access to the network via the ring adaptor
attached to it. To each of the hosts on ILLINET, the netwcrk
functions as a packet-switched network. To send a message,
the host segments the message into network packets of a
maximum size of 4K bits. Each packet is delivered indi
vidually to the RA where it is stored in one of the output
buffers. The completion of the loading of the data packet into
the output buffer is acknowledged by an interrupt sent by the
RA to the host. The host in turn can signal the RA to com
mence accessing the network and transmitting the data
packet. The transmission of the data packet is then carried out
under the control of the RA without host intervention. Under
normal operating conditions, the data packets will be deliv
ered to the destination in the ord.er in which they are sent from
the host to the RA, and duplicate and lost packets will not
occur. However, reliable sequenced delivery is not guaran
teed. Mechanisms to assure reliable datagram delivery and
message sequencing and reassembly are carried out by the
hosts.

The RA monitors the data stream passing through its front
end window at all times. When there is a packet to be deliv
ered, the RA removes the access control token (01111111)
from the ring when the token appears at its front-end window.
There is only one control token in the ring. When the RA
receives the token, it is allowed to transmit one data packet.
The format of the data packet is shown in Figure 2. Besides
the receiving process name there are CRC check, duplicate
mark and acknowledge/repeat request fields. The data packet
is retransmitted until positive acknowledgments are received
from all RA's serving active processes whose names match the
receiving process name in the packet header. (We will return
to discuss the acknowledgment and repeat request features in
the next section.) The use of this stop-and-wait ARQ scheme
simplifies the host-to-host synchronization. Since the band
width of the host-to-RA interface is significantly lower than
the network bandwidth, the host-to-host throughput will not
be limited by its use6

• Furthermore, since there are two output
buffers in the RA, network access for transmission from one
buffer over the network can be carried out while the host
loads the other output buffer. Thus, the speed of large file
transfer between hosts will be limited primarily by the band
width of the host-to-RA interfaces.

In order to facilitate dynamic renaming and broadcast mode
communication, a high-speed static RAM is provided in each
RA to store the local active process name table as suggested
in Mockopetris7

• This table is updated by the host. When a

Receiving
Flag DP process name

Figure 2-Link level data packet format

data packet passes the front-end window of a RA, the RA
checks the receiving process name field to determine whether
it matches any of the names in its process name table. The
data packet is copied into one of the 16 input buffers as)t is
simultaneously subjected to CRC checks. The data packet is
kept in the input buffer only when there is a process name
match, the data packet is free of error, and there is an input
buffer available for its storage. In this case, the RA interrupts
the host to inform it of the reception of the data packet. As
the data packet passes through its front-end window, the RA
makes comment in the acknowledgment/repeat request field.
Such comments serve as acknowledgments to the sending RA.

Within the ring only the data path between the optical
receiver and the transmitter inside the sending RA is open.
Hence, under normal operating conditions, the sending RA
will remove the data packet when it returns to the optical
receiver. By checking the contents of the acknowledgment/
repeat request field in the returned data packet, the sending
RA can decide immediately whether retransmission of the
data packet is warranted. Either when the data packet trans
mission is completed successfully or is aborted after re
transmission a maximum number of times, the sending RA
releases the token and interrupts the host. By checking the
status of the RA, the sending host can determine whether the
transmission of the data packet is successful. If the other
output buffer is nonempty and if the transmission of the pre
vious data packet is successful, the host may signal the RA to
commence network access again. On the other hand, if the
delivery of the data packet fails, the host may ask the RA to
attempt retransmission again or to invoke error diagnosis pro
cess. Thus, the sending RA is guaranteed the use of the data
link for the delivery of both the data packet and the associated
acknowledgment.

PACKET FORMAT AND
LINK CONTROL PROTOCOLS

The link level data packet format is shown in Figure 2. The
data field is sandwiched between the packet header and
trailing control fields. The header consists of the flag,
"01111110," marking the beginning of a data packet, dupli
cate mark (DP), and the receiving process name field. The
sending process name, packet sequence number and higher
level control information are considered here as parts of the
data field. The trailing control fields consist of the cyclic re
dundant check code (CRC), the acknowledgment/repeat re
quest (ACKlRQ) field, and the occupied token "01111111", *
marking the end of the data packet. The receiving process
name and the data are supplied by the host. The other fields
are generated by the sending RA.

We note that the data packet format js similar to that in
HDLC. To achieve data transparency a zero is inserted fol
lowing every occurrence of 5 contiguous 1 's in the data stream
between the flags and the occupied token as in HDLC. The

* The bit pattern representing the occupied token is the same as that used to
represent the control token: That a token is occupied (and, therefore, is not
tnlpped by a RA which is waiting to obtain the token) is signified by this pattern
following a matching flag.

ILLINET-A 32 Mbits/sec. Local-Area Network 211

flag and the token are the only control fields containing more
than 51's and hence can be uniquely identified at link level.
Before the zero insertion the data field is n x 16 bits long for
some n between 0 and 255. The 16-bit CRC code specified by
the generating polynomial x 16 + X 12 + x 5 + 1 is used for
detecting errors in all bits between the flag and the ACKlRQ
field.

A data packet is marked as a duplicate by the sending RA
with its DP set to 1. A RA can check the first 16 bits (after
zero deletion) following the flag to determine if the packet is
intended for some local process and whether the data packet
is a duplicate one. The last 8 bit field before the occupied
token is tfie ACKlRQ field. When a data packet leaves the
sending RA, its ACKlRQ field is reset to off to mean negative
acknowledgment and no repeat request. As the data packet
passes through its front end, each RA on the ring may ac
knowledge whether the data packet is properly received by
marking its comment in the ACKlRQ field. A RA sets the
ACK field if the receiving process name matches the name of
a local process name and if the data packet is copied and
stored in its input buffer ready to be delivered to the local
process. The RQ field is set When there is a process name
match. However, either due to error detected in the data
packet or due to input buffer overflow, the data packet is not
correctly copied into the input buffer. Thus, the RA may
request the data packet be retransmitted.

The operation of the sending RA is described by the flow
chart in Figure 3. Before transmitting a data packet, the ac~
knowledgment state of the sending RA and the number of
retransmissions count are initially reset to zero. When the
data packet is being transmitted for the first time, the dupli
cate mark is set to O. Asthe data packet makes a round trip
around the ring appropriate comments are collected in the
ACKlRQ field from all RA's on the ring. By scanning the
ACK field, the sending RA may determine whether the ACK
field is set (meaning that some RA made a positive acknowl
edgment). If the ACK field is set, the acknowledgment state
of the send RA is set to 1. The repeat request field is set if any
RA made a repeat request. The sending RA will immediately
retransmit the data packet in this case. However, this time the
DP bit is set to 1 to mark the data packet as a duplicate; If,
on the other hand, the RQ field is found to be off when the
data packet returns to the optical receiver in. the sending RA,
the transmission is considered completed. We note that the
acknowledgment and the repeat request fields in the returned
data packet notset by any RA will be interpreted by the
sending RA that the receiving process name does not match
the name of any active processes on the ring. In this case, the
sendingRAutmmediately retransmits the data packet. Since
this data packet has not been received by any RA, it is not
marked as a duplicate.

The operation of a RA which is not transmitting is de
scribed by the state transition diagram in Figure 4. Such a RA
is in one of two states, a or~. When the DP in a data packet
is 0, any RA may copy the data packet and make comment in
the ACKlRQ field. Once a RA receives a data packet and
stores it in an input buffer, it writes a positive acknowl
edgment in the ACKlRQ field of the data packet and .enters
state ~. As this data packet reaches the sending RA, its ac
knowledgment state will be set to 1. Hence, during sub-

212 National Computer Conference, 1981

DP=l

i: transmission account

I: the number of maximum allowable transmission
attempts

S: Acknowledgement State

DP: duplicate mark

ACK: Acknowledgement

RQ: Repeat Request

i=O
S=O
DP=O

Start transmit
ting and wait
for ACK/RQ

YES

Figure 3---Operati~ns of the sending ring adaptor

S=l

sequent retransmission of the data packet, the DP is set to l.
While it is in state ~, the RA is inhibited to make the comment
in any data packet marked as duplicate.

A RA enters state Cl when it makes a repeat request com
ment in the RQ field of the last data packet passing through
its front-end window. When the duplicate mark in the data
packet is set to 1, RA copies the data packet into its input
buffer and makes positive acknowledgment in the ACKlRQ
field only if it is in state Cl. Thus, reception of duplicate pack
ets is prevented except in the relatively rare cases when noise
causes messages to be garbled on more than one link in the
network.

To summarize, a RA which is not transmitting will set the
ACK field of the data packet passing through its front-end
window and thus make a positive acknowledgment of its re
ception if (1) it is in Cl state, or it is in ~ state, but the DP of

the data packet is 0, (2) the receiving process name in the data
packet matches some process name in the receiving RA, (3)
there are free input buffers, and (4) the CRe check detected
no error in the data packet. Similarly, it will make a repeat
request if it is in state Cl, or it is in state ~, the DP of data
packet is 0, and one of the following conditions is true: (1) the
eRe check- found the.data.packeLto_be erroneous, or (2)
there is not free input buffer and the receiving process name
of the data packet matches with that of some local process.

We note that there is no need to initialize the RA to be in
Cl or ~ state. Being self-synchronized, the RA should function
correctly even if some RA's are in state Cl and some RA's are
in state ~ at the time when the transmission of any data packet
commences.

ERROR RECOVERY

In the two nodes that have been implemented to date, error
recovery hardware is not included. Because of the limited
knowledge in the failure characteristics of the type of net
works such as ILLINET, it was decided to postpone the im
plementation of these hardwares. Instead, network error re
covery functions are carried out by the hosts. However, time
out and interrupt circuits are included in each of the RA's for
the detection of malfunctions in the RA or networks. For
example, when a RA has a data 'packet to be sent but has
waited for a long time for the control token, an interrupt is
sent to the host when a preset time-out period expires to alert
the host possible network malfunctions and invoke recovery
procedure. Similarly, if after a RA caught the control token
and transmitted a data packet but the occupied token at the
end of the data packet does not return after a maximum loop
delay or if the transmission lasted too long a period of time,
appropriate interrupt signals are sent to the host. Status bits
within the RA are provided to aid the host in its diagnosis to
pinpoint the cause of network malfunction. The input buffer
and output buffer memory modules are completely indepen
dent. Therefore, it is possible to support echo transmission
mode. In this mode, a sending RA stores the data packet
transmitted from its own output buffer .when the packet re
turns from the network. It is also possible for a host to sep
arate the RA from the network. In this case, a data packet
may be transmitted directly from the output buffer to the
input buffer of the RA. Thus, individual RA's can be tested
independently making isolation of malfunctioned RA·a rela
tively easy task.

H;:trdware for recovery from error conditions involving the
token is included in our design. Under normal operating con
ditions there is only one control token circulating around the
ring. Failure or transient noises in both RA's or the link may
cause the token to be lost or duplicated. We refer to these
conditions as no token or duplicated token, respectively.
Clearly, the no token condition exists when the network is
turned on initially.

To explain how the no token or duplicated token conditions
are to be handled in ILLINET, let us discuss the error condi
tions that can occur in ILLINET. As described above, all
RA's monitor the data stream on the ring as it passes by their
16-bit front-end windows. Data streams arriving at the optical

GRG • MATGH I x

liP. (GRG U MATGH*INOVFL) IRQ

Legend: AlB

A: condition

eRC: eRG error code o.k.

DP: duplicate mark

MATCH: receiving process name of the data packet matches with
that of some local prpcess.

INOVFL: input buffer overflow

B: action

ACK: positive acknowledgement

RQ: repeat request

no comment

Figure 4-State diagram of a ring adaptor which is not transmitting

receiver in a RA is not n~layed to the optical transmitter
unless this data stream represents the access token or when it
is preceded by a flag and the flag is detected by the·RA. At
the end of the data packet, the last remaining 16-bit of data in
the front-end window are delivered to the optical transmitter
for transmission only when the occupied token marking the
end of the data packet is detected. Hence, any data stream
with no leading flag and occupied token is blocked by the
front-end of some RA. A data stream with a leading flag but
no occupied token is truncated by 16-bits after passing
through each RA until the data packet disappears. A data
stream containing occupied token but no leading flag becomes
a control token instead. Thus, the continuous circulation of
random or broken data packets left on the ring due to failures
in the sending RA or intermittent noise is prevented. "Gar
bage collection" in this case is not required.

In the sending RA, the data path between the optical re
ceiver and transmitter is normally open during the trans
mission of a data packet. This data packet is removed from the
ring when it returns. If for some reason the data path within
the sending RA is closed when the data packet returns to the
sending RA, it will be left circulating on the ring. We note that
this error condition is a serious one. If the duplicate mark in
the packet is not set and if the receiving process name matches
the names of some active process on the ring, the input buffers
in the RA serving these processes will eventually overflow
since the data packet will be copied by these RA's each time
it passes by their front end. In this case, a RA monitoring the
network will see well-formatted data packets pass by even
though the no token condition exists. Since the sending pro
cess name and packet sequenc.e number are considered as
parts of data and not monitored by the RA's, this type of no
token condition can be detected either by the receiving hosts
after the received data packets have been examined or by a

ILLINET -A 32 Mbits/sec. Local-Area Network 213

RA after waiting for some access token for a period of time
longer than the maximum access delay on the ring. If in a
N -node ring with loops delay L the maximum packet length
is T seconds, and each RA is allowed to transmit k times
before freeing the token, the maximum access delay is roughly
(N - 1)(k)(L + T). (For example, in a 6 node, 1 km ring
network, the length of this period is approximately 10 msec.
with k = 16.) Fortunately, we believe that this type of no
token condition rarely occurs in ILLINET. When it does oc
cur, it is handled as follows: when a RA observes data stream
but no control token passes by its front-end window for a
period of time longer than its estimated maximum access de
lay, it opens the data path between the optical receiver and
transmitter. Thus, it removes the "garbage" from the ring.
However, the no token condition persists.

The no token condition can be detected easily in the case
when there is no data stream circulating on the ring. In this
case, a RA can decide that there is no token on the ring after
one maximum loop delay. (In our previous example, this time
is roughly 7 ~sec.) This type of no token condition is handled
in the following manner. When a RA observes no data stream
in the ring and there is no access token passing by its front end
for a period longer than one maximum loop delay, it will enter
a time-out period and continue to monitor the activities on the
ring. If when its time-out expires and no token is observed, it
will insert a token on the ring. By making the differences
between the time-out periods of the different RA's equal to or
longer than one loop delay, we are assured that once such a
no token condition occurs, a token will be generated in a
reasonably short time. Moreover, only one token will be gen
erated in most cases.

The duplicate token detection scheme is designed for the
-general case when the exact loop delay is not known or may
be variable. In this case, the duplicate tokens can be detected
reliably at the host level. That there are more than one RA
transmitting data packets at the same time can be detected by
the sending host oy examining the sending process name and
packet sequence number in the data field of the packets ar
riving at the optical receiver of its serving RA. However, the
need of the host intervention will undoubtedly significantly
lower the network throughput. Alternately, we may require
that the sending process name be placed in the first 16 bits of
the data field. The sending RA can, therefore, determine
whether the packet arriving at the optical receiver is the same
one sent on the ring by itself. When the received data packet
is found to be from another RA, the sending RA can conclude
that duplicate token conditions exist. Again, by removing all
data streams arriving at its receiver, a sending RA will delete
all tokens from the ring.

HARDWARE STRUCTURE

The hardware structure of the RA's already implemented is
described by the block diagram shown in Figure 5. To satisfy
the different speed requirements of the different functional
blocks of the RA at a minimum cost and complexity, it is
implemented in ECL, STTL, and LSTTL. A RA consists of
three PC boards, the front-end, memory module and re
transmission control logic, and RA-to-host interface.

214 National Computer Conference, 1981

Figure 5-Ring adaptor hardware structure

The front end contains the transmitting and recelvmg
logics. Between the optical receiver and transmitter, there is
a shift register which serves as a delay buffer. The RA may
hold up the incoming data stream, scan and process the con
tents of the various fields as they appear in the shift register.
Here, appropriate comment is generated and inserted in the
ACKlRQ field of the data packet. Then the last 16 bits con
taining the ACKlRQ field and the token are shifted out to the
transmitter. The major functions of the transmitting logic are
parallel-to-serial data conversion, zero insertion CRC error
code generation, and data packet formatting. The major func
tions of the receiving logic are zero deletion, serial-to-parallel
conversion and CRC check. All these operations are ca.rried
out bit-serially and are implemented in ECL logic.

Within the memory modules . and retransmission logic,
there are input and output buffers, process name table, and
retransmission control circuits. The buffer memory are seg
mented into 256 16-bit word pages. Sixteen pages are used as
input buffers and two pages are used as output buffers. The
input and output buffers are organized as independent mod
ules, each is capable of supporting either read or write oper
-ation at 32 Mbits/sec. Upon detection of the flag, the input
. buffer write operation is initiated. If at the time data is being

transferred from the input buffer to the host, this transfer
operation is halted temporarily. The input buffer write oper
ation will be terminated when the occupied token marking the
end of the data packet is detected, when the receiving process
name in the data packet does not match any names in the
process name table, or when the duplicate mark is found to be
set indicating that the date packet is already copied by the
RA. Any temporarily halted memory transfer operation will
then be resumed.

There are two output buffers in the output modules to allow
the process of waiting for network access and data transfer
from the host to be carried out concurrently. A 32 Kxl memo
ry module implemented with Intel 2147H3 is used to store
receiving process names. (Currently, we are using only one
chip containing 4 K in each RA.) The 15-bit receiving process
name is used to address this RAM table. An output bit from
the table being 1 indicate a match of the receiving process
name with some local process name in the table. Thus, the
process of checking receiving process name match can be
carried out in 55 nsec. The table can be dynamically updated
by the host within 500 nsec. All buffer memory operations,
receiving process name checking and updating, and re
transmission control are carried out at word level and are
implemented in STTL logic.

Finally, the RA-to-host interface contains the command
decoder, RA status registers and interfaces to and from buffer
memory modules. These circuits allow the RA to appear to
the host as a peripheral device and can be easily linked to the
host via a DMA interface. This portion of the RA is imple
mented in the TTL logic.

ACKNOWLEDGMENT

The authors wish to thank Cyrus Weise, Kurt Horton, and
Izumi Suwa for suggestions and help in the design and imple
mentation of ILLINET.

REFERENCES

1. Metcalfe, R.M. and D.R. Boggs, Ethernet: distributed packet switching for
local computer network, CACM 19, 7, July 1976, 395-404.

2. Frazer, A.G., Spider---':an experimental data communication system, Pro
ceedings International Communications Conference, 21F-l-1O, CACM.

3. Pogram, K.T. and D.P. Reed, the MIT laboratory for computer science
network, Local Area Networking NBS Special Publication 500-31, April
1978, 22-23.

4. Weber, H., D. Baum and R. Popescu-Zelltin, ESA-an evolutionary system
architecture for a distributed data base management system, Proceedings of
Berkeley Conference on Distributed Processing, 1979.

5. Farber, D.J., A ring network, Datamation, February 1975, 44-46.
6. Burton, H.O. and D.O. Sullivan, Error and error control, Proceedings a/the

IEEE 60, 1972.
7. Mockopetris, P., Design consideration and implementation of ARPA LNI

nametable, University of California, Dept. of Information and Computer
Science, Technical Report 92, Irvine, CA, April 1978.

SOFTWARE

A survey of currently implemented
Pascal extensions*

by T. N. TURBA.and S. H. COSTELLO
Sperry Univac
St. Paul., Minnesota

ABSTRACT

This document presents an overview of the more common and
useful Pascal extensions that have been implemented to date.
It describes, in general terms, the functionality introduced by
these extensions and provides a rationale for the implementa
tion of many of them. Examples are provided to give the
reader a better idea of how each extension was implemented
without going into great detail or formality in describing the
syntax and semantics used by each implementation.

INTRODUCTION

Extensions to a language are made primarily for ease of use
and increased functionality. This document contains a list of
selected extensions to the Pascal language that fall into these
categories and are currently. implemented. Extensions that
are machine-dependent or have highly specialized uses have
been largely excluded, as have features such as compiler di-

* This survey reflects information available at time of publication. No claim is
made that it is exhaustive, is complete, or does not contain information that may
be out of date. This survey will be revised and republished at a later date.
Therefore, readers who have updated or additional information should contact
the authors.

rectives and debugging aids. An extension was considered to
be any feature not found in Draft 6 of the proposed ISO
Pascal standard. Table I describes the Pascal implementations
that were studied in the preparation of this report.

PASCAL ENTITIES AND DECLARATIONS

Identifiers

Identifiers may be extended by adding characters to the set
of letters and digits that are found in an identifier. The under
score character ("_") is commonly allowed in identifiers be
cause it enhances the readability of identifiers by separating
descriptive parts of a name. For example, next-node_
pointer is more readable than nextnodepointer. The dollar
sign ("$") is also allowed by several implementations for sim
ilar purposes.

Comments

Some Pascal implementations allow imbedded comments,
so that a comment can be contained within a comment. This

TABLE I-Pascal implementations included in this survey

Document Systems
Implementation Version Date number available on Implementors

Pascal/VS 6/80 SH20-6168-0 IBM 370 IBM
TI Pascal 946290-9701 TI990 Texas Instruments
UCSD Pascal 11.0 2/80 most 8 and 16 UCSD and Softech

bit Microsystems
microcomputers

Pascal 6000 release 3 1179 CDC 6000, ETH Zurich and
Cyber 70 & University of
170 series Minnesota

NOSC Pascal 1.2 x 1.8 Univac series Naval Ocean
1100 Systems Center,

San Diego
UW-Pascal 4179 Univac Series University of

1100 Wisconsin, Madison

217

218 National Computer Conference, 1981

permits the user to comment out a whole section of code that
may itself contain comments. UCSD Pascal implements this
feature ,by recognizing "{ ... }" and "(* ... *)" as comments,
but not "{ ... *)" or "(* ... }". Thus "(* ... { ... } ',' . *)" be-
comes a single legal comment., Pascal/VS accepts "(* ... }"
and "{ ... *)", as the standard mandates, but introduces
"1* ... */" as a distinct form in order to allow imbedding of
comments.

Comments that start with a dollar sign ("$") are often taken
to be compiler directives. An exception is PascallVS, which
does not recognize compiler directives within comments, but
requires that they be preceded with a percent sign ("%") and
that they not appear in a comment.

Numbers

Many Pascal implementations provide a method for using
numbers in a base other than ten, usually binary, octal, or
hexadecimal. Fot example, the hexadecimal integer F65A
would be expressed as #F65A in TI Pascal, and as 'F65A'X
in PascallVS. Pascal/VS also employs the suffixes XC and XR
to permit hexadecimal constants that can be used as strings or
real numbers, respectively.

Order of declarations

The required order of declarations (labels, constants, types,
variables, and procedures) has been relaxed in several imple
mentations. This is usually done to insure the independence of
separate source files that may be inserted into the compilation
via a COpy or INCLUDE compiler directive. Rules for dec
laration ordering are also relaxed to allow TYPE declarations
to occur before CaNST declarations in order to allow a con
stant of a structured type.

Labels

Labels have been commonly extended in two ways. One
extension is to allow a label to fall outside the standard range
of 0 .. 9999. This is often done by letting a label have any
positive integer value that can be represented on the machine
being used. Another extension is to permit a label to be an
identifier rather than just a number, making programs with
labels more readable.

Constants

Some Pascal implementations permit an expression to be
used in a CaNST declaration. This lets the user construct
sequences of related constants. For example:
CaNST radius = 39.75;

pi = 3.14159;
circumference = 2 * pi * radius;
area =" pi * radius * radius;

It also allows the user to create constants that could not
Othe-rwise be created fe;g., CaNST ~ tHR(m. This can
be extended even further to permit constant expressions any
where a constant is required (e. g., TYPE wobbles = ARRAY
[1..2*maxlim] OF REAL). .

A constant declaration can also be enhariced by adding the
capability to define a constant of a structured type. This can
only be done, as indicated earlier, if the order of declarations
is relaxed, so that the TYPE declaration can occur before the
CaNST declaration. For example:
TYPE complex = RECORD

re, im: REAL
END;

CaNST threefour = complex(3.0, 4.0);

Types

String type

Some implementations offer an explicit predeclared string
type that permits strings which can vary in length at execution
time within a maximum string length set at compile time. Two
examples of string declaration in UCSD Pascal are as follows:

VAR title: STRING; {max length of title is default-80
characters in UCSD Pascal}

name: STRING[20]; {maximum length of name is 20
characters. NOTE: in PascallVS,
STRING [20] is expressed as
STRING (20)}

Strings are implemented by associating with each string a
hidden length field that keeps track of the string's length
during execution. This length field is updated every time the
string is assigned a value.

Variable length strings are very versatile, because strings of
different lengths are totally compatible with each other. In
addition, single characters within a string can be individually
referenced (e.g., title [5] :="a"). When a STRING type is
provided, the user is normally ~upplied with a good selection
of built-in procedures and functions to return the length ofa
string, extract substrings from a string, match a pattern of
characters within a string, etc. (See Table III on built-in string
manipulation routines.)

Record type

The syntax for declaring record types can be modified to
give the programmer more control over the way that storage
is allocated and overlayed. For example, Pascal/VS permits
the user to omit field names in order to leave blank fields for
padding. It also provides a means for placing the tag field
anywhere in the fixed part of a record instead of only at the
end. In addition, it allows the user to specify a byte offset, in
parentheses, after a field name to force the Pascal compiler to
alter the way it aligns storage. Since these kinds of extensions
are very machine-dependent, this report will not detail them
further. '

File types

Pascal 6000 has a SEGMENTED file type (e.g., V AR f:
SEGMENTED FILE OF tl) that permits files to be seg
mented into logical units. An end-of-segment marker can be
placed on a file with the predefined procedure PUTSEG(f).
The procedure GETSEG(f,n) moves the file pointer ahead n
segments. REWRITE(f,n) moves the file pointer ahead in the
same fashion to prepare the file for writing.

Using similar syntax, TI Pascal has RANDOM files (e.g.,
VAR f: RANDOM FILE OF tl). As the name implies, ran
dom files permit the components of the file to be accessed
randomly by using an index number. For example, READ
(f,5,q) is used to read the fifth item in file f into variable q.

UCSD Pascal has untyped files for writing or reading whole
blocks of data to or from a disc file. Untyped files are declared
by simply leaving the type specification out (e.g., VAR f:
FILE). An untyped file has no window variable and can only
ble used with the procedures BLOCKWRITE and BLOCK
READ.

UCSD Pascal also has an interactive file type, which is a
text file with special properties for interactive I/O. (See sec
tion on interactive I/O.)

Fixed and decimal types

TI Pascal provides a FIXED predefined type which is! a
scaled binary number with its precision expressed in terms of
p and q , where p is the total number of binary digits and q is
the binary scale factor. It also provides a DECIMAL prede
fined type for applications requiring that operations be done
using decimal arithmetic.

Extended precision numeric types

Several Pascal implementations have integer and real types
that may optionally have greater precision. This is especially
important on 16-bit machines, where it is often necessary to
escape from the 16-bit integer range of - 32,768 to 32,767. TI
Pascal supplies a- LONGINT type that may contain values
over 2 billion. UCSD Pascal allows the user to specify the
number of digits required when declaring an integer variable
(e.g., VAR x: INTEGER [8]). In a similar fashion, TI Pascal
also lets the user specify the number of significant digits re
quired when declaring a real variable (e.g., VAR x:
REAL(12».

Variables

External variables

An external variable is one that is common to two or more
separately compiled modules. This feature is implemented in
a variety of ways. PascalNS externalizes variables with a DEF
declaration that employs the same syntax as the V AR declara
tion. These external variables may be accessed in another

Currently Implemented Pascal Extensions 219

module with a REF declaration that follows the same syntax.
TI Pascal has a COMMON declaration that places variables in
a common block that is compatible with FORTRAN's named
common. An ACCESS declaration is used to specify that a
routine may use a given variable in the common block.

Another way of making variables external is by placing
them in an externally compiled unit that is referenced as a
whole, so that each variable in that unit can be used without
being declared. (See section on compilation units.)

Static variables

Static variables are not temporarily allocated space on a
stack for each call to a procedure or function, but rather
always occupy the same memory location during the execu
tion of the program. Static variables are used to provide a
routine with variables whose values are not lost when a return
is made from the routine (i.e., their old values are still around
when the routine is called again). They can, therefore, pro
vide variables that are local to a routine but are global to all
calls of that routine, including recursive calls.

In some Pascal implementations, static variables can be
declared with a STATIC declaration using the same syntax as
the V AR declaration. In other Pascal implementations, vari
ables are made static only by being global. In TI Pascal, static
variables are created by placing them in a COMMON declara
tion.

Compile-time initialization of variables

Needless use of execution time and program storage for
initializing variables with assignment statements can be elimi
nated by a Pascal extension that allows static variables to be
initialized during compilation. Several Pascal implementa
tions provide this feature with a VALUE·· declaration. An
example in Pascal 6000 is

TYPE ducks = (mallard, bluebill, teal, woodduck);
flock = ARRAY [1 .. 5] OF ducks;

VAR groucho,harpo: ducks;
zeppo,chico: flock;

VALUE groucho = woodduck;
harpo = teal;
zeppo = flock

(teal, teal, mallard, woodduck, bluebill);
chico = flock(5 OF mallard);

The VALUE declarations for zeppo and chico show how
structured variables can be initialized. PascalNS is similar,
but would require the use of ": = " instead of " = ," "mal
lard:5" instead of "5 OF mallard," and would require that the
variables be declared in a STATIC or DEF declaration.

Functions and procedures

Passing parameters

PascalNS offers a method to pass parameters by read-only
reference. That is, a variable o~ expression may be passed to

220 National Computer Conference, 1981

a routine, but will be treated as if it were a constant within the
called routine. Passing a parameter by read-only reference is
implemented by using a CONST declaration in the formal
parameter list. of a routine with the same syntax of a V AR
declaration (e.g., PROCEDURE myproc(CONST s: IN
TEGER, ... ».

An important extension to parameter passing is the ability
to pass arrays with dynamic dimensions to a routine, so that
the routine can handle .arrays of different sizes without recod
ing the routine. There are several ways of implementing this
feature besides the controversial conformant array schema.
For example, in TI Pascal, the upper bounds of a dimension
can be replaced with a question mark in the formal parameter
list (e.g., FUNCTION max(vector: ARRAY [1 .. ?] OF IN
TEGER): INTEGER). A built-in function (called UB) is also
provided to obtain the actual upper bounds of a dimension_
during execution. Pascal 6000 provides a means for declaring
a dynamic array type (e.g., TYPE data = ARRAY [INTE
GER] OF REAL). Any array that has the same element type
and number of dimensions and an index of the same base type
of a dynamic type may be passed to a formal parameter list
that specifies that dynamic type (e.g., V AR ages: ARRAY
[1 .. 200] OF REAL can be passed as the type data of the last
example). This can only be done if the type in the formal
parameter list is preceded by the word DYNAMIC (e.g.,
FUNCTION mean (VAR a: DYNAMIC data». The built-in
functions LOW and HIGH are provided to retrieve the upper
and lower bounds of a dynamic array at runtime.

Accessing routines written in other languages

Many Pascal implementations provide a method for calling
routines written in other languages. FORTRAN is the most
common language to be made accessible from Pascal. This
makes the entire FORTRAN library available to Pascal users.
A FORTRAN routine is usually accessed by declaring a rou
tine with the directive FORTRAN replacing the procedure or
function body. This informs the Pascal compiler to look for
the routine elsewhere and to use FORTRAN conventions
when calling it. (Note: There are still some differences be
tween FORTRAN and Pascal of which the user must be
aware. For example, FORTRAN stores its arrays in column
major order, so that a [i,j] in Pascal is a (j,i) in FORTRAN.)

External routines

An external routine is a procedure or function that can be
called from a,separate Pascal compilation. One way this can
be done is by allowing routines to be declared as being EX
TERNAL or ENTRY. An ENTRY routine is one that is
marked to be exported for use by other compilation units. For
example, in NOSC Pascal such a routine could look like
"PROCEDURE ENTRY myproc(...)" followed by the pro
cedure body. This routine could then be imported by another
compilation unit by declaring the procedure with the directive
EXTERNAL replacing the procedure body in the same way
that the directive FORWARD is used (e.g., PROCEDURE
myproc(...); EXTERNAL). In PascallVS, the ENTRY direc-

tive is placed immediately after the routine heading, rather
than before the routine name. Pascal 6000 defines external
routines using the directive EXTERN; however, entry rou
tines are defined by a compiler directive in a comment within
the routine heading.

Another way of making routines external is by placing them
in an externally compiled unit that is referenced as a whole,
so that each routine in that unit can be called without being
declared. (See section on compilation units.)

Compilation units

A compilation unit is a module of code that is compiled at
one time. The only standard compilation unit is the program.
However, in order to access routines and variables outside the
main program, riew types of compilation units have been in
troduced. For instance, PascallVS has external compilation
units called segments. A segment module looks like a pro
gram, except that the word SEGMENT is used in place of
PROGRAM and there can be no code outside procedures and
functions. Variables may be exported from a segment to a
program or another segment via a DEF declaration (see sec
tion on external variables), and routines may be exported by
declaring them as ENTRY routines (see section on external
routines). Several Pascal implementations accomplish the
same effect by using dummy programs that contain only dec
larations and routines.

UCSD Pascal permits access to external compilation units
by means of a USES declaration. When a program declares
that it USES a unit, all of the declarations in the accessible
(INTERFACE) part of the unit can be referenced as external
global constants, types, variables, procedures, and functions
without being declared. External compilation units in UCSD
Pascal have two parts: an INTERFACE part and an IMPLE
MENTATION part. The INTERFACE part of the unit con
tains declarations and routine headings that may be directly
accessed by programs that use that unit. The IMPLEMEN
TATION part contains declarations and routine bodies that
are private to the unit and are thus hidden from the program
that USES the unit. This means that packages can be created
that the user can access with a USES declaration without
having to bother with complex declarations or implementa
tion details. For example, a user could access an entire pack
age of graphics routines by merely including a "USES graph
icspack" declaration in a-program. An example of the basic
layout of a UCSD Pascal UNIT is

UNIT unitname;
INTERFACE

{declarations and routine headings}
IMPLEMENTATION

{declarations and routine bodies}
END;

UW-Pascal has a somewhat similar method of accessing exter
nal compilations by having units that represent environments
in which programs can be compiled. The interface part of the
environment is known as the ENVIRONMENT DECLARA
TIONS. This part of the environment is compiled by itself and
then must be listed on the compiler call line when a program
is compiled within that environment. The implementation

part of the environment is called the ENVIRONMENT
ROUTINES and is compiled separately and then linked to the
program by the system linker or collector.

EXPRESSIONS

Alternate symbols

Some Pascal implementatiQns use special characters as al
ternate symbols for representing operators. For example,
PascalNS permits "I" for OR, ".....,.." for NOT, "&" for AND,
and ".....,.. = " for "< >".

Boolean expressions

Exclusive or operator (XOR)

The exclusive or operator, XOR, is available in Pascal/VS.
This operator simplifies some expressions since (a XOR b) is
equivalent to «a AND NOT b) OR (NOT a AND b».

Partial evaluation of a Boolean expression

In many instances, it is not necessary to evaluate all of a
Boolean expression. For example, in the expression (a OR b),
b does not have to _be evaluated if a is TRUE. This permits
expressions such as (i > = lowerbounds AND i < = upper
bounds AND a(i) IN setostuff) to be evaluated without error
if the index of i is outside the range· lowerbounds
.. upperbounds.

Equality tests on structured variables

In UCSD Pascal, the relational operators" = " and" < >"
have been extended to perform comparisons on variables of
type ARRAY or type RECORD. This feature eliminates the
need to compare such structures on an item-by-item basis.

Logical expressions

Pascal/VS permits bit-by-bit logical operations to be per
formed on integers. The following operators may be used in
logical expressions:

• AND ("&")
• OR ("I")

• XOR ("&&")

• NOT (".....,..")

• "< <"

-logical and (e.g., 3 & 5 = 1)
-logical or (e.g., 2 I 4 I 8

14)
-logical exclusive or (e.g., 3 && 5

6)
-logical ones complement (e.g.,,..0

= -1)
-logical shift left (e.g., 4 < < 2 =

16)

Currently Implemented Pascal Extensions 221

• "»"

String expressions

-logical shift right (e.g., 8 > > 1
4)

Pascal implementations that have a STRING type usually
provide a method for concatenating strings. For example,
Pascal/VS uses "II " as a string concatenation operator. Other
Pascal implementations provide a function such as CONCAT
to do this. (See Table III on built-in string routines.)

Type override operator

TI Pascal uses"::" as an explicit type override operator. It
is used between a variable and a type identifier to form an
expression of that type (e.g., varname :: INTEGER). The
"::" operator does not perform a conversion; it merely allows
the machine representation of the variable to be taken as a
value of the type specified. This feature is used to overlay
different type templates on a variable in order to use it in
different ways at different times.

Use of type identifiers as functions

PascallVS permits scalar type identifiers to be used as func
tions for conversion within expressions. For example,
color(1) will return green if color was defined as a type equal
to (red, green, blue). This provides an inverse to the ORD
function for all scalar types. (Standard Pascal provides such an
inverse only for-type CHAR.)

STATEMENTS

The ASSERT statement

The ASSERT statement is used to generate a runtime error
if a certain condition does not hold true. For example, AS
SERT a = b will generate a runtime error if a does not equal
b when the statement is executed. The ASSERT statement is
used to insure that if a program does not meet critical asser
tions it will not be executed to completion.

The assignment statement

UW -Pascal provides an alternate form of the assignment
statement for cases in which a variable occurs on both sides of
the ": = ". For instance, a : = a + 1 can be expressed as a
+ : = 1. This can be done with the operators " + ", "- ",
"*",-"1", DIV, MOD, AND, and OR. The implementors of
UW-Pascal claim that this improves both the readability and
the efficiency of a program.

PascallVS allows structured constants (see section on con
stants) to be assigned to variables of structured types.

222 National Computer Conference, 1981

The CASE statement

Most Pascal implementations provide an OTHERWISE
clause for the CASE statement in order to catch values that do
not have a correspondinA case constant. The OTHERWISE
clause appears at the end of the CASE statement. For ex
ample:

CASE year OF
jan,sep: x : = 5;
mar,jun: x: = 6
OTHERWISE x : = 0

END;
Several Pascal implementations also extend the CASE

statement to allow a range in a case label. Using this feature,
the case label jan, feb, mar, apr, may: could be expressed as
jan .. may:.

The FOR statement

TI Pascal extends the FOR statement to provide a means of
traversing a set. This is done by using the IN operator in a new
way. For example, FOR j IN setostuff DO ... increments j
over the values that exist in the set setostuff. This is equivalent
to FO R j : = firststuff TO laststuff DO IF j IN setostuff
THEN

The WITH statement

TI Pascal allows synonyms to be defined in the WITH state
ment. For example, within the statement WITH x = a[j], ark]
DO ... , the synonym x can be used to denote a[j]. Such syn
onyms have a scope that is local to the WITH statement.

Loop control statements

Several Pascal implementations have introduced alternate
ways of exiting and iterating FOR, WHILE, and REPEAT
loops. This is done to eliminate some of the need for using
GOTO statements.

A loop can be exited by jumping to the point immediately
following the end of the loop. Pascal/VS has a LEA VE state
ment that accomplishes this by exiting the innermost loop.
UW-Pascal has a statement of the form EXIT label that exits
the loop (or any other structured statement) that is labeled
with the label specified (e.g., 340: FOR j: = 1 TO 5 DO IF
a < 5 THEN EXIT 340 ELSE ...). TI Pascal has a similar
statement of the form ESCAPE label. This works in the same
fashion, except that the label is an identifier that is not de
clared in a LABEL decl~ration, but is implicitly declared by
its use.

A loop can be iterated by jumping to the point immediately
preceding the end of the loop. PascalNS has a CONTINUE
statement that iterates the innermost loop in this fashion.
UW-Pascal has a CONTINUE label statement that iterates
the loop labeled with label.

Statements that exit a procedure or function

Several Pascal implementations have supplied a statement
that exits from a procedure or function. This was done to offer
an alternative, or replacement, for the method of exiting a
routine with a GOTO statement. Pascal/VS has a RETURN
statement that causes an exit from a routine when executed.
UW-Pascal allows an expression to follow the word RETURN
in order to return a function value from a function. UCSD
Pascal offers an EXIT (q) statement where q is the name of
the routine to be exited. This statement causes the routine call
stack to be reset to the point where the last call of q was made.
For example, if procedure q calls procedure p, and an
EXIT(q) statement is encountered within p, then control is
transferred to the point immediately following the call of q.
Thus, EXIT(q) has the effect of terminating the execution of
q and all subsequent routines called since the call of q.

I/O

Interactive 110

Interactive I/O is a very important extension to the Pascal
language since communication between a Pascal program and
an interactive terminal would be very cumbersome without it.
This is because Pascal I/O is defined in such a way that the
buffer variable of a file is defined to have a value when the file
is reset. Since the predefined file INPUT will normally be
reset when execution begins, input will be requested before
the program has a chance to print a prompting message.

This problem can be dealt with in several ways. One way is
to not have the buffer variable set when a file is reset.
This, however, forces the program to perform a GET or a
READLN with no parameters before accessing the buffer
variable. Another method, known as "Lazy I/O," delays the
GET operation until the buffer variable is actually accessed.
This method requires that the runtime system keep track of
whether the buffer variable is current; if the variable is not
current when it is accessed, the delayed GET operation must
then be performed. Yet another method sets EOLN to TRUE
when a file is reset, which has the apparent effect of inserting
an empty line of input before the first line of the file. With this
method, the end-of-line marker becomes a line separator
rather than a line terminator.

Regardless of the method chosen, it must be decided which
file or files the method should be applied to-all text files,
only the INPUT file, or only files that the user specifies. Some
of the ways this is done are as follows: Pascal 6000 requires
that files to be used interactively must be followed by a slash
("I") when declared in the program heading (e.g., PRO
GRAM p(INPUT/, ... ». PascallVS has a built-in procedure
INTERACTIVE that must be used in place of RESET for
files that are to be interactive. UCSD Pascal has an INTER
ACTIVE type that is like the type TEXT, but is acted on
differently by the standard I/O procedures. INPUT and OUT
PUT are predefined to be of type INTERACTIVE in UCSD
Pascal. •

Input extensions

TI Pascal allows the READ and READLN procedures to
contain a field width specifier for formatted input. For exam
ple, READ(f,a:w) reads w columns and gets a value for a
from those columns.

Several Pascal implementations permit strings to be input
directly. Characters are read and inserted into the string until
the string is full, or until the end of the line is reached.

Output extensions

In some implementations, the procedures WRITE and
WRITELN have been extended to allow the output of hexa
decimal and octal numbers. For example, WRITE(f,a:5
HEX) prints the value of a in hexadecimal form within a field
width of 5. Likewise, OCT is used to print numbers in octal
form.

Table II-Mathematical routines

Routine type

REAL function

INTEGER function

INTEGER function

Scalar function

Scalar function

REAL function

Common
names

LOG

PWROFfEN

EXPO

MIN

MAX

RANDOM

Description

Returns the base 10
logarithm of a num
ber.
Returns the value of
10 raised to a given
power.
Returns the exponent
part of a real number.
Returns smallest value
of any number of pa
rameters of the same
scalar type.
Returns largest value
of any number of
parameters of the
same scalar type.
Returns a random
number in the range
(0.0, 1.0).

Currently Implemented Pascal Extensions 223

PascallVS permits output items to be left-justified within a
field by letting the field width be a negative number. For
example, WRITE(f,b: -10) prints the value of b left-justified
in a 10-character field.

UW-Pascal permits the values of user-defined enumerated
types to be output.

BUILT-IN PROCEDURES AND FUNCTIONS

Pascal implementations differ widely on the availability of
extra intrinsic routines, the names of these routines, and their
calling parameters. A built-in routine that performs a given
operation may be a procedure in one implementation and a
function in another. Likewise, it may have differe.nt names
and different parameters. In line with the purpose of this
survey, Tables II through VII provide only a brief description
of some of the various routines and do not attempt to describe
their exact calling parameters or other implementation de
tails.

Table III-String manipulation routines

Routine type_

INTEGER function

INTEG ER function

STRING function

Procedure or STRING

function

Procedure or STRING
function

STRING function

STRING function

Procedure

Procedure

Procedure

Common
names Description

LENGTH Returns the length of
a string.

pas, INDEX Matches a given pat
tern within a string
and returns the posi
tion in the string for
the beginning of the

CONCAT

COPY,

SUBSTR

DELETE

TRIM

LTRIM

TOKEN

matched substring.
Concatenates a series
of strings.
Extracts a substring of
a given length, starting
at a given position in a
string.
Deletes -;i substring of
a given length, starting
at a given position in a
string.
Removes trailing
blanks from a string.
Removes leading
blanks from a string.
Breaks a string into
tokens consisting of
identifiers, operators,
or special symbols.

DECODE Reads from a string as
if it were a TEXT file.

ENCODE Writes to a string as if
it were a TEXT file.

224 National Computer Conference, 1981

TABLE IV-Storage manipulation routines TABLE V-Conversion routines

Common Common
Routine type names Description Routine type names Description

Procedure MARK Sets a pointer to the REAL function FLOAT Converts an integer in-
location of the start of to a real number.
memory available for STRING function STR Converts a number in-
allocation via the to a string, or may
NEW procedure. convert a character or

Procedure RELEASE Releases all memory a PACKED ARRAY
allocated past a given OF CHAR into a
location. Often used in string.
conjunction with DECIMAL function DEC Converts a number in-
MARK. to a number of type

INTEGER function LOCATION, Returns the machine DECIMAL in TI
ADDRESS address of a given Pascal.

variable or the entry FIXED function FIX Converts a number in-
point of a given rou- to a number of type
tine. FIXED in TI Pascal.

INTEGER function SIZE, Returns the amount of LONGINT function LINT An INT function for
SIZEOF storage (usually in long integers in TI

bytes) required by a Pascal.
given type or variable. LONGINT function LROVND A ROUND function

INTEGER function MEMAVAIL Returns amount of for long· integers in TI
memory currently Pascal.
available. LONGINT function LTRVNC A TRUNC function

for long integers in TI

TABLE VI-I/O Routines Pascal.

Common- TABLE VII-Miscellaneous routines
Routine Type names Description

INTEGER function COLUMN, Returns position in the Common

COLS output line of the next Routine type names Description

character to be written Procedure or function DATE, TIME, Returns the current
to a given TEXT file. DATETIME date and/or time.

Procedure OPEN Opens a file. Procedure or INTEGER CLOCK, Returns time in micro-
Procedure CLOSE Closes a file. function TIME seconds since start of
Procedure EXTEND Opens a file for output run.

and places the file Procedure HALT, Stops program execu-
pointer to the end of STOP, tion.
the file. ABORT

Procedure WRITEEOF Writes an EOF mark- INTEGER function CARD Returns the cardinality
er on a TEXT file. of a set (number of

Procedure SEEK Moves the file pointer elements).
to a given record. Procedure GOTOXY Moves cursor to a

INTEGER function STATUS Returns the status of given location on the
the last I/O. display screen.

Procedure SET PROMPT Prints a prompt for in- Scalar function VB, HIGH, Returns the upper
put and inhibits the HBOUND bounds of a given
carriage return and dimension of an array
line feed. type or variable.

Procedure BLOCKREAD Reads from a UCSD Scalar function LOW, Returns the lower
Pascal untyped file. LBOVND bounds of a given

Procedure BLOCKWRITE Writes to a UCSD dimension of an array
Pascal untyped file. type or variable.

Procedure PVTSEG Writes an end-of- Scalar function HIGHEST Returns the highest
segment marker on a possible value of a
segmented file. scalar type or variable.

Procedure GETSEG Moves the file pointer Scalar function LOWEST Returns the lowest
forward a given num- possible value of a
ber of segments. scalar type or variable.

BOOLEAN function EOS Returns TRUE if file BOOLEAN function UNDEFINED Returns TRUE if a
pointer is at an end-of- given variable is un-
segment marker. defined.

A standard tool for information resource management

by MICHAEL E. MEYER
Honeywell Information Systems
McLean, Virginia

ABSTRACT

Information resource management has emerged from the
1970's as the term that accurately describes the methodology
used for managing an enterprise's information resource. The
term itself indicates that we have raised our level of compre
hension from only data in the computer environment to the
total information resource, which includes computer and non
computer entities consisting of data, the processes that use it,
and their relationships. It is a synthesis of previous terms like
database management, data management, etc., which have
roots far back into the origins of electronic data processing.
The origin, evolution, and growth of this methodology are
traced for the purpose of establishing the need for standard
tools in this age of multivendor enterprises. With the expan
sion of data independence to include nondatabase files, where
programmer productivity is becoming a real issue and the
approach of distributed systems and databases is imminent, a
standard information resource management tool is an abso
lute requirement. Current efforts to develop an information
resource dictionary system (IRDS) standard will be discussed
with some ideas on the directions being taken.

INTRODUCTION

In the last few years, we have seen a geometric growth in the
tools available for use in the data processing industry, from
sophisticated hardware using chip technology, to software
providing every possible functional capability. We have wit
nessed the emergence of database technology, which has fo
cused increasing significance on data as an independent re
source. We hear more talk every day of extending the inde
pendence of data to all file structures. These factors, coupled
with increased concern over programmer productivity, con
version cost, and distributed heterogeneous systems have
forced business and industry to focus on the control of the
total information resource, including all data, processes, envi
ronments, users, hardware systems, etc.

Software technology, used to manipulate databases, has
been moving at the leading edge of the industry for some time.
At the same time, software used to locate, catalog, control,
and manage the data has been lacking, particularly for use in

225

multivendor environments. Software for use in managing the
total information resource is simply not in existence.

The requirement for increased productivity mandates the
use of an information resource management system for the
control of software development as well as the maintenance of
software after development. In short, an information resource
management system is needed for the control of the System
Life Cycle. The use of an information resource management
system in a multi-vendor hardware environment mandates the
use of standard information resource management systems.

HISTORICAL PERSPECTIVE

We have come a long way toward controlling the data or
information resource. Some of the steps we have taken were
transparent and are described below.

The Early Years

Some of us remember the early days of this industry, when
we were encouraged to comment freely in our assembly lan
guage programs so that the poor souls that inherited our pro
grams could readily discern our logic (or lack of it). Those
commenting techniques were sustained and enhanced with the
use of "meaningful datanames" as we rose to the heights of
"self-documenting" higher-level languages. If you stop and
think, those comments, when made for data, were the begin
nings of data management.

We became more sophisticated as time went on, developing
manual lists of files that we used, and even more importantly,
that we began to share. We also began to inventory the pro
grams we used and to catalog them in libraries in some way.
As the number of users of our systems began to proliferate,
we began to list them with some simple attributes. Some of
these lists eventually became automated, as extensions to tape
library systems, or as stand-alone systems. As we cataloged
files, we also found it handy to list the characteristics of the
files so that sharing could be encouraged. As disk technology
became available, we found that sharing of files on both media
could be accomplished by providing common file definitions
cataloged on a medium that could be copied and used either
manually or in an automated fashion. In addition, we found

226 National Computer Conference, 1981

Data
Items

Relationships
?

Figure I-Unknown relationships

that comments placed in the file definitions served as docu
mentation of the defined files. More importantly, we began to
comment and document each data element of the defined file.

All of the above cataloging techniques existed in a variety
of ways in the early days of data processing. They had mutual
characteristics in that they all provided data management fa
cilities of one form or another in a very rudimentary fashion.
Most of the catalogs were manually maintained or, if auto
mated, were single format record entries which could not be
related automatically. All relationships between data ele
ments, records, files, programs, etc. were strictly in the mind
of the programmer. All of these individual catalog systems
provided documentation of the programs, files, records, and
data elements used by systems. In general, these techniques
were used with small, independent systems. Little system in
teraction, if any, was present and it was usually provided by
file interface programs which simply reformatted data into the
form the requesting system could understand. Figure 1 illus
trates the divorced cataloging problem in the early days.

MIS / Databases

The advent of second generation hardware systems allowed
for the increase in the size and complexity of software sys
tems. Software and associated files that had been restricted
due to hardware limitations now could expand in size. Large
Management Information Systems were proclaimed as the
answer to the fragmented small system approach used earlier.
Some of these Management Information Systems were ex-

tremely complex both in their functionality and in their data
relationships.

As a result of the Management Information System ap
proach, the need for large, complex, shared files became evi
dent. Out of this necessity and the availability of disk- tech
nology, came the "database" approach. The Database Man
agement System (DBMS) was born at this time in order to
provide commands, available to the programmer, which col
lected disk input/output and space management primitive
functions and provided for a shared database environment.
Many of these DBMSs used the network or hierarchical mod
el, and the significance of data relationships became readily
apparent. We began to be concerned with the interrelation
ships of data files, records, and elements. In addition, the
shared approach used in the DBMS also caused implementors
of MIS to become concerned with the interrelationships of
programs with the database. The significance of change con
trol became rapidly obvious. The level of comprehension of
the industry had evolved to the information level.

Additionally, becatlse-of-tfte shared environment, standard
database definitions had to be created, used, and maintained.
In most organizations, one or several persons were given data
base definition responsibility. The nature of most definitions
was such that commenting was relatively easy, and aided in
defining the nature of the data. This function, which began as
a service to programming staffs, rapidly expanded to provide
a service to users, etc. Thus was born the function of Data
Base Administration.

At the same time, File Management Systems began to ap
pear. Old favorites like MARKIV, WORKlO, COGENT
II/IDS, and others were introduced at that time. These sys
tems used large forms, were batch oriented, and provided
similar command functions, as did the DBMS, for sequential
and indexed sequential files. The original versions were cum
bersome, but effective in providing reports for the end user.

Other technology began to appear on the data processing
market at the same time which had a direct relationship to
shared data and databases, and could benefit from directories.
End User Facilities (EUFs) and the benefits of allowing end
users to access data directly, in an interactive mode, required
that specific data definitions be provided to End User Facility

G~ Q
'~~ ~/

Directory" \ /

9 ~/ 8, /~
// ~ Subschema

/ Schema

/

~~---
Directory

Figure 2-MuItipJe directories

software. In addition, Data Entry Facilities (DEFs) were in
troduced to allow for the direct entry of data into files and
databases. These packages also required directories to define
data entry criteria, such as size, range-of-values, editing char
acteristics, etc.

The one common requirement for all of these systems was
the need to define the data and its characteristics and in some
cases, the data relationships. Each system used its own data
definition language (DDL) with its own peculiar syntax for
defining data. Most data definition languages were COBOL
oriented, and thereby provided natural commenting capabili
ty. It was necessary for the Data Base Administrator (DBA)
to code a new set of DDL for each new DBMS, EUF, DEF,
or FMS in use by his organization. This situation was com
pounded by the fact that new DBMSs, EUFs, DEFs, and
FMSs were springing up like poppies. Figure 2 illustrates the
multiple directory problem.

Another issue or concern in the MIS/Database environ
ment was the need to establish ownership of shared data. Not
only did the DBA have to be cognizant of the processing
entities using data but also of which user owned' and had
responsibility for the data. In addition, accountability of the
users owning the processes was necessary.

Database Standards

The federal government and private companies alike, with
their increasing commitment to data processing and with par
ticular emphasis on the new database technology, were con
cerned with the impact on conversion by the many DBMSs
and their data definition (and manipulation) languages. As a
result, an effort to standardize both the definition and manip
ulation languages was undertaken.

In the early 1970s, these standards efforts resulted in a
major step, the introduction of the concept of "data indepen
dence," or the separation of data (and their definition) from
the processes that use data. The Conference on Data Systems
Languages (CODASYL) Data Base Task Group (DBTG) in
troduced the terms "schema" and "subschema" and defined
the schema as the definition of the database as it is stored,
while it defined the subschema as the programmatic view of
the database. The significance of this approach was that data
definitions were raised to a higher level of criticality and com
plexity. The Data Base Administration (DBA) activity was
now a more formal and critical function in the industry. Much
more emphasis was being placed on the management of meta
data or data about the data.

System designers and end users were becoming cognizant of
data as a resource. It made sense to use data if they already
existed somewhere, rather than redefine and recollect them.
In addition, change control methodogy was being applied to
software development as it had been applied in engineering
for some time. Configuration Management was being applied
by all serious software engineering facilities and required
knowing where the data were located, in addition to what they
looked like, who owned them, and what processed them.
These requirements neccessitated the development of a
"dictionary/directory" of data for both the end users and the
systems personnel.

A Standard Tool for IR Management 227

~------~.~~~4~------' programs'

l
, Records I

l I Elements I
Figure 3-Embryonic dictionaries

Data Dictionary/Directories

The early 1970s saw the rise of Database Directories or
Data Dictionary/Directories. These systems, in their early
stages, consisted of several programs that would update and
access a file, in many cases itself a database, and provide
reports on data and relationships. The simple entities and
relationships of the early Data Dictionary/Directories
(DD/D) were limited to programs, the systems they operated
within, the files they processed, and the records and data
elements within those files. Figure 3 illustrates these em
bryonic relationships. It was soon realized that only the tip of
the iceberg had been touched, and soon these had evolved
into major systems encompassing other data such as user pro
files, work stations, access control, and operational consid
erations, etc. What had originally started as being data or
iented, had evolved into being information oriented!

The early and mid-1970s saw a rise in the number of Data
Dictionary/Directories in the marketplace. The interest in
what this type of system could provide began to focus on the
total data or information available about the business enter
prise.

The 1970s saw some interest in the on-line possibilities of
Data Dictionary/Directories. The placement of editing char
acteristics in the Data Dictionary/Directory via the data defi
nitions made it a natural for programs to access when editing
data. The placement of subschemas in programs made a com
piler interface attractive in that subschemas could be defined
in the Data Dictionary/Directory and be provided to com
pilers. These types of Data Dictionary/Directories welre called
"active" in that they were used at compile and run tiple. The
opportunities for the role of the Data Dictionary/Directory
seemed endless.

ANS//X3/SPARC DBMS Study Group

A major event occurred in the late 1970s which further
propelled Data DictionarylDirectories into prominence. The
American National Standards Institute, X3 Committee (Com
puters and Information processing), Standards and Planning
Requirements Committee's Study Group on Data Base Man-

228 National Computer Conference, 1981

Business
Enterprise

Formal
Description
Technique

Figure 4--Business modeling

tj .conceptual
Schema

...... _-- Dictionary
System

agement (ANSI/X3/SPARC DBMS-SG) issued a report
which discussed the framework of database systems and is
referred to as the ANSI/SPARC architecture. This architec
ture continued the two schema approach used earlier but ref
erenced the schema as the "internal" schema and the sub
schema as the "external" or "user view" schema. Two signifi
cant references were made in the report prepared by two
members of the group:

1. the Data Dictionary/Directory figures prominently in
any database system and serves as a META-DATA
BASE and

2. prior to undertaking the development of a database sys
tem a conceptual model should be built modeling the
enterprise.

The second reference was important in that for the first time
a standard information model (called by ANSI/SPARC a
"Conceptual Schema") was being proposed which could serve
as the baSis of database (and even nondatabase or non
automated) systems. This Conceptual Schema differed from
the Data Dictionary/Directory in that it was designed to serve
as a model of the business enterprise whereas the Data Dic
tionary/Directory modeled only that which had been imple
mented. It seemed that the concept of information man
agement was maturing. Figure 4 illustrates the Conceptual
Schema and its development through a formal description
technique.

CURRENT ACTIVITY

There are many issues at this time that surround the subject
of Data Dictionary/Directories and Conceptual Schemas.
Several groups are working on standards in this area.

British Working Party

In 1977, the British Computer Society Data Dictionary Sys
tems Working Party published a report on the work it had
been doing since January 1975. The significance of the report
was that not everyone in the working party could agree on the
role of a dictionary system. It was agreed, however, that the
dictionary system played a crucial role in conversion from one
DBMS to another, and that the description of data needed to
be placed in this facility for generation of DDL's for any

DBMS. The report also placed great emphasis on the dictio
nary as the residence of the conceptual schema. It recom
mended that the conceptual schema defined by ANSI/
SPARC, be divided into two (2) parts, a conceptual schema
and a derived schema. Much time, in the report, was spent
discussing conceptual schemas; however, the report did em
phasize the need for providing a tool to assess impact, provide
standard code generation, multiple database version han
dling, utility interfaces, consistency checking, access control,
mappings, and DDL generation, etc.

IRDS Technical Committee

In 1978, a new ANSI/X3/SPARC Database Systems Study
Group (DBS-SG) was formed to try and take the ANSI/
SP ARC architecture and propose standards. One of the task
groups formed within the Study Group was the Data Diction
ary Task Group. This group was very active and soon realized
that the scope of a Data Dictionary System was much greater
than just involving Database Systems. It petitioned its parent,
the DBS-SG, to form as a full-fledged technical committee to
prepare a standard for Data Dictionary/Directories. After a
long process, involving ratification by the DBS-SG, SPARC,
and X3, the Data Dictionary Task Group was formed as
X3H4, on June 11, 1980. The significance of the move under
scored the commitment by industry to Information Resource
Management because the petition for formation as a technical
committee named the committee "Information Resource Dic
tionary System (IRDS)!" The IRDS Technical Committee has
a goal of providing a draft standard by January 1983.

NBS Standards Effort

The federal government's National Bureau of Standards
(NBS) has also undertaken to write a Federal Information
Processing Standard (FIPS) on Data Dictionary Systems
which will be available by late 1982. This coincides with the
IRDS Technical Committee effort.

FUTURE GOALS

In the author's view, future standard tools for Information
Resource Management must treat the following require
ments.

System Life Cycle

The System Life Cycle (SLC) must be supported with any
set of tools specified by any standard. These standard tools
must support the conceptual modeling of the current manual
or semiautomated systems that the enterprise has in place, so
that a thorough understanding of existing methods is pro
moted. The idea of a process or procedure must be thought of
in generic terms so that it can apply to either manual or
automated activities. Specifications of these activities in terms
of a baseline must be supported.

Data Dictionary/Directories have traditionally supported
the documentation of files, programs, users, etc. Information
Resource Management tools should provide for the entire
scope of activities required to support the SLC. A critical part
of this support should lie in "versioning" or systematic change
m~chanisms for data as the life cycle matures. Another activ
ity should be the "staging" of information, such that these
tools document stages of growth and change simultaneously.
Figure 5 illustrates the key role an Information Resource
Management tool, like an IRDS, could play in the SLC.

Configuration Control

The activity of Configuration Control has been treated in
Data Dictionary/Directories, but in the author's view, in a
very limited manner. Standard tools for Information Re
source Management must consider a much more expanded
scope if they are to be useful to an Information Resource
Manager. The manager of the future is going to be concerned
with geographical entities, be they databases, computers,
work stations, users, etc. Standard tools must support the
modeling of these entities. The advent of distribution,
whether of databases or of systems, demands that type of
modeling.

Future resource managers will have to consider such things
as work stations, office locations, database and file locations,
etc. The tools used by them will have to consider multi
vendors and a scope of impact that has never been considered
before, such as loss ofa work station, distributed node, etc.

Productivity

One of the most important thrusts of the 1980s will be the
emphasis on improvement of productivity. Information Re
source Management should have a significant contribution to
make toward this goal, and tools that are developed will be
forced to be standardized.

Information Resource Management tools should be able to
store standard data definitions, common code for error rou
tines, tables, and common code for table searches, etc., that
can be accessed by any vendor's software. A programmer
should be able to declare file and database names, common
code, tables, etc. and the Information Resource Management
tools should provide the definitions or code for insertion into
the program. The ultimate activity should be the generation of
whole programs based on specifications stored in an Informa
tion Resource Management database such as an IRDS.

The capability of the IRDS to store common definitions can
allow for a reduction of effort in converting from one hard
ware or software vendor to another. The significant cost of
converting files, programs, and databases to capitalize on
cost-effective hardware can be reduced through the use of
standard Information Resource Management data definitions
stored in an IRDS and standard tools which can generate
schemas, subschemas, EUF directories, etc., in the particular
syntax required for the DBMS, EUF, etc. Significant cost
reduction can be realized in that those programs using the old

A Standard Tool for IR Management 229

Integration

IRDS

Figure 5-System life cycle and the IRDS

generation directories or schemas can simply use the newly
generated ones. Conversion effort can now be directed on the
program logic.

In addition to reducing conversion costs, the creation of a
new set of· data definitions when acquiring a new package
should no longer be necessary. The vendor supplying the new
package can merely supply a module which can interface with
the standard IRDS database and create the directory required
by the vendor's package in the syntax it understands. The
need to define separate directories for EUFs, Data Entry
Facilities, etc., can evaporate since only generating modules
to provide that directory syntax are required. Figure 6 illus-_
trates the use of an Information Resource Management tool
like the IRDS in generating data definitions from a single
source.

The concept of fully active and integrated tools should
come into being in the 1980s. The necessity for standard tools
should become even more obvious as we start interfacing with
language processors and operating systems. Much of the
editing performed in application programs can be transferred
to an on-line tool such as an IRDS.

O B:J:::: Iss -.--@ I DBMS 1-- S
B --- SS --- @

r--1\[y]-8 GJ L-v'1 E~F 1-8

~t..D-8
~8-8

Directories

Figure 6-Single source data definitions

Schemas
and

Subschemas

230 National Computer Conference, 1981

Flexibilityl Extensibility

In the author's view, the most important requirement for
Information Resource Management standard tools is flexi
bility. Standard tools should allow the Information Resource
Managers to specify either the simplest model or the most
complex model needed to accomplish the mission. These tools
should allow specification of any number of entities from a
menu of base entities, and allow the luxury of defining an
expanded set of entities. Managers should have the ability to
define attributes that are meaningful and not part of the base
set of attributes for a given entity. Additionally, they should
be given the flexibility to define their own coding structure,
and not be encumbered by predefined coding structures cre
ated by the vendor.

The Information Resource Manager should be given the
ability to define meaningful relationships, in an ad hoc man
ner when necessary, and not be encumbered by sysgen re
quirements. Flexibility is needed to define any relationship
between entities and not be encumbered by vendor prede
fined relationships.

The last flexibility requirement is that managers need the
ability to query and report against the database used for Infor
mation Resource Management in an ad hoc manner. They
should have the capability to specify reports including the
contents of the reports. Canned reports should be kept to a
minimum, since variations of report requirements are ex
potential.

SUMMARY AND CONCLUSIONS

We have come a long way from the early days, when documen
ting the data we used was the farthest thought from our minds.
We have progressed over the years from just using this re
source, to a state of the art in which attributes of the data we
use are extremely important. We have elevated ourselves
from the level of data orientation to the level of information
orientation, and we have expanded our scope to include many
more entities, and their attributes. Figure 7 illustrates the
trend we have followed over the years.

Our concern for programmer productivity, conversion cost
containment, and managing configurations reflects a maturing
attitude in the data processing community. Standard tools to
provide control of the information resource can reduce signifi
cantly the costs of conversion and configuration change er
rors. The work that is under way in ANSI/X3/H4 as well as the
National Bureau of Standards will soon bear fruit and will
start us up the long, slow path towards true Information Re
source Management.

TRENDS

Little Some Concern Major
concern concern over concern
over over data in over data source;
data data database conversion,

and productivity

Each Some Central Central
programmer central definition definition;
defines definition; of data; one source
physical "copy" duplication of information
and files exists
logical between
files databases

Figure 7-Trends

REFERENCES

l. "ANSI/X3/SPARC DBMS Framework Report," Report of the ANSIIX31
SPARC Data Base Study Group, 1977.

2. Bachman, Charles W. and Daya, Manilal, "The Role Concept in Data
Models," 1979.

3. Chen, P. P-S., "The Entity-Relationship Model-Toward a Unified View
of Data," ACM Transactions on Database Systems, March 1976.

4. "CODASYL Data Base Task Group, April 1971 Report," ACM, New
York,197l.

5. "Data Base Directions-The Next Steps," NBS Special Publication 451,
U.S. Department of Commerce, September 1976.

6. Dolotta, T.A., et at., Data Processing in I980-85-A Study of Potential
Limitations to Progress, New York, John Wiley, 1976.

7. Gall, R. Michael, "The Role of Data Base Management in Information
Resource Management," Proceedings 2nd Annual Database Symposium,
May 1980.

8. Hillery, Norris and Trigger, Weston, "A Systems Engineering Facility,"
Proceedings NBS Symposium, 1978.

9. "Information Resource Management-The New Challenge," A Special
Report by the Diebold Group, Infosystems, June 1979.

to. Information Technology-Some Critical Implications for Decision Makers,
The Conference Board, Inc., New Yo~~, 1972.

11. Martin, James, Principles of Data-Base Management, Englewood Cliffs,
New Jersey, Prentice-Hall, 1976.

12. Monia, Joan, "Uses of the Data Dictionary," from working papers of the
Data Dictionary Task Group (ANSI/X3/SPARC DBS-SR), July 1979.

13. "Proposal for X3 Standards Project on data dictionary systems," Proposal
to DBS-SG, SPARC, and X3 for formation of X3/H4 Tecbnical Commit
tee, 1980.

SAGA: A system to automate the
management of software production

by R. H. CAMPBELL and P. G. RICHARDS
Department of Computer Science, University of Illinois
Urbana-Champaign

ABSTRACT

SAGA is a software development system designed to inte
grate software production tools and techniques into a flexible
management system through the use of special attributed
grammars to represent management schemes. Both the soft
ware life cycle and project components are described by
formal grammars. This formalization will aid understanding
of management techniques for complex projects and encour
age the automation of repetitive and tedious managerial tasks.
Project direction and management is monitored in SAGA
from inception through completion and allows identification
and scheduling of critical events along with integration of
project specification, design, implementation, certification,
and maintenance. The SAGA project is expected to have a
particular impact on quality software production for reliable
computer applications.

INTRODUCTION

The process of software design, production, and maintenance
follows a pattern of activity often referred to as the software
lifecycle. The management of the lifecycle is critical to the
success of the eventual software produce. The response to
this critical management problem has been the evolution of
software engineering. Software engineering has improved the
production of high-quality software through the use of new
tools2

• Methodologies to improve design, programming, and
maintenance have been proposed. The effectiveness of these
tools depends on the proper management of information they
produce. The SAGA project proposes a method of integrat
ing many of these software production tools and techniques
into a flexible, formal management syste~ for software devel
opment.

Goals

The goal of the SAGA project is a formal management
methodology and system that will enhance production of com
plex, reliable, certifiable software. Complex software is typifi
ed by a long development period, interaction between several

231

developers, complex module interfaces, and requirements for
auditing, certification, and quality. We view software man
agement as the recognition of valid sequences of (perhaps
concurrent) activities in a software lifecycle. Certification of a
software product corresponds to the recognition of a valid
history of software development, verification, and validation.
A satisfactory system for development of such software
requires:

• Recognition of valid sequences of activities in soft'.¥are
life cycle.

• Consistent application of a well defined management
policy throughout the life of the project.

• The ability to ascertain development status of the soft
ware project, and retrieval of project information.

• Automation of repetitive and tedious management tasks
(e.g., auditing, version control).

• Automated identification of intermodule dependencies
between and within project phases.

Desirable attributes of this kind of software development sys
tem include:

• Machine processable specification, design, and imple
mentation languages.

• Centralized and coordinated storage and processing of all
project information (e.g., requirements, specifications,
designs, data, source and object code, testing informa
tion, documentation, design decisions).

• Appropriate communication and documentation tools
(e.g., interuser communication, intraproject communi
cation, communication between users and management
system).

• Ability to integrate already developed tools (e.g., auto
mated program verifiers, test data generators, opti
mizers, performance analyzers).

• Checking of the consistency of intermodule dependen
cies.

Other Systems

Many systems have been developed to aid software devel
opment. Among them are CADES3

, Bell Laboratories,

232 National Computer Conference, 1981

Unix/Programmer's Work Bench4
, and Gandalf5

• Each of
these systems satisfies some of the criteria above.

CADES

The CADES (Computer Aided Development and Evalua
tion) system was developed at International Computers Lim
ited as an operating system development aid. It is composed
of a database, a language interface called SDL, and a formal
ism for transformations of problems called structural model
ing. Structural modeling specifies the relations between data
and the objects that manipulate the data, and supports refine
ment of both the relationships and the objects until an imple
mentation is realized. The database is used to store these
relationships and maintain auditing history on the refinements
that have been applied. CADES provides facilities for project
organization, version control, interfaces to compilers/linkers
for automatic invocation after module modification, and facil
ities for including other tools for further analysis of the project
database.

PWB

The Programmer's Work Bench is an adaptation of the
UNIX operating system to the needs of large software devel
opment projects. PWB provides an efficient programming
environment that is separated from the system on which the
programs are to be executed. It provides additional tools for
software development, including a Source Code Control
System6 (SCCS) and remote job entry software. Unix pro
vides facilities for editing and file storage, document prepara
tion, and user communications. SCCS provides version con
trol and auditing of modules of source code, documentation,
or test data.

Gandalf

Gandalf is an interactive software development system for
the ADA programming language. A syntax-oriented editor
permits entry of programs. The language INTERCOL and
software development control facility of Gandalf is described
by Tichy7. INTERCOL is one of a class of languages known
as Module Interconnection Languages. INTERCOL repre
sents the structure of systems by describing module interfaces.
Interface consistency is maintained by type checking between
modules and notifying appropriate developers when inconsis
tencies are found. INTERCOL also has the ability to describe
mUltiple versions of software using a concept of "families" of
modules and systems.

Analysis of Other Systems

No system presently solves the problem of managing soft
ware development in a complete and satisfactory manner. The
isolated collection of tools in PWB requires the programmer
to remember important procedures and to use the tools cor-

rectly. Structure-based systems such as INTERCOL and
CADES attempt to restrict the software development process
to ensure that intermodule interfaces are correct and consis
tent. Neither system integrates the restrictions with the target
source code nor extends automated manage~ent to all phases
of the project. Our proposal combines the various software
development system approaches into a flexible and effective
system.

THE SAGA SYSTEM

Approach

The SAGA system provides an integrated approach to the
management of the software production process by combining
various existing techniques for recognizing, representing, and
analyzing formal specifications. Its primary components are:

• Formal representation of management policy by manage
ment grammars (LALR[1] attributed BNF grammars
which use events in the software life cycle as terminal
symbols).

• Primitives for specifying module and system structures,
and events that occur in the lifecycle.

• A central database with provisions for storage of all
project related information.

• An inter-project library for sharing code, data, and de
velopment procedures.

• Formal specification and constraint of database manipu
lation(s) via development grammars. The formal specifi
cation allows such features as automatic recompilation
and aUditing.

• Formal representatioris of and uniform interfaces be
tween specification, design, and implementation lan
guages which permits mechanical consistency checking
within and between phases in the software life cycle.

• User oriented communication facilities that include not
only the ability to "talk" and "mail" between users but
also archival notesfile facilities to record policy decisions
and allow discussions to take place in writing in a ma
chine readable form.

The management and development grammars specify the
sequence of acceptable events in the software project from its
inception through its completion. Events can be generated by
programmer interaction or by the partial parsing of a sentence
of a grammar. The management grammar represents policy
and its terminal symbols are events generated by the pro
grammer or by the system. As sentences of the language
specified by the management grammar are parsed, different
manageIJ1ent primitives are invoked. These primitives can
start subtasks controlled by other management grammars,
declare events to higher level tasks, or invoke specific soft
ware tools controlled by development grammars. The devel
opment grammars are used to control access to specific tools
such as compilers and editors. This hierarchical management
system can be used to configure complex and concurrent
project development schemes. Tracing of the parsing can be
done to any granularity, thus allowing auditing to any level.

The database manipulation routines have, as integral com
ponents, bookkeeping routines which audit intermodule ref
erences and ensure consistency through the project. This level
of bookkeeping is required to simplify recognition of uncon
sidered specifications or uncoded designs and issue requests
for their completion.

Information in the SAGA system should be represented in
a machine processable form, that is, high level language. This
is to allow identification of the events that are considered
important to the management policy. In addition, it is ex
pected that investigations into automated analysis of project
phases such as validating a design for consistency with its
specification will require that specifications and design be
represented in a high level language. We believe the SAGA
database could be a useful tool for the future development of
such automated analysis. Management and development
grammars based on the syntax of the specification, design,
and implementation high-level languages allow SAGA to con
trol project development to the individual statement level if
required.

Applications

The management schemes employed in a SAGA develop
ment system are intended to enhance human engineering as
pects of software production. For software development of
applications which must be very reliable, the management
schemes can impose a precise and rigid development disci
pline. Alternatively, it might provide an environment for
rapid development of scientific or research programs that do
not require such rigid control. The system can be used to
enhance the productivity of the system developer by providing
on-line project information, coordinating efforts and module
sharing among teams, prompting for completion of standard
ized documents, cross referencing between phases of the
project, and providing status reports of the project.

Since the management policies for the project are explicitly
stated (by the management grammars and the attributes on
the project languages) and the policies are enforced by the
software tools themselves, validation of software produced
under the system is much simpler. It is possible to log every
operation taken during the development in order to satisfy
strict auditing procedures. Formal structuring of the develop
ment process may allow more rigid validation assumptions to
be made (by either automatic or manual theorem provers)
about specifications and coding of modules.

The SAGA system is designed to direct programmer activ
ity without imposing excessive restraint. It is expected that
managers will recognize the need for balance between pro
grammer control and freedom. SAGA provides an excellent
vehicle for experimentation in various management policies
and can be used to analyze the effects of those policies.

Example

Below are some grammar fragments for a hypothetical
SAGA system that control updates to project source code. A
single management specifies version and release policy. A

SAGA 233

development grammar controls updates to source modules.
The grammar is represented using the usual BNF meta
symbols {} to denote repetition. [x] indicates semantic action
"x" is to be performed (described in the narrative below).
Terminal symbols which are events are represented as
"EVENT".

The management grammar

(new version) :: = (initialize modify) (modify module)
(release)

(initialize modify) :: = "NEW_VERSION" [1]
(modify module) :: = {(new code)

(validation & verification)} +
(new code) :: = {"CODE" [2]} +

"CODE_COMPLETE" [3]
(validation & verification) :: = "VERIFY" [4]

"VERIFY_COMPLETE"
(release) :: = "RELEASE" [5]

The development grammar

(code) :: = {{(module work)} +
(check consistency)} * "DONE" [6]

(module work) :: = "EDIT" [7]
(check consistency) :: = "CHECK" [8]

The events used by this example are described below:

• NEW VERSION-The project manager wishes to auth
orize a change to a source module, and declares this
event.

• CODE-The project manager indicates changes may
proceed by declaring this event.

• CODE COMPLETE-This event is requested by the
project manager when all requests for new coding have
been made.

• VERIFY-Project manager indicates that the mod
ification is approved and testing should start by declaring
this event.

• RELEASE-Project manager can release the tested
module as a new version by declaring this event.

• DONE-A programmer declares this event when all
modifications to the module are complete.

• EDIT-Raised by invoking an editor on the source mod
ule.

• CHECK-Programmer uses a compiler or analyzer on
the source module.

Under a SAGA system using these grammars, a possible
sequence of events is described below:

1. Someone requests a change to a source module. The
project manager indicates that a change is to occur by declar
ing the "NEW VERSION" event. Management primitives
invoked at [1] request a reason and description of the change
from the project manager, which will be stored in the new
version's documentation.

234 National Computer Conference, 1981

2. The project manager declares one or more "CODE"
events. Primitives invoked at [2] request the name of the
module and the programmer assigned to make the change. A
temporary copy of the module is created. The programmer is
authorized to use the development grammar to access the
temporary copy. The system uses the development grammar
independently and asynchronously of the management gram
mar. After the "CODE COMPLETE" event, the manage
ment grammar primitive at [3] waits for all coding subtasks to
complete.

3. The programmer invokes the editor, which declares
"EDIT". Primitives at [7] check his authorization and allow
the editor to proceed.

4. After editing, the programmer uses a compiler to check
the source module for errors. This invokes primitives at [8]
that make sure no undefined subroutines are referenced.

5. After the programmer is satisfied that the changes are
correct, he declares the "DONE" event, which causes primi
tives at [6] to terminate the subtask using the development
grammar.

6. The project manager is notified that the modules are
changed, and is allowed to declare event "VERIFY" to start
verification of the module. Primitives at [4] start another de
velopment grammar for verification. The project manager
waits until the "VERIFY COMPLETE" event is declared by
the verification subtask.

7. Verification is completed and "VERIFY COMPLETE"
is declared. The manager is notified that the module is ready,
and declares the "RELEASE" event. Primitives at [5] make
the temporary copy into a new release in the database catalog,
notifying the appropriate users that the new release is com
plete:

PROTOTYPE

A prototype SAGA system is being implemented in Pascal. A
construction tool integrates grammars for· development and
management into the SAGA· management system and pro
vides an interactive interface to the user for text and program
editing and project work. The construction tool is based on an
LALR parser generating system and skeleton interactive edi
tors. Semantics attached to the management and develop~
ment grammars invoke management primitives (coded as Pas~
cal routines) to manipulate the project database. An example
development system for Pascal will be designed at the conclu
sion of this . prototype implementation.

CONCLUSION

The formalization of m~nagement in software development
projects will improve understanding of the project lifecycle
and 'strengthen the validity of software certification. The
SAGA system provides an approach to the automatic generat
ion of software development systems and the eventual formal
ization of management schemes. Management of the develop
ment process can be applied to all interactions andinformati
on in the project from the moment of entry to the computer
through its lifecycle.

Although considerable research and development is re
quired to realize a production version of SAGA, the proto
type specification suggests that such system~ can be construc
ted and that management schemes for the production -of
soft~are can be described using augmented grammars. A pro
totype SAGA system is currently being constructed. We wel
come comments, Sllggestions, and examples of management
schemes that have been applied to actual software production
projects.

ACKNOWLEDGMENTS

This research was partially supported by NASA Grant NSG
1471 at the University of Illinois, and by NAS 1-14472 while
the authors were in residence at ICASE, NASA Langley Re
search Center. The authors would like to acknowledge the
helpful commellts of Martin McKendry and John Knight.

REFERENCES

1. Brooks, F.P., The Mythical Man Month, Addison Wesley, Reading, MA.,
1975.

2. Jensen, Randall and Charles Tonies, Software Engineering, Prentice-Hall,
Englewood Cliffs, New Jersey, 1979.

3. Pratten, G.D., "The CADES Software Development System", Internal
Document, International Computers Ltd, Kidsgrove, Stroke-on-Trent, En
gland, 1978.

4. Dolotta, T.A., R.C. Haight, and J.R. Mashey, "The Programmer's Work
bench", Bell System Technical Journal, Vol. 56, No.6. July-August 1978,
pp. 2177-2200: '

5. "The Gandalf Project", Presentation at the Software Tools Workshop, Pin
gree Park, Colorado, May 1979.

6. Rochkind, M.J., "The Source Code Control System", IEEE Transactions
on Software Engineering, SE-l, December 1975, pp. 364-370.

7. Tichy, Walter F., "Software Development Control Based on System Struc
, ture Description", Carnegie-Mellon University Department of Computer
Science Technical Report CMU-CS-80-120, January 1980.

The development facility approach to
improved software development

by DAVID W. JOHNSON
The Upjohn Company
Kalamazoo, Michigan

ABSTRACT

The use and benefits of a software development facility (SDF)
within an organization are reviewed. A generalized SDF
framework is presented which suggests the- need for a com
mon SDF "kernel" which an organization may tailor and
supplement to meet its specific application development
needs. The development of a SDF prototype within a particu
lar software development environment is described. Finally,
some experiences with the use of the prototype are discussed.

INTRODUCTION

The term software crisis has been used to describe the serious
problems currently facing much of the data processing com
munity. During the past several years hardware technology
has shown rapid advancement. Each advancement brings with
it a reduction in the unit cost of the hardware in addition to
providing the user with improved capabilities, such as speed,
memory size, and storage capacity. As unit costs decrease and
capabilities improve, organizations become more and more
eager to take advantage of the technology. New and more
complicated applications become desirable, and improve
ments to existing applications become mandatory if the or
ganizatioil is to remain competitive. All this places increased
demands on the software development and maintenance
group within the organization. Unfortunately for these
groups, the technology used in developing and maintaining
software has not kept pace with the rapid advances in hard
ware technology. The advancements that have been made are
often met with resistance because of their complexity or the
training required for the staff to take advantage of them.
Because of this, software development and maintenance costs
have taken a continually increasing share of the data process
ing budget of an organization, thus precipitating the crisis.

The current literature contains numerous approaches
aimed at solving or reducing the software crisis. Many of these
concentrate on the development of tools that help to make the
software developer more productive. Examples of this from
hardware and software vendors include ICCF (Interactive
Computing and Control Facility) and ADF (Application De
velopment Facility) from IBM, USER-ll from North County

235

Computer Services for use on DEC PDP-l1's, and Hewlett
Packard's IDS (Integrated Display System). Examples of sys
tems developed in house include CSMAGIC at Data General
and the Interactive Program Generator at Exxon. l

•
2

The purpose of this paper is to describe one of the more
promising efforts directed toward a solution to the software
crisis, the software development facility (SDF) approach. The
fundamental way in which this approach differs from previous
approaches is that it involves the integration of software de-

. velopment tools into an easy-to-use system relieving the soft
ware developers of much unnecessary or redundant effort.
Information required by the system is maintained in a soft
ware database. In the early stages of software development
the database contains primarily design information. As refine
ments are made, the database expands to coIitain information
about the makeup of the various software objects that make
up the actual system being developed. During this expansion
process the SDF insures that the necessary information is
collected and that the stored information remains in a logical
ly consistent state. Once a complete description of the soft
ware system has been achieved, the information is used to aid
in the construction and testing of the software. After the
development is complete, the SDF role continues by control
ling the software execution and giving support to the mainte
nance of the system. Figure 1 shows a high-level SDF over
view.

The benefits of such a facility are numerous. They include
improvements in the software design process, since most man
ual drawing, chartirig, and redrawing is eliminated and the
computer is used for completeness checking and design anal
ysis; the elimination of needless human effort in using the
various software development tools by providing an easy-to
use integrated environment to the users; and improvements in
the maintenance process, since complete documentation and
performance data are maintained- by the facility.

There hav_e been several in-house attempts to integrate at
least a portion ofthe development activities. Two examples of
this are The Programmers Workbench at Bell Labs3 and
CPDS, Chevrons Program Development System l

.

The remainder of this paper describes a generalized frame
work for an SDF within an organization, gives an implemen
tation example currently in use in the Research Division of
The Upjohn Company, and cites productivity data obtained
from its use on several projects.

236 National Computer Conference, 1981

I---~---------
1
1
1
1
1
I
1
1
1

1
software 1
builders 1

and <->1
users 1

S
D
F

Software * *

1 Tools 1 1******1
1--------------1 1 SDF 1
1 1<-->1 DB 1
1 DBMS I 1 1

1---
Figund:-Arr-abstract-SDF overview

A GENERALIZED SDF FRAMEWORK

We present here a generalized framework for an SDF and
discuss how an organization may use the concepts to develop
an SDF for their own unique circumstances. Because of the
great diversity of environments in which software is devel
oped, one cannot claim complete generality in any approach.
Therefore this discussion assumes a state-of-the-art environ
ment providing a time-sharing interface to the software devel
opers, along with a flexible operating system command lan
guage.

Figure 2 presents an architectural overview of the SDF
framework. Six basic subsystems are identified, along with
four classes of users and two primary data stores. The plan is
that an organization be presented with a basic SDF kernel,
which it must then expand upon and tailor to suit its own
particular needs. This is the task of the person or group la
beled SDF administration. The first function the SDF admin
istrator must perform is to establish the database environ
ment. Since the SDF kernel cr .1tains its own database subsys
tem, this may not require additional effort. On the other
hand, if the organization desires to use its own DBMS in
conjunction with the SDF, database access modules will need
to be written to support the rem~ining kernel code. Once this
is accomplished, the SDF administrator must generate a meta
definition for his organization. For this he uses the meta defi
nition subsystem, which allows him to define the types of
software objects of interest, the types of relationships be
tween software objects, and the transformations (tools) that
will operate on the software objects. For example, he may
define an object of type MODULE, specify the attributes
about modules to be stored in the database, define a relation
ship of type CALLS between objects of type MObULE, and
finally define a transformation COMPILE to be performed on
objects of type MODULE. Since this definition process could
be a bit time-consQming, the SDF kernel will contain a stan
dard set of object types, relationship types, and transforma
tions, which the SDF administrator may modify as he desires.
Once the meta definition is complete, the SDF becomes avail
able for use. The work of the SDF administrator is not com
plete, however. As SDF usage increases, changes and addi
tions to the meta definition will probably be required. In
addition, specialized tools meeting the specific application
needs of the organization must be develo-ped and integrated
into the SDF.

The development subsystem provides the interface for the
primary users of the SD F, the software developers. Functions
are provided to support the entire software development pro
cess, from design through implementation. The design func-,
tion allows the system architects, program designers, and

1------------------------1
1-----------1 1 1 Keta I SDP
I SDP 1 1 I Definition 1<--> 1 Database 1 1 Data 1 Subsystem 1 Admin.
1 1 1 1 1
1 "eta 1 1 Base 1 Development I
1 Data 1<----->1 1 Subsystem 1 Software
1 1 1 Sub- I. Design 1 <-->
1 Target 1 1 1 • Reporting 1 Devel.
I System 1 1 System 1 .constructionl
r Data I I I • 'fest1ng f
1 1 I I • Imple.eD~ 1
1-----------1 I 1--------------1 Software

1 r ft~nage.ent 1<-->
I 1 Subsystem 1 Managers

1------------1 1------------------------1
1 liS ystem Services 1 Software
1 Code 1<---->1 Subsystem 1<-->
I 1 1 1 Admin.
1 Library 1 1------------------------1
I 1-----> 1 Execut ion 1 End
1------------1 1 Subsystem 1<-->

1------------------------1 User
1_-- ___ ---_____ 1

Figure 2-SDF architectural overview

database designers to -specify their designs to the SDF and to
have them checked for accuracy and consistency and stored in
the design database. The SDF kernel provides the mechanism
for expressing the design in terms of the meta definition,
discussed earlier. Facilities are also provided for maintaining
the design data, e.g., updates and deletions. The reporting
function then allows the designers and others to examine the
design in terms of a series of reports and analyses that may be
used for design improvement and communication. An exam
ple of such a report would be the CALLing sequence for a
particular MODULE.

The construction function is used by the programmers in
developing code for the various software objects defined by
the designers. Whenever possible, code for an object is gener
ated either partially or entirely. Examples of partial code
generation include beginning and ending statements, declara
tions, and module calls. Such code must be further enhanced
by the programmer using the system editor. Code to be com
pletely generated requires a fairly high degree of special
ization, with a considerable amount of intelligence in the code
generator. Examples of complete code generation include
database definitions and module code for specific application
types. All code for software objects is managed by the SDF,
which has facilities for production and test versions as well as
for maintaining a historical record of changes to the code.
Tools used in the construction process, such as compilers and
loaders, are integrated into the SDF framework by the SDF
administrator so as to take advantage of all available informa
tion and eliminate any unnecessary effort on the developers'
part.

Once a software object has been coded, the SDF testing
function is used to aid in its testing. Static testing tools can be
integrated into the SDF in a fashion similar to that used for
construction. Dynamic testing tools will require that test data
and results be available from the database. Where necessary,
module stubs and drivers are automatically generated. For
modules that require complicated inputs and outputs a-series
of simulators will need to be developed by the SDF adminis
trator to meet the organization's needs.

The management subsystem provides data about the devel
opment progress of the various software objects making up a
system. Each time a development or testing function is per-

formed an entry is made in the management portion of the
database. Software managers may input data such as esti
mated completion dates for various objects and receive re
ports on the progress of the system. Ad hoc inquiries are also
available when information about a particular object is de
sired.

The system services subsystem provides two primary func
tions: code library management and transformation control.
Code is maintained on a system basis with test and production
versions. Most of the tools integrated into the SDF will be
executed under the control of the system services subsystem.
Batch execution will be performed in parallel with other de
velopment functions. Code generated by tools will automati
cally be stored in the appropriate library.

The operation subsystem forms the interface between the
end user of the target system and the. SDF. As such it has two
primary responsibilities, first to regulate access to the target
system and second to monitor its operation. The monitoring
activities should include the gathering of performance data for
both processing and data objects and the recording of target
system status for the diagnosing of error conditions.

The database subsystem is an integral part of the SDF. It
controls all access to the database and allows concurrent use
by the various SDF users. Most organizations interested in the
use of an SDF will already be using a database management
system (DBMS). The characteristics of this system will influ
ence the types of objects the organization defines and the
types of transformations that will be developed in the devel
opment subsystem. Since the organization has undoubtedly
developed considerable expertise in using their DBMS, it
seems reasonable that the same DBMS should serve as the
storage mechanism for the SDF. This would seem especially
reasonable if query and report writing capabilities were avail
able with the DBMS.

AN IMPLEMENTATION EXAMPLE

This section of the paper describes a prototype SDF currently
in operation within the Research Division of The Upjohn
Company. The system, called USDF, is written in PLiI and
uses the VM/CMS operating system. The database system
used is System R, a relational DBMS4. Data in the SDF
database is stOIed in the fOlln of tables (lelations). 'Fwo basic
groups of tables exist, the meta tables and the target system
tables. Data in the meta tables specify the types of software
objects of importance. For example, in addition to object
types like MODULE and PROGRAM we see VM object
types such as VMACHINE (virtual machine) and System R
object types like TABLE and COLUMN.

In addition to object types, the meta tables contain data
about the attribute types and values to be maintained about
objects. An example of an attribute type for object type
MODULE would be LANGUAGE, for which a definite list
of values (PL/I, FORTRAN, BAL) could be specified. The
final meta construct is of a relationship type. A relationship
indicates that two object types are related in this way: one of
the object types is considered the source and the other the
target. An example relationship type whose source object
type is MODULE and whose target object type is TABLE

The Development Facility Approach 237

1---1
I Table Coluan Column I
1 Name Name Description I
---1

OBJTYPE OTNAME Name of object type I
DEPENO Is this a dependent otype I
CLASS Name of object type class 1
DESC Description of object type I

ATTRTYPE ATNAME !fame of attribute type 1
OTNAME Name of object type
ATYPE Domain set of attribute type
LENGTH Max_ length of attr. value
NO~VAL Max. number values allowed
USE Is attr. required
DESC Description of attr_ type

ATTRYAL ATNAME Na~e of attribute type
OTNAHE Name of object type
CODE Code for attr. value
VALUE Attr. value for code

RELTIPE SOTNAME Name of source object type
RTNAME Name of relationship type
TOTN~ME Name of target object type
CRTN'~E Name of complementary rtype
DEPEND Is this a containment rtype
CONN Connectivity of rtype
DESC Description of rtype

1---
Figure 3-Description of meta tables

might be USES TABLE. The columns of the meta tables are
entered by using the facilities of the meta definition subsys
tem. Information in the meta tables is summarized in Figure
3. This subsystem allows for the initial loading of the meta
definition and provides facilities for subsequent changes. The
current meta tables contain about 20 different object types, 30
attribute types, imd 50 relationship types.

The second type oftables in the SDF database are the target
system tables. These tables store information about the actual
objects making up the system. The tables are of a general
nature. One table stores information about objects, three
tables store information about attributes for objects (integer,
character, and real), and one table stores information about
the relationships defined. The columns for these tables are
summarized in Figure 4.

1---I
I Table Column Column 1
I Name Naae Description I
1---
I OBJECT OTRAME Name of object type
I SISTEft Name of development system
I ONA~E Name of object
I CHOATE Creation date of object
I INTATTR SYSTEM Name of development system
I ONAME Name of object
I OTNIIIE Name of ob ject type
I ATNIME Name of attribute type
I DONIKE Dependent object name
I VAL Value of ~nteger attribute
1 CHARATTB SYSTE." Name of develop.aent system
I ORUtE Name of object
I OTRAME Name of object type

DOHAKE Dependent object name
CODE Code for attr. value
VAL lttr. value for code

HEALATTR SYSTEM Name of development system
ONA~E Name of object
OTRAME Name of object type
ATRAME Name of attribute type
DONAKE Dependent object name
VAL Value of integer attribute

REL SOSYSTEM Name of source object system
SOTNAKE Name of source objetc type
SOHAME Name of source object
HTNAME Name of relationship type
TOSYSTEK Name of target system
TOTIPE Name of targer object type
TONAftE Name of target object

1---
Fig~re 4-Description of target system tables

238 National Computer Conference, 1981

----------------------~-----------------------------------I
PLEASE SELECT DESIRED DEVELOP~~NT FUNCTION I
design I
PLEASE ENTER DTO:SIGN FUNCTION TO BE PERFOBMED I
~~ 1
THE FOLLOWING CO~l'1ANDS MAY BE ISSUED AT THE DESIGN LEVFL:

DEFINE - DEFINE A NEW OBJECT OR NEW INPORl'1~TION AROUT
AN EXISTING OBJECT.

DROP - DROP AN OBJECT AND ALL ITS INl"OBI1A'l:ION.
CHANr.E - CHANGE INFORMATION ABOUT AN OBJECT.
DELETE - DELF.TF. INFOR~ATION ABOUT AN OBJECT.
RETqRN - RETURN TO DEVELOP"ENT LEVEL.

PLEASE ENTER DESIGN FONC~ION TO BE PERFORMED
define
ENTER INPUT FILENA~E (S). OF-FAULT IS TERMINAL.

PLEASE ENTER OBJECT-TYPE TO BF. DEFINED
help
THE FOLLOWING OBJECT TYPES "AY BE DEFINED:
EXEC
EXECPARl'1
PROGRAl'1
!toDULE
l'10DPARl'1
DATABASF
TABLE
COLUMN
VKACHINE
VDASO
SYSTE!'I

PLEASE ENTER ODJECt-TYPE TO BE DEFINED
module
PLEASE ENTER NA!'IE OF KOOULE
abc

I
1
I
I
I
J
I
I
1
I
I
I
I
1

"ODULE HCKS ABC : ADDED . 1
1--1

Figure 5-Using the design function (novice user)

Information is entered into the target system tables via the
design function of the construction subsystem. The design
function is driven by the meta definition described earlier.
The software designer describes his design by using a rela
tional language similar to PSL 5 • Language statements are
grouped into sections, each of which describes information
about a particular software object. Statements may be entered
in batch or interactively. For a novice interactive the user
system prompts for all portions of the statements and provides
extensive HELP facilities if needed. For the more experi
enced user the prompts may be eliminated by entering the
entire statement. Figure 5 shows an example design scenario
for a novice user of the design function. The same design
information could be given by an experienced user, as shown
in Figure 6.

As the software designers enter information via the design
function, they also use the facilities of the reporting function
to look at, analyze, and summarize the design. The use'r has
access to the information via a high-level query language and
via a series of canned parameterized reports. Figure 7 shows
an example scenario requesting a calling structure report.

Once the design of a software object is complete, the con
struction function is used to develop its code. Currently code
may be generated for objects of type table and module. Table
code is in the form of SQL create table statements. Module
code generation is done on a specific application-type basis.
All code generated is PL/I or PLII with embedded SQL state
ments. Complete code generation is performed for modules
whose only function is to perform database interaction. Par
tial code generation is performed for modules that perform
full screen 110. To do this the analyst defines a screen layout
of USDF and identifies the attributes of its items. A complete
module to test the screen is then generated, and further pro
cessing enhancements are made by the programmer. When

I----------------------------------~---------~-------------1
I PLEASE SEL RCT DESIR ED DEVELOP"ENT FOMCTION 1
1 design 1
I PLEASE ENTER DESIGN PUNCTION TO BE PERPORl'1ED 1
I define mod ule abc I
I attr language PL/I 1
1 rel calls xyz 1
t---------------------------~~-----------------------------1

Figure 6-Using the design function (experienced user)

necessary, the code is completed by the programmer by using
the ENHANCE function, which turns control over to the
system editor. After the code is completed, the COMPILE
function is used. This function automatically selects the prop
er set of transformations to be executed to produce the re
quired object code. For example, all System R modules are
run through a preprocessor before going to the PLlt compiler.
All transformations that do not require interactive input from
the user are performed in batch under the control of the
system services subsystem. The program performing the con
struction function sends a message to the virtual card reader
of a special control machine, which then autologs one of
several available task machines to perform the function. The
original source code is obtained from the originating user via
a DASD link. Messages are sent to the liser about the
progress of the operation. During this time the user may be
doing other construction functions, such as ENHANCE.
When the operation is complete, the results are distributed to
two locations. All useful code from the operation is stored in
the appropriate code library. Any error messages and return
codes are sent to the originating user's virtual card reader
when they may be examined by using the CHECK function.
Figure 8 shows the architecture of the system services sub
system.

The current implementation of USDF has not addressed
several of the areas discussed in the section "A Generalized
SDF Framework." The testing and implementation functions
remain to be developed, along with enhancements to the man
agement subsystem, which currently maintains a record of all
development functions performed on software objects. USDF
has, however, been used in its current form for the develop
ment of several software systems, including its own develop
ment, with encouraging results.

The largest project to use USDF to date has been the devel
opment of a fairly sophisticated animal management system.

I---------------------------------~~-----------------------
1 PLEASE SELECT DESIRED DEVELOPi!ENT PUNCTION
I report
I PLEASE ENTER TYPE OF REPORT DESIRED.
I stru
1 ENTER OOTPOT PILENA~E(S) FOR STRU. DEFAULT IS TER~INAL.
1 ENT!R LEVEL 1 OBJECT NA~R.
1 gdf
1 ENTER RELATIONSHIP NAI!E.
1 calls
I STRUCTORE REPORT POR RELATIONSHIP CALLS
1 SYSTE~ NAl'1E = HC~S
I 1 GDF
I 2 S16
I 2 GETID
I 3 CC.ID
1 2 BEGTBAN
1 2 ENDTRAN
t 2 SIERROR
I 3 RESTRAN
I 2 SYS.CLEAR
I~-----~--------~---------------------------~-------~------

Figure 7-Example structure report

1==-1
II I I I I
11 1 I I 1
II ******* ******* ******* 1
" * * * * * * I
II ******* ******* ******* , I I
II I usH I I usdf I I usdf 1 I
II Ilibraryl Ilibraryl Ilibraryl 1
II * * * ___ * * ____ * I
II I
II < dasd link 1-------------------1 dasd link> I
II I usaf I 1
II -----1 system 1----- I
II I· I monitor I I I

1--------1 I 1-------------------1 I 1--------1
I user 1 1-----1 1-----1 task 1 I
1--------1 I I 1--------1

II I 1 1/
II I < dr/pun 1 II

1--------1 1 links> 1 1--------1
1 user 2 ~-----I 1-----1 task 2 I
1--------1 1 ******* 1 1--------1

II I * * I 1/
___ ~~___ I 1 **.****1 I II

I I 1 I usdf I 1-----1--------1
-I user n 1-----1 I DB I ---------------1 usdf I
1--------1 *----- * 1--------1

Figure 8-System services subsystem architecture

Data about the animals is maintained in a series of System R
tables. Reports directing the activities of the animal care
takers are produced daily. As the activities are performed,
data of interest are recorded on the report and later entered
into the database by the caretakers, using formatted 3270
screens. The system was developed by two individuals (an
alyst and programmer) using the current methodology of
structured design, structured programming, and walk
throughs. The system consists of approximately 15K lines of
PL/I code distributed into some 100 modules. The design
information consists of data about 300 software objects and
their attributes with nearly 2000 relationships defined be
tween the objects. The USDF code generation facilities were
used extensively for database interaction and screen proces
sing modules. An analysis of the code for the entire system
shows that approximately 45% of the code was generated by
USDF. This together with the disciplined development ap
proach has resulted in a minimal number of postimplementa
tion changes (five in the first four months). Mean time to
make a change was 15 minutes using the facilities of USDF.
Development data from the project were compared to several
other in-company projects of similar scope. These are sum
marized in Figure 9. The projects ranged from 15K to 25K
lines of code. Person-hours per line of code ranged from .14
for the project using USDF to .39 for the average of the;
non-USDF projects. It is also interesting to note that the use

The Development Facility Approach 239

1--1 1 Aniaal Project Project Project I
1 using USDP X Y I
1 I
1 Lines of code 15,000 19,000 25,000 I
1 I
I ftan hours per line of code .14 .42 .36 I I 1
I 370/148 CPU sec. per line 13 19 I
I of code 1
1--1

Figure 9--Development data comparisons

of USDF did not take more computer resources (13 sec'/line)
than a non-USDF project (19 sec'/line). This may be due to
a situation where the USDF overhead is compensated for by
a reduction incompilation and testing time requirements.

CONCLUSION

Upjohn's overall experience with the use of USDF has been
favorable. Programmers are able to begin using the system
with only a cursory overview. They are especially pleased to
learn that documentation is a natural by-product of using
USDF and that they will not be required to produce additional
paperwork. We have found it an easy task to define new
object, attribute, and relationship types as needed. Further,
since USDF is defined within itself, the tasks of making en
hancements, adding new tools and new features, and correct
ing bugs have not been a problem. Future plans fot USDF
include enhancements to the testing and management areas,
the addition of a database design tool, and its use on a larger
project. It is expected that as usage of the facility increases,
future systems will be better able to take advantage of past
efforts and thus show additional productivity improvements.

REFERENCES

1. "Proceedings of a Conference on Application Development Systems."
DATA BASE ACM (Winter-Spring 1980). -

2. "Programming Work-Stations." EDP Analyzer (October 1979).
3. Dolotta and Mashey. "An Introduction to the Programmers Workbench."

Second International Conference on Software Engineering. October 1976.
4. Chamberlin. D. System R: Relational Approach to Database Management.

San Jose: IBM Research. 1978.
5. Teichroew. D. T. PSL Language Reference Manual. The University of Mich

igan. The ISDOS Project. March 1980.

CARL-Experience of an application using clusters

by E. LEVINSON, L. S. LEVY, and J. B. SALISBURY
Bell Laboratories
Whippany, New Jersey

ABSTRACT

A medium size application program (- 45,000 lines of source
code) was developed using a modular design and Liskov's
clusters as the main structuring data mechanism. We discuss
the implications of this approach to the overall software devel
opment, including the supporting abstractions and software
tools needed.

DEVELOPMENT CONTEXT

The CARL programming project was undertaken in a devel
opment context where the following constraints applied since
the program being developed was part of a larger set of pro
grams. The following constraints applied: First, FORTRAN
IV was required to be the official source code and moreover
the source code had to be portable to a number of different
computers. Second, an existing library of graphic subroutines
and character manipulating subroutines were already avail
able within the larger program set. In view of these constraints
the development was undertaken jointly using the following
machinel operating system combinations: PDP-H, Honeywell
60001 GCOS, IBM 3701TSO, IBM 370 ICMS.

Programs were written initially either on the PDP-II under
the UNIX* system5 or on the Honeywell time-sharing system.
Under the UNIX system all of the UNIX tools were available
for software development. Additionally, communication facil
ities were available to transport programs between these two
machines. Source code was in RATFOR, a FORTRAN pre
processor language, facilitating structured code. The IBM en
vironments were used primarily for testing portability once
the programs had run in the Honeywell environment.

THE APPLICATION

The application for which this program was developed is the
computer production of administrative route layouts (ARLs).
ARLs are used by engineering personnel to plan the most
effective arrangement of the outside plant, i.e., the cable net
work connecting the central office switching equipment to end

* UNIX is a trademark of Bell Laboratories.

241

users. Essentially, ARLs summarize the information required
by planners and present the information in a form which more
directly relates the outside facilities to specific end use loca
tions. An illustrative ARL is shown in Figure 1.

The information· presented in the ARLs is obtained from
plant location records (plats). An example plat, correspond
ing to the ARL of Figure 1, is shown in Figure 2. A plat is a
map showing the location of vaults (manholes), the cables
connecting these vaults, the distances between the vaults, and
some information on the types of equipment and inter
connections.

The transformation of plats to ARLs is effected by
the Computerized Administrative Route Layout Program
(CARL). Input to the program is from worksheets sum
marizing, in list form, the relevant data from the plats. These
data are checked for consistency and connectivity to ensure
that each cable pair has a unique path connecting it to the
central office. Additional computations are to determine

1. for any vault, the minimum and maximum lengths of the
connections back to the central office;

2. if the network is considered as a directed acyclic graph
(dag), what is the direction to be associated with a cable
running between a pair of vaults----called the flow;

3. information such as change of gauge in a cable, splicings
between cables, and the presence of other equipment as
shown on the plat.

The CARL program, operating on the data in the worksheets
obtained from the plats, transforms these data, performs the
auxiliary computations summarized above, and generates a
sequence of output commands to a computer output micro
film (COM) device which generates a 35 mm negative of the
ARL.

To appreciate the nature of this transformation, let us
examine one of the cable vaults in some detail. Figure 3 is an
enlarged drawing of a portion of Figure 2. To the left of vault
4 in Figure 3 you can see three sheaths (physical cables) enter
ing the vault. The top one contains 2,100 pairs which are
labeled 1,1-2100 (cable 1, pairs 1 to 2100). Inside the vault 100
pairs, the ones numbered 2001 to 2100, are spliced to the
sheath that goes out along DANKO DRIVE. (If you were
driving along this street you would see these 100 pairs as a
small black cable strung along utility poles. (There are 300

242 National Computer Conference, 1981

ADM I N IS TRA T I VE ROUTE LAYOUT
CABLE ORIENTED DISPLAY

ROUTE - EAST-2
I·IIFF. CHHER- BRENTVIl LE
LLL! - BRNT-NJ-Ol

BRE~TVILLE ROUTE 2 EXCEPT FOR POLE RUN DOWN
8.';fER ST AND ROSS t.vE

E.AA ASGN DH SPARE

256 13 26

Ii'I 13 116

136 9 5')

150 10 40

24 10

47

.. 3

115 '.
71 25

~I

3~ 16

lLl7 84

141

22 27
43
48

179 11 110

61 35

75 20

45

46

-

SUBROUTE
EFRAP SECTION
MANHOLE IPOLE
PLAT
MAX KFT TO CO
MIN KFT TO CO

CABLE

a:
UJ
CL

~

....J
«
a:
UJ
>-
~

COUNT

300

301 600

601 300

30 I 1000

100 I 1100

1101 11')0

11')1 1 :'00

1 :'01 1 ~OO

140 I 1')00

1)0 I 1')')0

155 I i600

1601 1 ~OO

1801 1950

1951 2COO

2001 20')0

2051 2100

2101 2400

240 I ;')00

L 50 i 2600

2601 26,)0

2h51 2700

-

(1) I (2) (3) (4)

aUENSE AVENUE
2101 ~102

lAPL 1 lAPL2 lAPL. lAPLI
0.7 1.3 :'.0 2.7
0.1 1.3 Z.O ~.7

(~~) . .

c:.'t.) , I

(16" ,

c':'" •

(:6)' •

(.:"6)' I

<16" I

C>

:z

I
L

o ,-

(5)

2i03

lAPU
3.4
3.4

(6)

6
lAPL:'

4.0
4.0

~

>-
co
3:

~.---.-r-------+-----4--------~----~--~
(~)I •

I Zo ,

CZtoll I , '. -,

<I.'" I

I(ll)' • 6

l(lV' '4o

(26)' t. '(lZ)' ' ...

, ,.

(7)

2'04

lAPL:'
4.6
4.6

~ :r-J:r..-,
{ 0:0:0

C:;:6:6
~;~;~

,n
r.J

~
I
....J
« ,..... ;r C>

>- 0 ;; a: ~ ::::J >-
8 <J) L I

L
>- a:

;2 UJ UJ L
LJ co ~ « ~ ::::J

LJ u..

I (~4)

'(:.'4)

'(:.'4)

'(,:'4)

'(:.'4)

' C:.',,)

'(24)

,- ,

.:...,' ,-.
. -,

--
Figure I-Example administrative route layout

pairs in the cable, the 100 numbered 1,2001- 2100 and 150
pairs numbered 2,1651-1800.) The cable would appear to end
(start) at the'corner of Danko Drive and the cross street. You
would see a vault cover somewhere near· this intersection.
There is probably a telephone company truck parked right
next to itJ .

These 100 pairs, 2001-2100, appear in the route layout
(Figure 1) as two lines. There is a big dot on these lines in the
column labeled DANKO DRIVE. This is under the heading
numbered (4) at the top. The other subcolumns represent
other details of equipment located at this vault.

The vaults are ordered linearly, as specified by the user.
When pairs coptinue on to non-contiguous vaults a symbol
and labeled column are automatically inserted. This occurs to
pairs 1 to 1,500 of cable 2 which leave the top of vault 2 and
go into vault N101 ~hile the linear display continues with vault
3 (Figure 1).

In Figure 1 the horizontal rows are ordered by cable name
and pair. CARL can also order them by displayed line length.
This ordering is used by the Telephone Engineer to identify
and group together those pairs which serve specific areas.
Another ordering is available too. This one is based on the

administrative area designation shown in the leftmost colu,nn
(ALLOC AREA).

ARCHITECTURE

The CARL architecture had to meet three objectives. The
system was to be segmented so that several people could build
it, working simultaneously. We wanted to produce results
actual drawings-as early in the development as practicable.
It was important, so that we could pass the maintenance on to
others, that simple application processing could be expressed
by simple, clear code.

M odularization

Segmenting the system implies modularization.2 The crit
ical question is "Modularization with respect to what?" For
modularizing the data, we chose to use the input worksheet
organization and the output data areas as the basis*. The data

* The similarity of this approach to the Jackson design methodology is apparent.

ZW
<{~
Wa:
00

LnO
1'0
oo:tl'
NN

TO
LEVY
INTL
AIRPORT

664'
ADTC - 27

<{
.....J
.....J
LU 0 a: 0

Ln
0 N

~LU u;)

a:> I' oo:t
Oc:{ N

~
M'

CARL-Application Using Clusters 243

N101
0

Lno u;)0
'-0 .-~

,N . 'Ln
(cU' LnU'-

~:E' ~~o
0'-. Oeo
«N «

M'

732'
625'

ADTC - 21
ADTC - 21 1,1 - 2050
1,1 - 2100

1--.._+----........... ___ -- 1,1 - 2400 --. __------i-+--

3,2401 2700

2

300 X DO

665'
ADMC - 15
2, 1 - 1500

666'
ADTC 27
3, 1 - 2700

RUDNICK
ROAD

2,1501 1700

3,2450 - 2500
RICS

3

732'
ADMC - 15
2,1 - 1500

732'
ADTC - 27
3,1 - 2400
100 X DO

3,2501 - 2525
175 X DO

@2,1 200
276 300
301 - 350
451 500

A,2051 - 2100

624'
ADTC - 18
3,1 - 1650
PG4,l - 96

4 X DO
B,1751 -1800

LU 00
00

> 00 Ln
N.- N

a: Lnu;)

0 o~
N m

0(0

0 N 0
.... M Ln~

~ N.C!)

Z
MQ..

tt <{
~

0 2=>
-0

Figure 2-Example plat corresponding to Figure 1

from each worksheet was stored in its own table or group of
tables. (A table is a specialized form of list-see below.) For
example, the Subroute worksheet (Figure 4) became the SR,
SEF, and EFX tables. The data in each table corresponds to
the SUBR, SUBS, and SUBC and SUBF records on this
worksheet.

The division into tables was based on compactness,hier
archical relationship, and homogeneity. The above example
looks deceptively simple but a great deal of effort was spent
to insure that the way we separated maintained the integrity
of the application's concepts and entities.

In the output separate tables contained the horizontal and
vertical organization of the route layout, the content of the
row display area, and the content of individual aperture
frames. Complementing this data modularization was a con
trol modularization. This separated the process into several
transformation and processing steps.

The division of the system into tables and transformations
permitted staff members to code transformations and store
the results independent of others. Where procedures commu
nicate, the tables definitions defined the interface.

The modularized data structure allowed us to commit our
resources to the central problems and defer features which
were required but peripheral to these problems. In CARL the
critical function was interpreting the data on the Cable Work
sheet and drawing the display data for each output row. Later

we added various consistency checks within and across work
sheets, additional connectivity related worksheets, the entire
connectivity analysis, additional display rows for special
cables, a procedure which merged display rows and recom
puted the symbols, and a length calculation based on vault
connectivity instead of cable connectivity.

An additional benefit of this approach was that design prob
lems were discovered early before they had accumulated
layers of additional application code and when the problem
could be solved instead of patched over.

Table Clusters

It was clear as soon as the architecture was established that
the tables required special attention. They played a central
role in defining the interface between processes and between
people. Any error or misunderstanding would be propagated
throughout the program.

Our emphasis on modularity with respect to the input data
enabled us to use a data abstraction mechanism similar to
CLU's cluster. We called them table clusters. They permitted
us to create a simple, well-defined interface and minimize
misunderstandings about the contents of the tables.

A dictionary was essential. It contained the names of all the
tables and their fields. A sample entry is shown in Figure 5.

244 National Computer Conference, 1981

.
N101

732'
_ ADTC . 21 --t---...~t+---I--

1,1·2100

625'
ADTC·21
1,1·2050

A,2051 ·2100
732'

- ADMC . 15 - --~

3,
1·1650

1801- 624' 2,1·1500

732'
ADTC ·27
3,1·2400
100 X DO

3,2501 ·2525
175 X DO

® 2,1·200
276·300
301·350
451 ·500

"'2-4-0-0-1-- ADTC ·18 -
3,1 ·1650
PG4,1·96

W 8g
> N~ a: ' I _ OW;
~ 0-0

o ~;:;'
~
2
<l:
o

4X DO
8,1751·1800

SLC96 -1

Figure 3-Section of plat for vault 4

This table, SR, contains three fields: position, name, and
seLlist. Each field is followed by its type, length, and prose
description. We used four types: integer, character, index to
another table, and logical. Field lengths were given in words;
for character strings the maximum length was also given.
(Character strings were stored left adjusted and padded with
blanks.)

The field domains were enumerated or otherwise specified
whenever necessary. The domain specifications were symbolic
and no attempt was made to reduce them or the field names
to constants. This reduction was performed by the RATFOR3

preprocessor. Constants appearing on input worksheet were
used. This provided a direct, documented link between the
input data and the internal data structures.

Each table cluster also included a dump routine. This was
used during development to verify correct program operation.
After deployment, these dumps were used to debug the appli·
cation code. Figure 6 shows a sample dump.

References to the tables appear throughout the application
code. These are mostly function and subroutine calls with
field names and values as arguments. To produce clear, read·
able code required names that were descriptive, not merely
mnemonic. To insure consistency and to aid the reader we
used the following conventions.

1. All field names (attributes) were written in lower case
and prefixed by the containing table name in upper case
(e.g. LILlow_pair)

I SUBN

I suac

5

Subloute
Number

CARL SUbrQUte Worksheet
IIlcluclil au JUbrOIIta· \1M CII ma:D1' m .. ts GI DHdecl

___ 01_-

Name (20 characters maXimum) ----

EFRAP MCtlonsin the 1Ubro\de, IDOIIiIIg awar from tbII Ceata:d om.:. (4 digits each. separated by COIDDla.)

All EFRAP sections. outside the subroute, at itt central omce eDd (4 digits each. separated by COmIDGI)
Ent.! CO··U,ul:ITout.llc:onnee1.cld1rectlJloCO

All EFRAP secUom, outl1d.. thesubroute. at ita aeld.(or feD) eDd (4 dig-liS each. separated. by commas)

Figure 4--CARL subroute worksheet

2. Subroutines performing operations were named
< operation> _ < table name> (e.g. set_LK)

3. Functions retrieving field values had the form
< type> value_ <Jield name> where type was I (int)
or L (logical) (e.g. Ivalue_LILlow_pair)

4. Subroutines retrieving these values had the form
value_ < table name> « field name> , ...) (e.g.
value_LK(LILlow _pair, ...)

5. Some function names were chosen with an eye towards
how they would appear in code. The membership attri·
bute was written member_ < table name> so that an if
statement, where it most often appears, would read
naturally-if (member_LK(key, ...)) ... Similarly, the
iteration control forms for (i = first_LK(...); cond;
i = nxt_LK(...)).

Table Cluster Design

Each table cluster was implemented as a special case of a
generalized table. This permitted us to address two problems
without affecting the cluster's code. We wanted to protect
ourselves from the underlying generalized implementation.
(For simplicity, we chose a linear linked list.) If this proved
too slow it would be changed. This way the change would be
localized. In addition, we wanted to avoid fixing the sizes of
each table. To do this within the confines of FORTRAN we
implemented the generalized table with a paging scheme. This
also permitted us to control the amount of memory the table
cluster used.

Under this architecture the application code becomes a
series of transformations: from the input string into tables,
from one set of tables to another, and from tables into a string
of graphics command.

IMPLEMENTATION

Application Code

The success of this modularization depends on separating
each table's implementation from the application code. This
was done by implementing each table as an independent
CLU·like cluster.! All operations on, and access to, table
elements and fields were via the table cluster. The application
code needed only the element's index and the field's name
table to retrieve it. A cluster's subroutine and function names
and the RATFOR INCLUDE file names required to use them
were created using a very restricted syntax:

< subr-name > :: = < operation> _ < table-name>
[_ < field-name>]
< INCL-file > :: =
< table-name> defs
/*name translations * /
I < table-name> dcl
/* type declarations * /

Liskov1 identifies four types of externally known pro
cedures in a cluster: operations, attributes (field names), iter
ators, and exception handlers. Our clusters contains the first
three. Exception -handlers were not built for two reasons.
First, FORTRAN's exception handling mechanism is prim
itive or non-existent and a mechanism which works in one
operating system is not likely work in another. Second, the
type of exceptions likely to occur (invalid index, table over
flow, an attempt to reset a key field, and an attempt to create
a duplicate key) permitted only one course of action-STOP.
For the last two the cluster wrote an appropriate message and
halted. The table overflow problem was side-stepped with a
virtual storage allocation scheme. The first exception was ig
nored, without serious consequences.

Separate implementation of each routine for each cluster
would be a tedious and error prone task. Instead an abstract
table data-type was defined. This datatype dealt only with
records (table elements) and their keys. All references to the
table dependent fields were eliminated. Knowledge of how
the records were linked to one another was contained within
the cluster which implemented the abstract table. In our im-

Table name
SR

Key length
1

Field name Type Length
1 position int

name
seLlist

char (5,20)
index(sef) 1

Description
The master list of ordered

subroutes for the route
database. These data are
derived from the SUB
ROUTE worksheets.

The position of the sub
route as it is to be shown
on the route layout output.
Position 1 is the leftmost
position in the display re
gion of the route layout.

The subroute name.
Pointer to the SEF sub

list of ordered EFRAP sec
tions associated with the
subroute.

Figure 5-Sample Data Dictionary Entry

dump of SR
867>
875>
883>
891>
899>

1
2
3
4
5

PRENTISS
ROBERT E. LEE
WEST END
PARIS
HARRISON

Figure 6--Dump of SR Table

1155
1164
1185
1194
1212

CARL-Application Using Clusters 245

plementation the tables were stored as simple linked lists. A
table index was the virtual address of the first word in the
record.

We used a virtual storage scheme for the abstract tables
because there were no reasonable limits for the table sizes.
Furthermore, with the virtual storage scheme we would not
have to manage the individual table limits. The table overflow
problem disappears from the clusters and reappears in the
storage manager. Here it becomes easy to alter the limits by
changing the size of secondary storage used to store swapped
out pages.

This design successfully hid the details of a table's imple
mentation from the application code. In fact, the imple
mentation details were hidden at different levels.

Level
Application

Items known at this level
Field, attribute, operator, iterator

names and indices
Clusters Location of a field in a record and

the key fields
Table handler Record size, keyfield location,

record linkage mechanism, and
virtual addressing

Virtual storage Location of each word in virtual
storage and the virtual storage
size

All of this careful structuring effort described above has
only one purpose: The application code only should contain
application related objects and application related processing;
all the rest must be hidden. The. following example shows
application code which could generate a table describing the
drawing's heading-the ordered list of cable vaults. The input
data comes from several· worksheet and is hierarchically
organized. The Sub route worksheet orders the subroutes
(highest level) and the elements within the Subroute. This
data is contained in the SR (Sub Route) and SEF (Subroute
EFrap) tables. The cable vaults within each EFRAP section
are ordered on another worksheet and are contained in the
EVA (Efrap VAult) table. These tables are scanned with
nested loops. The innermost loop adds the current vault to the
list for the drawing's heading, the OV (Ordered Vault) table.
The vaults are numbered and this number is the key for the
OVelements.

nOV = 1
for

(iSR = firsLSR(eoSR); !eoSR; iSR = nxLSR(iSR,
eoSR)

{# for-all sub routes
iSEFp = Ivalue_SLseLlist(iSR)
for (iSEF = firsLSEF(iSEFp,eoSEF); !eoSEF;

iSEF = nxLSEF(iSEF ,eoSEF»
{# the intermediate
iEF = Ivalue_SEF _ef(iSEF)
iEVAp = Ivalue_EF _evLlist(iEF)
for (iEVA = firsLEVA(iEVAp,eoEVA);

!eoEVA; iEVA=
nxLEVA(iEVA,eoEVA))

246 National Computer Conference, 1981

{# for-all vaults in this EFRAP section
iVA = Ivalue_EV~va(iEVA)
call append_OV(nOV,

ONE_WORD, iOV)
nOV=nOV + 1

.. . code ...
} # (EVA)

} # (SEF)
} # (SR)

This sample code demonstrates that the benefit of information
hiding and abstract data types can be achieved in FORTRAN
based production programs.

Table Clusters

Information exchange between table clusters and Troutines.
The generalized table handling routines, called T routines,
provide services to the customized cluster routines. The T
services are

• get-T
• put-T
• init-T
• search-T
• insert-T
• first-T
• next-T

The details of these T services need not concern us for the
moment, nor the particular parameters used in the service. A
service can be either a FUNCTION subprogram or a SUB
ROUTINE subprogram (in FORTRAN terminology).

The essential point is that T services are general table
handlers which work on pages in virtual memory, and the
table parameters are passed to the T handler (possibly by
pointing to a header in which the table parameters are
defined). Therefore, any new clusters required by an applica-

SUBROUTINE create~X(segment)
INCLUDE XXenv
INTEGER segment
INTEGER the_key_Iength; the_elemenLlength
LOGICAL found

XX-modified = .FALSE.
XX-ndx = NIL_index
DO i = 1,3

CALL move(, ',I,XX-bks(i),1,4)
the_elemenLlength = 3
the_key_Iength = 8
CALL DIRget('XX " segment, found, XX-bus)
IF(!found)

CALL iniL T(XX-bus(1), 'XX ' ,
the_elemenLlength, the_key _length,

T _structure_simple, segment)
RETURN
END

Figure 7-A typical cluster routine

SUBROUTINE create_tablename(segment)
INCLUDE tablenameenv
INTEGER segment
INTEGER the_key_Iength, the_elemenLlength
LOGICAL found

tablename_modified = .FALSE .
tablename_ndx = NIL_index
DO i = 1, bufferlength

CALL move(' ',I,tablename_bks(i),l,4)
the_elemenLlength = bufferlength
the_key_Iength = charkeylength
CALL DIRget('tablename ',segment, found,

table name_bus)
IF(!found)

CALL iniL T(tablename_bus(I), 'tablename
the_elemenLlength, the_key_Iength,

T _structure_simple, segment)
RETURN
END

Figure 8-A typical template

tion can obtain a T service by supplying the appropriate
parameter.

What T services do not (and cannot) do is deal with the
contents of any table element.

What cluster routines look like

Figure 7 shows a typical cluster routine to initialize the XX
table. This routine is particular instantiation of a more general
template shown in Figure 8.

The template in Figure 8 is customized to the routine of
Figure 7 in various ways:

• XX is substituted for the tablename.
• The values of some parameters of the XX table are

substituted for generic parameter names bufferlength
aJ1,d charkeylength;

• Subprograms at the T level are used, with appropriate
parameters.

In more complex cluster routine generation, the routine
generated depends on both the type and size of the fields of
the elements in a table. The data associated with a given table
which describe the field parameters are stored in a data dic
tionary.

THE CLUSTER GENERATOR

The basic principle on which the cluster generator works is the
substitution of specific values for parameter names in the
templates. The specific values for all pa!ameters are stored,
directly or implicitly, in a data dictionary. A typical entry in
the data dictionary is that of the XX table shown in Figure 9.

The global structure of the cluster generator is:

for each table in the dictionary
for each routine required in that table's cluster

if the routine depends only on properties of the
table

{substitute table parameters and add the
routine to the table cluster}

if there is a separate routine for each field
{for each field in that table substitute table

and field parameters and add the routine to
the table cluster}

if there is only one routine but its construction is
field dependent

{calculate the field dependent portion and
add it to the template;

substitute table parameters in the
modified template and add it to the
table cluster}

The cluster generator makes use of sed, the UNIX stream
editor, which does the parameter substitution for the tem
plates of the cluster routines. The cluster generator also adds
needed definitions and declarations to auxiliary RATFOR
files.

Experience with the Cluster Generator

The cluster generator has been used in CARL program
development to produce all of the 36 clusters and associated
declaration and COMMON files. Currently run on a PDP
11170 with the UNIX operating system, the cluster generator
produces 36 modules, one module for each cluster and its
associated files, in· approximately four hours. (The cluster
generator can run unattended in off hours.)

It is clear that the major objectives of the cluster generator
described above have been realized. Extensive testing has
provided a high degree of confidence in the correctness of the
clusters, which are a significant portion of the overall source
code. Many of the tables required in the program were not
defined until relatively late, and the cluster generator made
the development of the associated software very simple. Final
ly, in the process of tuning the system the set of templates was
modified and significant performance improvement obtained.

An additional advantage of the cluster generator that was
not anticipated is the benefit of having "standardized" soft
ware. The RATFOR environment on which the programs
were initially tested included a CASE statement, but other

tablename = XX
routines = add create append set value Ivalue Lvalue member

first nxt fetch
type = s
keylength in words = 2

fieldname = v~l
datatype = x(VA)

fieldname = va 2
datatype = x(VA)

fieldname = pairs
data type = iO

Figure 9-Data dictionary entry for the XX table

CARL-Application Using Clusters 247

RATFOR environments to which the program had to be
transported did not include the CASE statement and it had to
be replaced by an equivalent computed GOTO. It was a rela-
tively simple matter to pipe the output of the cluster generator
to a filter which replaced the CASE statements by their equiv
alents.

EXPERIENCE

The initial version of the completed program, consisting of
- 45,000 lines of RATFOR source code was developed by five
programmers in approximately 30 programmer/months for an
effective productivity rate of -1,500 lines/person/month.

When the initial version was substantially functionally com
plete, performance tuning was begun. The performance
tuning was facilitated by the layered abstractions used in the
implementation. The application code was kept intact but the
supporting cluster routines were modified in several ways.
First, the most heavily used clusters were rewritten to avoid
the paging overhead imposed by the virtual memory and gen
eral table management routines. Second, buffering was added
to the remaining clusters to minimize these same effects in
general. Third, the way that empty tables were handled was
modified. The net effect of these three changes was to in
crease performance by a factor of 4. Additional gains of an
other 25% through the use of an optimizing compiler have
been estimated based on trial compilations of portions of the
code.

It is generally claimed that the value of abstraction in pro
gramming is that it hides implementation details, allowing a
more efficient implementation to be easily substituted if need
ed. This result was realized by the combined modularization
and data abstraction design. A good example of this is the
buffering used for table elements. In the_ initial imple
mentation, an element being updated would be -brought into
a buffer where several fields could be updated, and then the
element would be written out to the virtual memory. With this
explicit buffering scheme, an unnecessary write might occur if
the next element needed is the one just written. (In compilers,
this type of event is eliminated by a peephole optimization or
equivalent. However, in this application there is no way to
know whether the element should be wt:itten out until the next
element is selected.)

The buffering scheme was changed as an optimization after
the program had been tested, so that any element to be exam
ined is brought into the buffer. There are individual buffers
for each table. Elements are not written from the buffer unless
they are modified, and they are not written until the buffer is
required for a subsequent retrieval.

The change in the buffering scheme was validated by regres
sion testing, and yielded a measurable improvement in per
formance for negligible programming effort. (Only the tem
plates of a few cluster routines had to be revised-the code
generator produced the updated code for the 35 clusters.)

The set of development tools was a nice complement to the
underlying abstract design. UNIX she1l6 programs were used
for both the cluster code generation and the error routine
formatting as described above. The time sharing system on
which the code was initially tested provided useful symbolic

248 National Computer Conference, 1981

tracebacks, and symbolic dumps of the tables were written to
allow inspection of intermediate results. These two items
the calling sequence alld the top-level data structures-were
generally sufficient to diagnose any problems. We have de
scribed above the multiple system context that was used for
program development. Although we were aware from the
beginning of the project that portability of the program was a
constraint, we had some portability problems-source code
that worked on one system but not another.

One method of attacking these problems was to run the
source code through the PFORT verifier. The PFORT verifier
is a two-pass program. After the first pass, it lists any
FORTRAN constructs in the program that are not acceptable
to all the compilers that PFORT knows ,about. The second
pass checks the correspondence between subprogram defini
tion and usage. Although there are compatibility problems
that can be detected only on the second pass, it is costly to run
and suitable for running primarily when the program has been
completed. Thus the second pass was not appropriate for
program development. Furthermore, PFORT deals only with
FORTRAN incompatibilities. In fact, we were transporting
RATFOR programs and found several inconsistencies
between different versions of RATFOR. (Example, the
RATFOR preprocessor that we initially used had a CASE
statement; a RATFOR preprocessor on another system did
not have a CASE statement.) A second problem that we
encountered using multiple systems was the existence of dif
ferent versions of the program under development on differ
ent systems at the same time. This problem arose because we
did not initially have a source code control system. In retro
spect, we should probably have been more careful with the
multiple versions.

The layered approach through the use of clusters was one of
the main factors in the success of the project. The integrity of
the data structures as insured by this means was virtually
100%. In only one case that we know of did an error occur,
and that was due to a faulty implementation of the cluster
mechanism rather than "application" code. Thus insofar as
the application code was concerned one could guarantee that

if a set of input lists was used to generate-an output list, the
input lists would remain intact, and further that only the spe
cifically addressed fields of the output list would be affected.
The examination of the state of the lists was often sufficient to
establish the nature of any program errors.

A somewhat surprising revelation rather late in the devel
opment was that part of the specification called for the solu
tion of a problem that defied efforts to find a satisfactory
program solution and which on closer examination turned out
to be NP hard.9 Recall that one desired computation is the
minimum and maximum length paths from any vault back to
the central office. Abstractly this problem can be stated as
follows: Given a digraph, G, with a positive weight assocaited
with each edge, find the maximum and minimum length
acyclic paths between a distinguished vertex and every other
vertex. The minimum length path computation is easy. But it
is not hard to show that the maximum length problem is
directly reducible to the Hamilton path problem. Needless to
say, we adopted a somewhat ad hoc revision of the specifica
tion.

REFERENCES

1. Liskov, B., Snyder, A., Atkinson, R. and Chafert, C. "Abstraction Mech
anisms in CLU" CACM August 1977, p. 564-576.

2. Parnas, D. "On the Criteria to be used in Decomposing Systems into
Modules" CACM December, 1972, p. 1053-1058.

3. Kernighan, B.W. and Plauger, P.J. Software Tools Addison-Wesley 1976.
4. Kernighan, B. W. and Ritchie, D.M. The C programming language Prentice

Hall 1978.
5. Ritchie, D.M. and Thompson, K. "The UNIX Time-Sharing System"

CACM July 1974 p. 364-375.
6. Bourne, S.R. "The UNIX shell" BSTJ July-August 1978, p. 1971-1990.
7. Kernighan, B.W. Lesk, M.E., and Ossanna, J.F. Jr. "Document Prepara

tion" BSTJ July August 1978, p. 2115-2136.
8. Ryder, B.O. "The PFORT verifier" Software-Practice and Experience

1974, p. 359-377.
9. Karp, R.M. "Reducibility among combinatorial problems" in Complexity

of Computer Computations R.E. Miller and J. W. Thatcher, eds., Plenum
Press 1972.

10. Jackson, M.Principles of Program Design Academic Press, 1975

The software configuration management database

by EDGAR H. SIBLEY
University of Maryland
College Park, Maryland*

P. GERARD SCALLAN
Stanford University
Palo Alto, California

and

ERIC K. CLEMONS
The Wharton School, University of Pennsylvania
Philadelphia, Pennsylvania

ABSTRACT

Software Configuration Management (SCM) is becoming well
known in certain sectors of the community (e.g., in Large
Scale Data Processing for the U.S. Government) but-remains
virtually unknown elsewhere. The need for aids to the large
scale information systems development process is very well
known and documented. This paper deals with SCM as one of
the tools for better systems development. It shows an integra
tion of some previous tools into a system that could be imple
mented on a database management system (DBMS) as an
extension to the data dictionary directory (DDD). An archi
tecture for such an SCM system is suggested.

1. INTRODUCTION

Configuration Management was first developed in the mid
sixties as a means of recording, controlling, and systematically
modifying the hardware architecture of an information sys
tem. The U.S. Government figures largely in the early litera
ture\,2,3 and a first book on the topic appeared in 1971.4 Yet
Software Configuration Management (SCM) was, and still
remains, somewhat less understood. The term is normally
used to describe a particular set of methods that aid in soft
ware specification, design, implementation, and mainte
nance.

There are many manual and automated aids that have been
developed for improving the information systems develop
ment process,5,6,7 but these tend to be "free standing" and not
integrated through the life cycle: They try to solve a problem,

*The author's current address is Alpha Omega Group, Inc., World Building,
Silver Spring, Maryland.

249

but often do not provide a general context. Moreover, they
often ignore the modern concept of database management as
part of the process. SCM is a possible context, providing
overall management of the process.

In this paper we first motivate, then present, and finally
extend the concept of a software configuration management
system. We review the traditional software system life cycle,
stressing the opportunities for maintaining control over the
scheduling, sequencing, and approval of operations, and for
maintaining history of system status, tests completed, and
approvals received at various checkpoints. We then provide
an overview of the data maintained in an SCM system. Final
ly, we extend the concept of an SCM to an active system, one
that not only maintains histories but enforces-controls. While
this portion-Section IV-is the most important part of the
paper, we did not feel that it was possible to present this
material without first presenting the background and review
of the novel features of SCM that are contained in the first
three sections.

A. The Need for SCM

In much of today's small'software systems development,
problems abound: the system documentation is almost non
existent, and management of change is ad hoc at best. Be
cause software "fixes" or fast updates are needed during the
latter stages of the life cycle, the latest version (i.e., the cur
rently running system) often incorporates unrecorded and
sometimes even unapproved changes. These changes may be
to either procedure definition, database or data structure defi
nition, or both. Naturally, maintenance Qecomes a shambles.
Even in larger systems, the process is often too ad hoc in
nature.s

250 National Computer Conference, 1981

The earliest uses of SCM techniques appear in the various
structured design ideas and use of top down approaches. The
concept of good flow of control occurs in programming work
bench systems and modern operating systems,9,l0 but even
these do not usually provide a means to ensure that the con-

i trol is linked to the software management process.

B. The System Life Cycles

Since there are many definitions of the phases of the soft
ware life cycle, we provide our terminology in Figure 1. We
show here two processes in parallel: the software and data life
cycles. There are, indeed, many ways of helping or improving
the systems process: a 1974 review of procedure specification
methods shows that there are a multiplicity of overlapping
techniques-some automated and others manual-that cover
the process.

The process known as software configuration management
incorporated many methods, techniques, and disciplines from
software engineering. More significantly, it incorporales them
in a framework that permits effective management control of
whichever techniques are to be used.

II. THE SOFTWARE CONFIGURATION
MANAGEMENT PROCESS

A. SCM Definitions

The Configuration consists of the documentation of re
quirements specification (user needs), functional specifica
tions, and physical design of programs, procedures and data
that exist at any time. Thus, the configuration varies with time
as specification, design, and implementation change.

The Baseline is an existing approved specification of the
system. Thus, the configuration will evolve into the baseline
as the system moves towards acceptance. But, because the
definition of needs changes, the baseline will also change,
though at a slower rate than the configuration. The baseline
and the configuration are both controlled under SCM. The
baseline represents an approved goal or target for the imple
mentation, while the configuration represents its current
status.

Change Control is effected through a series of documents
(forms) and managerially enforced procedures. It ensures a
controlled environment for changes to both the configuration
and the baseline. This process entails:

1. Suggestion by user or implementor of the need for a
change, made in a special format, with an approval list

2. Review, by a design review board (DRB) of each request
3. Incorporation into the system documentation (whether

approved or not-to record the history)
4. Alteration of the configuration or baseline, if the change

is approved

The reviews are conducted by either users or theDRB. The
reviews will be held regularly as changes are suggested, and at

O. PEOCEPTION OF NEED

l. requiremants specification

l.A. ANALYSIS OF REQUIREMEm'S

1. B. OBTAINING USER AGREEMENT

2. DESIGl OF PR<XEOORES

2.A. FORMUIATICN OF AlOlI'l'ECI'URE

2.B. SPEX::IFICATICN OF MXIULES

3. IMPLEMENrATION OF ENl'IRE MXlULE

2.' OESIGl OF mTA STRUCTURES

2. 'A. DATABIISE DESIGN

2. 'B. roO:rn3 mTABIISE SOlEMA

3.' INITIAL mTABIISE IMPLEMENTATICN

3.A. WRITING MXm.ES (COOING, JCL, DDs, ETC.) 3. 'A. WRIT:rn3 IOIID PR<GRAMS

3.B. IXX::UMENl'ATION 3. 'B. DOCUMENTATICN

3.C. SUBMISSICN FOR APProvAL 3. 'C. SUBMISSICN FOR APProvAL

4. TESTING PRXEDURES 4. TEST:rn:; DATABAsE

4.A. PERFORMING TESTS

4.B. PERFORMING REl3RESSICN TESTING

(AS NEEDED)

4.C. OBTAINlliG APPROIlAIS

5. INSTI\LIATICN

5.A. BUIIDING LIBRIIRY FILES AND FULL l:lM2\BI\SES

5. B. OBTAIN:rn3 APPROIIAL/AUl'HORIZATION

6. MAINTENANCE

6.A. PRXESS:rn3 CHANGE REQUESTS

6.B. CHANGlliG DESIGN OF PRCCEDURES AND mTABIISES

6.C. CHANG:rn3 IMPLEMENl'ATICN

4. 'A. IOIID:rn3 INITIAL DATABIISE

4. 'B. WRITING mTABIISE TEST

PR03RAMS (MAY roINCIDE

WITH PROCEDURE TF.S'J:']N;)

4. 'C. PERFOR-f TEST:rn3

4. '0. OBTArn APPROVALS

Figure I-Phases of the system life cycle. This life cycle comprises two processes
in parallel: the software and data life cycles.

discrete points in the life cycle, e.g., at finaLdesigns,,-installa
tion, etc. One important review will take place when both
acceptance test procedures and data are first specified. This
overall process is shown diagramatically in Figure 2.

B. SCM Components-Information Required

The principal items of information required for SCM are:

1. Major initial user requirements for each software prod
uct, indexed as necessary

2. Changes (whether approved, rejected or under consid
eration) to the user needs, with a history of author
izations and complete documentation 011 rejections

3. Documentation of the system design process, including
design of user manuals, programs, procedures (job con
trol, etc.) and data structures

4. Proposals for alterations to the design of database or
procedure, recorded in a specified format and with a
record of the events leading up to its adoption or
rejection

5. The programs (including source al!d object code), for all
versions that have been approved or are in the course of
obtaining approval

6. Procedures for running these programs, such as com
pilation, load and execution command strings and in
structions to the operator and ultimate user

7. Test databases for all modules and systems of modules
that exist for such versions

8. All schema and file definitions, user parameters (autho
rization, etc.) and other items that normally exist in a
well implemented Data Dictionary/Directory

9. Descriptions of those other features needed for correctly
running the system with high integrity (instructions for
database dumps, rollback, checkpoint procedures, etc.)

10. The environment used by all the versions of the system
(e.g., operating system and compiler version identifica:
tion, hardware configuration)

11. A record of the tests applied to each version and their
current status

As such, it will be seen that there is some reason for imple
menting an SCM system (SCMS) on a database management
system (DBMS): the need for many entities with complex
relationships, the need for excellent reporting and query fea
tures, etc., are all satisfied by the features of a DBMS. More
over, a DBMS normally provides good security and integrity.

III. A SOFTWARE CONFIGURATION
MANAGEMENT, SYSTEM

Software Configuration Management should be used through
out the system life cycle of any major information system; it
acts as a unifying discipline that attempts to:

1. Assure the consistency of the components for procedure
and data (requirements, design, implementation, and

---~----I

I
I

REQUIRED
CHANGES

I
I :~~~:ALS TO
I CHANGE OR ADD
I FUNCTION

I
I ________ .J

REQUIRED
MODIFICATION

"It is intended that both the baseline specification and the configuration have components
in a format available to humans. as well as their machine-readable components.

Figure 2-The overall SCM process

The Software Configuration Management Database 251

documeRtation) at each point in the life of the system
2. Allow adequate status reporting and management con

trol during the development process
3. Assure that all the implications of proposed changes are

visible prior to their adoption and that proper test pro
cedures follow their implementation in the software
prior to their adoption

4. Record the development of the system, both initially and
through subsequent modifications, thus maintaining an
audit trail and ensuring that people are held responsible
for their actions

A. Specifying Requirements

The first phase of the large system software life cycle is the
Requirements Specification, which is usually the responsi
bility of a group of systems analysts acting in close cooperation
with the ultimate system users.

An SCMS demands that the requirements be structured
hierarchically and -that an Author be associated with each
section. The Author is the individual or group leader of a
team responsible for writing, modifying, and maintaining that
section, and ultimately, for assuring that the system design
fulfills the requirement.

Normally, requirements are net static: They will be mod
ified in response to changes in user needs and unforeseen
difficulties or conflicts in meeting the requirements during
design and implementation Rp.~ses. Chapges in the Require
ments Specification should be made only with correct author
ization from a Requirements Reviewer following circulation of
a Requirements Change Draft to those possibly affected by the
change to the baseline. It is clear that several historical ver
sions or baselines of the Requirements Specification will exist.
This is done partly to support subsequent audit of the evo
lution of the baseline specification. Additionally, this is done
so that the requirement specification corresponding to the
existing configuration will remain available despite evolution
of this specification into a later baseline.

The functions of the Author and Requirements Reviewer
may be performed by teams, committee-type groups, individ
ual managers, or some combination of these, depending on
the appropriate balance between flexibility and representa
tion of all relevant interests.

B. Designing the System

At the center of the development process stands the design
phase-the transformation of the user-oriented Requirements
Specification into program, database, and file description,
documentation outlines, and testing criteria that serve as the
guide to the system implementation. Here, we define the
design phase to embrace the entire group of system com
ponents, including:

1. Programs and their documentation
2. Data-structures and relevant dictionary entries
3. Operating procedures-both JCL and operator

instructions

252 National Computer Conference, 1981

A) DESIGN FWW B) DESIGN PROBLEM PROC E_DUR_E _--.

Figure 3---Design phase of an SCMS

4. Testing data and procedures
5. Documentation for the guidance of the user and for

maintenance
6. The operating system and ancillary software

The System Design Phase consists of two distinct parts. The
first is the construction of a hierarchy of design modules using
top-down techniques. This specifies the architecture of the
system by describing the functions to be -performed by each
module and by the modules with which it jnterfaces. Each
module also references units of the Requirements Specifica
tion that it is intended to fulfill. Thus, the completion of Stage
I of the design provides a skeleton on which the system is hung
and sets up the principal mechanism through which the possi
ble effects of modifications may later be traced.

Stage II of the Design Phase consists of the elaboration of
the modules and data structures established in Stage I, to
produce a detailed specification of the implementation consis
tent with the Requirements Specification and Stage I architec
ture. At the lower levels, these modules are the basic working
documents of the implementors. They m.ay be written in a
formally defined syntax such as a Problem Definition Lan
guage, but. this is not necessary; it is a management option.

A module* originates when it is specified by a Designer
operating at a superior level in the hjerarchy. It is assigned to
a Designer for Stage I specifications;-a Designer may be an

* In the material that follows, we shall use the term module to mean program
or load module, comprising both executable procedure and data specification.

individual or a group of analysts. Upon completion of Stage
I Design, the module is entered into the SCMS. It should now
be reviewed for acceptance by:

1. The Designer of its superior in the hierarchy or its calling
program if a network

2. The Designer of each module with which it interfaces, to
ensure compatibility

3. The data administration group
4. The Author of each Requirement unit that it fulfills

The module may also be subject to other reviews, for exam
ple, to ensure adherence to documentation standards. Each
Reviewer is required to issue an Approval or a Rejection
Notice (with reasons) within a stated period. If only approvals
are obtained, this version of the module is accepted, other
wise it is referred back to a Design Supervisor who arbitrates
conflicts and who may require module redesign.

Changes to a previously accepted version of a design mod
ule may arise because of altered requirements or because of
later problems in the implementation. In the latter case, the
problem is recorded in a Design Problem Report. This is
considered by a Design Review Board or Design Supervisor,
which decides which units are affected and causes a Draft
Change Notice to be issued. It is circulated ana comments are
solicited. The Design Supervisor may have the draft revised
and repeat the process or may issue the draft as a Design
Change Notice. The Designers of the affected modules are
then required -to prepare new versions, which are subject to
the same acceptance procedures as the originals. If the data
structure design does not comply with that of the data admin
istrator, its redesign will be requested. Changes in the Re
quirements Specification are treated in the same fashion. This
process is illustrated in Figure 3.

Upon approval of a Stage I module version, the module is
referred to a Stage II Designer, who mayor may not be the
same as in Stage I. The process is repeated, except that the
Stage II design is also subject to review by the Designer of the
corresponding Stage I module version.

During the design of a new system, the data administrator
must coordinate the structures required by the various mod
ules and produce the database design and schema to satisfy
their needs. When modules are being added to an existing
system, the data administrator must assure that needs of the
new module are met, without compromising the needs of the
existing system.

C. Implementation and Testing

A design module may contain specifications for one or
more implementation modules. Upon acceptance of the de
sign module (in a particular version), each implementation
module is assigned to an Implementor-an individual or team
responsible for programming or technical writing. The Imple
mentor writes a version of the implementation module, which
is a collection of software elements and/or units of documen
tation closely related and best tested as a unit:

A parallel effort by the data administration staff involves

writing database load or conversion routines, preparing data
base documentation, and providing of test data.

Upon completion of an implementation module version, it
is submitted for testing and review. Each version of a module
must be subject to complete testing, in accordance with the
criteria laid down by management, as well as the specific
criteria determined by the Designer of the implementation
module specification. First, the module is tested on a stand
alone basis: Do its source modules compile correctly? Are any
illegal references made to other modules? Does it pass the
implementor test procedures? Next, it is tested using designer
specified test data. Then it is tested in conjunction with those
other modules that use it. Such test procedures are an im
portant part of the design and implementation process, and
some implementation modules are primarily used for testing
others. Implementation modules are also reviewed in much
the same manner as design modules; i.e., by the implementors
of interfacing modules and the designers of the general speci
fication. The review may take the form of a structured walk
through or some less formal sign-off procedure, depending on
the management and system analyst policy.

Acceptance of an implementation module occurs otlly when
all the necessary tests have been -successfully completed and
all approvals obtained. Failure of a test, or denial of approval,
results in a rejection notice, which refers the module back to
the implementor, the data administrator, or both, for revision
and further testing. The creation of a new version of a design
module requires that each dependent implementation module
be revised: This process occurs when a new baseline has been
specified, and naturally the process of moving to a new config
uration that reflects this change in requirements is time con
suming. In fact, for major software projects, there may be
several versions of the baseline and many implementation
versions of the configuration all coexisting.

Implementation problems arising subsequent to acceptance
are considered by an Implementation Review Board (which
may contain the same personnel as the Design Review
Board). They may refer the problem to a systems analyst if the
problem solution appears obscure. After consideration, they
may issue an Implementation Change Notice, requiring alter
ation to the modules in some specific way, or they may return
the problem to the Design Review Board through a Design
Problem Report. The process is illustrated in Figur€!- 4.

IV. AN ARCHITECTURE FOR AN ACTIVE SCMS

An automated software configuration management system
may be thought of as either active or passive. A passive SCM
system aids the manual process of configuration management
by storing data on baselines and configurations, on approvals
or rejections and other aspects of the development process,
and by permitting subsequent query or audit. An active SCM
system does this and more: It provides some element of con
trol by enforcing at least some management policies, and thus
makes avoidance or contravening of management decisions
more difficult. To take a single, simple example: an active
software configuration management system might make it im
possible to replace a library copy of a module without demon
stration that all recorded tests had been successfully run and

The Software Configuration Management Database 253

Figure 4-Implementation and testing of a module

all necessary approvals received. Clearly, the cost of a SCM
system will depend on its capabilities. Costs will be greater for
an active rather than a passive system; similarly, for an active
system, costs will increase as the number of functions per
formed.

We note the strong symbiotic relationship between the
SCMS and a database management system with a data
dictionary/directory (DBMS with a ODD). In fact, we believe
that in the future effective information resource management
systems will contain aspects of SCM and ODD, and fhat it will
be difficult to separate the two or distinguish between their
functions.

Currently, ODD systems are known alternatively as data
dictionaries, data directories, or information resource man
agement systems. 12 There are, at present, two approaches to
their implementation. The first involves a stand-alone prod
uct, a data dictionary system that does not require a database
management system for its own operation, although of course
its operation extends to the management of data in applica
tions databases. The second involves a data dictionary system
closely linked to a database management system, using this
DBMS to support its own operations. There are reasons that
justify each approach. Users of stand-alone dictionary sys
tems are less likely to be locked into their selection of data
base vendors by their choice of a dictionary system. However,
implementation of a dictionary linked to a DBMS enables the
dictionary to benefit from many of the strengths of t'.ie
DBMS. Among these are programming language and query
language interfaces for examining the dictionary, security and
access contral, and integrity controls.

254- National Computer Conference, 1981

DOD

SCMS
OM

NOTES:

DBMS

CORE

HIERARCHIC
LIBRARIES
(JCL. TEST.
PROGRAM
VERSIONS. ETC.)

I
I

/
/

/

I. All DM8S Requests are controlled (validated. etc.) through SeMS & 001>.

2. All updates to application systems are controlled through SeMS and recorded
in 01>0 prior to writing/testing thmugh Libraries.

Figure 5-An active SCMS architecture

In addition to the distinction between DDD systems that
are stand-alone and those that use a DBMS, we make a dis
tinction between those that have a passive interface to the data
and those with an active interface. A DDD with a passive
interface stores information on data-access rights of individ
uals, acceptable values or transitions between values, who is
responsible for particular data items-and permits query of
this information. Thus a passive system stores data policy and
permits inquiry about this policy but makes no attempt to
enforce this policy. A DDD with an active interface goes
further, prohibiting invalid database accesses or updates.
'~ w.e bave seen that adata'dictionary system can be

either stand-alone or can employ a DBMS for its own use, and
can either have an active or passive interface to the applica
tions programs and data. In some active systems employing a
DBMS the DBMS appears dominant-it is the DBMS's con
ceptual schema that stores policy and the DBMS's database
control system that enforces if. In others, the data dictionary
system appears dominant. We feel that as more integrated and
advanced systems are developed this distinction will become
less important. Commercial systems with data policy enforce
ment are now becoming available. 13

We have been actively studying the design of an active
software configuration management system, one that enforces
management policy and controls upon the life cycles of a large
system development effort. This active SCMS employs a data
dictionary/directory system, implemented using a database
management system, and processing active data maintenance
interfaces. This architecture is illustrated in Figure 5; it can
be seen as an extension to the data dictionary or as a piece of
general purpose software that replaces it and is roughly twice
as complex and costly. We favor this architecture and the
active approach to software configuration management be
cause, despite our faith in humanity ~ we have little faith in its
individuals, programmers or otherwise, to police themselves.

In developing the SCMS there are several important points
that must be made relative to the DBMS and OS interfaces:

1. If the SCMS is to store all useful information about the
programs, testing, and parameters associated with pre
vious versions of the system, then it must have special
database libraries that are very large and may be unusual
in format by normal DBMS standards (i.e., they may
contain code, JCL statements, link editing information,
and even operating system versions)

2. If the SCMS is to play an active role in testing and
controlling the interfaces for the different hierarchies of
libraries and in setting up the run parameters of previous
configurations for retesting, or other operations, then
there will probably need to be some operating system
modifications, although these may only be at the DBMS
OS interface, and may not be very extensive

As an example of the operation for an SCMS, consider the
request of a user to test a piece of software and to promote it
to system status if approved. We assume that the programmer
has already tested this module, and that the systems testing
engineers have provided their tests- for both the module and
for the system containing the module. If the new module is a
change to an old module due to improvements needed to the
entire system, the new tests may be identical to the old ones,
or they may be augmented.

The procedure at a high level is then:

1. Request to test received by SCMS
2. Request to validate user from SCMS to DBMS to SCMS

application interface
3. SCMS requests module testing alone. This involves re

trieval of linking and editing programs, with call mod
ules, the JCL stream for the test, and the specific module
test data.

4. Module is promoted to next level library (Le., it was in
the programmer's library, it now goes to the separate
module library).

5. The SCMS requests testing of the module in its various
uses; if, for example, the module is a low level sub
routine, it may be called by several different and sepa
rate modules. Each test is made by selecting the relevant
modules from the SCMS applications database and link
editing them, calling the JCL and test data and com
paring the results with toe correct values.

6. The SCMS promotes the module to the active library,
and all link editing for various uses is modified to incor
porate that version, after which the previous module is
deleted from the active library. However, the previous
version will still be available in the SCMS-DB in case it
is'required after some undetected bug brings down the
new system.

Those who have carefully reviewed the inner workings of a
DDD will see many similarities. Indeed, the DDD often con
tains many items that the SCMS is expected to contain, e.g.,
the participating persons, with identification attributes, the
programs and databases, with their components and inter
actions. Thus, the active SCMS is a special extension, though

very significant, of the DDD. Moreover, it can be considered
an application program running on the DBMS. Note that
under those circumstances the SCMS is also exerting substan
tial control over the DBMS.

V. CONCLUSION

A preliminary design has been made of an active SCMS, as
specified in the previous section. This includes a first round
design of the schema for the SCMS, assuming that the whole
will be implemented on a CODASYL-type DBMS. The use of
a system that contains an active DDD interface has been
found to reduce the effort. The need to provide multiple level
libraries for software and test data does not appear to be too
difficult, although this does require some modification to the
calling of standard operating system functions (i.e., inter
cepting calls). Once again, we see that the standard operating
system and DBMS interfaces in their present forms are not
well architected for modern software production.

The production of quality software has been one of the
major goals of software vendors and large application soft
ware producers. It is probably true that no one area has given
more misery to modern organizational management. The area
known as Software Engineering is still in its infancy; it is
hoped that as the area matures and develops it will substan
tially reduce the difficulty of software production.

We propose here a framework for better software produc
tion, and in this our goals are somewhat the same as the
Programmers' Workbench projects that have been proposed
and implemented. We feel that the problems of software
production are more fundamental than simply providing a
better working environment for programmers and analysts,
though we believe that tools to improve the working environ
ment will of course be of some value. We believe that tools to
provide better management control, to provide auditabilityof
evolution of both specification and implementation, and to
assure that management policy is followed will be of even

The Software Configuration Management Database 255

greater value. These tools impose some control over program
mers and analysts, rather than inspire them to still greater
flights of fancy.

An active software configuration management system is
intended to provide an environment that supports as much
control as management believes necessary. The manager who
believes in an open shop with no holds barred may. allow the
controls to be loose or non-existent. We feel that such man
agers should be allowed to exist (but not long as managers);
we believe that most managers would relish the ability to
know about and control the process of software development.

REFERENCES

1. Department of Defense, "Configuration Control-Engineering Changes,
Deviations, and Waivers," #MIL-STD-480, October 1968.

2. Department of Defense, "DOD Automated Data Systems Documentation
Standards, " Instruction #7935.1, September 1977.

3. General Accounting Office, "Contracting for Computer Software
Development-Serious Problems Require Management Attention to Avoid
Wasting Additional Millions," FGMSD-80-4, November 1979.

4. Czerwinski, F. L.and T. T: 'Samaras, "Fundamentals of Configuration
Management." John Wiley & Sons, 1971.

5. Sibley, E. H., "A System Specification Language," Infotech State of the
Art Report #19, Commercial Language Systems, 1974, pp. 475-503.

6. Ross, D. T. and K. E. Schoman, Jr., "Structured Analysis for Require
ments Definition," IEEE Transactions of Software Engineering, Vol. SE-3,
No.1, January 1977, pp. 6-15.

7. Bell, T. E., D. C. Bixler, and M. E. Dyer, "An Extendable Approach to
Computer Aided Software Requirements Engineering," IEEE Transaction
on Software Engineering, Vol. SE-3, No.1, January 1977, pp. 49-60.

8. Brooks, Jr., F. P., "The Mythical Man-Month. Essays on Software En
gineering." Addison-Wesley Publishing Co., 1975.

9. Morrison, J. P. "Data Stream Linkage Mechanism," IBM Systems Journal,
Vol. 17, No.4, 1978, pp. 383.

10. Washey, J. R., PMBIUNIX Shell Tutorial, September 1977.
11. Teichrow, D., "Improvements in the System Life Cycle," Information Pro

cessing 74, IFIP Congress Proceedings, pp. 972-978.
12. Lefkovits, H. C. "Data Dictionary Systems," QED Information Sciences,

Inc., p. 450.
13. Nijssen, G. M., Private conversations, August 1980.

Euclid-A language for compiling quality software

by DAVID B. WORTMAN, RICHARD C. HOLT, and JAMES R. CORDY
University of Toronto
Toronto, Ontario, Canada

and

DAVID R. CROWE and IAN H. GRIGGS
I. P. Sharp Associates Ltd.
Toronto, Ontario, Canada

ABSTRACT

This paper discusses the design and implementation of a
production-quality compiler for the programming language
Euclid. Euclid is a Pascal-based system implementation lan
guage that has features to aid in the production of well-modu
larized, verifiable system software. The emphasis in this paper
is on the insights that were gained in programming language
design and implementation as a result of implementing this
compiler.

INTRODUCTION

The programming language Euclid1
•
2 is a system implemen

tation language that was designed for writing verifiable system
software. Euclid extends Pascal to provide language features
necessary for the construction of system software (e.g., com
pilers, operating systems, and message switching systems).

The authors of this paper have been involved in the design
and implementation of a compiler for Euclid. 3,4 This compiler
is now operational on large PDP-ll computers under the
Unix TM" time-sharing system. This paper describes our experi
ence in the design and implementation of a compiler for Eu
clid. Euclid contains many features that touch the limits of the
state-of-the-art in programming language implementation.
We comment on the difficulties that we encountered imple
menting these features. We describe the organization of our
compiler and discuss the quality of object code that we were
able to produce. We hope that these observations will be of
benefit to future programming language designers and imple
mentors.

A BRIEF HISTORY OF EUCLID

The design of the programming language Euclid was original
ly commissioned by the Defense Advanced Research ProjectS-

"Unix ™ is a trademark and servicemark of Bell Telephone Laboratories, Inc.

257

Agency of the U.S. Department of Defense. It was intended
as the implementation language for a provably secure oper
ating system. Euclid was designed by a committee consisting
of Drs. B.W. Lampson and J.G. Mitchell from Xerox Palo
Alto Research Center, Prof. J.l. Horning from the University
of Toronto, Prof. G.J. Popek from UCLA and Dr. R.L. Lon
don from the USC Information Sciences Institute. Prof. J. V.
Guttag from USC also provided considerable assistance in the
later stages of the language design. The first report defining
Euclid appeared in the February 1977 issue of SIGPLAN
Notices. 1 Popek et al. 5 discuss the design of the language.
London et al. 12 present a set of proof rules for Euclid.

The Euclid compiler described in this paper was begun in
mid 1977 as a joint project of the Computer Systems Research
Group at the University of Toronto and the Special Systems
Division of I.P. Sharp Associates Ltd. The development of
the compiler was funded by the U.S. Department of Defense
and the Canadian Department of National Defence. The de
sign and implementation of this compiler required 6-8 man
years of effort spread over 2 112 calendar years.

Development of the compiler proceeded in stages both to
accommodate our need to bootstrap the compiler on an exist
ing system and to give us time to study and understand the
complexities of the language. We began by defining a re
stricted subset of Euclid called Small Euclid. This was the
smallest subset of Euclid that was both large enough to be
useful for writing a compiler and small enough so that it could
be trivially transliterated into an existing programming lan
guage such as C.6 A transliterator was written that trans
formed Small Euclid programs into the programming lan
guage C. We then used the existing C compiler to produce
executable code. This artifice made it easy to bootstrap the
early stages of the compiler. More importantly, it made us
start programming in Euclid from the beginning thus forcing
us to learn the language thoroughly. This early immersion in
Euclid helped us avoid unantiGipated problems later in the
project. The Small Euclid transliterator became operational
in December 1977.

258 National Computer Conference, 1981

Once the transliterator was working, we set out to make
ourselves independent of the C compiler. We specified a
larger subset of EuClid called Middle El,1clid and wrote a trans
lator that transformed Middle Euclid programs into PDP-ll
assembly language. This translator was written in Small Eu
clid. The Middle Euclid translator became operational in June
1978. At this point the transliterator could be discarded. The
remainder of our project was devoted to increasing the subset
of Euclid that we could compile by implementing more lan
guage features, especially those features that were needed for
verification. The subset compiled by the current compiler is
called Toronto Euclid.

EUCLID LANGUAGE FEATURES

This section describes some of the language features that dis
tinguish Euclid from Pascal and from other system implemen
tation languages.

Explicit Control Over Name Visibility

Most programming languages in the Algol/Pascal family of
languages use the scope rules of Algol-60, i.e., an identifier is
visible in the block in which it is declared and in all contained
blocks. The visibility rule in Euclid is much more restrictive.
An identifier is visible in the scope in which it is declared. If
it is to be visible in contained scopes then it must be explicitly
imported into those scopes via an import declaration. Identi
fiers declared in modules (see below) are visible outside ofthe
module if and only if they are explicitly exported from the
module by an export clause. The qualification pervasive at
tached to the declaration of a constant, type or routine (pro
cedure or function) causes the object so qualified to be auto
matically imported into all contained scopes.

Explicit Control over Access

In most programming languages the ability to reference a
variable implies the ability to assign to it. The designers of
Euclid gave the programmer more explicit control over where
variables can be modified. Control over access is supplied at
points where a variable is being imported or exported. If the
programmer makes no explicit declaration then an imported
or exported variable has the attribute readonly; it may be
read, but not modified. In order for a variable to be modifi
able it must explicitly be given the attribute var.

Generalized Types

Euclid includes a number of generalizations on the Pascal
concept of type.

Type equivalence

Pascal uses a very simple and very restrictive rule for deter
mining when· two types are equivalent; two types are equiv-

alent if and only if they are derived (directly or indirectly)
from the same type definition. This rule for type equivalence
is called name equivalence. Euclid uses a much more general
structural equivalence rule to determine when two types are
the same. Briefly, two types are equivalent in Euclid if they
have the same structure and if corresponding values in the two
type definitions are equal. See the Euclid Repore for a more
detailed description of this rule.

Type safety

Euclid is, with one carefully controlled exception, com
pletely type safe. A Euclid compiler can always_ determine the
correct type of every variable and constant. Because Euclid is
type safe, a compiler for Euclid can do a very stringent check
of-the entire program for correct use of variables and con
stants. We feel that this very strong type checking helps elim
inate many common programming errors. 4

Parameterized types

Pascal allows the definition of types in programs. In Euclid
this concept was generalized by allowing type definitions to
have parameters. A parameterized type acts like a template
that defines a family of types. Each time that a parameterized
type is used to create a specific type (an instance type) actual
parameters are supplied corresponding to the formal parame
ters declared for the type. These actual parameters are substi
tuted into the template to create the instance type. See Holt
and Wortman 7 for a description of implementation techniques
for parameterized types.

Non-manifest types

In Pascal all types are static, i.e. all the characteristics ofthe
type are known at compile-time. In Euclid, type definitions
can contain values that are non-manifest, i.e., the values are
not known until the scope containing the type definition is
entered during program execution. Different executions of
the same scope may create different definitions for the same
type.

Nested types

In Euclid type definitions can be lexically nested. For exam
ple, definitions for scalar and aggregate data types can occur
within the definition of a module type; Inner type definitions
can use identifiers that are defined in outer type definitions.
The nesting of types, especially module types required new
implementation techniques that have been discussed in more
detail els_ewhe.re. 7

Opaque types

To support the concepts of data abstraction and information
hiding, Euclid introduced the concept of an opaque type. All

types exported from modules are opaque in the sense that the
internal representation of the type cannot be determined by a
client of the module. Specifically, opaque types are never
equivalent to any other type even though they would be so
under the Euclid type equivalence rule. Type opacity is neces
sary if modules are to be treated as plug-replaceable units of
programs.

Modules

The module mechanism in Euclid serves two purposes. It
allows abstract data types to be constructed and it provides the
facilities required to do information hiding, as suggested by
Parnas. 8 An example of a Euclid module (taken from the
storage allocation pass of our compiler) is given in Figure 1.
This module implements a stack of integer counters. The
implementation of the stack is hidden within the module. A
client of the module has access only to the routines and vari
ables that are exported from the module. Note the use of
const, readonly, and var to control access to variables both
within and outside of the module. For efficiency reasons, the
top entry in the stack is implemented as a scalar variable. The
information hiding provided by the module mechanism makes
this implementation detail invisible to clients of the module.
In fact, this module can be replaced with a simpler m()dule
that uses an array element for all of the counters and imple
ments top as a function that returns the value of the top item
in the stack. Such a replacement would be entirely transpar
ent to clients of the module.

Aliasing

Euclid prohibits the aliasing of variables, i.e., the situation
where two distinct identifiers refer to the same storage loca
tion. This allows program verifiers to assume that an identifier
refers to a single distinct object. Most mechanical verifiers
need to be able to make this assumption. We found that some
very obscure programming errors were detected by the com
piler as a result of this enforcement of the non-aliasing rules.
For further details see Wortman and Cordy. 4

Machine Dependent Features

Since Euclid is to be used for writing system software, the
language designers included features for specifying machine
dependent aspects of programs. Euclid has a special kind of
record called a machine dependent record. Fields in such a
record are given explicit offsets, and, optionally, explicit bit
positions within a unit of storage. Euclid also allows the pro
grammer to declare variables at absolute addresses. Routines
whose bodies are code blocks allow use of assembly language
inserts in a way that is consistent with the rest of the language.

Euclid requires that a module using machine dependent
features be itself labelled machine dependent in order to doc
ument the internal machine dependency.

Euclid-A Language for Compiling Software 259

.var countStack
module

{ Count Stack Semantic Mechanism}
imports (Error) ;
exports (readonl), toP. { top value in count stack}

Increment Top, DecrementTop, Push, POP. SetTop) ;

pervasive const countStackSize: = 25 ;
var csp: 0 .. countStackSize: = 0 {count stack index}
var count: array 0 .. countStackSize of Signedlnt;
var top: Signedlnt ; { top value in count stack}

(for reasons of efficiency, the top-value in the count
stack is held in. the variable top, rather than in the
array count .. However to simplify the logic, csp is
treated as if count(csp) were used even though it is
not. count(O) is an unused dummy.

}

procedure Push(const newCount: Signedlnt) =
imports (var csp, var count, var top, Error);
begin

if csp = countStackSize then
Error;

end if ;
count{csp) := top; { ok even if csp = 0 }
csp : = csp + 1 ;
top: = newCount;

end Push;

procedure Pop =
imports (var cap, var top, readonly count, Error) ;
begin

if csp = 0 then
Error;

end if ;
csp:= csp - 1;
top: = count(csp); {ok even if csp = 0 }

end Pop;

procedure IncrementTop ==
imports (var top, readonly csp);
pre (0 < csp) ;
begin

top : = top + 1 ;
end Increment Top ;

procedure DecrementTop =
imports (var top, readonl)' csp) ;
pre(0 < csp);
begin

top : = top - 1 ;
end DecrementTop ;

procedureSetTop(const newValue: Signedlnt) =
imports (var top, readonl)' csp);
pre(O < csp) ;
begin

top:= new Value ;
end S('tTop;

end module { countStack } ;

Figure 1-Example of a Euclid module

260 National Computer Conference, 1981

Legality Assertions

Legality assertions in Euclid are compiler-generated Bool
ean expressions that describe necessary and sufficient condi
tions for the execution of a given statement without violation
of the semantic constraints of Euclid. For example, legality
assertions might be generated to guarantee that an array sub
script is in range or that the evaluation of an arithmetic expres
sion produces the mathematically correct result (e.g. no arith
metic overflow occurred). Legality assertions are important
because they make all of the possible semantic errors in a
program visible to the programmer and more importantly, to
the program verifier. Wortman9 discusses the issues involved
in implementing legality assertions in Euclid.

HARD PROBLEMS IN THE IMPLEMENTATION OF
EUCLID

This section discusses several of the difficult problems that we
encountered during the implementation of Euclid.

Generality

As discussed above, the design of Euclid generalized on
features in other programming languages in many ways. This
generality forced us in many cases to devise new implementa
tion techniques to cope with these more general features.

Feature Interaction

In the process of implementing our compiler, we found
several cases where unanticipated interactions among lan
guage features lead to intractable implementation problems.
The Euclid committee worked very hard with us to resolve
these problems. A few of the problems we encountered are
sketched briefly below.

Type equivalence vs. everything

The very general rule for type equivalence had a number of
unanticipated consequences. For example, it constrained the
way that storage could be allocated for non-manifest types
because these types might be equivalent to completely man
ifest types. The type equivalence rule also made it difficult to
define the semantics of assignments and of parameter passing.

Initialization in types vs. generality

It is possible as a part of a Euclid type definition (e.g. a
record type) to specify that certain variables in the type have
initial values. Because Euclid also allows the programmer to
declare data structures containing such types, a Euclid com
piler has to bt: able to generate arbitrarily complex code to
initialize components of these data structures. For example, if

a programmer declared an array of records where some of the
fields in the record had to be initialized then the compiler
would have to generate a loop to initialize all of the elements
of the array.

Nested and multi-use modules

The ability to nest module definitions and the ability to
create mUltiple instances --of the same module type created
many problems in defining the semantics of modules and in
producing an acceptably efficient implementation. These
problems are discussed in more detail by Holt and Wortman. 7

Variant records vs. parameterized types

In order to create a type-safe variant record mechanism, the
designers of Euclid required that the tag field of the variant
record be specified as a formal parameter of a parameterized
type. This was an unfortunate linking of two otherwise distinct
language features. It led to a number of difficulties in speci
fying the semantics of variant records, especially in cases
where variant record declarations were nested.

Lack of implementation restrictions

There were several instances in which the original definition
of Euclid 1 lacked semantic restrictions which would allow an
efficient implementation. For example, a variable could be
declared with a type that specified a sub range of integers, for
example, el .. e2. Unfortunately, el and e2 could be non
manifest constants so that. the actual sub range would not be
determined until the program was executed. The problem that
arose was that the subrange could result in a variable that was
either a signed or an unsigned integer; different machine in
structions would be required in these two cases. This problem
was solved by requiring that non-manifest subranges result in
signed integer variables so that the compiler could know
which kind of code to' generate.

COMPILER ORGANIZATION

The design of the compiler was heavily influenced by the
following considerations. The Euclid language was newly de
signed and rather complex. The compiler had to be small
enough to run on a minicomputer and yet be able to handle
large programs. The compiler had to be quite reliable. It had
to be relatively portable, so that without too much effort it
could be run on another computer or could generate code for
another computer.

New Implementation Techniques

A number of new compilation techniques were used in de
veloping the compiler. The new model we developed for rep-

resenting types and modules 7 was used to design the symbol
and type tables and the run-time addressing of type descrip
tors and module variables.

Another new technique was the use of a notation called
S/SL to formally specify the syntax of interpass streams. to

Each of the major passes of the compiler beyond the Scanner
is driven by an S/SL program that parses its input stream
(produced by the previous pass) and emits an output stream
for the succeeding pass. (Each S/SL program is translated to
a table of integers that is interpreted by a procedure written
in Euclid.)

Passes of the Compiler

The compiler consists of six major passes plus three minor
passes. These were designed to fit in limited memory and to
capture functionally coherent tasks within compilation. The
major passes are: Scanner, Parser, Builder, Conformance,
Allocator and Coder. Each pass is run sequentially as a sepa
rate task. The passes communicate via disk-resident symbol
and type tables and a serial I-code stream (see below).

The Scanner divides the source Euclid program into tokens,
evaluates numeric literals and replaces identifers by unique
numbers. The text of identifiers is stored in a disk resident
"name table" for use by later passes. The Parser performs the
traditional task of validating syntactic structure.

The Builder creates disk resident symbol and type tables
based on declarations in the source program; it also enforces
Euclid's import/export rules as well as the rules of access to
values. The Conformance pass does type checking and con
stant folding, together with a num.ber of tasks required specif
ically by the Euclid language. It checks for dynamic aliasing of
variables. It inserts "legality specifiers" into its output stream.
These legality specifiers are special tokens used by an optional
pass, the Assertion Lister, to create legality assertions.

The Scanner, Parser, Builder and Conformance passes are
(almost) completely target machine independent. The final
two major passes, the Allocator and Coder, are by their na
ture machine dependent. We were surprised to discover after
their construction that a large portion of these two passes is in
fact also machine-independent. The Allocator determines dis
placements and logical bases for all variables and it allocates
scalar variables to machine registers as an optimization. The
Coder allocates temporaries and emits assembly language; it
does extensive local optimization.

The three minor passes of the compiler are the N amer
(inserts names of external references into the generated as
sembly language), the Error Lister, and the Assertion Lister
(optionally creates legality assertions from the output stream
of Conformance using the name table).

Use of I-Code

One interesting technique used in the compiler was a stan
dard stream among compiler passes. The Parser originally
produces this stream, which we will call I-code. I-code is es
sentially the complete syntax-checked Euclid program en-

Euclid-A Language for Compiling Software 261

coded as a sequence of tokens, with operators moved into
postfix positions. An S/SL program was written to read an
I-code stream and to reproduce the same stream as output.
This S/SL program was then replicated and served as the
skeleton of each of the successive major compiler passes. The
passes were constructed by modifying this skeleton, primarily
by adding calls to supporting routines written in Euclid. As a
rule, a pass relayed information to su~ceeding passes via the
symbol/type table rather than by modifying the I-code stream.
As a result all the major compiler passes are similar in struc
ture and hence are relatively easy to understand.

PRODUCTION QUALITY COMPILER

This section describes some of the "production quality" fea
tures that we have incorporated into our Euclid Compiler.

Thorough and Rigorous Enforcement of Semantics

Type checking

The compiler checks that types match where appropriate.
Both the structure of and values (such as sub range bounds) in
the type definitions are examined. In instances when the com
piler cannot determine whether values match, it generates
legality assertions asserting that they do.

Visibility checking

The compiler enforces the information hiding mechanisms
of Euclid. This includes checking that identifiers are imported
and exported when required. Also, the compiler checks that
variables are not modified in scopes in which only read access
is permitted.

Alias and overlap checking

The compiler enforces the Euclid language rules against a
variable being accessible in a scope by more than one name,
and against two variables referring to overlapping storage.
These checks include, for example, checking that variable
actual parameters in a routine call do not overlap each other
or any variables imported into the routine. In instances when
the compiler cannot determine whether variables overlap, it
generates legality assertions asserting that they do not. (This
occurs, for example, when a(i) and a(j) are passed as vari
ables in the same routine call; the appropriate assertion is i
not= j).

Run time checking

Euclid allows the programmer to specify that assertions in
a scope are to be checked at run time. The compiler optionally
generates code to check programmei:"specified assertions. At
present, it does not generate code to check legality assertions.
However, additional checking code is generated to ensure that

262 National Computer Conference, 1981

a program's behaviour can be deduced from its source code.
These checks ensure that array subscripts are within their
proper range, and that case tag values select one of the case
alternatives.

Code Quality

The Toronto Euclid compiler produces code comparing fa
vourably in quality with code emitted by compilers for less
structured system implementation languages. For the com
piler itself, the code generated was smaller and faster than the
code generated by the C compiler for the transliterated ver
sion. Using smaller examples, Euclid programs were com
pared to carefully hand-tuned C programs which exploited C
idioms that the transliterator could not employ. The two com
pilers emitted code of very similar size and speed. However,
the Euclid source programs were significantly easier to under
stand and debug.

Most optimizations performed by the compiler are aimed at
producing "locally" good code for individual expressions or
statements. Code quality is greatly improved by dealing with
common programming constructs as special cases. For exam
ple, the statement "i,' = i + 1" is translated to a single PDP-ll
INC instruction. Other high-frequency operations that are
optimized include setting a variable to zero, mUltiplying a
variable by a small constant, moving one record variable to
another, and routine calls.

Expressions involving compile-time manifest values are
folded by the compiler. The Conformance pass computes the
values of expressions that can be calculated at compile time,
and substitutes these values into the internal representation of
the program for use by later passes. The Coder pass then
performs further folding, both of expressions and of entire
statements. For example, when the code emitter determines
that the condition in an if statement has a manifest value, it
discards either the then or the else part of the statement as
appropriate. This folding of if statements provides a simple,
yet effective, form of conditional compilation.

Optimizations performed by the compiler encourage the
Euclid programmer to use language features to construct well
modularized programs, by eliminating or reducing the costs of
using these features. For example, uses of the module mech
anism are optimized by the compiler. Using information cre
ated by the Builder pass, the Coder pass eliminates use of a
display mechanism for most modules. Thus partitioning a pro
gram into modules generally costs nothing in the efficiency of
the emitted code.

Since well-modularized software typically contains a large
number of small routines (procedures and functions), the
compiler pays particular attention to minimizing the overhead
of routine calling. Standard routine prologue and epilogue
sequences, such as those used by C, must (for example) save
and restore all registers which might possibly be affected by a
routine of arbitrary complexity: for a simple routine, this
epilogue and prologue may take as much time to execute as
the actual computation performed by the routine. The Euclid
code emitter generates minimal prologue and epilogue code
for each routine, tailored to fit the number of parameters,
number of local variables, etc. of the routine. For many rou-

tines, the prologue can be eliminated entirely and the epi
logue can be reduced to a single instruction.

CONCLUSIONS

This paper has described our experiences in designing and
implementing a compiler for the programming language Eu
clid. Although we encountered a number of problems due to
the ambitious design of Euclid, we were able to produce a
compiler for Euclid that generates quite efficient code. The
design of Euclid allowed the compiler to make a number of
checks for semantic correctness that could not be done in
other languages. Our experience has been that the extensive
checking performed by the Euclid compiler has been a consid
erable help in allowing us to produce software efficiently and
effectively. 4

Compiler Status

The Euclid compiler described in this paper has been oper
ational since December 1979. The compiler runs on DEC
PDP-ll models 44,45,50,55 and 70 under the UnixTM time
sharing system. The compiler generates PDP-ll code that is
almost entirely model independent. It is being used by univer
sities for research and by industrial firms for production soft
ware. Toronto Euclid has been used in a project at the Com
puter Systems Research Group to write a small Unix™-like
operating system called TUNIS. Holt and Cordy have de
signed an extension to Euclid called Concurrent Euclid. 11 This
language is a subset of Toronto Euclid that has been extended
with concurrency features, notably monitors. Concurrent Eu
clid is presently implemented for the Motorola MC68000 mi
croprocessor. Implementations for the Motorola 6809 micro
processor and the DEC PDP-ll are under way. I.P. Sharp
Associates Ltd. has recently started work on a Euclid com
piler for the Digital Equipment Corp. VAX-ll/780 computer.

ACKNOWLEDGMENTS

Development of the compiler described in this paper was
funded by the Defense Advanced Projects Research Agency
of the U. S. Department of Defense and by the Chief, Re
search and Development, of the Canadian Department of
National Defence.

The Euclid Committee1
,2 and Prof. J. V. Guttag provided an

immense amount of assistance and encouragement during the
development of the compiler.

Preparation of this paper was supported in part by the Nat
ural Sciences and Engineering Research Council of Canada.

REFERENCES

1. LampsonB.W., J.J. Horning, R.L. London,J.G. MitchellandG.J. Popek,
Report on the Programming Language Euclid, ACM Sigplan Notices, v. 12,
n. 2,February 1977

2. Lampson B. W. , J.J. Horning, R.L. London, J .G. Mitchell and G.J . Popek,

Report on the Programming Language Euclid, Xerox Palo Alto Research
Center Technical Report, (to appear 1981)

3. Holt R.C., D.B. Wortman, J.R. Cordy, and D.R. Crowe, The Euclid
Language: A Progress Report, Proceedings of the ACM National Confer
ence, December 1978

4. Wortman D.B. and J.R Cordy, Early Experiences with Euclid, Pro
ceedings of the 5th International Conference on Software Engineering,
March 1981

5. PopekG.J.,J.J. Horning,B.W. Lampson,J.G. Mitchell and R.L. London,
Notes on the Design of Euclid, Proceedings of the ACM Conference on
Language Design for Reliable Software, ACM Sigplan Notices, v.12, n.3,
March 1977

6. Kernighan B.W., and D.M. Ritchie, The C Programming Language,
Prentice-Hall Inc. Englewood Cliffs N.J., 1978

7. Holt R.C. and D.B. Wortman, A Model for Implementing Euclid Modules

Euclid-A Language for Compiling Software 263

and Type Templates, Proceedings of the ACM Sigplan Symposium on Com
piler Construction, Aug. 1979, pp. 8-12

8. Parnas D.L., Information Distribution Aspects of Design Methodology,
Proceedings of IFIP Congress 71, North Holland Pub., 1971, pp. 339-344

9. Wortman D.B., On Legality Assertions in Euclid, IEEE Transactions on
Software Engineering, v. SE-5, n.4, July 1979, pp. 359-367

to. Cordy J.R., R.C. Holt and D.B. Wortman, -S/SL: Syntax/Semantic
Language-Introduction and Specification, Technical Report CSRG-118,
Computer Systems Research Group, University of Toronto, Sept. 1980

11. Cordy J.R and R.C. Holt, Specification of Concurrent Euclid, Technical
Report CSRG-115, Computer Systems Research Group, University of Tor
onto, July 1980

12. London RL., J.V. Guttag, 1.J. Horning, B.W. Lampson, J.G. Mitchell
and G.J. Popek, Proof Rules for the Programming Language Euclid, Acta
Informatica, v.10, 1978, pp. 1-26

The design and implementation of a new UNIX kernel*

by· CHARLES CROWLEY
University of New Mexico
Albuquerque, New Mexico

ABSTRACT

A project to produce a kernel-based, message-passing version
of UNIX is described. The system is designed to be (1) useful
in teaching operating systems, (2) easily changeable, (3) easily
portable, and (4) a vehicle for studying the message-passing
approach to operating systems design. The system calls nor
mally handled by the UNIX kernel are handled by system
processes, each of which operates in its own address space.
Interprocess communication and process environment man
agement is done by a small kernel. The design and imple
mentation of the system are described. Message passing as a
system design method is evaluated in this context and com
pared with the procedure call orientation of standard UNIX.
The message-based design proved successful in creating a
modular and understandable system.

OVERVIEW OF THE SYSTEM

This paper wilJ present the design and implementation of a
kernel-based, message-passing operating system based on the
UNIX operating system. The system emulates exactly all of
the system calls provided by the standard UNIX kernel. The
Level 6 UNIX kernel handles interrupts and traps, and pro
vides process environments, process dispatching, process
communication (via signals and pipes), process swapping, an
10 system, and the file system.

The system described herein will be called NUKE (New
Unix KErnel). NUKE is a kernel-based, message-passing em
ulation of the UNIX kernel. NUKE consists of (A) a kernel
that provides process environments, first-level interrupt han
dling, process dispatching, and process communication via
messages and (B) several system processes that implement the
UNIX system calls. System processes are implemented ex
actly the same as regular UNIX processes. Figure 1 shows the
structure of NUKE. The following processes are included in
NUKE. (1) The process manager handles process traps and
the process related system calls. (2) The memory manager
allocates and frees memory, reallocates and moves stacks, and
provides address translation services. (3) The memory sched
uler process handles swapping. (4) The clock process handles

* This research was done under the support of NSF Grant MCS76-22941.

265

clock interrupts and all timing services for the system both
internally and through system calls. (5) The file system pro
cess handles the file and I/O system calls. (6) The device driver
processes (e.g., disk drivers, tape driver, tty driver) handle
devices and interfaces to device controllers.

User processes make normal UNIX system calls which trap
to the kernel which in turn converts them to messages and
directs them to the system process that handles that system
call. In the course of handling system calls the system pro
cesses will make kernel calls requesting services of the kernel
and send messages to other system processes (via the send
kernel call) requesting services from them. The arrows in
Figure 1 indicate message paths between processes.

The goals for this project were to investigate message pass
ing and to develop a system suitable for teaching. The system
is based on UNIX since it is a popular system already used in
many university teaching programs. It has a two-level (kernel,
user) structure that made it easy to replace the kernel and
create a new system with minimum effort. The UNIX kernel
is strongly procedure-oriented and the conversion promised to
shed some light on the differences between procedure and
message-based systems. We planned to create an exact emu
lation of the UNIX kernel which was as simple as possible with
a small kernel and few kernel calls. We wanted a system that
was measurable, improvable, portable, and that would pro
vide a basis for further operating system research.

SYSTEM STRUCTURE

The Kernel

The kernel of NUKE. provides the process environment. It
handles system calls, interrupts, and user traps and converts
them to messages sent to the appropriate system process.
There are seven kernel calls that can be made by system
processes.

1. send (a message to another process)
2. receive (a message from another process)
3. connect to interrupt (request to handle an interrupt)
4. connect to system call (request to handle a system call)
5. return from system call (restart a system caller process)

266 National Computer Conference, 1981

System Processes
(messages in -

traps out)

Kernel Clock System
Calls Unter- Interrupts

rupts in --
messages out)

Hardware
Env ironment
(interrupts out)

User
Processes

CL: Clock
DD?: Device Driver
FS: Fil e System
MM: Memry Manager
MS: Memory Scheduler
PM: Process Manager

Figure I-NUKE system structure

6. map (map part of the caller's address space into another
address space)

7~ trace (call the i~teractive debugger)

The send and receive kernel calls do interprocess message
passing. It is possible to receive from a specific process or
from any process. The connect kernel calls are used to initial
ize the system and tell the" kernel which system calls and
interrupts the calling system process wishes to handle.

The map system call is another means of interprocess com
munication. Standard UNIX is heavily based on the shared
memory concept. Sirice a lot of code in NUKE was taken from
the standard UNIX system, it was necessary to handle this and
the interprocess movement of large blocks of data efficiently.
The idea of mapping was developed for this purpose. A pro
cess can request that some part of its address space be mapped
into (1) the physical address space of the computer,(2) the
logical address space of another process, (3) the u~er structure
of another process, and (4) the proc array in the kernel.

Figure 2 shows how mappings are used in the syste'm. A user
process makes an 'open file' system call giving a character
string file name as an argument. The file system process maps
into the <caller's user structure to pick up, for example, the
caller's current directory, and it also maps into the file name
in the caller's logical address space. In the directorysearching,
the file system process needs to read disk blocks. This is done
by the disk device driver, which maps the buffer in theme
system's logical address space and reads directly into that.

The mapping concept is simple, efficient to implement, an~
provides efficient interprocess communication, since words
are transferred by the hardware with no more overhead than
accesses to the 'local process memory (once the mapping is
established). It is a good' compromise between safety, effi
ciency, and flexibility of implementation. In a normal shared

memory system, a block of memory is shared all the time and
can be used at will. In NUKE, memory can be shared, but
only through an explicit kernel call to set up the mapping. This
means the kernel can insure that the mapping is safe. The
kernel.can implel11ent the mapping in a number of ways de
pending on what forms of communication are available.

System Processes

Each system process is a normal UNIX process that oper
atesin its own address space and 'is isolated from other pro
ceSses except for the use of explicit interprocess commu
nication. Each process receives system call messages from
user processes (via the keniel) and performs the user service.
System processes can send messages to other system processes .
to request services.

Figure 3 shows part of the main routine of the process
manager system process. This is the code exactly as it tuns in
the system except that most of the cases in the large case
statement have been omitted. The cases remaining are typi
cal.

The variable p (line 24) will be an address mapped into the
proc array in the kernel's address space. The initialize pro
cedure called on line 33 will map into the kernel's proc array,
connect to the 14 system calls the process manager handles,
and connect to the user traps (bus error, illegal instruction,
trace, and floating point exceptions)the system manager han
dles. Lines 34-91 are an unending loop which is the main
processing loop of the process manager. Each iteration of the
loop will receive a message and service it. The receive on line
43 requests a message from any process. Lines 44-90 are a

Logical Address Spaces Code -- 8 8K byte segments each and

I--!&t-'L---

Code
and

Data
User Structures

plus
User Processes Buffer

~ User More
Structure Data

User Mapped
Code

and .
Data DD Stack ----
Logical
Address
Space Disk Driver

Name mapped

More
Data

mapped

FS Stack

File System
User ,"

Stack

Figure 2-Mapping in NUKE

1 #
2 1*
3

pm.c

4 #include" .. lincludes/erroccodes.h"
5 #include" .. lincludes/interrupts.h"
6 #include H •• /includes/messages.h"
7 #include " .. lincludes/proc.h"
8 #include" .. lincludes/seg..regs.h"
9 #include lincludes/signals.h"

10 #include " .. lincludes/systemcalls.h"
11 #include" .. lincludes/user.h'·
12
13 #define SW_HIGH 03
14 #define SW_LOW 0177570
15
16
17
18
19

struct
{

20 };
21

pmO
{

char
char

1* to get at bytes of a word *1

lobyte;
hibyte;

extern struct proc *p;

*1

22
23
24
25
26

int msg[8], x, signatnumber, prjncrement;
int *sw;

27 regi~ter int pid;
28 register struct proc *q;
29 register struct user *u;
30
31 trace ("PM initialize", 0, 0, 040);
32 1* connect to system calls and interrupts *1
33 initializeO;
34 while (1)
35 {
36 ~

37 * receive a message from any sending process.
38 * This message will be a system call message
39 * except for the traps,
40 * so pid will be the process id of the process
41 * making the system call
42 *1
43 pid = receive(ANYPROCESS, msg);
44 switch(msg[O)) 1* msg[O] is the message type *1
45 {

case CSW: 1* get console switches */

A New UNIX Kernel 267

46
47
48
49
50
51
52
53
54
55

/* map to the. switch register in high physical memory space * /
sw = map (PHYSICAL, SR5, SW_HIGH, SW_LOW, 2);

56
57
58
59
60
61
62

?C = *sw;
sys_ret (pid, ReCrO, x, 0);
map (UN_MAP, SR5, 0, 0, 0);
break;

case EXEC: /* change the program running in a process * /
exec(pid, msg(1], msg(2));

/* (caller, name, arglist) *1
break;

case EXIT: /* stop process * /
/* msg(1] = exit status, exit.c expects

it to be in the high byte
*/
exit(pid, (msg[I]&0377)«8);

/* (caller, status) */

Figure 3--Process manager (continued on next page)

268 National Computer Conference, 1981

break; 63
64
65
66
67
68
69
70
71
72

case FORK: /* create a duplicate process */
fork(pid);
break;

case GETGID: 1* get group id */
u = map(U_STRUCT, SR5, pid, 0, 0);
x.lobyte = u->u_rgid; /* real group id */
x.hibyte = u->u~id;

/* effective group id * /
sys]et(pid, ReUO, x, 0);
map(UN_MAP, SR5, 0, 0, 0);
break;

73
74
75
76
77
78
79
80
81

case GETPID: /* get process id */
sys_ret (pid, ReUO, pid, 0);
break;

case INT_SIGNAL:

82

83
84
85
86
87
88

89
90
91
92

default:

/* kill (from another system process) */
/* msg[1] = receiver

(who to send the signal to) * /
/* msg[2] = signal number */
kill(pid, msg[l], msg[2]);
break;

trace("panic in PM: bad mag #",
msg[O], 0, -1);

break;

Figure 3 (continued)

case statement that does the "appropriate processing de
pending on the message type. Lines 46--52 process the CSW
(read console switch register) system call. First the switch
register in the 110 space is mapped using the map kernel call
(line 48). The kernel call returns a value whi~h is the address
to use to access the mapped memory. Line 50 is the kernel call
which indicates that the system call processing is completed.
The process with process identifier 'pid' will be made ready
(dispatchable) and the returned value from the system call will
be the value in variable x. The returned value is placed in the
caller's saved register 0 before it is dispatched again. Note that
the apparent sender of the system call message ('pid') is the
system caller, not the kernel. Line 51 is the unmapping kernel
call (a variant of map).

The exec, exit, and fork system calls are shown on lines
54-67. Their processing is lengthy and is done in procedures.
The processing of the exit and fork system calls (lines 58-67)
is also done in procedures.

The getgid system call processing (lines 69-75) maps into
the system caller's user structure (the swappable part of the
process descriptor) in order to pick up the group id. The real
and effectiYe group id are picked up and packed into a word
in lines 71 and 72 and returned to the caller by the system
return on line 73. The get process identifier system call (lines
77-79) is similar. Case INT_SIGNAL on lines 81-85 is the

internal form of the kill system call and uses the same pro
cedure.

All the system processes have a similar structure: a main
loop that accepts messages and processes them one at a time.
Sometimes the message-request processing cannot be com
pleted immediately (for example, a terminal read request). In
these cases the system process records the pending request in
a table and provides for it to be restarted later.

Breaking UNIX Up Into System Processes

The standard UNIX kernel is a large program in a single
address space, contains many procedures that call each other
frequently, and uses shared memory extensively to commu
nicate between processes. We spent a lot of time deciding how
to break the UNIX kernel up into system processes to make
the system modular and relatively easy to implement. The test
of the way we broke down the system is in how modular it
came out and how much interprocess communication was nec
essary. In the next few paragraphs we will loo.k at what
memory sharing and internal messages were -necessary to
make the system work.

Basically, the system processes operate on their own with
little communication with other system processes. The main

User 1 User 2 User 3 User ~

User User User User
3tructure Structure Structure Structure

Kernel Kernel Kernel Kernel
Stack 1 Stack 2 Stack 3 Stack ~

Intra-system Communication
· procedure calls ~
· wakeups ~

Dynamic State Information
· kernel stack for each process
· kernel tables

Figure 4-UNIX flow of control

System Call
Interface

exceptions are in cases involving certain actions with pro
cesses when they start, fork, or exit. These actions involve
system-wide consequences since each process has resources of
several kinds.

The only memory shared between system processes is the
proc array and 10 buffers. In the case of the proc array there
are no critical sections since each process handles a part of the
proc array and there are no conflicts. The 10 buffers are
necessary since the device drivers are separate processes.

Overall, the separation has been good, with each process
logically separate from the others and very little messy inter
action. If anything, there are too few system processes. We
could divide up the process manager and the file system pro
cesses into logically separate parts that would interact very
little or over narrow, neatly defined interfaces.

EVALUATION OF THE SYSTEM

Message Passing

The message-passing design of the system has been very
successful in making a modular system. The system is more
modular and easier to understand than standard UNIX. The
standard UNIX kernel is a highly interconnected program in
a single address space in which the parts of the system commu
nicate with procedure calls and shared memory. Synchroniza
tion is done with a sleep/wakeup mechanism. Figure 4 shows
some typical flows of control and interprocess synchronizing
in UNIX.

In NUKE, the system processes are all independent. User
processes never execute system code. Their system calls cause
them to block and a message is sent to the appropriate system
process. The thread of control of a single (user or system)

A New UNIX Kernel . 269

process never leaves the immediate code of that process. If
service from another part of the system is needed, a message
is sentta the other system process and it later sends a reply
message indicating completion of the requested service. Fig
ure 5 shows the intercommunication between system pro
cesses in NUKE.

The main advantage that comes from a message-oriented
system is an increase in modularity in the system. This modu
larity occurs at the physical (run-time) level as well as the
logical (compile-time) level. As we noted above, at run time
the locus of control of each process is localized to its own
code. This is the perfect environment for a tightly coupled
mUltiprocessor system. The procedure call design technique
implies large address spaces and also implies nonlocal loci of
control. Such a system would not be nearly as amenable to
implementation on a multiprocessor. Message passing also
promotes a logical modularity because interprocess commu
nication is more difficult and expensive than in a procedure
call oriented system, although any organization used in a
message-passing system also could be used in a procedure
calling system.

Synchronization in NUKE is needed only during the mes
sage-passing primitives. This is protected in NUKE by a high
processor priority but it could be done easily with spin locks
in a mUltiprocessor system. The actual message transfer times
are small enough that we can afford to mask out interrupts
while they are going on or compete for access to message
queues with busy waiting techniques. Each system process
operates on its own virtual processor and does not have to
consider other processes. There are some cases in NUKE in
which memory is shared. These cases are not a problem,
however, since the synchronizing is done by messages and by
separation of function. For example, since only one process

User 1

User
Structure

User 2

User
Structure

User 3

User
Structure

User ~

User
Structure

Device
Dr i v er

Sy stem Ca 11
Interface

Intra-system
Commun ication
. messages ~

Dynamic State
In formation
. kernel tables

system process
tabl es

Figure 5-NUKE flow of control

270 National Computer Conference, 1981

creates new processes (the process manager), there are no
critical section problems with the empty proc array slots. In
standard UNIX there might be several processes creating a
new process (that is, in the middle of a 'fork' system call)
simultaneously. Hence it was necessary to lock the proc array
in several places. This is never necessary in NUKE because
each function is provided by only one system process and each
system proceed proceeds serially.

Synchronization takes care of itself naturally in NUKE but
in a way that is easy to understand and whose correctness is
nearly self-evident. All the synchronization is localized to the
kernel and to the interrupt and message-passing sections in
particular. It can be easily understood and verified since it is
all in one place and only one synchronizing technique is used.
The synchronization in standard UNIX is clever but difficult
to understand.

Overhead is also localized in message-based systems. If the
critical message and context switching operations are put into
microcode, significant speedups are possible. It is not so clear
what to optimize in a procedure-based system.

Conversion From Procedure Calling to Message Passing

The design of NUKE was influenced by the need to use as
much of the existing UNIX code as possible and to get a
system up and running as soon as possible. The mapping
feature worked particularly well in making up for the fact that
system processes did not directly share memory. The system
processes need common access to a few areas of memory.
Once these were mapped we could use the existing UNIX
code without change. Procedure calls were changed to paired
message send and receives.

The major problem in the conversion was to decide how to
wait for system events such as 110 completions. In standard
UNIX, waiting is done by blocking the procedure in the mid
dle of the system code and waiting for a wakeup. We could not
use this technique, since our system processes could not
block. We handled the problem by setting up waiting tables in
each process that had to wait for an event before it could finish
processing a request. A mechanism was put in to insure that
these requests would be restarted when the appropriate event
occurred (usually the receipt of a certain type of message by
the process). We had to add another message type whose
processing consisted of finding the proper entry in the wait
table and restarting its processing.

The Duality of Procedure Calling and Message Passing

Lauer and Needham (1978) present the thesis that there is
a duality between message-passing systems and procedure
calling systems such that they can be easily mapped into one
another and their performance characteristics should be the
same. This conflicts with some of the experiences and conclu
sions we have presented here.

It is true that there is a strong duality between the two types
of systems but this is not a.t all surprising since they were
considering idealized and generalized models of the two types
of systems and it seems to be true that if you look at almost

any two things at a sufficient level of generalization they be
come very similar. For example, we have argued in previous
work that compilers and operating systems were really doing
the same job (Crowley 1979). The duality does exist in these
idealized models but one must be careful in drawing conclu
sions from these models and applying them to real systems
since implementation details can often make large differences
in system performance. Lauer and Needham realized and
noted this in their paper. Their intention was to start a discus
sion of the issues and to try to discover what general conclu
sions can be drawn from the models and applied to real
systems.

They note the duality between a procedure call and a mes
sage followed by an immediate wait for a reply and remark
that these can be implemented with the same overhead. This
is not generally true since a simple procedure call to code in
the same address space can be implemented with one machine
instruction on most machines. There is no need to set up the
mapping for the other procedure (since it is on the same
address space) or to execute two kernel calls with their atten
dant overhead. Both of these things must be done in a
message-passing system and this could involve the execution
of hundreds of machine instructions. It is exactly here that the
overhead of a message-passing system is found. Lauer and
Needham also show that a FORK followed later by a JOIN
are dual to a message sent and a reply waited on later in the
code. This is a true analogy and their arguments about the cost
of these two dual operations hold up since each will require
kernel calls and context switching. UNIX never uses this ex
tended form of FORK/JOIN in its kernel code so all of its
procedure calls are of the very fast synchronous variety. For
this reason, NUKE is much slower than UNIX.

Lauer and Needham also claim that the processing code can
remain unchanged in changing from one type of system to the
other and that the code will execute in the same amount of
time in both systems. This claim ignores the case in which the
procedures share global data. If the system uses global data
(usually system tables encoding the state of the system re
sources) both the calling procedure and the called procedure
can access these data efficiently. In a message-passing system
there are no global data so tables that must be shared by
several processes have to be passed or explicitly mapped into.
It is only the mapping facility in NUKE that makes it come
close to the efficiency of standard UNIX. Even so NUKE still
requires the overhead of a kernel call to set up the triapping
and another kernel call to undo the mapping.

One can make a good case for the idea that such global data
are bad programming practice and lead to errors, but global
data are heavily used in standard UNIX. Even Lauer and
Needham in their paper talk at length about global data in
procedure-calling systems and the attendant locks and syn
chronization that they make necessary.

Size and Performance

The system is larger and· slower than the standard UNIX
kernel. The UNIX kernel has about 9,000 lines of code, while
NUKE has about 11,000 lines (20% larger). UNIX is about

10% assembly language (1,000 lines) while NUKE is about
2% assembly language (200 lines).

In memory space NUKE is about 50% larger than UNIX.
There are several reasons for NUKE being larger than stan
dard UNIX. First the system processes each need a user struc
ture, a stack area, and basicstructure.code~ none of which are
needed for standard UNIX system processes (since they are
really piggy-backed on user processes). The system processes
have a certain amount of overhead in mapping, sending and
receiving messages, and in their processing loops. Finally
about half of the kernel is overhead to support message pass
ing which is not needed in standard UNIX.

The execution time of the system is seven times slower than
UNIX at the raw level (for getpid, which is a system call that
is nearly all overhead). For normal user interactions, the sys
tem is 1.5 to 3 times slower than the standard UNIX kernel.
This extra overhead comes from the extra context switching
required in a message-passing system and the kernel call pro
cessing time required to set up the maps, send messages, etc.

The system is slow but its performance is not unexpected
since message passing implies more overhead. We thought the
benefits of message passing would be worth the extra over
head. We expect the VAX version of NUKE to compare more
favorably with VAX UNIX than it does with PDPII Level 6
UNIX since the rieher instruction selis more favorable to
message passing with primitive operations for queue handling
and context switching. Also the character string searching
instructions can be used to create a very fast scheduler.

CONCLUSIONS AND FUTURE RESEARCH PLANS

Our overall evaluation is that message passing is a good way
to structure operating systems. The main advantage is that
operating systems so structured are highly modular, easy to
understand and modify, and easier to get working correctly.
The main disadvantage of message passing is that it is defi
nitely slower but this could be· ameliorated by microcoding
critical operations and using multiple processors both of which
are easier to do in message-based systems.

The next phase of the project is to port the whole system
over to th~ VAXllI780. We expect this to be straightforward
since only a few parts of the system need to be changed. After

A New UNIX Kernel 271

that we will optimize the system on the VAX by taking advan
tage of its larger instruction set. We also plan to use user
writable control store on the VAX to speed up critical oper
ations. A kernel-based, message-passing operating system is a
natural for this since the overhead is concentrated in a few
places. that is, in context switching and the other kernel func
tions.

We have mentioned that the process-oriented system had
more localized threads of control and could be more easily
adapted to a mUltiprocessor system. We would like to try to
port the system to a multiprocessor to see what advantages
could be gained. The idea would be to pick a system with
multiple microprocessors in a tightly coupled system with
some common memory and some local memory (e.g., the
Intel Multibus). The system and user processes could float
among the processors and the kernel would be implemented
on each processor. Some of the context switching would be
eliminated and this would allow true parallelism which should
speed up the system. The goal of such a system would be to
provide a high-performance computer system at a low cost by
using inexpensjve microprocessors. If the speed improvement
could be shown it would be easy to drastically reduce the cost
of the system by custom design of the hardware.

ACKNOWLEDGMENT

This research was inspired by discussions with Forest Baskett,
Mike Malcolm, and Gary Sager on message passing and by the

. designs ofthe DEMOS and THOTH operating systems. Steve
Meyers and Tom Obenauf assisted in the design and coding of
the system. Jerry Basford was invaluable in the debugging of
the system and the writing of several system processes.

REFERENCES

1. Crowley, c., "Parallel Developments in Programming Languages and Oper
ating Systems," Computer Languages, Vol. 4 No.2, 1979, pp. 71-82.

2. Lauer, H. C. and Needham, R. M., "On the Duality of Operating Sy~em
Structure," Proceedings Second International Symposium on Operating
Systems, IRIA, October, 1978. (Reprinted in Operating Systems Review,
Vol. 13, No.2, 1979, pp. 3-19.)

A security policy for a profile-oriented operating system

by CHARLES R. YOUNG
Sperry Univac
Blue Bell, Pennsylvania

ABSTRACT

A security policy for a profile-oriented operating system is
described that is adopted from state-of-the-art security prop
erties designed to meet even the strict security requirements
of the Department of Defense. The policy is built around
user,execution, and program profiles that serve as re
positories for security related information. The security terms
access category, access list, security level, clearance level,
subject, object, discretionary and nondiscretionary security,
and profile are defined. The six security rules that form the
foundation of system security are described. Their inter
actions are detailed and examples are given. The six rules are:
discretionary security condition, simple security condition,
*-property (star property), tranquility principle, nonaccessi
bility of deleted objects, and rewriting of newly created ob
jects.

INTRODUCTION

The topics of security and privacy are under increasing public
scrutiny. People are more aware than ever of the quantity of
information kept on them and are increasingly concerned
about its proliferation. Privacy, to the extent it has a technical
meaning, is a legal and social term concerning what rights, if
any, an individual has over information concerning him, and
what obligations are placed on other parties having access to
or responsibility for such information. Security, on the other
hand, is a term used to refer to the problems involved in
ensuring that unauthorized people do not have access to some
piece of information, no matter what the reason for control
ling access, and so it is mostly involved with technical issues.

In discussing either topic, especially security, an important
concept is the security policy. The security policy controlling
a given piece or class of information is the set of rules govern
ing who is to have access to what information under what
conditions. A policy may be formal or informal, legally en
forceable or merely administratively enforceable. A policy
may have discretionary (need-to-know) and nondiscretionary
(minimum security level requirements) components to it. Un
der tp.e U.S. Department of Defense policy for safeguarding
sensitive information, it is forbidden to give classified infor
mation to a person not having a high enough clearance for it.

273

(The holder of the information cannot exercise any discretion
in the matter-hence the term nondiscretionary.) Having the
proper clearance, however, is not sufficient reason for obtain
ing access-the possessor of classified information always has
the right to refuse access even though the requestor's clear
ance is prima facie evidence that he is sufficiently trustworthy;
in fact, a possessor is obligated to exercise that right if the
requestor does not present adequate justification.

A key criterion for a workable and reliable security policy
is that it not be too dependent on the overall wisdom and
background of the people involved in enforcing it. The policy
itself should minimize the extent of human errors of judgment
or administration that can defeat the purpose of the policy.
For this reason, formally established policies mark informa
tion (classify it) and give labels to people (give them clear
ances) with fairly simple rules about what sets of labels are
required to permit access to information bearing a given set of
markings. The major ingredients in the nondiscretionary as
pects of security policies are a notion of a small number of
levels of sensitivity of information and a much larger number
of categories of information. Being granted access to informa
tion of given sensitivity implies in principle the right of access
to information of lower sensitivity, but being given access to
a given category of information (e.g., payroll) does not neces
sarily say anything about access to information of a different
category (personal health records, manufacturing schedules).
Note that discretionary controls may still deny access; a per
son may have the right to say exactly who can see his health
record even though all the medical staff are "cleared" for it. 61

These areas of interest (payroll, personal health records, man
ufacturing schedules) are formally referred to as access cate
gories.

This paper describes a security policy for an operating sys
tem oriented toward profiles. Profiles contain non-security-re
lated information about programs, users, and their execution
environments. They also contain security-relevant informa
tion such as the objects (e.g., files) a user or program may
access and with what privileges (e.g., read or write). This
paper is a detailed technical presentation that combines,
translates, and reorients many published articles, papers, and
documents into a form usable in a profile-oriented system.

The policy is divided into two sub-policies, discretionary
and nondiscretionary. The nondiscretionary policy is further
divided via security levels into clearance level and access cat-

274 National Computer Conference, 1981

egory sub-policies. If anyone of these is in effect, it applies to
all subjects and all objects; for example, if discretionary secu
rity is in effect, then every access to an object by a subject
must first pass discretionary access controls. Discretionary
security, clearance levels, and access categories may be com
bined to configure any of eight enforceable policies, from no
security to a configuration where all are present. The ~ecurity
policy is enforced by positive system controls that ensure user
and system software obey the six rules summarized in the
section "Rules Summary."

Terms

Familiarity with most computer related security terms is
assumed; for clarity, however, there follows a list of terms
whose definitions are unusually complex or whose meanings
are altered in this context.

Access Category Set-An access category is one of the
classes to which a subject or object is assigned; NATO, Med
ical; Financial, and Nuclear are examples. An access category
set is a grouping of zero or more access categories; {NATO}
and {NATO, Nuclear} are examples. An access category set is
related to non-discretionary security and is a component of a
security level. See:::) (contains as a subset) in the section
"Symbols" for their: properties.

Access List-An access list is an enumeration of objects
and the privileges associated with individual objects in the list.
Related to discretionary security, access lists are contained in
user profiles, program profiles, and execution profiles.

Clearance Level-Related to non-discretionary securify, a
clearance level is a classification of either a subject's integrity
or the value of an object's data. In the military vernacular, an
object's clearance level is also known as a classification level.
A clearance level is a component of a security level. Typical
exam:ples are: Top Secret, Secret, Classified, and Unclassi
fied. See ~(greater than or equal to) regarding their proper
ties.

Data Privilege-A data privilege is an identification of how
an object's data may be used. Read, write, and add are exam
ples for file objects.

Discretionary Security"":"'-Discretionary security permits an
owner to select other subjects that are permitted access to an
object, constrained by nondiscretionary security. Repre
sented by the access lists contained in the program, user, and
execution profiles, discretionary security forms a portion of
the total security policy.

Dominate-See the section "Symbols," Xl.

Execution Profile-With respect to security-related infor
mation, an execution profile is an object that contains the
access list of all objects accessible under the execution profile,
and the object and data privileges associated with each object;
these privileges are categorically identical for all users associ
ating with a given object in a specifieexecution profile. Its
access list may not contain any nested profiles as objects (see
"Object Hierarchies") except for the PHI profile. An exe
cution profile can be thought of as a group for ease-of-use
purposes, since users having common operating environments
can be grouped together by using the same executiop profile.

Several users may be concurrently attached to an execution
profile, each making use of objects contained in its access list.
Conversely, a user may be attached only to one execution
profile at a time, with the PHI profile being the only excep
tion. Attacning to an execution profile effectively extends the
number of objects accessible by the subject beyond those
normally available under his user profile.

Nondiscretionary Security-Nondiscretionary security per
mits no choice over who is permitted to access an object. It
forms a portion of the total security policy, with security level
requirements governing accesses.

Object-An object is an identifiable system resource or
entity-software-created entities such as instances of data
files, programs, and libraries and hardware resources such as
individual disks and processors. There are two classes of ob;.
jects, primary and subordinate.

Object Privilege-An object privilege is an identification of
how an object may be used. Move, rename, destroy, save, and
restore are examples for file objects.

Object Type-An object type is a grouping of objects of
similar class, such as all MIRAM (Multiple Indexed Random
Access Method) files or all segments.

Object-Type Manager-An object-type manager is an in
stance of a class of programs that create and manage specific
types of objects; examples are the MIRAM-file manager and
segment manager. An object-type manager differs from "reg
ular" program in that the manager tras the ability to construct
objects (e.g., MIRAM files) out of subordinate objects (e.g.,
data segments) and keep (indirectly, in the access list of the
manager's program profile) all the information about the sub
ordinate objects accessible only to itself.

Ownership-'-Ownership of an object allows discretionary
controls over that object, such as who accesses· it and with
what privileges. The owner may restrict his own privileges;
e.g., he may restrict file access to read-only and on desired
occasions change it to read/write. An owner may never dis
cretionarily delegate to another subject more privileges than
he currently possesses.

Password-A password is a protected secret word or string
of symbols that is known only to the user and that authen
ticates the user. The password is required for interactive ter
minal log on and for running batch programs: In some in
stances, such as when the security officer logs on, additional
passwords or password-like information may be required.

PHI Profile-The PHI profile, so named because phi (<I» is
the greek letter used in mathematics to represent the null set,
is an execution profile whose security level's access category
set is the null set. Thus, objects named in the access list of the
PHI execution profile are nondiscretionarily restricted only
by the clearance level relationship of object· and subject.
When the PHI profile is listed as an object in the ac~ess list of
the program, user, or execution profile to whieh a subject is
attached, he is automatically attached to it, even while at
tached to another execution profile.

Primary Object-A primary object is an object that is user
visible and controllable; he receives ownership and all object
and data privileges of any primary object for which here
quests creation. This is the only type of object with which a
user need be conc~rned. Ownership of primary objects is
indicated in the user profile.

Privilege-A privilege is an identification of how an object
or its data may be used. See also data privilege and object
privilege.

Process-A process is a thread of control and is repre
sented and controlled in the system by a process control block
(PrCB). It is created when the user logs on or when a batch
run is activated. The PrCB represellts, and acts on behalf of,
the user and/or program; thus, it is considered a surrogate
subject. Although a process never owns an object, it requests
them for its own use on behalf of the subject. When activated,
the process is given the security level selected by the user from
those available to him. --
Program-A program is a collection of procedures contain

ing data and executable code that acts as both a subject and
an object. A program profile is associated with each program;
it contains the access list of all objects that a program, when
acting as a subject, may directly access. There are several
kinds of programs, two of which concern security: object-type
manager programs and "regular" programs, which are all
non-object-type manager programs. The user can write pro
grams of both types; object-type managers are so designated
because of their special properties. A grouping of programs
may be protected the same way a single program is.

Program Profile-With respect to sec\lrity-related informa
tion, a program profile is an object that contains the access list
of all objects accessible directly by the program and the object
imd data privileges associated with each object. Whenever a
program is in control of a process, the program profiIe'-s access
list, in addition to the user and execution profiles' lists, can be
used for verifying proper access of objects. There is a one-for
one correspondence between program and program profile.
Its access list may not contain other profiles as objects, except
for the PHI profile. A program profile's purpose is twofold: it
allows a user to explicitly delegate to a program privileges to
access other objects directly during its execution (see "Pro
gram Execution"); and it provides a mechanism for object
type managers to access their subordinate objects. In the lat
ter case, both the subordinate object and the higher level
object of which it is part are noted.

Security Level-A security level, r()ughly speaking, is a
measure of a subject's trustworthiness and denotes the max
imum security operating environment; for objects, it repre
sents its data's value and, in part, the operating environment
in which it was created. Related to nondiscretionary security,
a security level has two components: a clearance level and an
access category set; this is denoted by SL=(CL, {AC}).
See=(is identical to) and oc(dominates) in the section "Sym
bols" regarding properties of security levels.

Subject-The user, known to the system by his user ID, is
a subject of the system; only he may own objects arid exercise
aU ,the privileges associated with objects, including dis
cretionary controls. A program is also a subject, but may own
objects; programs may have privileges associated with objects
and certain types of programs, namely object-type managers,
may have exclusive control over those privileges. A process
represents the user and program and is a subject in its own
right, acting on behalf of the user or program by executing
commands-and other programs and requesting objects for use.
A subject becomes an object for purposes of interuser and
interprocess communication.

Security for a Profile-Oriented Operating System 27'5

Subordinate Object-A subordinate object is an object that
is user-invisible; it can be thought of as a building block used
to construct user-visible (primary) objects or other subordi
nate objects. Subordinate objects are controllable by and vis
ible to an object-type manager;-altlrough-the manager does
not "own" these objects in the generic sense, it does possess
all object and data privileges for the subordinate objects it
requests. The object-type manager can never transfer or dele
gate any privileges of a subordinate object it uses. For security
purposes, subordinate objects are marked as "owned" in the
program profile's access list of the object-type manager that
requested its creation; this is a restrictive ownership limited
only to object management and true ownership of the subor~
din ate object (for accounting purposes, etc.) can be traced to
the user who owns the primary object of which the subordi
nate object is part. A subordinate object is also marked in the
program profile with the name of its higher-level object.

User-A user is an individual who interfaces directly (via a
terminal) or indirectly (via a batch run) with the system and
is identified by his user 10 and authenticated by his password.
The user is restricted by the security levet with which he rUns.
He is a subject while performing actions and an object for
interuser communication purposes.

User ID-A user ID is a name, word, or string of symbols
used to identify each user to the system and to other users or
systems; it is a user's "name." It is nonsecret and globally
available.

User Profile-WiTh respect to security-related information,
a user profile is an object that contains the access list of all
objects, including those owned, accessible to the user who
owns the user profile, and the object and data privileges asso
ciated with each object. The user is always attached to his user
profile, whereas attachment to an execution profile may be
transitory; thus, the user always has his user profile's objects
available. There is a one-for'-one correspondence between
user ID and user profile. Note than an execution profile is an
object; thus, the user profile states all execution profiles with
which the user may associate. The user profile also contains
other security-related information, such as default and max
imum security levels and passwords.

Symbols

The following is an unordered list of symbols, the security
properties they represent, and examples of those properties.

• ::> -Read "contains as a subset," this symbol.is used in
comparing the contents of. two. access category sets:
{AC1} ::> {AC2} if and only if all the members of AC2 set
are contained in AC1 set. Note that the set with no
members (called the empty set or null set) is contained as
a subset of every set. Valid examples are

and

{NATO, NUCLEAR}::> {NATO},
{NATO}:::> {NATO},
{NATO}:::> <I> (the null set),

{NATO, NUCLEAR}::> {NUCLEAR, NATO}.

276 National Computer Conference, 1981

Invalid examples are

and

{Medical}:::> {Medical, Financial},
4>:::> {Medical},

{Medical} :::> {Financial}.

• ~ -Read "greater than or equal to," this symbol is used
in comparing two clearance levels: CLI ~ CL2 if and only
if CLI encompasses at least the clearance levels of CL2.
That is, ~ is an ordering of all clearance levels such that
a subject having clearance level value 6 can potentially
access all objects whose value is 6 or less, but cannot view
objects of 7 or greater. In Department of Defense terms,
a person possessing the Secret clearance level may view
an object of Secret, Classified, or Unclassified, since
Secret ~ (Secret, Classified, Unclassified).

Valid examples are

Top Secret ~ Top Secret
and

Top Secret ~ Classified.

Invalid examples are

Secret;;:::: Top Secret
and

Unclassified ~ Classified.

• Xl-Read "dominates," this symbol orders all security
levels, as follows: Given two security levels, SLI == (CLl,
{ACl}) and SL2 == (CL2, {AC2}), then SLI Xl SL2 if and
only if CLI ~ CL2 and {ACl}:::> {AC2}. Valid examples
are

(Secret, {Medical, Financial})Xl
(Secret, {Medical, Financial}),

(Secret, {Medical})Xl(Classified, {Medical}),
(Secret, {Medical, Financial, NATO})Xl

(Secret, {Financial}),

and

(Secret, {Medical, Financial})Xl(Unclassified, 4».

Invalid examples are

(Secret, {Medical}) Xl (Top Secret, {Medical}),
(Secret, {Medical})Xl(Secret, {Medical, Financial}),

and

(Unclassified, 4»0:: (Top Secret, {NATO}).

• == -Read "is identical to," this symbol says that where
one item is named, another could as easily be placed
there; for example, in the previous examples, where SL
is written, (CL, {AC}) could just as easily be written.

Basic Assumptions

This section-names assumptions basic to the understanding
of this paper.

• For full security, every object and every subject in the
system has associated with it a security level.

• To the security policy, there is no difference between
batch and interactive modes except in initial system ac
cess.

Rules Summary

The following is a condensation of the 6 security rules as
interpreted for a profile-oriented operating system:

1. Discretionary Security Condition-Subjects are con
strained to access only objects listed in the subject's user
profile, program profile, an attached execution profile,
or, if named as an object in his program, user or attached
execution profile, the PHI profile.

2. Simple Security Condition-Only if the security level of
the process dominates the object's may the object be
cleared for access by the subject.

3. *-Property-A subject can modify an object OBI in a
manner dependent on data in object OB2 only if the
security level of OBI dominates OB2's.

4. TranqUility Principle-A subject cannot change the secu
rity level of any object.

5. Nonaccessibility of Deleted Objects-An object cannot
be accessed if it is in the deleted state.

6. Rewriting of Newly Created Objects-A newly created
object is given an initial state independent of the state of
all other objects, including those now existing and those
no longer existing.

SECURITY POLICY

The following sections describe the internal security policy
and its rules and give some scattered examples. The informa
tion presented is oriented toward the interactive user. Batch
users are treated internally the same as interactive users; only
logon is different.

Logon

The user logs on by supplying his user ID and password(s).
Each user has defined in his user profile his default and max
imum security levels; also listed as objects are all execution
profiles he may access, including a default which may be none
or the PHI profile. At logon the user can optionally change his
default security level and default execution profile. The se
lected security level must be dominated by his maximum secu
rity level and the selected execution profile must be from
among those listed in his user profile.

Process Creation

When the logon has been validated, the user is granted
access to the system. A process (PrCB and associated control
ling structures) is created on behalf of the user. The PrCB and
all other structures are given the security level selected by the
user for this session. This cannot be changed for the life of the
process. All sub-processes and dynamically spawned control
structures are also assigned the selected security level which
can never be changed. Although a process never owns an
object, it does request objects that are directly or indirectly
requested by the user or program.

The process, from a security viewpoint, is now ready to act
on behalf of a user or program. Thus, user and process have
been melded to form an active subject.

Program Execution

A program runs under control of a process. Thus, it receives
the objects currently cleared for use by the process (see "Ob
ject Requests and Request Validation Sequence"). Further
requests for objects may be made either directly by the pro
gram or at the user's request. To verify legitimate object re
quests, the subject's security level and access list privileges are
checked; the checks are described later. They provide the
capability to provide that some objects requested may only be
requested by the process while a certain program is running,
i.e., the user cannot be cleared for access to the object without
the given program in control. Access to an object so requested
would be immediately disallowed at program termination.
This capability is a logical consequence of a program's pro
gram profile and the access privileges in its access list.

As object-type managers (programs with special abilities
see below) gain and yield control of the process, the totality
of objects that may be accessed by the process changes dy
namically. This is also a consequence of the program profile.

Primary Object Creation

A user who has the capability can create primary objects. In
this case the user is named object owner and is given total
control over and access to the object and its data. Initially,
therefore, creator = owner, but this may not always be the
case if ownership is transferred. Once created, the creator
name is kept for historic purposes only; this field could aid in
tracking -malicious system users. Indication of ownership_of
primary objects is kept in the user profile of the user who owns
the object.

These newly created objects are given initial states indepen
dent of the states of any previous use of the object names.
(This is one of the six security rules, rule 6: rewriting of newly
created objects.)

At creation time an object is automatically assigned the
subject's current security level, which is the default, or the
level stated on the create command, which must be dominated
by the subject's current security level.

There is a further restriction placed on allowable security
levels for dynamically created objects: the level of a dynamic-

Security for a Profile-Oriented Operating System 277

ally created object (i.e., one created by a program on behalf
of the user) must dominate the level of every object assigned
with read access to the process. This requirement, similar to
the *-property discussed-'below, prevents the program from
conveying information in a covert fashion by creating a series
of files of, say, secret classification while reading top secret
information; another colluding process with a secret clearance
level could in.terpret the presence or absence of files as binary
coded information representing the top secret information,
which it is, of course, not permitted to view.

Object-Type Managers

The operating system is necessarily oriented around ob
jects. Further, for every object type there is an object-type
manager that is the one and only manager responsible for
creation and management of that object type; for a given

. object, the manager cannot be changed. Its·1.1nique feature is
that it can create higher level objects from subordinate object
types. The user is also given the ability to write his own (ab
stract) object-type managers.

Subordinate Object Creation

A subordinate object is created when an object-type man
ager requires an object to construct another object of
"higher" type. A subordinate object may itself be composed
of other subordinate objects. For example, a MIRAM file MI
might be constructed out of several SAT (System Access
Technique) files, which in turn may be constructed out of
segments, and so on. In this example a user's create request
causes the MIRAM object-type manager to be invoked, di
recting it to create a primary object of type MIRAM named
Ml. When security is informed of this creation, an entry is
placed in the object-type manager invoker's profile, namely
the user profile. The MIRAM manager, invisibly to the user,
invokes the SAT objeCt-type manager, requesting a subordi
nate object of (obviously) type SAT, which is declared to be
part of Ml. When SAT informs security of the SAT file cre
ation, an entry is placed in the program profil~ of the SAT
manager invoker, MIRAM, stating its subordinate nature and
that it is part of MI. This procedure continues throughout the
hierarchy of objects constituting MI.

A subordinate object is given the same security level as the
next higher object type.

Object Requests and Request Validation Sequence

The use of an object for security purposes is logically a
multistage operation. The object must first be requested by
the process for its use. As the immediately following sections
indicate, rule 5, rule 2, and rule I govern the validation of
requests. Once validated, the subject is cleared for access to
the object. Note that if the subject is not cleared, he cannot
access the object's contents. If the object requested is a sub
Grdinate, then the next higher object in the hierarchy (in
dicated with the subordinate in the object-type manager's

278 National Computer Conference, 1981

program profile) must have been previously and validly re
quested; if not, then the subordinate object request cannot be
validated.

At access time (e.g., during open for a file, when intended
access modes are declared), the requests for non-write access
(e.g., read, execute) are evaluated and granted or de~ie~
based on privileges in the access lists of the program profIle If
a program (or object-type manager) is executing, the exe
cution profile if the subject is attached to one, or the user
profile. The order for examining these profiles to validate a
request is as follows: the object-type manager invoker's pro
gram profile (be it a "regular" program or another manager),
the execution profile, and finally the user profile. The pursuit
stops when an object-entry is found; thus, the program pro
file's access list entries effectively override the execution pro
file's entries, which in turn override the user profile's entri~s.
However, if a subject desires a concatenation of all privileges,
he need only specify that desire to the system. Note that there
are no privileges associated directly with the actual object.
And note also that as one program invokes another, the privi
leges in the preceding program profile are disallowed.

An example of the utility of the override and concatenate
principle is the case in which a project manager has read/write
privileges to a project's master file in his user profile, but
read-only privilege in the project's execution profile. He
might attach to the execution profile, in which case he would
have read-only access to the file and thus be treated just like
other project members; he might not attach to the profile and
thus have read/write privileges allowing him to update the
master file; or he might be attached to the execution profile
and find it necessary to update the, master file while still
attached-in this case he merely specifies his desire to concat
enate privileges to the system and then performs the update.

For write access to the object, the above rules apply but
writing is also governed by rule 3 (see "'Object Hierarchies").

Nonaccessibility of Deleted Objects

A subject cannot be cleared to access an object if the object
is in the deleted state (rule 5).

Simple Security Condition

A subject may be cleared for an object only if his current
security level dominates the object's security level (rule 2).

Discretionary Security Condition

The discletionaIY sectlIity condition states that a subj@ct is
(further) constrained to access only those objects appearing in
any of his valid access lists (rule 1). This means the subject
must have the object listed in his user profile, in the execution
profile to which he is attached (if any), in an attached program
profile if a program is executing, or in some combination
thereof.

*-Property

The subject is restricted during write accesses: if the subject
has read access to object 1, then to alter object 2, security
level 2 must dominate security level 1 (rule 3), That is, infor
mation cannot be "declassified."

Object Hierarchies

A structure is imposed on all primary and subordinate ob
ject relationships; a parent-child association must be main
tained that allows only directed, rooted trees and isolated
points. This particular structure is desired in order to take
advantage of the implicit control conventions of, -and the
wealth of experience with, logical data objects structured in
this way. The construct used is called a hierarchy; a hierarchy
specifies the progeny of each object so that structures of the
type mentioned are the only possibilities. 12 Thus, objects can
not be inferior to two different objects, and a ring of objects
is forbidden. Also, in traversing a path from root to leaf, the
security levels must not decrease.

As an invalid example, consider a MIRAM file object and
a subordinate SAT file object holding the data of the MIRAM
file. Assume the SAT file is classified (Secret, {Medical}).
Also assume the MIRAM file is classified (Top Secret,
{Medical}). Access to the MIRAM file's data must proceed
first to the MIRAM file and then to the SAT file itself. If a
user has a security level the same as that of the SAT file, then
he could never access the contents of the SAT file and there
fore the MIRAM data, since the security levels going from
root (MIRAM file) to leaf (SAT file) decrease.

It is important to note that a hierarchy does not preclude
networks in the database management sense; that is, two log
ical files could be mapped onto one physical file. From a
security point of view, however, there are merely three dis
tinct user-accessible objects to protect; security is not aware of
the network relationship among these.

Hierarchies also impose a restriction on access lists in exe
cution profiles: they may not contain any nested profiles as
objects except for the PHI profile, since a collection of pro
files could form a ring, where EP1~EP2~EP~EP1.

Object Authority Delegation

Typically the owner of a primary object holds all data and
object privileges over that object. If he has the capability, the
owner may delegate these privileges to others; these privileges
can be specified as propagatable or nonpropagatable. No user
may delegate more privileges than he currently holds.

For subordinate objects, a slightly different situation exists.
The object-type manager holds in its program profile all priv
ileges for a subordinate object required for making higher
level objects The manager can almost be considered its owner
for that reason; however, the manager cannot exert dis
cretionary control over the object. In addition, the user who
owns the primary object is the indirect owner of the subordi
nate object and exerts indirect discretionary control over the
subordinate object by delegating visibility to the primary ob
ject.

Public Objects

There is a system-defined execution profile, named the PHI
profile, whose access category set is null. Since the null set is
contained as a subset of all sets, and since the PHI profile, by
convention, is a valid object for any user, execution, or pro
gram profile, the PHI profile is potentially accessible by all
valid system users.

PHI execution profile attachment need never be explicitly
requested by the subject. Subjects who have the PHI profile
listed in a valid access list are automatically given access (re
stricted by nondiscretionary security) to the objects in the PHI
profile's access list. Although a user may be attached to only
one execution profile at a time, this maxim is waived for the
PHI profile; the subject is continually attached, regardless of
attachment to another execution profile.

For an object to be placed in the access list of the PHI
profile, its access category set must be null (since the PHI
profile's set is; see the next section). PHI profile objects are,
therefore, considered public. For example, a subject who has
PHI profile access needs only, as a minimum, a secret clear
ance level to access a secret object listed in the PHI profile's
access list.

Execution Profile Access List Constraints

Since an execution profile is itself an object, security levels
of objects listed in the execution profile must be dominated by
the execution profile's security level. Thus, for example, only
Medical or null access category set objects may be listed in the
profile whose set is {Medical}. If this were not the case, then
a circumstance would present itself where a subject would be
on the access list (by virtue of attaching to the execution
profile) of objects he is not permitted by nondiscretionary
security to access.

Program Profile Access List Constraints

As with the execution profile, the program profile is an
object whose access list also contains other objects. Their
security levels must be dominated by the level of the program
profile, which in turn must equal that of the program.

Tranquility Principle

Once created, an object's security level may not be
changed, except as noted in the section "Formularies"; the
clearance level may not be increased or decreased and the
access category set may not have members added or removed.
This applies for the life of the object (rule 4).

Object Declassification

On occasion there legitimately occur situations in which
data must be downgraded or in which an object's security level
must be_changed. These actions, though, constitute direct

Security for a Profile-Oriented Operating System 279

violations of security, speCifically the * -property and tranquit- .
ity principle; thus, they may only be handled by the security
administrator, who is granted exceptional abilities. That is, a
user must contact the security administrator (possibly outside
the system) andprovide him with information convincing him
of the legitimacy of this particular request. When satisfied, the
administrator makes the desired change. This capability can
be extended only by the administrator to his designated assis
tants, of which there are a user-defined number.

Formularies

Since the security administrator, treated as just another
user but with special abilities, must operate under the security
policy as described~· there is as currently specified no way of
accomplishing the change just described. Thus, the concept of
"trusted program" is born.

A trusted program is one that, when executing, is not con
strained by the * -property. There are two kinds of trusted
programs:

• Those exempted from the * -property because they have
been independently shown not to violate the *-property;
and

• those exempted specifically to downgrade data and
thereby to violate the * -property.

The first kind of trusted program is necessary to support
normal operating -system fiillcllon5; such as a program that
saves (and restores) all disk files of varying security levels to
tape; although it reads and writes ftlesor.rliffeling secUIity
levels, it would not violate the * -property if it is shown that the
read/write mechanism for one file is logically disjoint from the
read/write of the next file.

The second type of * -property violator, known as a formu
lary, is exempted from the *-property for the express purpose
of performing downgrading. This is accomplished under the
explicit direction of the security administrator by the formu
lary writing the information with the higher classification into
an object of relatively lower classification.

OBJECT CLASSIFICATION SUMMARY

The following provides a breakdown of the three basic dis
cretionary visibilities of objects. All other object visibilities
are either special cases or combinations of these.

• Private Object-A private object is one where the owner
has sole access to the object, cOIlshaiIled only by self
imposed restrictions and nondiscretionary security. Ob
ject and data privileges are indicated solely in his pro
gram or user profile. All subordinate objects fall into this
category.

• Program/User Profile Private Object-User-profile pri
vate objects and program-profile private objects are
those whose access is limited to subjects having the ob
ject explicitly listed in their user or program profiles,
respectively; access to these objects is, of course, further
constrained by nondiscretionary security. Object and

280 National Computer Conference, 1981

data privileges are maximally limited to attributes in the
user or program profiles.

• Execution Profile Private Object-When a user is at
tached to an execution profile, the subject has access to
all objects specified in it. Object accessibility is con
strained by nondiscretionary security and object and data
accessibility are further constrained by privileges present
in the profile. "Public" files are a special case of this
classification.

CONCLUSION

The rules forming a security policy designed to provide multi
level security have been described. The policy is built around
user, execution, and program profiles, which serve as re
positories for access lists. The access lists indicate which pri
mary and subordinate objects the subject, including object
type managers, may access and with what privileges. Al
though most literature on security policies (e.g., Bell and La
Padula's work)8. 9. 10 associates the access list with the object
rather than the subject, the two approaches can be shown to
be mathematically equivalent. But from a user's point of view,
ease of use is enhanced when a profile (i.e., subject) access list
is used instead of an object access list: execution profiles
provide the capability for groups of users to share common
objects, and program profiles provide the capability for
object-type managers to possess privileges independent of
and unbeknown to the user. Thus, although security, because
of its necessarily restrictive nature, seems inversely propor
tional to ease-of-use, a profile-oriented security policy pre
sents a pleasant alternative to the mathematical models avail
able today.

REFERENCES

1. Ames, S.R., Jr., and J. K. Millen. "Interface Verification for a Security
Kernel." Infotech State of the Art Report-System Reliability and Integrity
(Volume 2: Invited Papers), 1978, pp. 1-21.

2. Ames, Stanley R., Jr. "User Interface Multilevel Security Issues in a
Transaction-Oriented Data Base Management System." Symposium Pro
ceedings Trends and Applications 1977: Computer Security and Integrity,
May 1977, pp. 120-124.

3. Anderson, James P. "Computer Security Requirments: An Investigation
of Computer Security Costs." ESD-TR-77-24, James P. Anderson Com
pany, Fort Washington, Pennsylvania, January 1976.

4. Anderson, James P. "Computer Security Technology Planning Study."
ESD-TR-73-51, Volumes I and II, James P. Anderson and Company, Fort
Washington, Pennsylvania, October 1972.

5. Anderson, James P. "Multics Evaluation." ESD-TR-73-276. James P.
Anderson and Company, Fort Washington, Pennsylvania, October 1973.

6. Bell, D. E., and E. L. Burke. "A Software Validation Technique for
Certification: The Methodology." ESD-TR-75-54, The Mitre Corpora
tion, Bedford, Massachusetts, April 1975.

7. Bell, D. E., et. al. "Secure On-line Processing Technology-Final Re
port." ESD-TR-74-186, The Mitre Corporation, Bedford, Massachusetts,
August 1974.

8. Bell, D. E., and L. J. La Padula. "Secure Computer Systems: Math
ematical Foundations." ESD-TR-73-278, Volume I, The Mitre Cor
poration, Bedford, Massachusetts, November 1973.

9. Bell, D. E., and L. J. La Padula. "Secure Computer Systems: A Mathe
matical Model." ESD-TR-73-278, Volume II, The Mitre Corporation,
Bedford, Massachusetts, November 1973.

10. Bell, D. E., and L. J. La Padula. "Secure Computer Systems: A Refine
ment of the Mathematical Model." ESD-TR-73-278, Volume III, The
Mitre Corporation, Bedford, Massachusetts, April 1974.

11. Bell, D. E., and L. J. La Padula. "Secure Computer Systems: Mathe
matical Foundations and Model." M74-244, The Mitre Corporation, Bed
ford, Massachusetts, October 1974 .

12. Bell, D. E., and L. J. La Padula. "Secure Computer Systems: Unified
Exposition and Multics Interpretation." ESD-TR-75-306, The Mitre Cor
poration, Bedford, Massachusetts, March 1976.

13. Berson, T. A., and G. L. Barksdale, Jr. "KSOS--Development Meth
odology for a Secure Operating System." AFlPS Conference Proceedings
1979 National Computer Conference (Volume 48), June 1979, pp. 365-371.

14. Berstis, Viktors. "Security and Protection of Data in the IBM System/38."
Seventh Annual Symposium on Computer Architecture, May 1980, pp.
245-252.

15. Biba, K. J. "Integrity Considerations for Secure Computer Systems."
ESD-TR-76-372, The Mitre Corporation, Bedford, Massachusetts, April
1977.

16. Blakley, G. R. "Safeguarding Cryptographic Keys." AFlPS Conference
Proceedings 1979 National Computer Conference (Volume 48), June 1979,
pp. 313-317.

17. Boebert, W. Earl, Charles H. Bonneau, and John J. Carnall. "Secure
Computing." Symposium Proceedings Trends and Applications 1977:
Computer Security and Integrity, May 1977, pp. 49-63.

18. Branstan, Dennis K. "Privacy and Protection in Operating Systems."
Tutorial on Computer Security and Integrity, 1977, pp. V-18--V-21.

19. Broadman, I. S. "Protection Techniques in Data Processing Systems to
Meet User Data Security Needs." Tutorial on Computer Security and
Integrity, 1977, pp. V-3-V-7.

20. Browne, Peter S., and Dennis K. Branstad. "Computer Security Tutorial
Notes." Tutorial on Computer Security and Integrity, 1977, pp. 2-1-2-9.

21. Carroll, John M. Computer Security, Los Angeles: Security World Pub
lishing Co., 1977.

22. Cash, James, Andrew B. Whinston, and William D. Haseman. "Security
for the GPLAN System." Information Systems (Volume 2, Number 2),
1976, pp. 41-48.

23. Cotton, Ira W., and Paul Meissner. "Approaches to Controlling Personal
Access to Computer Terminals." Tutorial on Computer Security and In
tegrity, 1977, pp. VI-42-VI-49.

24. Culpepper, L. M. "The Feasibility of a Method of Processing Encrypted
Data." Symposium Proceedings Trends and Applications 1977: Computer
Security and Integrity, May 1977, pp. 92-95.

25. DeMilio, Richard A., Richard J. Lipton, and Alan J. Perlis. "Social
Processes and Proofs of Theorems and Programs." Communications of the
ACM (Volume 22, Number 5), May 1979, pp. 271-280.

26. Denning, Dorothy E. "A Lattice Model of Secure Information Flow."
Communications of the ACM (Volume 19, Number 5), May 1976, pp.
236-243.

27. Denning, Dorothy E., and Peter J. Denning. "Certification of Programs
for Secure Information Flow." Communications of the ACM (Volume 20,
Number 7), July 1977, pp. 504-513.

28. Denning, Dorothy E., Peter J. Denning, and Mayer D. Schwartz. "The
Tracker: A Threat to Statistical Database Security." ACM Transactions on
Database Systems (Volume 4, Number 1), March 1979, pp. 76-96.

29. Department of Defense. Industrial Security Manual for Safeguarding
Classified Information. DOD 5220.22-M, U.S. Government Printing Of
fice, Washington, D. c., April 1974.

30. Department of the Air Force. Security-Information Security Program.
AFR 205-1, Headquarters U.S. Air Force, Washington, D.C., June 1976.

31. Dobkin, David, Anita K. Jones, and Richard J. Lipton. "Secure Data
bases: Protection Against User Influence." ACM Transactions on Data
base Systems (Volume 4, Number 1), March 1979, pp. 97-106.

32. Downey, Peter J. "MULTICS Security Evaluation: Password and File
Encryption Techniques." ESD-TR-74-193, Volume III, Deputy for Com
mand and Management Systems, Hanscom Air Force Base, Massachu
setts, June 1977.

33. Evans, Arthur, Jr., William Krantrowitz, and Edwin Weiss. "A User
Authentication Scheme Not Requiring Secrecy in the Computer." Com
munications of the ACM (Volume 17, Number 8), August 1974, pp.
437-442.

34. Federal Information Processing Standards Task Group 15: Computer Sys
tems Security. "Glossary of Terminology for Computer Systems Securi
ty." September 1975.

35. Feiertag, Richard J. "A Formal Technique for Designing Secure Commu
nications Systems." NTC 78 Conference Record (Volume 3), December
1978, pp. 36.2.1-36.2.5.

36. Feiertag, R. J., K. N. Levitt, and L. Robinson. "Proving Multilevel Secu-

rity of a System Design." Proceedings oTtlie Sixtn ACM Symposium on
Operating Systems Principles (Volume 11, Number 5), November 1977,
pp.57-65.

37. Feiertag, Richard J., and Peter G. Neumann. "The Foundations of a
Provably Secure Operating System (PSOS)." AFIPS Conference Pro
ceedings 1979 National Computer Conference (Volume 48), June 1979, pp.
329-334.

38. Fisk, A. J. "The Security Officers' View of Computer Security." Pro
ceedings of the 1977 Carnahan Conference on Crime Countermeasures,
April 1977, pp. 113-120.

39. Ford Aerospace and Communications Corporation. "Secure Mini
computer Operating System (KSOS), Computer Program Development
Specifications (Type B-5), Department of Defense Kernelized Secure
Operating System." WDL-TR7811, Ford Aerospace and Communications
Corporation, Palo Alto, California, March 1978.

40. Franking, Neal A., et. al. "Providing Data Integrity and Security through
Software Interfaces." Symposium Proceedings Trends and Applications
1977: Computer Security and Integrity, May 1977, pp. 102-105.

41. Gligor, Virgil D. "Review and Revocation of Access Privileges Distrib
uted through Capabilities." IEEE Transactions on Software Engineering
(Volume SE-5, Number 6), November 1979,pp.. 575-611.

42. Gold, B. D., et. al. "A Security Retrofit ofVMl370." AFIPS Conference
Proceedings 1979 National Computer Conference (Volume 48), June 1979,
pp. 335-344.

43. Gold, B. D., et. al. "VMl370 Security Retrofit Program." Proceedings of
the National ACM Conference, October 1977, pp. 411-418.

44. Gudes, E., F. A. Stahl, and H. S. Koch. "A Model for Data Base Secu
rity." Infotech State of the Art Report-System Reliability and Integrity
(Volume 2: Invited Papers), 1978, pp. 141-156.

45. Harrison, Michael A., Walter L. Ruzzo, and Jeffrey D. Ullman. "Protec
tion in Operating Systems." Communications of the ACM (Volume 19,
Number 8), August 1976, pp. 461-471.

46. Heinrich, Frank. "Computer Science and Technology: The Network Secu
rity Center: A System Level Approach to Computer Network Security."
NBS Special Publication 500-21 (Volume 2), January 1978.

47. Hoare, C. A. R. "Monitors: An Operating System Structuring Concept."
CommunicationsoftheACM (Volume 17, Number 10), October 1974, pp.
549-557.

48. Hsiao, David K., Douglas S. Kerr, and Stuart E. Madnick. Computer
Security. New York: Academic Press, 1979.

49. Hsiao, David K., Douglas S. Kerr, and Stuart E. Madnick. "Privacy and
Security of Data Communications and Data Bases." Proceedings on Very
Large Data Bases; Fourth International Conference on Very Large Data
Bases, September 1978, pp. 55-67.

50. IBM. An Executive's Guide to Data Security-A Translation from an IBM
Svenska AB Publication. G320-5647, IBM Corporation, White Plains,
New York, October 1975.

51. IBM. Data Security-Threats and Deficiencies in Computer Operations-A
Report on a Completed Study-A Translation from an IBM Svenska AB
Publication. G320-5646, IBM Corporation, White Plains, New York, Oc
tober 1975.

52. IBM. "IBM System/38 Control Program Facility Programmer's Guide."
SC21-7730-2, IBM Corporation, Rochester, Minnesota, May 1980.

53. IBM. "IBM Systernl38 Control Program Facility Reference Manual
Control Language." SC21-7731-2, IBM Corporation, Rochester, Minne
sota, May 1980.

54. IBM. "OS/VS2 MVS Resource Access Control Facility (RACF) Com
mand Language Reference." SC28-0733-2, IBM Corporation, Pough
keepsie, New York, June 1978.

55. IBM. "OS/VS2 MVS Resource Access Control Facility (RACF) General
Information Manual." GC28-0722-4, IBM Corporation, Poughkeepsie,
New York, April 1978.

56. Jones, Anita K., and Richard J. Lipton. "The Enforcement of Security
Policies for Computation." Journal of Computer and System Sciences
(Volume 17, Number 1), August 1978, pp. 35-55.

57. Keedy, J. L. "On Structuring Operating Systems with Monitors." The
Australian Computer Journal (Volume 10, Number 1), February 1978, pp.
23-27.

58. Kieburtz, Richard B., and Abraham Silberschatz. "Capability Mana
gers." IEEE Transactions on Software Engineering (Volume SE-4, Num
ber 6), November 1978, pp. 467-477.

59. Kohler, Barrie. "Factors Influencing the Requirement for Security Prod
ucts." Sperry Univac Spring Technical Symposium, May 1978, pp.
1-1-1-1-1-2.

Security for a Profile-Oriented Operating System 281

60. Kurtzberg, J. M. "Online Dynamic Testing of Security and Integrity of
Operating Systems." IBM Technical Disclosure Bulletin (Volume 17,
Number 5), October 1974, pp. 1508-1512.

61. Lee, T. M. P., and Robert E. Murphy. "Computer Security: Where and
Whither." Sperry Univac Fall Technical Symposium, October 1978, pp.
1-1-1-1-1-8.

62. Lee, Theodore M. P., et. al. "Processors, Operating Systems, and Nearby
Peripherals-A Consensus Report. " Secure Operating System Technology
Papers for the Seminar on the DOD Computer Security Initiative Program,
National Bureau of Standards, Gaithersburg, Maryland, July 1979, pp.
8-2-8-28 ..

63. Lempel, Abraham. "Cryptology in Transition: A Survey." SCRC-RP-78-
43, Sperry Research Center, Sudbury, Massachusetts, September 1978.

64. Linde, Richard R. "Operating System Penetration." Proceedings of
AFIPS 1975 National Computer Conference (Volume 44), 1975, pp.
361-368.

65. Linden, Theodore A. "Operating System Structures to Support Security
and Reliable Software." ACM Computing Surveys (Volume 8, Number 4),
December 1976, pp. 409-445.

66. Lipner, Steven B. (Session Chairman). "A Panel Session-Security Ker
nels." AFIPS Conference Proceedings National Computer Conference
(Volume 43), 1974, pp. 973-980.

67. Lipton, R. J., and L. Snyder. "A Linear Time Algorithm for Deciding
Subject Security." Journal of the Association for Computing Machinery
(Volume 24, Number 3), July 1977, pp. 455-464.

68. Lohse, Ed. "Implementation & Use of the Data Encryption Standard
within the Data Communications Environment." Computer Science and
Technology: Computer Security and the Data Encryption Standard, NBS
Special Publication 500-27, February 1977, pp. 84-93.

69. McCauley, E. J., and P. J. Drongowski. "KSOS-The Design of a Secure
Operating System." AFIPS Conference Proceedings 1979 National Com
puter Conference (Volume 48), June 1979, pp. 345-353.

70. Michelman, Eric H. "The Design and Operation of Public-Key Crypto
systems." AFIPS Conference Proceedings 1979 National Computer Con
ference (Volume 48), June 1979, pp. 305-311.

71. Millen, Jonathan K. "Formal Specifications for Security." Symposium
Proceedings Trends and Applications 1977: Computer Security and In
tegrity, May 1977, pp. 115-119.

72. Millen, Jonathan K. "Security Kernel Validation in Practice." Commu
nications of the ACM (Volume 19, Number 5), May 1976, pp. 243-250.

73. Minsky, Naftaly. "Intentional Resolution of Privacy Protection in Data
base Systems." Communications of the ACM (Volume 19, Number 3),
March 1976, pp. 148-159.

74. Morris, Robert, and Ken Thompson. "Password Security: A Case Histo
ry." Communications of the ACM (Volume 22, Number 11), November
1979, pp. 594-597.

75. Muftic, Sead, and Ming T. Liu. "The Design of a Secure Computer
System." Symposium Proceedings Trends and Applications 1977: Comput
er Security and Integrity, May 1977, pp. 64-70.

76. NBS. Proceedings of the Second Seminar on the DOD Computer Security
Initiative Program. Gaithersburg, Maryland: National Bureau of Stan
dards, January 1980.

77. NBS. "Specifications for the Data Encyrption Standard." Federal Infor
mation Processing Standards Publication 46, Department of Commerce,
National Bureau of Standards, January 1977.

78. Nelson, Jim. "New Requirements for Cryptosystems-A Tutorial." Sper
ry Univac Fall Technical Symposium, October 1979, pp. 6-2-1-6-2-8.

79. Nelson, Ruth, and Joseph Jarzembowski. "Multilevel Security-: An Over
view and New Directions." Symposium Proceedings Trends and Applica
tions 1977: Computer Security and Integrity, May 1977, pp. 41-48.

80. Neumann, Peter G. "Computer System Security Evaluation." Pro
ceedings of AFIPS 1978 National Computer Conference (Volume 47),
1978, pp. 1087-1095.

81. Neumann, Peter G., et. al. "A Provably Secure Operating System: The
System, Its Applications, and Proofs" (Final Report). SRI Project 4332,
Stanford Research Institute, Menlo Park, California, February 1977.

82. Nibaldi, G. H. "Proposed Technical Evaluation Criteria for Trusted Com
puter Sstems." M79-225, The Mitre Corporation, Bedford, Massachu
setts, October 1979.

83. Nibaldi, G. H. "Specification of a Trusted Computing Base." M79-228,
The Mitre Corporation, Bedford, Massachusetts, November 1979.

84. Padlipsky, M. A., K. J. Biba, and R. B. Neely. "KSOS-Computer Net
work Applications." AFIPS Conference Proceedings 1979 National Com
puter Conference (Volume 48), June 1979, pp. 373-381.

282 National Computer Conference, 1981

85. Parnas, D. L. "On the Criteria to be Used in Decomposing Systems into
Modules." Communications of the ACM (Volume 15, Number 12), De
cember 1972, pp. 1053-1058.

86. Parnas, David L. "The Use of Precise Specifications in the Development
of Software." Information Processing 77 (Volume 7), August 1977, pp.
861-867.

87. Peters, Bernard. "Security Considerations in a Multiprogrammed Com
puter System." AFIPS Conference Proceedings-SJCC (Volume 30),
April 1967, pp. 283-286.

88. Pirkola, Gary c., and John W. Sanguinetti. "The Protection of Informa
tion in a General Purpose Time-Sharing Environment." Symposium Pro
ceedings Trends and Applications 1977: Computer Security and Integrity,
May 1977, pp. 106-114.

89. Popek, GeraldJ., and David A. Farber. "A Model for Verification of Data
Security in Operating Systems." Communications of the ACM (Volume
21, Number 9), September 1978, pp. 737-749.

90. Popek, Gerald J., and Charles S. Kline. "A Verifiable Protection Sys
tem." ACM Sigplan Notices (Volum:e 10, Number 6), June 1975, pp.
294-304.

91. Popek, Gerald J., and Charles S. Kline. "Issues in Kernel Design." AFIPS
Conference Proceedings National Computer Conference (Volume 47),
June 1978, pp. 1079-1086.

92. Popek, Gerald J., and Charles S. Kline. "Verifiable Secure Operating
System Software." AFIPS Conference Proceedings National Computer
Conference (Volume 43), 1974, pp. 145-151.

93. Popek, Gerald J., et. al. "UCLA Secure Unix." AFIPS Conference Pro
ceedings 1979 National Computer Conference (Volume 48), June 1979, pp.
355-364.

94. Purdy, George B. "A High Security Log-in Procedure." Communications
of the ACM (Volume 17, Number 8), August 1974, pp. 442-445.

95. Ragland, Larry C. A Verified Program Verifier. Ph.D. Dissertation, The
University of Texas at Austin, Computer Science, 1973.

96. Reymont Associates. "Detecting and Preventing Misuse of Data Pro
cessing Systems." Reymont Reports-Data and Direction for Business &
Industry, Rye, New York, 1978.

97. Rhode, R. "Secure Multilevel Virtual Computer Systems." ESD-TR-74-
370, The Mitre Corporation, Bedford, Massachusetts, February 1975.

98. Robinson, Lawrence, and Oliver Roubine. "SPECIAL-A SPECIfica
tion and Assertion Language." Stanford Research Institute, Menlo Park,
California, January 1977.

99. Robinson, Lawrence, et. al. "A Formal Methodology for the Design of
Operating System Software." Current Trends in Programming Method
ology-Software Specification and Design (Volume 1), 1977, pp. 61-110.

100. Robinson, Lawrence, and Karl N. Levitt. "Proof Techniques for Hier
archically Structured Programs." Communications of the ACM (Volume
20, Number 4), April 1977, pp. 271-283.

101. Roubine, Oliver. "The Design and Use of Specification Languages." Stan
ford Research Institute, Menlo Park, California, October 1976.

102. Roubine, Oliver, and Lawrence Robinson. "SPECIAL Reference Manu
al" (3rd Edition). Stanford Research Institute, Menlo Park, California,
January 1977.

103. Saal, Harry J., and Israel Gat. "A Hardware Architecture for Controlling
Information Flow." Proceedings of the Fifth Annual Symposium on Com
puter Architecture, April 1978, pp. 73-77.

104. Saltzer, Jerome H., and Michael D. Schroeder. "The Protection of Infor
mation in Computer Systems." Proceedings of the IEEE (Volume 63,
Number 9), September 1975, pp. 1278-1308.

105. Schaefer, Marvin, et. al. "Program Confinement in KVMl370." Pro
ceedings of the National ACM Conference, October 1977, pp. 404-410.

106. Schiller, W. L. "Design and Specification of a Multics Security KerneL"
ESD-TR-77-259, The Mitre Corporation, Bedford, Massachusetts, No
vember 1977.

107. Schiller, W. L. "Design of a Security Kernel for the PDP-11/45." ESD
TR-73-294, The Mitre Corporation, Bedford, Massachusetts, December
1973.

108. Schiller, W. L. "The Design and Specification of a Security Kernel for the
PDP-11/45." ESD-TR-75-69, The Mitre Corporation, Bedford, Massa
chusetts, May 1975.

109. Schroeder, Michael D. "Engineering a Security Kernelfor Multics." A CM
Operating Systems Review (Volume 9, Number 5), November 1975, pp.
25-32.

110. Schroeder, Michael D., David D. Clark, and Jerome H. Saltzer. "The
Multics Kernel Design Project." Proceedings of the Sixth ACM Sym-

posium on Operating System Principles (Volume 11, Number 5), Novem
ber 1977, pp. 43-56.

111. Shamir, Adi. "How to Share a Secret." Communications of the ACM
(Volume 22, Number 11), November 1979, pp. 612-613.

112. Shankar, K. S., and C. S. Chandersekaran. "The Impact of Security on
Network Requirements." Sympo ium Proceedings Trends and Applica
tions 1977: Computer Security and Integrity, May 1977, pp. 96-100.

113. Sipple, Ralph E. "Hardware Insurance for Software: Protecting Software
from Software Using Software." Sperry Univac Fall Technical Symposium,
October 1979, pp. 1-2-1-1-2-5.

114. Smid, Miles E. "Computer Science & Technology: A Key Notarization
System for Computer Networks." NBS Special Publication 500-54, Octo
ber 1979.

115. SPERRY UNIVAC. "Crypto System Key Management, Generation and
Authentication." SA01733, Sperry Univac, Blue Bell, Pennsylvania, June
1979.

116. SPERRY UNIVAC. Security CPSD. B-42512 (Update D2), Sperry Uni
vac, Blue Bell, Pennsylvania, 1977.

117. SPERRY UNIVAC. Series 1100 Security. B-42505, Sperry Univac, Blue
Bell, Pennsylvania, 1979.

118. Stahl, Fred, Ehud Gudes, and Harvey Koch. "The Coordination ofCryp
tographic and Traditional Access Control Techniques for Protection in
Computer Systems." Symposium Proceedings Trends and Applications
1977: Computer Security and Integrity, May 1977, pp. 86-91.

119. Stork, D. F. "Downgrading in a Secure Multilevel Computer System: The
Formulary Concept." ESD-TR-75-62, The Mitre Corporation, Bedford,
Massachusetts, May 1975.

120. Sugarman, Robert. "On Foiling Computer Crime." IEEE Spectrum (Vol
ume 16, Number 7), July 1979, pp. 31-41.

121. Sykes, David J. "The Management of Encryption Keys." Computer Sci
ence and Technology: Computer Security and the Data Encryption Stan
dard, NBS Special Publication 500-27, February 1977, pp. 46-53.

122. Tasker,P;-S., and D. E. Bell. "Design and Certification Approach: Secure
Communications Processor." ESD-TR-73-129, The Mitre Corporation,
Bedford, Massachusetts, June 1973.

123. Turn, Rein. "Privacy and Security in Transnational Data Processing Sys
terns." AFIPS Conference Proceedings 1979 National Computer Confer
ence (Volume 48), June 1979, pp. 283-291.

124. Turn, Rein, and H. E. Petersen. "Security of Computerized Information
Systems." The Rand Corporation, Santa Monica, California, July 1970.

125. U. S. Government. "Purchase Description No. RD1.094, Research and
Development of Provably Secure Operating System Design and Specifica
tion." March 1979.

126. Walker, Bruce J., Richard A. Kemmerer, and Gerald J. Popek. "Specifi
cation and Verification of the UCLA Unix Security Kernel." Commu
nications of the ACM (Volume 23, Number 2), February 1980, pp.
118-131.

127. Walker, Stephen T. "Department of Defense Computer Security Initia
tive." National Telecommunications Conference 1978 Conference Proceed
ings (Volume 3), December 1978, pp. 36.1.1-36.1.2

128. Walter, K. G., et. al. "Structured Specification of a Security KerneL"
ACM Sigplan Notices (Volume 10, Number 6), June 1975, pp. 285-293.

129. Ware, Willis H. (Editor). "Security Controls for Computer Systems, Re
port of Defense Science Board Task Force on Computer Security." OSC
msp 831, an.s 42

130. Weissman, C. "Security Controls in the ADEPT-50 Timesharing System."
AFIPS Conference Proceedings-FlCC (Volume 35), November 1969, pp.
119-133.

131. Westin, Alan F. "The Impact of Computers on Privacy." Datamation
(Volume 25, Number 14), December 1979, pp. 190-194.

132. Williams, John M. "Selected System Concepts for Encryption." NTC 78
Conference Record (Volume 3), December 1978, pp. 26.3.1-26.3.5.

133. Wood, Helen M. "Computer Science & Technology: The Use of Pass
words for Controlled Access to Computer Resources. " NBS Special Pub
lication 500-9, May 1977.

134. Wood, Helen M. "On-line Password Techniques." Symposium Pro
ceedings Trends and Applications 1977: Computer Security and Integrity,
May 1977, pp. 27-31.

135. Woodward, John P. L. "Applications for Multilevel Secure Operating
Systems. "AFIPS Conference Proceedings 1979 National Computer Con
ference (Volume 48), June 1979, pp. 318-328.

136. Young, Charles R. "Security Policy." Sperry Univac Spring Technical
Symposium, May 1980, pp. 3-5-1-3-5-10.

Distributed task force scheduling in
multi-microcomputer networks*

by ANDRE M. VAN TILBORG
Calspan Advanced Technology Center
Buffalo, New York

and

LARRY D. WITTIE
State University of New York at Buffalo
Buffalo, New York

ABSTRACT

Efficient task scheduling techniques are needed for micro
computer networks to be used as general purpose computers.
The Wave Scheduling technique, developed for the MICRO
NET network computer, co-schedules groups of related tasks
onto available network nodes. Scheduling managers are dis
tributed over a logical control hierarchy. They subdivide re
quests for groups of free worker nodes and send waves of
requests towards the leaves of the control hierarchy, where all
workers are located. Because requests from different manag
ers compete for workers, a manager may have to try a few
times to schedule a task force. Each task force manager actu
ally requests slightly more workers than it really needs. It
computes a request size which minimizes expected scheduling
overhead, as measured by total idle time in worker nodes.
Using a Markov queueing model, it is shown that Wave Sched
uling in a network of microcomputers is almost as efficient as
centralized scheduling.

INTRODUCTION

A promising way to utilize the emerging VLSI technology is
to construct network computers. Network computers are
MIMD (Multiple-Instruction-stream, Multiple-Data-stream)
computers. 1 Each is built as a network of autonomous com
puters, linked by a high bandwidth communications system
and a common operating system to form a single computing
system. Network computers are designed to allow parallel
solution of problems in such diverse areas as numerical math
ematics, simulation, and artificial intelligence. They also offer
high fault-tolerance and almost unbounded modular exten
sibility. There are several such experimental machines in exis
tence or under development today, including MICRONET at

*This work was supported by National Science Foundation grant MCS78-03166.
Construction of the MICRONET network computer has been funded by NSF
equipment grants MCS77-09213 and MCS80-06925.

283

SUNY/Buffalo,z Cm* at Carnegie-Mellon UniversitY,3 x
Tree at UC-Berkeley,4 MuNet at MIT,5 and Arachne at
Wisconsin-Madison.6

The physical construction of network computers is, of
course, a challenging task. However, software organization is
the key to effectiveness in parallel machines.7 Producing dis
tributed operating systems for network computers is still a
challenging research problem because many of the concepts
devised for uniprocessor operating systems are not extensible
to networks, especially since most networks do not have glob
ally shared memory.

One problem in designing distributed operating systems is
the assignment of network nodes to application program
tasks. To achieve parallel execution, individual tasks of a
multi-task parallel program must be "co-scheduled". 8 Con
ventional techniques for task scheduling in both uni- and
multi-processors assume that there is a single memory space
in which a unique system scheduler can keep up-to-date tables
of resource assignments. Most network computers are loosely
coupled, i.e. they have no common memory. Cm* is a tightly
coupled network with shared memory. Even in Cm*, memory
contention causes severe delays when as few as five percent of
memory references are to shared storage areas. 9 For a very
large network, it is impractical to store all scheduling data in
one location. To reduce the frequency of references to shared
memory, qperating systems for large tightly-coupled network
computers will probably use scheduling techniques similar to
those for loosely-coupled networks.

To solve user problems in parallel, programming language
compilers for network computers must generate separate si
multaneously executable task modules. Such collections of
related tasks are known as task forces. 10 The task force sched
uling problem (also called task assignment) is to co-schedule
tasks onto available network nodes. To be useful in large
networks, the scheduling technique must be de-centralized
and should adapt efficiently to different network inter
connection topologies. Several techniques for scheduling
tasks in network computers have been suggested. Among

284 National Computer Conference, 1981

these techniques are contract bid scheduling, 11 diffusion
scheduling,S and Wave Scheduling. 12 Wave Scheduling is used
by the MICROS operating system13 to co-schedule task forces
in MICRONET. Wave Scheduling is intended to be applicable
to networks of thousands of nodes. The primary objectives of
this paper are to review the Wave Scheduling procedure, to
develop a model of efficiency for Wave Scheduling, and to
compare Wave Scheduling with contract bid and diffusion
scheduling.

NETWORK ORGANIZATION FOR
WAVE SCHEDULING

Before discussing the details of Wave Scheduling, it will be
helpful to explain the model of network computation which
Wave Scheduling assumes. First, it is assumed that the task
processors of the host network are homogeneous and that,
aside from peripheral connections and advantages of physical
location, any processor is as capable of executing a task as any
other processor. While this homogeneity assumption is re
strictive, it is not debilitating: network computers such as
MICRONET, X-Tree, MuNet, Arachne, and Cm* all very
nearly satisfy the constraint. The purpose of this assumption
is to eliminate special cases. One consequence will be that, in
a network with heterogeneous nodes, task fo~ces may not
execute as efficiently as they might if a more detailed match
ing of tasks to processors were performed.

To remove unnecessary complexity from the description of
Wave Scheduling, every node is assumed capable of executing
exactly one unit-size user task at any time. Actually, this
assumption could be relaxed somewhat to require only that
tasks be unit-size and that each node be capable of executing
an integral number of such tasks concurrently. It would not be
difficult to extend the following analysis to nodes which exe
cute several tasks concurrently.

It is also assumed that the scheduling procedure does not
have advance knowledge of the task force. arrival process,
individual task resource requirements, or the volume of com
munication within a task force. This assumption makes Wave
Scheduling a realizable technique for general purpose com
puting environment~.

The most important assumption in Wave Scheduling is that
the host network's operating system supports the hierarchical
high-level operating system schema described in several re
cent papers. 13,14,15 Regardless of the physical interconnection
topology in MICRONET, the MICROS operating system ini
tializes a tree-like control superstructure at bootstrap time.
The hierarchical structure consists of so-called 'worker' nodes
at the leaves of the control tree and 'manager' nodes at higher
levels. Each manager has on the order of five to twenty imme
diate sub nodes which send it summarized status information.
Depending on the size of the host network, there may be
many or few levels of managers. To reduce susceptibility to
single-fault failures, the control tree reduces to a group of
three to ten "supermanagers" rather than one master node at
the root. Hierarchical control structures with efficient tree
paths between nodes can be established automatically in arbi
trarily connected network computers. 14 Such a control schema
greatly simplifies operating system development because it

hides details of the interconnection topology except at the
lowest communication link level.

DESCRIPTION OF WAVE SCHEDULING

Assume that a task force of size S, which needs S nodes to
execute, enters a queue of ready task forces at an arbitrary
network node. Task forces may appear at any level of the
control hierarchy, at managers as well as worker nodes. All
managers in the hierarchy are empowered to try to schedule
task forces which are no larger than some dynamically chang
ing fraction of the number of worker nodes in the subtree of
which the manager is the root. If a task force enters the
network at a level which cannot schedule a task force of size
as large as S, the task force descriptor is passed up the tree
until a suitable manager is reached. Likewise, the descriptor
of a task force which enters at too high a level in the hierarchy.
is passed down until it reaches the level which minimally sat
isfies its size. In either case, a manager at the appropriate level
becomes the Task Force Master (TFM) for the task force.
Task forces too large to be handled even by the entire network
are rejected when they reach the top level.

Each TFM keeps track of the number of non-busy workers
in the subtree below it. Worker counts are regularly updated
by sending status summaries from lower levels of the subtree.
Because communication is not instantaneous and because
many TFMs are competing for the same worker nodes, each
TFM may have slightly inaccurate status information. Reason
ably accurate status information can probably be maintained
with the rate of arrival of updates at least two times the rate
of task force arrivals to a particular level.

Task Force Masters are responsible for reserving enough
nodes for the task forces which they control. Competition for
workers occurs both within and between managers. The TFM
for a task force which needs S nodes gauges the activity of the
network in its subtree and tries to reserve R ;::: S workers to
get S. R is chosen to minimize wasted worker time in the
network by balancing the processing power wasted by actually
reserving too many (> S) workers with that wasted by re
serving so few (< S) that another scheduling attempt is re
quired. In a separate paper12 it has been shown that a useful
approximation for R is

S*k R=--
1-u

where utilization u is the instantaneous fraction of busy
worker nodes in the subtree of a TFM and k is a value in the
range 1.1 to 1.3, which slightly depends on u. A TFM tries to
schedule a task force of size S whenever at least R workers in
its subtree are believed to be available, regardless of how
recently a previous attempt for that task force failed. Since the
utilization of workers in a subtree is not constant, the values
of R may well differ in consecutive scheduling passes for the
same task force.

The request for R workers is divided among the sub
managers of the TFM and proceeds down the tree as a wave
of subrequests. To give large task forces a better chance of
being scheduled, each manager services a request from its

Distributed Task Force Scheduling 285

OLIGARCHY LEGEND

=9 TASK FORCE
REOUEST

TASK FORCE MASTER
~ REOUESTFOR (TFM) FREE WORKER

R = 11 >8 0 LOADED TASK

0 FREE WORKER
LEVEL 2 MANAGERS e BUSY WORKER

" RECENTLY BUSY
WORKER

0 UNNEEDED
WORKER

LEVEL 1 MANAGE RS

WORKERS

o o o 00 00 LOADED TASKS

Figure I-A task force of size S =8 tasks enters the network at the rightmost
level-l manager. The request is passed one level upward and a wave of sub
requests for R = 11 workers is sent towards the leaves of the tree. A total of ten
workers are actually reserved. Eight of these workers are loaded with task
modules (marked by hexagons) while the other two (marked by *) are released.
The worker marked as "recently busy" was believed to be available by the TFM

because the status summaries had not yet been updated.

manager before any local requests. Each subrequest is repeat
edly divided until it reaches the lowest (level-1) managers in
the control hierarchy. Managers at that level store accurate
information regarding the status of (level-O) worker nodes
under their direct scheduling control. The wave of sub requests
to reserve R nodes for a size S task force is shown in Figure 1.

Figure 1 shows a task force consisting of S = 8 tasks enter
ing the network at the rightmost level-1 manager. The task
force is too large to be scheduled by that manager, so it is
passed one level upward. From there a request for R = 11
worker nodes travels as a wave of sub requests downwards
through the subtree of the TFM. A total of ten worker nodes
are reserved by the wave. Only two workers were actually idle
in the center cluster, but the TFM thought there were three
idle workers. The tasks of the task force are assigned to the
nodes indicated by hexagons. The unneeded workers marked
with an asterisk (*) are released by the TFM.

When a subrequest reaches a level-1 manager, that man
ager reserves as many as possible of the requested number of
workers. (Of course, a level-1 manager which is itself the TFM
need not reserve any more than S nodes.) The level-1 man
ager tells its level-2 manager how many workers have been
reserved. Managers at each level wait for responses to all of

their subrequests for a particular task force before passing the
sum upwards. Eventually the original requesting TFM is told
how many workers have been reserved.

To prevent deadlock and cope with hardware failures, each
level of the hierarchy observes timeout rules. For example, a
submanager reports the number of worker nodes reserved for
its manager after a fixed timeout interval, regardless of
whether all its subrequests have been answered.

If the number of workers which are actually reserved for a
requesting TFM is less than S, the scheduling pass is con
sidered a failure. The TFM sends commands releasing all of
the reserved workers. To avoid performance penalties, it
should not let timeouts release workers. The unscheduled task
force returns to the queue of task forces ready to be scheduled
for execution by the local node. This procedure can go on
until the task force is scheduled or until a limiting number of
failures is reached. After too many failures, the task force is
passed up one level to a new TFM to increase the likelihood
of reserving enough workers. The values of request size R
which are computed by each TFM are large enough that only
a few failures may occur before a task force is successfully
scheduled. For example, when the host network is running at
50% of saturation, there are an average of two scheduling

286 Na~ional Computer Conference, 1981

attempts before a task force is successfully scheduled. Thus,
single-node scheduling overhead can be kept low.

If the requesting TFM is told that more than enough
workers were reserved, it broadcasts the identifier of the task
force's host node to all of the reserved workers. Each worker
requests n executable task module directly from the host
node. The host node distributes tasks until the entire task
force has been loaded by worker nodes. Some workers may
not receive a task module because their requests arrive at the
host node after all task modules have been distributed. Once
all the task modules have been loaded, the host node informs
the TFM of the location of the initial root task and unneeded
workers are released by the TFM. The TFM can then start
execution of the task force.

SCHEDULING EFFICIENCY

The efficiency of Wave Scheduling in microcomputer net
works compares favorably with that of an idealized central
scheduler. A useful measure of efficiency is the average total
time a task force spends in the host network. This value is the
sum of queueing and service times.

Let W represent the number of worker nodes in the host
network. Assume all workers execute tasks at the same rate.
For simplicity, assume that task force arrivals can be modeled
as a Poisson process with parameter A. Thus, the interarrival
time probability distribution function for task forces is

A(t) = 1- e- At

and their probability density function is

a(t) = Ae -At

Assume that the ith task to reach the network requires Xi

seconds of CPU time to execute and that an average task force
contains S tasks. For convenience, define the task arrival rate
A :: = S * A. For stability, assume that the network is in steady
state equilibrium, i.e., there exists a single node service rate
jJ. such that

1. -
-=hmxi =x
jJ. i->oo

and the expected number of busy nodes is less than the num
ber of workers, i.e.

Efficiency of Idealized Centralized Scheduler

Suppose that an ideal central scheduler knows the state of
all worker nodes and is used to schedule all arriving task
forces. As a first approximation, the W workers appear as a
single server which is W times as fast as an individual network
node. Thus, for the purposes of computing average total sys
tem time, the single scheduler case can be modeled by an
M 1M II queue16 where the traffic intensity equals

A
p=

WjJ.

The average time spent in the system by a task force when a
central scheduler is used, T e, can then be found using Little's
Resule7

- A
N = ATe = -=*Te

S

where N is the average number of customers in the system.
For an MIMI1 queue,

Thus,

N=-P
I-p

Te =NIA

= [-p_] (S/A)
I-p

1

=S W;
1- A

WjJ.

WjJ.-A
(1)

The excess service capacity in the system is (W *jJ. - A) tasksl
sec. Thus the average total time, T e, to service a new force of
S tasks is given by Eq. (1).

Efficiency of Wave Scheduling

It is now necessary to estimate T w, the average total time
a task spends in the network when Wave Scheduling is used.
For simplicity, assume that there are M task force masters,
each of which tries to schedule a stream of task forces of
average_ size S arriving as a Poisson process with parameter
AIM. In other words, the single task force stream which was
used in the single scheduler case is divided into the equivalent
form of M substreams with exponential interarrival times,
each M times as long. The ith task still brings with it Xi units
of work. However, because of the interference between com
peting task force masters, Wave Scheduling adds scheduling
overhead to each task force. This overhead grows with in
creasing network utilization. For purposes of comparison with
the single scheduler case, assume that average network utiliza
tion is in fact A/(W*jJ.). From earlier results,12 the average
amount of extra scheduling work per node in a task force is
found to be

Xsched = b ROPt(
1

- ~) - s~ *c /S
.~I (R~Pt)(I __ ~_}(~)Rop'-j (2)
J-S] WjJ. WjJ.

where c is the average node reservation cost for each task of
an average size S task force and Ropt is the value of R which
minimizes wasted worker time. Thus, the average single-task
service time in Wave Scheduling is

xw=x + Xsched

T w can now be computed by looking at just one of the M
task force masters because interference from other TFMs can
be included as part of the work which an average task force

Distributed Task Force Scheduling 287

brings to the network. Letting average steady state service
rate J.Lw be 1.0

J.Lw :: =lixw
and (work) traffic intensity for Wave Scheduling be

'A/M
pw WJ.Lw/M

Little's Result again can be used to compute the average total
time in the host network for a task force when Wave Sched
uling is used:

N/M
Tw= A/M

= s[1 ~wpw](lI'A)

S

Comparison of Wave Scheduling to Central Scheduling

(3)

From Eqs. (1), (2), and (3), the relative efficiency of Wave
Scheduling with respect to centralized scheduling is thus

Since

Erel = Tc/Tw

lIJ.Lw= x + Xsched
= 1IJ.L + Xsched
= 1 + J.L*Xsched

J.L

the relationship of J.Lw to J.L is

J.Lw J.L*Xsched + 1

Combining Eqs. (4) and (5) yields

WJ.L

E 1
- J.L*Xsched + 1

re - WJ.L-'A

(4)

(5)

Since Xsched is always greater than or equal to zero, J.Lw is
never greater than J.L. If Xsched were actually equal to zero,
i.e., reserving worker nodes was cost-free, Eq. (6) would yield
a constant 1, indicating that Wave Scheduling and central
scheduling were equally efficient. In practical situations,
Xsched is greater than zero, of course.

Using Eq. (6), it is not difficult to compute the relative
efficiency of Wave Scheduling for a given network. For exam
ple, in a network with W = 1000 workers, average task force
size S = 10, task force arrival rate A = 50 task forces/sec,

0.75

EREL

0.50

0.25

W = 1000 WORKER NODES
A = 500 TASKS/SEC

0.0 '--__ ---JL....-__ ---L ___ ___ ___ ~~

20 40 60 80 100

WJ.I.
T

Figure 2-The relative efficiency Erel of Wave Scheduling with respect to
central scheduling is shown for typical scheduling overhead Xsched and excess

processing capacity.

single-node service rate J.L = 1 task/sec, and single-node sched
uling overhead Xsched =.1 sec, the relative efficiency
Erel = 82%. This means that the expected total system time
in the central scheduler case is 82% of the expected time when
Wave Scheduling is used. In the same network, reducing
scheduling overhead to Xsched = .01 sec increases the effi
ciency of Wave Scheduling to 98%. Since the number of
scheduling attempts which an average task force undergoes is
small, and in practical networks would lead to scheduling
overheads much less than .1 sec/worker, Wave Scheduling is
almost as efficient as centralized scheduling. In other words,
the high degree of fault-tolerance and load balancing in Wave
Scheduling can be achieved without great sacrifice in run-time
efficiency.

To convey some intuition as to the nature of the results for
realistic combinations of system parameters, Figure 2 plots
Erel against various values of network capacity W * J.L and a
constant task arrival rate 'A. It is evident that the efficiency of
Wave Scheduling declines as the cost of worker node reserva
tions increases and also as the excess capacity (W *1 .. tJ'A) of the
network increases. Both of these effects are to be expected.
The first occurs because the cost of worker reservations does
not appear in the single-scheduler model at all. Therefore, as
that cost increases in the Wave Scheduling model, it is bound
to decrease the relative efficiency of Wave Scheduling.

The second effect, a decrease in relative efficiency as net
work excess capacity increases, may not be quite as intuitive. _
As excess capacity increases, the benefit to the local sched
ulers in Wave Scheduling is not as large as it is to the central
scheduler. As a result, the decrease in system time for task
forces scheduled by Wave Scheduling is not as large. as the
decrease experienced by task forces in the single-scheduler
case. The result is a relative decline in the efficiency of Wave
Scheduling, although the absolute time in system has actually
decreased for both models. This effect has been encountered
in other situations and is discussed briefly by Schwartz. III

288 National Computer Conference, 1981

COMPARISON WITH OTHER
SCHEDULING TECHNIQUES

Several other task force scheduling techniques besides Wave
Scheduling have been proposed. The objective of this section
is to describe some of the more important ones and to com
pare them with Wave Scheduling.

Contract Bid Scheduling

Contract bid scheduling was devised as a technique to dis
tribute tasks among the nodes of a distributed sensor net
work. II The collection of nodes is called a contract net and the
execution of a task is dealt with as a contract between two
nodes. Each node in the net takes on one of two roles related
to the execution of an individual task: manager or contractor.
A manager is responsible for monitoring the execution of a
task and processing the results of its execution. A contractor
is responsible for the execution of the task. These roles are
taken on dynamically by nodes during the course of problem
solving.

Contract negotiation is initiated in essentially two different
ways. The normal method is for a node that generates a task
to advertise its existence with a task announcement message.
Such announcements can be broadcast generally, broadcast in
a limited region, or sent point-to-point, depending on the
amount of information which the prospective manager has
about other nodes in the net. Other nodes "listen" for task
announcements and, when they are idle, submit bids on those
for which they are suited. The manager evaluates the bids and
awards contracts to the most suitable nodes.

The normal method may not work for one of two reasons:

1. There are no available nodes.
2. No nodes have the necessary data to execute the task.

To deal with these situations the normal bid protocol is mod
ified to produce a second slightly more complex scheme in
which currently active bidder nodes indicate whether they
could perform a contract if they were not busy.

Diffusion Scheduling

Diffusion scheduling is characterized by the simple strategy
of transferring tasks from areas with high concentrations to
areas with lower concentrations. It is claimed5 that any con
centration of workload at a particular point will gradually
flatten and spread out with time, much as impurities diffuse
through a crystal lattice. There are several task force sched
uling techniques which can be classified as diffusion tech
niques. A diffusion strategy is the scheduling mechanism for
events and objects in MuNet, where the name originated. A
slightly different scheme which claims to establish balanced
local "broadcast regions" is suggested for the CHoPP multi
microprocessor. 19 The assignment scheme used by Arachne6

might also be considered a form of diffusion scheduling. Tasks
in Arachne are assigned to network nodes by means of a fixed,
cyclic priority mechanism. If a task is passed to a node which

is already busy, the task is sent on to a pre-determined succes
sor node which in turn can pass the task on again.

Fixed Assignment Scheduling

Probably the simplest form of task force scheduling, in the
sense that it is most easily implemented, is fixed manual as
signment of tasks to processors. Although it could be argued
that such techniques are not of much lasting interest, both of
the operating systems developed for Cm * currently use fixed
assignment scheduling.s.1O A programmer is responsible for
distributing the tasks of his task force onto some subset of the
processing elements. He is assisted in doing so by a language
named TASK which makes it possible to build task forces and
to reference nodes of the multi-microprocessor.

Comparison of Techniques

Wave Scheduling differs from the other task force sched
uling techniques briefly described above in several ways. First,
Wave Scheduling is the only technique which uses a network
control structure to assist in scheduling task forces. The con
trol hierarchy for Wave Scheduling provides a means for as
signing task forces to well-qualified network managers. Since
task forces are not assigned to network. nodes in advance by
a programmer, but rather by TFMs which are dynamically
selected at run-time, the reliability of Wave Scheduling is
better than in fixed manual assignment where nodes which a
programmer selects may be disabled before a task force is
executed.

A second way in which Wave Scheduling differs from other
proposed task force scheduling techniques is that it includes a
mechanism for avoiding static deadlock. Because the sched
uling passes made by the Wave Scheduling procedure 'roll
back' if they are unsuccessful, network nodes are never re
served indefinitely. On the other hand, in diffusion sched
uling, static deadlock can occur because competing task forces
are not made aware that each holds resources which the others
need. Fixed assignment scheduling can lead to deadlock too,
if separate programmers try to use the same network nodes
simultaneously. Contract bid scheduling also does not include
any provisions for detecting nor avoiding deadlocks.

Finally, Wave Scheduling is a scheduling technique exten
sible to networks of thousands of computers. Increasing the
size of the host network has no effect on the basic schedul~g
procedure. In fixed and cyclic diffusion scheduling, changes in
network topology are catastrophic because they can make it
impossible to schedule some task forces even when many
nodes are actually available. As the number of network nodes
(and consequently the number of network users) increases,
fixed assignment schemes become unwieldy and inefficient.

CONCLUSION

For microcomputer networks to be useful as general purpose
computers, efficient, automatic, de-centralized task sched
uling techniques must be devised. In the MICRONET net-

work computer, Wave Scheduling is used by the MICROS
distributed operating system to schedule task forces. Wave
Scheduling assigns network nodes to user tasks by using a
hierarchical control schema as a foundation. Scheduling is
probabilistic in the sense that the distributed schedulers are
not guaranteed that their requests to schedule task forces will
succeed. When a scheduling attempt fails, the descriptor for
the intended task force either is passed up to the next higher
level of control or undergoes another attempt at its local man
ager, depending on how many failures have occurred already.
In large network computers, Wave Scheduling is very efficient
and compares favorably with contract bid and diffusion sched
uling.

REFERENCES

1. Flynn, M.J. 'Some Computer Organizations and Their Effectiveness',
IEEE Trans. on Computers, C-21 (1972), 9, pp. 948-960.

2. Wittie, L.D. 'MICRONET: A Reconfigurable Network for Distributed
Systems Research', Simulation, Nov. 1978, pp. 145-153.

3. Swan, R.J. et al. 'Cm*-A modular, multimicroprocessor', AFJPS Pro
ceedings of the National Computer Conference, (Vol. 46), 1977, pp.
637-644.

4. Despain, A.M., and D.A. Patterson. 'X-Tree: A Tree Structured Multi
processor Computer Architecture', Proc. Fifth Ann. Symp. on Computer
Arch., 1978, pp. 144-151.

5. Halstead, R.H., and S.A Ward. 'The MuNet: A Scalable Decentralized
Architecture for Parallel Computation', Proc. Seventh Ann. Symp. on
Compo Arch., 1980, pp. 139-145.

Distributed Task Force Scheduling 289

6. Solomon, M.H., and R.A Finkel. 'The ROSCOE Distributed Operating
System', Proc. Seventh Symp. on Op. Sys. Prin., 1979, pp. 108-114.

7. Siewiorek, D. P. 'Process Coordination in Multimicroprocessor Systems' , In
R. W. Hartenstein and R. Zaks (Eds.), Microarchitecture of Computer Sys
tems., Amsterdam: North-Holland, 1975, pp. 1-8.

8. Ousterhout, J.K. et al. 'Medusa: An Experiment in Distributed Operating
System Structure', Communications of the Association for Computing Ma
chinery 23, (1980), 2, pp. 92-104.

9. Swan, R.J. The Switching Structure and Addressing Architecture of an Ex
tensible Multiprocessor: Cm*, Ph.D. Th., Carnegie-Mellon University,
Aug. 1978.

10. Jones, AK. et al. 'StarOS, a Multiprocessor Operating System for the
Support of Task Forces', Proc. Seventh Symp. on Op. Sys. Prin., 1979, pp.
117-127.

11. Smith, R.G. kFrameworkfor Problem Solving in a Distributed Processing
Environment, Ph.D. Th., Stanford University, 1979.

12. van Tilborg, A.M. and L.D. Wittie. 'Wave Scheduling: Distributed Allo
cation of Task Forces in Network Computers', Proceedings of 2nd Int. Conf.
on Dist. Compo Sys., Paris (1981).

13. Wittie, L.D. and AM. van Tilborg. 'MICROS, A Distributed Operating
System for MICRONET, A Re-configurable Network Computer', IEEE
Trans. on Comp., C-29 (1980), 12, pp. 1153-44.

14. van Tilborg, A.M. and L.D. Wittie. 'High-Level Operating System For
mation in Network Computers', Proc. 1980 Int. Conf. on Parallel Proc.,
Aug. 1980, pp. 131-132.

15. van Tilborg, A.M. and L.D. Wittie. 'A Concurrent Pascal Operating Sys
tem for a Network Computer', Proc. IEEE CompSAC '80, 1980, pp.
757-763.

16. Kleinrock, L. Queueing Systems Volume I: Theory, New York: Wiley
Interscience, 1975, pp. 94-99.

17. Ibid., p. 17.
18. Schwartz, M. Computer-Communication Network Design and Analysis,

Englewood Cliffs: Prentice-Hall, 1977.
19. Sullivan, H. et al. 'A Large Scale, Homogeneous Fully Distributed Parallel

Machine, II', Proc. Fourth Ann. Symp. on Compo Arch., 1977, pp. 118-124:

The assignment of computational tasks
among processors in a distributed system

by CAMILLE C. PRICE
Southern Methodist University
Dallas, Texas

ABSTRACT

The flexibility afforded by multiprocessor systems opens the
question of how to assign computer program modules among
functionally similar processors in a distributed computer net
work. In the model under consideration, the modules of a
program are to be assigned among processors in such a way as
to minimize interprocessor communication while taking ad
vantage of affinities of certain modules to particular pro
cessors. The problem is formalized as a zero-one quadratic
programming problem, and a solution is sought through an
iterative technique that performs a series of transformations
on an assignment matrix. Convergence to a locally optimum
assignment is guaranteed, and an easily testable condition is
given for which this local optimum is also a global optimum.
An illustration of this algorithm is provided, results of per
formance experiments are reported, and suggestions are
made for further study.

INTRODUCTION

A distributed computer network is considered to be a set of
programmable processors interconnected to some extent by
communication links.14 Recent technological advances, such
as the economical fabrication of processors and the devel
opment of broadband communication facilities, have con
tributed to the feasibility of distributed computing systems;
and the trend toward large shared database systems promises
an increased popularity for the use of distributed networks. It
is important that cost-effective methods be developed for
these systems to control the allocation of computing resources
among the jobs introduced into the network.

Scheduling theory deals with the general problem of allo
cating limited resources among multiple tasks when choices
exist in the allocation process. 7 The policies governing the
apportionment of the resources are called scheduling rules or
scheduling algorithms. Scheduling problems have demanded a
great deal of attention since the development of digital com
puter systems, because scheduling algorithms are needed to
assign a set of jobs to computer resour<?es which are used in
executing or servicing the jobs.6

291

The nature of job scheduling in a computer system depends
on the functional similarity of the processing nodes and on the
degree of communication available between processors. lithe
network consists of functionally different processors, then job
scheduling is simple since each job would be designed for, and
therefore assigned to, one particular specialized processor.

In a network of functionally similar processing nodes, it
may be possible to assign the parts of a program freely among
the processors; but in a practical sense, the communication
links in a distributed network constitute inherent bottlenecks
and therefore constrain -the assignment of computational
tasks. When high penalties are imposed for communication,
the practical solution is to minimize the amount of commu
nication between processors by assigning related tasks to the
same processor. However, if the processors in the network
were fully connected by high capacity data links, many fea
sible alternative assignments of computational tasks to proces
sors would exist and should be evaluated by the job scheduler.
In such cases, interprocessor communication would no longer
be regarded as a serious constraint, but rather as a means of
improving the overall efficiency of the system. The Cm*
multimicroprocessor system23 provides an example of pre
cisely the kind of distributed system that will be considered in
this paper. In the Cm* system, computational tasks, called
utilities, may in general be executed by any microprocessor in
the system.

The problem to be examined here is that of assigning com
putational tasks among processors in a distributed computer
network having functionally similar nodes, but in which cer
tain nodes have an advantage over others for particular jobs.
The assignment is to be made in such a way as to take advan
tage of particular efficiencies of some processors for certain
jobs while minimizing the costs of communication between
jobs that are assigned to different processors.

In the next section, the problem is stated formally and
formulated as a zero-one quadratic programming problem.
The following section contains a description of an algorithm
that can be applied to this scheduling problem. Conditions are
given under which the local optimum achieved by this algo
rithm is also a global optimum. Results of performance ex
periments are reported. The final section contains a brief
summary of work that has been done on this problem and
gives suggestions for further study.

292 National Computer Conference, 1981

BASIC ASSUMPTIONS AND
FORMULATION OF THE PROBLEM

The programs being executed within the distributed computer
system are assumed to be partitioned into functional modules
(containing executable code and/or data) which, in general,
may reside on any processor in the system. There is no paral
lelism or multitasking of module execution within a program.
Each processor may be multiprogrammed, and divide its time
among several programs, but concurrent execution of the
modules in one program is not considered. Thus the programs
to be discussed here are serial programs, for which execution
can shift from one processor to another.

Although the processors in the distributed system under
discussion are functionally similar, they need not be identical.
In fact, certain processors may have particular efficiencies for
executing particular program modules. For example, some
processors may have high speed arithmetic capabilities, access
to a needed database, a large high-speed memory, access to
certain peripheral devices, or other facilities associated with
them that make them particularly well-suited for executing
specific program modules.

The network is considered to be a fully-connected one, i.e.,
there is a direct communication link between every pair of
processing nodes. It is also assumed that the communication
paths between all processors are similar, that is, that the cost
of sending a unit of data between any two processors is the
same.

The modules of a modular program must be assigned
among the processors in such a way as to minimize inter
processor communication while taking advantage of affinities
of certain modules to particular processors. Therefore, there
are two kinds of costs that must be considered in the search for
a good assignment.

1. Each module has an execution cost that depends on the
processor to which it is assigned. Let eij represent the
cost of executing module i on processor j.

2. Any two modules that communicate during program ex
ecution incur a penalty if they are assigned to different
processors. (It is assumed that the cost of such commu
nication is zero when the reference is made between
modules residing on the same processor.) Let the cost of
communication between program modules i and k be
denoted by CUe.

An optimal assignment is one which minimizes the sum of
the execution costs of the modules on the processors and the
intermodule reference costs incurred when communicating
modules reside on different processors.

It should be noted that the costs eij and Cik must be mea
sured in the same units of money or time. If these costs are
measured in time, then the assignment minimizes the actual
utilization of system resources.

Since the distributed program is to be executed in a serial
fashion, and therefore all execution costs and communication
costs are incurred in disjoint time intervals, the cost of the
assignment is actually the minimal completion time of the
program.

The problem can be formulated as a zero-one quadratic
programming problem as follows:

minimize

m n m m m n m

~ ~ eijXij + ~ ~
i=1 j=1 i=l k=i+l

Cik - ~ ~ ~ CikXijXkj
i=1 j=1 k=i+l

subject to the constraints

Xij = 0, 1 for all i, j

n

~Xij = 1 for all i
j=1

(cl)

(c2)

where m is the number of program modules and n is the
number of processors.

Zero-one polynomial programs can be converted to linear
programs with nonlinear secondary constraints,12 but this
problem is approached here with techniques which take ad
vantage of the special structure of the problem.

The problem has been solved for n = 2 by Stone.29 A model
is developed that can be interpreted as a commodity flow
network, and an assignment is made by applying a maximum
flow algorithm. 11 Efforts to extend this method to the general
n -processor case have not been completely successful. 30

For n -processor problems in which the intermodule refer
ence pattern is constrained to be a tree, an optimal assignment
can be obtained by using a shortest path algorithm.5,lo,31 The
graph model developed for this restricted problem has been
extended to allow an arbitrary module intercommunication
pattern, but a modified shortest path algorithm that has been
developed is guaranteed to yield an optimal assignment only
when the graph model exhibits certain identifiable structural
properties.25

Assignment algorithms, such as the ones mentioned above
and the one to be described in the following section, may be
used to find a static assignment of modules to processors,but
may also be applied repeatedly during the life of a program to
reassign modules dynamically as the program's working set
changes. (Models have been developed for special cases and
an algorithm has been given to handle dynamic reassignment
of modules.4)

THE ASSIGNMENT ALGORITHM

Solutions to scheduling problems, assignment problems,
and transportation problems have frequently been sought
through iterative techniques. Examples are the simplex
method for linear progr-amming problems,8 the "Hungarian"
method2

,l6,17 for assignment problems, and the "modified dis
tribution" method24 for transportation problems. Such tech
niques begin with an initial solution which is then augmented
at each step of the procedure until an optimal feasible solution
is obtained.

An iterative procedure is defined here, for the multi
processor scheduling problem under consideration, that be
gins with an initial feasible assignment and repeatedly reas
signs modules to processors until no further improvement is
achievable by continuing the process. This reassignment of

modules is accomplished by performing a transformation on
the assignment matrix X.

An assignment X is an m x n matrix such that

Xij = 0, 1 for all i, j and
n

~ Xij = 1 for all i.
j=i

The element Xij = 1 if and only if module i is assigned to
processor j. The set of all assignments X is called A. The cost
of an assignment X is defined to be

mn m m mn m

c(X) = ~ ~ eijXij + ~ ~ Cik- ~ ~ ~ CikXijXkj
i=i j=i i=i k=i+i i=i j=i k=i+i

A transformation is described below that maps the set of all
assignments into itself. The procedure determines whether
reassignment is advisable and, if so, performs the most advan
tageous reassignment. The transformation T: A~A is de
fined as follows.

Transformation

1. For each element (i,j) in X, compute a "penalty" which
is the cost of executing module i on processor j plus all com
munication costs for module i ,given that all other. modules
(other than i) are assigned as indicated in matrix X. Thus the
penalty matrix P is defined as

as

m

Pij = eij + ~ Cik (1- Xkj)
k=i

2. For each row i in X, compute the minimum penalty 8 i

8 i = greatest possible improvement in cost achievable in
one step on row i; that is, by reassigning module i
and leaving all other modules unchanged

= penalty for current assignment of module i minus
least penalty for any assignment of module i

= i PijXij - min {Pij}
j=1 l:Sj:sn

and let t be the value of j giving this minimum. Note all
8i~0.

3. Select the row that permits the most profitable reas
signment by finding

and let s be the value of i giving this maximum.
4. Change the assignment matrix X by setting

Xst = 1

and

Xsj = 0 for j :/= t.

The transformation T is ~pplied repeatedly until all 8 i = O.
The transformation is illustrated by the following example.

Let m = 3 and n = 3. The matrices E, C, and X represent

The Assignment of Computational Tasks 293

execution.c,osts, communication costs, and the assignment,
respectively, and are initially defined as

[
425]

E = 188
463 [

0 1 2]
C= 003

000 [
0 1 0]

X= 100
001

where X is obtained by assigning each module to the pro
cessor for which the execution cost is least (ignoring commu
nication costs). The cost c(X) is 12. In the first iteration, the
penalty matrix P is computed as

[
6 5 6]

P= 5119
698

The theta values are

8 1 = 5 - 5 = 0, 8 2 = 5 - 5 = 0, 8 3 = 8-6=2

and of these the maximum is 8 3• Therefore s = 3 and t = 1 and
the third row of X is changed to (1 0 0). The cost c(X) now
is 10. In the second iteration,

[4 5 8]
p = 2 11 12

698

The theta values are

8 1 =5-4=1, 8 2 =2-2=0, (h=6-6=0

and 8 1 = 1 is selected as the maximum. Therefore s = 1 and
t = 1 and the first row of X is changed to (1 0 0). The cost
c(X) is now 9. In the third iteration,

[4 5 8]
P = 1 12 12

4 11 8

and all 8 i are zero:

8 1 = 4 - 4 = 0, 8 2 = 1-1 =0,

Therefore the procedure terminates and the assignment ma
trix X is

[
10 0]

X= 1 00
100

The cost c (X) = 9, which happens to be the optimum cost for
this problem.

It is important to ascertain that the iterative procedure de
scribed above does not "cycle" indefinitely, thereby gener
ating assignments that have been previously generated. The
following theorem states that the iterative procedure does
converge, after finitely many applications of the transforma
tion T, to a local optimum.

294 National Computer Conference, 1981

Theorem. Let A be the set of all feasible assignments for a
particular assignment problem. Then the transformation T
has a fixed point, that is, T(X) = X for some X in A.
Proof: There are only finitely many assignment matrices X
in A (in fact, K = N M of them, where M is the number of
modules and N is the number of processors). The trans
formation T is monotone with respect to cost, that is,

c(X);::: c(T(X» for all X.

Therefore c(X;);::: c(Xj) for i <j.
Let Xo be the starting feasible solution. Then

Xl = T(Xo)
X 2 = T(XI)

It is always true that T(X;) = Xj ~ { X, I 1= 0, ... , i-I }.
Since the procedure continues only as long as an improvement
can be made in one step, the transformation can be applied
only finitely many times.

Optimal assignments are frequently obtained by assigning
each module to the least expensive processor and using this as
a starting feasible solution, but the following example pro
vides a counter-example to guaranteed optimality.

Let m = 4-and n = 2. The matrices E, C, and X are initially
as follows:

[
6 10]

E= ~ ~
8 10

[

0 10 0 0] o 0 30 0
C = 0 0 0 10

o 000

At the first iteration, s = 4 and t = 2, and row 4 of X becomes
(0 1). At the second iteration, s = 1 and t = 2, and row 1 of
X becomes (0 1). At the third iteration, all 8; = 0, therefore
the procedure terminates with the assignment

[
0 1] .01

X= ~ ~

and c(X) = 32, whereas the optimal assignment is

[1 0] - 1 0

X= ~ ~

for which c(X) = 30.
The procedure terminates because no improvement is

achievable in one step. In this example, the communication
cost C23 = 30 is so high, relative to the difference in execution
costs for modules 2 and 3, that no improvement is possible by
temporarily assigning modules 2 and 3 to separate processors.

A slight modification may be mad~ to the iterative pro
cedure that would guarantee convergence to a global opti-

mum, but at considerable computational expense. The mod
ification consists of the following extensions. If 8; = 0 for all
i, then the procedure continues by considering all two step
transformations, that is, all simultaneous reassignments of

two modules. This requires that for each of the (~) possible

two-module reassignments, the penalty matrix P be com
puted. Values of 8 are then generated, the maximum is
selected (unless all 8 are zero), and the appropriate two rows
in the assignment matrix X are adjusted. If all 8 values are
again zero, then no improvement is possible by reassigning

only two modules. The procedure then considers all (~)

three-module reassignments, all (~) four-module reas

signments, and ultimately the simultaneous reassignment of
all M modules. Clearly, generalization of the iterative pro
cedure approaches an exhaustive search that requires a com
plete enumeration and evaluation of all reassignments in or
der to achieve a guaranteed global optimum.

Recall that, in the example shown just above, the difficulty
arose because the communication costs were high relative to
the differences in execution costs. By contrast, an optimal
assignment can be achieved easily when communication costs
satisfy the following condition

~ c;k:5min (e;j - eil)
k all j*1

(c)

for all i. If condition (c) is satisfied then the optimal assign
ment is that which assigns each module to the processor with
least execution time. Intuitively, under condition (c), commu
nication costs are sufficiently small that they can be ignored
and the assignment can be made solely on the basis of exe
cution costs (i.e., no significant communication cost penalty is
paid for distributing the program modules to the processors
best suited for them).

It is worth noting that the standard form for the objective
function to be minimized in a quadratic programming prob
lem with continuous decision variables is

When this quadratic function has the property that its qua
dratic part is non-negative for all Xi and Xb then Q (x) is a
convex function. And in cases where the objective function is
convex, a local optimum is a global optimum. In the problem
under consideration in this paper, condition (c) guarantees
that the quadratic terms in the objective function are negli
gible and thus provides a discrete approximation to the
convexity condition in the general problem. Thus, under con
dition (c), a local optimum produced by the iterative trans
formation algorithm is also a global optimum.

A FORTRAN language implementation of the iterative
algorithm has been developed for performance testing. Ran
dom test data for experimentation were systematically gener
ated for hypothetical networks of 5,10,15, and 20 processors,
and 5, 10, 15, and 20 program modules. Nine different net
works were gt:nerated for each problem size (m,n).

Average computation times for the algorithm are reported
in Table I. The computation time exhibited on these sample

TABLE I-Computation times

n =5 n = 10

.023

.163

.557

m =5
m = 10
m = 15
m =20

. 0107

.077

.260

.587 1.407

M = number of program modules.
N = number of processors.
Computation times in seconds.

n = 15

.034

.283

.883
2.114

n =20

.043

.359
1.203
2.820

test cases is 0 (nm 3). As expected (based on the discussion
just above), the algorithm's performance varied depending on
the nature of the network. In networks having high execution
costs and relatively low communication costs, the algorithm
runs in approximately one-third the time required for net
works having relatively high communication costs.

SUMMARY

The scheduling problem considered here has an efficient solu
tion for n = 2. It has been shown that the problem is NP-hard
for n ~ 4. 30 This property has not been established for the
3-processor case.

There are n m possible assignments to be considered in this
scheduling problem and, indeed, actual computational experi
ments using an enumerative algorithm require time that is
o (n m). An optimal search procedure described in Price26 re
quires 0 (n m) computation time in the worst case, but typi
cally runs in polynomial time. 15, 20, 22 The shortest path and
non-backtracking branch-and-bound algorithms25 and the it
erative algorithm (see above) are of low polynomial complex
ity but generally produce suboptimal solutions.

A variety of techniques have been applied to scheduling
problems. For this particular scheduling problem, there re
main several interesting alternative approaches, which to date
have been explored with only limited success, but which
probably deserve further study.

Stone's two-processor network flow approach27 might be
extended by using the multiterminal cut techniques of
Gomory and Hu. 13 (The problem of processor load balancing
in a two-processor system has also been studied28 and it, too,
may be extendable with multi terminal techniques.)

Spanning trees are of interest in various problems which can
be studied through graph models.9, 18 It may be possible to
devise a graph model of a modular computer program in such
a way that a minimal spanning tree can be interpreted as an
optimal assignment of modules to processors-,

This scheduling problem is formulated above as a quadratic
programming problem. Perhaps algorithms, such as that of
Balas, can be tailored to solve particular problems very effi
ciently.l, 19, 32

Clustering algorithms33 might be applied to this problem to
cluster program modules having high intercommunication
costs together on the same processor.

It is clear that reasonable approaches to scheduling prob
lems include (but are not limited to) techniques from the areas
of mathematical programming, network analysis, and graph

The Assignment of CompJItational Tasks 295

theory.3, 9,11,21 Future practical develop_ments_wilUikely con
sist of heuristic methods and combinations of algorithms con
tributed from diverse fields .

ACKNOWLEDGMENTS

The first part of this paper is based on sections of a doctoral
dissertation under the direction of Professor Udo W. Pooch at
Texas A&M University. The author wishes to thank him, and
Professors Don T. Phillips and A. P. Lucido, for their helpful
suggestions and constructive review of the material.

REFERENCES

1. Balas, E. An additive algorithm for solving linear programs with zero-one
variables. Oper. Res. 13, 4 (July-August 1965), 517-546.

2. Balinski, M. L., and Gomory, R. E. A primal method for the assignment
and transportation problems. Management Science 10, 3 (April 1964),
578-593.

3. Bellman, R. E. Dynamic Programming, Princeton U. Press, Princeton,
N.J., 1957. •

4. Bokhari, S. H. Dual processor scheduling with dynamic reassignment.
IEEE Trans. Software Eng. SE-5, 4 (July 1979), 341-349.

5. Bokhari, S. H. Multiprocessor scheduling with shortest path algorithms.
Tech. Rep. ECE-CS-77-11, Dept. of Elec. and Computer Eng., University
of Massachusetts, Amherst, Dec., 1977.

6. Coffman, E. G., Jr. et al. Computer and Job-Shop Scheduling Theory, John
Wiley and Sons, New York, 1976.

7. Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of Scheduling,
Addison-Wesley, Reading, Mass., 1967.

8. Dantzig, G. B. Linear Programming and Extensions, Princeton U. Press,
Princeton, N.J., 1963.

9. Deo, N. Graph Theory with Applications to Engineering and Computer
Science, Prentice-Hall, Englewood Cliffs, N.J., 1974.

10. Dijkstra, E. W. A note on two problems in connexion with graphs. Numer.
Math. 1 (1959), 269-271.

11. Ford, L. R., Jr., and Fulkerson, D. R. Flows in Networks, Princeton U.
Press, Princeton, N.J., 1962.

12. Glover, F., and Woolsey, E. Converting a 0-1 polynomial programming
problem to a 0-1 linear program. Oper. Res. 22, 1 (Jan.-Feb. 1974),
180-182.

13. Gomory, R. E., and Hu, T.C. Multiterminal network flows. J. SIAM 9,
(Dec. 1961), 551-570.

14. Greene, W. H., and Pooch, U. W. A review of classification schemes for
computer communication networks. Computer 10, 11 (Nov. 1977), 12-21.

15. Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. of Systems Science and
Cybernetics, SSC-4, (July 1968), 100-107.

16. Hu, T. C. Integer Programming and Network Flows. Addison-Wesley,
Reading, Mass., 1969.

17. Klein, M. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Management Science 14, 3 (Nov.
1967), 205-220.

18. Kruskal, J. B. Jr. On the shortest spanning subtree of a graph and the
travelling salesman problem. Proc. Am. Math. Soc. 7, (1956), 48-50.

19. Lawler, E. L. The quadratic assignment problem. Management Science 9,
4 (July 1963), 586-599.

20. Martelli, A., and Montanari, U. Optimizing decision trees through heuris
tically guided search. Comm. ACM 21, 12 (Dec. 1978), 1025-1039.

21. McMillan, C. Mathematical Programming, Wiley, New York, 1970.
22. Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence, McGraw

Hill, New York, 1971.
23. Ousterhout,J. K.,Scelza, D. A., and Sindhu, P. S. Medusa: an experiment

in distributed operating system structure. Comm. ACM 23, 2 (February
1980), 92-105.

24. Phillips, D. T., Ravindran, A., and Solberg, J. J. Operations Research:
Principles and Practice, John Wiley and Sons, New York, 1976.

296 National Computer Conference, 1981

25. Price, C. C. A Nonlinear Multiprocessor Scheduling Problem. Ph.D. Th.,
Texas A&M University, College Station, Texas, May 1979.

26. Price, C. C. Scheduling algorithms for a distributed computer system. Uni
versity of Texas at Dallas Technical Report No. 65, September, 1979.

27. Rao, G. S., Stone, H. S., and Hu, T. C. Assignment of tasks in a distributed
processor system with limited memory. IEEE Trans. Computers C-28, 4
(April 1979), 291-299.

28. Stone, H. S. Critical load factors in two-processor distributed systems.
IEEE Trans. Software Eng. SE-4, 3 (May 1978), 254-258.

29. Stone, H. S. Multiprocessor scheduling with the aid of network flow algo
rithms. IEEE Trans. Software Eng. SE-3, 1 (Jan. 1977), 85-93.

30. Stone, H. S. Private communication, Jan. 1979.
31. Stone, H. S., and Bokhari, S. H. Control of distributed processes. Com

puter II, 7 (July 1978), 97-106.
32. Taha, H. A. A Balasian-based algorithm for zero-one polynomial pro

gramming. Management Science 18, 6 (Feb. 1972), B328-B343.
33. Zahn, C. T. Graph-theoretical methods for detecting and describing gestalt

clusters. IEEE Trans. Compo C-20, (Jan. 1971), 68-86.

Software reliability in real-time systems*

by BHARAT BHARGAVA
University of Pittsburgh
Pittsburgh, Pennsylvania

ABSTRACT

This paper investigates techniques to enhance the continuity
of operations of the en route air traffic control system. First
the issues of software reliability and fault tolerance in real
time systems are discussed. Next, a list of problems associated
with nonstop operations of flight dataprocessing (FDP) sub
system of the enroute air traffic control system are assumed,
based on limited knowledge of the system; and possible solu
tions are suggested and analyzed. Implementation issues -of
recovery block scheme such as architecture, design of alter
nates and acceptance tests, and cost vs. reliability are studied.
Four architectures of recovery block scheme are analyzed,
and results of a simulation study using flight data processing
subsystem as a test case are discussed.

INTRODUCTION

Most large software systems are error-prone. It is expected
that the many efforts to improve software quality and re
liability will reduce failures but it is hard to say if they will
completely eliminate them. Sometimes it is believed that ma
turity can provide freedom from software errors but that is not
borne out by the experience of extensively used operating
systems. In the Bell Laboratories' Electronic Switching sys
tems (which employ hardware redundancy and thoroughly
tested software) software faults accounted for approximately
20% of all failures. There are many types of errors that man
ifest themselves during some unusual data or machine state
and lead to a system failure. Some of these errors are: com
tational (divide by zero), logical, definitional (array not sub
scripted properly), operational (wrong transaction entered
and accepted), etc. For a complete list see-the appendix.

Large software systems are also under constant mod
ification for improving efficiency and this leads to additional
faults. In many applications such as computerized air-line
reservation system, isolated small breakdowns can be toler
ated as long as the overall system remains operational. But in

* This work was performed under contract DOT-RC-92031 with the U.S. De
partment of Transportation.

297

transportation applications such as air-borne computer, air
traffic control systems, mass transit systems, only momentary
cessation of-service can be tolerated,-no maintenance or man
ual repair activity is feasible, and incorrect results are un
acceptable. In addition, the en route air traffic control system
collects and processes extensive amounts of valuable data and
safeguarding the data is more important than providing con
tinuity of access with possible damage to such data. The archi
tectures of nontrivial computer systems involve careful con
siderations of tradeoffs between reliability, performance, and
costs.

The need for reliability of operations in large automated
real-time system is becoming increasingly important, particu
larly in transportation applications and nuclear industry. For
such systems, it is important to have high confidence that the
system will behave as expected for all possible environments.
Of course, the development methodology has a great impact
on the quality of software as well as the effort required for a
thorough validation. An example of utilizing of a proper
methodology in nuclear power system is discussed in Rama
moorthy et al. 8. Though it is nice to start from scratch and
develop reliable software with present technology, many sys
tems currently operational in daily use cannot afford to wait
for a new software system and architecture. And what if the
design and development methodology is further advanced
during the time the system is rebuilt? This "catch-22" situa
tion requires us to deal with the present software and its
problems in such a way that continuity of operations is al
lowed in the current system and the cost of providing re
ity is reduced as parts of the software systems are renovated.
So software structures must be investigated that provide fault
tolerance in addition to fault avoidance. A survey of fault
tolerant techniques is available lO

•

FAULT-TOLERANCE (ERROR DETECTION,
DIAGNOSIS, RECOVERY, AND BYPASS)

The various steps of fault tolerance are as illustrated in Figure
1. A detailed discussion of these steps is available lO

•

The purpose of error detection is to prevent or to recognize
system failures. This can usually be achieved by designing
proper checks on every critical step. Reading the data, exe-

298 National Computer Conference, 1981

Error
Detection

J;----------------------

Hardware
Diagnosis

and Reconfiguration

~----------------------

Recovery
to a Correct

State

J;-----------------------

Software
Reconfiguration

~----------------------
Figure I-Steps of fault-tolerant processing

ing a loop or a decision branch, conversing with another pro
gram, writing the data, are examples of such critical functions.
There is usually a high cost associated with such checks, and
vigorous checking is usually avoided for normal operations.
Only when a failure has already occurred, the complexity of
checks must be increased. Some examples of checks used in
software are as follows:

1. Dual or triple modular redundancy
2. Reversal check
3. Inference check
4. Watchdog time
5. Address-in-bound check
6. Acceptance check
7. Path testing
8. Branch testing
9. Structure testing

10. Special value testing
11. Symbolic testing

A detected error is only a symptom of the fault that caused
it and does not necessarily identify that fault. Usually there is
many-to-many mapping between errors and possible reasons.

In real-time systems, on-line diagnosis is not usually possi
ble. It is important to observe that off-line diagnosis can be
made easier if mechanisms based on diagnosis techniques are

included in the software architecture to collect necessary in
formation before and during the time the fault occurs and thus
create a list of suspicious program modules, data, and mes
sages. This information can be used off-line for thorough
investigation of errors and reasons behind them and at the
same time can drive the reconfiguration and bypass algo
rithms.

The variety of undetected errors which can exist in a design
of nontrivial software component is essentially infinite. Due
to the complexity of the component, the relationship between
any such error and its effect at run-time may be very obscure.
For these reasons, diagnosis of the original cause of software
errors should be left to the humans

A different strategy will be to ignore the fault and try to
continue to provide service despite its continued presence.
Given that a component has been designated as faulty, whose
further use should be avoided, one can use either its replace
ment (by a standby spare) or reconfigure so that -its responsi
bilities are taken over by other components available in the
system. Reconfiguration necessarily involves some degree of
performance and/or function degradation.

Once the system goes into an erroneous state its resources
(program states, databases) should be brought to a correct
state before further processing can be continued. One can use
either forward error recovery in which an attempt is made to
correct the error states. Compensation is a prime example of
such mechanism. Backward error recovery depends on the
provision of recovery points, i.e., a means by which the state
of processes can be recorded and later reinstated. This is a
popular mechanism used by many practitioners and its merit
is due to two facts:

1. The questions of damage assessment and repair are
treated quite separately from those of how to continue
further service.

2. Damage assessment can be made independent of the
type of fault.

The recovery block scheme9
, checkpoints with audit trail 1 1 ,

and complete database dumpll, are examples of backward
error recovery. The implementation issues of some of these
fault-tolerant techniques in the enroute air traffic control
center software are the topic of discussion in the following
sections.

PROBLEMS OF CONTINUITY OF OPERATIONS IN
FLIGHT DATA PROCESSING SUBSYSTEM

The enroute air traffic control center (ARTCC) software con
sists of programs, databases, and messages (or transactions).
We have tried to identify the problems encountered in contin
uing the operations of the flight data processing (FDP) subsys
tem of the enroute system by studying the reports 12.13 and
discussing experiences with the staff of Cleveland Enroute
Center. We feel that there are four problem areas.

Program Errors

The programs of the FDP system have been designed and
coded by a large number of programmers over a period of

time. Though they have reached a mature stage, possibility of
some hidden errors still exists. These errors cannot be easily
identified and the complete debugging cannot be ensured.
There are some problems regarding the maintenance of pro
grams. Only an object version of the program module exists
at an enroute center. In case the ARTCC staff identifies an
error, the object program is patched to fix the bug. The error
is documented and sent back to FAA technical center in At
lantic City for correcting the source program. The pro
grammers in the Federal Aviation Agency (FAA) technical
center determine the necessary JOVIAL statements to patch
the source. They compile the new source version and send the
new object version to the enroute center. Sometimes the new
object version is not quite equivalent to the object version that
was patched earlier. Moreover, any side effects of the com
piler are not quite known to the enroute center staff. The
problem arises due to the non-availability of a compiler and
source code at each enroute center but the reasons are under
standable. Careful patching of bugs with coordinated testing
at FAA technical center and enroute center has eliminated
some such problems.

Database Inconsistency

There are four types of databases used in the FDP sub
system: static (airspace, airways definitions, bulk flight plan,
etc.), dynamic (daily flight plans), real-time generated
(changing tracks), Compool tables (interprogram communi
cations). There are two distinct reliability issues regarding
databases: they should be protected against a possible loss
during a failure and they should be consistent during normal
processing. Since the flight plan database is under constant
update traffic, it must be thoroughly checked at the time of
retrieval (before actual use) and update (before any changes
are made).

Unexpected Inputs

Sometimes an incorrect or illegal input (or message) is en
tered in the system for processing. This sometimes causes an
abort to be initiated. Since the checking and abort decisions
are not always made at the source of the input, it leads to
repeated entry of such input, causing repeated aborts and
system failure.

This problem is further complicated by the fact that there
are a variety of input types and their sources. Sometimes the
erroneous error is passed from another program (where it
might be a legal output).

Synchronization of Multiple Concurrent Processes

In the multiprocessing/multiprogramming environment
processing sequence errors are a possibility. For example,
flight data is supposed to be brought in core for processing.
Sometimes processing of data can start but all necessary data

Software Reliability in Real-Time Systems 299

is not yet available. Since locking/unlocking and interprogram
communication is done by user programs, the interleaved
operations on data by different processes are error prone.
There are three dimensions to such interaction: data objects,
processes, and time. A complex case arises when m objects
are being processed by n processes and interaction is to be
governed by a time order. For example, Object i should not
be referenced by Process x until Objects i and k have been
referenced by Process y. The possibility of failure of one or
more processes makes this model all the more complex.

Because of space limitations in this paper, I limit discussion
to solutions dealing with program errors, unexpected inputs
and database inconsistency. Details of these and possible
techniques for ensuring correctness of synchronization of mul
tiple concurrent processes are available4

•

AVOIDANCE OF FAILURE
DUE TO PROGRAM ERRORS

There are various mechanisms to protect against program
errors.

First of all, proper specification, design, and testing should
lead to improved reliability and availability. An example of
this research technique for developing software of nuclear
power plant is available.8 Secondly, we can study the error
diagnosis, and correction mechanisms, but they are quite inef
ficient for real-time processing. But with the development of
concepts of recovery lines6

-
1O

, two-phase commit5
-
6

, and atom
ic actions6

-
1O

, system structures which are more fault-tolerant
will be possible. A possibility exists that the system may keep
runtime graphs describing the processes, operations, and in
terleaving interactions. This can provide some suspicion lists
which can diagnose and correct errors at runtime. Inves
tigation of these techniques is the goal of our future research.

The third mechanism provides error bypass and software
reconfiguration and is most suitable for continuing operations
in real-time systems. Recovery block scheme<t proposed by
Randell is an example of this mechanism. The simplest struc
ture of the recovery block is

Ensure AT
by P
Else by AI

Else by An
Else Error

Where A T is the acceptance test condition that is expected to
be met by successful execution of either the primary program
module P or by the alternate module AI ... or An. The inter
nal control structure of the recovery block will transfer to the
next alternates if the test conditions are not met by the pre
vious primary or alternate. A hierarchy of acceptance tests
based on their complexity can also be used. Moreover differ
ent tests for different alternates can be used. The acceptance
test can also be augmented by a watchdog timer that monitors
that an acceptable result is furnished within a specified period.
The timer can be implemented in either hardware or software.

300 National Computer Conference, 1981

COST/RELIABILITY ANALYSIS OF
RECOVERY BLOCK SCHEME

Even though the idea of recovery block scheme is bright, its
implementation poses some chaIle'nges. Some of these are
listed below and have been topics of our research.

1. Analysis of recovery block scheme to identify the selec
tion criterion of alternates and acceptance tests.

2. Selective implementation of recovery block scheme to
maximize reliability/cost ratio.

3. Application of recovery block scheme to the software
structure and the processing of a real application.

4. Design of proper alternates and acceptance tests for a
given primary module.

We have studied the first two questions2
• The problem is

formulated as follows:

1. Given a software structure with cost of processing (in
terms of execution time), failure probability, and pro
cessing requirements, and

. 2. Given several alternatives for implementing recovery
block scheme (choice of alternate and acceptance test
characteristics, granularity of testing etc.),

how to decide the best architectural implementation which
has:

1. A low overhead during normal processing, and
2. A high potential for reconfiguration (in case of failure)

at a low cost.

The evaluation standard to select implementational choices
was as follows:

1. Reliability should achieve some minimum.
2. Absolute processing time should not exceed some max

imum.
3. Cost/reliability index (CRI) should be as low as possible.

The first two evaluation standards are dictated by the per
formance criterion of the ARTCC software. The third reflects
the marginal reliability gain and extra processing cost required
to obtain it. As a general rule, reliability is increased by early
detection of error (or increased granularity of testing) and
adding a number of alternates, but the cost of testing, recov
ery, and running is also simultaneously increased. Hence cost
reliability index (CRI) defined as the ratio of cost of executing
the module and its reliability is a suitable evaluation criterion.
If CRI' and CRI are the cost-reliability indices of the new and
original software architecture, then the new design is consid-

. CRI'
ered better If CRI < 1.

We make the following assumption for the cost/reliability
analysis of software architectures utili~ing recovery blocks:

1. Acceptance tests are perfect. This assumption is made to
eliminate complexity of analysis. Since this assumption
will be made in all types of architectures, for comparison
purposes, it will factor out. Since perfect tests with a low
cost are seldom available, we will relax this assumption
in our simulation study.

2. Probability of failure of primary and alternates are inde
pendent. This assumption is made because it is very
difficult to obtain dependencies between the failures of
primary and alternates. Of course this assumption can
generally be true for independently designed modules.

3. The cost of recovering states after a failure is small com
pared to the cost of executing the module.

Usually the state recovery cost involves popping stacks and
resetting variables. Moreover, use of the recovery cache7

makes the state recovery possible at low cost.
We have studied the cost, reliability, and CRI of four types

of software structures:

I. Primary module P with an acceptance test AT.
The probability of failure of P is Pp, and the cost of

executing and testing P by A T is Cpo
II. Primary module P decomposed into m submodules p"

P2 , ••• , Pm. Each submodule has an acceptance test.
The probability of failure of each submodule is PPi and

the cost of executing and testing Pi is Cpi(for i = 1,
---m).

III. Primary module P supported by n - 1 alternates A" A 2 ,

... , An-I.
The probability of failure of each alternate is P Ai, and

the cost of executing and testing the alternate is CAi (for
i = 1, -- n - 1).

IV. Primary module P is decomposed into m submodules,
PI, P2 ••• , Pm. Each sub module has an alternate and an
acceptance test. A primary submodule and its alternate
form a block Mi (for i = 1, --- m).

The probability of failure of components of each block
Mi are defined as in Type II and III.

The reliability and cost equations for each type of software
structure are given as follows. More details on arriving at
these equations are available2

•

Type I

p

AT

(Pp = probability of failure)
(Cp = cost of executing and testing P)

Type II

(1 - PPI) (1 - ppJ --- (1 - PPm) RII
CII CPI + (1- PPI) CP2 + --- (1- ppJ*(1- PP2)

... * (1 - PPm _I) * CPm

Type III

Rm = 1 - PpPAtPAZ--- PAn - t
Cm = Cp + PpCA1 + --- + PpPA1 -- PAn-ZCAn-1

Type IV

I~ 01 MI

1[2] 01 Mz

I~ 01 M,n

Software Reliability in Real-Time Systems 301

RMi = 1- Pp;PA;
CMi = CP; + Pp;CA;

RIV = RM 1 • RM 2 --- RMm
CIV = CM 1 + RM ICM2 + --- + RM I*RM2--*RMm-1 * CMm

Let us now see under what conditions application of a re
covery block scheme will improve the CRI of the software
archi tectures:

Case 1 (Type III vs. Type I)

Selection criterion for employing alternates:
It is obvious that using more alternates will increase re

liability as well as the execution cost. So the CRI is the most
appropriate evaluation index.

Let

then

if

CRlm 1
CRI1 <

Xsl

This equation is plotted in the following Figure 2.

(probability
ratio = PA/Pp)

(0,0)

x

(1,1)

Figure 2-Domains for better cost/reliability index

(cost ratio =
CA/Cp)

Note that CRI1 = CRln when x = 1 and y = 1; i.e., we do
not gain anything on CRI if we put an alternate module with
the equivalent power of the primary as the alternate.

We will gain recovery power (CRlm < CRI1) if (X, Y) is in
the triangle formed by (0, 1/Pp), (0,0), and (1/1 - Pp, 0).
Usually, an alternate will be more reliable (X < 1) and cost
more (Y > 1). This represents the operating range in the
shaded area. Moreover, contrary to our intuition, a recovery
block may have smaller CRI if (Y,X) is in the triangle
(O,1/Pp), (0,1), (1,1). It implies that a less reliable alternate
(X> 1) may be used for improvements of CRI.

Case 2 (Type I vs. Type II)

Selection criterion for granularity of testing:
Let

P PI = P p 2 = --- = PPm = P p

302 National Computer Conference, 1981

Note:

Let

Then

If

Pp = (1- Pp)"'

Cp~ Cp*m

CRIll _ CP (1- Pp)2
----*
eRI, Cp Pp* Pp

(l~Ppt <1
m*Pp*Pp

Obviously the eRI will decrease as granularity of testing (m)
increases.

Case 3 (Type IV vs. Type II)

The selection criterion for employing alternates if the test
ing granularity can be increased:

Let

and

Then

if

PPt = PP2 =---- = PPm = Pp

CPt = Cp2 =---- = CPm = CP

PAi=X
PPi

X~1

CAi = y
CPi

Y~1

CRI,v < 1
CRIll

(1 + Y Pp) [1- (1- Xpp2)",] (1- Pp)"' < 1
XPp[1 - (1 - Pp)m] (1 - X Pp2)",

This condition is a function of three. variables: X,Y, and m.
If X = Y = 1 (alternates have the same probability of failure
and cost as the primary), then

if

or if

CRI,v < 1
CRIll

(1 + Pp)[1- (1 - p/)m] (I -Pp)"' < 1
Pp [1 - (1 -'- Pp)"']*(1- P;)"'

(1 +. Pp) [1- (1 ~p/)"'] < 1
Pp [(1 + Pp)"' - (1 --'- Pp 2)",]

the left-hand side ()f the e'l!!ation becomes smaller as m
increases, or for a given m, Pp approaches zero. Thus the
decision must be based on meeting the maximum allowable
execution cost. Obviously the reliability of Type IV architec
ture is always greater than that of Type II but the execution
cost of Type IV architecture increases linearly with in.

Case 4 (Type III vs. Type IV)

Selection criterion (more alternates vs. more granularity):
This is the most interesting case for implementation of a re
covery block scheme.

We know that both adding an alternate or increasing gran
ularity will increase reliability as well as cost. It is more inter
esting to see how fast CRI grows as the number (n) of alter
nates increases in Type III architecture and as the granularity
(m) of testing increases in Type IV architecture.

Let
PP1 = PP2 = ----' = PPm = Pp

For
l<j5:.m

X~1

Y~1

For
l~i~n-2

and

Let tis further analyze cost, reliability, and eRI of Type III
and Type IV architecture. Let cost, reliability, and eRI be
increments with ri as a variable for Type III and with m as a
variable for Type IV. 6. CRI is the increment in the cost
reliability index when n or m is increased. For example,

6.CRI In + ~ is the difference between CRI with n + 1

alternates and CRI with n alternates.

For Type III module, increasing Jhe number of alternates
from n to n + 1, we have the following increments:

6.cost (increase in cost) = ppn xn(n-l)j2y"cp
6.reliability (increase in reliability) =

(1 - ppxn)ppnxn(n-1)12

6.CRI is a polynomimil that will grow veryfast as n increases.
For Type IV module, increasing the granularity (which may

not always be possible) from m to m + 1, we have the follow
ing increments:

Let

6.reliability = (1 - Xg;,+ j)"'+ I

--'- (1- Xg;,)"'

_ ~ * (1 + Ygm) [1 - (1 - Xg,;,t]
m + 1, Xg,;,

6.CRI 1m + 1 = ,6.cost
m ' 6.reliability

6.CRI will grow very slowly as m increases.
From the above analysis, we draw the following conclu-

sions.

1. Increase number of alternates till the minimum required
reliability is achieved.

2. Increase granularity of testing till maximum cost has
been reached.

3. In case additional reliability is required, after a certain
value of m and n (depending on X, Y, Pp , and Cp), it
will be preferable to increase m.

Relaxing the assumption of imperfect acceptance tests in
troduces four new parameters for our cost analysis:

AT accepts condition when module is correct:
Probability u,

AT rejects condition when module is correct:
Probability v,

AT accepts condition when module is incorrect:
Probability s,

AT rejects condition when module is incorrect:
Probability t.

We are cuin::ntly working on generalizing our analysis and this
will be the subject of a future paper.
, The fourth, issue regarding implementation of recovery

block scheme is to develop a' methodology to systematically
design proper alternates and acceptance test for a given pri
mary module. We outline oUf present understanding briefly in
the following paragraphs.

One can design alternates which would

1. Execute in a subset of domain of primary, but the failure
probability of primary and alternate are independent of
each other (alternate more specialized than primary).

2. Execute in a domain which does not overlap with the
domain of primary.

3. Execute in a domain which covers the domain of primary
and more (alternate more general than primary): The
three cases are shown in Figure 3.

In addition, one would like to design acceptance tests which
cost 10 to 15% of the execution of a primary but cover pre
cisely domain of primary (or union of primary and alternates).

We give three strategies for designing an altenlate. One
strategy can be to utilize the most recently developed module
as the primary and utilize the one which has been in use and
time;,.tested as the first alternate. Obviously the primary mod
ule will be very efficient and its components optimized but its
reliability is questionable.

Another strategy could be to have the primary and alter
nate modules utilize different methods to achieve the same (or
similar function). For example, the primary module may use

Software_ Reliability in Real-Time Systems 303

Domain of all executions

,~------+--- Domain of alternate (c)

~-4:------t--- Domain of alternate (a)

I+--+-----+-- Domain of primary

\+-----+- Domain of alternate (b)

Figure 3-Possible domains of primary and alternate program modules

the complex but efficient quick sort; the alternates may be
bubble sort, merge sort, or tree sort.

A third appro'achcould be to allow limited capabilities in
the alternates and provide extensive facilities in the primary.
Just for the sake of making up a simple example, we can say
the primary module can sort negative and positive numbers
and also manage duplicates while the alternates can handle
only positive numbers, or the primary can handle numerical as
well as erroneous (nonnumericaI) data while the alternate can
work on a limited range of numerical data.

As regards design of proper acceptance tests, we agree that
the test has to be simpler than the primary block. Moreover
the testing procedure will 'be simple and extfemely reliable.
But then how well can the acceptance test check the results?
For example, if we use check -sum to be the acceptance test fol
a sort module, we can be sure that output contains all data
that came as input, but we cannot be sure if the numbers are
properly sorted. If we use the acceptance test to check if the
last number is greater than the middle which is greater than
the first, we can be sure that the output is possibly in ascend
ing order but we cannot be sure whether the output contains
all numbers which have been properly sorted. Ifwe go to the
extreme and check all numbers, then the acceptance test will
become as complex as' the primary module and will become
very costly. A different approach to the design of acceptance
tests could be based on the concept of time out, which is used
in the enroute system hardware. For example, we could ob
tain the worst bounds on the 'algorithms of the primary mod
ule (e.g., quick sort takes 2n log2n comparisons, or binary
search requires log2n comparisons) and translate them in the
maximum time required to complete the execution of the
module. If there isa·fault in the module, the time out mech
anism can be used to switch to the alternates:

Another interesting question to study is whether the accep
tance test of the whole block should be unique or we should
use different hierarchy based on graceful degradation of sys
tem's performance and use one level for primary and another
level for the alternate module, etc. We also believe that the
acceptance tests have to be adaptive and can change as we
gain more and more confidence with the system.

While thinking of the feasibility of employing the recovery
block architecture to en route system, we observe thatsome of
the subsystems are computation oriented (e.g. deal with nu-

304 National Computer Conference, 1981

Supervisory and

----------------::,:::' Interfacility
DFA Outputs Subsystem

DISK STORAGE
APPLICATIONS
SUBSYSTEM

~----------------
L _____ ------: TRACK DATA

! PROCESSING

I SUBSYSTEM

:
f

Route Conversion Subsystem.
Posting Determination
Subsystem

I
:------______ 1

! Inquiry Processing
~ Subsystem, Super-____________ "*""-!-~ DRS visory and Inter

facility Outputs
Subsystem.

Preliminary
Processing
Subsystem

I
I

!
!
!
1

1-----------_.:. ____ 1

Flight Status Alerts
Subsystem.
Display Channel
Outputs Subsystem

Figure 4-FDP subsystem subprograms flow

merical analysis issues such as correlation, convergence, etc.)
while others are database update and transaction oriented.
The application of acceptance tests as discussed earlier could
be inexpensive for the computation oriented subsystem, but
for the heavy traffic database system which is under constant
modifications and heavy references, integrity. monitoring
could be expensive. So the interesting question arises: Is it
simpler and cheaper to check the input stream or the program
flow? In a repore I have answered this question partially by
concluding compile-time validation is better than run-time or
post-execution validation.

APPLICATION OF RECOVERY BLOCK SCHEME
ON A SIMULATED FLIGHT
DATA PROCESSING SUBSYSTEM

Even though the analytical approach allows us in identifying
key variables such as cost of alternate, and acceptance test,
probability of failure etc., it does make substantial assump
tions about the structure ofthe system to keep analysis simple.
In order to study the impact of recovery block scheme on the
software structure of ARTCC, one must relax the following
two assumptions:

1. All modules have identical probability of failure and
execution cost.

2. Acceptance tests are perfect.

To do this,::ve adopted a simulation approach in which the
above parameters were made variables. We selected the flight

data message processing (FDP) subsystem of ARTCC for
simulation study. The FDP consists of 11 re-entrant sub
programs which call on a pool of 23 subroutines. The memory
limitations available on DEC-lO forced us to consider a part
of FDP and the simulated FDP only contained five sub
programs: FDP, DAM, DSP, DFA, and DUZ. A detailed
description is available l3

• Subsequently only 15 subroutines
called by these subprograms were used. It is important to note
that only the processing requirements of the subprogram and
subroutines were simulated, i.e., subprograms and subrou
tines were considered black boxes which were triggered by
randomly generated messages due to the flight plan gener
ator. Thus no attempt was made to code the actual functions
of the subprograms or subroutines. The simulation study un
dertaken here can be easily used for studying any subsystem
of the ARTCC software. Figure 4 shows the flight data mes
sage processing subprograms and subroutines.
Details on execution time and size of each subprogram and
subroutine are available l

.

Two modes of FDP processing were simulated:

1. FDP processing with acceptance test at each subroutine
(Type II module).

2. FDP processing with an acceptance test at each sub
routine. In addition an alternate was provided for each
subroutine. The probability of failure of primary and
alternate were independent (Type IV module).

In the first mode, the following actions are performed.

1. A message is generated randomly by the flight plan gen
erator.

2. Based on FDP processing requirements, appropriate
messages are generated to initiate the processing of sub
programs. (For example, one message from flight plan
generator produces 2.2 amendment messages). Sub
grams in turn call subroutines.

3. The processing of subroutine fails randomly.
4. If a subprogram call finds the subroutine in failed state,

all partial processing completed by subprogram for the
current message is lost and subprogram starts executing
from the beginning (as if the current message was reis
sued). Note that all previous subroutine calls are also
repeated. One could also abort the system at this point.
In our simulation, the abort simply means reexecution.

5. Action 4 is repeated until the current message execution
is completed.

In the second mode of FDP proce~sing, the following ac
tions are performed:

1. Same as in mode 1.
2. Same as in mode 1.
3. Same as in mode 1.
4. If a subroutine fails, its alternate is executed. If the

alternate subroutine fails, another alternate can be tried
or else the subprogram loses the partial processing and
restarts from the beginning. If the alternate succeeds,
normal processing continues.

5. Action 4 is repeated until the current message execution
is completed.

~
Vl
o

U

-0
(lJ
N

'" E
s
o
z

9.49 0.60 9.80

~AccL:racy

Figure 5-Cost-accuracy function for acceptance tests

In both modes, the acceptance test used to detect the failure
of the subroutine is assumed imperfect. If the subroutine fail
ed and this fact is not detected by the acceptance test, it is
assumed to be always detected at the end of the execution of
the subprogram. In such a case, all processing is lost and
execution is restarted. Note that in case of loss of the execu
tion, the time spent is added to the new processing cost.

The following parameters were used as input variables:

1. Probability of failure of the subroutine or alternate (Pp

or PA)'
2. Execution cost ratio of alternate/primary (CA/CP).

CA/CP = 1.2 means that the cost of restart and execution
of the alternate is 1.2 times the cost of executing the
primary.

3. Cost-accuracy function of the acceptance test.
4. Accuracy of the acceptance test (test strength). An accu

racy of 0.8 means that acceptance test will catch only
80% of errors. The rest 20% will be caught at the end of
subprogram's execution.

The following parameters were measured for the two
modes of FOP processing:

1. Execution cost of FOP.
2. Cost of testing.
3. Reliability of the FOP.
4. Cost-reliability index of the FOP.

In the simulation study:

1. The probability of failure of primary or alternates was
varied from 0.0 to 0.10.

2. The execution cost ratio of alternate/primary was varied
from 1.0 to 1.2

3. The cost-accuracy functions were
a. Y = Exp(x) - 1
b. Y = Tan(x)
c. Y=X* 2

d. x
Y = 0.1 * k for x ~ k

= 0.1 + 1.g'~ k * (x - k) for x> k

CSI ...

Software Reliability in Real-Time Systems 305

with Recovery BlOck

no ReCOVery Bl
ock

~+.-e-e---e'.-e-2---0'.-e-4---e'.-e-6---e'.-e-8---e"-'-0----e".-1-2---e",-1-4-
RElIRBllITY VS. FRUlT RRTE

Figure 6a-FDP reliability vs. probability of failure of a subroutine
(Test accuracy = 0.8; C A1Cp = 1.2)

(These functions are plotted in Figure 5; Y is the cost of
testing and X is the accuracy of the test [or test strength]).

4. The accuracy of the acceptance test was varied from .7
to .9.

The probability of failure of the largest subroutine was
considered to be the variable (failure nite). The probability of
failure of all other subroutines were normalized based on the
ratio of their execution time with that of the largest subroutine
execution cost.

The graphs showing cost-reliability index vs failure rate and
reliability vs failure rate for acceptance test strength varying
from 0.8 to 0.9 and cost ratio of the alternate to primary
varying from 1.0 to 1.2 are as shown in Figures 6a-7d.

We note from our simulation that the reliability of the
simulated flight data processing subsystem with _ recovery
blocks exceeds the reliability without recovery blocks (Figures
6a, b) as probability of failure increases. When the probability
of failure of the subroutine exceeds 0.10, the reliability with
recovery block is twice the reliability without recovery block.
Such reliability improvement can increase the mean-time be
tween failure.

We note from our sirimlation that for cost-accuracy func
tions of the type exponential and tangent the CRI without
recovery blocks does not exceed the CRI with recovery blocks
till the probability of failure of the subroutines exceeds 0.15.
This is true for test strength range of 0.8-0.9 and CA/CP range
of 1.0-1.2.

For square and step function for cost accuracy, the CRI
without recovery blocks reaches the CRI with recovery block,

With Recover B10ck

CSI
q-

~+,-e-e---e',-e-L---0'-e-4---eT.-e-6~-e'-e-8---e"-I-e---e',-1-2---e'.-1-4-

RElIRBIlITY VS. FRUlT RATE
Figure 6b-FDP reliability vs. probability of failure oj a subroutine

(Test accuracy = 0.9; CAICp= 1.2)

306 National Computer Conference, 1981

~.e13 13.132 13.134 13.136

Exponential

_--- Tangent

Step

Square

13.13S e.' 13 13.14

Figure 7a-FDP cost-reliability index vs. probability of failure of a subroutine
(Test accuracy = 0.8; CAICp = 1.0)

when the probability of failure of the subroutines is around
0.10 (see Figures 7a-7d). In particular if CAICp = 1.0, test
strength = 0.8, and square cost-accuracy function, the CRI
without recovery block exceeds the CRI with recovery block,
when the probability of failure of subroutines exceeds 0.08
(see Figure 7a). From this, we conclude that recovery block
scheme will only give a lower CRI if the probability of failure
exceeds 0.08.

One underlying assumption that a failed execution can be
restarted in the flight data processing subsystem without any
penalty (except the loss of processing up to current state) is
really not true in general. One would expect the CRI of the
system with no recovery block to be increasing much faster
than shown in our simulation. This could result in better jus
tification of recovery block scheme even at lower probabilities
of failure.

The simulation model has been developed to try different
scenarios regarding the implementation of recovery block
scheme in the flight data processing subsystem. The' results
presented in this report are only illustrative rather than con
clusive. More experimentation with actual pa~ameters of the
software of FDP is needed. The simulation programs have
been written in the language SIMULA and run on DEC-lO.

AVOIDANCE OF FAILURE DUE TO
DATABASE INCONSISTENCY

One of the key issues in improving the reliability of ARTCC
software' is to ensure that incorrect data is not stored in the
databases (flight plan database, Compool tables, etc.). One
way to achieve this is to define integrity assertions on the
structure and semantics of the database and surround the
database by an integrity monitor. Any access to the database
must pass through the integrity monitor for verification,.
Transactions violating the assertions are disallowed. There
are three research questions regarding this (lpproachto ensure
integrity of the database:

1. Design of integrity assertions
2. Language of integrity assertions
3. Monitoring of integrity assertions

These issues have been reported by us and others3
,6 and are

briefly discussed below.

There are two types of integrity assertions that can be de
fined in a database. One type is based on structural con
straints. For example, we can declare that duplicate keys or
records are not allowed, every table must contain only those
items which are fully dependent on the key attributes and no
transitive dependencies among attributes are allowed. The
second type of constraints concerns the actual values stored in
the database. Some examples are as follows:

1. Value of an item must exist between a lower and upper
bound; some arithmetic relationship exists among vari
ous items (time of flight arrival < time of flight de
parture).

2. There must be a trend in change of values over a period
of time (while an aircraft is ascending, new altitude>
old altitude, or when an aircraft is handed over to the
next ARTCC, it is not handed back to the old ARTCC).

3. Certain records must exist in the database if some other
record was already in the database (flight plan data must
exist if the plane is in the ARTCC airspace).

More examples can be found3
•

The language to express integrity assertion could be the
same as one used for accessing the data. One can always use
tables (such as header to a datafile) to describe integrity asser
tions. These tables are brought in core at the time of access of
these files. This mechanism has been used in many' other
applications5 and is a subject of my further research.

The monitoring or validation of integrity assertions can be
done before executing the transaction, at run-time, or after
executing the transaction. The three methods are briefly de
scribed below.

1. Pre-execution. The method requires
a. simulating the transaction to find results that would

be written if assertions are not violated (what is to be
written?),

b. checking the assertions,
c. executing the transaction if all assertions were found

true.
2. Run-time validation. The method requires

CS) CS)

a. executing a transaction ignoring its "write" opera
tions,

b. checking the assertions,

Exponent i a 1

Tangent

CS)+-----~----r_----r---_,~--_.----_.----_.--
lfl13 .1313 13.132 13.134 13.136 13.13S 13 .113 13 .12 13 .14

Figure 7b--FDp' cost-reliability index vs. probability of failure of a subroutine
(Test accuracy = 0.8; C AICp = 1.2)

Exponential
Tangent

Step
_.-===---=-----:? sqU'Irp

Figure 7c--FDP cost-reliability index vs. probability of failure of a subroutine
(Test accuracy = 0.9; CAICp = 1.0)

c. performing the "write" operations if all assertions
were found true.

3. Post-execution validation. The method requires
a. executing the transactions completely,
b. checking the assertions,
c. performing correction actions.

In ARTCC, we know a priori the types of transactions (or
messages) that will be entered in the system. For each mes
sage, we have the list of itemsit will read (readset) and the list
of items that it will write (writeset). Under the assumptions
that readset and writeset are determined before the trans
action starts executing, we found that the pre-execution vali
dation cost is less than or equal to the runtime validation cost
which is less than or equal to the post-execution validation
cost. These results have been obtained3

, and I briefly list three
lemmas for comparing the validation methods.

Lemma 1. The cost of pre-execution validation is never
larger than the cost of run-time validation.

Lemma 2. The cost of pre-execution validation is never
larger than the cost of post-execution validation.

Lemma 3. The cost of run-time validation is never larger
than the cost of post-execution validation.

These lemmas are important because we can design our
AR TCC software such that no execution takes place without
any violation of integrity assertions. The problems of run-time
and post-execution validation such as storing the original
states for backup are thus avoidable.

CS1
o

Exponential

Tangent

Step ---=======-- Square

~13::t.-:I3:-13 ---:e:T.-=-13=-2 ---:eT.-13~4-e'-136--e-r--138--e'. -113--13,--.1-2----,13.14

Figure 7d-FDP cost-reliability index vs. probability of failure of a subroutine
(Test accuracy = 0.9; CAICp = 1.2)

Software Reliability in Real-Time Systems 307

These validations can be very expensive if the probability
that integrity assertions are violated is low. The cost of these
valdations, as a ratio of cost of executing a transaction as the
probability error varies, is a topic of further research.

SYNCHRONIZATION OF
MULTIPLE CONCURRENT PROCESSES

The problem of synchronizing the interleaved execution of
several processes was discussed briefly in the section "Prob;.;
lems of Continuity of Operations in Flight Data Processing
Subsystem." This problem has received increased attention in
the last few years because of the need to design highly concur
rent processing systems. Such systems contain some form of
concurrency control algorithms which ensure correctness of
synchroniza tion.

We assume that each process will take the system from an
initial consistent state to a final consistent state. We define a
serial execution in which each process runs to completion
before the next one starts. Thus, serial execution will keep the
system in a consistent state. It is possible that some other'
interleaved execution of the processes can also preserve the
consistency. Such executions have the same effect as a serial
execution and are called serializable executions.

The flight data processing subsystem employs a synchroni
zation algorithm which is based on the locking/unlocking of
resources needed by the process. We find that locking is in
general a pessimistic approach because it reduces concurrency
and hence reduces efficiency also. Moreover, locking is a type
of partial commitment because the system must ensure that a
process unlocks all the resources after its completion. If for
some reason such as process failure, memory loss, or system
abort, unlocking cannot be completed, the system becomes
inconsistent. Moreover, there are no general purpose dead
lock free algorithms. Thus deadlock detection and resolution
becomes an overhead added to the maintenance of locks.

I have proposed an optimistic concurrency control al
gorithm4 which does not commit a process unless it has com
pleted and its effects have been validated. I call the approach
optimistic because I believe that in general, few processes will
interfere and conflict with each other and hence more concur
rent executions can be allowed by the system.

In this paper4 I discuss the details of our algorithm and its
performance against the locking algorithms in a database
transaction processing environment. I note that the optimistic
approach will perform as well as the locking approach when
no conflicts exist. When conflicts increase, the optimistic ap
proach does better than locking in both crash and non-ctash
environment. Further research is being done on this approach
to study its fault-tolerant capabilities, and this will be a topic
of my future research.

CONCLUSIONS AND PLANS FOR FURTHER WORK

The goal of this research is to investigate the required archi
tecture, of the automated enroute air traffic controi system
that will increase its reliability and will provide capabilities to

308 National Computer Conference, 1981

handle errors and degrade gracefully so that some minimum
level of continuity of operations can be maintained. We are
interested in design algorithms that are robust and efficient,
and have so far investigated techniq-ues· that are useful for
handling program errors, database loss and inconsistency, and
concurrent processing. Our emphasis has been on the imple
mentation and performance issues of such techniques in the
flight data processing subsystem.

We have just begun to understand the reliability issues of
the enroute system, and plan to investigate software struc
tures that are fault-tolerant and lead to robust processing. My
short-range goal is to study the concepts of atomic actions,
commitment levels for backup and recovery, and the assur
ance consistency of database and concurrent processing.

REFERENCES

1. Bhargava, B., H. Chuang, C. Hua, L. Lilien, and T. Altman. "Software
and Processing Structures with Performance Requirements of Enroute Air
Traffic Control System." Interim report to the Department of Transporta
tion, Department of Computer Science, University of Pittsburgh, Decem
ber 1979.

2. Bhargava, Bharat, and Cecil Hua. "Cost Analysis of Recovery Block
Scheme and Selection Criterion for Alternates." Technical Report, April
1980.

3. Bhargava, Bharat, and Leszek Lilien. "On Optimal Placement of Integrity
. Assertions in a Transaction Processing System." Technical Report, January
1980.

4. Bhargava, Bharat. "An Optimistic Concurrency Control Algorithm and Its
Performance Evaluation Against Locking Approach." Paper presented at
International Computer Symposium, Taipei, December 1980.

5. Gray, J., P. McJones, M. Blasgen, et aI., "The Recovery Manager of a
Data Management System." IBM Technical Report RJ 2623.

6. Gray, J.N., "Notes on Database Operating Systems." In Operating Sys
tems: An Advanced Course. Berlin: Springer Verlag, Heidelberg 1978.

7. Lee, P.A., et al. "A Recovery Cache for the PDP-II. "IEEE Transactions
on Computers, 1980, pp. 546-549.

8. Ramamoorthy, C.V., et aI., "A Systematic Approach to the Development
and Validation of Critical Software for Nuclear Power Plants." Paper
presented at 4th International Conference on Software Engineering, Sep
tember 17-19, 1979.

9. Randell, B. "System Structure for Software Fault Tolerance." IEEE Trans
actions, Software Engineering, SE-l,2 (1975), pp. 220-232.

10. Randell, B., P.A. Lee, and P.c. Treveaven. "Reliability Issues in Com
puting System Design." Computing Surveys (1978), pp. 123-166.

II. Verhofstad, J.S.M. "Recovery Techniques for Database Systems." ACM
Computing Surveys (1978), pp. 167-196.

12. "Design Specifications-Application Subsystem." U.S. Dept. of Trans
portation, NASP-5105, Vol. 2.

13. "Subsystem Design Data: Flight Data Processing." US. Dept. of Trans
portation, NAS Enroute State A (Model A3d2.8), NASP-5I54-1I, April
1979.

14. Zellweger, Andres. "Productivity and Safety of the Control Process." Pro
ceedings of the Consultative Planning Conference, U.S. Department of
Transportation, March 1978.

ACKNOWLEDGMENT

I would like to thank the members of the software reliability
project, Cecil Hua, Tom Altman, Leszek Lilien, Redda Bour
na, and Professor Henry Chuang, at the University of Pitts
burgh for their help in this study. Professor Chuang also pro
vided the information included in the appendix.

I would also like to thank Roy Smith and Ed Maynard of
the Cleveland Enroute Air Traffic Center and David Clapp of

the Transportation System Centre at Cambridge for informa
tion about the enroute system.

APPENDIX-SOFTWARE ERRORS AND THEIR
FREQUENCY OF OCCURRENCE IN REAL-TIME
SOFTWARE

Software errors and their frequency of occurrence in real-time
software

The types of errors can be grouped into the following major
classes:

1. Computation errors: errors in or resulting from coded
equations, equations that pro
duced values directly from the
physical problem being solved,
and equations used in book
keeping sense. Typical errors are

, mathematical modeling, index,
conversion, and mixed-mode
arithmetic.

2. Logic errors: incorrect logic code, missing con
dition test, flag not tested, etc.

3. Data input errors: format errors, input read from in
correct data file, invalid input
read from correct data file, etc.

4. Data output errors: format errors, data written on
wrong file, incomplete or missing
output, output field size too small,
etc.

5. Data-handling
errors: errors made in reading, writing,

moving, storing, and modifying
data, etc.

6. Interface errors: routine/routine interface errors,
routine/system software interface
errors, wrong routine called, and
incompatibilities between data
base and using routines, etc.

7. Definition errors: e!TOfS in specification of global
variables and constants, data not
properly defined/dimensioned,·
etc.

8. Present database
errors: data not initialized, initialized to

wrong values, incorrect data
units, etc.

9. Documentation
errors: errors in design and operational

documents.

10. Operation errors:

11. Others:

wrong database used, wrong tapes
used, configuration control er
rors, etc.

time limit exceeded, storage limit
exceeded, compilation errors, etc.

The frequency of occurrence of each type of error is deter
mined by the aforementioned factors. Conclusive results
about error occurrence are difficult to obtain. The extensive
Software Reliability Study, performed by TRW for Rome Air
Development Center, has revealed the results shown in the
table for real-time software, to which ATC software belongs.

The table shows the percentage breakdown of major error
types which resulted from analysis of error data obtained in a
large state-of-the-art real-time software project. The software
was developed using top-down structured programming ap
proach under rigorously enforced standards and procedures.
The application software is in FORTRAN, and the operating
system is in assembly language.

Software Reliability in Real-Time Systems 309

TABLE-Percentage breakdown of major error types in
real-time software (at final stage of development)

Real-Time Real-Time
Application Operating

Major Error Types Software System

Computational (1) 11.2 2.5
Logic (2) 18.1 34.6
Data input (3) 1.1 3.7
Data output (4) 2.2 4.9
Data handling (5) 6.7 21.0
Interface (6) 6.7 7.4
Data definition (7) 7.9 7.4
Database (8) 32.6 4.9
Others (9,10,11) 13.5 13.6

A state- and time-dependent error occurrence-rate
software reliability model with imperfect debugging

by J. G. SHANTHIKUMAR

Syracuse University
Syracuse, New York

ABSTRACT

In this paper, assuming a state- and time-dependent software
failure rate and imperfect debuggings, we develop a simple
binomial model for software error occurrences. Maximum
likelihood estimates for the required parameters of this model
are also derived. It is established that the Jelinski-Moranda,
imperfect debugging and non-homogeneous Poisson process
models are all special cases of ours.

INTRODUCTION

In recent years, several statistical appraoches have been devel
oped to measure and predict software quality. One of such
approaches is to postulate a stochastic model, use its results
and the data on error occurrences to estimate the model
parameters and forecas(the future behavior using the model
and the estimated parameters. 1-22 In most of these models it is
assumed that a software error once detected is perfectly de
bugged. Recently, in an article6 in the proceedings of the
National Computer Conference, Goel and Okumoto, how
ever, considered a model in which imperfect debugging is
allowed. Assuming a fixed number of initial error content and
a constant failure rate for each error, they formulated a Semi
Markovian model for the software error occurrences. Using
this model they derived expressions for software performance
measures. Since these expressions seem complex, they also
suggest some approximation.

In this paper, assuming a state- and time-dependent soft
ware failure rate and imperfect debuggings, we develop a
simple binomial model for software error occurrences. We
establish that the Semi-Markovian model developed by Goel
and Okumot06 is a special case of our binomial model. It is
also noted that the Jelinski-Moranda' and the Non-homo
geneous Poisson Process models are also special cases of our
model.

The basic model and the assumptions are presented in sec
tion 2. System performance measures are derived in section 3.
The parameter estimation is discussed in section 4 and the
expressions for performance prediction are developed in sec
tion 5. The generality of our model is demonstrated in the
appendix.

311

THE MODEL

The software reliability model developed here is based on the
following assumptions.

1. The initial-error content at the beginning of the observa
tion phase, that is at time zero, is an unknown constant
N.

2. The probability that an error will cause a software failure
in a small time interval (t, t + ~t) is equal to

<f>(t)~t + O(~t), where l~~o (Ok:) = O. These proba

bilities for all errors are independent of one another and
dependent of time. That is, if thele ale' tIIOIS in the
software at time t, the probability of a software failure in
(t,t + ~t) is r<f>(t)~t + O(~t). Note that this assump
tion, when restricted <f>(t) to be a constant A, is equiv
alent to assumption (2) of Goel and Okumoto,6 page
769.

3. When an error occurs, it is corrected with probability p.
That is, with probability q(q = 1-p), the ~r is im
perfectly debugged (not eliminated).

4. No new errors are created, at most one error is removed
at a correction time, and the time taken to correct an
error is negligible.

With this set of assumptions we will now formulate our
model. We shall do this by considering each error separately.
Let us consider an error (out of those N) present in the
software at time zero. Let T be the time by which this error
is removed from the software. Suppose F(·) is the cumulative
distribution function of T. That is Pr{T~ t}-~ F(t), t > O.
Since

Pr{T> t + ~t} =
Pr{T> t and error is not removed during (t,t + ~t)},

we get

F(t + ~t) = F(t){1- p<f>(t)~t} + O(~t), (1)

where F(t) = 1 - F(t) = Pr{T> t} and P<f>(t)~t + O(~t) is
the probability that the error is removed during (t, t + ~t).

312 National Computer Conference, 1981

Now dividing (1) by b.t and taking the limit as b.t~O, we get

d- -
"j({F(t)} = - p<f>(t)F(t), t> O. (2)

Since Pr{T > O} = 1, we have the boundary condition
F(O) = 1. Solving (2) with this boundary condition we get

F(t) = exp{ - pG(t)}, t> 0, (3)
where

G(t) = £<f>(x)dx, t~ O. (4)

Note that lim F(t) need not be zero since the limit lim G(t)
1--+00 1--+00

need not be infinity. This means that an error in the software
may never be removed. This would then represent the situ
ations in which an error is resident in a part of the code which
is never processed or very scarcely processed. In almost all the
software reliability models previously considered, it is as
sumed that all errors would be. eventually eliminated. Our
results thus represent a more realistic situation. From (3) we
also have

F(t) = 1- exp{ - pG(t)}, t> O. (5)

Now let X be the time at which this error causes a software
failure for the first time. Then, if H(t) = Pr{X ~ t}, t > 0,
using an analysis similar to the above we can show that

H(t) = 1 - H(t) = exp{ - G(t)}, t > 0 (6)

and

H(t) = 1 - exp{ ~ G(t)}, t > 0, (7)

where G(t) is as defined in (4).
With these results (3), (5), and (7), we have binomial distri

butions for the number of errors remaining at time t, for the
number of errors perfectly debugged by time t, and for the
number of distinct errors detected by time t with parameter
sets (N,F(t», (N, F(t», and (N,H(t», respectively.

PERFORMANCE MEASURES

In this section, using results (3)-(7), we will derive expressions
for software performance measures that are of interest to us.

Distribution of Number. of Remaining Errors

Let PN,n(t) be the probability that there are n errors remain
ing at time t. From (3) we know that the probability that an
error is not perfectly debugged by time tis F(t). Then PN,n(t)
is binomial with parameters (N,F(t». That is,

PN,n(t) = (lj(F(t)t(F(t»N-n,n = 0,1, ... ,N, (8)

with mean

E(R(t» = NF(t), (9)

where R (t) is the number of errors remaining at time t. A
software model satisfying conditions given in.section 2 with
<f>(t) = A. a constant, should be identical to the imperfect de
bugging model of Goel and Okumoto.6 Even though the re
sults for PN,no (t) given there seems different from (8), we
establish their equivalence in the appendix.

Distribution of Time to a Completely Debugged System

Let T· be the time taken to completely debug the system.
Define GN,o(t) = Pr{T· ~ t}, t > O. That is, by time T·, the
number of errors remaining should be zero. Then GN,o(t)
should be equal to PN,o(t). So, from (8) and (3), we get

GN,o(t) = (1 - exp{ - pG(t)})N, t > O. (10)

It should be noted that, for reasons discussed earlier, GN,o(')
may be defective. That is, GN,o(oo) need not be 1.

Distribution of Time to n Remaining Errors

Let T~ be the time by which the numoer of remaining errors
is n and define GN,n(t) = Pr{T~~t}, t > O. Noting that the
events {R(t)=r, r<n}={T~~t} we have

GN,n(t) = i PN,r(t) = ~ (~)(F(t)Y (F(t»N-r,
r=O r=O

n =0,1, ... ,N. (11)

Distribution of Time to Next Software Failure

Suppose there are r software errors remaining just after a
recent software failure, say, at time t. Let Y(r,t) be the time
to next software failure. Then Y(r,t) is the minimum of the r
failure times, each of the r remaining errors. The uncon
ditional cumulative distribution function of these failure times
is given by equation (7). Now suppose X;, i = 1,2 .. . ,r, are
the failure times corresponding to these r errors. Then know
ing that X; > t, i = 1,2, ... ,r, we have from (7) and the laws
of conditional probabilities,

Pr{X; > t + xiX; > t} = exp{ - (G(t + x) - G(t»}, x> 0,
i = 1,2, ... ,r. (12)

Then

Pr{Y(r,t»x }=Pr{X;>t+ x,i = 1,2, ... ,rIX;>t;
i=1,2, ... ,r}=exp{-r(G(t+x)-G(t»}, x>O. (13)

Clearly (13) is the reliability functionof the software when
there are r errors remaining at time t. Now to use all these
expressions, we n~ed the model parameters N, p, and the

function <f>(t). We shall attend to this problem in the next
section.

PARAMETER ESTIMATION

Suppose we have observed the software failure times caused
by each of n errors for the first time. That is, we have the
observations of the random variables Xi, i = 1,2, .. . ,n (Xi as
defined earlier). Let Si, i = 1,2, .. . ,n, be the values of Xi,
i = 1,2, .. . ,n in the increasing order. Then from (13) it is
easily verified that,

Pr{Sk~t + XISk-l = t}
= exp{ - (N - k + 1)(G(t + x) - G(t»}, x > O. (14)

Now suppose thatf(s., S2, . .. ,Sn) is the joint probability densi
ty function of SI.S2, . .. ,Sn' Then from (14), the properties of
the model, and the laws of conditional probabilities, we can
show that

f(S.,S2,' . . ,Sn) = Ii{(N - k + 1)<f>(sk)exp{ - (N - k + 1)
k=1

(G(Sk) - G(Sk-l»}}, Si >0, i = 1,2, .. . ,n, (15)

where So = O. Then from (15), for a given sequence S.,S2, . . . ,Sn
of n software failure times caused by n distinct errors for the
first time, the log likelihood function L is given by

L = ~ In(N - k + 1) + i In<f>(sk)
k=1 k=t

n

- I (N - k + 1)(G(Sk) - G(Sk-l». (16)
k=t

To use (16) for parameter estimation, we need specific form
of <f>(t). We choose

<f>(t) = ab exp(- bt) , t ~ 0 (17)

'following Goel and Okumoto. 5 Note that several other forms
may also be chosen for <f>(t). From (4) and (17), we have

G(t) = a(l- exp(- bt», t ~o. (18)

Using (16) and (18), it can be shown th~t (see Shanthi
kumar20

) the maximum likelihood estimates N, a, and b of N,
a, and b, respectively, are the solution of

n 1
. ~ - a(1 - ~xp(- bsn» = 0

k=1 N - k + 1
(19)

n n
- - ~ (N - k + 1)(exp(- bSk- 1) - exp(- bsk» = 0 (20)
a k=t

and

n n n

b - k~lSk- k~1 (N - k + 1)a(skexp(- bsk)

- Sk-texP(- bSk- 1» = O. (21)

A Software Reliability Model 313

These equations (19), (20), and (21) can be numerically
solved to obtain these estimates. Next we will look at an
estimate for p. Let Ui = 1,2, ... ,n, be the number of time
error i (out of the n distinct errors observed) caused software
failures during (O,tl)' Then Ui ~ 1, i = 1,2, ... ,no Since the
number of times an error causing software failures with imper
fect debuggings can be represented by a Geometric random
variable (see Shanthikumarl8

) with mean lip, we can approx
imate p by

1 n 1 p =- ~ -.
n i=1 Ui

PERFORMANCE PREDICTION

(22)

Now that we have the estimates iv, a, b, and p, we can use
equations (8)-(13) for performance prediction. We should
note, however, that we have made some observations to esti
mate the parameters and therefore equations (8)-(13) have to
be modified. This is because the current state of the software
system has changed. This aspect has been ignored in an earlier
paper.6 Suppose we have observed n distinct errors during the
time period (O,tl)' Also, suppose we have'observed a total of
1 software failures during this time period. Then 1 ~ n since
some or all of these n errors may have been imperfectly de
bugged. Hence if RI is the number of remaining errors at time
tl, RI is neither equal to N - n nor equal to N - l. In fact, the
exact value of RI is unknown because of imperfect debug
gings. If RI = r, then equations (8)-(13) may be used when the
time origin shifted to tl and N replaced by r. Specifically, from
(8),

Pr.k(tIRI = r) = (~)(FO(t»k(FO(t)r-k,
k =0,1, .. i'. ,r, t>tl, (23)

is the probability that there will be k errors remaining at time
t given that there are r errors remaining at time tl. In this
equation (see (4), (6), and (7»

and

FO(t) = 1 - exp{ - pGO(t)}, t > tl

pO(t) = 1 - FO(t)

due to the shift in time origin.
Similarly, from (10),

Gr.o(tIRI = r) = (1- exp{ - P(G(tl»}Y' T> tl (24)

from (11),

k = 0,1, ... ,r, t ~ tl (25)

314 National Computer Conference, 1981

and from (13), the reliability function

Pr{Y(r,tl) >X} = exp{ - r(G(tl +x) - G(t/)}, x >0. (26)

So, in order to use the above equations, we need an estimate
for the number of errors remaining at time tl. As mentioned
earlier, the exact value of RI is unknown and therefore we may
develop a probability distribution for it.

Let Z; be the last time an error i,i = 1,2, ... ,n, caused a
software failure before time t,. That is, this error did not
reappear during (z;, tl)' If the error is imperfectly debugged,
the probability that it will not show up during (z;, tl) is from
(7), equal to exp{ - (G(tl) - G(z;»}, i = 1,2, ... ,no This
probability, when the error is perfectly debugged, is 1. Noting
that the probability of perfect debugging is p , and using Bayes
rule, we get

~; = p /{P + (1 - p)exp{ - (G(t,) - G(z;»}}, i == 1,2, ... ,n,

where ~; is the probability that an error i (one of the n distinct
errors) detected is perfectly debugged given that this error did
not reappear during (z; ,t,). Then

Pr{R,=-N~n+r}= ~ 11, ~;I1(I-~i),
AEM, ;EA' iEA

r = 0,1, ... ,n, (27)

where Mr is the set of all possible subsets of {l,2, .. . ,n} with
cardinality r, and A' is the complement of A. That is,
A' = {1,2, ... ,n} - A. It can be verified, after some algebra,
that '

n

E (R,) = N - ~~; tJ: f. (28)
;=1

Now either f can be used as an estimate for the number of
remaining errors or use (27) along with (23)-(26) to predict
software performance. That is, from (23) and (27),

N

PRt,k(t)= ~ Pr{R1=r}Pr,k(tIR1=r), k=N-n, ... ,N, (29)
r=k

from (24) and (27),

N

GRt.O(t)= ~ Pr{R1=r}Gr.o(tIR1=r), t>tt, (30)
r=N-n

from (25) and (27),

N

GRt,k(t)= ~ Pr{R1=r}GrAtIR1=r), k=N-n, ... ,N,(31)
r=k

and the reliability function from (26) and (27) is

N

Pr{Y(Rt,tt»x}= ~ Pr{Rt=r}Pr{Y(r,t,»x}. (32)
r=N-n

Note that the above expression for the reliability function
corrects an error in equations (23), (24), and (25) of Goel and
Okumoto (1979)6 (see Shanthikumar,17 page 71). Since evalu
ation of equation (27) is of combinatorial nature, a simple
binomial approximation is proposed based on E(Rt)=f. It is

Pr{RI =~ -n +r}===(~)j3n-r(1-j3y, r=O,I, . .. ,n, (33)

- 1 n -
where ~=- ~ ~; so that E(Rt)=N -n ~=f is preserved. Now

n ;=1
equations (23)-(26), (29)-(32), and (33) can be used for per
formance prediction.

CONCLUSION

In this paper, assuming a state- and time-dependent software
failure rate and imperfect debuggings, we developed a simple
binomial model for software error occurrences. Maximum
likelihood estimates for the required perameters of this model
are also derived. For this we use <f>(t)=ab exp(-bt), t>O for
the time-dependent failure rate function. In the appendix it is
established that the imperfect debugging model of Goel and
Okumot06 is a special case of this model (specifically when
<f>(t)=A is a constant. Then, obviously, when <f>(t)=A and the
probability p of perfect debugging is equal to one, we will get
the results for the lelinski-Moranda model. 7 It can also be
shown (see ShanthikumarO) that when p =1, N-+oo, a-+O,
and Na-+a<oo, the above model reduces to the non
homogeneous Poisson process model discussed by Schneide
wind16 and Goel and Okumoto.5 Because of this generality of
this model, it is expected that this model will prove to be
versatile.

APPENDIX

In this appendix we will systematically transfer Goel and
Okumoto's results6 to match a special case of our results. The
special case considered here is <f>(t)=A, t~O. Then G(t)=At,
t~O and F(t)=exp(-Apt), t>O.

Distribution of Time to a Completely Debugged
Software System

The distribution GN,o(t) of time to a completely debugged
system is given by equation (12) in Goel and Okumoto's "A
Markovian Model for Reliability and Other Performance
Measures of Software Systems.6 It is

N

GN,o(t)= ~ CNAl-e-;PAt), t~O (AI)
;=1

where

(A2)

Substituting (A2) in (AI), we get

(A3)

is obtained using the combinatorial identity

~ (~)f;=(1 +f)N
;=0]

Note that (A3) agrees with (10) when G(t)=At.

Distribution of Time to a Specified Number of
Remaining Errors

The distribution GN,no (t) of time to no number of remaining
errors is given by equation (14) of "A Markovian Model." It
is

(A4)

where

N ' . B . (-ly"-I--L-
N,i,no no!j!(N -no-j)! no+j (AS)

Rewriting (AS) we get

B " =(N)(no+j -1)(_1)i- 1

N,J,no j +no j-1

=(. N)(-lY-l f (j.+no) (-ly-l
J +no ,=1 J-r

(t)

= f (. N) (j.+no)(-lY+'
,=1 J +no J-r

=f(N)(N-:r-no)(_l)i+'
,=1 r+nu J-r

i+no (~(N-n) = ~ . (_ly+n-no
n=no+l n J -n +no

(A6)

Now substituting (A6) in (A4) and interchanging the order of
summations, we get

Note that (A7) agrees with (11), when F(t)=exp (-Apt).

Distribution of Number of Remaining- Err.o1'S

The distribution of PN,no (t) of no remaining errors at time
t is given by equation (17) of "A Markovian Model." It is

(AS)

Substituting (A7) in (AS) we get

tThis is obtained using the combinatorial identity (1.5) in page 1 of Gould,
H. W., Combinatorial Identities, Morgantown Printing and Binding Co.,

(1972).

A Software Reliability Model 31S

(A9)

a binomial distribution. Equation (A9) agrees with equation
(S), F(t) = exp(- Apt).

REFERENCES

1. Angus, J.E., R.E. Schafer, and A. Sukert, "Software Reliability Model
Validation," Proc. of Annual Reliability and Maintainability Symposium
(1980), pp. 191-193.

2. Basin, S.L., Estimation of Software Error Rate Via Capture-Recapture Sam
pling, Science Applications, Inc., Palo Alto, California (1974).

3. Endres, A., "An Analysis of Errors and Their Causes in System Pro
grams," Proc. of the 1975 International Conference on Reliable Software
(1975), pp. 327-336.

4. Forman, E.H. and N.D. Singpurwalla, "An Empirical Stopping Rule for
Debugging and Testing Computer Software," J. of American Statistical
Association, Vol. 72 (1977), pp. 750-757.

5. Goel, A.L. and K. Okumoto, "Time-Dependent Error-Detection Rate
Model for Software Reliability and Other Performance Measures," IEEE
Transactions on Reliability, Vol. 28 (1979), pp. 206-211.

6. Goel, A.L. and K. Okumoto, "A Markovian Model for Reliability and
Other Performance Measures of Software Systems," Proc. of the National
Computer Conference (1979), pp. 769-774.

7. Jelinski, Z. and P. Moranda, "Software Reliability Research," Statistical
Computer Performance Evaluation, W. Freiberger (Ed.), Academic Press
(1972). pp. 465-484.

8. Littlewood, B. and J.L. Verrall, "A Bayesian Reliability Growth Model for
Computer Software, Applied Statistics, Vol. 22, (1973), pp. 332-246.

9. Littlewood, B., "A Reliability Model for Systems With Markov Structure,"
Applied Statistics, Vol. 24 (1975), pp. 172-177.

to. Miyamoto, I., "Software Reliability in On-Line RealTime Environment,"
Proc. of the 1975 International Conference on Reliable Software (1975), pp.
194-203.

11. Moranda, P., "Prediction of Software Reliability During Debugging,"
Proc. of the Annual Reliability and Maintainability Symposium (1975), pp.
327-332.

12. Mciranda, P., "Error Detection Models for Application During Program
Development," Proc. of the Nineteenth Annual Technical Symposium
Pathways of System Integrity (1980), pp. 75-78.

13. Musa, J.D. "A Theory of Software Reliability and Its Application," IEEE
Transactions on Software Engineering (1975), pp. 312-327.

14. Schick, G.J. and R.W. Wolverton, "Assessment of Software Reliability,"
Proc. Operations Research, Physica-Verlag, Wurzburg-Wien (1973),pp.
395-422.

15. Schick, G.J. and R.W. Wolverton, "An Analysis of Competing Software
Reliability Models," IEEE Transactions on Software Engineering (1978),
pp. 104-120.

16. Schneidewind, N.J., "Analysis of Error Process in Computer Software,"
Proc. of the 1975 International Conference on Reliable Software (1975), pp.
337-346.

17. Shanthikumar, J. G., "Software Performance Prediction Using a State
Department Error Occurrence-Rate Model," Proc. of the Nineteenth An
nual Technical Symposium-Pathways to System Integrity (1980), pp. 67-72.

18.- SIiai1thikumar, J. G., "A Binomial Model for Software Performance Predic
tion," Proc. of the Eighteenth Annual Allerton Conference on Commu
nication, Control, and Computing, (1980), to ~

19. Shanthikumar, J.G. and S. Tufekci, "Optimal Software Release Time Us
ing Generalized Decision Trees," Proc. of the Fourteenth Annual Hawaii
International Conference on System Sciences (1981), to appear.

20. Shanthikumar, J.G., "A General Software Reliability Model for Per
formance Prediction," Technical Report, Dept. ofInd. Eng. & Opns. Res.,
Syracuse University (1980), p. 18.

21. Shooman, M.L., "Software Reliability: Measurement and Models," Proc.
of the Annual Reliability and Maintainability Symposium (1975), pp.
485-491.

22. Trivedi, A.K. and M.L. Shooman, "A Many-State Markov Model for the
Estimation and Prediction of Computer Software Performance Parame
ters," Proc. of the 1975 International Conference on Reliable Software
(1975), pp. 208-220.

On the complexity of measuring software complexity*

by G. MICHAEL SCHNEIDER,
ROBERT L. SEDLMEYER, and
JOE KEARNEY
University of Minnesota
Minneapolis, Minnesota

INTRODUCTION

The term software complexity (program quality, program
complexity, ...) has been used by software engineering re
searchers to denote the testability, maintainability, readabil
ity, and/or comprehensibility of a program. Curtis7 points out
a common bond that unites all these concepts: a program's
complexity determines how difficult it is for programmers to
work with.

The complexity of a program is an important factor in two
parts of the software lifecycle. In the development phase com
plexity strongly influences the effort required to debug and
test program modules and subsystems. In the maintenance
phase complexity determines how difficult it will be to locate
and correct undetected implementation errors, and also how
much effort will be required to modjfy program modules to
incorporate specification changes. Since maintenance com
prises the costliest part of the software lifecycle, a program's
complexity will have a direct bearing on the ultimate man
power and machine costs associated with the program. Obvi
ously, then, minimizing program complexity is a worthwhile
pursuit.

For approximately a decade software engineering research
ers have struggled to develop a suitable complexity measure.
All previous research has shared a common approach: identi
fy a relationship between an intrinsic program property and
programmer performance on a given programming task. Can
didate properties can be generally classified as pertaining to
control structure I6 ,17,30, data usage6 , token volume 12,15,19, or a
combination thereof. 13

,19 Representative programming tasks
have included locating a single error in a program listing l

,7,IO,II

implementing a modification7
,8,23, and constructing a program

from its specifications. 18
,25 Performance measures have usu

ally been based on task completion time or correctness. Hav
ing formulated a complexity measure, a validity study may
then be performed to ascertain the predictive power of the
measure. In essence, such a study should demonstrate that
performance differences are due to experimental manipula
tions of complexity. In many cases, however, these studies are

*This work was partially supported by NSF Grant MCS-8016549 and
a research fellowship from the Control Data Corporation.

317

confounded by performance differences arising from two oth
er sources: the variability of the subjects themselves and the
selection of the experimental programming task. In the next
section we present an historical summary of such -differences.
The remainder of the paper discusses results from an experi
ment to study the effects of programmer and programming
task factors on complexity measures and outlines a multi
dimensional approach to measuring software complexity.

SOURCES OF PERFORMANCE DIFFERENCES

Programmer-related differences

Immense individual differences have been noted in almost
every software engineering study. In 1968, while examining
the effects of time-sharing and batch environments on pro
ductivity, Sackman, Erickson and Grane l reported individual
differences of up to 28: 1. This surprising discovery prompted
them to report in their conclusion, "The most important prac
tical finding involves the striking differences in performance."
During the same year Schwartz22 concluded that "an order of
magnitude difference in capability" may exist within a group
of programmers involved in developing a large scale software
system. In a series of articles exploring the reasons for the
high cost of software Boehm3 stated, "Productivity variations
of 5: 1 between individuals are common." Significant indi
vidual differences have also been reported in studies con
cerning debuggingl

•
IO

,II,2(), flowcharting28 and comprehen
sion. 14

,27,32 The important point here is not that individual
differences among programmers exist, but that the variability
is so large that experimental results may depend more on
individual differences than on experimentally induced differ
ences. With respect to program complexity, we may find that
what is incredibly difficult for one programmer may be trivial
for the next, and a complexity measure applicable to the
former programmer may be useless to the latter.

Task-related differences

Not all programmers may perform all programming tasks
with equal facility. Evidence of the dependence of pro-

318 National Computer Conference, 1981

grammer performance on the programming task can be found
in a series of studies conducted at the General Electric Center
for Software Management Research.

Curtis, Sheppard, Milliman, Borst, and Love7 studied the
relationship between Halstead's E, McCabe's V(G), program
length (measured by number of statements), and programmer
pel toI manee -mt maintenance tasks. The- first experiment
showed negative correlations between the recall of program
statements (a popular measure of program comprehension)
and the three complexity measures. Using transformed scores
the correlations were -.73, -.21, and -.65 respectively for
E, V(G), and lines of code. In the second part of the experi
ment Curtis et al. examined the relationship between the com
plexity measures and performance on modification tasks.
Both accuracy and time to implement a program modification
were used as performance measures. This time smaller cor
relations were found between the complexity metrics and two
performance measures:

Accuracy
Time

E
-.21

.25

V(G)
-.36

.23

Length
-.28

.20

The results of this experiment indicated that Halstead's E,
McCabe's V(G) and the number of lines of code were all weak
predictors of programmer recall and programmer ability to
modify a program, but, more significantly, that the correla
tional strength was dependent on the programming task used!

Curtis, Sheppard, and Milliman24 conducted another ex
periment examining Halstead's E, McCabe's V(G), and pro
gram length. In this experiment the complexity measures were
compared with the number of minutes necessary to locate and
debug a single error in a program. Correlations between the
complexity measures and performance were substantially
higher in this experiment. If the measures were applied to the
subroutine in which the bug was located the following cor
relations were obtained:

Time
E

.66
V(G)
.63

Length
.67

In the third of a series of experiments, Sheppard, Milliman
and Curtis25 studied the association between Halstead's V,
Halstead's E, McCabe's V(G), and the number of program
statements with measures of performance in program con
struction. Subjects were given a program specification and
asked to write a program. The dependent variable was the
time to write a correct program. They reported statistically
significant correlations between programming time and all
four of the complexity measures.

Time
V
.78

E
.61

V(G)
.66

Length
.35

The correlational data gathered by Curtis et al. shows evi
dence of the sensitivity of these program-based measures to
the programming task being analyzed-either maintenance,
modification, debugging, or construction.

PROGRAM-PROGRAMMER-PROG RAMMING
TASK INTERACTIONS AND
COMPLEXITY MEASURES

Much circumstantial evidence exists for the premise that pro
gram complexity is not a simple function of the program itself.
Despite this apparent sensitivity of complexity to both individ
ual and task differences research has continued to concentrate
on the program as the ultimate source of differential perfor
mance. In this section we present the results of an experiment,
which demonstrate the futility of program-based complexity
measures for predicting general programmer performance.

M oherl Schneider Study

To explore the sensitivity of complexity measures to pro
grammer and programming task factors we analyzed data
collected from a recent study by T. Moher and G. M.
Schneider18

• The study, carried out over a seven-month period
in 1979, included two program comprehension tasks-one
based on a 51-line FORTRAN program (called SR), and one
based on a 221-line FORTRAN program (LR). One hundred
and sixty subjects participated in the study. The subject pool
was composed of a 100-member student group and a
60-member professional group who each filled out an exten
sive background questionnaire. * All subjects participated in
the first comprehension task, the Short Reading (SR) task,
while a randomly selected subgroup of 54 students and 26
professionals also participated in the Long Reading (LR)
task. Both tasks involved the same operations: each subject
was asked to examine the task program for a specified amount
of time and then complete a 20-question multiple choice ex
amination. The number of correct responses on the exam
ination was used as the performance measure for both com
prehension tasks.

Analysis of Performance Data

Program factors

As a departure point for investigating the effects of pro
grammer and programming task factors on the validity of
program-based complexity measures, we first examined the
contribution of program factors to performance differences.
Table I summarizes the performance data for all subjects and
complexity measures** on programs SR and LR.

As expected, the subjects found program LR, on the whole,
to be more difficult to understand. Their comprehension
scores dropped by approximately 29% (from 13.2 correct out
of 20 to 9.4). Such a degradation in performance is easily
reconciled with an increase in the three selected complexity

*To avoid bias the subjects were randomly selected from a wide range of schools
and corporations. For a complete discussion of the experiment and subject
selection procedures refer to Moher and Schneider (1981).

* *The complexity measures selected are considered representative of the
program-based approaches discussed in the literature. They are McCabe's
V(G), Halstead's E, and Chapin's Q.

On the Complexity of Measuring Software Complexity 319

TABLE I-Overall performance differences on tasks SR and LR

N MEAN STD.DEV. RANGE V(G) E Q

PROGRAM SR 160 13.2
PROGRAM LR 80 9.4

3.8
3.7

1-20 2 8094 2.2
0-19 5.2 180087 6.0

measures. If we make the assertion that these measures are
perfect predictors of performance, then we may also use them
to predict the magnitude of the performance drop by applying
a simple two-point regression analysis.

Before we continue our data analysis we note that the func
tional relationship between each complexity measure and per
formance is based on a particular programmer population
performing a particular programming task on two particular
programs. However, the implication is that this functionality
will generalize to different programmer populations, different
programming tasks and different programs. Our objective will
be to show that, even if the programs are held constant, this
functionality does not generalize.

Programmer factors

A cursory examination of a histogram of the performance
data for programs SR and LR reveals a bimodal distribution
(see Figure 1), suggesting the presence of two distinct pro
grammer populations.

In order to determine the possible effects of programmer
factors on the predictive power of complexity metrics we ex
tracted two disjoint programmer populations. This process
was greatly aided by Moher and Schneider's earlier research
in which they constructed regression models of programmer
performance based on a small number of background vari
ables. For professionals, the single best predictor was found to
be the number of years of programming experience. For stu
dents, the models included both experimental and aptitudinal
factors. The best predictive model was composed of the num
ber of computer science courses taken and computer science

25

20

15

10

-- SR PERFORMANCE

_.- LR PERFORMANCE

10 15

NUMBER OF CORRECT RESPONSES

Figure I-Overall task performance

20

TABLE II-Operational criteria for novice/expert subpopulations

CLASS

NOVICE

EXPERT

CRITERIA

~ 4 computer science courses and < 3.00 gpa, or
~ 2 years programming experience
~ 7 computer science courses and ~3.50 gpa, or
~ 5 years programming experience

TABLE III-Novice/expert summary data for tasks SR and LR

N SRMEAN LRMEAN % DIFFERENCE

NOVICE
EXPERT

45
30

10.5
15.7

5.6
13.5

47
14

grade point average. These models (reported in detail in
Moher and Schneider, 1981) explain about 40-55% of the
performance variability, lending further credence to the con
jecture that individual differences indeed have a significant
effect on. performance.

Using these models we operationally defined our two sub
ject popUlations as "novice" and "expert." The criteria for
novice/expert classification is given in Table II.

The novice/expert performance distributions for programs
SR and LR are shown in Figures 2 and 3. Table"IlI summarizes
the data for these distributions.

The difference between the two groups is quite evident.
While both groups found program LR more difficult to under
stand, the magnitude of the performance decline was 3! times
greater for the novices than for the experts. This is hardly
surprising, since increased programming experience almost
always involves working on larger programs. The ability to
intellectually manage large programs would certainly be
indicative of programming expertise. Neither is it surprising
that the expert group performed better on both program com
prehension tasks. What is surprising is that the three program
oriented complexity measures grossly misjudged the mag
nitude of performance decline for both groups. The measures

-- EXPERT

_.- NOVICE

'-', ,t.-r-.- \
/I !.
. I \ / "

I L.-A~
. I \'

/ i" r71 . ~.~
.. I ! it.

I i-. ..., ! . \,... -i-ft'-,~-""""'r
/ ", ,. I·· , I

. I' .
r-• .,/ ! ! f.-.- ! !
!., !!!! !

o 1 10 15

NUMBER OF CORRECT RESPONSES

Figure 2-Novice/expert performance on Task SR

20

320 National Computer Conference, 1981

li z
w
5 3
w
If

r-;~~ - EXPERT

V! i\
.' 1 .•

rA . ! \
ii! ! ! \
/
" I ! ! .

. I rt:
'I! . i \1
/-! ! i \

I !! Ii"

j
'i .!!

. '--', ~.+-~ !. !
I.! !! !

-- NOVICE

10 15

NUMBER OF CORRECT RESPONSES

Figure 3---Novice/expert performance on Task LR

20

overestimated novice group performance and underestimated
expert group performance by an approximate factor of two.
This result clearly demonstrates that program. complexity is
not an inherent property of the program source text but a
perceptual phenomenon that arises from the interaction be
tween a program and a programmer. It is therefore futile to
attempt to predict performance without considering the effect
of salient programmer attributes. This point may be made
more dramatic if we use the regression models to define a
programmer population denoted "super-exp<rrt." We define a
super-expert as a programmer with over seven years' pro
gramming experience or with at least 10 computer science
courses and a computer science grade point average of B + or
better. * Using these criteria we extracted the performance
data shown in Table IV. .

Now we have a performance decline of only 6%. Our per
formance data show that while LR was a very complex pro
gram for a novice (47% decrease), and a slightly complex
program for an expert (14% decrease), it was almost a trivially
complex program for a super-expert (6% decrease). In con
trast, the static, program-based complexity measures predict
an equally complex program across all programmer popu
lations.

Programming task factors

In addition to program and programmer factors we also
conjectured that programming task factors differentially
affect performance. By programming task we mean t1iose dis
tinct operations that programmers must perform on a pro
gram. Shneiderman29 previously identified four basic pro
gramming tasks: construction, comprehension, debugging,
and modification. He further stated that these tasks were not
disjoint but, in fact, comprehension played an important role
in the accomplishment of all other tasks. Other researchers,
most notably Brooks,4,5 concur that comprehension is perhaps
the most important programming task. In general, the task of
program comprehension involves the extraction of semantic

*Our definition of a super-expert is hardly a contrived one. We surmise from
our sample population that a significant portion of programmers in large data
processing shops fit our criteria.

SUPER
EXPERT

TABLE IV-Super-expert performance data

N SR MEAN LR ·MEAN % DIFFERENCE

14 15.8 14.8 6

information from the syntactic representation of the program.
Since a certain amount of information must be extracted to
find a program bug, locate the correct place to insert a mod
ification, or decide what parameters a given procedure re
quires, it is easy to see the importance of comprehension .

Analyzing the comprehension task more closely reveals that
it is also comprised of subtasks corresponding to extraction of
different types and amounts of information. Moher and
Schneider proposed five such information classifications.

1. High-level semantics-determine the purpose of a high
level program unit, i.e., function, procedure, program.
(We will abbreviate this as HI in succeeding discussions).

2. Low-level semantics-determine the purpose of an indi
vidual statement or low-level program unit, i.e., loop or
conditional construct. (LOW)

3. Data structure-determine the form, structure, and con
tents of higher-level data structures used in the program.
(DATA)

4. Program flow-determine the sequence of statement ex
ecution and/or conditions under which a specific state
ment or program unit will be executed. (FLOW)

5. Program modification-determine the global effects of a
specific program change. (MOD)

We do not claim that these categories represent either a
complete set of subtasks or a totally disjoint set of operations.
However, we do feel that they represent different facets of
comprehension and may require different cognitive oper
ations. If these categories do capture, in some sense, different
comprehension subtasks then performance on these tasks may
be differentially affected by program and/or programmer
factors.

The 20-question comprehension examination used to mea
sure performance on both the SR and LR tasks was, in fact,
composed of five separate parts. (Although this was trans
parent to the subjects.) The 5 parts were intended to measure
comprehension within the 5 distinct categories listed above
namely HI, LOW, DATA, FLOW, and MOD-with 4 ques
tions per section. (The questions were shuffled, however, to
avoid any type of learning effect.) The comprehension per
formance data, now detailed by category, is shown in Table V
for programs SR and LR.

Table V reveals some very interesting results. For small
programs, such as SR, most programmers seem to handle a
wide range of tasks with equal facility. The range on the five
SR subtasks is 2.2-3.0 questions correct, out of a possible 4.
The performance differential on the larger program, LR,
across subtasks is much more marked. The ability to perform
subtasks for extracting detailed information (LOW, FLOW,
MOD) declines much more rapidly than that to perform sub
tasks for extracting more abstract information (HI, DATA).

On the Complexity of Measuring Software Complexity 321

TABLE V-Scores on LR and SR by comprehension category

MEAN SCORE (out of 4)

HI LOW FLOW DATA MOD
OVERALL

COMPREHENSION

SR
LR

% DIFFERENCE

3.0
2.7
10

2.4
1.8
25

The overall effect of program LR is also reflected in the per
formance range, 1.0-2.7, for these subtasks.

Perhaps more striking is the performance fall-off between
identical categories on SR and LR. The overall decline for all
subjects was 29%, as mentioned earlier. However, when sep
arated out by task, this decline ranged from 10% to 64%, a
factor of 6! The high-level tasks showed a moderate decline of
10% to 11 %, in contrast to the steep decline of 25% to 64%
for the lower level tasks.

This data again demonstrates the inadequacy of complexity
measures based on program factors alone. EY-en though the
original functionality between each complexity measure and
performance was based on a comprehension task, we see that
they only predict gross comprehension performance. The
measures will either underestimate the complexity of carrying
out detailed, low-level subtasks or will overestimate complex
ity for high-level subtasks. Given that all major programming
activities (documentation, debugging, maintenance) will re
quire us to carry out one or more of these subtasks, as well as
others, it is apparent that static complexity measures cannot
predict performance with any high degree of accuracy.

Program-programmer-task interactions

Table VI combines the data presented in Tables IV and V.
It contains performance data grouped by both population and
subtask.

This table best demonstrates the thesis that program com
plexity arises from an interaction between the program, the
programmer and the programming task and therefore cannot
be captured by a static analysis of the-program alone. The
experts, when dealing with program LR, unexpectedly

2.8
1.0
64

2.8
2.5
11

2.2
1.4
36

13.2
9.4
29

showed an increase in performance for the high-level subtasks
of HI and DATA. While this anomalous increase may be
attributable to experimental error (or to the fact that this is
the type of operation most frequently done by professionals)
the important fact is that performance did not decrease as
predicted by the complexity measures. On the other hand, in
at least one case, program flow, expert performance declined
almost as much as that of the novices. As expected, the nov
ices fared poorly on all aspects of comprehension when mov
ing from program SR to program LR. Nonetheless, they dem
onstrated a wide range of degradation with a factor of 3!
between the best (HI) and worst (FLOW) subtasks. The com
plexity measures were equally abysmal in predicting large and
small declines between programmer class and subtask per
formance, demonstrating their inability to predict per
formance for a given population and subtask that was not
identical to the ones for which they were originally predictors.

While intuitively expecting performance variations between
tasks and programmers, the variation range of -8% to +74%
sho~n in Table VIb is probably quite a bit larger than would
have been expected, and shows the futility of trying to encap
sulate the concept of "complexity" within a single measure
namely the V(G) , E, or Q figures of Table I.

CONCLUSION

The usefulness of a complexity measure ultimately depends
on its ability to predict programmer performance. In order to
reliably predict performance, such measures must be based on
factors which determine performance. The implication of pre
vious research has been that programmer performance can be
accurately predicted from an examination of the source code

TABLE VIa-Performance summary by programmer class and programming subtask

PROGRAM SR PROGRAM LR
HI LOW FLOW DATA MOD HI LOW FLOW DATA MOD

NOVICE 2.4 1.8 2.3 2.4 1.6 1.9 1.3 0.6 1.3 0.5
EXPERT 3.5 2.9 3.3 3.2 2.7 3.6 2.4 1.7 3.5 2.3

TABLE VIlr-Performance degradation by programmer class and programming subtask

PERCENT PERFORMANCE DECLINE (from SR to LR)
HI LOW FLOW DATA MOD OVERALL

NOVICE 27 28 74 45 70 47
EXPERT -3 17 51 -8 16 14
OVERALL 10 25 64 11 36 29

322 National Computer Conference, 1981

of a given program. Differences in performance, then, are
directly attributable to differences in the program. During the
past decade a host of evidence has been gathered to document
the effects of program factors on programmer performance.
The main controversy in the complexity literature today cen
ters around which factor or factors best capture "complexity."
We contend that, while program factors may be one of the
determinants of performance, it is not the only one. In fact,
the same studies which attempt to demonstrate the validity of
program-based complexity measures also provide evidence of
two other major performance determinants: the programmer
and the programming task. To develop a truly useful complex
ity measure we must not only continue to study the effects of
program factors on programmer performance but must a.lso
begin to identify the critical programmer and programmmg
task factors which contribute to performance. Gorsline has
developed a tentative taxonomy of program factors. Our fu
ture research will be directed toward developing a suitable
taxonomy for the other factors involved and formulating soft
ware complexity measures as a function of program, pro
grammer and programming task interrelationships.

REFERENCES

1. Atwood, M.A. and Ramsey, H.R., "Cognitive Structures in the Compre
hension and Memory of Computer Programs: An Investigation of Compu
ter Program Debugging," ARI Technical Report TR-78-A21, August 1978.

2. Atwood, M., Turner, A., Ramsey, H.R., and Hooper, J., "An Exploratory
Study of the Cognitive Structures Underlying the Comprehension of Soft
ware and Design Problems," U.S. Army Research Institute for the Be
havioral and Social Sciences, Technical Report 392, July 1979.

3. Boehm, B., "The High Cost of Software," Practical Strategies for Devel
oping Large Software Systems, Addison-Wesley, 1975.

4. Brooks, R., "Towards a Theory of Cognitive Processes in Computer Pro
gramming," International Journal of Man-Machine Studies, Vol. 9, 1977,
pp. 737-752. . .

5. Brooks, R., "Using a Behavioral Theory of Program ComprehensIon 10

Software Engineering," Preceedings of the 3rd. IEEE Conference on Soft
ware Engineering, 1978, pp. 196-200.

6. Chapin, N., "A Measure of Software Complexity," Proceedings of the 1979
National Computer Conference. New York, 1979, pp. 995-1002.

7. Curtis, W., Sheppard, S., Milliman, P.M., Borst, M.A., and Love, T.,
"Measuring the Psychological Complexity of Software Maintenance Tasks
with Halstead and McCabe Metrics," IEEE Transactions on Software En
gineering, Vol. SE-5, No.2, March 1979, pp. 95-t04.

8. Dunsmore, H.E. and Gannon, J.D., "Analysis of the Effects of Pro
gramming Factors on Programming Effort," The Journal of Systems and
Software, 1980, pp. 141-153.

9. Gord, R.D., "Measuring Improvements in Program Clarity," IEEE Trans
actions on Software Engineering, Vol. SE-5, No.2, March 1979, pp. 79-90.

to. Gould, J.D., "Some Psychological Evidence on How People Debug Com
puter Programs," Technical Report RC 4542, IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y.; 1973.

11. Gould, J.D.; and Drongowski, M., "An Exploratory Study of Computer

Program Debugging," Journal of Human Factors, Vol. 16, No.3, 1974, pp.
258-277.

12. Halstead, M.H., Elements of Software Science, New York, Elsevier North
Holland, Inc., 1977.

13. Hanson, W.J .. , "Measurement of Program Complexity by the Pair Cy
clomatic Number, Operator Count," SIGPLAN Notices, Vol, 13, No.3,
March 1978, pp. 29-33.

14. Love, T., "An Experimental Investigation of the Effect of Program Struc
ture on Program Understanding," SIGPLAN, Vol. 12, March 1977, pp.
t05-113.

15. Love, T., and Fitzsimmons, A., "A Review and Evaluation of Software
Science," Computing Surveys, Vol. to, No.1, March 1978, pp. 3-18.

16. McCabe, T.J., "A Complexity Measure," IEEE Transactions on Software
Engineering, Vol. SE-2, No.4, December 1976, pp. 308-320.

17. McClure, C.L., "A Model for Program Complexity Analysis," Proceedings
of the 3rd. Conference on Software Engineering, 1978, pp. 149-157.

18. Moher, T. and Schneider, G.M., "A Methodology for Improving Experi
mentation in Software Engineering," Fifth IntI. Symp. on Software En
gineering, San Diego, Calif.,March 1981.

19. Myers, G.J., "An Extensionto the Cyclomatic Measure of Program Com
plexity," SIGPLAN Notices, Vol. 12, No. to, OJ::tober 1977, pp. 62-64.

20. Myers, G.J., "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections," Communications of the ACM, September
1978.

21. Sackman, Erikson, and Grant, "Exploratory Experimental Studies Com
paring Online and Offline Programming Performance," Communications
of the ACM, January 1968.

22. Schwartz, J., "Analyzing Large-scale System Development," Software En
gineering Concepts and Techniques, Proceedings of the 1968 NATO Confer
ence.

23. Sheppard, S., Borst, R., and Curtis, W., "Predicting Programmers' Ability
to Understand and Modify Software," Proceedings of Symposium on Hu
man Factors and Computer Science, Washington, D.C., June 1978, pp.
115-135.

24. Sheppard, S., Curtis, W., and Milliman, P.M., "Modern Coding Practices
and Programmer Performance," IEEE Computer, December 1979, pp.
41-49.

25. Sheppard, S., Curtis, W., and Milliman, P.M., "Experimental Evaluation
of On-line Program Construction," GE Technical Report TR-79-388100-6,
December 1979.

26. Shneiderman, B., "Exploratory Experiments in Programmer Behavior,"
International Journal of Man-Machine Studies, Vol. 5, No.2, 1976, pp.
123-143.

27. Shneiderman, B., "Measuring Computer Program Quality and Compre
hension," International Journal of Man-Machine Studies, Vol. 9, No.3,
1977, pp. 465-478.

28. Shneiderman, B., Mayer, R., McKay, D. and Heller, P., "Experimental
Investigations of the Utility of Detailed Flowcharts in Programming,"
CACM, Vol. 20, No.6, June 1977, pp. 373-381.

29. Shneiderman, B. and Mayer, R., "Syntactic-Semantic Interactions in Pro
grammer Behavior: A Model and Experimental Results," International
Journal of Computer and Information Sciences, Vol. 8, 1979, pp. 219-238.

30. Woodward, M.R., Hennell, M.A., and Hedly, D., "A Measure of Control
Flow Complexity in Program Text," IEEE Transactions on Software En
gineering, Vol. SE-5, No.1, January 1979, pp. 45-50.

31. Gorsline, G., and Fainter, R. "Program Complexity Measures."
ACM/NBS 19th Annual Technical Symposium. Gaithersburg, Maryland,
June 1980.

32. Miller, L.G. "Programming by Nonprogrammers." International Journal
of Man-Machine Studies, 6 (1974), pp. 237-260.

Quantitative measures of MIS quality
assurance during hardware conversion

by JOHN W. CENTER
Medtronic Incorporated
Minneapolis, Minnesota

ABSTRACT

The management information systems (MIS) department of
Medtronic converted their applications from running on the
computer of one hardware vendor to another. A quality assur
ance (QA) program was instituted to monitor, validate, and
assist in the conversion process. Several quantitative measures
were developed to determine the status and progress of the
conversion from the QA viewpoint. Objective measures in
cluded learning curve position, rejection delay, and costs.
Subjective measures included problem solution impact, con
fidence of conversion personnel, and confidence of manage
ment. Analysis and evaluation of the measures indicated that
the QA program was able to pay for itself.

INTRODUCTION

In January 1980 a formal quality assurance (QA) function was
established in the management information systems (MIS)
department at Medtronic. During the period April 1980
through April 1981 the business application systems were con
verted from running on an IBM 370/148 to a Univac 1100/60.
. The QA function was just being organized when the com
mitment was made to convert. There were questions in the
minds of most MIS personnel about what the QA function
would be. It was decided that the conversion itself would be
the first major project where an active role would be played
by a QA program. Therefore, a QA program was instituted to
monitor, validate, and assist the conversion process.

The scope of the conversion project was large. The original
count included 61 systems, 329 subsystems, 825 programs (not
counting sorts and utilities), and 750K lines of COBOL code.
There were also many programs that were to be converted
from assembly, MARK IV, and RPG to COBOL. To contain
the financial impact to the department and the company, the
project was to be completed during one fiscal year.

The QA program had to be able to demonstrate that it was
time- and cost-effective. It was determined that certain mea
sures would be appropriate to demonstrate this effectiveness.
These measures would also feed information back to the con
version personnel and to management regarding status and
progress from the QA viewpoint. _

323

These measures included a set of objective ones and a set of
subjective ones. The objective measures included learning
curve position, rejection delay, and costs. The subjective mea
sures included problem solution impact, confidence of con
version personnel, and confidence of management.

APPROACHES TO MEASURE DEFINITION

Measure Selection and Determination

It was obvious that a good approach to the determination of
the status and the impact of the QA program on the hardware
conversion project was necessary. A search for approaches
that were directly applicable was fruitless. This empty search
was not surprising. A major conversion from the computer of
one hardware vendor to another is a rare event. The establish
ment of a QA function in MIS is a recent trend.

Approaches were found that were indirectly applicable. An
article by Roberts I gave some insights if the conversion
project is treated as a customer of a software development
organization. The articles by Mendis2 and Buckley3 gave some
rough ideas for the measures of a general software QA pro
gram.

A search was initiated for approaches used in other special
ties that could prove applicable. The Hetch article4 discussed
benefits that could be derived by treating software devel
opment and operation like hardware development and assem
bly. The articles that appeared in Juran's "Bible" of manu
facturing quality control 5.6.7 showed promise of applicability
for this particular situation.

A set of constraints and objectives was established to plant
an "instinct" that would trigger or enhance consideration
when a good approach was seen. A series of basic facts had to
be remembered: (1) the conversion was a single-shot event;
(2) the conversion had a limited time frame; (3) the schedule
of the conversion was a major constraint; (4) the conversion
personnel had little experience in dealing with QA concepts.
These facts pointed to some characteristics the quantitative
measures would have to demonstrate. The measures would
have to be simple to calculate and simple to understand. The
measures are an experiment, and the "formulas" need valida
tion and may be modified during use. Measures and data that

324 National Computer Conference, 1981

were strictly conversion-oriented had to be recognized as pos
sibly useless or meaningless when the conversion had been
completed.

The use of QA measures and concepts is well established in
manufacturing organizations and facilities. The attributes of a
major conversion project were studied to determine which
aspects or functions of the manufacturing environment were
analogous. It was determined that the conversion was similar
to or had characteristics of the following manufacturing areas
(1) movement of manufacturing from one plant to another;
(2) control and management of a job shop. In a similar man
ner, it was determined that the characteristics of the manu
facturing QA program applicable to the conversion QA pro
gram were (1) material receiving inspections; (2) manu
facturing line and final inspections. Therefore, a set of simple
measures, based on these concepts, was established. The mea
sures were used by the manager of the conversion project, the
conversion team leaders, the MIS QA manager, and the man
agement of MIS.

Objective Measures

Three major objective measures were developed to deter
mine the status of the conversion from the QA viewpoint.
These measures demonstrate both the positive and the detri
mental impact of the QA program on the conversion.

One objective measure was the learning curve position.
This measure indicated how well the conversion personnel
knew or understood the operation of the systems in the new
environment and understood any inspection criteria. The
measure also indicated how well the QA function knew or
understood the operation of the new environment and the
sensitive constraints. This measure was used primarily as a
tool to determine the education status of the personnel.

Another objective measure demonstrated the rejection de
lay of the QA program on the conversion project. This mea
sure gave a base for comparing the detrimental impact of the
QA program to any derived benefits.

An additional measure was the costs of the QA program.
This measure gave an indication of the financial detrimental
impact to the department and to the conversion project. The
cost constraints were not as rigorous as the time or schedule
constraints. The measure primarily compared actual to
planned costs.

The data used in calculating the described objective mea
sures were also used in generating other measures. These
measures were of a custom or curiosity nature. They gave
management and project leadership additional looks, and
views at the status and impact of conversion from the QA
position.

Subjective Measures

Subjective measures attempt to measure unmeasurable val
ues. Subjective measures appeared to be a good way to dem
onstrate the positive or incremental benefits provided by the
QA program. The following three seemed to be the most
quantifiable.

There was an attempt to measure the problem solution
impact. By documenting any problems found and the solu
tions that were. discovered, each problem would only be
solved once. The value of the QA inspection could be mea
sured with the quantity and benefit of solutions found.

During the conversion, there are always novel or un
expected situations. The conversion personnel would have to
be able to use standards and their own initiative to execute
proper procedures. There would have to be confidence on the
part of conversion personnel in order to do this. An attempt
was made to measure this confidence.

During an effort of this magnitude the strain on manage
ment is severe. The QA program was placed in a critical
position within the conversion project. If the QA program
could be executed smoothly, confidence of management
would be demonstrated. Only a subjective measure could be
used to determine the level.

OBJECTIVE MEASURES AND EVALUATION

Objective measures minimize the impact of users' bias and
action upon the results or the calculations. There is subjec
tivity in the definition of the measure. However, the
presentation of the data and the formula will mean that any
one will come to the same result. There is subjectivity in the
way the measure is used in the decision or action process.
However, consistent results can be displayed. Interpretation
and decisions can then be reasonably made.

Learning Curve Position

The measure of learning curve position was used to deter
mine education status of the conversion personnel. This in
cluded the education of the QA function. By monitoring the
learning curve position it was possible to determine the need
and the impact of education, both formal and informal.

Inspections were performed on each package of subsystems
as it was presented to the QA function. The dimension of
package sequence or quantity became a time dimension. The
result of each inspection was a binary state of accepted or
rejected. By combining a series of inspections into a group, a
ratio of accept to inspected could be obtained. This ratio was
used to represent the position of the conversion project on a
learning curve. The size of the group had to be determined.
The following criteria or constraints were considered: (1) the
ratios would have to be easy to calculate; (2) the group size
had to be small enough to produce data points early in the
project; (3) the group size had to be big enough to absorb
unusual perturbations; (4) there would be no changes in the
group size after the first report; (5) there were to be about 300
packages. Analysis was done for a few test cases of different
group sizes. A group size of 10 was settled upon. This size
seemed to be practical and satisfied the constraints.

The results of the learning curve analysis are shown in Table
I. The learning curve can be drawn by using data in the first
two columns .. fhe pattern and the rate of increase were typical
of learning curves. The shape of the learning curve was used
by the QA function to manage the education program. An

TABLE I-Acceptance learning curve

Number Reject Other
Group Accept Reasons Problems

3 10 10
2 4 10 10
3 6 11 16
4 9 1 5
5 9 1 7
6 10 0 6
7 7 5 5
8 9 1 8
9 6 7

10 6 5

arbitrary bound of 80% was set as the acceptable minimum of
the learning curve position. Any value below this bound re
quired an explanation. Inspections of new types of applica
tions or techniques in the subsystems was a common expla
nation. This was used as a sign that there was additional, and
probably specific, training needed. The results of Groups 7,9,
and 10 show the ratio dropping below the bound. In Group 7
the first subsystems that had database applications reached
the point of inspection. The first online transaction programs
reached inspection in Group 9. The first subsystems from a
conversion team that was formed later in the project reached
inspection with Group 10.

The rejection reasons were studied for each low group even
before the results were completely known. Training and spe
cific information were given to the personnel that needed it.
This included those who had not yet run into the problems.
The results of Group 8 show the improvement that was pos
sible with immediate knowledge and corrective action.

The third column displays the total number of reasons for
rejection for each group. It was possible to reject a single
package of subsystems for more than one reason. The trend
of the rejection reasons inversely correlated with the learning
curve position. The fourth column displays the numoer oT
other significant problems encountered for each group. These
problems had no standard on which to base a rejection. The

TABLE II-Rejection delay by group

Number Delay
Group Reject Days Days/Rej.

1 7 14 2.0
2 6 39 6.5
3 4 21 5.2
4 0 0.0
5 1 3 3.0
6 0 0
7 3 2 0.7
8 1 1 1.0
9 4 14 3.5

10 4 8 2.0

Total 31 102 3.3

Quality Assurance During Hardware Conversion 325

trend showed how some silly problems found early in the
conversion project disappeared. The disappearance was a di
rect result of informing the conversion personnel of the causes
and finding solutions. Sensitivity to the problems was raised in
the minds of the conversion personnel. New standards were
written to cover situations when the same problem would be
found in the future.

Rejection Delay

Since the schedule of the conversion project was a major
constraint, it was important to knowthe schedule impact and
rejection delays of the QA program; A measure was devel
oped to monitor the impact. The presentation of the data for
this measure is made in Table II.

The concept of the group, as discussed in the learning curve
position section, is used with this measure also. The number
of calendar days' delay associated with each rejected package·
was recorded. The average delay for Group 1 showed very
quick resolution, primarily due to rejections with easy solu
tions. With Groups 2 and 3 the delay increased as a result of
conversion personnel digging themselves into shallow holes.
Education and experience resulted in the delay settling down
to about three days.

Data presented in Table III shows how the delays were
concentrated in the range of less than a week. The longer
delays were a result of more significant problems. The resolu
tion required much more work and associated testing.

The delays for rejection were a detriment to the schedule.
However, the conversion management received a large bene
fit simply by publishing the value of the delay. The manage
ment of the conversion project could begin to assume a one
day rejection delay for each submitted package and three
days' delay for each rejection. These values were plugged into
the scheduling mechanisms. The measure also became a base
for comparing any benefits that would be obtained from the
inspections and the QA program.

TABLE III-Rejection delay by days

Days Number

0 7
1 7
2 3.
3 3
4 3
5 3
6 0
7 2
8 0
9 1

10 1
11 1
12 0
13 0
14 1
15+ 0

326 National Computer Conference, 1981

TABLE IV-Cost breakdown

Classification Plan(%) Actual(%)

Conversion inspection 20 17.6
Conversion support 20 20.1
OA projects 20 22.8
Direct overhead 20 21.7
Indirect overhead 20 16.8

Costs

Instituting and running a QA program has costs that must
be properly allocated and managed. The data presented in
Table IV display the planned and actual cost experience.

The data collected for the first half of the conversion indi
cated that the costs were just about on plan. It appears that
during the period of hardware conversion approximately 40%
to 50% of the time and cost of the QA function should be
allocated directly to the conversion. This allocation does not
consider the indirect overhead of vacation, sick time, etc. The
costs associated with the conversion included (1) cost of the
direct inspections of each package of converted subsystems;
(2) cost of support not directly associated with a given sub
system or package, including writing standards, attending sta
tus and review meetings, measure evaluation, and general
conversion discussions. An hour was allocated to making the
actual inspection of each conversion package (time recording
is confirming this estimate as a good one). At the time of
writing this paper, some additional steps or requirements
were added to the inspection criteria. This should increase the
inspection time for each package by about one quarter hour.
The increase will probably bring the actual inspection cost
time right into line with the planned one.

SUBJECTIVE MEASURES AND EVALUATION

There are cases where the user of the data places a value on
a situation, event, or position based on his or her own experi
ence. There are also cases where attempts are made to mea
sure the value of events or situations that can be avoided.
These cases give rise to the subjective measures.

Problem Solution Impact

As part of the QA program, a method was developed to
distribute descriptions and solutions of discovered problems.
The distribution was in the form of a set of "memos" or
bulletins, a table of contents, and a key word index to the set.

An informal survey found that each problem cost three to
five days of calendar time to resolve. There were three con
version project teams and a staff of technical experts and
specialists. Assuming that each group would eventually run
into the same problem, the distribution of the bulletins would
avoid nine to 15 days of delay. Assuming that some of the
delay was already anticipated in the schedules, a conservative

delay-avoidance estimate of perhaps five days per bulletin was
obtained.

At the time of writing this paper 54 bulletins had been
issued. Using all the listed assumptions, a simple calculation
indicates that the QA program has avoided 270 days of sched
ule delay so far. This figure will never show up on a schedule
or status report. Any presentation of a cost or time avoidance
is subjective. The objective measure of rejection delay was
102 days. A net saving of 168 days can be calculated if the
solution impact and rejection delays are combined. The im
pact of the problem solutions produced a net positive or in
cremental benefit.

Confidence of Conversion Personnel

One of the most unpredictable tasks of the conversion was
the test and debug phase. The application programs were
written in the various styles used by many departed pro
grammers from the last three to 10 years. When the testing of
the converted programs began, the personnel expected that a
standard test plan would be applicable in every case. It was
not.

The QA function issued some formal test philosophy docu
ments. There were informal sessions held with the testors and
the project team leaders. A few months into the conversion,
the testing personnel began to approach the QA function with
their own ideas on how to test a special case. This was an early
indication that the conversion personnel were treating the QA
program as a beneficial control function.

By the midpoint of the conversion the testers used the gen
eral rules and philosophy to generate their own special test
plans. The plan and assumptions were included in the package
submitted for inspection. Some of the testing procedures were
very ingenious and usually more than adequate. No objective
value can be placed on these actions. Only confidence on the
part of conversion personnel would allow them to take a
chance on an unapproved, though good, special test plan. The
confidence eliminated the need to bend the unbendable spe
cial case to fit the standard test plan and the need for a lengthy
approval cycle for special test plans. The confidence led to a
significant avoidance of delay and still produced an ade
quately tested conversion. Only subjective evaluation can put
a precise value on this confidence and delay avoidance.

Confidence of Management

The management of MIS and the conversion project had
never lived in an environment with a QA function. The in
spection of the converted packages was a critical gate in the
process. The initial reaction to their presence was a wait-and
see attitude. In the early stages of the conversion project, the
QA function participated with the project team leaders at the
meetings for status and review. The QA function also par
ticipated in the session with the task force or group of experts
and specialists. There was a distinct impression that this was
done to satisfy an obligation.

About four months into the conversion some convertors
went to the conversion manager. They were worried about the

reaction of the QA function to an inspection of an especially
strange case. The conversion manager assured them that any
reaction would be reasonable and informative. The system
had been accepted with no unusual fanfare for about three
weeks before the concern of the convertors came to the atten
tion of the QA function.

About five months into the conversion, the director of MIS
forwarded to the QA function some comments he had re
ceived from the technical and marketing management of the
hardware vendor. The vendor had felt the schedule was ambi
tious and the conversion was in trouble in the early stages. It
was now felt that the schedule would probably be met. Much
of the credit was due to the avoidance of delays with an active
QA program.

At the midpoint of the conversion a problem had devel
oped: many people were making subordinate inspections and
checks of a QA nature. The manager of the conversion
project requested that all these checks be consolidated. Only
the QAfunction was to perform the inspection. There was
complete latitude given in the structuring of the extended
inspection criteria. The inspections were expanded and ac
cepted with the support of the managers and team leaders.

These examples· demonstrated that the management had
confidence in the QA program of the conversion project.
Assume that points were given each time a manager gave a
positive comment or requested assistance; also assume that
points were taken away each time a manager expressed frus
tration or doubt. Then a precise measure of management
confidence could be calculated. The net value of points given
the QA program would be subjective but positive.

SUMMARY

An attempt was made to generate some quantitative measures
of the status of the conversion project from the QA viewpoint.
The attempt was successful. The measures met the require
ments or objectives; they were simple to calculate-there was
nothing more complicated to calculate than an average or a

Quality Assurance During Hardware Conversion 327

ratio; and they were simple to understand-even management
was able to understand and use the measures to monitor the
status of the conversion. Though there is a possibility that
specific data will be useless to the MIS department after the
conversion, the concept was proved. It appears that some
form of these measures will continue to be used for the en
hancement and maintenance projects. It is likely the concepts
will serve also asa base for quantifiable measures of the QA
status of new development projects.

These quantitative measures demonstrated that it is pos
sible to show that the QA program is paying for itself. The
exact value of the payback is full of subjective measures and
assumptions, but it is quantifiable.

The conversion is still in progress at the time of writing this
paper. These measures are still being used, and their use has
stabilized. It is unlikely that the definitions of those described-
in the paper will change. However, it is possible that other
measures may be developed to help evaluate new situations
that may arise.

The development and use of the.se measures has been a very
interesting and rewarding experience. It is exciting to discover
that it is possible to quantify, calculate, and use measures to
describe what was previously only suspected.

REFERENCES

1. Roberts, T.J. "Maintaining Quality after the Software is Released." ASQC
Technical Conference Transactions, 31 (1977), pp. 157-166.

2. Mendis. K.S. "A Software Quality Assurance Program for the 80s." ASQC
Technical Conference Transactions. 34 (1980). pp. 379-388.

3. Buckley. F. "A Standard for Software Quality Assurance Plans." Computer
12 (1979), pp. 43-50.

4. Hecht. H. "Can Software Benefit from Hardware Experience?" 1975 An-
nual Reliability and Maintainability Symposium. pp. 480-484.

5. Pierce. R.J. "Quality Planning" (Section 6). In J.M. Juran (ed.). Quality
- Control Handbook (3rd ed.). New York: McGraw-Hill. 1974.
6. Ekvall. D.N. "Manufacturing Planning" (Section 9). In J.M. Juran (ed.).

Quality Control Handbook (3rd cd.). New York: McGraw-Hill. 1974.
7. Seder. L.A. "Job Shop Quality" (Section 45). In J.M. Juran (cd.). Quality

Control Handbook (3rd ed.). New York: McGraw-Hill. 1974.

Taking the measure of program complexity

by JEAN COCHRANE ZOLNOWSKI*
Bell Laboratories
Holmdel, New Jersey

and

DICK B. SIMMONS
Texas A&M University
College Station, Texas

ABSTRACT

Program complexity is a topic often discussed in the literature.
Research is ongoing in verifying existing complexity mea
sures. There is also a continuing effort to produce and validate
new approaches to a complexity measure which incorporate
ideas from a variety of areas.

Too often, however, approaches to complexity measure
ment center on a particular aspect of a program, e.g., struc
tures, without incorporating other relevant program charac
teristics. The question to be answered, then, is, What aspects
of a program contribute to its complexity?

This paper presents a first step in answering this question.
Preliminary results are presented from a Delphi Survey on
program complexity. The survey was sent to a cross-section of
programmers, managers and software experts. Respondents
rated a large number of characteristics as to their effect on
program complexity. The paper summarizes the results and
includes preliminary analyses.

INTRODUCTION

Software Engineering literature contains a plethora of
references'-24 on program complexity, the difficulty in under
standing the program as it stands. Discussions on complexity
range from a brief mention of the necessity of its inclusion in
measuring other life cycle factors such as programmer pro
ductivity to proposals for specific complexity metrics.

Validation of these proposals requires an understanding of
how complexity is affected by factors and instability in the
design cycle arid, in turn, how complexity affects/is affected by
factors and instability in the testing and maintenance cycles.

However, it is often difficult to collect accurate and reliable
data that could relate factors relevant to the life cycle of a
large software system to specific program complexity charac-

*Work completed by author at Texas A&M University

329

teristics. The sheer number of potential program complexity
characteristics implies that methods must be employed in
order to~liminate some of these possib~ complexity factors.

One method would be to hold an open forum on program
complexity and encourage those with expertise and/or experi
ence to reflect on factors affecting a program's complexity. A
means for accomplishing such a forum is- a Delphi Survey.

The Delphi Survey is a method for structuring group com
munication so that a group of individuals can effectively deal
with a problem,z5 The Delphi provides a method for querying
expert opinions on a particular topic in an attempt to arrive at
a consensus or simply to ascertain where dissension is cen
tered.

There are three essential features to the Delphi: anony
mous response; iteration and controlled feedback; and statis
tical group response. The features are designed to minimize
the biasing effects of dominant individuals, of irrelevant com
munications, and of group pressure toward conformity.

From December 1979 through the summer of 1980, a Del
phi Survey on program complexity was conducted. The
purpose of this survey was to determine-ifthere existed a
consensus as to what variables have the greatest impact on
computer program complexity. The survey was sent to a group
Qf people who w~re actively concerned with software. This
included both authors in the software_ engineeIing area and
managers and programmer/analysts involved daily in software
development and maintenance.

Response to the survey was generally excellent and pre
liminary results from the survey have been analyzed and sent
to the respondents. The sections to follow present specifics as
to how the survey was conducted, analyses of preliminary
results, and a description of on-going analyses.

METHOD

Two rounds of the survey were sent out. The first survey was
sent to approximately 100 people, of whom 62 replied. The

330 National Computer Conference, 1981

TABLE I-Profile of participants

Managers

Number of participants 16
Percent rating themselves well qualified 44%
Percent rating themselves moderately qualified 56%
Average years "involved" with software 16.4
Average years of actual programming experience 9.8
Average years since direct participant in

programming project 3.4
Languages where a majority of the total all FORTRAN,

have a working knowledge ASSEMBLER

feedback survey was sent to these 62 people, and 46 of them
responded. The essential process was as follows.

A questionnaire was designed and sent to the respondent
group. This questionnaire was divided into three parts: profile
of the respondent, program complexity in general (non-pro
gram characteristics such as amount of documentation, mod
ern programming practices used, etc.) and program complex
ity in detail (specific program characteristics).

The Profile of Respondents' survey is summarized in Table
I for the 46 people who participated in the total survey.

Respondents were asked to rate, on a scale from -7 to +7,
the relevance of each factor to a program's complexity. A
minus sign indicated that complexity would be increased by
the factor, while a positive sign indicated that complexity
would be reduced by the factor. Zero indicated no effect on
complexity. Respondents were encouraged to write on the
survey any comments they felt were applicable.

After the first survey was returned, the results were sum
marized and a feedback questionnaire designed. The feed
back questionnaire consisted of two parts: (1) factors that
affect complexity (in general and in detail) and (2) factors that
are a possible measure (indicator) of program complexity.
The latter category was suggested by the comments of the
respondents in the first survey.

There were two criteria for not resubmitting questions in
the feedback questionnaire: (1) a consensus was reached, or
(2) a consensus was not reached but "% answers significant"
was less than 25%. (Table II contains definitions for these

Programmers

18
72%
28%
10.1
8.8

.2
FORTRAN,

COBOL

Experts

21
75%
25%
16.2
12.4

.8
FORTRAN

Total

46
63%
37%
13.9
10.1

1.5
FORTRAN

terms.) The remaining questions posed in the first survey were
repeated in the feedback survey along with several questions
suggested by respondents. Information was provided on the
median, the quartiles 01 and 03, and summarized respon-
dents' comments. .

Respondents were asked to reconsider their previous rating
and change it if tl1eydesired. -Whenever an answer (changed
or otherwise) fell outside the middle 50% range (01~03),
respondents were asked to briefly state the reasons why their
answer was different from that of the majority of respondents.
For the feedback survey, the respondents were specifically
told to use the sign ± if they felt that a factor could have both
a positive and negative effect on program complexity and to
respond to the factor as it increases in magnitude.

RESULTS

The purpose of the preliminary analyses was to summarize the
results via a categorization scheme that would clearly delin
eate the complexity factors in a relevant frame of reference.
Table II contains the definitions -for' the terms used below.

The two major categories chosen were consensus and non
consensus variables. Within each of _ these, a division was
made into significant, sit-on-the-fence, and insignificant vari
ables. Variables were uniquely categorized into one of these
six slots. In addition, preliminary work was done to determine
possible categories for controversial variables.

TABLE II-Definitions of terms

Range of answers

01
03
Percent answers significant

Consensus variable

Nonconsensus variable
Significant \'ariable
Sit-on-the-fence variable
Insignificant variable

No results for the round (for example, dashes under round 2 data indicate that no feedback round
was required).
Each Delphi Survey asked participants to respond on a scale of - 7 to + 7 as to the effect an increase
in magnitude of the complexity characteristic would have on complexity
The 25% quartile-25% of the responses were less than or equal to this number
The 75% quartile-75% of the responses were less titan or equal to this number
The percentage of the responses which fell into the significance range-response ~ + 4 or response
::;;-4
Variable with an interquartile range less than 3-the range from the 25% quartile (01) to the 75%
quartile (03) is less than 3
Variable with an interquartile range greater than or equal to 3
Variable where' median ~ + 4 or - 4 ~ median
Variable where - 3 ::;; median::;; + 3 and "percent answers significant" > 25
Variable where - 3::;; Media~::;; + 3 and percent answers 'significant < 25

Taking the Measure of Program Complexity 331

TABLE III-Significant consensus variables

Program Number of
characteristic responses

Number of intersections between loops 44
Number of knots 46
Number of possible execution paths 46
Number of undeclared- variables 45
Number of changes made during

operation/maintenance 42
Cyclomatic number 40
Type of program (real time) 61
Number of exits out of loop 45
Number of conditional statements 62
Number of breaks in flow 45
Depth of if nesting 61

The sections to follow present definitions, results (Tables
III through XII) and a brief analysis ("thoughts") of con
sensus, nonconsensus, and controversial variables.

Consensus Variables

Definition of consensus variables

Consensus variables were delineated into these categories:

Significant

Sit-on-the-fence

Those variables for which: median ~
+4 or median::;; - 4 and interquartile
range < 3.0
Those variables for which: - 3::;; med-

Q1

-7
-6
-6
-6

-5
-5
-6
-5
'-5
-5

Round 1
median Q3

-5 -4
-4 -3
-5 -3
-4 -2

-4 -2
-4 -3
-4 -3
-4 -3
-4 -2
-4 -3

Insignificant

Round 2 Percent answers
Q1 median Q3 significant

-6 -5 -4 95.5
-5 -5 -4 78.3
-6 -5 -4 78.3
-5 -4 -3 64.4

-5 -4 -3 64.3
-5 -4 -3 62.5

62.3
-5 -4 -3 62.2

61.3
-5 -4 -3 60.0

57.4

ian::;; + 3, interquartile range < 3.0,
and % answers significant ~ 25.0
Those variables for which: - 3 ::;; med
ian:s + 3, interquartile range < 3.0,
and % answers significant < 25.0

Tables III, IV, and V contain these data.

Preliminary thoughts on consensus variables

• No significant consensus variables were found that posi
tively affect complexity.

• Eight out of 11 significant consensus variables were re
lated to the structure and control aspects of a program.

TABLE IV-Sit-on-the-fence- consensus variables

Program Number of Round 1 Round 2 Percent answers
characteristic responses Q1 median Q3 Q1 median Q3 significant

Number of control flow statements 45 -5 -3 -2 -5 -3 -3 48.9
Total number of variables used globally 29 -5 -3 -3 48.3
Number of entry points 46 -5 -3 -- 2 -5 3 -3 45.7
Number of returns from subprograms 46 -4 -3 -2 -4 -3 -2 45.7
Total number of variables used 45 -5 -3 -2 -4 -3 -2 44.4
Number of modules a linkage variable passed to

from a single module reference (depth of nesting) 46 -4 -3 -2 -4 -3 -2 43.5
Total number of linkage variables 46 -5 -3 -2 -4 -3 -2 41.3
Number of system program interfaces 45 -5 -3 -1 -4 -3 -2 37.8
Number of modules in total a linkage variable

passed to (breadth of nesting) 46 -4 -3 -2 -4 -3 -3 36.9
Number of paths within loop 44 -4 -3 -2 -4 -3 -2 36.4
Breadth of nesting within a loop 44 -5 ~3 -2 -4 -3 -2 34.1
Number of application program interfaces 45 -5 -3 -2 -4 -3 -2 33.3
Number of changes made during debugging/testing 42 -4 -3 -2 33.3
Number of operands 46 -4 -3 -1 -4 -3 -2 32.6
Nesting depth of module references 46 -4 -3 -2 -4 -3 -2 30.4
Number of variables referenced in

condition statements 45 -4 -2 -1 -4 -2 -2 31.1
How variable used (array, .conditional name, etc.) 61 -3 -2 -1 27.9
Experience of the programmer 33 2 3 4 33.3

332 National Computer Conference, 1981

TABLE V-Insignificant consensus variables

Program Number of
characteristic responses

Number of operators 46
Number of forward branches 62
How parameters passed (expression) 61
Span of a branch (number of statements bypassed) 61
Nesting breadth of module references 57
FORTRAN (when arbitrarily chosen) 34
Number of errors found during debugging/testing 43
Language program(s) written in

(when arbitrarily chosen) 37
Number of changes made during coding 42
Number of unique module references (= call) 45
Total number of variables used locally 29
Number of computational statements 61
Type of program (calculation) 61
Span of a loop

(number of statements within path of loop) 61
Type of subprogram 56
Type of statement variable referenced in:

110 statement 61
Type of variable (integer, real, etc.) 61
Number of non-executable statements 62
Type of statement variable referenced in: sequential 61
Costs to run 42
PLI (when arbitrarily chosen) 26
ALGOL (when suited to application type) 28
PLI (when suited to application type) 35
COBOL (when suited to application type) 45
PASCAL (when suited to application type) 28

• There was a general lack of significance attributed to
languages.

• The later the change made in the life cycle, the stronger
its relation to complexity is.

• Importance was attached to the declaration of all vari
ables. A respondent commented, " .. .in general, to im
prove a program all variables should be declared and

01

-4
-3
-3
-3
-3

-4

-3

-2
-2

-2
-2

-2
-2
-2
-1

-1
-1
-1

0

Round 1 Round 2 Percent answers
median Q3 01 median 03 significant

-2 -1 -3 -2 -1 23.9
-2 -1 22.6
-2 -1 19.7
-2 -1 19.7
-2 -2 19.3

-3 -2 -1 17.7
-3 -2 -1 16.3

-2 2 -3 -2 -2 16.0
-3 -2 -1 9.5

-2 0 -3 -2 -1 4.4
-3 -2 -1 0.0

-1 0 18.0
-1 0 14.8

-1 -1 14.8
-1 0 14.3

-1 0 9.8
-1 0 8.2

0 0 14.5
0 0 11.5

-1 0 0 9.5
-1 1 0 7.7

2 0 2 7.1
1 2 0 2 5.7
1 3 0 1 2 4.0
2 3 1 2 3 7.1

initialized in some fashion This one step could pro
vide the greatest help in reducing programming complex
ity and cutting debug/test time ... "

• The number of variables close to significance, that is,
"sit-on-the-fence," was large. Twelve out of 18 of these
variables were in the data reference and interaction cate
gories.

TABLE VI-Significant variables not reaching a consensus

Program Number of Round 1 Round 2 Percent answers
characteristic responses 01 median Q3 01 median 03 significant

Number of entry points into a loop
(number of ways to enter a loop) 45 -6 -4 -3 -6 -5 -3 73.3

Assembler (when arbitrarily chosen) 36 -6 -5 -3 69.4
Problem to be solved 41 -7 -5 -3 -7 -4 -3 63.4
Number of non-sequential instructions within

nested if 46 -5 -4 -2 -5 -4 -2 60.9
Number of "infrequently used" instructions

(e.g., ALTER, ASSIGNED GO TO, etc.) 46 -6 -4 -2 -6 -4 -2 56.5
Number of exits from decision statement 46 -5 -4 -2 -5 -4 -2 56.5
Number of instructions 46 -5 -3 -2 -5 -4 -2 52.2
Number of statements 45 -5 -3 -2 -5 -4 -2 51.0
Number of comments 46 2 3 5 2 4 5 52.2
Modern programming practices used for

coding/debugging 45 3 5 7 4 5 7 80.0
Design techniques utilized 44 0 5 7 4 5 7 77.3

Taking the Measure of Program Complexity 333

TABLE VII-Sit-on-the-fence variables not consensus

Program Number of
characteristic responses

Assembler (when suited to application type) 45
Number of GO TO statements 44
Depth of nesting within a loop 44
Number of errors found during

operation/maintenance 43
Number of loops created via GO TO 46
Number of backward branches 46
Type of linkage variable: implicit

(e.g., (COMMON» 45
Number of IF statements 46
Number of manhours to correct errors 42
Amount of relevant documentation produced 42
Costs to develop 44
Number of 110 statements 46
Number of modules i.e., subprograms,

sections, etc. 42
Language program(s) written in when language

suited to problem 35

Nonconsensus Variables

Definitions of nonconsensus variables

Nonconsensus variables were divided into three categories:

Significant

Si t -on-the-Fence

Insignificant

Those variables for which: median ~
+4 or median:5 - 4 and interquartile
range ~3.0
Thosevariables for which: - 3:5 med
ian:5 + 3, % answers significant ~ 25,
and interquartile range ~ 3.0
Those variables for which: - 3:5 med
ian:5 + 3, % answers significant < 25,
and interquartile range ~ 3.0

Tables VI, VII, and VIII contain these data.

Preliminary thoughts on nonconsensus variables

• Most respondents do not care for the use of assembler
language.

• For the significant and sit-on-the-fence variables, acer
tain percentage of the respondents held fast to the lower
end through two rounds of the survey.

• Fewer than 50% thought the # GO TO statements de
served significance.

• The modern programming practices and design tech
niques were deemed positive in their relationship to
complexity-however, there was disagreement as to how
positive.

• Size has significance hut there was no consensus on it.
• Languages are judged not to have a strong effect.
• In general, there was lots of disagreement.

01
-6
-6
-5

-6
-5

-5
-5

-4

-4

Round 1 Round 2 Percent answers
median 03 01 median 03 significant

-3 -2 -5 -3 -2 48.9
-3 -2 -5 -3 -2 47.7
-4 -2 -5 -3 -2 47.7

-5 -3 -1 46.5
-3 -2 -5 -3 -2 45.7
-3 -2 -5 -3 -2 43.5

-3 -1 -5 -3 -2 42.2
-3 -1 -5 -3 -2 39.1

-4 -3 -1 38.1
-3 -2 2 33.3
-4 -2 -1 29.6

-2 0 -4 -2 -1 26.1

-1 3 -4 -1 2 33.3

2 4 28.6

Controversial Variables

Definitions of controversial variables

Preliminary choices of categories for controversial variables
were as follows:

• Variables with an interquartile range> 4
• Variables with a negative to positive interquartile range

where either one of the quartiles is significant and/or the
% answers significant is > 25

• Variables with either one or both of the quartiles signifi
cant but no consensus

• Variables where less than 75% of the respondents re
sponded

The variables do overlap. Tables IX, X, XI, and XII contain
these data.

Preliminary thoughts on controversial variables

There was no agreement on how the number of modules
affected complexity. This variable also had an interquartile
range spanning negative to positive. This "number of modules
controversy" can best be summed up via respondents' com
ments:

• "number is not point, so much as structure of con
nection ... "

• "implying that programs can be made less complex by
breaking them into modules ... "

• "using available modules helps ... maybe ... "
• "modularity helps to decrease complexity but, if carried

too far, becom~s confusing ... "

334 National Computer Conference, 1981

TABLE VIII-Insignificant variables not consensus

Program Number of
characteristic responses

COBOL (when arbitrarily chosen) 35
Number of simple predicates in condition 62
Distance between references to a variable 61
Number of references to a variable 60
Total span of reference of variable

within program 45
How parameters passed: return label 61
How parameters passed: variable name 61
How parameters passed: constant 60
Total number of module references

(= call) 61
Number of statements between labels 62
Number of errors found

during development 44
Type of linkage variable: explicit

(via parameters) 60
Type of program: data manipulation 61
Number of loops defined by language

(e.g., DO, PERFORM, etc.) 45
Number of changes made during design 42
ALGOL (when arbitrarily chosen) 22
Number of statements between breaks

in flow 46
FORTRAN

(when suited to application type) 42
Number of labels (statement numbers,

paragraph names, etc.) 44
PASCAL (when arbitrarily chosen) 22
RPG (when suited to application type) 27
Suitability of the match of the hardware

system to application 37

While the number of changes made during operation/
maintenance was a significant consensus variable, the number
of errors found durin80 operation/maintenance raised a con
troversy.

The amount of relevant documentation, while not signifi
cant, did span a negative to positive range, and the re
spondents' comments reflected this-

• "works in both directions ... appropriate degree helps
clarify ... too much confuses issue ... "

01

-3
-3
-3

-3
-3
-1
-1

-3
-3

-2
-3

-2

-3

-2

-2

-2

Round 1 Round 2 Percent answers
median 03 01 median 03 significant

-3 -2 0 20.0
-2 0 19.6
-2 0 18.0
-2 0 16.7

-2 0 -3 -2 0 15.6
-2 0 14.8

0 2 16.4
0 2 to.O

-1 0 24.6
-1 0 21.0

-3 -1 0 20.5

-1 1 20.0
-1 0 14.8

-1 2 -2 -1 1 13.3
-3 -1 0 11.9
-2 -1 1 4.6

-1 0 -3 -1 0 4.3

0 2 -2 0 2 11.9

0 2 -2 0 1 11.4
-1 0 2 9.0

0 2 -2 0 1 0.0

0 2 3 24.0

• "in general, more documentation ~ bigger system ~
more complexity ... "

• "surely we have all seen complex programs with no doc
umentation ... "

• "very weak pattern in my experience; but those indi
viduals who produce good documentation do tend to
produce less complex programs ... "

Most questions received an adequate number of responses
with the exception of a few new questions in the feedback

TABLE IX-Controversial variables with interquartile range greater than 4

Program Number of Round 1 Round 2 Percent answers
characteristic responses 01 median 03 01 median 03 significant

Problem to be solved 41 -7 -5 -3 -7 -4 -3 63.4
Number of "infrequently used" instructions

(e.g., ALTER, ASSIGNED GO TO, etc.) 46 -6 -4 -2 -6 -4 -2 56.5
Number of errors found during

operation/maintenance 43 -5 -3 -1 46.5
Amount of I'elevant documentation produced 42 -3 -2 2 33.3
Number of modules, i.e., subprograms,

sections, etc. 42 -4 -1 3 -4 -1 2 33.3
FORTRAN (when suited to applicdtion type) 42 -2 0 2 -2 0 2 11.9

Taking the Measure of Program Complexity 335

TABLE X-Controversial variables with a significant quartile and
with a negative to positive interquartile range

Program Number of
characteristic responses

Amount of relevant documentation produced 42
Number of modules i.e., subprograms,

sections, etc. 42

round and questions about languages the respondent was not
familiar with.

SUMMARY

The survey was long and was ambiguous in places. The re
spondentsnot only persevered through it but also provided a
large number of comments. Comments written by the re
spondents raised "questions for discussion"among the par
ticipants and also provided many unique and interesting view
points on program complexity. Several of the respondents
stated that exposure to these diverse opinions was in itself a
valuable learnirig experience.

The preliminary analyses are interesting not simply for the

01

-4

Round 1 Round 2 Percent answers
median 03 01 median 03 significant

-3 -2 2 33.3

-1 3 -4 -1 2 33.3

predictable significance of structure and control flow vari
ables. Both the controversial and sit-on-the-fence categories
provide topics for further discussion and analyses.

An example of this is the problem respondents had with
how the number of modules affects complexity. Modu
larization was not the issue so much as the degree of modu
larity and the structure of the modularity. Modularity, then,
is a technique that is considered a plus. However, the degree
of "goodness" of this technique and its effect on complexity
was undecidable for the respondent group.

The respondents' comments on several of the questions
reinforced the dilemma that current metrics are in; a judg
mentis made that a particular factor affects complexity, but
it is very difficult to ascertain the degree of the 'goodness' or
'badness' of its effect.

TABLE XI-Controversial variables with no consensus
but having significance at one of the quartiles

Program Number of Round 1 Round 2 Percent answers
characteristic responses 01 median 03 01 median 03 significant

Number of entry points into a loop
(number of ways to enter a loop) 45 -6 -4 -3 -6 -5 -3 73.3

ASSEMBLER (when arbitrarily chosen) 36 -6 -5 -3 69.4
Problem to be solved 41 -7 -5 -3 -7 -4 -3 63.4
Number of non-sequential instructions

within nested IF 46 -5 -4 -2 -5 -4 -2 60.9
Number of "infrequently used" instructions

(e.g., ALTER, ASSIGNED GO TO, etc.) 46 -6 -4 -2 -6 -4 -2 56.5
Number of exits from decision statement 46 -5 -4 -2 -5 -4 -2 56.5
Number of instructions 46 -5 -3 -2 -5 -4 -2 52.2
Number of statements 45 -5 -3 -2 -5 -4 -2 51.0
ASSEMBLER (when suited to application type) 45 -6 -3 -2 -5 -3 --2 48.9
Number of GO TO statements 44 -6 -3 -2 -5 -3 -2 47.7
Depth of nesting within a loop 44 -5 -4 -2 -5 -3 -2 47.7
Number of errors found during

operation/maintenance 43 -5 -3 -1 46.5
Number of loops created via GO TO 46 -6 -3 -2 -5 -3 -2 45.7
Number of backward branches 46 -5 -3 -2 -5 -3 -2 43.5
Type of linkage variable: Implicit

(e.g., (COMMON)) 45 -5 -3 -1 -5 -3 -2 42.2
Number of IF statements 46 -5 -3 -1 -5 -3 -2 39.1
Number of man hours to correct errors 42 -4 -3 -1 38.1
Costs to develop 44 -4 -2 -1 29.6
Number of 110 statements 46 -4 -2 0 -4 -2 -1 26.1
Number of modules, i.e., subprograms,

sections, etc. 42 -4 -1 3 -4 -1 2 33.3
Language program(s) written in when language

suited to problem - 35 1 4 28.6
Number of comments 46 2 3 5 2 5 52.2

336 National Computer Conference, 1981

TABLE XII-Controversial variables-less than 75% response

Program Number of
/ characteristic responses

Total number of variables used globally
FORTRAN (when arbitrarily chosen)
Total number of variables used locally
ALGOL (when albillatiiy chosen)
PASCAL (when arbitrarily chosen)
RPG (when suited to application type)
PL1 (when arbitrarily chosen)
ALGOL (when suited to application type)
PASCAL (when suited to application type)
Experience of the programmer

Respondents' comment

" .. .if the name was
meaningful. .. "

" ... too many interfaces
can be confusing ... "

" ... - 5 for too deep,

Problem

How do you judge
meaningful?

What's too many?

What's "too deep?"

29
34
29
22-
22
27
26
28
28
33

+ 5 for right depth ... " What's the "right depth?"

The general complexity factors (e.g., number of changes,
amount of relevant documentation, problem to be solved,
etc.) aroused the most comment. This is a "murky area."
Depending on the programming environment, different types
of techniques work. Respondents' comments on some specific
programming characteristics emphasized another dilemma in
programming environments, the "old" school versus the
"new" school of programming practices.

The results of the survey are being analyzed further in order
to investigate differences across categories of groups: for ex
ample, programmers vs. managers vs. software experts;
across different levels of programming expertise; etc. Also,
several of the proposed complexity characteristics are essen
tially equivalent except for their description. Analyses are
being done on these dependent variables to investigate how
-"saying the same thing in a slightly different fashion"affected
the answers.

In conclusion, the efficacy of some of the new commu
nication tools such as walkthroughs, inspections, peer re
views, etc. has emphasized the importance of attempts at
interaction among a cross section of people involved in soft
ware development. The survey has been one such attempt.

REFERENCES

1. Belady, L.A., "Complexity of programming: A brief summary," In Pro
ceedings of the Workshop on Quantitative Models of Software Reliability,
Complexity, and Cost. New York: IEEE Cat. #TH0067-9, 1979, pp. 90-94.

2. Chapin, N., "A measure of software complexity," Proceedings of the Na
tional Computer Conference. 1979. pp. 995-1()()2.

3. Chen. E.T., "Program Complexity and Programmer Productivity," IEEE
Transactions on Software Engineering Vol. SE-4, No.3. (May 1978), pp.
187-193.

4. Cobb, G.W., "A measurement of structure for unstructured programming
languages," Proceedings of the Software Quality and Assurance Workshop,
November 1978, pp. 140-147.

01

-2

-1
0

Round 1 Round 2 Percent answers
median 03 01 median 03 significant

-5 -3 -3 48.3
-3 -2 -1 17.7
-3 -2 -1 0.0
-2 -1 1 4.6
-1 0 2 9.0

0 2 -2 0 1 0.0
-1 1 0 7.7

1 2 0 1 2 7.1
2 3 1 2 3 7.1

2 3 4 33.3

5. Curtis, B. "In search of software complexity," In Proceedings of the Work
shop on Quantitative Models of Software Reliability, Complexity, and Cost,
1979, IEEE Cat. #TH0067-9, pp. 95-106. --

6. Curtis, B., Sheppard, S.B., & Milliman, P., "Third time charm: Stronger
prediction of programmer performance by software complexity metrics." In
Proceedings of the Fourth International Conference on Software En
gineering. New York: IEEE, 1979.

7. Gilb. T. Software Metrics. Winthrop Publishers. Inc., 1977.
8. Grace, Alonzo G. Jr., "The dimensions of complexity," DATAMATION,

September 1977, pp. 315-318.
9. Halstead. M.H. Elements of Software Science. Elsevier North-Holland,

Inc.: New York, 1977.
10. Hansen, W.J., "Measurement of program complexity by the pair (Cydo

matic Number, Operator Count)," SIGPLAN Notices 13.2 (March 1978),
pp.29-33.

11. Jelinski, Z., and Moranda, P. B., Metrics of software quality, Tech. Rep.
AFOSRTR-79-0128. Washington D.e.: Bolling AFB, AFOSR, 1978. (AD
A065196).

12. McCabe, T.J., "A complexity measure," IEEE Transactions on Software
Engineering SE-2,4 (December 1976), pp. 308-320.

13. McCall, J.A., Richards, P.K., and Walters, G.F., Factors in Software Qual
ity, Tech. Rep. 77C1S02. Sunnyvale, CA: General Electric, Command and
Information Systems, 1977.

14. McClure, C.L., "Model for program complexity analysis," Proceedings of
3rd International Conference on Software Engineering. IEEE Cat. no.
78CH1317-7C, pp. 149-157.

15. Mills, H.D., "The complexity of programs," In Program Test Methods, pp.
225-239. ed. W.O. Hetzel. Prentice-Hall Inc.; 1973.

16. Mohanty, S.N., "Models and measurements for quality assessment of soft
ware," ACM Computer Surveys, II (1979), pp. 251-275.

17. Myers, G.T., "An extension to the cydomatic measure of program com
plexity," SIGPLAN Notices 12. 10 (October 1977), pp. 61-64.

18. Shooman, M. and Laemmel, A., "Statistical theory of computer pro
grams-information content and complexity." Digest of Papers
COMPCON Fall 77, IEEE Cat. no. 77CH1258-3C, pp. 341-347.

19. Sullivan, J.E. Measuring the complexity of computer software. MITRE
Corporation, MTR-2648, Vol. V, June 1973.

20. Thayer. T.A., et al. Software reliability study. RADC-TR-76-238. August
1976.

21. Weissman, L., "Psychological complexity of computer programs," SIG
PLAN Notices 9 (June 1974).

22. Woodward, M.R., et aI., "A measure of control flow complexity in pro
gram text." IEEE Transactions on Software Engineering, Vol. SE-5, No.1
(January 1979), pp. 45-50.

23. Zolnowski, J.C., and Simmons, D.B., "Measuring program complexity in
a COBoL environment," Proceedings of the National Computer Confer
ence 1980, pp. 757-766.

24. Zolnowski, J.e., and Simmons, D.B., "A complexity measure applied to
FORTRAN," Proceedings of COMPSAC 77. IEEE Catalog no.
77CHI291-4C, pp. 133-141.

25. Linstone, H.A. and Turoff, M. (eds). The Delphi Method: Techniques and
Applications. Addison-Wesley, 1975.

Salvaging your software asset (tools based maintenance)

by MICHAEL J. LYONS
The Catalyst Corporation
LaGrange, Illinois

ABSTRACT

Software is a valuable asset embodying_ decision processes of
an organization and contributing directly to the means of
production. Maintenance is the mechanism for combating de
terioration of that software asset, which over time tends to
become arthritic and inflexible to change. Maintenance,
though extremely costly, is essential to insuring the viability of
the organization. Both rewrites and purchased software, with
ensuing conversions, are usually not a cost-effective solution
to software decay. Structured retrofit is an effective alterna
tive, using a software tools-based methodology for combating
decay and the high costs of maintenance. The critical tool is
the COBOL structured programming engine. With it, spa
ghetti code ~oftware is mechanically transformed to well
structured programs, whose ongoing maintenance reaps the
benefits of the structured programming methodologies.

INTRODUCTION

Software is an asset. It is an owned resource that contributes
to the means of production. It is costly to acquire and even
more costly to replace. To insure maximum return on one's
software investment requires prolonging software's usable life
and making best use of that life. It is essential to mine that
software asset in order to maximize its role as a major con
tributor to the means of production and overall organizational
productivity.

The function of software is to embody a subset of the enter
prises's decision processes and to enable them to be carried
out by computer machinery. It is the decision processes of the
enterprise that are at issue. They are unique to the organi
zation and vital to its prosperity. It is software's embodiment
of the organization's decision processes that makes it a direct
contributor to the means of production. Indeed, one might
say that the survival of the organization depends on insuring
the vitality of software.

Software is not a physical machine, and it therefore does
not wear out. By the same token, it is not like a small child,
which can improve its capabilities or change its attitudes over
time. Therein lies the cause of software deterioration: its in
ability to change itself to match the changing decision pro
cesses of the enterprise. Software progressively loses its pro-

337

ductive capacity unless it is continually infused with the on
going changes in the enterprise's decision system. This process
of adaptation and enhancement is called software mainte
nance. Whether it corrects bugs, changes the specifications, or
improves efficiency, maintenance for the purposes of this pa
per is any change to any system for any reason. The process
of maintaining software is unexpectedly difficult and ex
pensive. The typical Fortune 500 company today spends 70%
of its (non-operations) data processing budget on mainte
nance. 1 I have already said that software, unlike a child, does
not grow smarter and more capable; unfortunately, it does
seem to grow old and cranky. The very act of changing it tends
to destroy or obscure its structure2

•
3 (spaghetti code and un

trustworthy documentation) and make it progressively more
resistant to change. I sometimes call this condition software
arthritis-the buildup of deposits in the joints of the organism
that make it less and less flexible. Remember that flexibility
is the characteristic required to preserve the productivity of
the asset. Therefore, preserving flexibility-combating soft
ware arthritis-is the key element in protecting the asset; and
it is the subject of this paper.

Before a discussion on combating software arthritis, let me
first point out why the maintenance function will not go away,
and, furthermore, why its costs and complexity are on the
increase.

IS REWRITE A SOLUTION?

If software deteriorates over time, why don't we rewrite it?
Software rewrite is economically unacceptable. An inventory
of one Fortune 500 company's software library, shown in
Table I, points out why. These statistics were taken from a
Chicago-based diversified manufacturing firm.18 They point
out some interesting facts. First, in this case, software repre
sents a very substantial one-third-billion-dollar asset, as
suming a cost of $101 line to rewrite. Note that this figure is the
most conservative one we could find. A more commonly
quoted figure..is $25/1ine. 4.5

Second, since all programs are not equal, let us assume a
strategic approach to a rewrite. The 80120 rule states that
"20% of the programs cause 80% of the problems and corre
sponding costs." Assuming the ability to weed the good from
the bad, in this case we are left with 10,000 tin gods-my term

338 National Computer Conference, 1981

TABLE I-Appraisal of a software rewrite

Ntlmber of COBOL programs:
A vetage number of lines/program:
Total lines of COBOL code:
Replacement value of code:

ASSUME 80/20 RULE:
50,000 x 80% programs = 40,000 programs
50,000 x 20% programs = 10,000 programs

50,000
750

37,500,000
$375 million

COST TO REWRITE THE 20% HIGH-PAYOFF CANDIDATES
10,000 programs x 750 lines = 7,500,000 lines

.7,500,000 lines x $lO/line = $75 million

LABOR TIME FOR HIGH-PAYOFF REWRITE
7.5 million lines/(15 good lines/day x 240 productive days/
year) = 2,015 RESOURCE YEARS

for any program most often described as "My god, don't touch
that or it'll blow up." If we decided to rewrite the tin gods at
an average rate of 15 good-debugged lines/day6 it would cost
$75 million. Even if funding were available, it would take over
2,000 resource.;.years to do the job. When 13% of the data
processing jobs in America today are open and there is no one
to fill them, when there is a current shortfall of 58,000 pro
grainmers,I.7 who is going to do such a rewrite? In short, a
rewrite is not a viable alternative! It might be worth noting
that although the example used here represents a large com
pany, the circumstances are'linear. That is, if your particular
company is small, then your library is smaller and your rewrite
task is smaller, but so is your budget and staff.

THE MAINTENANCE DILEMMA

Notwithstanding the criticality of software to the organi
zation, arthritic software is a special maintenance headache
for management. Spaghetti code and untrustworthy docu
mentation are not new; management has been facing them for
years. Familiarity, ~however, is not control. The exponential
growth in maintenance costs is' directly attributable to our
inability to control or improve on the quality and human
maintainability of our systems. In 1960 the typical data pro
cessing organization spent 30% of its nonoperations budget
on maintenance; in 1970 it spent 50%; today it spends 70%.1
The primary reasons for high maintenance cost are

1. Maintenance is a people-intensive activity. While the
cost of hardware plummets, the cost of people is rising.
By 1985 the cost of hardware will be at 1110 the 1979
rate, and people will be at twice the 1979 rate.8

2. The numberQf systems in our inventory has increased
substantially, correspondingly increasing the mainte
nance load. Aventge systems life has increased from
three years in 1960 ,to five "in 1970 and eight today. 18

• 3. Existing systems were' designed to operate in a stand
alone fashion, but todaywe have new requirements from

TABLE II-The structured programming methodologies

CHIEF PROGRAMMER TEAM
DEVELOPMENT SUPPORT LIBRARIES

TOP-DOWN DESIGN
STRUCTURED PROGRAMMING

STRUCTURED WALKTHROUGHS
STRUCTURED TESTING

middle and top management. We are trying to revise
existing operational-level systems in order to support
control and planning-level systems.9.10

This last point is the one that most influences maintenance
costs for the 1980's.9,10 The primary reason 7 out of 10 pro
grammers are involved in maintenance today is that those
lower-level operational systems were designed for hardware
efficiency and not human maintainability. Costs of mainte
nance have become alarming because the lower-level systems
can not easily support the higher-level systems demanded
today.

Should we scrap existing code and start again? There is little
argument that code in most operational level systems today is
difficult to maintain, but that difficulty does not make the
programs bad. Bad code is not the same as bad programs. It
is critical to remember that all code, even spaghetti, meets
operational-level user requirements but is now subject to
sweeping changes mandated to support control and planning
level systems.9 The basic logic is sound and proven; the code
reflecting it is not. The question here is whether the structured
programming methodologies can be employed to advantage
in improving the code (see Table II).

These methodologies are being introduced into new sys
tems every day and, have had a substantial impact on sub
quent costs of maintenance. Normally, when the structured
programming methodologies are used in development, sub
quent maintenance costs and effort are reduced by a 3: 1 ra
tiO. II .12,20 However, it is usually uneconomic to rewrite or
convert operational-level systems in order to facilitate devel
opment of new control- and planning-level systems.

Fortunately, there is an alternative that preserves the log
al integrity of the operational-level systems and at the same
time provides a well-structured basis for comprehensive main
tenance and future systems growth. It involves introducing the
structured programming methodologies and their benefits to
existing systems reliably and promptly, after the fact, through
the use of software tools. It is called structured retrofit. Struc
tured retrofit is the application of today's structured pro
ming methodologies to yesterday's systems in order to meet
tomorrow's demand. Through this method the organization
can combat software arthritis, continue to get payback from
existing systems, and still meet demands to build on them;
thereby salvaging its software asset.

The remainder of this paper presents a software-tools
based methodology for introducing structured programming
into existing code. The structured-retrofit procedures, meth
odologies, and software tools have all come together for beta
testing at FMC Corporation for the past year. FMC Corpora
tion is a 3.5-billion-dollar-a-year diversified corporation. Its

data processing facilities involve a worldwide network tied
into large IBM mainframes, supporting a library of approxi
mately35,000 COBOL programs, from which we have drawn
oUf testing sample population. The procedures for structured
retrofit used during beta testing at FMC are described in the
remainder of this paper. 18

STRUCTURED RETROFIT

Structured retrofit, a concept and methodology pioneered by
JonCris Miller, 13.14.15.16.17 involves the establishment of a task
force made up along the lines of a chief programmer team.
This team has responsibility for scoring the existing software
library, isolating high-payoff candidates for retrofit, conduct
ing the retrofit, and. finally, validating Its success. The task
force has a basic arsenal, made up of the following software
tools, assembled from various organizations around the Uni
ted States: Code evaluators, formatter, structuring engine,
optimizer, and file-to--file compare utility. (Other software
tools are being considered for future use, including but not
limited to automated documenters, job schedulers, and test
vehicles.) Their use, described below, minimizes human cler
ical activity and maximizes mechanical processes.

Scoring

Scoring combines both objective evaluation of the software
through the use of code evaluation tools and subjective input
from managers and users: The objective evaluation. deter
mines the degree of structure in a program, the level of nest
ing, the degree of complexity, the breakout of verb utiliza
tion, and failure analysis; and it presents a concise trace of
control logic. With it, we have a clear appraisal of the quality
of the code. 14.18 However, no matter how Iowa piece of code
rates during the objective evaluation, if that code runs week
after week without problems and never requires enhance
ment, then obviously it is a low-priority candidate for retrofit.
In short, scoring must involve more than just an appraisal of
code. It must also be a predictor of upcoming maintenance,
enhancements, and planned replacement. There is no substi
tute for subjective input from management and users ..

Compilation

Once the high-payoff candidates have been strategically
isolated, they are compiled. One of the fundamental assump
tions behind a retrofit is that programs must compile cleanly
and be currently operational. Those that do not compile
cleanly are referred to the appropriate department for cor
tion. The retrofit procedures are not a mechanism for making
rionoperational systems operational:

Restructuring

The source code is then put through a. structured pro
ming engine. For purposes of this presentation, a structuring
engine is a software tool with two properties:

Salvaging Your Software Asset 339

• It transforms an executable program written in a given
language, but of undetermined structure, into another
program written in the same language with a well-defined
structure;

• The resulting program produces the same transformation
on any set of input data as does the original program.

Further discussion of structured programming and of a struc
tured programming engine will follow shortly.

Formatting

Once restructured, the source code is then put through a
formatting package in order to enhance the visuals and read
ability. Following formatting, the newly transformed code is
then recompiled to insure that there are no syntactic errors. A
formatting package can be expected to substantially enhance
the visuals. Standard features of a good formatting package
can be seen in Table III. I am also aware of development on
a formatting package that will eliminate qualification of data
names. For move corresponding, it currently requires that the
user manually expand each qualified move before eliminating
quaIlfication mechanically.

Validation

Once recompiled, the validation mechanism begins. A set
of input data is processed through the old program, then
through the new program. The resulting outputs are then
compared by a file~to-file compare utility. One certainly does
riot want to employ a visual scan of output reports to insure
that they are identical. A mechanical bit-for-bit comparison is
far more accurate, simple, and fast.Ideally, one uses copies
of live files for a comprehensive validation.

Optimization
. . .

In conjunction with compilatiori" the program passes
through an object code optimizer. Whether restructuring is
done manually or through automated meclianisms, one ex~
pects to introduce some overhead as a consequence of restruc
turing. However, experience. to date indicates, that little net
overhead remains if an optimizer is used. Initial experimt.mta
tion resulted in a 20% increase. in . core' requirements from
optimized original code cOlPpared to optimized restructured
code. However, recent improvements inthestru~turing en
ginealgorithms indicate only an average of 8% overhead and
suggest the possibility of absolute improvements.

Retrofit Results

Retrofit goes. beyond description and prescription to pro
duce a completed product: well~~tructured source. ~ode logi
cally equivalentto the original. It cannot, however, eliminate
logic errors; determine intent; orreact to userrequirements,
demands, and complaints. It does not solve the maintenance
problem, but it does simplify the solution. It provides a base-

340 National Computer Conference, 1981

TABLE III-Features of a formatter

• Indents and formats code
• Standardizes paragraph prefixes
• Relevels data division
• Standardizes field alignment
• Standardizes reserved words
• Restricts verbs to one per line
• Provides global name substitution

line for cost-effective maintenance by making existing systems
understandable.

WHAT IS STRUCTURED PROGRAMMING?

If I were to -ask 10 different people for a definition of struc
tured programming, I would probably get 10 different an
swers. But, suffice it to say for our purposes, structured pro
gramming is a method of programming according to a set of
rules that enhance a program's readability and maintainabil
ity. Structured programming centers around the concept of a
module having a single entry point and a single exit point.
Structured programming involves the separating of control
from action so that the logic flow becomes clearer to human
beings, even though a computer obviously doesn't care.

STRUCTURED PROGRAMMING ENGINES

Structured programming engines could theoretically be devel
oped for any programming language. However, to my knowl
edge, the only two languages for which they currently exist are
FORTRAN and COBOL. The FORTRAN engine, devel
oped by Caine, Farber & Gordon, Inc., has been in existence
since 1975 and is used in conjunction with a superset of
FORTRAN. 19 The only commercially available COBOL
structured programming engine, to my knowledge, is the one
developed at the Catalyst Corporation by Jon Cris Miller. 18 A
structured programming engine accomplishes two things.
First, it cleans up existing language and verb usage; second, it
introduces consistent structure to the code. Table IV shows
what you can expect from a COBOL structured programming
engine. A structured programming engine and a good for
matting package cover and correct a multitude of sins. The
most important result is an isolated control hierarchy. Iso
lating control provides cl~ar visibility of the algorithms used in
that program. In COBOL, the primary control structures used
are loops and decision trees.

Unfortunately, most programs employ them on a global
rather than a local basis, to construct algorithms. Being able
to see control in tight, small modules allows clear visibility and
understanding of the program and its component algorithms.
If one ever really expects to introduce the concept of re
usability of code, there is no better asset to mine than an
operational software library. Structured retrofit potentially
leads to an inventory of existing algorithms and a practical
mechanism for the reusability of code.

TRANSFORMATION RATE

Can a structuring engine handle any program? Judging from
personal experience and the results obtained from the beta
testing, our engine can process 60% of programs offered im
mediately and an additional 20% with some manual inter
vention. The other 20% we cannot handle cost-effectively
now. These percentages seem to be consistent with those of
Caine, Farber & Gordon. 19 One example of code that re
quires manual manipulation in order to restructure it is struc
turally recursive code. Technically, COBOL does not support
recursive code. However, some programmers have discov
ered that by using switches they can terminate a seemingly
endless chain of PERFORM flip-flops. It is sometimes diffi
cult to determine compiler tolerances to syntax violations, as
in the case of delimiters, reserved words, and margin align
ment. When in doubt, we have always elected to follow the
ANS COBOL standards.

NON-TASK-FORCE RESPONSIBILITIES

In addition to tasks performed by the retrofit task force, there
are tasks to be done by other members of the participating
organization:

1. Provide source code for retrofit.
2. Provide copies of live test data for validation of the

retrofit. If already available, comprehensive artificial
test data may be employed.

3. Review the dead code list to verify that code is not
required.

4. Provide on-site computer time.

While the process is primarily mechanical, there is still a sub
stantial amount of work for the retrofit task force and selected
members of the host organization. However, the process of
fers no disruption to the user community.

TABLE IV-Features of a COBOL structuring engine

Cleans up
language

Structures

Removes alters
Eliminates perform through overlap
Reduces go tos
Increases performs
Converts notes to comments
Eliminates drop through confusion
Removes dead code

Isolates control hierarchy
Highlights looping conditions
Bounds action modules
Physically groups and standardizes all 110
Consolidates all program termination

to a single goback
Does not remove logic errors

TABLE V-Reasons to retrofit

• Cut maintenance costs substantially.
• Divert maintenance resources to new development.
• Meet user requirements on a timely basis.
• Decrease programmer turnover.
• Decrease the number of systems designated incapable of cost

effective maintenance.
• Increase the number of systems capable of sustaining major en

hancements without a rewrite or extensive testing.
• Limit the need for a specialized person to maintain each system.
• Simplify tuning, reconfiguring, and rewrites to take advantage of

cost and technological opportunities.
• Standardize the multiple programming styles found in a program

written or maintained by more than one programmer.
• Cut research costs when the user says, "I suspect something is

wrong."
• Insure consistency with mechanically verifiable standards

SUMMARY

In this paper I have introduced structured retrofit, a complex
process. It is not a new process in other production areas of
the business world, but it is new to data processing. Table V
reviews the primary benefits of retrofit.

In closing, let me emphasize two very important points:
• Software, of all ages, shapes and sizes, is a valuable asset

to a corporation.
• The corporation can reap the benefits of the structured

programming methodologies from currently unstruc
tured systems, thereby salvaging its software asset.

Structured retrofit of application systems decreases costs,
increases productivity, and improves morale. As compared to
a manual rewrite, it is virtually 100% mechanical, requires
little elapsed time, makes minimal demands on managerial
and technical staffs, and is completely transparent to the user.
Structured retrofit fights software decay.

ACKNOWLEDGMENTS

Putting pen to paper is a difficult chore for me. lowe thanks
to many for contributing to this paper: To Jon Cris Miller,
who not only acted as editor, but, more important, introduced
me to retrofit concepts. To FMC Corporation, our retrofit

Salvaging Your Software Asset 341

beta test site, which has endured our failures and enjoyed our
success. To Nicholas Zvegintzov, for his insights on software
as an asset. Last, to my wife, without whose support there
would be nothing. The errors and omissions remain my own.

REFERENCES

1. Cooper, J.J. "Software Factory." Raytheon Data Services. Burlington,
Massachusetts, 1980 p. 13.

2. Brooks, F.P., Jr. The Mythical Man-Month (3rd ed.) Reading, Massachu
setts: Addison-Wesley, 1975.

3. Belady, L.A., and Lehman, M.M. "A Model of Large Program Devel
opment". IBM Systems Journal, (Vol. 15, No.3), 1976, pp. 225-252.

4. Lehman, J.H., "How Software Projects Are Really Managed." Datama
tion, 25 (1979), pp. 118-129.

5. Jones, e. "Optimizing Program Quality and Programmer Productivity."
Proceedings of GUIDE 45, 2 (1977), pp. 689-705.

6. Yourdon, E.N: Techniques of Program Structure and Design. Englewood
Cliffs, New Jersey: Prentice-Hall, 1975.

7. Editors of Business Week. "Missing Computer Software." Business Week,
No. 2652 (Sept. 1, 1980), pp. 46-56.

8. Diebold, J. "The Annual Diebold Technology Scan 1979." The Diebold
Computer Planning and Management Service, 1979, 89pp.

9. Nolan, R.L. "Managing the Crisis in Data Processing." Harvard Business
Review, 57 (1979), pp. 115-126.

10. Danziger, J., Kraemer, K., and King, J. "An Assessment of Computer
Technology in U.S. Local Government." Urban Systems 3, 1978, pp.
21-37.

11. Diebold, J. "Improving the Utilization of Personnel Resources." The Die
bold Computer Planning and Management Service, August, 1979, pp .
44-46.

12. Ryan, H.W. "Structured Methods." Computerworld 13 (1979), pp.
INDEPTH/I-24.

13. Miller, J. e. "Some thoughts on Structured and Traditional Programming. "
Unpublished paper, Montgomery Wards Corporate Systems Division,
1975,4pp.

14. Miller, J.e. "Improved Programming Techn_ologies Retrofit (A Study of
the Application of Improved Programming Technologies to Systems Devel
oped without Improved Programming Technologies." Unpublished report,
Montgomery Wards Corporate Systems Division, 1976, 46pp.

15. Miller, J.e. "Sow's Ear: The Structuring Engine (COBOL)." Yink, The
Weekly Memo to Yourdon Instructors, Nov. 18, 1977. pp. 1-3.

16. Miller,J.e. "S.E.-TheStructuringEngine." Unpublished paper, 1979, 14
pp.

17. Miller, J.e. "Structured Retrofit." Techniques of Program and System
Maintenance. Lincoln, Nebraska: Ethnotech, 1980, pp. 85-86.

18. Lyons, M.J. "Structured Retrofit-1980." Proceedings of SHARE 55,
(1980), pp. 263-265.

19. de Balbine, G. "Better Manpower Utilization Using Automatic Restruc
turing." Caine, Farber and Gordon, Inc., AFlPS Proceedings of the
National Computer Conference, 1975, pp. 319-327.

20. Daly, E.B. "Organizing for Successful Software Development." Datama
tion, 25 (1979), pp. 106-120.

Maintenance is a manage~ent problem
and a programmer's opp~rtunity

by JOHN REU'!TER, III
Dynabyte Incorporated
Menlo Park, California

ABSTRACT

Many installations treat systems maintenance as an after
thought or unwanted stepchild of systems development. The
resulting demoralization of maintenance programmers and
apparent confusion of maintenance activities can be avoided.
Making maintenance visible and placing it in the proper per
spective 'are responsibilities of maintenan.ce managers; This
paper defines categories and characteristics of maintenance
that highlight the complexities and value of maintenance and
its contribution to the corporate bottom line.
. There is an abundance of opportunities for programmer

creativity, management success, and job enrichment in soft
ware maintenance. Suggestions are made in this paper on bow
to achieve proper perspective and assure successful mainte
nance through" application of a "structured maintenance"
methodology. The structured maintenance approach ~efined
in this paper enhances programmer morale, improves' system
quality, assures user satisfaction, and places maintenance in
its proper perspective ~s a vital, profitable, contributing cor
porate busim~ss functioll .

THE MAINTENANCE PROBLEM

What do you think is the maintenance problem? Many have
answered this question with the following statements: 1

\ "

• "Maintenance is treated as a necessary evil."
• "There is no pride or recognition in maintenance work."
• "Maintenance is only an afterthought."
• "Maintenance is used to train beginning programmers."
• "Maintenance never accomplishes anything."
• "Np'body likes maintenance."

Thes~ statements are all very negative. In contrast, the f~cts
of the author's own experience do not agree with them: A
possibl~ conclusion to be drawn from statements like these
would be that those who make them ~o not 'understand what
maintenance is really all about even though they may them
selves be deeply involved in maintenance activities. The ~u
thor believes the maintenance problem is one of perspective
and mfmageme~t focus. This paper will define the categories
and characteristics of maintenance and then point out tlIe
opportunities fQr creativity, cost cutting, ~nd job enrichme~t

343

that aOOtmd itt soft Nftle fftftiftteftftftce. Saggestisas wHl be
made on now to achieve -proper perspective 'and management
focus on maintenance activities. Finally, this paper will show
why programmer morale, system 'quality, user satisfaction,
and aggressive maintenance management are necessarily in
tertwined in successful systems maintenance:

Restatement of the Maintenance Problem

Treating the negative comments cited above as symptoms
of an underlying problem, it seems that the real problem is the
manner in which maintenance is managed-at all levels of an
organization. Maintenance often has the outward appearance
of being a helter-skelter, uncoordinated activity rather than a
planned, methodical, controlled, necessary business function
of any organization committed tocomputerlzed data pro
cessing. The problem is not so much related to technol()gy as
it:'is related to execution. The tools and techniques foreffec
tive maintenance are readily available. Their actual use seems
to be skimpy and undisciplined.

The Real Activities of Maintenance

If maintenance does indeed have a problem, the problem is
that it is a misunderstood, mistakenly maligned activity. 'A
major contributor to this problem is' managemeilt'sfailure to
focus attention on the "real" activities and benefits of mainte
nance. As a result, many indiViduals iii a corpor'ate structure
involved with any- data processing activity-equate "mainte
nance" with "repair"-the fixing of software '~pugs." This
perception of maintenance as primarily ~ "pest cO'ntrol" exer
cise is the fault of those in maintenance management positions
who fail to make visible to the corporate structure the many
types of maititenance that take place-including tllpse that are
necessary for reasons' other than fixing bugs.

CATEGORIES OF MAINTEl'lANCE

The first step in gaining a p(oper perspective on ~aintenance
is to idelltify the vano'us kinds of mainteri~nce that fake place.
While there are certainly as' many ways of categorizing IIlain-

344 National Computer Conference, 1981

tenance activities as there are categorizors/ the following list
seems to apply well to most situations:

1. Emergency repair-the immediate fixing of code that
must be done to continue service to the user.

2. Corrective coding-the fixing of code to correctly match
specifications or correctly utilize system resources (ex
cluding emergency repair).

3. Upgrades-the modification of code required when up
grades in system resources occur (e. g., new model CPU,
new release of operating system, new type of telecom
munications software, and so on).

4. Growth-the modification of code and development of
new programs necessitated by· growth in the number of
records maintained and/or number of users supported
(e.g., expansion or conversion of files, addition of net
work nodes and user terminals).

5. Support-the explanation of system capabilities, system
outputs, and proper use of system features to end users
and their managers; assistance to user planning in areas
affected by the systems; research and developmenLof
awareness of factors affecting future change require
ments; measurement and evaluation of system perfor
mance.

6. Change in conditions-the modification of code .re
quired when business conditions change, particularly
due to regulatory situations or other causes which are
beyond control of the corporation but to which the cor
poration is bound.

7. Enhancements-the modification of code or addition of
whole new subsystems due to user requests.

Differences in Management Requirements among Categories
of Maintenance

It is important to be able to distinguish among these various
types of maintenance because of the vast differences in how
they should be managed. The activities within them are quite
different, affect different parts of the system, and generally
require different skills. For example, emergency repair situa
tions usually require an in-depth understanding of the oper
ating system, file structures, and network protocols of the
application affected but not of the intricate data edit relation
ships that are tied to business requirements, government reg
ulations, or corporate policies. Knowledge of data relation
ships is much more important for dealing with corrective cod
ing situations or enhancements and is of practically no value
at all for dealing with system upgrades or growth maintenance
requirements.

Observations on Maintenance Costs

Based on extensive experience in software development
and maintenance, including work with three large-scale sys
tems (Pacifk Telephone's Service Order Retrieval and Distri
bution System, Bell Telephone Laboratories Automated Re
pair Service Bureau System, and VISA, Inc. 's Base 11-
Worldwide Credit Card Transaction Interchange System),

some of the author's observations regarding maintenance
costs are as follows:

1. 70% of the programming costs occur after installation of
the initial product.

2. The majority of these maintenance costs were never
projected as future costs of the system when the eco
nomic feasibility of the system was determined initially.

3. Only a small percentage of these costs (less than 10%)
can be attributed to initial programming error.

4. A large percent of maintenance costs are nondiscre
tionary.

Recent articles generally seem to concur with these observa
tions,3, 4, 5

Distribution of Maintenance Costs

The distribution of maintenance costs in the author's ex
perience against the suggested categories has been as follows
(see for contrast Lientz and Swanson6

).

Emergency repair
Corrective coding
Upgrades
Growth
Support
Change in conditions
Enhancements

2%
6%

12%
10%
15%
10%
45%

Fixing the bugs amounts to only 8% (emergency repair + cor
rective coding) of the total maintenance costs in this distribu
tion.

The category with the largest percentage of maintenance
costs is also the one that typically experiences the most varia
tion because it is so easily affected by availability of funds.
Very little can be done to avoid the other categories of main
tenance. When a program fails, it has to be fixed. When new
users are added, they have to be accommodated. When laws
are changed, they have to be followed. Consequently, these
types of maintenance are relatively inelastic. Enhancements,
on the other hand, are the most elastic. If enhancements were
to be totally eliminated from the prior distribution of costs,
the costs would be redistributed as follows:

Emergency repair
Corrective coding
Upgrades
Growth
Support
Change in conditions

4%
11%
22%
18%
27%
18%

With the elimination of enhancements, the percentage of
costs attributable to the fixing of bugs rises to 15%. This
percentage represents an unlikely maximum. In fact, en
hancements are rarely cut completely out of maintenance. In
lean times, minor enhancements are usually implemented un
der the guise of corrective coding, upgrades, or change in
conditions maintenance.

MAINTENANCE MANAGEMENT

Making user and corporate management aware of the "noo
bug" categories of maintenance and of their ultimate con
tribution to the corporate bottom line is the responsibility of
those who manage maintenance activity. Visibility of mainte
nance can be achieved by publishing monthly, quarterly, and
annual reports of maintenance achievements showing money
expended, results achieved, and highlighting important
changes.

Bottom Line Visibility of Maintenance

One of the benefits of categorizing maintenance activities
and tracking costs against them is that it provides an opportu
nity for promoting the value and contribution of maintenance
to the corporate bottom line. As a result, decisions regarding
discretionary spending for enhancements, and to some extent
upgrades, can be determined by enlightened management.
These decisions should be made on the basis of profit con
tribution to the corporate financial position. There should be
no "afterthought" or "necessary evil" considerations involved
in such decisions. Since the costs of such discretionary activ
ities typically fall in the 50-60% range of total maintenance
costs (they have done so consistently in the author's experi
ence) , there is reason to believe that maintenance is an impor
tant factor in the bottom line and potentially a creative bene
factor for the corporation.

Management of Maintenance Programmers

One of the reasons that programmer morale may seem so
low with respect to maintenance activities, in addition to the
activities not being highlighted appropriately, is that they are
not being properly managed. Often such important items as
changes caused by growth, upgrades, or changes in conditions
are treated in a helter-skelter, ad hoc fashion with little or no
planning, without proper reviews, and without controlled in
stallation.

The area of maintenance which seems to survive best is
enhancement maintenance. The most likely reason for that is
that enhancements of any reasonably large scale closely re
semble the activities of new development. Systems develop
ment has received a great deal of attention and has profited
from the evolution of such disciplines as structured program
ming and composite design. However, enhancement mainte
nance is really much more complicated than initial systems
development. Enhancement development must be extremely
creative to simultaneously accomplish the following:

1. Correctly implement the specification required.
2. Smoothly integrate into the existing, but changing, sys

tem.
3. Strengthen (improve) tOe overall quality of the system.
4. Not adversely affect the unchanged areas of the existing

system.

The consequence of having to meet the integration require
ments is that more software has to be developed to accomplish

Maintenance: Problem and Opportunity 345

specific user design goals than is necessary on an initial devel
opment project to meet the same user design goals. There is
great need for system cross-references, regression test facili
ties, maintenance control software, installation software, and
management reports of enhancement activity. These require
ments should be viewed as an unusual opportunity for pro
grammer creativity.

STRUCTURED MAINTENANCE

Borrowing from the concepts and jargon of the highly success
ful structured programming technologies, I propose anap
proach to maintenance to be called "structured mainte
nance." The essence of structured maintenance is that it is
based on a methodical, planned approach to systems mainte
nance that uses the concepts of top-down development, sys
tem modularity, and structured coding where they apply. This
is in contrast to the definitions of "structured maintenance"
offered by others. 3

, 4

The main elements of this proposed structured mainte
nance are the following:

• comprehensive viewpoint of systems maintenance,
• documented maintenance master plan,
• use of project management techniques,
• automated performance results reporting,
• automated maintenance controls,
• structured coding rules.

Comprehensive Viewpoint of Maintenance

The first necessary element of structured maintenance is a
comprehensive viewpoint of the roles and responsibilities of
systems maintenance. These responsibilities include planning,
reporting, and other strategic management tasks in addition
to the ordinary day-to-day management activities. This view
point also includes acceptance of accountability for the cor
porate bottom line. The perspective to be used is a top-down
view. of postinstallation systems activities. The. topmost view
is total accountability for all categories of maintenance with
respect to specific systems. Lower levels subdivide mainte
nance activities and management requirements into the vari
ous maintenance categories.

The Maintenance Master Plan

The cornerstone of structured maintenance is the mainte
nance master plan which consists of a set of documented
plans, each of which addresses individually one of the catego
ries of maintenance identified in this paper. The purpose of
each plan is to specify exactly: what type of maintenance is
covered by that plan; how the maintenance activities are to be
structured; how activities are to be initiated, completed, doc
umented, summarized, and reported; what the goals of that
type of maintenance are ; what constitutes its elements of cost;

346 National Computer Conference, 1981

and wllat the monthly, quarterly, and annual objectives for
maintenance performance are for that category. .

The value oLsuch a documented pbin is· that . everyone is
informed in advance of exactly what is to be done, how it Is
to be done, who isto.be told about it, who is accountable for
it, and how it contributed to the corporate bottom line. Each
plan is required reading for all those involved in lhe manage
ment or execution of maintenance. With such plans, the bur
den of maintenance success is shifted from the maintenance
programmers to the maintenance managers, as it properly
should be. This frees programmers to apply their skills cre
atively to the,programming situations that abound. in all cate
gories of maintenance. It then truly becomes a programmer's
opportunity to make maintenance a meaningful and produc
tive experience on a par with, or even superior to, original
systems development:/

Project Management Techniques

The effective techniques of project management typically
used in systems development are often abandoned when the
initial target of system installation is met. Subdividing mainte
nance requirements into tasks with deadlines, assigning re
sources to the tasks, reviewing the progress of these tasks
regularly, and. taking notice of critical paths ·are invaluable
management techniques. for assuring progress towards suc
cessful maintenance results. 8 The maintenance master plan
should identify the goals and objectives of maintenance in
such a way that these project management techniques can be
tied into overall goals and performance evaluation.

Maintenance Program Structure Rules

Systems maintenance may require making changes to either
structured or unstructured systems. A convincing argument in
favor· of structured development is that it minimizes the like
lihood of "bugs" in program code and that it facilitates future
modification of code. 7 However, at this point of time, the vast
majority of systems in operation were built before general
acceptance of structured design and structured programming.
Consequently, maintenance programmers face the dilemma
of how to apply the rules of structured programming to an
unstructured sysWm.

A pragmatic approach to the use of structured program
ming must be applied in these situations. To strictly apply
structured programming rules to changes being made in an
unstructured system usually requires major recoding, even of
sections of programs which are performing flawlessly. The
costs of redeveloping code must be weighed against the risks
that recoding may introduce errors that otherwise would not
occur and against the use of those programming resources for
other maintenance requirements. A pragmatic rule that could
be used is as follows: Where possible, follow the conventions
and rules of structured programming in effect at your installa
tion for new systems development. Otherwise, maintain the
style and conventions used within the program being mod
ified. Do not, in any case, regress a structured program into
a less disciplined convention when making modifications.

Design for Maintenance

When developing. new systems from ground up or mod
ifyingexlstmgsystems, arornelstoIle COl design ought to be
integrating considerations for future maintenance in the de
signof new code. For example, a system ought to'police itself
or at least provide performance and critical factor information
as an integral part of its output generation. Making error-free
modifications to existing systems largely depends upon know
ing the internal behavior of the existingsystems. Program
mers need to know code referencing patterns, high water
marks in the file utilization, resource usage patterns, and logic
path frequency distributions to make judgments about setting
up test cases, designing defensive code, and, anticipating fu
ture problems. The systt:m ought to be designed to supply this
type of information to the developers of the system.

Automate System Performance Reporting

Often, data processing is guilty of the "cobbler's children's
shoes" syndrome. We fail to utilize the power and capability
of computer systems in the execution of our own jobs. The
capturing and reporting of systems success and. failure data
should be automated into the system. Monthly, quarterly, and
annual performance reports should be generated and main
tained by the computer system and can be done cost effective
ly if incorporated within the system being reported on.

Automate Change Installation Process

One of the most beneficial accomplishments that mainte
nance can achieve is the "routinizing" of the change installa
tion process itself. The ideal to be achieved is for maintenance
to become a regularly scheduled production job, managed by
the computer operations center staff. The controlled move
ment of program changes from the development environment
to the production environment can be best achieved through
automated techniques. This automation should be itself
treated as a serious, total-systems task with appropriate
checks and lralances, reports, and conditional actions.

CONCLUSIONS

The maintenance problem is primarily one of perspective;
that is, maintenance lacks recognition as a vital, profitable,
contributing business function. This problem can be over
come through proper management that incorporates formal
planning and reporting disciplines into the maintenance pro
cess. Maintenance programmer morale can be significantly
boosted by recognition and by planned, methodical applica
tion of good programming techniques to systems modification
and to the development of automated tools and maintenance
control systems. An approach to maintenance that uses the
structured concepts currently used for systems development
can be effectively incorporated in systems maintenance.
Maintenance can be made very stimulating and is, in fact,
significantly more chaUenging than pure systems develop-

ment. Maintenance is truly a management problem and a
programmer's opportunity.

REFERENCES
1. Reutter, J. "Student Reviews of Seminars in Structured Maintenance,"

Golden Gate University (San Francisco, CA, 1980).
2. Swanson, E. Burton. "The Dimensions of Maintenance," Proceedings of the

2nd International Conference on Software Engineering (Long Beach, CA:
IEEE, 1976), pp. 492-497.

Maintenance: Problem and Opportunity 347

3. Lyons, Michael J. "Structured Retrofit-1980," Proceedings of SHARE 55
(Cilicago: SHARE, 1980), 23 pp. in Session M767.

4. Parikh, Girish (Editor). Techniques of Program and System Maintenance
(Lincoln, NB: Ethnotech, 1980), 289 pp.

5. Singer, Larry M. "Attacking maintenance costs," Computerworld, Volume
14, number 36 (September 8, 1980), pp. In-depth/9, 12-16.

6. Lientz, Bennet P., and Swanson, E. Burton. Software Maintenance Manage
ment (Reading, MA: Addison-Wesley Publishing Co., 1980),214 pp.

7. Myers, Glenford. Reliable Software Through Composite Design (Van
Nostrand Publishing Co., 1978).

8. Gunther, K.C. Management Methodology jor Software Product Engineering
(Wiley and Sons Publishing Co., 1978).

Productivity in software maintenance

by NED CHAPIN
In/oSci Inc.
Menlo Park, California

ABSTRACT

New evidence is presented that certain management decisions
playa critical role in determining the level of staff productivity
in the maintenance of computer programs and systems. The
finding is surprising because the pivotal decision-making pro
cess has not previously been identified as a significant influ
ence on productivity in either development or maintenance.

INTRODUCTION

Productivity is the theme of the National Computer Confer
ence this year, and the productivity of the people doing the
maintenance of computer programs and systems is the topic of
this paper. Some recent work points to some fairly easy and
inexpensive ways to make some significant gains. To appre
ciate this requires looking briefly at some background, then
reporting the evidence, and finally interpreting and discussing
the findings.

First, however, a few clarifying words should be said about
the software life cycle. 3 Very roughly, and for the purposes of
this paper, that cycle can be split into two main stages: devel
opment and maintenance. Development includes conception,
feasibility, analysis, design, programming, coding, debugging,
testing, and conversion of programs and systems. Once the
subsequent phase of regular routine operation has started,
then the maintenance stage may begin; it may extend inter
mittently for many years.

During the maintenance stage the program or system as
delivered for operation is corrected to counteract detected
bugs, is enhanced tQ add functions, and is modified to delete
or change the existing functions in nature or scope or imple
mentation to match changed conditions or requirements.
Hereafter, the term maintenance is used in the broad sense to
include corrective, adaptive, and perfective work on an exist
ing computer program or system. 7

, 8, 12

BACKGROUND

The background consists of some fairly common observa
tions. First, the maintenance of programs and systems is con
suming a larger percentage of the person-hours of pro
grammers and analysts than it has historically, and the costs of

349

maintenance are growing as a proportion of the expenditures
for software ~ork. 6, 14 Although the situation is generally
worse for organizations that have been computer users for
many years, even computer users of a few years' duration note
these unfavorable trends. In short, on a current basis, mainte
nance is claiming a larger fraction of the available personnel
resources than it has historically.

Second, on a life-of-software basis, the cost of maintenance
is commonly the most expensive phase in the life cycle. I, II

The money that was originally expended to develop the soft
ware may have appeared large at the time, but expenditures
to maintain the software after delivery appear even larger and
often cumulatively exceed after only a few years the original
development cost.

Third, the recognition of the value and importance of main
tenance work is usually relatively low. Both coworkers and
management personnel act as though they held maintenance
work in low esteem.9

, 13 Management rarely rewards good
work in doing maintenance as generously as good work in
doing development. Coworkers value nonmaintenance as
signments more highly than they do assignments involving the
maintenance of existing programs and systems. Lower morale
tends to go with sagging or stagnant productivity.

Fourth, the challenge and glamor of the new techniques
such as software engineering have only rarely been introduced
in the maintenance area. 4

, 14 The introduction of new tech
niques has usually been limited to the development area, and
it has trickled over very slowly and not deliberately into the
maintenance area. The failure to use powerful tools limits
staff productivity.

Fifth, the documentation available during maintenance is
notoriously weak, incomplete, and untrustworthy. to Usually
the source code is available, but sometimes the listing of that
is not current. Other documentation, when it even exists, is
often not relied on because it has not been kept current and
because it does not communicate quickly and easily what the
maintenance personnel need to know to do their jobs. This
reduces their productivity.

Sixth, the staff actually doing the maintenance work is only
rarely the same staff that did the development work. This
difference in staffing cuts productivity, because time must be
spent relearning the program or system. Often the staff is
completely different, with no carry-forward of personnel at all
except sometimes at the very first part of the maintenance

350 National Com.puter Conference, 1981

TABLE {-Classification of program characteristics
affecting maintainability

Low productivity program characteristics
Qut -of-date, untrustworthy documentation
Incomplete or missing documentation
No logical order (or rat's nest order) to source code
Large or long program
Much logic or heavy logic in program
Many different inputs or outputs
Variability among inputs or outputs
Arbitrary data names
Arbitrary names for rQutines, sections, procedures, etc.
Monolithic non modular structure
Source code in a low-level language
Complex task to do or difficult mathematics
No or little modularity
No hierarchical structure to program Qr system
Annotation buried in source code
No annotation or redundant annotation in source code
Tricky source code ~
Large number of switches or flags
RPG logic in non-RPG programs
Variable-length record formats
Numeric literals in source code ("magic numbers")
Heavy use of indexes or subscripts
Multiple versions of program running
Use of compressed data by program
Scattered input-output statements
Deeply nested or compounded IF statements

High-productivity program characteristics
Short or very modular program
Easy-to-read source code
Independent sharply defined modules
Meaningful data names
Clear functionality of the program
Documentation conformity to standards
Identification of all maintenance changes
Source code in high-level language
Meaningful names for routines, sections, procedures, etc.
Meaningful, clear annotation in source code
No complex calculations
Clear, specific data deClarations

stage.6 This means that the personnel who know how the
program or system works from doing the development are
generally not assigned to the project or available to use their
knowledge during the maintenance stage.

Seventh, the staff assigned to doing the maintenance work
is often the least experienced and the lowest-skilled personnel
when the software is application software. 13 When the soft
ware is system software, the gap in skills and experience be
tween the development and the maintenance personnel is
usually much less. For application software, newly hired per
sonnel are often assigned to doing maintenance work to ac
quaint them with the exisffilg applica.tfons, the orga.nlzation's
standards, and the way the various systems fit together in
operation. With much to learn, productivity is low.

EVIDENCE

Maintenance of programs and systems has only recently be
gun to receive serious attention in the literature. 7

• 8. 12. 13 A

large number of questions have yet to be answered. In a
survey that gathered background information to characterize
the nature of the maintenance burden, 20 computer-using
organizations in different industries were asked to identify
their most hard-to-maintain program where productivity was
lowest, and their most easy-to-maintain program where pro
ductivity was highest. Then they were asked to identify what
in each program made it hard or easy. These responses were
then categorized and tallied. A summary of the resulting list
of characteristics appears in Table I, ordered roughly by fre
quency of mention. A scan of the lists in Table I ·reveals no
surprises, for all the entries have a familiar ring to them.
These characteristics of programs have been known for years.

Table II is drawn from the same source as Table I, but it
introduces two kinds of changes. First, the low list and the
high list are combined into a single list of characteristics, all
expressed from the point of view of what characterizes pro
grams that are not easy to maintain. Second, the combined list
has been broken into two parts, headed respectively C and U.
The C portion runs considerably longer.

The criteria used to separate the list en~ries into the two
portions, C and U, are fairly simple ones: Is this item deter
mined by the computer user or the customer? Is this item
determined by a third party, such as a hardware vendor? Is
this item determined by the need to meet legal, security,
physical safety, or auditing requirements? For example, sup
pose the candidate item is "Program interfaces with the oper
ating system control blocks." The vendor of the operating
system thus determines part of the character of the program.
If the answer for an item is "yes" to anyone or more of the
questions, then the item is placed in the U portion. Otherwise,
the item is placed in the C portion.

Informal discussion with other persons since the prepara
tion of Tables I and II has led to numerous suggestions for
additional items to include on the lists, but it has led to few
shifts in portion from C to U or U to C, and little change in
the relative lengths of the U and C portions. The most com-.
mon sources for the suggested additional items have been
instances or varieties of items already included, situations
particular to systems software, and the characte(istics of pro
gramming languages used to implement the program or sys
tem, such as JCL or FORTRAN.

INTERPRETATION

Table II can serve as a basis for the interpretation of the
evidence available, given the background noted earlier. As a
first step, the C portion can be interpreted as citing items
controllable by those who manage the performance of the
analysis, design, programming, coding, debugging, testing,
documentation, and maintenance work; and the U portion as
citing items not controllable by those management personnel.
An example from each portion may help clarify this interpre
tation.

For example, Portion "C" includes the item "Source code
written in low-level language." The productivity of the per
sonnel maintaining assembly language programs tends to be
lower than for high-level languages. Who or what determines
that the program is to be written in assembly language? Usu-

ally it is the manager of programming, the team leader, or the
assigned programmer. Sometimes it is. organization policy,
expressed in the organization's standards manual. But that
expresses a prior determination by the manager, the team
leaders, or the assigned programmers. Furthermore, the pro
granimers and the team leaders are all answerable to the
manager, who, if he or she does not approve of what the
subordinates are doing, can always direct that they are to do
it differently and enforce his/her directive. The manager is in
the controlling position on the items in the C portion.

As a further example, Portion U includes the item "Diffi
culty of any mathematics involved." The presence of complex
mathematics tends to reduce productivity in maintenance.
Who determines the objective or function that the program is
to satisfy? Clearly, it is rarely the programmer, the team
leader, or the manager, since they are usually concerned with
how the program is to accomplish the function the user speci
fies. The user or customer is the one who normally sets the
requirements; and the analysis and programming staff, within
that constraint, then does the analysis, design, implementa
tion, and maintenance. In short, the fact that complex math
ematics is involved could reflect the algorithm choice made by
the assigned programmer, the team leader, or the manager.
But it is much more likely that it is determined by the user and
is not controllable by the manager.

Table II offers the basis for an additional interpretation.
Nearly all of the controllable (C) items that contribute to
making programs difficult to maintain originally got into the
programs because someone either deliberately put them there
or failed to take available action to reduce or eliminate them.
It was a manager who was responsible, and one of the results
is to hold down productivity.

Table II offers the basis for still another interpretation. This
one can be framed first as a question: How many of the
controllable (C) items characterized the program or system at
the time the developer turned it over to maintenance? A scan
of Table II reveals the unexpected conclusion that all the C
items may be present at turnover. Given the observation
noted earlier about personnel continuity, this means that the
development manager creates the maintenance difficulty but
is not there during maintenance to take the blame. Instead,
the maintenance manager has to take the heat for what he or
she inherited. The manager responsible for the mess leaves it
for someone else, the maintenance manager, to live with,
along with the consequent low productivity.

Table II can also be read that the maintenance manager
may also be assigned some blame. How many of the C items
are permitted to be perpetuated in, or are even introduced
into, the program or system during maintenance? Clearly, all
are candidates. In short, some m~intenance managers wallow
in what they inherit and the attendant effects on productivity;
others dig themselves an ever deeper hole; and some act to
offset or even reverse what they inherit.

A still further interpretation offers an interesting view of
the process of developing programs and systems. This too can
be framed first as a question: Do not the C items also cut
productivity during development by making debugging and
testing more costly and of longer duration? Again, the answer
clearly is affirmative, for correcting for bugs and specification
reinterpretations and oversights is virtually indistinguishable

Productivity in Software Maintenance 351

TABLE II-Program characteristics adversely
affecting maintenance productivity

"U" program characteristics
Logical complexity of task the program does
Number of different incoming and outgoing data items
Variety and variability in incoming and outgoing data
Difficulty of any mathematics involved

"e' program characteristics
Length of program
Shortfall in documentation's conformance to standards
Incomplete maintenance of documentation
Weak modularity
Nonhierarchical structuring of functions
Low independence and low functionality of any modules
Non-mnemonic names for data
Non-mnemonic names for routines, sections, procedures, etc.
Source code written in low-level language
Annotation not meaningful in source code
Irregular use of annotation in source code
Tricky, convoluted source code
Use of switches and flags
Use of numeric literals in source code
Level of nesting or compounding in IF statements
Use of compressed data in program
Number of versions of program to maintain
Scattering of input-output statements
Number of multiple-use indexes or subscripts
Number of indexes and subscripts
Vagueness and generality in data declarations

as an activity from maintenance. Does not this mean that
development managers sleep for a while in the bed they them
selves made? Do they tolerate it only because they know it
will not last long for them, or do they not see the connection?
What is the reason for their not correcting the problem?

DISCUSSION

Taken together, the interpretations and observations noted
above lead to six comments. One is that the complexity of a
program or system affects the cost of maintaining it. Simple
designs and simple implementations are possible for difficult
tasks, and complex designs and complex implementations are
possible for easy tasks. What the personnel do who are assign
ed to do the design and implementation, and how they do it,
are major determinants of complexity.5 Complexity can be
measured quantitatively and managed in development and
maintenance, yet not separately from the matters listed in
Table 11.2 A surprising observation from Tables I and II is not
the pervasive influence of complexity on maintenance pro
ductivity, but the low recognition of it!

A second comment is about the motivation for adopting or
permitting the C items during development. A review of these
items in Table II indicates that most are the easy way out, or
the path of least resistance. Each can be argued as being the
lowest-cost alternative in the phase of the life cycle in which
it is adopted or first permitted. The manager is usually taking
the alternative offering the least short-run cost. In other
words, transitory convenience for small cause. dominates the
manager's motivation, and offsetting unfavorable future

352 National Computer Conference, 1981

consequences-significant or even overwhelming over the
long run-are usually ignored in developing and maintaining
computer programs and systems.

A third comment is that such shortsightedness is rarely well
regarded outside the data processing field. For example, in
manufacturing automobiles, the need to do the later steps in
manufacture in part determines the nature of the earlier steps.
Each step is done in a disciplined manner to a formal specifi
cation. Thus, windshield windows could be made less expen
sively if they were made straighter, but what about the cost of
bending the glass later to fit the car body? The added cost of
that is greater than the cost of making the windshield glass
with more curve in it. Or take the case of the machinist who
believes providing the high degree of surface smoothness
specified for a transmission valve to be an unreasonable use of
his time. So he does not do it. Do the transmissions that get
the valves he makes work as well as the transmissions that get
the valves made to specification? And which transmissions
need maintenance sooner? And how often must the parts the
valve rubs against also be replaced? In business, the cost to be
minimized is the overall cost given the performance desired.
Sometimes that means using gold to conduct electricity in
spite of the well-known ability of much-less-expensive copper
to conduct electricity.

A fourth comment is that who is to pay the later costs is
almost always considered carefully. Thus, a person who buys
an available house pays to keep it heated, painted, and
repaired-the builder does not. But a person who designs and
builds his own house and then lives in it pays for everything
all the time. In the former case, the builder is little concerned
about the costs of use, since he does not pay them. He tries
to minimize construction costs. In the owner-builder case, the
costs of use and maintenance loom large.

Computer programs and systems fall mostly in this latter
category. Yet historically the builder of the program and sys
tem have acted as though someone else-the user and the
maintainer-were going to pay the costs of use and mainte
nance. Do not they work for the same organization, or are
they indeed totally separate, fiscally and operationally?

A fifth comment is that the technical means of correcting
the C items in Table II are widely known and involve largely
well-understood technology.4 A reexamination of Table I in
the light of Table II points the way. Most of the changes in
normal operating practice needed are trivial, but they are
departures from the traditional "anything goes" practice of
most development and maintenans:e work. An example is the
practice during debugging, testing, and maintaining of source
code of permitting personnel to change the source code direct
ly. An alternative practice is to state that a change in the
source code may be made only to make the source code con
form to the design as it is shown in the documentation-an
application of the old and respected principle of implementa
tion fidelity. Other examples abound.

A sixth and final comment takes the form of a question:
What is the merit in making maintenance work low in pro
ductivity, difficult, d~manding, and unpleasant?12 Programs
and systems will always need to be changed because orga
nizations and their environments change. Would not our or
ganizations be better served if any qualified person could
quickly and easily maintain any program or system? And

would not our organizations be better served if the qual
ifications of such a qualified person were kept open enough so
that finding people to fill that role would be much easier than
it is now?

CONCLUSION

Long ago in most organizations, the executives at the tipper
levels realized that the process of making things involved
tradeoffs. A very common tradeoff is making a bigger initial
investment in order to obtain a bigger stream of benefits or
cost reductions. As study of Table II indicates, people manag
ing the development and maintenance of programs and sys
tems apparently have not realized this yet. They are min
imizing the immediate cost instead of evaluating the tradeoffs.
In the old days, when hardware capability was expensive, that
may sometimes have been justified. But now personnel costs
dominate in data processing.

Somewhere in most organizations is an executive who is
concerned about the benefits and costs of programs and sys
tems over the full life cycle. Clearly, in most organizations,
that executive has not gotten the word yet that modest addi
tional cost early. in development could buy savings in later
development and substantial and continued savings in the
maintenance of programs and systems. Or, expressing the
matter another way, the low productivity that is expressed as

. the high cost of maintenance, and most of the problems suffer
ed in the maintenance of programs and systems, arise because
of the way managers choose to manage the development and
maintenance work.

REFERENCES

1. Boehm, Barry W. "Software engineering," Trans. Computers, Volume
C-25, Number 10 (Oct. 1976), pp. 1226-1241.

2. Chapin, Ned. "A measure of software complexity," Proceedings of the 1979
NCC (Arlington, VA: AFIPS Press, 1979), pp. 995-1002.

3. Chapin, Ned. "Software life cycle," Structured Software Development, Vol
ume 2 (Maidenhead, UK: Infotech International Ltd., 1979), pp. 17-40.

4. Chapin, Ned. "Structured analysis and design: an overview," Systems Anal
ysis and Design (New York: Academic Press, 1981), in press.

5. Chrysler, Earl. "Some basic determinants of computer programming pro
ductivity," Comm. ACM, Volume 21, Number 6 (June 1978), pp. 472·483.

6. Diebold Group. Improving the Utilization of Personnel Resources (New
York: The Diebold Group, 1979), 17 pp.

7. Ebert, R., et aI., Editors. Practice in Software Adaption and Maintenance
(New York: Elsevier North-Holland Inc., 1980),455 pp.

8. Lientz, Bennet P., and Swanson, E. Burton. Software Maintenance Man
agement (Reading, MA: Addison-Wesley Publishing Co., 1980), 214 pp.

9. Lientz, Bennet P.; Swanson, E. Burton; and Tompkins, G. E. "Character
istics of application software maintenance," Comm. ACM, Volume 21,
Number 6 (June 1978), pp. 466-471.

10. London, Keith R. Documentation Standards (New York: Van Nostrand
Reinhold Co., 1975),288 pp. --

II. Lyons, Michael J. "Structured retrofit-1980," Proceedings of SHARE 55
(Chicago, IL: SHARE 1980), 23 pp. in Session M767.

12. McClure, Carma L. Managing Software Development and Maintenance
(New York: Van Nostrand Reinhold Co., 1981), in press.

13. Parikh, Girish, Editor. Techniques of Program and System Maintenance
(Lincoln, NB: Ethnotech, Inc., 1980),289 pp.

14. Zelkowitz, Marvin V. "Perspectives on software engineering," Compo Sur
veys, Volume 10, Number 2 (June 1978), pp. 197-216.

Improving software testing in
large data processing organizations

by M. A. HOLTHOUSE
The Analytic Sciences Corporation
Reading, Massachusetts

and

C.W. LYBROOK
Chemical Bank
New York, New York

ABSTRACT

Software testing is one of the most critical tasks performed by
a large data processing organization. Testing is important in
the development of new systems, but it may have an even
greater impact on the maintenance of the production systems.
In spit~ of this, testing is rarely approached in the same disci
plined manner as are other software production activities.
Perhaps as a result of this situation, an organization can often
achieve significant improvements in both software testing ef
fectiveness and efficiency through a relatively low-cost invest
ment in testing methodologies, tools, and techniques. This
paper describes just such an investment undertaken by the
Information Services Group of Chemical Bank. Particular
emphasis is placed on how this program for testing improve
ment was implemented, in addition to what it consists of.
Finally, results of the program to date are presented and
analyzed.

INTRODUCTION

Major advances have been made in recent years in improving
the process of developing complex data processing manage
ment information systems. Under the general heading of soft
ware engineering, techniques such as structured program
ming, structured design, and formal requirements analysis
have gradually been introduced in Chemical Bank's Informa
tion Services Group (ISG) as well as in other large data pro
cessing organizations. In general these techniques have
gained wide acceptance, and their use has helped produce
computer systems of superior quality at lower total life-cycle
cost.

Yet one critical aspect of software development and main
tenance is often overlooked, or addressed only indirectly:
software testing. Testing is rarely approached in the same
disciplined manner as other development activities. It is often

353

the first task to be shortchanged when budgets get cut or
schedules begin to slip. Improved analysis, design, and pro
gramming te~hniques £an help feffiwethe -amount of error
correction necessary during the testing process, and as such,
complement thorough testing. Software testing increases in
importance for systems undergoing maintenance and minor
enhancement, since many of these systems were developed
without the benefit of these advanced software engineering
techniques. From a management viewpoint, the testing pro
cess provides the last (and often the only) opportunity to
influence the quality of a system (or changes to a system)
about to be placed into production. Hence a well-defined,
measurable approach to software testing can provide a major
source of understanding and control to top data processing
management.

The present lack of attention 10 s01tware testing in large
data processing organizations is not a result of the lack of
technology. Over the last decade, software testing has been
the subject of intense activity in the research community, and
numerous papers, books, and conferences have been devoted
to testing methods, techniques, and tools.l, 2, 3, 4 Some of this
technology has been applied and evaluated on large projects,
mostly in defense and related applications. 5

• 6 Even+n these
communities~1)~eyerJI~cenl_stumr-nmOJts that 85 to 90%
of software engineering project managers consider that test
ing and reliability continue to be among their most critical
problems.7

In this paper we will discuss in detail why and how Chemical
Bank addressed the process of software testing. In the case of
any technological change involving people, it is much easier to
define what should be done than how to go about imple
menting the changes. Accordingly, we will devote more of our
attention to the latter. We will present our approach both to
implementing the changes and maintaining them as an inte
gral part of the way ISG operates. Finally, although we are
not yet finished with the job of improving software testing at
Chemical Bank, we will present an analysis of some of our
results and progress to date.

354 National Computer Conference, 1981

INFORMATION
SERVICES

GROUP

QUALITY ----
ASSURANCE

I I
DATA INFORMATION SYSTEMS

CENTER SYSTEMS DEVELOPMENT
OPERATIONS INTEGRATION DEPARTMENT

Figure I-Information services group organization

GOALS FOR TESTING IMPROVEMENT

Chemical Bank had one primary motivation for making an
investment in improving software testing: reducing the cost of
providing information services. The 700-person Information
Services Group has a 1981 data processing and communica
tions budget of over $65 million, of which approximately $16
million is devoted directly to software development and main
tenance. (This is not the total Chemical Bank data processing
budget.) Preliminary analysis shows that around 25% ($4 mil
lion) is earmarked for testing activities, not including over
head expenditures to provide a dedicated IBM System
370/3032 and related support staff. Hence, if one could in
crease the testing efficiency of ISG (both of people and hard
ware resources) by as little as 10%, substantial savings could
be realized. In reality, of course, these savings would not show
up as reduced expenses, but as resources available for new
systems development or faster response to requested changes.
Hence measurement of increases in testing efficiency would
have to be made by examining the before and after testing
processes used, rather than on a bankwide, bottom-line basis.

Even more important was a desire to reduce the number of
software errors encountered in production. Production errors
can be extremely costly to repair and rerun, and the cost of
lost services to the bank can be very significant. Obviously,
these testing effectiveness issues are related to the efficiency
factors described above in that resources spent detecting and
recovering from errors in production could be much more
effectively used during testing. Studies have shown that an
error costs between five and ten times as much to fix when
discovered in production as when discovered during testing,
even excluding the indirect costs of production problems.8

A more detailed analysis of existing testing practices high
lighted a major link between efficiency and effectiveness.
Much testing was being accomplished using extremely large
files, usually copies of old production files. In addition to
being extremely inefficient (especially when requiring use of
tape files, special output devices, etc.), such tests were very
ineffective. A single production run ~will generally exercise
only a small portion of a large system's functions; hence,

errors in untested functions areleftto, be discovered later. In
hindsight, many software errors seemed to have been easily
avoidable if only a certain type of transaction or set of condi
tions had been tested.

It would be ideal to monitor progress in improving testing
effectiveness by tracking software error rates over time. How
ever, such a measurement is extremely difficult to make.
These measurements are subject to enough uncontrolled envi
ronmental conditions as to make almost any improvement or
degradation attributable to outside factors. For example, does
a constant error rate reflect no testing effectiveness improve
ment, or substantial improvement coupled with an increase in
the software change rate? Hence, as in the case of efficiency
improvement, we established process-related goals (reducing
use of production files and increasing testing thoroughness),
supported by before and after analyses on specific systems.

THE TESTING IMPROVEMENT PROJECT

The Quality Assurance (QA) staff of ISG (see Figure 1),
working with The Analytic Sciences Corporation (TASC),
took primary responsibility for addressing the testing issues
discussed above. As a first step, a project was undertaken to
define and implement a standard testing methodology to be
used at Chemical Bank. This project consisted of the devel9P
ment of detailed standards, procedures, guidelines, and sug
gestions for approaching software testing in a disciplined, con
sistent manner. The standard testing methodology provided
the basic framework for directing and implementing two other
critical pieces of the overall testing improvement effort: staff
training in testing techniques and strategy, and use of auto
mated testing tools.

The Standard Testing Methodology

The standard testing methodology is closely integrated with
the project life cycle (PLC) framework in use at Chemical
Bank. As a project moves through the various phases of the
development or maintenance life cycles, the program guides
and identifies testing activities to be performed and possibly
documented. The review points established in the PLC pro
vide the opportunity for quality assurance to evaluate testing
plans and progress at critical life-cycle milestones.

Figure 2 shows the basic elements of the program and their
relationship to the various PLC phases; specific review points
for each element are identified in Table I. The two most
critical elements are the testing objectives (analysis phase)
and the testing strategy (design phase). Together these ele
ments identify what is to be tested and outline a basic plan for
accomplishing the testing. The testing strategy is built from a
variety of test phases that test a particular piece or pieces of
the overall system, and which, according to a planned se
quence, culminate in a formal acceptance test phase.

The other elements of the testing methodology associated
with design and implementation phases relate to a single test
phase and begin with a detailed specification of the type of
testing to be performed in tl:!e phase. During implementation,
this test phase specification is gradually refined to specify

Improving Software Testing in Large DP Organizations 355

• FOA EACH TEST PHASE DE'F;r...ED IN TESTING STATEGY

~ REOUIRED AS DOCUf~ENTS

TEST
DOCUMENTATION

Figure 2-Basic test plan elements

distinct test cases, a detailed procedure for test execution, and
the actual test data for each test case. As the tests are exe
cuted, their results are evaluated and logged and finally docu
mented as appropriate.

Testing in the maintenance cycle (regression testing) is built
around the idea of a regression test manual. Basically, this
manual serves as a repository for test objectives, strategies,
procedures, data, and results defined during development
that can aid in retesting the system when it undergoes change.
When each change package is implemented, a change package
test plan is followed to run selected tests from various test
phases against the system. These tests may be drawn directly
from the ones documented in the regression test manual or
developed anew, in which case the regression test manual is
updated.

It is important to note that although all of these elements
are described as documents, some may not be necessary in
written form for a particular project. During the development
of the testing strategy, a decision is made about which ele
ments are to be written and provided as actual deliverables
with the system. Regardless of whether the elements are docu
mented in written form, they are all considered and applied to
every software development and/or maintenance effort, at least
informally. In these cases, a verbal summary of the key infor
mation related to each element is presented at the appropriate
review point.

Techniques and Training

Symptomatic of the cursory attention that testing usually
receives in any software organization is the lack of training
courses devoted to testing. Organizations spend hundreds of
thousands of dollars teaching or sponsoring courses in systems
analysis, design, programming, and documentation, but very
little on teaching people how to test. The training at Chemical
Bank centers around two kinds of activities:

• Management-planning, organizing, and allocating re
sources for the testing process

TABLE I-Testing methodology elements

Element Phases(s) Review Pqints

Testing objectives Analysis Proposal review
Testing strategy Design Internal design review
Test phase Design Critical design review

specification *
Test case Implementation In-process review

specifications *
Test execution Implementation In-process review

procedure *
Test cases* Implementation System certification
Test documentation* Implementation System certification
Change package Maintenance Maintenance cycle

test plan and change
package reviews

Regression Test Development Internal and critical
Manual Maintenance design reviews, system

certification

• Testing techniques-developing test strategies and
specifications, generating test data, and executing and
evaluating tests

Exactly which people in an organization need to be intro
duced to which elements is a function of the organization's
structure. At Chemical Bank, systems are developed and
maintained through a matrix type of structure, and applica
tion groups in the Systems Development Department (SDD)
work closely with user or client groups inside another bank
division. In this structure, Table II identifies specific training
courses and seminars addressed to particular people and
concepts.

TABLE II-Training activities

User Developer

Management
Standard testing methodology X X
Cost/benefit tradeoffs X
Development testing X
Maintenance testing

Testing techniques
Strategy design
Test specification X
Test data generation
Test execution/evaluation
Building regression tests

X X X
X X

X X
X X

X X
X X
X X
X X

X X X

356 National Computer Conference, 1981

Tools

The most important point to remember when discussing
automated testing tools is that they are automated, not auto
matic; that is, an individual must use them for them to be
effective. For maximum impact, tools must be made an inte
gral part of the testing process, and training in their use must
be institutionalized as well. Hence, although they are impor
tant enough to address separately, they are closely tied to both
the standard testing program structure and the training activ
ities described earlier.

The most significant testing tool in uSe at Chemical Bank is
the TRAILBLAZER TM* software analysis system. This tool
provides both summary and detailed information on how
thoroughly tests exercise the logic of a COBOL, FORTRAN,
or PL/I program. In addition, it highlights and categorizes the
severity of changes to a program in maintenance and identifies
whether the changes have been thoroughly tested. This tool is
used by project managers and QA analysts to assess testing
thoroughness quickly, and it also guides the analyst or pro
grammer in generating more extensive test data. This tool will
be discussed in more detail below.

A number of other general tools are also part of the testing
program and are used to improve the efficiency of test data
generation and test evaluation. These fall under the general
categories of

• Data generators
• File/database editors
• Formatted file/database output utilities
• File/database comparators

Some of these tools are used for other purposes as well, but
their use in testing is explicitly identified in the standard test
ing program and taught in the training courses. Finally, with
an open-library concept, we encourage project managers and
team leaders to share specific, handy tools that they have
created to help their own testing but that (possibly after some
re-tailoring) may prove useful to other projects as well.

IMPLEMENTING THE PROGRAM

Implementing a program such as the one described above is a
difficult task because' it involves effecting basic behavior
€hanges in-.a latge-number of individuals. Hence each individ
ual needs to be sold on the program; he or she needs to get
something out of it. To some extent, the goals of the organi
zation in establishing the program differ from the interests of
each individual, as summarized in Table III. Some of these
issues are complementary rather than conflicting and thus

Table III-Primary testing concepts

Individual

Short term
Efficiency
Noninterference
Tools and training

Organization

Long term
Effectiveness
Quality assurance
Standardization

HMTRAILBLAZER is a trademark of The Analytic Sciences Corporation.

relatively easily managed (efficiency versus effectiveness, and
standardization versus tools and training). Other concerns are
tougher to deal with, notably the short- versus long-term ori
entations, and the need for quality assurance versus a desire
for noninterference on the part of system developers or main
tainers. To manage these conflicting goals, a key considera
tion in implementing the program at Chemical Bank was that
the people ultimately responsible for the program were paxt of
Quality Assurance, not systems development. By concen
ing on selling the efficiency-related tools and training as an
integral part of the program, ISG was able to address the
short-term concerns of system development and the user
groups and still insure that the longer-term organizational
goals of standardization and independent quality assessment
were met. It is our view that the assignment of organizational
responsibility is a vital decision that must be made before
implementing such a program.

These insights into program implementation may seem ob
vious, but we did not fully understand many of them until we
were well into the process. Likewise, the program itself has
changed in numerous ways as a result of the implementation
experience. The evolution of the program was in fact planned
as part of a four-phase implementation strategy, which is out
lined in Figure 3 and described below.

Phase I

The important goals of this phase were to make the overall
ISG organization aware of the efforts to improve testing,
understand key issues of concern to various groups, and iden
tify and tap interested parties for useful input. In particular,
we wanted to get people from all levels of systems develop
ment involved in the project. A questionnaire on testing prac
tices and suggestions was distributed and returned by more
than 80% of the SDD professional personnel. Along with a
number of formal and informal interviews, this information
helped identify the ways the program could be tailored to help
SDD individuals as well as Chemical Bank as a whole. Feed
back on existing standards, training, and documentation re
lated to testing was also valuable in helping capitalize on
currently available resources and avoid repeating mistakes.
The output of this process was an initial definition of the
testing program, similar in form to the description provided
above.

Phase II

With a preliminary version of the program in hand, the next
step of the process was to try it out briefly with pilot projects.
Several such projects were selected, one in each major appli
cation area, and one in major life cycle phase (design, imple
mentation, and maintenance). Obviously, the full program
was not usedi_1l each case. The engagements were limited to
three months. The basic technique was to have an outsider
actually assist in the testing of the three projects, applying the
elements of the program as appropriate. This promise of real
assistance made the project managers receptive to the idea,
even though they would have to spend some time bringing the
tester up to speed on his project.

Improving Software Testing in Large OP Organizations 357

{
EXISTING STANDARDS

PHASE I
(September 1979)

PRELIMINARY METHODOLOGY DEFINITION

PILOT PROJECf APPLICATION

} PHASE II
(October-December 1979)

CANDIDATE METHODOLOGY REFINEMENT

{
TRIAL PROJECf APPLICATION

PHASE III
(1980)

STANDARD METHODOLOGY COMPLETION

FULL iNTRODUCTION PHASE IV
(1981-)

Figure 3-Test program phases

From our point of view, we were able to identify some
major shortcomings in the proposed program and to develop
some examples of its use on real projects. Even more impor
tant, we were able to solve a few pressing short-term problems
("I never knew you could do that!" was a typical response),
and, through these successes, albeit limited, we began to de
velop some satisfied customers who saw the benefits some
new testing tools and techniques could bring. The Candidate
Testing Program was then produced, incorporating the neces
sary revisions and including the examples of program ele
ments as-applied to the pilot projects.

Phase III

In Phase III, the Candidate Testing Program was described
throughout ISG and presented to selected user groups as well.
Initial versions of the various training courses were developed
and used to introduce members of trial projects to the pro
gram. In these projects outside assistance was limited to con
sultation and occasional tool development or tailoring, and
the efforts were undertaken over a longer term (three to six
months), encompassing either major portions of the develop
ment cycle or extended maintenance activity. It is worth not
ing that we were unable to assist (directly) all the managers
who requested that their projects be designated as trial
projects. We did, however, hold training courses for all who
were interested, and several projects began applying the test
ing program elements on their own.

Through these mechanisms, we were able to solve some
longer-term problems on larger systems and cultivate organi-

. zational support. The edllcatio!1al efforts began to take hold,
and the use of the various automated tools increased substan
tially. Finally, the final version of the testing program was
produced, taking advantage of all the trial project experience
and feedback generated through the initial training courses
and seminars.

Phase IV

In addition to putting the various procedures and activities
related to the ongoing maintenance of the testing program
into full operation (see below), the primary goal of this cur
rent phase is to bring all critical maintenance systems into
compliance with the program. Basically, this means devel-

QUALITY
ASSURANCE

Figure 4--Quality assurance organization

oping a regression test manual for each system's current prac
tice, then working to improve either the efficiency or the
effectiveness of their maintenance testing -procedures. This
activity requires a significant investment in effort. Neverthe
less, for the critical production systems of the bank, this in
vestment will pay dividends many years into the future. In
many cases, the break-even point is reached after only a few
months.

ONGOING SUPPORT

Any software engineering methodology requires regular
maintenance to remain effective, particularly in terms of on
going training and in adjusting and extending the technology
to handle changes in the organizational structure or environ
ment (e.g., distributt!d data processing). The testing program
also requires continued attention to insure that testing does
not suffer as a result of project schedules1ippage or reductions
in project personnel (budget cuts).

Hence, Quality Assurance has defined three progressive
levels of increasing involvement with the testing of individual
systems in development or maintenance:

• Testing program review
• Testing coverage audit
• Independenttesting

Referred to as certification levels, these procedures provide
increasing organizational assurance or system reliability
through third-party review.

Testing Program Review

This is the certification level for most systems at Chemical.
It uses the project life cycle review points to verify adherence
to the standard testing program. These reviews are handled by
systems assurance in the development cycle, and by change
management in the maintenance cycle (see Figure 4). Test
management provides technical assistance to both project
teams and the QA review teams in preparitig for these
reviews.

358 National Computer Conference, 1981

Testing Coverage Audit

At this certification level, QA test management uses the
TRAILBLAZER™ tool (including its change analysis fea
ture for systems in maintenance) to assess independently the
thoroughness of test data provided by the systems developers.
Thoroughness standards ranging from 75% to 95% coverage
of (changed) program logic are established as part of a sys
tem's testing strategy or regression test manual and agreed to
by QA, the developers, and the user(s). If these standards are
met, QA certifies the system; otherwise, the detailed reports
showing unexecuted logic are returned to the project team for
additional testing.

Since a QA analyst, with only a cursory knowledge of the
system to be tested, can quickly perform a testing coverage
audit, this certification level is relatively inexpensive. This
technique can be applied simply and inexpensively to
contractor-developed software as well as in-house products.
In many cases, the requirement for a specific thoroughness
level can be written into contracts with software suppliers.
Basically, this technique leads to improved testing quality, for
two reasons:

• The awareness ofthe project team that an activity (QA)
is evaluating the thoroughness of their testing improves
their own tests.

• Systems that are not thoroughly exercised are returned
for further testing. 9

Independent Testing

This highest certification level transfers system testing re
sponsibility from the development organization to QA. It is
relatively costly, since QA analysts must understand the appli
cations area of the system under test in order to do an effec
tive job. In_ an organization with a high volume and diversity
of applications being developed and maintained simulta
neously, this approach can only be justified for a few, ex
tremely critical systems.

Use of thistechniq~e has the advantage of providing a high
level of assurance in the correct operation of a system, at least
to the extent that its functions are understood by the QA ana
lyst. It also provides an extremely good vantage point for
general systems assurance activities, since the analyst is in a
position to know exactly where the system stands at any time.
When test data are developed in advance, specification
changes made in later stages are obvious; indeed, the activity
of explaining to an independent party enough about the sys
tem that tests can be developed generally encourages better
system specification.

EXPERIENCE AND RESULTS

As is clear from the discussion above, we are not yet finished
with the job of improving testing at Chemical Bank. Never
theless, significant progress has been demonstrated. Some
notable examples are presented in this section.

The first system to use the testing program from beginning
to end (a 40,OOO-line assembly language, on-line application),
went smoothly into production. Moreover, this system had no
problems requiring software changes in its first six weeks.

The testing pr{)gram standards and guidelines have been
included in software development contracts with outside ven
dors and used to define the testing strategy and regression test
manual as deliverable items.

A large, complex system in maintenance is being tested,
using 700 to 20,000 record test files instead of 750,000 records,
with no decrease in testing thoroughness.

The standard test set for another large system in main
tenance was found to be exercising only 21 % of the system's
logic. The test set has now been extended to over 60%, and
automated output comparisons have reduced paper usage and
have increased early detection of errors.

Perhaps even more important in measuring the success of
the testing program is its reception and acceptance by the
SDD staff. Although top management was behind the pro
gram from its inception, many systems developers were either
noncommittal or hostile early on. As the program moved into
its third phase, however, we were unable to respond to all the
project managers who wanted assistance in applying the pro
gram to their systems. As we began to present training courses
for project managers, programmers, and users, interest in
creased, and our hoped-for result occurred: many project
managers took the program themselves, tailored it to their
systems, and began using the techniques with no coercion and
only occasional assistance from Quality Assurance.

For several reasons, acceptance of the program has been
much slower in maintenance systems. Not only are personal
egos heavily involved in these systems, but it often takes a
concerted effort over an extended period to obtain a notice
able improvement in such systems. Gradually, however,
maintenance project managers are beginning to believe that
results are achievable, and a little healthy internal com
petition to raise testing coverage figures reported by
TRAILBLAZER™ has occurred.

At present we are not able to make any quantitative state
ments about declining error rates. Although most people in
volved with our trial efforts would agree to qualitative state
ments about improved testing effectiveness, we cannot draw
impressive graphs showing dramatic decreases in problem oc
currences. Even if we were to try, the data presented would
be subject to considerable qualitative speculation, as sug
gested earlier. On the other hand, our experience with several
maintenance systems has shown that software errors in pro
duction have ceased to be ones which could have been easily
found during testing, and month-end processing errors are no
longer the regular occurrenc.e they once were.

We are now tracking detailed change and problem rate
information for certain critical systems with the goal of pro
viding realistic analyses of system reliability performance and
trends. Ideally, such data will form a baseline against which to
measure pilot or trial project performance in improved test
ing; but changes in project personnel, the user environment,
or other concurrent software engineering improvement pro
grams could still make such analyses open to debate. Realisti
cally, moreover, in most organizations a proposal to establish
baselines first would probably be met with the objection that
"we already know the XYZ and ABC systems are problems;
we want to do something about it, not measure it." The real
tradeoff may thus be whether to devote scarce resources first
to measurement and then to improvements that l11~y be subse-

Improving Software Testing in Large DP Organizations 359

quently quantifiable, or first .to critical improvements and
later to measurements for tuning and maintenance of the
program.

We have chosen the latter course, and we believe our deci
sion is the correct one. It has made the programmers' jobs
easier in a number of ways, increased_ the user confidence
level, and, most important, has given all levels of ISG man
agement better visibility into and control over an extremely
critical part of their business operations.

REFERENCES

1. Hetzel, W. C. Program Test Methods. Old Tappan, New Jersey: Prentice
Hall,1972.

2. Miller, E. F., Jr. Tutorial-Program Testing Techniques. Long Beach, Cali
fornia: IEEE Computer Society, 1977.

3. Myers, G.I. The Art of Software Testing. New York: Wiley-Interscience,
1979.

4. . Digest for the Workshop of Software Testing and Test Documen-
tation. Ft. Lauderdale, Florida: IEEE Computer Society, 1978.

5. Holthouse, M. A., and M. J. Hatch. "Experience with Automated Testing
Analysis." Computer, 12 (1979), pp. 33-36.

6. Sorkowitz, A. R. "Certification Testing: A Procedure to Improve the Qual
ity of Software Testing." Computer, 12 (1979), pp. 20-25.

7. Thayer, R. M., A. Pyster, and R. C. Wood. "The Challenge of Software
Engineering Project Management." Computer, 13, (1980), pp. 51-59.

8. Boehm, B.A. "Software Reliability-Measurement and Management." The
Abridged Proceedings from the Software Management Conference. Los An
geles: AIAA, 1976.

9. Sorkowitz, A. R. op. cit.

Compiler validation-An assessment

by GEORGE N. BAIRD and L. ARNOLD JOHNSON
Federal Compiler Testing Center
Falls Church, Virginia

ABSTRACT

The Federal COBOL Compiler Testing Service (FCCTS) was
transferred from the Department of the Navy to the General
Services Administration (GSA) in May, 1979. GSA renamed
it the Federal Compiler Testing Center (FCTC) and expanded
its functions beyond that of COBOL compiler validation. This
paper discusses (1) the effect of the FCCTS/FCTC in the area
of COBOL over the past eight years, mainly in the area of the
standardization of COBOL; (2) the quality of COBOL com
pilers today contrasted with those of six and 10 years ago; and
(3) the effect of this work on the ADP procurement process
and ultimately the end user. Today's COBOL 74 compiler, on
the average, is far superior to its predecessors, developed for
COBOL 68.

INTRODUCTION

The Federal Compiler Testing Center (FCTC) is a Federal
data processing center in the Office of Software Development
under the Automated Data and Telecommunications Service
of the General Services Administration (GSA). The FCTC
represents the older Federal COBOL Compiler Testing Ser
vice, which was housed in the Department of the Navy, with
a much expanded function, which is necessary for support of
the GSA in the area of software management and the enforce
ment of procurement regulations regarding software acquisi
tion.

Since July 1, 1972, all COBOL compilers.brought into the
Federal Government must implement one of the four levels of
Federal standard COBOL. t The GSA has established Federal
property management regulations2 and procurement policies
requiring that all compilers (for which there is a Federal stan
dard) brought into the Federal government be tested for com
pliance with their respective standards.

The FCTC has the responsibility for the operation of a
governmentwide compiler testing center. This responsibility is
discharged by the FCTC through the implementation and
maintenance of the COBOL, FORTRAN, and BASIC com
piler validation systems. (A validation system is a comprehen
sive set of routines to test programming language compilers
for compliance with Federal and national standard pro
gramming language. Compiler, as used in this paper, refers

361

also to interpreters and other language processors that process
a source program to the point that it can be executed.

This paper addresses the experience gained in the last eight
years in the implementation of compiler validation systems,
the operation of a facility for generalized compiler testing,
and the effect of the testing center on the computer industry
in general.

THE FEDERAL COMPILER TESTING CENTER

In January 1979 the Office of Management and Budget or
dered the Federal COBOL Compiler Testing Service to be
moved from the Navy to the General Services Administra
tion. This was accomplished by May 1979. GSA changed the
name of the organization to the Federal Compiler Testing
Center (FCTC) and at the same time expanded its functions
to include the validation of programming languages and oper
ating system software other than COBOL, research into soft
ware development techniques/tools, and test and acceptance
criteria for newly developed or updated software.

The Federal Compiler Testing Center provides a major tool
to Federal data processing administrators for achieving sub
stantially greater compatibility and interchangeability among
COBOL, FORTRAN, and BASIC programs and automated
information systems. As a centralized service, it reduces the
cost of validation testing by individual agencies and the dupli
cation they might create. Performing a rigorous audit of stan
dards conformance contributes in turn tolower source pro
gram conversion costs, practically elimitlates programmer re
training, and makes feasible the sharing of software among
government agencies.

More important, perhaps, from the viewpoint of the com
puter industry at large, is the introduction of a uniform, sub
stantive method of quality assurance for systems software.
From this starting point may grow standardized quality testing
for other software components and more meaningful software
standards-in the computer industry.

COMPILER VALIDATION

For purposes of this discussion, the term compiler validation
refers to the process of testing a completed software product

362 National Computer Conference, 1981

(in this-case a compiler) in its- opefational environment-The
validation systems used must be capable of functioning in a
variety of dissimilar hardware and operating systems, the staff
performing the validation is in no way involved in the devel
ment or the maintenance of the products being tested, and the
result of a validation could affect the eligibility of the product
for procurement by U.S. government agencies. This environ
ment imposes unusual and stringent requirements on the por
tability of the validation systems and the auditability of the
implementation techniques used during the course of a valida
tion.

The purpose of validating a compiler is to test a coinpiler's
acceptance of standard language syntax, and, where un
ambiguous, language semantics. The latter, of course, is a
more difficult area, because we have not developed the appro
priate mechanisms for precise semantic definitions for pro
gramming language specifications. Compiler validation sys
tems do not evaluate the implementation techniques used for
the compiler or its quantitative performance characteristics.,

The benefits of compiler validation include a higher degree
of source program compatibility between systems, resulting
from reduced source code conversion costs. In addition to the
protection of an organization's programming investment, the
use of compilers that conform to their language specifications
(in most cases a national standard) will reduce the need for
retraining programmers as they go from system to system.
Programmers can concentrate on problem solving and not
become involved in specific dialects or idiosyncrasies of differ
ent programming language compilers. The principal purpose
of a language standard is to provide a disciplined, predictable,
efficient framework for software development. A, compiler
must perform according to that standard if the goal is to be
met. The validation of a compiler is required in order to
determine the degree to which it conforms to its language
standard (specifications). A compiler validation system tepre.;.
sents a working, executable interpretation of the pro
gramming language being tested.

From the experience gained by the FCTC over the past
eight years, it seems that the most successful approach to
compiler validation has been functional testing-the process
of executing a series of tests against features of a compiler or
software product. The FCTC expands on this definition slight
ly by producing tests combining the use of two or more 'func
tions to determine whether the interaction of those functions
has any effect on the results of each of the independent func
tional elements. The best way to describe the techniques used
by the FCTC in designing/developing compiler validation sys
tems is a combination of functional and interaction testing.

Functional and interaction testing can be used to test char
acteristics of software such as performance and integrity, but
they are most commonly used for specification testing. Thor
ough functional testing requires a complete test plan, system
atic controls and approaches to the testing effort, and objec
tive measurements of test results. The thoroughness of testing
is measured, in terms of number of functions and interactions
tested, and the revision and evaluation of test specifications
are relatively simple; Functlonallintenlction testing also offers
a high degree of visibility to a customer and is apt to be well
understood by that clistomer. This is important in the opera
tion of a governmentwide operation responsible for the vali-

dation of compilers. All parties involved baveua reasonably
good understanding of the testing process' and the relative
standing of a tested compiler or software product.

The most common disadvantage cited in regard to func
tional testing is that it isgenerally impossible to insure that all
features or decision points of a software product are tested.
With regard to compilers, it is certainly true that it is not
practical to test all possible combinations of language ele
ments and data types. This has not been found to be a serious
shortcoming, since it is certainly possible through interaction
to test all reasonable combinations.' What is "reasonable" is
admittedly a subjective judgment, but such subjectivity re
gardingtest limits is hardly unique to software testing.

A more serious problem, from the FCTC experience, is that
functional testing can be only as good as the specifications
being tested. Thus, it is an unfortunate fact that many im
portant features of a compiler cannot be tested because the
pertinent language specifieations are either ambiguous or left
to the discretion of the implementer. As a result, one of the
mafor fallouts from producing a compiler validation system is
that when vendors first get a chance to review the product,
there are generally a large number of requests for interpreta
tionsgeneratedfor the body responsible for interpreting the
language specifications. . ,

V ALIDATION SYSTEM DESIGN CONSIDERATION

A compiler validation system that is to be used on a variety of
different hardware types must have a high degree of por
tability. This has been successfully accomplished by producing
system-independent validation systems and an executive, rou
tine that is used to tailor or edit the programs making up the
validation system for a particular computer system. The medi
um used by the FCTC to distribute machine-readable copies
of compiler validation systems is magnetic tape-specifically,
9-track, ASCII/ 1600 BPI and 2400-character blocks (30, 80
character source images). This has been found to be the most
acceptable format used to date. There have been only a few
instances where the tape had to be converted to some other
format before it could be used.

, ,}'

IMPLEMENTATION CONSIDERATIO!;-lS

To implement a validation program or any program on a
foreign computer system,' the following must be accom
plished:

1. The character set used may have to be converted if the
validation hardware/software does not support the ASCII
code. ,.' "

2. All external r~ferences in the source programs making
up the validation system mu~t be resolved. This may require
modification of the source programs; alternately, itcould b~
deferred until execution time and·h~ndled through job control
language or operating system control statements.
, 3. Operating system control statements must be produced
that will compile and execute each of the source program~.

Additionally, the user must have the ability to make changes
to the source programs-i.e., delete statements, replace state
ments, and add statements.

4. The programs must be compiled. Any statements that
are not syntactically acceptable to the compiler must be mod
ified or deleted so that a clean compilation takes place and an
executable object program is produced.

5. The compiled programs must be executed. Anyexecu
tion time aborts must be resolved by determining the cause of
the abort. After deleting or modifying the particular test or
COBOL element that caused the abnormal termination of the
program, Steps 3 and 4 must be repeated until a normal pro
gram termination exists.

DESIGN PHILOSOPHY

The basic premise used in the design of a compiler validation
system is that of small building blocks which when taken
collectively become more complex and represent the total of
the language being tested. The primitive elements of the lan
guage being validated must be defined. (It is safe to say that
if a compiler does not support these primitives or incorrectly
implements them, then validation of that compiler will be
meaningless.) These language primitives will be used to define
the source code that will support specific tests.

The programs in a validation system that test the primitive
language elements are compiled and executed first during the
validation process. This should -insure the correctness of the
implementation of the primitive language elements. If prob
lems exist, it may be questionable to continue the validation,
since these primitives are both the building blocks of the
system and the foundation upon which the rest of the system
is built. There are, then, three types of Source code contained
in a validation program.

First, there is what can be called boilerplate source code.
This code is present in each of the validation routines and is
generally the same in each routine. This source code handles
housekeeping functions, which include initiating and termi
nating an execution time report produced by the program and
generalized code used by the program in establishing the truth
value of the results of each of the tests.

Second, there is test support source code for each test in the
program. This source code is necessary for initiating and set
ting up conditions prior to the test, for providing supplemen
tary/support code used during the test, and finally for provid
ing the code for eva.luating the results of the test. Inforrpation
regarding the test is passed to the boilerplate code, which then
produces a line entry on the execution report for that test.

Finally, there is the test code that represents the language
element being tested. This will always be the most complex or
highest.::level code contained in the program. The support or
boilerplate code is always made up of the primitive language
elements and is the least complex.code in the pro~ram. The
tests included in a program go from simple to increasingly
complex.
. The programs making up the validation system are designed
so that a single program does not attempt to test more thim
one language element or feature. The reason for· this is to

Compiler Validation-An Assessment 363

implement the validation system as simply as possible. If a
program tested two language elements, and one of them was
not supported by the compIler being validated, then the pro
gram would have to be modified in order to successfully com
plete the .test for the language element that was supported. If,
in the case above; a separate program had been used to test
each of the two language elements, then the program that
tested the language element not supported could be discarded
with little or no effort.

In the testing program produced for a language elemeati-
feature, the tests should begin by using the simplest form of
the language element/feature and grow progressively more
difficult until the testing is complete. It may be necessary,
depending on how many specific tests are required to test a
language element/feature satisfactorily, to produce more than
one program for a given language element/feature. Again, the
first program should contain the simplest tests, and the more
complex,tests should appear in the second or third programs.
This permits the testing of the simple forms of a language
element/feature even though the full language element/fea
ture may not be supported.

The test programs should be designed so that when the
source code in a given test is rejected by the compiler or
causes an execution time abort, the code can be easily deleted
in order to resume testing. The solution to this problem used
by the FCTC is to include source code following each test that
will be executed if the test Was deleted and indicate on the
execution report the test was deleted. For example,

identify test
initialization
test
branch to next test
test delete

(Support code)
(Support code)
(Test code)
(Support code)
(Support code)

If the "test" code and "branch to next test" code are elimi
nated, then the "test delete" code is executed, which causes
the execution report to document the test as having been
deleted.

Programs should be self-checking if possible, (There are
some cases where this is not possible and visual checking is
required, .but these are few and should be kept to a min'"
imum.) After the execution of each test, the program should
internally check the results of the execution of the test code
and determine whether the results are within an acceptable
tolerance. With large validation systems where the number of
tests are in the.tens of thousands, this is a must if the valida
tion is to be accomplished in a reasonable amount of time and
with a minimum of judgmental error.

The execution time report produced by each program mak
ing up the validation system inust provide as much informa
tion as possible, including the number of tests in the program,
the· number of tests that passed, ~he number of tests that
failed, the number of tests that require visual checking, and
the number of tests that were deleted. The execution report
should identify each test and point to the location of the test
within the source code. For each test failure, the report should
contain the results expected by the validation system and the
results obtained by the compiler, to be used in further analyz
ing the failure.

364 National Computer Conference, 1981

TEST SELECTION/DEFINITION

The most difficult problem in designing a compiler validation
system is that of selecting specific tests. The number of tests
must be finite, whereas the number of possible tests i~ roughly
infinite. The number of tests must be manageable and repre
sent a respectable cross-section of the language being vali
dated.

The approach used by FCTe is one of attempting to insure
that the validation system will test the limits of the compiler
in such a way that programmers, for the most part, will be
comfortable working within these limits. Programs that are
designed to fall within this category will be highly portable
across systems and allow users to reap the benefit of pro
gramming language standards.

Where there are defined limits in the language (e.g., size of
numeric variables, length of programmer-supplied words),
they are tested at both the maximum and minimum permitted
by the language specification-for example, the following
COBOL statement:

ADD ATO B
Where A and B are variables whose characteristics can be:
• Signed or unsigned (can be positive/negative

value or absolute value)
• Integer or decimal
• Synchronized or unsynchronized (within word

boundaries)
• Binary or character data representation
• 1 to 18 digit positions in size
• Direct or indirect reference
• Qualified or unique names
(1.5 billion possible test cases)

A manageable number of tests (say 100) must be designed to
cover the testing of as many as possible of the 1.5 billion
possible combinations of tests. As many combinations of attri
butes as possible must be used in the tests, to the point that
the designer. feels that the COBOL ADD statement has been
adequately tested.

Myers8 discusses boundary-value a,nalysis for software test
ing much like the FCTC guidelines. He goes one step further
in that he tests beyond the specified limits to determine
whether the software product handles the situation correctly.
Thus far the FCTC has not built a compiler validation system
that does negative testing or goes outside the defined limits of
the language specifications. It is likely that future validation
systems will have tests to determine whether a compiler per
mits programs to go beyond the limits established by pro
gramming language staIldar~.-flermissive compilers can have
a costly impact on software sharing and software conversion.

SYSTEM IMPLEMENTATION
EXECUTIVE ROUTINE

Compiler validation systems must by their nature be highly
system-independent. Therefore the systems produced and
used by the FCTC are generalized products, almost in the
same respect that an operating system is generalized when it

is received by a customer. Prior to the validation process a
generation process must take place in order to produce a
validation system tailored to the software/hardware environ
ment in which the validation will be performed.

The generation process is accomplished by using an execu
tive routine (written in the same language as is being vali
dated) that is provided with the validation system. The exec
utive routine resolves implementer names in the source code
of each of the programs and generates operating system con
trol statements necessary to compile and execute each of the
programs. The initial generation, including preparing all the
input to the executive routine, can be performed in advance
of the validation. Once the executive routine inputs have been
verified as being correct, it is a relatively simple process to
generate a working validation system suitable for the valida
tion environment. For the ongoing process of subsequent val
idations it is also easy to work with new releases/versions of
the validation system, since only the generation process need
be performed to have a new working system.

The executive routine is a software interface between the
computer system being validated and the person conducting
the validation. Although a suite of programs, through some
unwieldy process, could be manually implemented on any
given system, this method does not l~nd itself to the validation
process. Using this method, the implementation of the valida
tion system on two different computer systems could vary
drastically and produce differing results. As in any method of
software testing or validation, consistency of testing and con
trols for the process is of the utmost importance. In the case
of testing different compilers with the same validation system,
the implementation of the programs making up the validation
system must be the same if the results of the validations are to
be used in a meaningful comparison.

The executIve routine provides a tool necessary for insuring
consistency and providing the controls necessary to perform
equitable validations. In the case of the FCTC it also provides
a generalized interface to any system/compiler to be vali
dated. FCTC personnel need only be familiar with the execu
tive routine in order to select programs for compilation/exe
cution, make updates to the programs being selected for
compilation/execution, select or not select source code that
can be optionally included, and modify the operating system
control language generated for each program. A hard-copy
audit trail is provided that identifies what source programs
were selected and what changes, if any, were made to each of
the programs. This audit trail and the execution reports from
each of the audit routines are used in preparing the validation
summary report that sums up the results of the validation.

FUNDING COMPILER VALIDATIONS

The question of who pays for a compiler validation is ad
dressed frequentfy. The current government procedures re
quire that the requester, generally a computer vendor, pay for
all direct costs associated with each validation. This includes
salaries, travel costs, and the production of the validation
summary report. The rates being used for salaries will allow
the center to recover approximately 55% of its total cost if all
annually scheduled validations are performed. If any valida-

tions are cancelled, recovery rate is less than 55%; if any
additional unscheduled validations are performed, it can be
greater than 55 %. The average cost of a validation for the
period 1978-1980 was $3000 for labor plus travel and other
direct costs. The average number of hours spent by the FCTC
staff performing a validation and preparing the validation
summary report was 78 hours.

COBOL 684

Early experiences with COBOL compiler validation were re
ported in 1974 by Baird and Cook. 6 Many of the problems
identified at that time could be attributed to poor planning on
the part of vendors producing COBOL compilers. COBOL 68
has been implemented in one form or another by most
vendors.

Many errors reflected sloppiness and poor judgment on the
part of implementers. Seeing a compiler perform syntax anal
ysis and issue diagnostics on the content of comments in the
source program is humorous but of no use whatsoever. Other
errors were a result of trying to take a pre-COBOL-68 com
piler and upgrade it to meet the 1968 COBOL standard.
Several problems could arise from such an attempt as a result
of the difference between most existing COBOL compilers at
that time and the requirements of the 1968 COBOL standard.

Prior to the publication of the COBOL 68, there was no
stable base of specifications the implementer of a COBOL
compiler could use. The specifications for COBOL were
maintained by CODASYL7 and were changed about six times
a year. Some of the changes were incompatible with previous
issues of the CODASYL specifications. Vendors of COBOL
compilers could not make these changes to their compilers as
they were made by CODASYL because of their frequency of
appearance and the fact that their existing customer base
would not put up with compilers that changed six times a year.
The potential conversion problems would have killed any
hope for COBOL to become the widely used language it is
today.

When COBOL 68 was adopted, it was based on the 1965
CODASYL COBOL specifications. Compilers that had
evolved over the years mayor may not have been up to date
in comparison with the 1965 specifications. In this regard
many compiler errors were a result of the CODASYL specifi
cations having changed between the time the compiler was
developed and the time the COBOL standard was adopted.
Most of these errors were a surprise to the vendors who
thought their compilers were in line with COBOL 68.

Other problem areas were a result of trying to modify a
piece of software to do something it was never intended to do.
This produced many strange and seemingly unrelated com
piler errors. In some instances correcting one error would
cause several others to appear in what one would assume were
different parts of the compiler. For example, correcting a
problem with the REMAINDER phrase of the DIVIDE
statement in one compiler caused a problem to surface with
the COpy statement, which introduces text into the program
from a library. The COPY statement has nothing to do with
arithmetic and even less to do with the DIVIDE statement.

Compiler Validation-An Assessment 365

Needless to say, there was a high error rate associated with
COBOL compilers that were based on COBOL 68. The dis
appearance of these types of errors suggests that the avail
ability of an independently administered compiler testing fa
cility has had an impact on the development of COBOL com
pilers.

COBOL 745

When COBOL 74 was adopted, there were several things that
had taken place in the computer industry that would provide
for better compilers. The techniques for producing software in
general and compilers in particular had been refined and be
come more mature since the first compilers had been devel
oped fifteen years earlier. The vendors were more familiar
with the COBOL standard in 1974, and the majority chose to
produce COBOL 74 compilers from scratch rather than mod
ify an existing compiler. The vendors also took the COBeb
standard more seriously, since they were aware that there
would be a requirement that all COBOL compilers offered to
the government be validated by the Testing Center. The
COBOL Compiler Validation System for COBOL 74 was
available from the Testing Center relatively soon after the
standard was· adopted.

The Federal implementation of COBOL 741 identifies four
levels of implementation that are acceptable without an agen
cy's having to grant a waiver. They are low, low-intermediate,
high-intermediate, and high. (For COBOL 68 four levels
existed, but most compilers supported the high level or the full
standard.) As of this writing 35 compilers have been validated
within the last year, and their validation summary reports are
current. Eighteen have been validated at the high level, none
at the high-intermediate level, 10 at the low-intermediate
level, and seven at the low level. This represents support of a
greater variety of levels than was true for COBOL 68.

COMPILER ERRORS

The number of compiler validation errors have dropped sig
nificantly between COBOL 68 and COBOL 74:

COBOL 68
Maximum 50
Minimum 0
Average 18

COBOL 74
Maximum 49
Minimum 0
Average 5.8

The average number of errors for a validated COBOL 74
Compiler was 9.6 in 1977. As of this writing, the average has
dropped to 5.8 errors per compiler. During the period that
COBOL 68 compilers were validated, three compilers were
validated as having no errors. Currently 10 COBOL 74 com
pilers have been validated with no detected errors; When it is
considered that COBOL 74 is roughly twice as large and

366 National Computer Conference, 1981

complex as COBOL 68, this is a remarkable statistic. This
decrease in the number of errors was accomplished during a
period of the development of newer. compilers, while most
COBOL 68 compilers were validated during the maintenance
phase of their lives.

The compiler errors identified for COBOL 74 fall into two
categories: First, that in which the compiler does not produce
the correct results, caused by an implementation error or a
decision not to follow the language specifications; and second,
that in which the compiler simply does not support a feature
or a larlguage element.

The number of errors would be somewhat lower if non
support errors were ignored-and from an evaluator's point
of view in trying to determine the quality of a compiler, this
should be done. (Choosing not to implement a language ele
ment can be inconvenient to the user; implementing a feature
incorrectly can be disastrous.) This would bring the average
number of compiler errors down to 5.5 errors per compiler.

The areas of nonsupport identified in a validation summary
report generally result from a compiler;s being validated at a
level.of COBOL higher than the implementation level of the
compiler. Federal procurement regulations2 permit up to one
year to correct the errors in a delivered compiler unless the
procuring agency requires a shorter period. Therefore, com
pilers validated for offering to the government sometimes
have entire modules missing.

The features that fell. into the nonsupport areas the most
were the RERUN statement (19 times) and the Debug mod
ule (13 times). Switches (software), CLOSE REEL/UNIT,
and program collating sequence followed closely behind.

The compiler errors. associated with the incorrect imple
mentation of language features have a breakdown as follows:

Module
Nucleus
Table handling
Sequential I/O
Relative 110
Indexed 110
Sort-merge
Segmentation
Library
Debug
Interprogram

communication
Communication

% of Total Errors
45
2

24
12
5

.5
2
2
8

. 5

Not tested

The percentage of errors in the 110 modules is less than for
COBOL 68 compilers, probably because the I/O modules in
COBOL 74 are much better defined. The large percentage of
errors in the nucleus is not surprising, since most of the other
modules are dependent on interfacing with other systems'
software. The internal processing represented by the nucleus
is wholly controlled by the compiler, with no support from
outside operating system software.

SUMMARY

The impact of the FCTC on the computer industry has been
a positive one. The vendors perse see the FCTC as arnixed
blessing, providing an independent appraisal of their product,
and then .. requiring that deficiencies be ~orrected ... in accor
dance with Federal regulations. The quality of COBOL com
pilers based on COBOL 74 is much better than the quality of
those based on COBOL 68. The FCTC can take some of the
credit for this change in quality of compilers. As the FCTC
begins to expand its testing of FORTRAN compilers and
include the testing of BASIC compilers, it will be interesting
to note whether the trends are similar to COBOL's growth in
the face of an independent validation service.

REFERENCES

I. "Federal Standard COBOL (COBOL 74)," Federal Information Processing
Standard Publication 21-1. Superintendent of Documents, U.S. Govern
ment Printing Office, Washington D.C. 20402.

2. Federal Property Management Regulation, Subpart 101-36.1305-1. "FIPS
PUB 21-1; FedenlI Standard COBOL," General Services Administration,
Washington, D. C. 20405

3. American National Standard Code for Information Interchange, X3.4-1977,
Ameru::-an National Standards Institute Incorporated, New York 1977.

4. American National Standard COBOL, X3.23-1968, American Nationar
Standards Institute Incorporated, New York 1968.

5. Ameri9an National Standard Programming Language COBOL, X3.23-1974,
American National Standards Institute Incorporated, New York, 1974.

6. Baird, G: N. a~d Cook, Margaret M. "Experiences in COBOL Compiler
Validation,"Proc. NCC 74, AFIPS Press,Montvale, NJ, pp. 417-42L

7. Conference on Data Systems Language. (CODASYL)COBOL COMMIT
TEE JOURNAL OF DEVELOPMENT, P.O. Box 1808, Washington, D.C .
20013.

8. G. J. Myers. "The Art of Software Testing," New York: Wiley-Interscience,
1979.

An approach to tr8:nsfer verification and
validation technology

by MARK K. SMITH and LEONARD L. TRIPP
Boeing Computer Services Co.
Seattle, Washington

LEON J. OSTERWEIL and RICHARD N. TAYLOR
University of Colorado'
Boulder, Colorado

WILLIAM E. HOWDEN
University of California at San Diego
San Diego, California

ABSTRACT

The National Bureau of Standards' Institute for Computer
Sciences and Technology (NBS/ICST) has sponsored the de
velopment of a general guideline for computer software veri
ficationaridvalidation (V&V). The guideline is to be used by
government and'commercialpersonnel to plan, carry out, and
assess V&V activities. 'This paper outlines the scope, direc
tion, and status of this effort. A lifecyc1eV&V model which
forms the basis of the-guideline is described. It is the author's
conviction that planning for V & V is an aspect of software
development management, and that substantial, cost-effective
technology is readily available for general application. The
guideline to disseminate-this information has been developed'.

INTRODUCTION

The U.S. National Bureau of Standards (NBS) is charged with
the responsibility of promulgating standards for the devel
opment of quality software.NBSwas formally entrusted with
this responsibility under Public Law 89-306 (Brooks Bill). The
Brooks Bill requires NBS to develop standards that will allow
the "economic and efficient -purchase; lease, maintenance,
operation and utilization of 'automatic data processing equip
ment by federal departments and agencies." V & Vis the set of
procedures~activities;andtools useqto increase confidence in
software, an essential aspeCt of quality software development.
NBS has devised- a four-step- program for determining -and
promulgating high quality-V&V procedures and tools:--

1. Prepare a guideline for sound developmental V & V
practices.

2. Circulate the guideline as an NBS Special Publication.
3. Demonstrate the utility of the guideline through a delib

erate· analysis of costs -and benefits.

367

4. Publish the beneficial parts of the guideline as a software
V & V standard in the Federal Information Processing
Standards (FIPS) series.

To accomplish the first step of this program, NBS's Institute
for Computer Science & Technology (NBS/ICST) has con
tractedwith Boeing Computer Services Company (BCS) for
the development -of a guideline (hereafter referred to as the
V & V guideline) to perform software V & V.

The purpose of the guideline, like that of an engineering
handbook,l is to supply the practicing software engineer and
the student with an authoritative reference which covers the
field of software V & V -in a' comprehensive manner. The
guideline has been prepared by specialists. Its contents were
confirmed by field studies. Theguidetine -is to desclibe the
concepts, techniques and tools of modern V & V and to infe
grate them into an overall V & V methodology for the main
stream software developer. Planning for V&V is an integral
aspect of software development management. It is the au
thors' contention that the technology necessary to do this is
available, cost-effective and proven. Projects of all sizes and
application areas share similar needs. The V& V technology to
meet these needs can be tailored ,to individual situations.
Some projects may use simple manual techniques while others
may add a set of automated techniques. The key point is that
software quality issues should not be ignored or ~dequately
considered.

The guideline is not intended to be a project cookbook but
does present essential V & V techniques and principles. Since
projects vary in size, complexity, area of application, and
importance, different V&V methods are appropriate for
each. Thus the guideline-can be used to build aV&VpTan for
any specific project. .

The V & V guideline is designed to be used by a variety of
personnel. Customers and management can use it to define
the tools- and techniques to -be used. Programmers and
analysts can use it as a tutorial, as -it presents the concepts

368 National Computer Conference, 1981

underlying individual methods and gives references to more
detailed discussions of each method.

This paper discusses the preparation, rationale, content and
uses of the guideline and indicates how the initial guideline
will be updated to include new V & V practices and eventually
become a FIPS standard.

PURPOSE

Typical Audience

The guideline was developed for a well specified audience,
both technical and managerial. It was designed to assist the
policymaker, planner, selector of techniques/tools, and the
implementor. It can apply to a project team, an independent
V & V team or a quality assurance organization. For each audi
ence group, the guideline's intended uses are described be
low:

• Policymaker-The guideline presents certain funda
mental concepts, elements of general V&V approach,
and a basis for sound V & V policies.

• Planner-The guideline presents a process for devel
oping a V & V plan customiz.ed to the needs of a particu
lar environment or a specific project.

• Selector-The guideline discusses the selection and inte
gration of techniques and tools. It presents examples of
alternative ensembles of capabilities to fit various envi
ronmental and project needs.

• Implementor-For the novice V & V analyst, the guide
line explaIns principles and concepts of V & V. It also
provides guidance in the application of each technique
and tool. For the experienced V & V analyst, the guide
line will function as a reference handbook for the selec
tion, application and integration oftechniques and tools.

Typical Project

The 'typical' project for which the guideline is intended is
a mid-sized, in-house development or a significant enhance
ment to an existing system. The project would involve a team
composed of a lead manager and a group of analyst-program
mers (as opposed to a project requiring multiple levels of
management). Project duration might range from two months
to 24 months. Project size and budget are such that cost effec
tive techniques and tools can be employed. The application
does not involve unusual environmental or performance con
straints that would require specialized V & V techniques or
tools.

This definition gives an intuitive feel for a typical project.
The concepts presented and the techniques and tools de
scribed are applicable to a much broader range of projects.
However, the guideline does not directly address projects hav
ing unusual characteristics such as real time, embedded or
concurrent software, or projects which need special tech
niques for managing multiple resources or products.

(REQUIREMENl' • DESIGN\

CONCEPT IMPLEMENTED
\ SYSTEM

"'----MAINTAINED SYSTEM~
Figure l-Software lifecycle

GUIDELINE ORGANIZATIONAL THEME

The basic axiom of the guideline is that all software activities
should be organized around the life cycle concept. Within this
concept, V&V is a natural and essential activity. This is illus
trated by analogy in the next section.

Lifecycle Software V & V

In the dim reaches of the past, men constructed complex
physical structures without the benefits of modern engineer
ing. Palaces, temples and entire cities were built over decades
without the use of precise design documents or detailed build
ing procedures. In time, architectural principles, tools and
methods were consciously formulated and the day of the arti
san who carried everything in his head came to end. Builders
searched for more challenges, new limits to their abilities. It
was no longer imperative that they cling to the past; they were
confident that they could plan and design completely new
styles, devise new methods of construction and then success
fully implement their creations.

In less than fifty years, software development has passed
through an engineering development phase for which the
analogous phase in palace and temple building took place over
thousands of years. There is enormous economic and social
pressure to devise sound engineering concepts which will al
low software systems to be planned, designed and imple
mented with the same success and confidence that skyscrapers
and bridges are constructed. The basic organizational struc
ture in the emerging software discipline is that of the lifecycle
(see Figure 1).

The software lifecycle breaks the software development
process up into phases which separate intent, planning, con
struction and use. This division into phases is indispensible to
the construction of a "valid" or reliable product. Without an
unambiguous statement of intent, planners and builders will
construct the wrong product. Without planning, disastrous
errors will occur in the building stage that will wipe out
months or years of effort. Failure to consider different aspects
of the use of a product can also be disastrous. Ill-conceived
modifications or corrections may result in unforeseen struc
tural weaknesses in a system, causing it to collapse. It is
clearly most appropriate to also view the software life cycle as
the conceptual basis for software. V & V is not a separate
phase in a software lifecycle. 2

, 3 It is an integral part and a
principal motivating factor in each phase. At each stage of
development the product is reviewed to make sure it is a

, , ,
\ ,

\ ,
\ , , , ,

FEEDBACK " ,
"

Figure 2-Lifecycle product flow

correct elaboration of the previous stage (see Figure 2). The
succession of reviews and analyses from the current stage back
to the requirements is the only way both user and builder may
have confidence that a fully satisfactory result will eventually
emerge. V & V is the process of "confidence raising." Clearly
it is integral to each phase.

The underlying theme of the V & V guideline is the software
lifecycle. The procedures which are carried out in each life
cycle phase, their interactions across phases, and their use as
basis for a total lifecycle V & V effort are described in the
guideline.

Lifecycle Products and V & V Activities

Several recent studies4 indicate the vital importance of early
V & V. Studies also indicate that the only effective way to
motivate early V & V is to formally require the generation of
intermediate products involved in the V & V process. This in
cludes both products on which the V & V activities are carried
out and products which are generated by the V & V activities

PHASE
ACTIVITY

V&V
ACTIVITY

Figure 3-Lifecycle V & V

PHASE
PRODUCTS

An Approach to Transfer Verification 369

themselves. It is possible to describe V & V techniques and
methods independent of intermediate products but the discus
sion lacks focus and it is difficult to define formal procedures
for auditing or enforcing the application of the techniques.
The scope of a V & V activity can be clearly delineated by
defining it in terms of the product which it analyzes. The scope
can also be defined by the results of the V & V activity when
the V & V results are formally required as intermediate prod
ucts. They then can be used to enforce standards and to audit
V &V activities (see Figure 3).

The V & V guideline stresses the importance of intermediate
lifecycle products. The basic concepts of, and the motivation
for, individual methods and techniques are described in terms
of these products. Some methods involve the direct analysism
intermediate products for properties such as consistency or
completeness. Other techniques may use an intermediate
product to generate a test plan which is used later in the
lifecycle. The emphasis on lifecycle makes the guideline prac
tical and enforceable.

GUIDELINE CONTENT

Since V&V is not yet a widely understood discipline, this
guideline has been written in a self contained manner-all
necessary principles and techniques are included. The guide
line defines ways to customize the principles and techniques
for specific uses. The software lifecycle model enables one to
view these customized techniques of a coherent V & V plan as
individual instances in an overall V & V paradigm.

The guideline consists of three major sections (see Fig
ure 4): a discussion of the lifecycle V & V strategy, a guide to
planning customized V & V, and a detailed presentation of 30
basic V & V techniques. Examples are used to aid in presen
tation.

Lifecycle and Integration Framework

The first section is composed of three chapters which pre
sent the principles of V & V. An overview of software devel
opment follows the introduction. The overview makes the key
point that many catastrophic problems in software devel-

LlFECYCLE AND
INTEGRATION
FRAMEWORK

1. INTRODUCTION

2. AN OVERVI EW
OF SOFTWARE
DEVELOPMENT

3. SOFTWARE V&V
TOOLS IN A LlFECYCLE
FRAMEWORK

-to V&V PLANNING
V&V PLANNING 5. SAMPLE V&V

SCENARIOS

TECHNIQUE {. APPROACH FOR
AND TOOL SELECTING V&V
DESCRIPTION TECHNIQUES

& TOOLS

Figure 4-Guideline summary outline

370 National Computer Conference, 1981

Table I-Technique description format

Name
This is the accepted title, or when an appropriate gne
does not exist an invented title.

Basic Features
A short description of the technique or tool.

Information Input
A descr-iption of the Input required for use.

Information Output
A description of the results of the technique or the

. output of the tool.

Outline of Method
A brief list of the actions that a user is expected to
perform.

Example
An example to iIIustr~te the inputs, outputs, and
the method.

opment and maintenance are preventable! Analogies to other
disciplines (eg. home construction and law-making) are used
to Q'lotivate adoption of the lifecycle approach and give an
intuitive feel for the cha'Tacter of V & V.

The software lifecycle ~odel is also presented in the second
chapter. The essential properties of a lifecycle model are ex
plained and a discussion of the problem of deciding when to
exit a phase is included.

The third chapter discusses V & V technology and how the
technology applies in each of the lifecycle phases. V & V is
presented as a confidence raising process. The different needs
for confidence raising are discussed. The critical role of spec
ifications in the V & V techniques are briefly described and
degrees of possible automation are d~s(;ussed. Manual tech
niques and automated capabilities are considered. A firm
grasp ()f the material in these chapters will allow the reader to
make the transition from the principles of V & V to the specif
ics required for raising confidence in everyday progri\ms.

V & V Planning

The second section of guideline aids in the transition from
principles to practice. 1\vo chapters with different focuses are
devoted to this task. Differences between programming envi
ronments are considered in the first chapter of this section,
and the notion of a customized V&V plan is introduced. The
second chapter contains examples of V & V technology.

Programming environments (used in a broad sense) can
differ significantly even though the size and kind of software
being produced may be similar. Some of the differences dis
cussed are: the support software environment, configuration
management practices, existence and quality of interim life
cycle products (such as program design documentation),
budget for V & V, availability of tools, training of project per
sonnel, and of course, confidence level.

The notion of the V & V plan is introduced here as an aspect
of sensible software management, planning, and cost estima-

Effectiveness
A brief assessment of the effectiveness and usability
including underlying assumptions and difficulties that
can be expected in practice.
Applicability
An indication of the situation in which the technique is
likely to be useful.

Learning
An estimate of the learning time and training needed to
use the technique successfully .

Cost
An estimate of the resources needed.

References
Sources of additional information.

tion. The plan is $imply a document which details the V & V
practices which will be used during the project. Such a plan
details the information by project phase, indicating personnel
involved, customer interface required, acceptance criteria,
etc. The plan considers all the factors which distinguish the
project, the programming environment, and the V&V re
quirements.

To aid in the communication of these principles, the second
chapter in this section shows V & V technology applied to
some common software applications in direct examples. The
two application areas are general leclger transaction pro
cessing and a graphics application. Within each, the devel
opment of several functions is traced through the lifecycle.
Performing V & V in a typical maintenance situation is illus
trated, using a general ledger system example.

To illustrate how differing environments can affect the
application of V & V techniques, the exalllpies use three levels
.of technology. The most basic level consists of only manually
applied techniques. This is followed by a minimally auto
mated toolset, which includes a requirements representation
scheme. Lastly, use of a full toolset is presented.

Technique and Tool S~lection and Descriptions

This section contains an index of the V & V tools and tech
niques described. Each technique useful in one or more life
cycle phases can be referenced by either lifecycle phase, de
gree of automation, or resource requirements. Based on the
requirements for V&V, as identified in a project V&V plan,
this index will facilitate the identification of applicable tech
niques. This section also presents a comprehensive enumer
ation of V&V tools and techniques (Table I). Each tool and
technique is presented in an identical format.

At present, 30 techniques are described in this section.
General classifications of techniques and tools are utilized;
particular products or narrow instances of tools are not given
individual attention. Table II lists the current contents of this

section. (It is anticipated that this list will be updated period
ically to reflect new developments and changes in the V & V
field.) The guideline concludes with a general bibliography on
V & V and an index to the complete guideline.

Name
This is either the originators own title or else an invented title when
no accepted name exists or when the original title is misleading.

Basic Features
A short description of the results of using the technique.

Information Input
A description of the input essential to achieving lifecycle integration.

Information Output
A description of both the results of the tool and the information vital
to integration.

Outline of Method
A brief list of the actions that a user of the technique is expected to .
carry out. This outline may not be understood on first reading because
it is expressed in abstract terms; it should, however, be clear after the
example has been followed.

Example
These are taken where possible from case histories. If none exist
examples will be invented to illustrate each of the technique's actions.
It is recognized that any example chosen will not be familiar to all
readers. If an example is unfamiliar, a reader should read each
example with their own application area in mind. They may then find
that the principles discussed will suggest applications to situations
with which they are familiar.

Effectiveness
These are brief assessments of the effectiveness and usability of the
technique with emphasis on the underlying assumptions and on diffi
culties that can be expected in practice.

An Approach to Transfer Verification 371

Applicability
An indication of the kinds of situations in which the technique is likely
to be useful.

Learning
An estimate of the learning time and training needed to use the
technique successfully.

Cost
An estimate of the total resources needed for various situations to
carry the techniques out.

References
Additional ideas on "technique" format

Algorithm complexity analysis
Assertion generation
Cause-effect graphing
Comparator (code, file, test results)
Concurrency analyzer
Cross-reference
Data base assertions/validation analysis
Data flow analyzer
Design based functional test~
Dynamic assertion processor
Execution time estimater/analyzor
Formal reviews and audits
Formal verification
Inspections
Interface checker
Mutation analysis
Numerical error analysis
Peer review
Requirements tracability aids
Requirements-based functional testing
Simulation modeling (analytical)
Software monitor (spy program)
Specification simulation
Standards analyzer/auditor
Structure analyzer

Table II-List of techniques and tools

Algorithm complexity analysis

Analytic modeling of software designs

Assertion generation

Cause-effect graphing

Code auditor

Comparator

Cross-reference generator

Data flow analyzer

Dynamic assertion processor

Execution time estimator/analyzer

Formal reviews

Formal verification

Global round off analysis of algebraic processes

Inspections

Interactive test aids

Interface checker

Mutation analysiS

Peer review

Physical units checking

Regression testing

Requirement/specification traceability aids

Software monitor

Specification-based functional testing

Specification simulation

Structure analyzer

Symbolic evaluation

Test support aids

Test coverage analysi's

Test data generators

Walk-throughs

372 National Computer Conference, 1981

Symbolic evaluation
Test bed
Test coverage analysis
Test data generation
Walk-through

THE GUIDELINE DEVELOPMENT APPROACH

The Development Team

The individuals producing the guidelines have experience in
both the practical and theoretical aspects of software V & V.
This combination of skills and knowledge combined with the
checks and balances offered by the team approach yields a
high quality product.

The Development Approach

The development has been divided into phases similar to
those of the software lifecycle. The first phase, the require
ments analysis, resulted in the identification of the primary
objectives and the intended audiences for the guideline. From
this point, the behavioral, environmental, interface, packag
ing, and performance requirements for the guideline were
specified. During the preliminary design, a high level outline
was created. Next the objectives for each proposed chapter
were added to the outline. Detailed design resulted in the
comprehensive annotation of each chapter. During the con
struction phase, chapter drafts were produced first, then inte
grated into a complete draft.

As with software development, this process emphasized the
development of interim products and their review. There were
check points where the evolving product was examined to
make sure it was still 'on target.' These V&V steps included
both team and sponsor review of the statement of the require
ments, the high level outlines and chapter objectives, the
annotated outline, each draft chapter, and finally, the com
plete draft.

Supporting Work

The development of the guideline is supported by two addi
tional tasks (see Figure 5). The first is a survey of V&V
practices at ten sites. The second is an analysis of the survey
results, and an identificationuf the major factors affecting the
application of V & V technology. These tasks will help assure
the broad usability and applicability of the guideline.

The survey task

The selection of the survey sites was governed by several
criteria. Five sites, to be representative of the intended guide
line audience (and ultimately the resulting FIPS standard)
were from the federal ADP community. One of the major
objectives of the survey was to characterize the user commu
nity to ensure applicability of the guideline.

The remaining five sites were drawn from the private sec-

V&VSURVEY------~----~-----

FACTORS
STUDY

GENERAL
GUIDELINE

BUSINESS APPLICATION
GUIDELINE

Figure 5-Information flow between tasks

tor. They were to include representatives from the financial,
insurance and public utility communities. The intent was to
pick several business-oriented sites where there was a signifi
cant volume of data processing and where accuracy and time
liness were important factors. The primary reasons for survey
ing commercial sites were to investigate the basic differences
between the twb sectors and to look for new em€?_rging V & V
technology in the commercial sector that is applicable at sim
ilar federal ADP sites. These sites were also selected to repre
sent the expected audience for the guideline.

The survey collected information in four major areas:

1. Size, application areas, percent of time in development
vs. maintenance, etc.

2. The lifecycle, its phases, the products produced, reviews
held, etc.

3. Specific V & V techniques and tools utilized with a de
scription of each including information about its utili
zation

4. Formal or documented standards, guidelines and pro
cedures of each site; applicability and prevalent attitudes
toward standards in the environment

The survey was administered in four steps. A kickoff meet
ing was held to explain the survey and pass out the question
naires which were then filled out by personnet at each site.
The questionnaires were collected and participants inter
viewed to clarify and elaborate on responses. To conclude, a
summary report was prepared for each site and reviewed by
the participants for accuracy. These site reports and other
summary information from the survey will be published in an
NBS special report.

The factors study

The purpose of the study is to analyze information gathered
by the survey. The primary result will be the identification of
major factors affecting V&V technology in different applica
tion areas and programming environments. The study has not
yet been completed.

We started by looking at methods of categorizing environ
ments and the influences within these environments which
impact the success of V & V. These influences span a broad
spectrum and include language, application, local standards,
testing and quality assurance budget, tool availability, system
performance and availability, staff capability, and training
requirements. It is important to determine how these factors
will be taken into consideration in the development of V & V
guidelines and standards. The results of this study will be
essential in developing the guideline chapter which addresses
V & V planning for a specific environment or project. The
study and the related guideline chapter will help customize
V & V planning, technique/tool selection and V & V integration
for specific projects.

This study should also be useful in identifying techniques/
tools which are needed for V & V, but are currently unavail
able. These may be general purpose or more specific tools.
The use of these tools may be dictated by factors unique to a
particular application area or programming environment.

This study may also identify the need for other V & V guide
lines or software quality standards. The reports will be used in
determining such future directions.

GUIDELINE UPDATING

A guideline such as this one must not remain static. The first
draft Qf the guideline will be submitted to the sponsor on
November 1, 1980. During the next two years, the guideline
will undergo several changes to incorporate new V & V tech
niques, V & V application techniques, and empirical analysis
of the utility of V & V techniques. Based on government and
public review of the draft, a revised draft is planned for May
1981. The resulting NBS special publication is to be available
by the first quarter of 1982. Every effort will be made to
obtain the widest dissemination of the draft guideline to en
sure that the special publication will be of ma~imum use to
software engineers and nontechnical managers.

CONCLUSION

There are at least two major effects that can result from this
work. First, the guideline will be an important educational
vehicle. It covers the fundamentals of the emerging discipline
of software V&V. It describes the lifecycle approach to soft
ware development and the integral and pervasive role of V & V
in the process. The guideline will promote the importance of
V & V in software development and maintenance and aid in

An Approach to Transfer Verification 373

the establishment of agreed upon nomenclature for this disci
pline. It will provide ammunition for advocates and policy
makers and the impetus for the establishment of V & V poli
cies, standards, and procedures.

Secondly, the guideline will have broad effects throughout
the software industry. Through its adoption within the federal
government and its presence throughout industry, it will help
clarify the fundamentals of software V & V. The guideline
presents a comprehensive survey of techniques and generic
tools. An implicit result of this compilation will be the real
ization, or at least confirmation, of gaps in the current tech
nology. This will probably spur the development of needed
tools and techniques. The V & V guideline is part of a series of
V & V documents sponsored by NBS5

,6".

We hope that widespread distribution and review of the
draft guideline by government, industry, and university peo
ple will lead to a FIPS V & V standard that will be widely used
and relevant. Any experiences in performing software V & V,
or comments and recommendations concerning the content of
the V & V guideline should be addressed to the authors.

ACKNOWLEDGMENTS

Many of the ideas for the format and content of the draft
guidelines came from discussions with BCS and NBS person
nel. Especially helpful were Martha Branstad of NBS, Rick
Adrion of NSF (formerly of NBS), and Leon G. Stucki and
John R. Brown of BCS.

REFERENCES

1. R. H. Perry and C. H. Chilton, Chemical Engineer's Handbook, Fifth Edi
tion, New York, McGraw-Hill, 1973.

2. L. J. Osterweil, J. R. Brown, and L. G. Stucki, "ASSET: A life cycle
verification and visibility system"; The Journal of Systems and Software; I,
77-86, 1979.

3. W. E. Howden, "Life Cycle Software Validation", In Life Cycle Manage
ment Infotech State of the Art Report (to appear).

4. B. Boehm, "Some experience with automated aids to the design of large
scale reliable software", IEEE Trans on Software Engineering, Vol SE-I, I,
1975.

5. M. A. Branstad, J. C. Cherniavsky, and W. R. Adrion, Validation, Veri
fication and Testing for the Individual Programmer, Institute for Computer
Science and Technology, V.S. National Bureau of Standards, October 1979.

6. W. E. Howden, Validation of Scientific Programs, Institute for Computer
Science and Technology, V.S. National Bureau of Standards, Washington,
D.C. 1980.

7. M. A. Branstad, J. C. Cherniavsky, and W. R. Adrion, Validation, Veri
fication and Testing for Computer Science and Technology, V.S. National
Bureau of Standards, Washington, D.C. (Draft) April 1980.

Easy interactive access to batch image analysis software*

by RONALD L. DANIELSON
University of Santa Clara
Santa Clara, California

ABSTRACT

Effective use of batch software requires a relatively high level
of knowledge from the end user. Such a threshold can pre
clude application of existing software by potential users who
are unfamiliar with computer use. Image processing is an
example of an area with large amounts of existing batch soft
ware. An instance of the threshold problem occurs when nat
ural resource management experts, with minimal computer
application experience, want-tu-use ~atellite imagery--t6-aid
management decisions in their discipline areas. This paper
discusses the design of an interactive system to solve the prob
lem by allowing inexperienced users to employ existing batch
image analysis software with minimal supervision. The design
provides for online explanation of terms and functions, de
fault values for most parameters, and allocation of necessary
computer resources (e.g., disk files). The user-system dialog
may be conducted at any of three levels, allowing continued
use as experience is gained. The design considerations and
techniques used are generally relevant to accessing batch soft
ware for any application area. Difficulties of implementation
qnd expansion are also discussed.

INTRODUCTION

In any computer application there are two possible modes of
operation: batch, in which the user submits a task to the
computer and receives the results some time (minutes, hours,
days) later; and interactive, in which the user works on line
with the computer system and receives a rapid response to his

_ -inputs. It is generally agreed that batch operation makes most
efficient use of computer time, whereas interactive operation
makes most efficient use of the (human) user's time.· As the
cost of computer hardware has decreased, interactive use of
Gomputers has enjoyed a corresponding increase.

At the same time there are a number of application areas
with a considerable amount of existing batch-oriented soft
ware. Such batch software typically requires a relatively high
level of knowledge from the user before it can be effectively
employed. In particular, the user must know which programs
(by name) perform which application functions, what data

* This work supported in part by NASA-Ames Research Center under Univer
sity Consortium Agreement NCA2-0R685-81O.

375

formats are needed, what intermediate disk or tape storage is
required, and what job control statements are needed to in
voke the appropriate routines and allocate the necessary com
puter resources. This knowledge threshold often precluoes
use of batch software by unsophisticated users.

An example of an application area with a IMge body of
existing batch software is image processing. The NASA-Ames
Research Center has access to a number of batch image anal
ysis routines on several different computer systems (SEL 32,
IBM 360/67, CDC 1600, llliaeIV). Ames is also expe-ne-DGing
a growing interest, from state and local governmental agen
cies, in applying analysis of satellite imagery to a variety of
natural resource management activities (e.g., forestry, agri
culture, urban planning).

This combination has created a demand for access to image
processing capability by resource management experts with
little previous knowledge of computer use or image analysis.
Since guiding sizable numbers of new analysts through the
image processing tasks could quickly consume available staff
time, a means of allowing unsophisticated users to effectively
employ batch software with minimal supervision was desired.
Some form of interactive approach seemed most suited.

One technique, available at many computer facilIties, is to
use interactive editors to compose batch job streams for later
submission. However, this approach does not address the lack
of knowledge of the end users, since the editors involved are
not application-area-specific.

Another possible solution would be to convert all the exist
ing batch software to an interactive format. This solution has
several· drawbacks. First, it would be prohibitively expensive.
Second, many image analysis tasks are CPU-bound and not
truly suited to completely interactive use. Finally, there is
some evidence that much-of the insight needed for successful
use of computers for problem-solving actiVities occurs off
line,z suggesting that an easy-to-use batch processing ap
proach may be very effective.

The remainder of this paper outlines the design of the batch
analysis setup system (BASS), developed at Ames to allow
unsophisticated users easy access to batch image analysis soft
ware. The design employs current principles of person
machine interaction to insure a friendly user environment,
and provides online, process-specific explanations and default
values to reduce the knowledge required of the end user. At_
the same time the design is simple enough to allow rapid-

376 National Computer Conference, 1981

implementation and easy expansion. The technique is applica
ble to virtually any existing batch mode software.

INTERACTIVE SYSTEM CONSIDERATIONS

It is an all too familiar experience that computer profes
sionals, in attempting to provide a tool for general usage,
design a system suited to their own habits and needs and
poorly suited to those of the end user. 3 It is equally true that
the impact of a poor interface on the performance of the end
user is seldom considered a real system cost, although it obvi
o.usly should be. 4 Prior evaluation of established design prin
ciples for interactive systems can point out relevant areas for
any system design.

Perhaps the primary design consideration is to know the
user. 5 In the instance at hand, the users will almost always be
experts, in several discipline areas, but they will have little
previous experience with computer applications. They will
also generally not have had much experience with image anal
ysis, although they are highly motivated to gain such exper
ience, since they typically have application projects of im
mediate interest on which they will be working.

It is desirable that the interface behave uniformly in all
possible circumstances/ and that the interface be flexible to
maximize satisfaction across a wide spectrum of users. Kasik, 6

however, warns that too much flexibility may be over
whelming, particularly for new or inexperienced users.

The desire to accommodate a spectrum of users implies
s~t.isfyi~g users with different levels of experience. This capa
bilIty Will also allow users to continue using the system as their
level of sophistication increases. Bennete describes three rel
evant phases in the use of an interactive system as a tool:
uncertainty, in which the users overcome their hesitancy and
gain confidence; insight, in which they decide how to best use
the tool for their special needs; and incorporation, in which
they use the tool as an integral part of their problem-solving
behavior. Bennett further warns that users are generally ready
t~ use added power only after they are familiar with the pre
VIOUS level. It also seems true that users learn different aspects
of a system at different rates, 7 and that user inputs become
more terse as experience with portions of a system increases.!l

Several authorities advocate using different areas of a dis
play screen for different purposes in the user-system dia-
10g.'1·IO·11 Access of both system capabilities and user data by
function, rather than by name, II is important to allowing the
user to concentrate on the task at hand, rather than getting
lost in detail.

Finally, robustness in the face of user errors is an essential
attribute of any interactive system. Not only should the sys
tem not fail in the event of an error; it should also provide
meaningful error messages and a means for the user to obtain
full explanations if needed.

SYSTEM DESIGN

Constraints

Several constraints were applied before the design of BASS
began. For the most part, these constraints had little signifi-

cant impact on the design itself (although they complicate
implementation in several areas). The primary constraints
were ease of maintenance and possible portability. Con
quently, BASS is designed with a high degree of modularity
(a good practice in itself) and an eye toward expansion of the
number of image analysis functions implemented. Portability
dictated a design for a FORTRAN IV implementation and
isolation of all host-system-dependent features to minimize
difficulties in implementing BASS on a different host. Porta
bility also implied minimal assumptions about peripherals on
the host. In particular, the terminal is assumed to be a simple
line-oriented device (hard copy or CRT). This precludes re
serving various areas of a display screen for different uses in
the user-system dialog.

Minimal supervision of users was another consideration.
Consequently, the various image analysis tasks are organized
by function (e.g., classification) rather than by the names of
the particular batch programs implementing those functions.
There is online reference material, easily accessible to the
user, to provide quick answers for many probable questions.
There is also a log of all transactions performed during a
terminal session. Such a log provides a history of how various
image files were created and what is contained in different
parameter files, as well as providing a functional outline of the
image analysis tasks for new users.

Finally, it was assumed that all users would receive minimal
training, enough to be familiar with both image analysis (e.g.,
image characteristics, the analysis process, applications to re
mote sensing) and computer capabilities (e.g., 110 capabili
ties, what a disk file is, how to use the terminal).

Overview

BASS is designed to function as a complete intermediary
between the user and batch mode image analysis programs
already existing on the host ~cmj)uter system. This function
involves creating files of job control statements to invoke the
batch programs and linking those job control files to the host's
dynamic batch reader. It also includes prompting the user for
any parameter values needed by the analysis program (and
supplying default values if necessary) and creation of disk files
for storing parameters, communication of data between seg
ments of the analysis programs, and storing output. The log
maintained by BASS is in easily readable English and speci
fies all files and parameter values used in a particular execu
tion of an analysis function. The user may obtain a listing of
this file at the end of the session.

The overall structure of BASS is a two-level hierarchy (Fig
ure 1). The top level consists of a continually resident kernel,
composed primarily of logon/logoff routines, a single user
interface routine that handles all direct communication with
the user (both input and output), and an operating system
interface to handle all communication between BASS and the
host operating system.

The second level consists of several mutually exclusive
modules that are loaded as overlays beneath the kernel at
various times during a session. One module (HELP) contains
the online reference material available to the user. The refer-

Easy Interactive Access to Batch Image Analysis Software 377

ence material explains the use of BASS, the various image
analysis functions available, and the parameters needed by
each image analysis program. The HELP module is organized
as a tree of menu displays.

Each of the other second-level modules contains routines to
create the necessary job control files to invoke the available
analysis programs and to prompt the user (through the inter
face routine in the kernel) for desired functions, parameter
values, and file names. There are modules for three different
modes of user-system interaction, roughly corresponding to
Bennett's three phases of use. LOW provides naive users with
the detailed prompts and explanations necessary to enable
them to perform analysis of image data. MID provides mod
ately sophisticated users with more rapid interaction, reduc
ing the volume of output by providing more succinct prompts.
HIGH allows experienced users to control the dialog even
more by inputting parameter values and file names without
waiting for a prompt. The LOW, MID, and HIGH modules
are each organized as a two-level hierarchy, with a single
module executive routine and one functional routine for each

. of the image analysis functions implemented via batch pro
grams.

Since the function routines are completely independent of
one another, modifying any function routine (due to user
demands or changes in the batch program that implements the
corresponding image analysis task) has no effect on the per
formance of other function routines. Similarly, modifications
to one module do not affect the performance of other mod
ules.

Kernel

The kernel design includes three collections of subroutines
that implement functions common to all three second-level
interaction mode modules.

The logon/logoff routine welcomes the user to the system
and obtains a user name. The user name accesses a file con
taining the appropriate interaction mode for each user. If the
current user's name is not in the file (i.e., the user has never
interacted with BASS before), it is inserted, the mode is set
to LOW, and the user is.guided through a short description of
BASS. The appropriate interaction mode module is then
loaded, and control passes to the module executive. On return
from the module, the user is given a chance to list the history
file for this session and is then logged off.

The user interface subroutines implement all direct contact
with the user. This isolation insures that the user always works
in a uniform environment with regard to matters such as con
trol functions or error detection and announcement, regard
less of when the particular functional routine was written. It
also frees the programmer of a BASS functional routine from
those same concerns. The user interface is employed by all
routines in the interaction mode modules, as well as other
kernel routines, and is invoked by subroutine call.

Three parameters suffice for communication between the
invoking subroutine and the interface routine. One is a char
acter array containing a prompt to be displayed to the user
before asking for input. The design provides a separate entry

PARAMETER
EXPLANATIONS

KERNEL

MID LEVEL DIALOG

LOW LEVEL DIALOG

HI GH LEVEL DIALOG

Figure I-BASS structure

point for accepting input with no prompt display. The second
parameter is an array for returning values to the calling rou
tine. The third parameter indicates the type of input expected,
or that the interface should simply display the prompt and
return. The interface can return values of type character (arbi
trary length), integer, real, or logical (yes/no). More than one
distinct input value can be returned on any call, but only one
type of input. The interface checks all inputs to insure that
they are of the appropriate type. If not, a message is displayed
to the user, and new input is solicited.

The interface also scans each set of input for a user request
to access the online reference material (the characters
HELP). If such a request is found, the interface loads the
HELP module and transfers control to that module's root
menu display subroutine. On return from HELP, the inter
face reloads the correct interaction mode module, displays the
prompt that led to the help request, and awaits the desired
input.

The operating system interface performs operating system
functions for all other routines in BASS. Functions needed
include dynamic file creation_and deletion, allocation and
deallocation of files and peripheral devices, opening and clos
ing of files, linking job control files to the batch reader, and
determining the status of previously submitted tasks. If the
host system and batch software permit, all files should be
created in the user's file space to minimize conflict with exist-

. ing file names. The system interface checks for error condi-

378 National Computer Conference, 1981

What do you want hel p wi th?
1. How to use this system.

2. Information about image processing tasks.
3. Informati on about parameters.

4. Return to normal processing.

> 1
Which task's parameters do you want more information on?

1. Destripe
2. Cluster

3. Classify

7. Return to main help selection display

>.£
Cl uster function: whi ch parameter?

1. Parameter fil e name - PFILE

2. Input tape file number - ITPN

3. Separability value - DVM

16. Return to function selection display.

>.£
< explanation of ITPN >

Cluster function: which parameter?

1. Parameter file name - PFILE

<li
Which task's parameters do you want more information on?

1. Destri pe

< 1
Cl ass ify functi on: whi ch parameter?

1. Threshold value - THR

Figure 2-Sample interaction with HELP module

tions associated with its various functions and attempts to
resolve the errors by interacting with the user via the user
jnte~~Clc~~ T!le~ cause of the error and suggested remedial ac
tion (e.g., duplicate file name on creation, select a different
name) are reported to the user. Once the error is resolved, the
system interface returns to the function routine.

Isolating all operating system tasks in this manner frees
function routine programmers from checking and resolving all
possible errors. In addition, it is easier to maintain com
ity between BASS and future releases of the host operating
system, to implement new operating system functions as they
become available, and to transport BASS to a different oper
ating system.

HELP Module

The HELP module is designed to provide online reference
material for the user in three separate areas: the use of BASS,
the objectives of and functions involved in image analysis, and
the role played by (and typical values of) the individual
parameters required by each of the image analysis functions
implemented in BASS.

The user enters the HELP module from the kernel's user
interface routine by typing the characters HELP in response
to any prompt provided by the system. The combination of
entry via the user interface arid a-FORTRAN IV (i.e., non
recursive) implementation implies that the HELP module
contains its own simplified user interface, rather than using
that in the kernel. This simplified interface accepts single
integer inputs, checks to insure that they satisfy bounds con
straints (within the choices allowed by a particular menu), and
traps requests for help issued within the HELP module.

The basic format of user interaction within the HELP mod
ule is menu selection, in which the user is presented a series
of options and must type in a single number to make the
corresponding choice. Menus are arranged in a treelike hier
archy. The top-level menu selects which of the three available
areas the user wants help with. Second-level menus allow
choice of a particular subarea; for example, in the parameter
description help sequence, the second-level menu selects the
image analysis function that requires the parameter. Third
level menus narrow the selection still further (by selecting a
parameter within an image analysis function, for example).

After completing the actions resulting from a choice at a
particular level, the user is returned to that menu to make
another selection, on the assumption that help may be desired
on several related topics. One choice on each menu is return
to the next-higher-level menu. This allows the user to move
about in the HELP module control hierarchy, clarifying un
derstanding of a number of topics before leaving the HELP
module (see Figure 2 for a hypothetical protocol). As de
scribed in the preceding section, on return from the HELP
module the user is again given the prompt that was on the
screen when the help request was entered, and BASS waits for
entry of the originally expected value.

LOW Level Interaction Module

All three interaction mode modules perform the same basic
function within BASS and have similar structures. The func
tion is to create files of job control statements to invoke one
or more batch image analysis programs. The structure is that
of a local executive and one subroutine (functional routine)
for each of the image analysis programs available on the host
processing system.

The differences between the three modules lie in their ex
pectations of users' understanding of the various analysis
functions and the changes such expectations make in the user
system dialog. The LOW module expects users to have only
a little knowledge of image analysis and essentially no knowl
edge of the specific programs available on the host system. As
a consequence, it employs menu -selection techniques and
relatively long prompts to provide as much guidance as pos
sible to users. This allows new users flexibility regarding
which tasks they want to perform and the rate at which inter
action occurs, yet provides a controlled dialog in which the
users' choices are clearly and explicitly displayed. Figure 3
contains portions of a user-system protocol at the LOW level,
which should be consulted for examples during the ensuing
discussion of the module.

The executive routine displays a menu with choices for each

Easy Interactive Access to Batch Image Analysis Software 379

of the analysis functions, plus a choice to terminate the ses
sion. On the basis of the user input, the appropriate function
subroutine is invoked or, if termination was selected, the
LOW module returns to the kernel logoff routine.

Each function rou~ine first determines the names of any
disk files needed by the associated analysis program. These
files may be input or output data files, input parameter files,
or intermediate files between two or more programs com
ing one analysis task. The user is given a prompt describing
the purpose of the file and asking for a file name. A sub
quent prompt (if the file is an intermediate, output, or param
eter file; input data files must already exist) asks the user ifthe
file already exists. If not, the function routine creates the file
via the operating system interface.

For preexisting parameter files, the user is asked if the file
contains the desired parameters, and if not, the user is
prompted for each parameter. The prompt includes a short
description of the parameter and an associated mnemonic.
Default values are provided for most parameters if the user
simply enters a carriage return. When all parameter values
have been collected, the function routine allows the user to
review and correct them, if necessary, and then writes them to
the parameter file in the format expected by the image anal
ysis program.

After properly instantiating all parameter files, the function
routine writes the sequence of job control statements needed
to invoke the desired image analysis program(s) to a job con
trol file, and, using the operating system interface, streams
the job control file to the dynamic batch input device.

Next a log of all transactions is output to the session history
file. The history file includes the analysis function performed,
the names of all files created and their purpose, all parameter
values used, and the file transactions that will occur during
analysis. Figure 4 is a portion of the history file produced by
the user-system dialog in Figure 3.

Finally the function routine returns to the module executive
to allow the user to select another analysis function. Recall
that, at any time during this process, the user may enter the
HELP module to clarify understanding of the analysis func
tion or a particular parameter, then return to the function
routine to continue processing where it was interrupted.

The function routines are also aware of sequencing restric
tions between the various image analysis steps. For example,
the BASS classification routine knows a cluster statistics file
must exist before classification. If it does not, the classifica
tion routine calls the cluster function routine to allow the user
to create that file. On return, a message is displayed telling the
user to wait for completion of clustering; then the classifica
tion routine returns to the module executive. Similarly, the
module executive issues a warning on return from the clus
tering function that the. clustering task must be completed
before the user begins work on classification.

There are, of course, utility functions each interaction mod
ule must provide, in addition to access to the image analysis
functions. These include relinking a JCL file to the batch
reader (to repeat a function), checking for completion of pre
vious tasks, editing existing parameter and JCL files,. editing
control point and statistic files, and file transfer functions.
Such utility functions are placed in a second-level menu ac
cessed via a catchall utility entry on the initial level.

What task do you wish to perform?

1. Remove banding from an image (DESTRIPE)

2. Perform unsupervised clustering (CLUSTER)

3. Group the pixels of an image into distinct classes (CLASSIFY)

9. End this terminal session.

>~

Cluster function setup procedure:

Has bandi ng been removed from the input image?

> YES

Enter the name of the parameter fi 1 e (PFILE)

>~

Does the file already exist?

> NO

Di sk fil e c1 uspfil created

What file number on the input tape contains the image (ITPN)?

>~

What is the separability value for merging clusters?

< remai nder of parameter prompts >

Is there another image to be clustered?

>BQ

What task do you wish to perform?

1. Remove banding from an image (DESTR1PE)

Figure 3-Sample user-system protocol at LOW level

MID Level Interaction Module

As previously indicated, the MID module performs the
same basic functions as the LOW module, except-that users
are now assumed to be moderately familiar with BASS. For

cluster function history log

file creation service: file c1uspfil created for user rond

file creation service: file c1usstat created for user rond

input parameter file c1uspfi1
and input from mag tape uni t 10
were used to create cluster statistic file c1usstat
the following parameters were entered in c1uspfi1:

input file number = 2

separability value = 3.0

window size-·= 6 x 6 scaled distance

Figure 4-Sample history log corresponding to Figure 3 protocol

380 National Computer Conference, 1981

What task?

> CLUSTER

a 1 ready des tri ped?

>~

pfile?

> CLUSPFIL

already exist?

> NO

created

ITPN?

>£

DVM?

>~

ISW?

> 1

another image?

> NO

what task?

< 'rema i nder of parameter prompts >

Figure 5-Sample user-system protocol at MID level

such users, who know what actions the system can perform
and roughly what order activities occur for each of the image
analysis functions, the large amount of verbiage generated by
the LOW module can become a hindrance to good person
machtne interaction, rather than a support. The presence of
online reference material further reduces experienced users'
dependence on lengthy system prompts, enabling them to
easily fill in gaps in knowledge.

To combat this, the MID module executive routine does
not display an initial menu of possible tasks, but simply asks
the users which function they wish to perform and expects an
image analysis function as a response. The corresponding
function routine is then invoked. Note that a list of all func
tions is available to users in the second-level menu on image
analysis in the HELP module (Figure 2).

Similarly, each function routine prompts users for input,
using only one- or two-word prompts (typically the mnemonic
name used as part of the LOW-level prompt, thus providing
continuity with that LOW-level prompt). This greatly reduces
the amount of text displayed at the terminal and correspond
ingly speeds up user-system interaction. Figure 5 shows a
MID-level protocol for the same image analysis activities as
Figure 3.

Online help is still available at any time, but with increased
flexibility for users. Entering HELP in response to any
prompt gets the root menu, as in LOW-level use, but with less
verbose descriptions of choices. Movement in the tree control
'structure proceeds as on the LOW level. However, users may
append a function name to the HELP request, which directly
accesses the third-level parameter selection menu for-the indi
cated function. The parameters are listed by mnemonic on

these menus, again reducing the number of characters dis
played and speeding up interaction. Implementing these
changes requires a second (more terse) set of HELP informa
tion.

The history log is maintained with the same degree of detail
as provided by LOW-level function routines.

HIGH-Level Interaction Module

Again, the change between MID-level and HIGH-level in
teraction is toward reduced amount of display to users and
increased user control of the pace of the dialog, assuming
users to be very knowledgeable about BASS.

The HIGH-level executive expects users to input a function
name in response to a WHICH FUNCTION? prompt, which
results in invoking a particular function routine. In this case,
however, users may add (in parentheses) a name list of param
eter mnemonic and value pairs. Use of keyword arguments
with commands typically produces much lower error rates
than simply inputting values. 10 It also allows users to specify
values in any order. The function routine then provides short
MID-level prompts only for the missing parameters (see Fig
ure 6). This allows users to input values for the parameters
they remember are required, trus'ting to BASS to solicit val
ues for the others and place all parameters in the format
required by the image analysis program. In effect, this permits
users to proceed very rapidly in setting up the analy.sis tasks
they know very well, and to move more slowly with less famil
iar tasks.

The history log and help functions work as in MID-level
interaction.

IMPLEMENTATION AND EXPANSION

Existing Implementation

As of this writing, a subset of the complete BASS is oper
ating at NASA Ames Research Center on a SEL 32 system.
This subset contains the complete kernel, a complete HELP
module, and a LOW module with executive and function
routines for the following image analysis tasks: destriping,
registration~ clustering, classification, color assignment to
classes, CRT image display, and various hard copy (line
printer and color print) functions. All elements of this subset
function as described above.

All routines are written in FORTRAN, with the majority of
the code meeting ANSI standards. Exceptions include the use
of T format in the user interface routine to aid in checking for
help requests in response to a prompt and use of INTEGER*l
arrays to facilitate character storage and manipulation. Oper
ating system services are implemented via calls to monitor
service routines provided as built-in functions in SEL
FORTRAN. The complete system, with the kernel and either
the HELP or LOW modules loaded, occupies less than 20
Kbytes of memory. Total effort for system design and the
partial implementation was less than six person-months.

Easy Interactive Access to Batch Image Analysis Software 381

Expansion

The decision was made to implement only a subset of the
complete BASS design, since virtually all current l!sers of the
system fall into the naive user classification. However, con
siderable thought has gone into exactly what must be done to
expand the current implementation, either by adding addi
tional functions at the LOW level or by adding interaction
mode modules as the user community grows in sophistication.

LOW Level Expansions

To add an additional image analysis function to the LOW
level module, three actions need to be taken. The first is
simply to append the function to the initial menu in the mod
ule executive and modify the function routine invocation logic
appropriately. The second action is to write the function rou
tine itself. This requires creating meaningful prompts to solicit
needed information from the user; gathering that information
by a series of subroutine calls to the interface routine; and
outputting the information in the proper format to any param
eter files, the job control file, and the history file. Finally, the
HELP module must be modified (simple additions to menus
and branching logic, plus· several WRITE statements to actu
ally display the new information) to describe the purpose of
the new function in image analysis, and to describe any need
ed parameters. All of the above, of course, assumes the prior
existence of the batch program that actually implements the
analysis function.

The use that BASS makes of the user information file could
be greatly expanded. Users should be able to access data by
name. In a remote sensing context, such data would probably
be accessed by geographic area covered by a given image.
Each area description should include data on files containing
the image (both raw and processed) and existing parameter
and JCL files used in that processing. Such a database was
omitted from BASS, since a shortage of disk space on the host
system precludes long-term online data storage. It would be a
straightforward matter to include a modest file management
module within the kernel.

Adding Interaction Mode Modules

Implementing the MID-level modules requires substituting
a simple keyword matching parser in the module. executive
routine for the menu displayed by the LOW-level executive.
Each function routine requires new, shorter prompts for the
user, but the control flow is the same as for the LOW-level
function routines. Using a text editor, such changes are sim
ple. Implementing a second HELP module (HELP2) involves
using shorter descriptions in all menus and adding a keyword
matching procedure (similar to that in the executive) to the
root menu routine to determine which function (if any) the
user specified in the help request. The actual explanatory
descriptions need not be changed. Additionally, the user in
terface must be enhanced to determine the presence or ab
sence of a function name following HELP, and invoke HELP,

What task?

> CLUSTER (DVM=3. 0 ,ITPN=2)

pfi Ie?

already exist?

created

i sw7

Figure 6-Sample user-system protoc~1 at HIGH level

or HELP2 with the function name as a parameter, respec
tively.

Implementing the HIGH-level module requires a parser in
the module executive that can determine which parameter
values have been specified by the user in invoking a function.
The parser could be passed an array containing the parameter
mnemonics and return two arrays to the function routine: one
containing values (in the same order as the corresponding
mnemonics) and one containing logical values indicating
whether a value has been supplied. The function routines
could use the logical array to modify control flow based on
values actually input.

CONCLUSION

Providing effective access to batch image analysis programs is
a problem for many organizations engaged in transferring
image analysis technology to new user communities. An ideal
solution should require minimal supervision of users by train
ing personnel, yet provide support and guidance to foster
confidence in those new users. The solution should also pro
vide skills and an environment that continue to be suitable for
the users as they grow in sophistication.

This paper has described the design and partial imple
mentation of an interactive system to create batch job streams
for inexperienced users. The system allows users to select
image analysis programs by function rather than name, guides
users in selecting parameter values required by the batch pro
grams, creates and allocates necessary disk files and other
system resources, and provides online explanations of func
tions and individual parameters. Further, the system provides
these capabilities at three different levels of user-system inter
action, which allows users to maintain a high degree of effi
ciency as their sophistication increases, yet remain in a famil
iar, friendly environment.

The design reflects current viewpoints of important charac
teristics of the user-system interface. In addition, modularity
and ease of expansion have been considered at all phases of
the design. This has permitted a relatively inexpensive imple
mentation of a system kernel and modules to provide inter
tion with a community of naive users, while insuring that
additions to accommodate more sophisticated users will dove
tail smoothly with that implementation.

382 National Computer Conference, 1981

Initial reactions to the existing system are strongly positive.
As we gain experience with user interaction with BASS (and,
conversely, as users gain_experience with the system) imple
mentation changes within the design framework are antici
pated, and an eventual implementation ofthe complete BASS
is expected, paced by user demand.

ACKNOWLEDGMENT

The author would like to thank John Nunneley, who imple
mented most of the function routines for the LOW-level mod
ule, and Larry Hofman and Dave Hein, who provided consul
tation on the SEL operating system and implementation.

REFERENCES

1. Hansen, J.V. "Man-machine communication: an experimental analysis of
heuristic problem-solving under on-line and batch-processing conditions. "
IEEE Transactions on Systems. Man, and Cybernetics. vol. SMC-6, pp.
746-752, November, 1976.

2. Bennett, J.L. "The user interface in interactive systems." in Annual Review
of Information Science and Technology, vol. 7, e.A. Cuadra, Ed., Amer
ican Society for Information Science, Washington, D.e., 1972.

3. Mann, w.e. "Why things are so bad for the computer naive user." National
Computer Conference, AFlPS Conference Proceedings, 1975.

4. Rouse, W.B. "Design of man-computer interfaces for on-line interactive
systems." Proceedings of the IEEE, 63, (1975), pp. 847-857.

5. Hansen, W.J. "User engineering principles for interactive systems." Fall
Joint Computer Conference, AFlPS Conference Proceedings, 1971.

6. Kasik, D.J. "Controlling user interaction." ACM SIGGRAPHIComputer
Graphics, 10 (1976), pp. 109-115.

7. Nickerson, R.S. "Man-computer interaction: a challenge for human factor
research." IEEE Transactions on Man-Machine Systems, (1969), MMS-IO,
pp. 164-180.

8. Sackman, H. "Experimental analysis of man-computer problem solving."
Human Factors, 12 (1970), pp. 187-201.

9. Martin, J.D. Design of man-computer dialogues. Englewood Cliffs, New.
Jersey: Prentice-Hall, 1973.

10. Miller, L.A., and Thomas, J.e., Jr. "Behavioral issues in the use of inter
active systems." International Journal of Man-Machine Studies, 9 (1977),
pp. 509-536.

11. NievergeIt, J., and Weydert, J. "Sites, modes, and trails: telling the user of
an interactive system where he is, what he can do, and how he got there."
Berichte des Instituts fur InformatiklNr. 28, Edgenossiche Technische
Hochschule Zurich, January 1979.

A unified approach to online assistance

by NATHAN RELLES and NORMAN K. SONDHEIMER
Sperry Univac
Blue Bell, Pennsylvania

and

-GIORGIO INGARGIOLA
Temple University
Philadelphia, Pennsylvania

Help! I need somebody.
Help! Not just anybody.
Help! I need someone. Help!
... Won't you please, please help me?
Help me! Help me!

© 1965 Northern Songs Lt<\.
John Lennon and Paul McCartney

ABSTRACT

Many interactive computer systems have some form of HELP
or assistance commands. Effective online assistance requires
a well-defined framework that addresses the needs of both the
end-user and the assistance provider. This paper presents such
a framework, whose generality and usefulness come from an
application-independent assistance processor and a highly
structured database of assistance information. Major consid
erations are (1) the types of assistance interactive users need,
(2) the data structures and relationships required to provide
comprehensive assistance, (3) software architectures that en-

-courage and support effective forms of assistance, and (4) the
programming effort required to include and maintain online
assistance. To make online. assistance effective and eco
nomically feasible, the paper proposes a way to integrate as
sistance into other phases of the software life cycle.

INTRODUCTION

Ease of use is now recognized as a paramount goal in devel
oping interactive software. The typical interactive user is no
longer a data processing professional acting as an inter
mediary between problem solvers and a computer. Rather,
systems are being used by the problem solvers themselves.
These users want to interact with a computer without exten
sive training or programming skills. One way to meet these
needs is through online assistance: useful reference informa-

383

tion, descriptions of possible actions, explanations of results,
recognition of errors, and indications of recovery strategies;

Online assistance offers several advantages over conven
tional reference manuals and user guides. First, the physical
distribution of systems and users and the requirement for
regular updates can make online assistance more timely and
economical. Second, some types of assistance can be provided
online in a-way that is awkward or impossible in written doc
uments. For example, with online assistance a user can easily
follow a chain of cross-references that would otherwise re
quire considerable physical and mental dexterity with a writ
ten manual. Finally, the use of online assistance makes it easer
to monitor a system's usability and identify those aspects that
most frequently puzzle users.

Many commercial systems have some form of HELP or
assistance commands. 1-6 These systems generally provide only
reference assistance: summaries and elaborations like those
normally found in a manual. Some experimental systems have
provided more interactive assistance in the form of menu
selection, intelligent intervention, user-dependent protocols,
and natural language interfaces. 7-12

Effective online assistance requires a well-defined frame
work that addresses the needs of both the end-user and the
assistance provider. In this paper, we describe a framework
being developed to integrate online assistance with other ele
ments of the software life cycle. The generality and usefulness
of the framework derives from its use of an applica~ion
independent assistance processor and a highly structured
database of assistance information. Major considerations are

384 National Computer Conference, 1981

the types of assistance interactive users need, data structures
and relationships required to provide comprehensive assis
tance, software architectures that encourage and support
effective forms of assistance, and the programming effort re
quired to include and maintain online assistance.

PROBLEMS AND CHALLENGES

Despite the existence of some online aids, users are often
forced to turn to conventional sources of information such as
manuals, human consultants, and the tutorial graffiti that
adorn so many terminals and their adjacent walls. One reason
for this is the absence of policies and guidelines that encour
age the provision of online assistance and software tools that
simplify their implementation and maintenance. As a result,
online assistance is not always available; where it is available,
its characteristics do not always lend themselves to effective
use.

To be used effectively, online assistance must have the fol
lowing characteristics:

• robustness-the ability to answer a broad range of ques
tions, not only about the system being used, but about
related systems. While editing a program, for example,
the user should be able to ask with equal facility about
editing procedures, the programming language being ed
ited, or the operating system.

• flexibility-assistance should be provided at a level of
detail appropriate to a user's needs. Users are often ham
pered by having to look through several paragraphs to
find the single fact they require. It should be possible to
request concise descriptions or successively more de
tailed explication.

• context sensitivity-the ability to provide assistance reie
vant to the user's current situation. For example, when
an error has occurred, assistance should be obtainable
without requiring the user to identify the error or related
conditions that caused it.

• unobtrusiveness-the ability to request assistance with
out interrupting the task at hand. Many assistance sys
tems are implemented as independent job control state
ments. Having to terminate one's current task to ask for
assistance is not only a distraction and a nuisance; it can
also cause inefficiencies from having to save and restore
the working environment. In fact, some programs cannot
be suspended at all, precluding the availability of online
assistance altogether.

• consistency-the ability to obtain assistance in similar
ways on all of the interactive programs that comprise a
larger system. The best way to achieve consistency is by
integrating assistance facilities at the operating system
level. Indeed, the absence of such integration is the ma
jor reason that assistance is often provided for an -oper
ating system's command language but not for its consti
tuent application programs. Application developers have
either omitted online assistance altogether, have devised
their own inconsistent schemes for providing assistance,
or have had to mimic as best they could the operating
system's assistance processing capabilities.

I
I
I
I
I
I

I L __
L ___ _

Figure I-The assistance environment

• cooperation-the ability to perform an operation auto
matically after certain requests for assistance. For exam
ple, after a user asks how certain attributes of a file can
be changed, it should be possible for the user to say, in
effect, "okay-do that for me."

The importance of these features is clear to anyone who has
used (or watched others use) ineffective assistance systems.
After a few unsuccessful attempts to get answers to their
questions online, users revert to their more reliable sources of
information, and the assistance system falls into disuse. Some
empirical evidence suggests that the degree to which the
above features are present has a significant effect on user
performance and self-confidence.8

A UNIFYING FRAMEWORK

Overview

Given the above problems and challenges, we propose that
an operating system include an Assistance Database (ADB)
and an Assistance Processor (AP). The ADB is a highly struc
tured database that can be used to represent the commands,
concepts, and functionality of any application and of the oper
ating system itself. The AP is an application-independent pro
cessor that interprets assistance queries against the ADB. A
single processor can meet the challenge of consistency. With
suitable software interfaces, it can be unobtrusive, context
sensitive, and cooperative. An appropriately structured data
base can make assistance information robust and flexible.

Figure 1 depicts the interaction between a user, an applica
tion program, and the Assistance Processor. A statement en
tered by the user is directed either to the application or to the
AP. Requests for assistance are transparent to the applica
tion. Where appropriate, the AP may use menus or prompts
to cope with ambiguities and potentially long explanations.
The application program and the AP may exchange messages
for several purposes, such as

• to establish the state of the user, e.g., the objects created,
the sequence of commands used, or the last error made;

• to have the AP display explanations, default values, re
covery strategies, and the like;

• to record information about users' requests for assis
tance; and

• to cause the application program to take specific actions
corresponding to certain assistance requests (viz., "do
that for me").

The Assistance Database consists of three major parts,
shown in Figure 2: fixed assistance data, fluid assistance data,
and long-term (monitoring) data. Fixed assistance data com
prises the permanent, largely invariant data created and main
tained by an assistance administrator. The assistance adminis
trator should be viewed as a role, not a person; it may be a
single person, a group of "assistance providers," or the com
bined activities of programmers, technical writers, and appli
cation experts. Fixed assistance data corresponds, for the
most part, to the information normally found in user gu.ides
and reference manuals. The dictionary portion of the fixed
data contains terms that can appear in assistance queries. The
network of assistance information represents the concepts
pertaining to an application and how they are interrelated.
These concepts and relationships are also associated with seg
ments of text, such as tutorial paragraphs, explanatory mes
sages, command descriptions, and examples.

Fluid assistance data, possibly null at the beginning of each
user session, reflects the state ofthe user's interaction with the
application and its assistance information. This contextual
information enables the assistance processor to focus on de
sired information by using clues from the current query, prior
queries, and previous interaction with the application. As is
illustrated in Figure 2, fluid assistance data can also include a
profile of the user's experience level, frequency of use, inter
action style, etc. Both the application program and the assis
tance processor can update the fluid assistance data, part of
whose structure is linked to the permanent network of assis
tance data.

Long-term data consists of assistance queries that could not
be satisfied, frequency tabulations for referenced messages
and nodes of the network, and other statistics concerning the
use of the assistance processor. This information is not in
tended so much for the AP as for the assistance administrator,
who uses the information to maintain and improve the ADB.

The Assistance Database

A rich structure of information in the assistance network is
crucial to providing effective assistance. We believe that re
search in knowledge representation has given us a basis on
which to build such networks.13

-
15 This section sketches the

structure of a network representation we are developing.
The most elementary forms of assistance are provided by a

database of unrelated nodes. Each node represents a concept
such as a command, parameter, or definition, and is linked-to·
some portion of text. In Figure 3, we show the associations
between concepts and their displayabletext fragments as arcs
labeled TEXT. This simple structure makes it possible to
display assistance information associated with concepts the
user can ask about. For example, a request for information
about random files causes the assistance processor to display
the text associated with that node.

To provide more diverse types of assistance, nodes can be
interconnected in hierarchies. Several existing HELP systems

A Unified Approach to Online Assistance 385

FIXED
ASSISTANCE

DATA

FLUID
ASSISTANCE

DATA

LONG·TERM
DATA

Figure 2-The assistance database (ADB)

incorporate such hierarchies in their assistance data
bases. 1,3,4,6,7 The @@HELP system at the University of Wis--
consin, for example, has a node for each program in the
system library. Each such node has descendant nodes that
describe alternative command formats; each format node has
descendant nodes that describe the parameters and options in
detail. 6

Important improvements can be made to the way thathier
archical relations are currently provided in assistance data
bases. By having distinct hierarchical relations, a user can
focus quickly on required information. Rather than having to
display all of the descendant information related to a concept,
a user can obtain just those parts that are related in a partic
ular way. A fixed set of well-defined relations also enforces
consistency in the network and directs the retrieval of assis
tance information. In an associative network, these hier
archies are represented as differently labeled arcs.

One of the most useful hierarchical relations is the IS-A
relation, which associates several concepts with a more gener
al or encompassing concept. In Figure 3, for example, the
IS-A relation shows that all random files are files, as are all
sequential files. Viewed as the subset relation, the IS-A re-

A file is a collection of records
stored on a device known as

To read a file, you must first

-
Figure 3-Sample of assistance data

386 National Computer Conference, 1981

COMMAND: [> ARCH I VE
SOURCE FILE: [> PROGTS'
READ KEY: [> R2D2
TERM DATE: [>

Please specify the date
after which the archive
entry may be deleted.

1 FORMAT J 1 EXAMPLE J 1 DEFINE J 1 DEFAULT J
Figure 4---Context-sensitive online aids

lation can be used to describe many other types of concepts:
commands, parameters, allowable values, and so on. Such
relations enable a user to obtain descriptions at varying levels
of generality.

Two other relations that are associated with the IS-A hier
archy are MODE and REALIZES. MODE relations intro
duce attributes of entities. Their labeling shows the limits on
how these attributes must be realized. For example, in Figure
3 a MODE relation shows that files have SEQUENTIAL or
RANDOM as allowable values for the attribute ORGA
NIZATION. The REALIZES relation indicates how an attri
bute for one entity is a limitation on the same attribute of a
more general type of entity. In our example, the ORGA
NIZATION attribute of random files is shown to realize the
organization of files in general. These relations make it possi
ble to explain to a user the attributes of entities, the range of
values they allow, and the way attributes differ between re
lated entities. In addition, the absence of REALIZES re
lations can be used' to allow inheritance of properties. For
example, random files can be seen to allow the attributes and
values of all other MODEs that the file concept may have.

Several other hierarchical relations are suggested in Figure
3. The OPERATOR relation identifies commands that may
operate on an entity. For example, files are shown as allowing
the READ-FILE and WRITE-FILE commands. The SYN
TAX relation can be used to index textual descriptions of a
command's syntax, EXAMPLES to access informative exam
ples, and EXCEPTIONS to describe potentially unexpected
behavior.

INSTANCE-OF relations provide another major improve
ment in the assistance network. This relation, absent in most
HELP systems, associates actual user objects with the more
general and abstract concepts represented in the assistance
network. This can be seen as the set membership relation. In
Figure 3, for example, the RANDOM FILE node is linked to
an example file in the fluid portion of the ADB, through an
INSTANCE-OF relation. Assistance can then be given in
terms of a user's particular random files.

If online assistance is to be more effective than the index
that appears at the back of a manual, we must allow more than
the usual tree or lattice structures. The structure must provide
arbitrary cross:..referencing among related concepts. All of the
nodes in Figure 3, for example, might be related to similar
nodes in the database for a different programming environ
ment. Interconnections are also necessary for representing
error conditions. Each error state can be, represented by a
single node whose associated text describes the error and
whose other relations identify the causes, prevention, and
correction of that error. An error encountered in trying to
write on a random file, for example, should have connections
to the RANDOM FiLE and WRITE-FILE nodes of Figure 3.

An assistance network of the type described above can be
used to represent the functionality of many different systems.
While the relations described are by no means exhaustive,
they are sufficient for providing most forms of assistance cur
rently available in commercial systems and some forms that
are not yet available anywhere. Assistance based on such
structures can be provided with robustness, consistency, flex
ibility, and context sensitivity.

The User's View

The assistance network is used by the AP to provide many
different forms of online assistance. Traversal of the network,
and the display of associated assistance information, is gov
erned by interaction among the user, the application program,
the Assistance Processor, and the Assistance Database. While
it is possible to give the user "free reign" over the network's
data, it is more useful to establish several positions in the
database reflecting the user's current state.

Figure 4' illustrates a possible view of such an assistance
environment from the user's standpoint. At any time during
a session, the accessible assistance information is associated
with suitably labeled function keys. By repeatedly pressing
these keys, a user can obtain successively more detailed infor
mation sensitive to the current situation.

HOW TO INTEGRATE ASSISTANCE INTO THE
SOFTWARE LIFE CYCLE

The availability of an assistance framework does not ensure
that it will be used, let alone used effectively. Goodassis
tance, like good documentation, does not come easily, and
requires considerable resources. Some recent evidence on the
cost of simplifying user interaction comes from the PROMIS
system,7 where it is reported that menu screens are produced
at a rate of about 500 per man-year. In another interactive
system,8 the composition and maintenance of assistance mes
sages comprised more than one-third of the system's total
implementation time. It is clear that assistance information
must be more economical to develop and maintain if it is to be
included in the development of any software product.

It is equally clear that online assistance information must be
consistent with written documentation. It should also go with-

out saying that both written and online documentation must
be correct; i.e., they must be consistent with the functional
requirements and specifications of a system. These goals can
not be met economically if information is duplicated in inde
pendent activities: requirements analysis, system specification
and high-level design, documentation, and development of
assistance information.

To integrate these activities effectively, their respective
databases can be realized as subsets of a more generalized
collection of data, which we call the Software Product Data
base. Because of considerable overlap in assistance informa
tion, documentation, and design specifications, such integra
tion seems possible. Some work has already been done on the
integration of requirements analysis and document prepara
tion. 16 Progress has also bee11 made in combining online assis
tance facilities with the preparation of written documents. 17

The total integration of assistance information with these ac
tivities is depicted in Figure 5. Paired broken lines represent
interfaces to the Software Product Database. One interface
translates parts of the database into structures that can be
used in requirements analysis and system design. The inter
face also performs- corresponding transformations from the
requirements and design database back into the Software
Product Database. Similarly, there is an interface for creating
and maintaining a subset of the database to be used by a
document preparation system. Finally, there is an interface
that extracts information from the database to produce the
dictionary, network, and text that constitute the assistance
database.

The Software Product Database, then, is the central struc
ture of the framework for online assistance. It must represent
in an easily accessible form the information needed to con
struct cogent replies to assistance queries and it must be com
patible with the information needed during other phases of
the software life cycle. Our preliminary definition of this data
base is being developed as a series of interconnected units,
each a structured entity describing an abstract notion or con
crete object. We are particularly attracted to high-level lan
guages like Ada 18 that provide for just such entities and re
lations in their notion of a module. Modules can be used to
describe tasks, abstract data types, and libraries of related
declarations. With appropriate extensions, such modules can
provide a basis for integrating requirements analysis, high
level design specifications, and assistance information in a
single representation.

Figure 6 illustrates how some of the assistance information
for files might be represented in an Ada-like language. Figure
3 contains the network representation of similar information.
The PACKAGE module represents the notion of a file. The
IS-A, SYNONYM, and RELATED clauses indicate that files
are a kind of data structure, that a file_ is also known as a
dataset or data-set, and that secondary storage and periph
erals are related notions. The TYPE clause describes one
attribute of a file, its organization. This clause specifies that a
file may be either sequential or random, that organization
remains constant throughout the life of a file, and that the
default organization is random. The various TEXT clauses
provide explanations for their respective concepts. Descrip
tions of the notions "record," "data structure," "secondary
storage," etc., would appear in similarly structured units.

A Unified Approach to Online Assistance 387

I I
~--~----~--------~

r:1l
~

I I

I I
I-
I---
I

SOFTWARE
PRODUCT
DATABASE

Figure 5-Assistance in the software life cycle

SUMMARY

Although online assistance facilities are common on most
commercial systems, they are often limited and cumbersome
to use. Today's user needs online assistance that is un
obtrusive, robust, flexible, context-sensitive, and consistent.
At the same time, it must be easy and economical to maintain
the complex information that goes into online assistance. Ad
hoc techniques are not adequate for providing effective online
assistance.

We have presented a framework being developed to provide
online assistance, based on an associative network of assis
tance information accessible through an assistance processor.
Because of the network's generalized structure, assistance can
be provided for a wide range of applications and for experi
enced as well as naive users. The assistance processor must be
an integral partof the operating system, so that information
can be obtained consistently, easily, and in terms of a user's

PACKAGE[file;
TEXT" A data structure for storing and retrieving";

"objects to and from secondary storage"] is
IS-A data-structure;
SYNONYM dataset, data-set;
RELATED secondary storage, peripheral;

TYPE j(ind-of-organization is (
[sequential;
TEXT "A form of organization that allows only"&

"sequential access to records"],
[random;
TEXT "a form of organization that allows both" &

"sequential and random access to the "&
records of a file"]);

organization: CONSTANT kind-of-organization: =
random;

Figure 6-Ada-like Assistance Information

388 National Computer Conference, 1981

current environment. To simplify the creation and mainte
nance of assistance information, a centralized database can be
used in several phases of software development: requirements
analysis, high-level design specification, and documentation.
Extensions and modifications to Ada are suggested as an ef
fective way of representing the information in such a data
base.

While much can be done with current technology to im
prove online assistance, many issues merit further in
vestigation. The generality and usefulness of the associative
network depend on a set of relations that is suitably complete
but not prohibitively complex. Arriving at this optimal set will
become easier as we learn more about the kinds of assistance
users require in various interactive settings. We also need to
know more about classes of users and how their needs change
as they become more experienced. The provision of intel
ligent assist,!lnce or system-initiated assistance also requires a
better understanding of such user characteristics as experi
ence, frequency of use, and programming skill. Some of this
information is becoming available as a result of controlled
experiments;19.2o other insights may be gained by simply mon
itoring the use of assistance facilities. Constructing assistance
databases and integrating them with other development activ
ities are complex tasks. How complex the tasks and with what
improvements to ease of use can only be determined through
continued research and the implementation of prototype
systems.

REFERENCES

1. SPERRY UNIVAC /100 Series Conversational Time Sharing (CTS) System:
Programmer Reference; UP-7940, Blue Bell, PA: Sperry Univac Computer
Systems, 1977.

2. Holg, Chloe, The Joy of TENEX and TOPS-20 . .. in Two parts, University
of Southern California: Information Sciences Institute, Technical Report
ISlfTM 79-15, January 1979.

3. Interactive Facility Version I Reference Manual, CDC Operating System
NOS 1, St. Paul: Control Data Corporation, 1978.

4. Thompson, K. and D.M. Ritchie, UNIX Programmer's Manual: Sixth Edi
tion, Murray Hill, NJ: Bell Laboratories, 1976.

5. IBM Systeml38 Technical Developments, ISBN 0-933186-00-2, IBM Cor
poration, 1978.

6. Anderson, Jess, "@@HELP: Online Documentation System", in Tech
nical Papers, USE Spring Conference, 1979, Bladensburg, MD: USE, Inc.,
pp. 215-235.

7. Robertson, G., A. Newell, and K. Ramakrishna, ZOG: A Man-Machine
Communication Philosophy, Pittsburgh, PA: Carnegie-Mellon University,
Dept. of Computer Science, August 1977.

8. Relies, Nathan, The Design and Implementation of User-Oriented Systems,
Computer Sciences Technical Report #357, University of Wisconsin
Madison, July, 1979.

9. Roberts, R., "HELP-A Question Answering System," in Proceedings,
1970 Fall Joint Computer Conference, pp.547-554.

to. Shapiro, Stuart C. and Stanley C. Kwasny, "Interactive Consulting Via
Natural Language," Communications of the ACM, 18:8,1975, pp. 459-462.

11. Ash, W., R. Bobrow, M. Grignetti, and A. Hartley, Intelligent On-line
Assistant and Tutor System, Technical Report No. 3607, Bolt Beranek and
Newman, Inc., January, 1977.

12. Burton, Richard R. and John Seely Brown, An Investigation of Computer
Coaching for Informal Learning Activities, BBN Report No. 3914, ICAI
Report No. 12, Cambridge, Massachusetts: Bolt Beranek and Newman,
Inc., August 1978.

13. Fahlman, Scott, NETL: A System for Representing and Using Real-World
Knowledge, MIT Press, 1979. '

14. Findler, N. V., Associative Networks: Representation and Use of Knowledge
by Computers, New York: Academic Press, 1979.

15. Brachman, Ronald J., A Structural Paradigm for Representing Knowledge,
Ph. D. Dissertation, Harvard University, 1977.

16. Funk, Susan, "Putting PSLlPSA to Work," in Technical Papers, USE
Spring Conference, 1979, Bladensburg, MD: USE Inc., pp. 57-78.

17. Price, Lynne A., Representing Text Structure for Automatic Processing,
Computer Science Technical Report #324, Madison: Computer Sciences
Department, University of Wisconsin-Madison, May 1978.

18. Ichbiah, J.D., "Preliminary Ada Reference Manual," in SIGPLAN No
tices, 14:6, June, 1979.

19. Shneiderman, Ben, Software Psychology: Human Factors in Computer and
Information Systems, Winthrop Publishers, 1980.

20. Miller, L.H., "A Study in Man-Machine Interaction," in Proceedings, 1977
National Computer Conference, pp.409-421.

An experimental system to support
a very high level user interface

by WILLIAM L. BATCHELOR and
LUCIAN J. ENDICOTT, JR.
IBM Information Systems Division
Rochester, Minnesota

ABSTRACT

An experimental project is described that developed a very
high level end user interface to provide the capability for
non-DP trained individuals to automate business procedures.

INTRODUCTION

The Nonprogrammer Interface (NPI) project is an experi
mental project at the IBM Information Systems Division de
velopment laboratory in Rochester, Minnesota. This paper
describes the environment in which NPI arose, NPI itself, and
the system requirements posed by NPI. It should be noted
that this paper describes experimental activity only. No infer
ences should be drawn in regard to planned or future IBM
products.

ENVIRONMENT

Today's data processing environment is characterized by the
continually increasing use of computers by individuals: at
home, in school, at the office, and in the factory and other
work places. 1 Representative of this is the current interest and
activity in the area of office automation.2

,3 This increasing use
has produced, and will continue to produce, numerous prob
lems, both social and technical. At the moment, the over
riding problem appears to be the ability and training required
for an individual to make significant use of the function pro
vided.4-11

In the early and middle 1970s, roughly from the intro
duction of the pocket calculator to the announcement of such
machines as the TRS-80, it became apparent that the limiting
factors in the use of data processing equipment were primarily
in programming and systems planning and design. Since this
was a common concern throughout the industry, numerous
research and advanced technology efforts were established
within IBM and most other companies faced with the problem
to reduce the extent of one or both of these limitations.

The IBM Rochester Laboratory has had considerable ex
perience in development of systems and products for what was
then considered to be the small user. These systems and prod-

389

ucts include the IBM Systeml3, the IBM Systeml32, the IBM
5100, and the IBM 3741, among others. It was felt within the
laboratory that this experience, coupled with an empirical
rather than a theoretical approach to system design, should be
applied to attempt a quantum improvement in ease of use at
the very low end of the data processing marketplace. This led
to the establishment of the NPI project.

The Nonprogrammer Interface Project

The objectives of the NPI project were twofold:
,

1. To develop a very high level interface to make possible
the preparation of business forms and reports of all types
with associated file creation, access, and maintenance,
as they relate to billing, inventory control, accounts re
ceivable, sales analysis, etc.

2. To test the use of this interface by non-DP trained busi
ness people, both professional and nonprofessional, and
by DP trained people in both casual and noncasual use.

The conclusions drawn by the NPI project will be outlined
in the following section. The remainder of this section will
offer a brief description of the NPI experimental system.

The NPI experimental system was implemented in APL on
the IBM Systeml370. IBM 5100 and 5110 systems were used
as terminals. Implementation in APL on the Systeml370 was
chosen because of ease of bQth implementation and mod
ification since a largely empirical approach to the problem was
planned. As indicated above, the system did evolve over a
period of time. No attempt will be made here to trace this
evolution; only the final version of the experimental system
will be described.

The final version of the system was interactive, output
oriented, and nonprocedural in nature (other than for pocket
calculator type functions). Information could be entered into
the system only in response to a system-posed question, and
only described data could be entered into the system.

Basically, a set of menus and prompts were provided-the
sequencing and tailoring were provided by the system in re
sponse to user answers, and user names were substituted
where appropriate. The system required fewer than 20 menus

390 National Computer Conference, 1981

and fewer than 75 prompts or questions. Most of these were
seen by the user only when an invalid response was provided.

Some other significant characteristics of the system were

• A specific sequence of menus and prompts would not
terminate until a legitimate function had been performed
or a legitimate algorithm defined. For example, NPI
could not generate an application that would not run,
although the user could produce a result other than that
intended.

• The user could not "look" inside the system. Information
and data were returned to the user only in the format in
which they were entered or described to the system.

• A complete set of system documentation was always
available on line to the user, and the "HELP" response
was almost always a valid response.

• Manual office procedure concepts and terminology were
employed wherever possible. Traditional DP concepts
and terminology were kept to an absolute minimum
(some concepts were particularly troublesome-the
name of a field versus its content, key fields, control
breaks, transaction files, etc.-but acceptable ap
proaches were finally found).

• Processing and file activity were generally derived by
implication, but specific manipulation was permitted on
request (but only via question and answer, again apart
from pocket calculator type functions).

• Questions were only asked in their "natural" (to the
user) sequence (this segllence was determined empir
ically and< is not "natural" to all users). The user was not
asked a specific question unless it was one that he would
have asked of himself at the corresponding point in man
ual processing.

Application Generation: The user is oriented toward the
output desired. Application generation is accomplished by a
dialog with the user in regard to output. Generally, this will
be the completion of some form (e.g., an invoice) or the
generation of some report or query. Other types of applica
tions can be written (e.g., modify files), but in general they
are not necessary since the system accomplishes this implicitly
and also provides capability for the user to accomplish these
functions explicitly via menus.

Basically, for application generation the user is asked to
describe the form or report. It mayor may not contain pre
printed information. The user can describe the form such that
the printer will include the form on the output report. This
form information can be named and used again for future
applications. The system then interrogates the user about the
variable content of the report: whether the content occurs one
time or is replicated, whether and where it appears on the
report (printing can be conditionally suppressed), how long it
is, whether it is alpha or numeric, decimal position, where the
information is to be obtained, and whether or not it is to be
permanently saved. (Additional editing options are provided
to the user on request at a later point.)

Information can be obtained from four sources:

1. It can be keyed in. At run time the system will inter
rogate the user for the information.

2. It can be looked up. The system will obtain the informa
tion from its files. Since initially there are no files in the
system, empty files are created to _correspond to the
application generated if look-up is specified as the
source. At (first) run time, the system will interrogate
the user for missing file information, thus automatically
filling in the file while executing the application.

3. It can be computed. This again is accomplished by ques
tion and answer using hand calculator type functions
plus conditionals (> , < , = , etc.).

4. It can be obtained from previous application executions
(Le., transaction history files).

Application Modification: Applications are modified via'
menus. Almost any type of modification is possible. After
modification, renaming the application will result in both ver
sions being retained. Not renaming the application will cause
the unmodified version to be replaced by the modified ver
sion.

Application Execution; Applications are executed via
menus. Applications not requiring user input will execute in
batch mode. Applications requiring user input will execute in
interactive mode. A complete journal and history file is main
tained.

Files: As previously stated, files can be created and updated
either implicitly or explicitly. The most common approach is
implicit. Files are created and maintained as a byproduct of
application generation, reflecting the user's visualization of
the filing system (e.g., customer file, parts file). All fields are
named, and associations are generated as implied or stated by
the user. Any field can be used for accessing of data; however,
the primary key must always be used for updating the file.

Files can be updated explicitly by applications or by the
user. If by the user, it is accomplished via menus as is explicit
creation (files cannot be explicitly created by an application).
Inquire and query functions are also supplied by the menus.
Query functions named and saved can be executed as applica
tions.

Other Functions: There are several other functions in the
system. The most important of these have already been refer
enced:

1. System documentation is implicitly produced and
presented to the user on request. Portions may be
presented as "help" to the user under error conditions.
These include application listings, file descriptions, etc.,
which closely parallel the question and answer creation
process.

2. Trace provides a debug tool. The application steps are
traced exactly as they are documented in the system
documentation.

3. Audit permits an application to be rerun in virtual mode
(Le., no permanent changes are made to the fil~). This
has the added advantage of providing a spool-type func
tion if the printer is not available at execution time.

CONCLUSIONS DRAWN FROM THE NPI PROJECT

A number of different conclusions came out of the NPI
project. Some of the more significant ones follow:

• It appears possible to provide significant DP capability to
non-DP trained individuals. These individuals must have
a good knowledge of the manual procedures to be auto
mated. (The NPI project addressed only the automation
of existing manual systems and procedures-it did not
address the more difficult problem of developing new
systems and procedures.)

• An empirical approach to human/machine interface de
sign is more productive than presently understood the
oretical approaches. In particular, it appears now that
ease of use involves hundreds, perhaps thousands, of
nuances as much as one or a few basic principles.

• For an individual or an organization to make effective use
of DP capability without expensive training or use of
consultants, it is necessary to provide the capability to
automate existing manual procedures with absolutely
minimal modification. Particularly, the introduction of
new concepts and vocabulary must be held to a min
imum.

• People learn most easily and quickly by doing, rather
than by reading or being told. For a DP system to be
successful at the very low end, productive use must be
possible within a few minutes-at the most one to two
hours. It must be possible to generate "running" (Le.,
one that produces output) applications very quickly' and
then iteratively modify them until the desired results are
obtained. Associated with this are three specific require
ments:

1. It must be impossible to generate applications that
hang or crash.

2. Applications (as well as application generation) must
be able to run backwards, in effect, back out the data
base.

3. It should be possible to run applications in test mode.

• Basic. menus for application ..g~neration must be very
few-the-beginning user should never be concerned with,
or even aware of, most of the system's capability (for
example, all standard forms layout and editing capabil
ity, including picture clause, must be provided; however,
the beginning user is not aware that these exist and need
only find out about them when he or she decides that the
default layout and edit functions are nor adequate).

• Backup and recovery functions must be as automatic as
possible and nonoptional. At the best, the user should
only be concerned with mounting, demounting, and pre
serving, through some period, detachable media.

• To provide the functions and characteristics described
above, it is necessary to control very carefully input into
the system. Information and data can be entered into the
system only in logical and unambiguous fashion-it is for
this reason that NPI evolved into a menu-driven, non
procedural system permitting only described data. In ad
dition, individual solutions must be provided for a large
number of problems, e.g., control break, page overflow,
field overflow, field overlap, horizontal versus vertical
spread, time and date handling (formatting, sorting),
multiple key sorting, ali~ses, duplicate names, currency
specification, etc.-the nuances to which allusion was
previously made.

System to Support a Very High Level User Interface 391

• The keystone of any system designed to provide all or a
significant number of the functions available in the NPI
experimental system is a system-wide dictionary. The
user must be able to name elements in the system, and he
must be allowed both duplicates and aliases, and these
elements must be known unambiguously to the system.
From this the characteristics of the dictionary and the
database naturally follow:

1. Everything in the system (atomic elements, lists, lists
of lists, etc.) is an object in the database. Each object
may have a name, which mayor may not be unique.
Each object does have an object ID, which is unique,
and may have an object description, which should be
unique.

2. Every object is listed in the dictionary. Access paths
are built using the dictionary. Access to an object is
via either the dictionary or an existing access path.

• Most of the functions provided by the NPI experimental-
system are available in one form or another in most DP
systems toda~.et these systems are strikingly lacking in
the ease of use observed in NPI. Why? The answer would
appear to be in structure. Ease of use is determined by
the human/machine interface. The interface is deter
mined by the underlying structure. The structure may be
pure~ i.e._. the only structure in the s~stem-m it may
merely be interposed, i.e., masking the "real" structure
of the system from the interface.

SUMMARY AND CONCLUDING OBSERVATIONS

Characteristics of the end user interface included:

• All documentation online.
• Educational mode, novice mode, and experienced user

mode available.
• Learning by doing facilitated in several ways: output al

ways generated, ease of application modification as
sured, test mode provided, backout and rerun always
available.

• Information entered into system only by answering ques
tions and responding to prompts.

• Apart from hand calculator type functions, only non
procedural information requested.

• Only described data permitted into the system.
• Data returned to the user only in the manner in which

described to the system.

The key system design requirement posed by the end user
interface was for a complete system-wide dictionary sup
ported by a database with full relational capability. No charac
teristic of the dictionary or database could be permitted to
show at the end user interface.

In particular, it was asserted that, at the present, ease of use
appears to be composed of a large number of small factors,
that these factors can best be addressed empirically rather
than theoretically, and that they· apparently can be satis
factorily provided only by restructuring the design of DP sys
tems.

392 National Computer Conference, 1981

ACKNOWLEDGMENTS

In addition to the authors, the members of the NPI project
were Roger F. Dimmick, George G. Gorbatenko, E. R. (Jed)
Harris, GriffH. Rees, WalterS. Schaffer, and Phil C. Schloss.

REFERENCES

1. Press, Larry, Rothenberg, Jeff, and Carlstedt, Jim, "The Next Generation
of Personal Computers: A Position Paper," ACM SigPC Notes, Vol. 1,
No.4, Spring 1979.

2. A Status Report on the Activities of the CODASYL End User Facilities
Committee (EUFC), EUFC, P.O. Box 1808, Washington, DC, 20013,
February 1979.

3. Ellis, Clarence A and Nutt, Gary J., "Office Information Systems and
Computer Science," ACM Computing Surveys, Vol. 12, No.1, March
1980 ..

4. Athey, Thomas H., "Small Business-A Gold Mine for DP Educators,"

Proceedings of the ACM 1978 Annual Conference, Washington, DC, De
cember 4-6, 1978.

5. Embley, David W., "Forms-Based Automatic Program Generation," Pro
ceedings of the ACM 1978 Annual Conference, Washington, DC, Decem
ber 4-6, 1978.

6. Fiszer, Max, "A View of Language Futures (The User Interface),"
SHARE Proceedings Number 51, August 20-25,1978, Boston, MA, Vol.
1, pp. 549-560.

7. Newman, I. A, "Personalized User Interfaces to Computer Systems,"
Proceedings of the European Computing Congress, London, England,
May 9-12, 1978, pp. 473-486.

8. Shneiderman, Ben, Software Psychology, Winthrop Publishers, Incorpo
rated, Cambridge, MA, 1980.

9. Thomas, John C., "Psychological Issues in Data Base Management,"
Proceedings of the Third International Conference on Very Large Data
Bases, Tokyo, October 6-8,1977.

to. Zloof, Moshe M. and de Jong, S. Peter, "The System for Business Auto
mation (SBA): Programming Language," Communications of the ACM,
Vol. 20, No.6, June 1977.

11. Infotech State of the Art Report, Man/Computer Communication, 2 Vol
umes, Infotech International Limited, Maidenhead, Berkshire, England,
1979.

Principles of good software specification and their
implications for specification languages*

by ROBERT BALZER and NEIL GOLDMAN
USC/Information Sciences Institute
Marina del Rey, California

ABSTRACT

Careful consideration of the primary uses of software specifi
cations leads directly to three criteria for judging specifica
tions, which can then be used to develop eight design prin
ciples for "good" specifications. These principles, in turn,
result in eighteen implications for specification languages that
strongly constrain the set of adequate specification languages
and identify the need for several novel capabilities such as
historical and future references, elimination of variables, and
result specification.

INTRODUCTION

Many computer languages have been designed, without ex
plicitly stated goals. We attempt to reverse this process by
carefully developing the goal structure before designing a lan
guage to satisfy it.

A few other languages have been constructed using a simi
lar paradigm, most notably PASCALI and EUCLID.2 Each
was strongly influenced by the unique goal structures chosen
(simplicity for PASCAL and provability for EUCLID). So too
do we expect our language, not yet designed or implemented,
to be strongly influenced by the goal structure chosen.

Our contribution lies in the extent to which we have devel
oped the explicit goal structure and the implications of this for
the structure and features of any language that would satisfy
these goals.

CRITERIA FOR JUDGING SPECIFICATIONS

In order to establish the criteria to be used in judging software
specifications, we begin by considering their primary uses.
First, (and most important), a software specification is a con
tract between the specifier and the implementor defining the
system to be constructed. It therefore must be clearly and

* This research was supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract NQ. DAHC15 72 C 0308.
©1979 IEEE. Reprinted, with permission, from Proceedings Specifications of
Reliable Software, April 30, 1979, Cambridge, MA (79CH1401-9C).

393

unambiguously understandable by both parties. Thus, under
standability is the first criterion for judging specifications.

Second, it must be possible to ascertain whether an imple
mentor has fulfilled such a contract; that is to test, in the
broadest sense, whether a specification and an implementa
tion are equivalent. 'In addition, before entering into an im
plementation contract, a specifier must be able to ascertain
that the specified system meets the needs for which it was
designed. Thus, the specification itself must be testable.
Hence testability is the second criterion for judging specifica
tions.

Finally, because this contract will change over time, it must
be easy to modify the specification. Hence, maintainability is
the third and final criterion. Optimization is conspicuous by
its absence from the list of criteria. This is intentional. Not
only is optimization· the proper concern of the implementor,
but it conflicts with each of the identified criteria. Optimiza
tion represents the spread of information which, by increasing
the interdependence of the components on each other, in
creases the complexity of the whole. This reduces the under
standability, maintainability, and testability of the specifica
tion. Thus, not only is optimization not a proper criterion for
judging specifications, but specification languages should ac
tively attempt to preclude the optimizability of specifications.

PRINCIPLES OF GOOD SPECIFICATION

Principle 1: Separation of Functionality from Implementation

First, by definition, a specification is a description of
WHAT is desired, rather than HOW itls to be realized
(implemented). These specifications can assume two quite
different forms. The first form is that of mathematical func
tions: Given some set of input, produce a particular set of
outputs. The general form of such specifications is find
[AITHE/ALL] result such that P(input), where P represents
an arbitrary predicate. In such specifications, the result to be
obtained has been entirely expressed in a WHAT (rather than
HOW) form; In part this is because the result is a mathe
matical function of the input (the operation has well defined
starting and stopping points) and is unaffected by any sur
rounding environment.

394 National Computer Conference, 1981

Principle 2: A Process-Oriented Systems Specification
Language Is Required

Consider instead a situation in which the environment is
dynamic and its changes affect the behavior of some entity
interacting with that environment (as in an "Embedded Com
puter System"). Its behavior cannot be expressed as a mathe
matical function. Rather, a process-oriented description must
be employed, in which the WHAT specification is achieved by
specifying a model of the desired behavior in terms of func
tional responses to various stimuli from the environment.

Such process-oriented specifications, presenting a model of
system behavior, have normally been excluded from formal
specification languages, but they are essential if more complex
dynamic situations are to be specified. In fact, it must be
recognized that in such situations both the process to be auto
mated and the environment in which it exists and must be
described formally. That is, the entire system of interacting
parts must be specified, rather than just one component.

Principle 3: Specification Must EncompaSs System
Of Which Software Is a Component

A system is composed of interacting components. Only
within the context of the entire system and the interaction
among its parts can the behavior of a specific component be
defined. In general, a system can be modeled as a collection
of passive and active objects. These objects are interrelated
with each other and over time the relationships among the
objects change, which provides the stimulus to which the
active objects, called agents, respond. The responses may
cause further changes and hence additional stimuli for the
agents to respond to.

Principle 4: Specification Must Encompass Environment
In Which System Operates

Similarly, the environment in which the system operates
and with which it interacts must be specified.

Fortunately, this merely necessitates recognizing that the
environment is itself a system composed of interacting
projects, both passive and active, of which the specified sys
tem is one agent. The other agents, which are by definition
unalterable, limit the scope of the design and implementation
to follow.

It should be noted that the picture of system specification
presented here is that of a highly intertwined collection of
agents reacting to stimuli in the environment (changes to ob
jects) produced by each other. Only through the coordinated
actions of the agents are the goals of the system achieved.
Such mutual dependence violates the principle of separability
(isolation from other parts of the system and environment).
But this is a DESIGN principle, not one of specification.
Design f9110ws specification and is concerned with decom
posing a specification into nearly separable pieces in prepara
tion for implementation. The specification, however, must
accurately portray the system and its environment as per
ceived by its user community in as much detail as required by

the design and implementation phases. Since· this level of
required detail is difficult, if not impossible, to foresee in
advance, the specification, design, and implementation pro
cesses must be recognized as an iterative activity. It is there
fore critical that technology exist for recovering as much of
this activity as possible as the specification is elaborated and
modified (during both initial development and later mainte
nance).3

Principle 5: System Specification Must Be a Cognitive Model

The system specification must be a cognitive model rather
than a design or implementation model. It must describe a
system as perceived by its user community. The objects it
manipulates must correspond to the real objects of that
domain; the agents must model the individuals, organizations,
and equipment in that domain; and the actions they perform
must model those actually occurring in the domain. Further
more, it must be possible to incorporate into the specification
the rules or laws which govern the objects of the domain.
Some of these laws proscribe certain states of the system (such
as "two objects cannot be at the same place at the same
time"), and hence limit the behavior of the agents or indicate
the need for further elaboration to prevent these states from
arising. Other laws describe how objects respond when acted
upon (e.g., Newton's laws of motion). These laws, which
represent a "physics" of the domain, are an inherent part of
the system specification.

Principle 6: Specification Must Be Operational

The specification must be complete and formal enough so
that it can be used to determine whether a proposed imple
mentation satisfies the specification. That is, given the results
of an implementation on some specific set of data, it must be
possible to use the specification to validate those results. This
implies that the specification, though not a complete specifica
tion of HOW, can act as a generator of possible behaviors
among which must be the proposed implementation. Hence,
in an extended sense, the specification must be operational.

This operationality may exist only in a theoretical sense,
since it involves replacing existentially and universally quan
tified objects in the specification by brute force generation
and testing (the British Museum algorithm) of all possibilities
(which may be infinite). But given specific possibilities to test
(as generated by the proposed implementation), the specifica
tion becomes a validation filter for them (it does not, howev
er, guarantee that all valid possibilities will be generated by
the implementation, only that those generated are valid).

Principle 7: The System Specification Must Be Insensitive to
Incompleteness

No real specification can ever be totally complete. The
environment in which it exists is too complex for that. A
specification is always a model-an abstraction-of some real
(or envisioned) situation. Hence, it will be incomplete. Fur-

thermore, as it is being formulated it will exist at many levels
of detail. The ope rationality required above must not necessi
tate completeness. The analysis tools employed to aid speci
fiers and to test specifications must be capable of dealing with
incompleteness. Naturally this weakens the analysis which can
be performed by widening the range of acceptable behaviors
which satisfy the specification, but such degradation must
mirror the remaining levels of uncertainty.

Principle 8: Specification Must Be Localized and Loosely
Coupled

The previous principles deal with the specification as a stat
ic entity. This one arises from the dynamics of the specifica
tion. It must be recognized that although the main purpose of
a specification is to serve as the basis for design and imple
mentation of some system, it is not a precomposed static
object, but a dynamic object which undergoes considerable
modification. Such modification occurs in three main activ
ities: formulation, when an initial specification is being cre
ated; development, when the specification is elaborated dur
ing the iterative process of design and implementation; and
maintenance, when the specification is changed to reflect a
modified environment and/or additional functional require
ments.

With so much change occurring to the specification, it is
critical that its content and structure by chosen to accommo
date this activity. The main requirements for such accommo
dations are that information within the specification must be
localized so that only a single piece (ideally) need be modified
when information changes, and that the specification is loose
ly structured (coupled) so that pieces can be added or re
moved easily, and the structure automatically readjusted.

IMPLICATIONS FOR SPECIFICATION LANGUAGES

Having set forth the principles of good specification in the
previous section, we now derive the implications of these prin
ciples on specification languages. References to the princi
ples, and to earlier implications, are embedded in parenthesis
and are referenced by principle (P) or implication (I) number.

Implication I: Logical Data Specification and Access

Since a specification must deal with functional behavior
rather than the implementation (PI), the data manipulated in
the specification must be representation-independent. The
specification must thus be described at the logical level by
defining the methods of getting from one data item to another
(access paths) and the operations that can be performed upon
a data item.

Implication 2: Uniform Data Specification

Since the logical data specification should make no impli
cations about data representation (PI), the principle of parsi
mony requires that a single uniform data specification be used

Principles of Good Software Specification 395

for all data and that this specification not preclude any possi
ble representations.

Implication 3: Relational Data Model

This requirement of uniformity (12) has strong implications.
It forces a quite unconventional specification of data to be
adopted. The conventional view of data as having a "value"
and being composed of a collection of parts is fraught with
difficulty. What is the "value" of a data item, what is its range,
when is the "value" used rather than the item, and how far
does the "boundary" of the data item extend? There are no
easy answers to these questions, which arise from choosing a
representation-oriented view. Instead, a functional view leads
to a very simple, yet general data specification which avoids
these difficulties.

Objects are associated with one another, and their re
lationships can be used to access them. An object has no
"value" or "boundary." Rather it is defined by the set of
associations it forms with other objects. This definition is
necessarily circular, but such circularity causes no problems
because after some point further chains of associations be
come irrelevant for the processing being performed.

Thus data is defined simply by specifying the relations exist
ing among the objects. There are only five basic operations
that can be performed on such data. Objects can be created
or destroyed. Similarly, relations among two or more objects
can be created or destroyed. Finally, one object can be ac
cessed from another via one of these relations. The symmetry
of the relational specification is particularly nice since it is just
as easy to access one object from another via a particular
relation as it is to use the second object to access the first via
that same relation. Using Data Base terminology, this means
that the data base is fully associative, or equivalently, fully
inverted.

It should be noted here that although this type of data
specification is quite unconventional in software and system
specifications, it is becoming prevalent within the data base
community. Unfortunately, because this community is con
cerned with efficiency, it has adopted a particular canonical
form of relational specification (Third Normal Form4

) rather
than allowing the full generality of the formalism. Clearly, for
the purposes of functional specification such a restriction
should not be included. Instead the recent data base work on
semantic models5

-
9 more closely match the general relational

model required.
It should also be noted that the general relational specifica

tion is entirely equivalent to the Semantic Net representa
tion lO widely used in the Artificial Intelligence community.
The reasons for its adoption by this community are quite
instructive. Artificial Intelligence systems are designed to deal
with uncertainty which arises in the data to be processed
and/or the processing to be applied to it, which prevents opti
mization of the data structures and necessitates a very general
expression of its functionality. These reasons are very similar
to our own, although the motivation is distinct. We need to
express the functional characteristics of the data while de
laying consideration of representation and optimization to the
implementation phase of development.

396 National Computer Conference, 1981

Implication 4: Global Model

A model of the objects, both passive and active, manipu
lated by the agents and providing stimuli for them must be
maintained (P3). Since new agents can be added to the spe
cification or their stimuli changed (P8), any object may serve
as part of an agent's stimuli, and hence must be globally
maintained.

This global data base represents a dynamic model of the
environment in which the system operates. The model's dy
namics are governed by the sequence of actions performed,
and these actions, together with the changes made to the
objects in the model, constitute the observable behavior of the
agents. The agents also gather information from the global
model to make decisions of whether or not to perform an
action, and if so, which one. These information-gathering and
decision-making processes constitute a model of the agent; it
is just such a model that can be embodied in computer soft
ware.

System specifications contain one or more such agents. The
objects and actions of the global model must also be defined,
and models of each agent provided. However, much vari
ability is allowed in the completeness of specifying an agent
model (P7). The model must define which actions the agent is
allowed to perform, but it need not specify the information
gathering processes used by the agent in deciding which ac
tions to perform or their order. It may contain partial descrip
tions of these processes or merely constraints on the behavior
of the agent.

If each agent is completely specified, the system can be
simulated (PI); that is, the global model, either a particular
instance or a symbolic version, can be advanced through suc
cessive stages. If the agents are incomplete, such simulated
behavior can be accomplished only by having the user inter
actively inject agent actions into the sequence of actions being
performed. As the completeness of agent description de
creases, the amount of automatic analysis and checking which
can be performed decreases correspondingly. However, par
tial descriptions are retained as consistency checks when sup
planted by more complete descriptions or when agent behav
ior is provided by the user.

Implication 5: Global Data Base with Inference

The global model must be maintained in a data base which
supports inference. The global model is a simulation of the
environment in which the system operates. Normally such
environments are quite rich and many of the relations be
tween objects can be deduced (inferred) from other relations
within the model. Since the specification can, and will, under
go much modification, the principle of locality and loose cou
pling (P8) requires that neither the use of information nor its
method of derivation be explicitly determined in the specifica
tion. That is, any information requested from the global mod
el should be available independent of whether it was directly
produced by some action or could have been· inferred from
such directly produced data.

For each data item a choice must be made between explic
itly representing that item in a data base and maintaining it as

actions are performed, or deriving (inferring) it when needed.
Such choices are quite critical to the effective operation of a
system, but they are implementation choices and have no
place within the system specification (PI). Inference mech
anisms provide a way of delaying these choices until imple
mentation without sacrificing the operationality of the specifi
cation (P6). The need to hide the distinction between explicit
and implicit data through the use of inference implies that the
global model is maintained in a data base accessible only
through an interface which supports inference.

It should be noted that the "computation rules" of data flow
languagesll

-
13 are a special case of inference rules. The advan

tage of specifying computation via such rules is that the con
trol structure has been suppressed from the specification and
these rules are invoked whenever necessary. This suppression
of the control structure enables the user to specify the func
tional relations between objects (WHAT) without specifying
when (HOW) to compute them (PI).

When appropriate, this method of specification should be
heavily utilized. However, its applicability is limited to static
situations in which the global model isn't changing (no actions
are being applied). Rather, only the state of explicit know
ledge about the global model is being altered as information
is derived from other information.

A common specification mistake is the failure to differ
entiate the actual actions occurring in the global model, to
which the agents respond and which they produce, and the
"information actions" performed by an agent to produce re
quired data. These latter actions are merely an implementa
tion mechanism for hiding the distinction between explicit and
implicit data, and hence have no place in the specification.
Instead, only the functional basis (the inference rules) for
such "information actions" should be specified.

Implication 6: Descriptive Reference

Since the global model is being maintained in a data base
which obscures the distinction between explicit and implicit
data (I5), references to data from the model must operate
indirectly through some language processed by the data base
rather than by direct access to the data itself. The use of a data
request language with the support of an inference mechanism
is one step in the direction of separating the specification of
what data is required (functionality) from its method of access
(implementation) (PI). A second step is the use of a fully
associative relational data base. 13 The final step is the capabil
ity to access data by describing its attributes--descriptive ref
erence. Thus, a pattern is used to specify which relations the
desired object(s) must have to other objects, which are pro
scribed, and which are optional. All of these conditions must
be simultaneously satisfied for an object to match the
pattern-the descriptive reference. The objects used to de
scribe the desired object may themselves be descriptively de
scribed, and so on, so that very general descriptions can be
composed. These descriptive references require a quite com
plex pattern match mechanism, but the specification is only
concerned with functionality. A major portion of a systems
implementation will, however, be concerned with simplifying

these data access mechanisms by proper choice of data struc
tures and use of facilitating computations.

As a result of a successful descriptive reference, an associ
ation is made between the descriptor -and a name called a
placeholder. The placeholder can then be used elsewhere in
the specification in place of the description as a shorthand for
the object currently satisfying the descriptive reference or for
the object which satisfied the descriptive reference at the time
the association was formed (see Historical References below).
It should be noted that this association between a reusable
name (normally an object type) and a pattern to specify either
the object currently or originally satisfying the pattern closely
parallels the use of descriptive reference in natural language.

Implication 7: Historical References

The explanation of descriptive references above introduced
the notion that the description might be used to reference
either the object currently satisfying the pattern or the object
which satisfied it at some previous time-the time at which the
placeholder association was formed. This is a particularization
of the general capability to obtain the object satisfying the
pattern at an arbitrary earlier time.

The need for such a capability becomes clear when the
alternative is investigated. Without such a capability, histori
cal references such as "the location of the plane when first
spotted" must be implemented by recognizing at the appropri
ate point (the time at which the plane was first spotted) that
the object satisfying the descriptive reference (location of
plane) must be saved so that it can later be used where re
quired. This is a clear violation of both the principles of func
tional specification (PI) and loose coupling (PS).

The capability of satisfying descriptive references as of
some arbitrary earlier point in time remedies these problems
by merely specifying what data is desired (not how to obtain
it) and by localizing the specification at the point of con
sumption (rather than creating an explicit coupling between
the production and consumption points through a shared vari
able). Naturally, this capability implies some ability to specify
earlier times. It should be clear that the only meaningful
method of time specification is the specification's own history;
that is in terms of the sequence of actions performed on the
global model. By reasoning similar to that motivating the
need for descriptive references for objects (16), so too are
descriptive references required for the actions which mark the
passage of time.

This coupling of descriptive references for both objects and
actions provide the capability to examine (but not change) the
entire history of a system. This includes the ability to examine
any previous state of the system, to determine whether one
state preceded another, or to use the historical time order to
access a state (e.g., "the last plane launched before the
storm").

Implication 8: Elimination of Variables

The use of historical references (17) means that a required
object, the only type of "value" allowed (13), can always be

Principles of Good Software Specification 397

recomputed even if the system state has been altered. In most
languages, which have no historical reference, modification of
the state forces the saving of the required value in some vari
able because it cannot be recomputed later. Here, since re
computation is always possible, there is a choice between
saving the value (storage) and recomputation. By the prin
ciple of locality and loose coupling (PS), the choice must be
universally in favor of recomputation. Otherwise, an explicit
coupling is established between the consumption and the
production through the shared (non-local) use of a variable.

Thus, values are always recomputed, as needed; they are
never stored. This eliminates the need for variables. They
serve no purpose other than holding saved values.

It should be noted that the use of placeholders (16) repre
sents a compromise with the complete elimination of vari
ables. Placeholders are a type of variable, but they "hold"
descriptive references rather than values and must be satisfied
as of some time to yield a value (object). Thus they are like
procedures in which the name is used as a shorthand for the
definition, the definition must be applied to yield a value, -and
the association between name and definition is static for the
lifetime of the name rather than being reassigned as with
conventional variables. This "structured" use of placeholders
is, we feel, warranted, even though it causes a named-based
sharing (PS), because of the notational inconvenience which
would otherwise result from recopying the reference. Further
more; suchreoopyingwoulditself violatethe-lecali-zatioo prin
ciple (PS). So it is quite clear that some compromise must be
accommodated.

Implication 9;· Constraint Capability

By the same reasoning which eliminated variables (IS) be
cause their use would introduce explicit coupling between the
producer and the consumer, the. need for constraints is also
established. Without a constraint statement (which would
prohibit certain states from arising during the operation of the
system), the constraints would have to be integrated ("com
piled") into the specification at all the appropriate places.
Such integration ("compilation") violates both the principles
of locality (P8) and separation of function from imple
mentation (PI).

Implication 10: Nondeterministic Constructs

For the constraints (19) to be more than mere documen
tation of properties already guarameed-by-the specification,
they must actually constrain the set of allowable inter
pretations of the specification. Since the specification is oper
ational (P6), the constraints proscribe those behaviors which
would violate the constraints. Thus, the specification must
contain nondeterministic constructs for which the choice--rule
is free except that no constraint may result. A key aspect of
the IMPLEMENTATION of the specification is determining
choice rules which guarantee that the constraints wouldn't be
violated.

For obvious reasons, this nondeterminism must exist in
both the data and control spaces. The data nondeterministic

398 National Computer Conference, 1981

construct has already been introduced-descriptive refer
ences (16). When more than one object can satisfy the refer
ence, and one is desired, then a nondeterministic choice must
be made. The control construct merely indicates that a
nondeterministic choice must be made among the specified
statements (e.g., "either launch another plane or allow a re
turning one to land").

Implication I I: Result Specification

The nondeterministic constructs (110), in conjunction with
constraint (19), described above, provide a mechanism for
describing desired behavior without specifying precisely the
mechanism by which it should be achieved (PI): merely that
some appropriate combination of choices for the nondeter
ministic constructs will result in the specified behavior without
violating any constraints.

In a similar way, it should be possible to specify choices
among alternative operations by the results desired or to be
avoided (e.g., Achieve S by doing X or Y or Z). These
required and/or proscribed results act like local constraints
which must be satisfied nondeterministically by at least one
specified method for achieving the desired state (to maintain
the operationality of the specification (P6».

It should also be possible to use such result specifications to
control the conditionality of some action (e.g., "launch anoth
er plane unless it would leave the ship vulnerable to attack").

Such result specifications in which properties of the state
resulting from performing some operation are used to deter
mine whether to perform that operation are quite novel. Nor
mally, such decisions are made by evaluating conditions exist
ing in the current state. Here, through result specifications,
the conditions are evaluated in the context existing after (hyp
othetically) performing the operation. This is simply a histor
ical reference (17) in which the specified time has not yet
occurred and, like historical references, its need is justified by
considering the alternative. Without such a capability, then
the desired (or proscribed) resulting state must be described
in terms of the current state of the model before the operation
is applied. This translation of conditions across the application
of an operation is highly dependent upon the exact nature of
the operation, and is a type of "compilation" which violates
both the principle of functionality (PI)-by specifying how to
calculate the criteria (in the current state) rather than merely
specifying the criteria (in the future state) to be used-and the
principle of locality and loose coupling (P8)-by explicitly
using the definition of the operation to determine the current
state criteria.

Implication 12: Future Reference

This capability enables references to be made to objects
that will satisfy a description as of some future time (e.g.,
"refuel all planes which will be launched today"). This cap
ability can be thought of as the extension either of historical
references into the future, or of result specifications-to ob
jects. Its justification is similarly motivated. Its absence would
require determining the criteria expressed in the current state

for those objects which will satisfy the description as of the
specified time, and would hence violate both the functionality
(PI) and locality and loose coupling (P8) principles.

Again, it is an implementation, rather than specification,
issue to determine effective mechanisms to efficiently calcu
late such references in the current state.

Implication 13: Demons

There are two separate reasons for including demons in a
system specification language. The first is based on the re
lationship between the system being specified and its environ
ment (P4). This environment is conceptualized as a set of
agents which affect a global model (14) by performing actions
on the objects in that model. One or more of these agents
constitute the system being specified. They, and the environ
ment agents, must react to changes which occur in the global
model. This can only be done by integrating the agents into a
single control structure which activates each one at the appro
priate time, by having each constantly poll the model for
interesting change~, or by providing a demon capability which
activates an agent whenever specified changes occur in the
model. Since both integration and polling represent imple-
mentation techniques (PI) for achieving demon capability,
and integration further violates the principle of locality (P8),
the specification should be expressed directly in terms of de
mons.

The second reason for including demons in the specification
language concerns the interactions between various parts of
the system being specified. Like constraints, demons provide
a method of localizing the response to some change in the
global model, rather than distributing the response to alf the
places the change could have been initiated from (P8). Also,
by localizing the response, protection is provided for future
additions which might also initiate the change (P7). Thus
demons provide a method of specifying a response whenever
some change occurs, not just for those which are explicitly
known.

Implication 14: Logical Aggregation

Descriptive references (16), inference mechanism (IS), and
a fully associative data base (13) are required to separate the
functional description of data items from the implementation
mechanisms needed to access them (PI). These capabilities
provide functional access to individual data objects. But
process-oriented specifications (P2) also deal with collections
or aggregations of objects which satisfy some commoRcrite
ria. These aggregations are formed so that an operation, or
sequence of operations, can be applied to each object in the
aggregation or to the entire aggregation as a whole. Such

-aggregations are the basis for concise specification by expand
ing into a much larger set of individual actions to be applied
to the individual objects of the aggregations, and correspond
to the loop control structures of programming languages.

These agg-regation constructs must satisfy all the require
ments for separating functional description from access mech
anisms (PI) described above. Hence, they should be com-

patible with the descriptive reference capability so that they
can be used in conjunction with historical and/or future refer
ences. In addition, they must hide the implementation dis
tinction (PI) between explicit aggregations (where each ob
ject belonging to the aggregation is explicitly represented),
implicit ones (in which only the rule of membership is repre
sented), Clnd combinations thereof without sacrificing the
operationality of the specification (P6). This implies that all
operations utilizing the members of an aggregation operate
indirectly through some language processor so that implicit
aggregations can be made explicit as objects belonging to the
aggregation are needed. Since these same requirements exist
for descriptive references themselves, the aggregation cap
ability should exist not merely in a compatible form with
descriptive references, but as an extension of that capability.

There are two detailed issues which unfortunately must be
dealt with in the functional specification of aggregations.
First, the op~rations performed on the elements of an aggre
gation may affect the membership of other objects in that
aggregation. If so, then the specification must be completed
by specifying whether the aggr~gation membership is static ~s
of some specified time, or dynamic with additions and dele
tions allowed during its use. The second detailed issue which
must be handled occurs when the order of selecting objects
belonging to the aggregation affects the resulting state of the
global model. If so, and no order has been specified, then the
desired order must be added to the specification to retain its
operationality.

Implication 15: Alternative Constructs (Contexts)

The aggregation capability (114) provides a mechanism for
functionally specifying a collection of objects and treating
them similarly. But a capability is also required to treat the
objects of an aggregation as mutually exclusive alternatives.
Each of the alternatives must be separately investigated be
fore a decision can be made as to which to select. During these
investigations the exploration of the individual alternatives
must not interfere with one another. Each exploration must
be carried forth as if it were the only one being-investigated so
that actions performed in one exploration are not apparent in
any other and constraints are applied only within an ex
ploration (so that each exploration remains self-consistent but
the explorations are not necessarily consistent with each
other). Upon completion of the explorations it must be possi
ble to compare the resulting states and determine which sub
set to retain (either the resulting state or the alternative which
started the exploration may be retained).

It should be noted that this alternative construct capability
is merely a generalization of the result specification capability
(I 11) described earlier and is similarly motivated.

Implication 16: Analogous Specification

Often two or more processes are very similar to each other.
In such cases, it is more convenient to specify one in terms of
another by specifying the similarities and differences rather
than repeating the common portions (which would violate

Principles of Good Software Specification 399

P8). More importantly, if, during maintenance, the definition
of the base process should change, this change would auto
matically be reflected in all the analogously specified pro
cesses (in cases where this effect was not desired, a new excep
tion clause could be added (to analogously specified processes
for which the maintainer, guided by a simple maintenance
tool, indicated that the effect should not be promulgated».
This capability directly supports the ability to make specifica
tions more complete (P7) by localizing the base description
(P8) and by explicitly maintaining the dependencies between
process descriptions.

Implication 17: Normal-Case Specification

In support of the ability to deal with incomplete specifica
tions (P7), it must be possible to specify the behavior of the
process for the normal case and then augment that description
with the behavior required in the various special cases which
can arise. This capability is itself a special case of the general
analogous specification capability (I 16) described above.

The important aspects of this capability are that each ex<::ep
tion should be independently specified (P8) and that th~se
alternatives are automatically organizf;d (PI) sothat the most
specific applicable alternative is chosen in each case, and the
normal case processing is performed only when none of the
other alternatives are applicable.

Implication 18: Process Models (Scenarios)

Often only an incomplete model of an environmental agent
(P4) exists so that only certain aspects of its behavior are
known. It must be possible to specify the known aspects (P7),
leaving the others open, while preserving the operationality of
the specification (P6).

One common form of incompleteness is knowledge of the
possible actions which an agent can perform, but lack of infor
mation of the decision mechanism employed by the agent.
This form of incompleteness can be easily modeled by
"scenarios" which utilize nondeterminism m~chanisms (I 10)
to embed processing options into an expression (such as path
expressions) describing the range of the possible behaviors to
be performed by the agent.

An analysis aid should be provided to determine whether
the system being specified adequately responds to the range of
possible behaviors specified for the environment agents.

CONCLUSION

Strong constraints have been placed on future specification
languages by carefully considering design principles of
"good" specifications which were themselves derived from
the primary uses of specifications. These constraints have im
plied the need for an ultra-high-Ievel language which com
bines the data base concept of a global model containing
alternative viewpoints (hiding the distinction between explicit
and implicit data) with the control structures (both asyn-

400 National Computer Conference, 1981

chronous demon structures and conventional branching and
looping structures) of programming languages.

This combination obviates the need for conventional vari
ables which are replaced by placeholders which retain access
to specific portions of the global model. In addition, the need
for several novel features such as the ability to access the
global model as of any historical or future state and the ability
to choose a course of action based .. upon the desirability (or
lack thereof) of its results have been identified.

As mentioned in the Introduction, a language satisfying
these constraints has neither been designed nor implemented;
but work in this direction has begun. The SAFE14 project has
an implemented language called AP215 which provided the
experience base from which the conclusions in this paper were
derived. This existing language already satisfies half the con
straints (Implications 1 through 6, 8, 9, and 13) and work is
underway on including the rest, cleaning up and simplifying
the existing features, and providing a habitable syntax. We
have also begun implementation of a-"smart" compiler for
this (planned) language which would remove the need for
much of the run-time support otherwise required. The pur
pose of this compiler is to make it feasible to run the specifi
cation for selected test cases, rather than to optimize it for
production usage. This modest goal makes the imple
mentation of the compiler not only feasible, but rather
straightforward.

REFERENCES

1. Wirth, N. "The programming language Pascal", Acta Informatica 1, (1971).
2. London, R.L., J.V. Guttag, J.J. Horning, B.W. Lampson, J.G. Mitchell,

and G.J. Popek, "Proof Rules for the Programming Language Euclid,"
Acta Informatica 10, 1-26 (1978).

3. Balzer , Robert, Neil Goldman and David Wile, "On the Transformational
Implementation Approach to Programming" ,2nd International Conference
on Software Engineering, October 1976.

4. Codd, E.F., "Normalized Data Base Structure: A Brief Tutorial", Pro
ceedings of ACM SIGFlDET Workshop on Data Description, Access and
Control, San Diego, California, 1971.

5. Hammer, Michael and Dennis McLeod, "The Semantic Data Model: A
Modelling Mechanism fur Data Base Applications, Proceedings of the ACM
SIGMOD International Conference on the Management of Data, Austin,
Texas, May 1978.

6. Chen, P.P.S., "The Entity-Relationship Model: Toward a Unified View of
Data," ACM Transactions on Data Base Systems, Volume 1, Number I, pp.
9-36, March 1976.

7. Smith, J.M., and D.C.P. Smith, "Database Abstractions: Aggregation",
Communications of the ACM, Volume 20, Number 6, pp. 405-413, June
1977.

8. Smith, J.M., and D.C.P. Smith, "Database Abstractions: Aggregation and
Generalization," ACM Transactions on Database Systems, Volume 2, Num
ber 2, pp. 105-133, June 1977.

9. Pirotte, A., "The Entity-Property-Association Model: An Information
Oriented Data Base System," Technical Report, M.B.L.E. Research Labo
ratory,. Brussels, Belgium, 1977.

10. Quillian, M.R., "Semantic Memory," in Semantic Information Processing,
M.1. T. Press, Cambridge, Mass., 1968, pp. 227-268.

11. Prywes, Noah S., "Automatic Generation of Computer Programs", in Ad
vances in Computers, Volume 16, Academic Press, 1977.

12. Hammer, M.M., Howe W.G. and I. Wladawsky, "An Interactive Business
Definition System," SIGPLAN 9.

13. Langefors, B., "Information System Design Computations Using Gener
alized Matrix Algebra," (BIT) 5(2).

14. Balzer, R., Neil Goldman and David Wile, "Informality in Program Spec
ification," Fifth International Joint Conference on Artificial Intelligence,
August 1977 and IEEE Transactions on Software Engineering, Volume SE-
4, Number 2, March 1978; also USC/Information Science Institute, ISI-RR-
77-59, April 1977.

15. Goldman, N., "AP 2 Pocket Guide", Draft copy, April 1978.

Modular documentation: a software development tool

by ROY E. ANDERSON
Hewlett Packard
Fort Collins, Colorado

ABSTRACT

This paper presents a scheme for documenting the design and
implementation of a large software system. The scheme is
presented in terms of a family of documents based on the
decomposition of any system into specific levels of abstraction
for the purpose of software development. It facilitates the use
of structured design techniques, provides tangible objects for
organizing manpower resources on the basis of the system's
structure, gives management meaningful milestones with
which to measure development progress, and results in a fully
documented system when the implementation phase is com
plete.

INTRODUCTION

Much has been written in the literature concerning software
design methodology, project management, and program veri
fication techniques that can contribute to the success of a large
software development project. However, the subject of ade
quate design and implementation documentation is frequently
overlooked even though no one will dispute its importance or
the problems associated with many of today's methods. One
problem, typically, is that people end up documenting for the
wrong reasons. An architect does not draw building plans to
be filed away and never referenced by the builders; nor does
he draw them after construction is finished. Instead, building
plans are a product of the architect's intellectual activity and
they serve to guide construction.

This paper expresses a philosophy and presents a scheme
for software documentation that is similar to the "architect's"
analogy. That is, documents are written, not for the purpose
of providing "documentation" (although they do that coin
cidently), but for the purpose of providing a system design to
guide the system's "construction." The software project's
documentation is simply a by-product of its design process.

In specifying this documentation scheme, care was taken to
find the "middle of the road." Requiring too much documen
tation is counterproductive, especially when it involves re
peating information. Too little documentation could result in
a poor system design going undetected (until it is "too" late),
or a loss of control of the project (manifested by slipped
schedules, cost overruns, etc.).

401

This work is the author's refinement of various methods
found to be effective in developing any kind of sizable soft
ware product, and has been successfully employed by the
author (while at NCR Corporation) to produce a mini
computer operating system in 36 man-months. The operating
system was completed without a schedule slip, and resulted in
one detected"bug" after more than 1200 hours of use. While
the scheme does not address the subject of customer-oriented
documentation, effective design documentation provides the
data necessary to produce those documents in an organized
and timely manner.

SYSTEM ABSTRACTION

The human mind attacks the complexity of any problem by
systematically dividing it into successively smaller parts, until
each part is comprehensible by itself. When an understanding
of how all the parts fit together is achieved, the problem has
been mastered. Effectively, there are different levels of un
derstanding, each corresponding to an abstraction of the de
tail contained in those levels (of understanding) existing below
it.

For the purposes of this paper, five "formal" levels of ab
straction are defined (although an arbitrary number may be
conceived by a designer for the actual solution to any particu
lar problem). They are formal in the sense that they serve as
a definition of the components into which a system is decom
posed for purposes of project management, system design,
implementation, and documentation. However, they are not
intended to dictate or restrict the choice of system structures,
or the use of specific software design methodologies.

The following structure diagram (depicting part of a hypo
thetical software development system) shows these formal lev
els of abstraction. The lines connecting items do not represent
control or data paths but simply depict structural composition.
Each term is defined as follows:

• System. A collection of one or more major compo
nents-subsystems-that satisfy the functional require
ments outlined by the "customer."

• Subsystem. A collection of one or more programs that
together represent a major system component (e.g.,
operating system, compiler, etc.)

402 Nati?nal Computer Conference, 1981

SYSTEM

SUBSYSTEM

PROGRAM

MODULE

PROCEDURE

STATEMENT

"A" System

I +--------t--------+ •••
I I i
I I I
I I I

Compiler O.S. Text Editor
. I I

I I
I I I •••
I +._-----+------+ .•.

Iii
I I I

Console Kernel File
Interpreter

i
I ...

Executive

i
I
I
I
I
I

Manager

i
I

t-----t------: ...
Task

Manager
I ...

Memory
Manager

.!.

110
Driver

I
I
I

+---~+----+ .-
i I

Rd_char WL~har
i I

I I ...
Figure I-Levels of abstraction

• Program. A collection of one or more modules that to
gether satisfy a logical function (e.g., a file manager or
~emory manager within an operating system).

• Module. A collection of one or more logically related
procedures that IIlay be compiled and controlled sep
arately as' a unit.

• Procedure. An identified portion of a module consisting
of languag~ statements that can be activated on demand.

• Statement. A collection of data element declarations and
language statements (that specify actions to be carried
out on data elements).

The actual names for these levels of abstraction should be
consistent with the terminology used in a development group
(or company) and the programming language used for imple~
mentation. The design of a component (at any level) is not
constrained by tile number of formally defined levels tQat exist
below it. Furthermore, the number of items composing any
one level (except the root) is unlimited, and normally indi
cates the magnitude of the project.
, This structunll framework lends itself well to struc
tured design techniques as well as management metho<is ori
ented specifically to the characteristics of the product.' Since
written communications are essential in any design endeavor,
a software documentation scheme represents a key ingredi
ent in any successful management method or software
methodology.

DOCUMENTATION SCHEME

One successful method of attacking the problem of system
design is to take ~ "top c;lown" approach, that is, proceeding

from the general to the specific. It would be beneficial, then,
to identify a number of document types (or classes) that re
flect this approach, and associate a particular view of the
system's design with each document type.> The levels of ab
straction presented in Section 2 provide a convenient vehicle
for association between a hierarchical family of documents
and the system itself.

Table I identifies five document types and depicts their
relationships to the levels of abstraction presented in Section
2. Notice that a distinction has been made between d9cumen
tation of the design and of the implementation (the overlap
that occurs between them is a natural result of the fact that the
Module and Procedure levels of abstraction usually appear
within a programming language). The following subsections
explain the purpose and contents of each document type.

System Overview Specification (SOS)

This documentation identifies the major software products
(Subsystems) that are to be developed or otherwise obtained .
As such, its primary purpose is to specify the "design" of the
first level of abstraction of the system so that activities can be
identified and degrees of parallelism determined. The docu
ment should be constructed around the specified Subsystems,
with sections providing general (or "high level") information
concerning the purpose and objectives, acceptance criteria,
design constraints, schedules, and so on, of eaclt. The SOS
will not only lay the foundation for the construction of the
system, but it will serve as a global guide, or "index" to the
system's organization and documentation.

Depending on the scope of the System, certain Subsystems
may be acquired from sources outside the.immediate project
(or company). Sections dealing with such a Subsystem repre
sent a "Design Requirements Specification" to its supplier.
Other Subsystems may be defined as the result of consid
erable research into a subject (sometimes takiIlg months or
years)--these sections, in addition, contain or summarize
(with references to appropriate reports), the results of this
research.

Additional information that is of a system-wide nature,
should be included in the SOS as the situtation requires.

Subsystem Functional Specification (SFS)

The Functional Specification is crucial to the development
of a Subsystem because it tells the designers what and what
not to design. It is premature in this document to include a
specific implementation method for developing the Sub
system. The specification's detail should be sufficient to verify
that the objectives expressed in the System Overview Specifi
cation are obtainable. In order to ensure the best chances for
success in the subsequent development of the Subsystem, the
SFS must (a) describe all aspects visible to the user; (b) be
reviewed by project members (and approved by management)
before detailed design proceeds; and (c) be considered the
only definition of functions and features to be implemented.
The SFS contains sections dealing with the following topics
(when applicable):

1. Subsystem Scope and Objectives
2. Requirements: Hardware; Software; Performance
3. Human Interfaces
4. Programming Interfaces

An accurate statement of objectives not only aids the de
signer in producing a Subsystem with the proper character
istics, but it gives management an opportunity to judge, early
in the development cycle, if the designer's perception of the
problem will provide an adequate solution to the Subsystem's
requirements.

Similarly, the hardware and software requirements serve to
define the environment the Subsystem must create or exist
within. The minimum acceptable level of performance for the
Subsystem (regarding such issues as execution speed, memory
requirements, reliability, security, and fault tolerance) pro
vides important data in planning for project resources as well
as establishing a basis for design trade-offs that will inevitably
be made.

When user interfaces exist for the Subsystem, they need to
be specified both syntactically and semantically as accurately
as possible, because they represent the most apparent facili
ties and features of the Subsystem. This section of the SFS
contains the technical information necessary to produce a
"User's Manual," and will serve as one during development
and testing, providing an invaluable vehicle for intergroup
communications during the project.

What is true for human interfaces is equally applicable to
programming interfaces when a Subsystem will support user
(program) calls for functional services.

By paying a high level of attention to detail when specifying
Subsystem interfaces (which will make the SFS a valuable
design aid), one can expect during subsequent design activity
that some interfaces (or their parameters) may require mod
ification to support unforeseen details or design solutions. For
this reason "Change Procedures" (e.g., Metzger, 1973) are
utilized to free the designer during production of the SFS (or
any document) from concern for excluding a potential solu
tion because of the way in which an intelface was specified.

Subsystem Design Specification (SDS)

The SDS provides for decomposition of the Subsystem into
its component Programs, serving a function analogous to that
of the System uverview Specification. However, this docu
ment addresses itself to a greater level of design detail than
was appropriate in the previous documents. The purpose of
the SOS is to divide the Subsystem into manageable parts,
specify the interfaces between them, and provide the design of
any data structures relevant to the entire Subsystem. The SDS
should be written in sufficient detail to verify that the require
ments expressed in the Subsystem Functional Specification
can be satisfied and that the design approach chosen is a sound
one.

The contents always include the first three following sec
tions, and the fourth when it is appropriate to the· situation:

1. Subsystem Overview
2. DeSign Requirements

Modular Documentation 403

TABLE I-Document types and their relationship
to levels of abstraction

Level of
Abstraction

System

Subsystem

Program
Module
Procedure

Statement

Document Type
Design Implementation

1 System Overview

--~!~~~~~~~-~~~---
2 Subsystem Functional

Specification (SFS)
3 Subsystem Design

__ ~~~~~~~~~~i~~~~ __
4 Program Design

Specification (PDS)

(None)

(None)

5 Program Source
Specification

(Source Code Listing)

3. Program Identification: Functional Definitions; Pro
gram Interfaces

4. Global Data Structures

The first section is simply a brief summary of the Subsystem's
purpose, provided as an introduction to the document for the
sake of completeness. Similarly, the Design Requirements are
a summarized form of those identified in the Subsystem Func
tional Specification.

The third section, Program Identification, represents the
design activity during this stage of development. It explains
the structural decomposition of the Subsystem into Programs.
Each Program's function is defined, and its interfaces must be
precisely specified syntactically, using the implementation
programming language (if meaningful), and semantically us
ing prose or a suitable graphic technique if it is well under
stood by the intended audience. If an interface coincides with
one of the Subsystem's external interfaces presented in the
Subsystem Functional Specification (SFS) , its definition
should be a reference to the SFS in order to a¥Oid possible
conflicting specifications resulting from future changes. It is
important for this section to also contain a description of how
the Programs in the Subsystem are related to each other and
what interactions will exist between them.

When it is necessary to have data structures shared by two
or more Programs, they are considered "glob~l1" to the Pro
grams in the Subsystem, and are presented in the SDS since
they represent a form of interfacing between the Programs
that share them. It is important to specify the actions and
responsibilities of the various Programs, with respect to the
data structure, in as much detail as possibleauring writing of
the SDS (unresolved details can always be updated as solu
tions become available in later stages of activity).

Following these guidelines for the preliminary design of a
software system will set the stage properly for the detail design
remaining to be done. It encourages the designer(s) to con
sider the global issues of the problem before becoming en
grossed in the details of "local" design problems. It allows one
to have a clear understanding of the problem before attempt
ing to provide a solution-which has consistently resulted in
software products that effectively satisfy the needs of their
users.

404 National Computer Conference, 1981

Program Design Specification (PDS)

This document presents the details of the design, explained
to the point that another designer (or the author himself) can
understand how the functions of the Program are to be real
ized. A separate PDS is written for each Program specified in
the Subsystem Design Specification (in the case of concep
tually simple Programs, two or more could be combined into
one document). Each PDS has sections dealing with the fol
lowing topics:

1. Program Overview
2. Design Rationale
3. Module Identification: Module Function Definitions;

Module Interfaces
4. Procedure Identification: Graphic Representation; Pro

cedure Function Definitions; Procedure Interfaces
5. Data Structures
6. Important Algorithms

The first section presents a conceptual overview of the Pro
gram, serving as an introduction to the document. The Design
Rationale explains why the Program's design was chosen over
other possible designs, what assumptions were made in its
selection, and depending on the nature of the design, gives a
brief discussion of the technology involved. The depth of this
section is a function of the complexity of the subject-gen
erally, the more complicated a design is, the more explanation
required to make it comprehensible to others. If research
activity contributed to the design, the section summarizes the
findings and identifies pertinent reference literature.

The Module Identification section is analogous to the Pro
gram Identification section of the Subsystem Design Specifi
cation and contains similar information. It provides further
functional decomposition and an organizational approach to
ward the final solution. Each Module usually corresponds to
a collection of source code, but this correspondence is second
ary to the goal of providing an accurate identification of logi
cal functions and their groupings.

Each Module identified in the last section is now decom
posed into the principal Procedures that represent its func
tional components. The descriptions of these Procedures are
the subject of the Procedure Identification section. It is usu
ally valuable at this point to employ some graphical means of
depicting the flow of control between the various Procedures
composing a Module (e.g., block diagrams, schematic logic
diagrams, HIPO charts, etc. I

). In addition to depicting con
trol relationships, these graphs or diagrams can also provide
a "map" to the Program's source code listings. This can be
achieved by naming functional pieces of code (procedures and
modules) in the diagram, and by depicting how one part of a
listing (often large) is logically related to another. Each major
Procedure represented in the Module's "procedure diagram"
should be defined functionally, and its interfaces (i.e., its
method of invocation) specified syntactically and seman
tically, including parameters.

Three levels of data structures are subject to description in
the Data Structures section of the PDS (the Subsystem Design
Specification contained data structures that were global at the
Subsystem level): (1) Global within a Program (shared by

Modules); (2) Global within a Module (shared by Pro
cedures); (3) Local to a Procedure (not shared). All data
structures of a global nature are identified and described to
the degree that is necessary for them to be clearly understood
by others. Descriptions of local data structures are usually left
up to the discretion of the author (based on their complexity,
and the degree to which they can be described in-the source
code listings).

The section on Important Algorithms addresses those non
trivial algorithms that make up the Program. A narrative
about the algorithm is often important to future readers who
must maintain or modify the Program. It should answer such
questions as: Why was this algorithm chosen over others?
What assumptions were made aboutits use? and, How does
it work? A "high level" representation of the algorithm in
pseudo-code (i.e., a readable mixture of English and the pro
gramming language) should supplement the narrative dis
cussion.

The PDS is finished when all of the design details have been
presented in enough detail that source code can be written to
implement the Program's design in a straightforward manner.

Program Source Specification (PSS)

This scheme relies on the various source code listings of
each Program to provide documentation of the implementa
tion aspects of the System. It is an accepted fact in most of the
software industry that the classical methods of documenting
"code" (e.g., flowcharts, structured flow diagrams, etc.) not
only involved redundant activity, but also suffered from obso
lescence soon after they were drawn. If program (code)
changes are restricted to source language modifications, then
the listings always reflect the current state of an implementa":
tion. Thus, it is natural to depend on them as the most accu
rate documentation of system implementation details.

This dependence creates a need for meaningful "Coding
Standards" that incorporate the distinctive features of the
implementation language(s) chosen for a system. The purpose
of these standards is simply to maintain the consistency, both
in documentation content and appearance, of program listings
within a project. Numerous sources of information are avail
able in the literature to aid in formulating such standards
(e.g., Kernighan and Plauger2

).

Documentation Scheme Summary

When a Subsystem is conceptually (functionally) simple, it
may decompose into only one Program. Under these circum
stances there is little to be gained by having separate docu
ments for the SDS and PDS. There is an advantage, however,
to retaining separation between objectives (SFS), design
(SDS and PDS), and implementation (PSS).

The final result, in addition to the design itself, is a tree of
documents that corresponds to the structure of the System.
Each Subsystem is represented by a "family" of documents
that contains: (1) a precise statement of the functional objec
tives (SFS); (2) a decomposition of the Subsystem's functions

SYSTEM

0,70 % SOS %%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
%
%
%
%

"A" System :~
I % t·-------t---------+ ... %

% I # SDS ############## %

% I # SFS : : # %
% I #* 1:# %

SUBSYSTEM :: Compiler :: O.S. :: Text Editor %

070 I # :*******~******: # I::
%%%%%%%%%%%%%%%%%%%%%%%%%%%%~%%%%%

.1. : I : .l.
################### I ###################

+------+------+ ... #
#: I i #
$ PDS $$$$$$$$$$ $ PDS $$$$$$$$$ $ PDS $$$$$$$ #
$ I $$: $$ 1$#

PROGRAM # $ Console $ $ Kernel $ $ File $ #
$ Interprt'r $ $ Executive $ $ Manager $ #
$ I $$ I $$ 1$#

$ I $$ I $$ 1$

11/ \\\ $ I $ 11/ \\\
$ I $

$$$$$$$$$$$$$$$$ I $$$$$$$$$$$$$$$$$$$$$$$$
$ • $
$ t-----+------!- ... $

MODULE $ Task Memory 110 $

$ Manager Manager Driver $

~.1. .1. 1,1 ~
$ $
$ t"---+----t ... $

PROCEDURE $ M~u ~~u $
$ I I $
$$$

STATEMENT I .1.
Figure 2-Scope of subsystem design documents

into "designable" parts (SDS); (3) a detailed explanation of
the design of each component (PDSs); and (4) the imple
mentation itself (program listings). The entire System's
"tree" is summarized and indexed in a single document, the
SOS.

The diagram in Figure 2 graphically depicts the scope of the
design documents relating to the "O.S." Subsystem of the
hypothetical system presented in Figure 1. These documents
provide logically organized "collections" of information that
allow a reader to proceed easily from the general to the specif
ics of a system. One advantage of this scheme is that the
reader who wants a global understanding of the system (or
some portion thereof) has the necessary information explicitly
available, without having to distill such an insight from large
quantities of low level details (such as "listings").

Modular Documentation 405

CONCLUSION

A scheme for documenting a software system for the purpose
of communicating various design and implementation fea
tures to its developers and maintainers has been presented.
This scheme is only one of many tools that make up the
discipline of software engineering. To be effective, it must be
combined with "design reviews," to provide a mechanism for
judging the technical quality of a design and the adequacy of
its presentation; "change procedures," to provide a mech
anism for making design changes to finished documents in an
orderly (and complete) manner; and "development activity
phases," to clearly define levels of design and implementation
activity in order to plan and monitor progress toward specified
objectives.

The documents identified in this paper represent a set of
major and minor milestones tailored to the situation, which
have the effect of being spread evenly in time over the devel
opment cycle. Because these milestones are based on visible
objects, they are significant assets to developers and managers
rather than obstacles or annoyances to them.

ACKNOWLEDGMENTS

The author respectfully acknowledges the efforts of Larry
Haas, who provided an environment that allowed experi
mentation with the initial concepts on which this scheme is
based.

REFERENCES

1. Jensen, R.W. and Tonies, e.e., Software Engineering, Prentice-Hall,
Englewood Cliffs, NJ, 1979.

2. Kernighan, B.W. and Plauger, P.J., The Elements of Programming Style,
McGraw-Hill, New York, 1974.

3. Metzger, P.W., Managing a Programming Project, Prentice-Hall, Engle
wood Cliffs, NJ, 1973.

4. Parnas, D.L. "On the Criteria To Be Used in Decomposing Systems into
Modules," Comm. ACM 15, 12 (Dec. 1972), pp. 1053-1058.

5. Ross, D.T. and Schoman, K.E., Jr., "Structured Analysis for Requirements
Definition," IEEE Trans. Software Eng. Vol. SE-3, No.1, (Jan. 1977), pp.
6-15.

6. Wirth, N., Systematic Programming: An Introduction, Prentice-Hall, Engle
wood Cliffs, NJ, 1973.

7. Yeh, R.T., (Editor), Programming Methodology, Volume I, Prentice-Hall,
Englewood Cliffs, NJ, 1977.

Specification technique for parallel processing:
process-data representation

by KEN HIROSE and KIYOSHI SEGA,WA
Waseda University
Tokyo, Japan

NOBUO SAITO and NORIHISA DOl
Keio University
Yokohama, Japan

MASAHIRO HIRATA
University of Tsukuba
Ibaraki, Japan

TQSHIHARU YAMASAKI
Nippon Univac Kaisha, Ltd
Tokyo, Japan

and

MASAYUKI TAKATA
Tokyo University of Agriculture and Technology
Tokyo, Japan

ABSTRACT

This paper proposes a new specification technique called
Process-Data Representation (POR) which intends to de
scribe precise and comprehensive specification for parallel
processing.

The process representation consists of (a) the condition to
start the actions of pro<;esses and (b) the execution ordering.
The data representation specifies the constraints on the
shared usage of particular data. We propose the forcing logic
to describe these constraint conditions. A formula in the forc
ing logic can clearly specify the number of objects involved in
some a<;tions. The semantics of the formula is discussed in
detail. We also give an operational model of the forcing logic
and its effective implementation using semaphores. An exam
ple of the specification description for an operating system is
given, and the verifications of its properties are discussed.

BASIC CONCEPT OF
PROCESS-DATA REPRESENTATION

This paper proposes a new specification technique called
Process-Data Representation (POR)1 which intends to de
scribe precise and comprehensive specification for parallel
processing through use of the two-way points of view: process

407

and data. A precise and formal framework for describing the
specification of parallel programs would be inevitable for the
verification and the automatic generation of such programs.
This framework should be based on the concepts of the essen
tial feature of parallel processing so that the logical inferences
using a sound conceptualization can be carried out.

The process representation consists of (1) the specification
of the condition to start the actions of processes, and (2) the
specification of execution ordering of actions of processes.
The latter includes the order in which a process operates on
some data.

The data representation specifies the constraints on the
shared use of particular data. It also includes the order of
actions operating on particular data.

The specification description based on two-way points of
view might include some amount of redundancy, but it would
enhance the ease of reading and understanding the specifica
tion. It is not too much to say that the verification is easily
carried out for the easily understood specification.

Specification Examples in PDR

Let us show the introductory examples of the PDR specifi
cation. The following notations are used to specify the num
ber of the objects that participate in particular operations.

408 National Computer Conference, 1981

<X 1,x2, ... ,xn>ki:: At least k out of n objects should do the
operation P;

P
[x1,x2, ... ,xn]k~: At most k out of n objects may do the

operation P.

Note that this notation might be written on both sides of the
arrow ~, and its meaning can easily be understood.

Example 1: The specification of the dining philosophers
problem is described in PDR as follows:

[ph 1,ph2,ph3,ph4,ph5h~[11,f2>2' 12,f3>2, 13,f4>2,
14,f5>2, 15,f1>2 h

and

[Ph1h~11,f2>2 & [Ph2]1~12,f3>2 & [Ph3h~13,f4>2
& [Ph4h~14,f5>2 & [Ph5]1~15,f1>2

and

[Ph1,ph2]1~12>1 & [Ph2,p1z3h~13>1
& [Ph3,ph4h~14>1 & [Ph4,ph5h~15>1

& [Ph5,ph1]1~11>1

where phk (k=1, ... , 5) represents the philosopher k, andfj
(j = 1, ... ,5) represents the fork j.

Example 2: The specification of the rendezvous mechanism
of the task declarations in Ada programming language2

task P is
entry E(e);

accept E(e)
do

S
end;

end P;
task Qi is

E(di);

end Qi;
for i =1, 2, 3, ... , n

is described in PDR as follows:
S'

<P, [Q1, ... ,Qnh >2~<P.e, [Ql.d1, ... , Qn.dnh >2

and
<P, Qi>2§..;<P.e, Qi.di>2 for i=1,2, ... ,n,

where S'=({P.e :=Qi.di;}
S;

{Qi.di :=P.e;}) .

Specification Method in PDR

The fundamental model of parallel processing employed in
PDR is considered to consist of a set of clusters, each of which
is a set of processes logically related to each other. A list of the
specifications of clusters gives a complete specification of a
target parallel processing.

There are three classes of processes: standard, interruptive,
and postlude. Each process has an activation condition (stan
dard, postlude, and interruptive condition, respectively)
which specifies when it starts the execution.

When the activation condition is evaluated and how many
times a process is executed are summarized as follows:

When How many times
Standard At the initiation Once at most

of the cluster

Interruptive At any time* Any number of times

Postlude At any time Exactly once

*The evaluation of the interruptive condition restarts after the end of
its last execution.

A cluster operation terminates if all the activated standard
and interruptive processes terminate and if all the postlude
processes are activated and terminate.

A framework of the specification description for a parallel
processing is as follows:

parallel processing
global data and condition

cluster path expression

/* specification of cluster i * /

cluster i;
[process-path end;]
/* process specification section * /

s-process j; (or i-process j; or p-process j;)
condition Bj;
ref-path end;

exec-path end;

/* data specification section * /

data x : t;
ref-path end;

exec-path end;

/* process data interaction specification section * /

specification using forcing logic

The terms s-process, i-process, and p-process stand for
standard, interruptive, and postlude process, respectively.
The path expression notation is used to specify the order of
operations. The term ref-path gives the constraints for the

access to the object executed by other objects, while exec-path
gives the order of the operations executed by that object
which has this specification. Of course, these operations may
be provided by other objects. The process data interactions
are specified mainly by using formulas in the forcing logic. 3

FORCING LOGIC

As the quantum logic reflects the properties of the quantum
mechanics, so the formal logic for the specification description
expresses the essential properties of the target system. It
needs to have high readability so as to make the system easily
understood. The first order logic would be suitable for formal
treatment, but the higher order logic is needed if we want to
have a simple and clear description of the real world.

Let us first define several fundamental concepts in the tar
get system and embed them in the predicate logic. Since the
introduction of many concepts might make it difficult to de
fine the formal system, it is necessary to carefully introduce
only a few concepts which maximize readability.

There may be several fundamental concepts, for example,
those relating to the number of objects, forcing, prohibition,
constraint, priority for some actions, and so forth. In this
paper, we introduce the concept concerning the number of
objects involved in some activities. This is described by the
forcing logic, which is the first order logic with the operators
[...] and < ... >. As is shown below, this logic can express the
forcing and prohibition constraints imposed on some activ
ities. It is expected that these forcing operators and a certain
kind of path expression4 make it quite easy to describe the
specification of parallel processing.

Forcing Operators and Formulas in Forcing Logic

For a fixed natural number u, let R denote a set of all
objects xl,x2, ... , xu existing in the target system.

Definition 2.1: For an integer u and k S.t. O:5k:5u, <"'>k

and ["']k are primitives to specify a family of subsets of R as
follows:

For xl,x2, ... , xueR _
<xl, ... , XU>k = {X I X k {xl, ... , xu} & X2: k},

where X denotes the cardinality of X.

For Xl, ... , Xuepower set of R
<Xl, ... , XU>k = {u {Proji (~) I iel}

I I2:k & Ik{l, ... , u} & ~E nXJ.

For xl,x2, ... , xueR _
[xl, ... , xU]k={X/Xk{xl, ... , xu} & X:5k}.

For Xl,X2, ... , XUEpower set of R
[Xl, ... , Xu h = {U {Proji (~) : ieI}

id

IFsk & I k{l, ... , u} & ~E n XJ.
id

Specification Technique for Parallel Processing 409

For example, if R = {rl,r2,w},

[<rl,r2>t,wh = [{{rl},{r2},{r1 ,r2}},{{w}}]1
= {4>,{rl},{r2},{rl,r2},{w}}.

The bracket operators < ... > and [...] are called forcing oper
ators, and they are represented by « ... ».

Now, we consider the formula

S~T, (1)

where Sand T are a family of subsets of R , and P is in general
a predicate over R (if it is a name of an operation, it denotes
the predicate "P is now being executed").

The semantics of the above formula is given as follows:

{(X,Y) I P(X;Y)}kSxT .

Specifically, we write

when

P
S~T,

((X,Y) I P(X;Y)} = S x T.

Properties of Forcing Operators

(2)

(3)

(4)

Consider the case in which a family of subset Sand/or T in
the above formula is represented by a forcing operator « ... ».

p
«xl, ... , xm»k~Y

This means that for a given predicate P(X; Y) and Y s. t.
{X/P(X;Y)} ~ 4>,

{X/P(X;Y)}k«xl, ... , xm»k (5)

and

3XE«xl, ... , xm»k [X=k & P(X;Y)] (6)

should hold. Moreover, k satisfying (5) and (6) is uniquely
determined: k becomes as small as possible for <x 1, ... ~ xm >k,
and it becomes as large as possible for [x 1, ... , xm]k.

It is obvious that the following property is generally estab
lished:

If
{XIP(X;Y)}k <xl, ... , xm>k,

then
"IX ~{xl, ... , xm} [X < k :::>~P(X;Y)].

Therefore, if

and

{XIP(X;Y)} k <xl, ... , xm>k

3XE<xl, ... , xm>k [X = k & P(X;Y)] hold,
p

<xl, ... , xm>k~Y

(7)

410 National Computer Conference, 1981

ACTIVATED . . . ,.
: wailing condo
= break off

I wailing cond. I lime unil
s. p.process

: hold elapsed & •
: non-terminated =
~:

Figure 1-5tate transition diagram of process

means that "at least k objects out of {x I, ... , xm} shmild do the
operation P to Y."

Similarly, for ["']k' the following property is generally estab
lished:

If
{XIP(X;Y)}~[x1, ... , xm]k,

then
'IX k {xl, ... , xm} [X> k ~~P(X;Y)]. (8)

Therefore, if

and

{XIP(X;Y)} ~ [xl, ... , xm]k

3Xe[xl, ... , xm]k [X=k & P(X;Y)] hold,

E
[xl, ... , xm]k~Y

means that "at most k objects out of {x I, ... , xm} may do the
operation P to Y," i. e., "more than k objects may not do the
operation P ."

This means that for a given X and a predicate P(X;Y) S.t.
{YIP(X;Y)}~<f>

{YIP(X;Y)}~«yl, ... , yn»k (9)

and
3Ye«yl, ... , yn»k [Y=k& P(X;Y)] (10)

should hold. Moreover, k satisfying (9) and (10) is uniquely
determined.

For the same reason discussed above,

E
X~[yl, ... , yn]k

means that "at least k objects out of [yl, ... , yn] should have
the operation P done by X," and

E
X~[yl, ... , yn]k

means that "at most k objects out of [y I, ... , yn] may have the
operation P done by X," i.e., "more than k objects may not
have the operation P done by X."

If the computer behavior is specified by the above
mentioned formula,

represents that the constraint should always (i.e., at any time)
hoid.

EFFEctIVE IMPLEMENTATION OF PDR

Process State Transition

This section first discusses the operational model of PD R so
that its meaning can be intuitively understood. A' process in
the PDR description is made to start when its activation con
dition holds. It also obeys the condition specified by formulas
in forcing logic. This condition is called afordng condition.

The state transition diagram of a process in the PDR de
scription is given in Figure 1. The activation condition corre
sponds to a standard, interruptive, or postlude condition. The
holding and breakoff of the waiting condition usually corres
pond to the breakoff and holding of the forcing condition.

The process scheduling in a cluster is summarized in the
following procedure.

repeat
if INACTIVE-queue is not empty, then

remove processes of which activation condition hold,
arid enter them into READY -queue fi;

if READY-queue is not empty, then
i : = remove the first process from READY-queue;
allocate CPU to process i for one time-unit;
if process i did not finish

then put it in the end of READY -queue fi
fi

forever

Implementation Schema for the Forcing Logic

Let us consider the implementation of a formula in the
forcing logic through use of the semaphore system. The forc
ing operation can be implemented effectively as follows:

fpl,p2, ... , pn]m..4:

initialize {s: = m; pset: = [p1,p2, ... , pn]}
if currentprocess in pset then P(s) fi

f:
if currentprocess in pset then V(s) fi ;

<pl,p2, ... , pn>m..4:

initialize {s: = m ; pset: = [p 1 ,p 2, ... , pn]}
if curtentprocess in pset then <P>(s) fi

f:
if currentprocess in pset then < V >(s) fi ;

where S: counting semaphore,
pset: a set of processes,
P, V: P and V -operation of the standard semaphore,
<P>, < V>: inverse P and V -operation of the inverse sema-

phore.
<P> and <V> operations are defined as follows:
<P>(var s: semaphore') =

begin
s:=s-I;
if s > 0 then block
else if s = 0 then

fi

if there are blocked process on s then wakeup (all
blocked process on s) fi ;

if there are suspended process on s then unsuspend (all
suspended process on s) fi

fi

end
< V> (var s: semaphore') =

begin
s:=s+l;
if s > 0 then suspend (all processes which are in this crit

ical section) fi
end

The structure of the semaphore' is as follows:
type semaphore' =

record
counter: integer;
blocked-queue: queue;
suspended-queue: queue;
in-critical-seetion-queue: queue

end

Note that a process in the critical section is suspended if
several processes leave the section, and the number of the
processes in the critical section becomes less than that speci
fied by the "at least" operator. Therefore, there are two
waiting states (blocked and suspended) in the solution.

If the bracket operators [...] and < ... > are nested, the above
transformation can be applied from inside to outside.

For example,
<p 1,<p2,p 3>t,p4>2..t:

initialize {semI : = 1; sem2 : = 2;
psetl : = [p2,p3];
pset2 : = [pI,p2,p3,p4];

if currentprocess in pset 1 then <P>(semI) fi;
if currentprocess in pset2 then <P>(sem2) fi;

g:
if currentprocess in pset2 then <V > (sem2) fi;
if currentprocess in psetl then <V>(semI) fi;

The bracket operators in the right-hand side of a forcing
logic formula can also be implemented using the same tech
nique. The details are omitted here.

Specification Technique for Parallel Processing 411

SPECIFICATION AND VERIFICATION: AN EXAMPLE

Let us give an example of the specification description for the
operating system SOL05 and discuss the verification of sever
al pro~erties in this system.

Specification for SOLO Operating System

The SOLO operating system is hierarchically structured
and designed through use of several types of basic abstract
data: processes, monitors, and classes. In the specification we
consider the following three levels of processes: (1) utility
process level-including several utility routines (compiler,
editor, file processing routines, etc.) executed on the job pro
cess "master," and device control routines (card, printer,
disk, etc.) executed on the I/O process "producer" and "con
sumer"; (2) command process level-including the command
interpreter routines (i.e., do, io) executed either on the job
process "master" or on the I/O process "producer" and "con
sumer"; and (3) system process level-including all the pro
cesses originally defineam. the smo system.

In the PDR specification, the initial process is of standard
type, whereas all the other processes are of interruptive type.

All the objects defined as monitors and classes in SOLO are
considered as data in the PDR specification. In the SOLO
system, shared objects are controlled so as to be accessed
mutually exclusively through use of several monitors (diskuse,
typeuse, etc.) and their PDR specifications are simply de
scribed using formulas in the forcing logic.

The following is part of the specification description of the
SOLO operating system for the situation in which one of the
typical commands

copy(card , printer);
is given by a user.

"SOW Operating System Specification Description by PDR"
cluster SOLO;

i-process copy;

Process Specification
Utility Process Level

condition "command = 'copy' (called by do)"
exec-path

lookup ;writearg(inp) ;writearg(out) ; (readpage ;
writepage) *; readarg(inp) ;readarg(out)

end;
i-process card;
condition "source = 'card' (called by input-io)"
exec-path (readline;write*)*end ;
i-process printer;
condition "dest = 'printer' (called by output-io)"
exec-path (read*;writeline)* end;

Command Process Level
i-process do;
condition called by master at the initialization;
exec-path

«(accept)* + (display)*)*;
lookup; run(command»*

end;

412 National Computer Conference, 1981

i-processs input-io;
condition called by producer at the initialization;
exec-path

(readarg(inp);lookup; run(driver); writearg(inp»*
end;
i-process output-io;
condition called by consumer at the initialization;
exec-path

(readarg(out) ;lookup; run(driver) ;writearg(out» *
end;

System Process Level
i-process master;
condition initialize by initial process

or system call by utility/command process;
ref-path

initialization;
(run + ... + read page + writepage + readarg(inp) +
readarg(out) + writearg(inp) + writearg(out) + ...)*

end;
ref-path writearg(inp) ;readpage* ;readarg(inp) end ;
ref-path writearg(out);writepage*; readarg(out) end;
exec-path

system call~
(
run~ ...
readpag~inbuffer. read,
writepag~outbuffer. write,
readarg(inp ~inresponse.read,
readarg(out ~outresponse. read,
writearg(inp ~inrequest. write,
writearg(out~outrequest. write,

),
initialization~

end;

initialize all local objects;
"load and start 'do' "

i-process producer;
condition initialization by initial process

or system call by utility/command process;
ref-path

initialization; (run + exit + +
writepage + readline+ readarg + writearg + ...)*

end;
ref-path readarg(inp);writepage*;writearg(inp) end;
exec-path

system call~
(

write~iostream. write,
writepag~inbuffer. write,
readarg~inrequest. read,
writearg~inresponse. write,

),
initialization~

initialize all local objects;
"load and starL'io' "

end;

i-process consumer;
condition initialization by initial process or system call by

utility/command process;
ref-path readarg(out);readpage*;writearg(out) end;
exec-path

system call~ ...

end;

Data Specification
system process = {master ,producer ,consumer ,reader,

writer}
mainprocess ={master ,producer ,consumer}

data inbuffer ,outbuffer:pagebuffer;
ref-path write;read end;

data inrequest,inresponse,outrequest,outresponse:
argbuffer;
ref-path write;read end;

data master .instream(inbuffer),
master. outstream(outbuffer),
producer.iostream(inbuffer),
consumer .iostream(out buffer):
charstream(buffer:pagebuffer) ;
ref-path (initread;read*) + (initwrite;write*) end;
exec-path

read~buffer .read,
writ~buffer.write

end;
data master.file[1](catalog), ...

:datafile(dcat:diskcatalog);
exec-path

open~dcat.lookup;dfile.open,

clos~dfile.close,

read~dfile.read

writ~dfile. write
end;

[
.] dfile.open,dfile.read,dfile.write) mamprocess 1

<diskdevice> 1

read , write .
[systemprocess] 1 ~ < typedevlce> 1

[.] lookup d' kd . mamprocess 1 -+< IS eVlce> 1

Verification for SOLO Operating System

For the above-mentioned specification, the following prop
erties of the system can be verified without using any formal
system because of the specification's high readability.

Deadlock freeness

A deadlock situation might occur in the environment where
several processes lock shared objects. It is certain the dead
lock will not occur if the process ordering defined by these
locking requests does not make a cyclic chain. In the PDR
specification, the mutually exclusive access to certain objects

inside certain procedures is described using formulas in forc
ing logic. Then, it is easy to find out there is no such process
chain in the SOLO system by tracing the ref-path and exec
path expressions starting from the critical procedures. It is, of
course, assumed that any 110 operation should be finished in
a finite delay.

Consistency of the Specification

If one operation of an object is referred, this object then
might execute (refer) several numbers of operations provided
by any other objects. The objects defined in the SOLO oper
ating system interact with each other following the refer (ex
ecute) and referred relationships described in the specifica
tion. It is therefore necessary to check the consistency of the
overall interrelationships at the specification level by tracing
the ref-path and the exec-path expressions.

Consistency of the Interactions via ButTers

The most complex and critical interactions in the SOLO
system are caused by two pagebuffers (inbuffer, outbuffer)
and four argbuffers (inrequest, inresponse, outrequest, out
response). Consider a copy command mentioned above. The
ref-path and the exec-path expressions relating to the page
buffers and argbuffers are extracted from the specification to
verify the consistency of the interactions among these objects.

Let us verify the consistency of the interactions caused in
the course of passing data from "card" to "copy."

(i) the consistency among processes (master, producer) and
buffers (in buffer , inrequest, inresponse)

"master" ref-path writearg(inp) ;readpage * ;readarg(inp)
end;

"producer" ref-path readarg(inp) ;writepage*;
writearg(inp) end ;

"buffer" ref-path write;read end;
The procedures writearg(inp), readarg(inp), and readpage

in "master" are implemented by executing inrequest.write,
inresponse.read and inbuffer.read, respectively, and read
arg(inp), writearg(inp), and writepage in "producer" by exe
cuting inrequest.read, inresponse. write and inbuffer. write,
respectively. They are consistent with the ref-path specifica
tion for buffers.

(ii) the consistency among copy, do, and master
"copy" exec-path writearg(itlp);readpage* ;readarg(inp)

end;
"master" ref-path writearg(inp) ;readpage * ;readarg(inp)

end;

Specification Technique for Parallel Processing 413

Since "do" activates "copy" by executing run procedure, it
does not interfere with the interactions between the above two
processes via buffers. Obviously, they are consistent.

(iii) the consistency among card, input-io, and producer
"card" exec-path write* end ;
"input-io" exec-path readarg(inp) ;writearg(inp) end ;
"producer" ref-path readarg(inp) ;writepage * ;writearg

(inp) end;
"card" is activated after "input-io" reads the input source

argument "card" by executing readarg(inp), and the pro
cedure write in "card" finally ends with buffer. write(Le.,
writepage). Therefore, the interactions among these three
processes are consis~ent.

The ref-paths of system level ("master" and "producer")
are consistent with the ref-paths of "buffer's," and the exec
paths of utility and command level ("do," "copy," "input-io,"
and "card") are consistent with these ref-paths. Therefore,
the total interactions caused in the course of passing data from
"card" to "copy" using various buffers are verified to be
consistent. The consistency among interactions caused in the
course of passing data from "copy" to "printer" can also be
verified in the same way.

CONCLUSION

In this paper, we have proposed a new technique for de
scribing the specification of parallel processing and have dem
onstrated its usefulness with several examples. The high-level
concepts and their description notations, such as forcing oper
ators, describe the properties and the situations of the target
system so clearly that the verification and understanding of
the specification can be easily carried out.

More detailed discussion of the implementation will be nec
essary for further applications.

REFERENCES

1. Hirose, K., Saito, N., Doi, N., Segawa, K., Hirata, M., and Takata, M.,
"Process-Data Representation," Proc. 3rd US-Japan Computer Conference,
Oct. 1978, pp. 225-230.

2. "Preliminary Ada Reference Manual," SIGPLAN Notices, Vol. 14, No.6,
1979.

3. Hirose, K., Saito, N., Doi, N., et aI., "Forcing Logic in Process-Data Rep
resentation," Technical Report KIIS-79-01, Institute ofInformation Science,
Keio University, March 1979.

4. Campbell, R.H., and Habermann, A.N., "The Specification of Process Syn
chronization by Path Expressions," Lecture Notes in Computer Science, Vol.
16, Springer-Verlag, 1974.

5. Brinch Hansen, P., "The SOLO Operating System: Processes, Monitors and
Classes," Software-Practice and Experience, Vol. 6, 1976, pp. 165-200.

A tiny portable language-independent macroprocessor
and some applications

by ROBERT C. GAMMILL
North Dakota State University
Fargo, North Dakota

ABSTRACT

A tiny language-independent macroprocessor is described. It
is easily implemented in most programming languages. A
compact and portable implementation in ANSI FORTRAN is
given. The simplicity of the implementation results from a
user-specified escape character used to mark all macro calls.
The result is a macro language not easily read by beginners.
All primitive macro operations, including definition, are-sim
ple macro calls. The tiny macroprocessor has proved a power
ful software tool in a number of applications. These include
source text decompression, character set encoding for trans
mission, and as the basis for a linking loader. The com
pactness and portability of the processor make it useful in
moving software from one machine to another. The simplicity
of the processor makes it easy to extend or modify for new
applications. The tiny macroprocessor is a simple yet useful
addition to the software engineer's tool kit.

INTRODUCTION

The tiny macroprocessor was implemented as a bootstrap
macroprocessor for use in moving a compressed source ver
sion of a larger macroprocessor called GPMX I from one com
puter to another. The tiny macroprocessor proved very useful
in this application, allowing text compression approaching a
factor of 5. The tiny macroprocessor was designed along the
lines of GPM2 and its offshoot GPMX. However, its internal
operation has been simplified in. the extreme. Where GPM
and GPMX demand that certain characters of the alphabet be
dedicated to the macro language, the tiny macroprocessor
uses an extended alphabet through the introduction of a user
defined escape character. This allows the tiny macroprocessor
to be used with any language or alphabet, without conflict.

Later the writer became interested in the experimental de
sign of a powerful yet simple and compact linking loader for
microcomputers. A desirable feature for a linking loader is
the ability, when no address relocation or symbol linking is
needed, to load a stream of bytes into sequential memory
locations without excessive overhead. In other words, when
loading absolute information, a linking loader should ap
proach the efficiency of an absolute loader. When relocation
of linking is needed, those operations should be flagged so as
to be easily recognized in the surrounding absolute byte

415

stream. Clearly this requirement points to the tiny macro
processor, whose language can be embedded within any al
phabet, including one made up of absolute binary bytes. As a
result, an experimental linking loader based on the tiny mac
roprocessor was constructed. This loader, which will be de
scribed in more detail later, is exceedingly small and simple.
Its structure resembles a macroprocessor far more than a
loader, but the primitive macro calls are functions relating to
linking, external symbol dictionaries and relocation. This
loader has the unique character that it is controlled by the
object text which it loads, and that its functions can be com
bined through macro definitions to provide extended capabil
ities when those are needed. Perhaps most important is the
fact that the loader is so simple that it can be maintained and
modified easily, a feature rarely found in most loaders.

A third application of the tiny macroprocessor is in inter
computer communication. In a file transfer protocol between
two minicomputers running UNIX,4 using the terminal inter
face on both machines, it is necessary to do character trans
lation when sending binary files. So many characters are given
special treatment in the UNIX terminal driver that some way
must be found to avoid sending certain characters. The tiny
macroprocessor satisfies the need, since it has-capabilities to
extend the alphabet by defining macros. A new version of the
tiny macroprocessor, written in "C,,,3 was produced, with
primitive functions for defining the codes of dangerous char
acters numerically. It allows special macros to be defined for
every character that would receive a functional interpretation
by the terminal driver, and the macro definition and call to be
transmitted through the drivers in place of the offending char
acter. For example, control D (ASCII 4) is an EOT or end of
transmission character. Transmitting this character on a line
causes many modems and terminal drivers to immediately
hang up the line. By simply defining that character to be
represented by the macro $D and transmitting that definition,
all occurrences of EOT can subsequently be translated to $D
before transmission and macro expanded back to EOT at the
receiving end.

DESCRIPTION

The tiny macroprocessor can be used with any language using
any character set. This is possible because the tiny macro
processor works by extension of the existing alphabet,

416 National Computer Conference, 1981

through use of a user-selected escape character. All other
characters retain their original form. Assume that the alpha
bet is ASCII and the escape character is $. The $ sign is used
to escape from the base language, with a single $ in the orig
inal language now being represented by $$. Obviously the
escape character should be chosen to be a character that oc
curs infrequently in the base language. Using this method, a
single character of the base language becomes twice as long,
and we gain up to 127 double characters ($a, $b, etc.), which
are used for the macro language. This technique, although it
produces a rather crude-looking macro language, guarantees
that the macroprocessor can be used with any alphabet and
language. This is extremely important in certain kinds of ap
plications, especially those where intersystem character set
differences are part of the problem.

Given this extended alphabet, the tiny macroprocessor uses
certain of these new characters as primitive operations (macro
calls). The most important primitive operation is macro defi
nition. For example,

$O'abody'

This is a macro definition that defines $a to be the text string
"body." The $0 indicates that a macro definition follows. The
following character (chosen freely from the base alphabet) is
a delimiter, which encloses the macro definition. The next
character is the macro name, and the subsequent characters
up to the next occurrence of the delimiter form the body of the
macro. All macros have one-character names. The definition
macro is the only primitive operation, other than macro call
ing, that is necessary to all applications. In addition, one other
feature is supplied in all applications. One character is desig
nated as a formal parameter character. When that character
is encountered in a macro body, the next character from the
input is substituted for it. The % sign will be used for this
purpose here. Thus if $0' ab%dy' is defined, $ao produces
"body" while $aa produces "bady". Finally, if $% is found in
a macro body, the next character from the input is used as the
macro name to be called (see Table II for examples).

APPLICATION I

The tiny macroprocessor was developed as a bootstrap pro
cessor to expand compressed FORTRAN source text for
GPMX,l a much larger and more powerful macroprocessor,
on new machines where it was being transported. The tiny
macroprocessor allowed a 708-line source program, to be re
duced to 166 compressed but readable lines. In this applica-

tion much of the task was to eliminate the cost of strings of
blanks, and make full use of the card image source record. In
addition to the basic macro definition primitive described al
ready, nine additional primitive functions were added to gen
erate strings of blanks and control input and output records.
These are shown in Table I.

TABLE I-Primitive macro call results

CALL

$1
$2
$3

$9

yields RESULT

none
none

3 blanks

9 blanks

or SIDE EFFECT

read next input record
write next output record
none

none

The $1 and $2 macros are used to decouple input and output
lines. The $1 causes the elimination of the remainder of an
input record or line. The $2 causes the writing of an output
record or line, i.e. it inserts an end-of-line in the output. As
an example of the use of these macros, $O'S$2$6' allows $S to
start a FORTRAN source line. Table II provides examples of
the use of this macroprocessor. The last three examples in
Table II should be examined closely, for they use the $%
construction. This allows a macro to be called whose name is
specified in the call, not in the definition.

A very useful aspect of the form of text compression imple
mented by the tiny macroprocessor is that compressed source
text can still be edited either on-line or on a keypunch. Be
cause of the availability of the $1 macro, a new source record
can be added to the compressed text without necessity for the
addition of exactly 72 characters to the output. The $1 macro
is also useful for adding comments to the compressed text that

. will not appear in the decompressed output. The source code
for the tiny macroprocessor in portable ANSI FORTRAN is
given in Figure 1.

APPLICATION II

Linking loaders for microcomputers have only recently begun
to appear. One reason for this is that absolute assemblers and
loaders are more compact and easier to write, but another is
that object modules containing external symbols and relo
eatable addresses can be large and unwieldy for small micro
computer mass storage systems. Input to an absolute loader

TABLE II-Examples of tiny macroprocessor definitions, calls and results

Definition

$0,S$2$6,
$O.L(%(I),I = 1,%).
$O*I$SINTEGER *
$O'W$% WRITE(6, %%)$L'
$0' A$2$3%% '
$O'F$%FORMAT('

Call

SLAN
$IX,Y
$WS73AN
$WA2173AN
$FA73819)

Yields

(A(I),I = 1,N)
INTEGERX,Y
WRITE(6,73) (A(I),I = 1,N)

21 WRITE(6,73) (A(I),I = 1,N)
73 FORMAT (819)

A Tiny Language-Independent Macroprocessor 417

INTEGER A,E,S,C,IN(72),ID(8) ,OUT(72),CH(l4) ,ST(1000)
READ (5,100) CH,E,S,C,N

20 IST=l
1 READ (5,101) IN,ID

WRITE(6,101) CH(4) ,IN,ID
DO 16 L=1,72

A=IN (L)
2 IF(A.EQ.CH(l» GO TO (3,11,8,9),IST

GO TO (11,4,8,9),IST
3 IST=IST+1

GO TO 14
4 DO 6 1=1,10

IF(A.NE.CH(I+4» GO TO 6
IF(I.LT.4) GO TO (3,20,12),1
DO 5 J=2,I

N=N+1
5 OUT(N)=CH(4)

GO TO 13
6 CONTINUE

ST(S)=C
S=S+l
C=E+2

7 IF(A~EQ.ST(C-1» GO TO 13
C=ST(C-2)+2
IF(C) 77,77,7

8 IST=4
ISV=A
A=E
E=S

9 IF(A.NE.ISV) GO TO 10
IST=l
A=CH (3)

10 ST(S)=A
S=S+l
GO TO 16

11 N=N+1
OUT(N)=A
IF(N.LT.72) GO TO 13

12 IF(N.GT.O) WRITE (7,101) (OUT(I) ,I=l,N)
N=O

13 IST=l
14 IF(C.LE.O) GO TO 16

IF(ST(C) .NE.CH(3» GO TO 15
S=S-l
C=ST(S)
GO TO 14

15 A=ST(C)
C=C+1
IF(A.NE.CH(2» GO TO 2

16 CONTINUE
GO TO 1

77 WRITE(6,101) (CH(4) ,I=2,L) ,CH(l),A
100 FORMAT(lH1,2A1,A2,llA1,I2,3I1)
101 FORMAT (90A1)

END
1$%;; 0123456789-7100 data card to initialize macroprocessor

Figure I-FORTRAN source and data card for macroprocessor

418 National Computer Conference, 1981

TABLE III-Primitive functions for the macro loader

Call Result

$1 end of record mark for text strings and loader input
$2 ac = next two bytes from the input
$3 pcr = ac
$4 rc = pcr
$5 ac = ac + pcr
$6 ac = ac + rc
$7 memory (pcr) = ac; pcr = per + 2; 2 bytes stored
$8 input contains text for name of external reference
$9 input contains text for name of external definition (the present

contents of the pcr is the value)

has little structure, but the input to a linking loader must have
considerable structure. The tiny macroprocessor, with its lan
guage that can be embedded in any other language, seems an
ideal basis for a linking loader where all structured informa
tion relating to symbols and relocation is marked by the es
cape character. Using this technique, a file of absolute bytes
for loading directly into memory. needs no structure, while
symbols and relocation are all embedded through use of the
macro language.
-·For this application the $1 through $9 primitive macros are

replaced by a completely different set of primitives. In order
to understand the new primitives, we shall describe an ab
stract loader machine for which the primitives are the oper
ation codes. The executable code of the macro loader resides
in upper memory, while object code is loaded into lower
memory. Macro and external symbol definitions are stacked
downward in memory from the loa~er. The macro loader has
three registers, the ac or acculJl6'lator, the pcr or position
counter register, and the rc or relocation counter. All these
registers are the size of the machine address, assumed to be 16
bits or 2 bytes. The ac is a working register for intermediate
results. The pcr keeps track of the present position in memory
of the loading activity. Every time a byte is to be stored in the
memory image, it is stored at the location specified by pcr,
and pcr is incremented. The rc keeps track of the amount of
relocation necessary for the present object module. Any relo
catable address found in the module must have rc added to it
before it is stored. The new primitives are shown in Table III.

The $8 and $9 macros need further explanation. They are
called as $8name$1 or $90ther$1. The $1 terminates the
string. When $8 followed by the name of an external reference
is encountered, the name is looked up in the table of external
definitions. If it is there, the associated 16 bit quantity is
stored in the memory at pcr. If it is not there, the new name
is added to the table and a linked list is begun that will point
through the memory at each location where this undefined
name is referenced. When a $9 macro is encountered, the
name is looked up in the table also. If it is not there the name
is added along with the present pcr value. If the name is
already there, it is either multiply defined or there is a linked
list of locations that must be filled in with the present value of
the pcr.

Next we shall look at some examples. An absolute stream
of bytes to be loaded beginning at location 0 will simply be
those bytes terminated by a $1. If those bytes need an origin
at some point other than zero, that is accomplished by a $2,

followed by two bytes specifying the origin, followed by a $3.
Hereafter we will use XX to represent a two byte numeric
quantity. A block of uninitialized storage can be skipped by
$2XX$5$3. However, a much better way of handling such
operations is through macro definitions. $0 is still used to
define a macro, but now $1 is used to terminate the macro
definition. Table IV gives a number of useful macro defini
tions, with a description of the purpose for each.

TABLE IV-Macro loader definitions and calls

Definition Call . Purpose

OA2$6$7$1 $AXX relocates address XX by rc.
OB2$5$3$1 $BXX skips a block Qf XX bytes of memory.

$4 marks begio()f reloc~table module.
OP2$3$1 $PXX sets pcr to XX (ORO pseudo op.).
OR2$5$7$1 $RXX deposits present address + XX.
OEP$9$1 $EXXname$1 equates external name to XX.

It should be emphasized that the macro loader is an experi
mental application. To use it would require the imple
mentation of an associated assembler. It does appear that the
approach has considerable promise. One problem could be
that the macro language uses two bytes per symbol, and if
relocatable addresses and external symbols are very common
this could be expensive. The solution is to scan the object file
to find out if there are any unused single byte codes. Any that
are found could be used in place of the most common double
character symbols used in the file. Such a method would re
quire that a table of codes be the first portion of each object
file.

APPLICATION III

Development of a file transfer mechanism between computers
using a terminal-to-terminallink is a common problem among
minicomputer users. Since the terminal drivers are designed
to allow interactive input from users, a number of characters
are treated specially. For example, in UNIX4 the # character
is used to erase the preceding character, and the @ character
to delete the characters preceding.it in the line. In addition,
the back slash character is used as an escape and control D
(EOT) is used as an end of file indication from the terminal
(causing modem hang up). Such problems are annoying when
transmitting text files, but become serious when the goal is to
transmit a storage image of arbitrary bytes. One solution is to
do a translation from the 8-bit byte, sending only six bits with
each transmitted ASCII character, and adding octal 40
(space) in order to produce only printable characters. How
ever, some of the printable characters must still be translated
(e.g. #, @ and back slash in UNIX).

The tiny macro processor presents another solution: to ex
perimentally identify all the characters which cause problems,
and substitute macros for all of them. Of course, if seven bit
ASCII characters are being transmitted, only seven bits per
byte can be sent out in each character. In addition, for those
characters which require a macro, two characters must be
sent. However, the set of characters which must be avoided
due to special interpretation by the terminal driver is usually
fairly small, meaning that the use of the macros need not be

A Tiny Language-Independent Macroprocessor 419

Idefine LSTAK 1000
int stCLSTAKJ; char chCJ {·$01r.=·};
main(arSc, arsv) int
(resister int

arsc; char *arsvCJ;
i, c;

if(arsc > 1) for(i=0;i<S&&(c=arsvC1JCiJ);i++) chCiJ=c;

}

expand(p, 0) int p, G; /* p is defn ptr, ~ is input ptr */
{ int x, d; resister int c, i;

}

for(x=p; c=setch(&a);)
if(c == chCO]) { /* macro call mark found */

}

if«c=setch(&a»==chC3J && a) c=setchar();
for(i=O; cl=chCiJ && i<3; itt);
switeh(1) {

}

case 0:
case 1:

case 2:
defa'Jlt:

putchar(c); break; /* $ */
push(x, &p); x=p; /* 0 */
d=setch(&a); push(Setch(&o), &p);
if(d == chC4J) push(value(a), &p);
else while«c=setch(&a»I=d) push(c,&p);
push(O, &p); break;
while(Setchar() 1= '\n'); break; /* 1 */
for(i=x; i && stCiJ != 0; i=stCi-1J);
if(i==O)

printf(·\n%c%c undefined\n·,ch£OJ,c);
else { expand(x,i+1); breakf }

else if(G && c -- chC3J) putchar(setchar(»;
else if(a :: c 1= '\n') putchar(c);

setch(x) int *x; { returnee *x 1 st[(*x)++] : setchar() »; }
push(a,b) int a, *b; /* push a on stack at *b */
{ if(*b < LSTAK) st[(*b)++J=a;

else { printf(·\nStack overflow, ~uit.\n·); exit(); }
}

value(a) int 0; /* collect a 3 disit octal value */
{ reSister int i, n, c;

}

for(i=3, n=O; i; i--)
if«c=Setch(&Q» >= '0' && c <= '7') n = 8*n + c-'O';
else printf(·IlleSal character %c in value.\n·, c);

ret'Jrn (n) ;

Figure 2-Tiny macroprocessor in C for UNIX

very· frequent. A special advantage enjoyed by the· macro
processor solution is that the definition of the macro that is to
be substituted for the problem character can be transmitted to
the receiving computer at the beginning of the actual trans
mission and need not be agreed upon before the transmission
starts. However, the macro language characters must be
agreed upon previous to transmission. To support character
translation we modify the tiny macroprocessor to allow defini
tions that specify a character in terms of its octal code. Exam
ples are:

= in the delimiter position to specify that the one-character
macro name will be followed by exactly three octal digits
specifying the code for the single character which makes up
the macro body. As a result, $b generates the ASCII bell
character, $e generates EOT, $s generates #, and $a gener
ates @. It is interesting to note that the macroprocessor can
also be used to provide the terminal user with the capability
to generate any character code from the terminal.

The primitive macros $2 through $9 have been removed
from this version of the tiny macroprocessor. The capabilities
are still available though. For example, the definition
$0 = 2012 (which defines $2 to be the new line character in

$0= b007 $0 = e004 $0 = s043 $0 = alOO

This new form of macro definition uses the unique character UNIX) and definitions like $0'3 ___ ' provide the same

420 National Computer Conference, 1981

abilities. Source code for a recursive version of the tiny macro
processor written in the C language3 is provided in Fig
ure 2.

One additional point should be made about character trans
lation. Electronic data transmission is rapidly increasing in
volume. Most of this transmission is in fixed length codes.
Many coding techniques, e.g., Huffman coding, exist that
allow considerable compression of character codes, but gener
ate a bit stream which cannot easily be sent via fixed length
codes. However, the method outlined here for substitution of
macros for undesirable characters could remove that problem
(depending on how many characters are undesirable). Such
methods could increase the effective throughput of a trans
mission line, and totally through software methods. The latter
point is important when the transmission hardware is under
the control of others, as it often is, who have little to gain from
increased transmission efficiency. With increasing processing
power in the hands of users of transmission facilities, such
end-to-end translation schemes could prove an important
tool.

SUMMARY

A tiny macroprocessor and three of its applications have been
described. The processor is a simple tool, which is easy to
modify for specific purposes. Macroprocessors are an im
portant tool for the software engineer and it is hoped that this
tiny one will provide fruitful ideas for further uses. The expan
ding use of microcomputers, and the ever increasing number
of interfaces across which communication must occur, leads to
greater need for understanding and use of such simple tools.

REFERENCES

1. Gammill, R.C., "GPMX-A Portable General Purpose Macro Processor
Adapted for Preprocessing FORTRAN," Proceedings of NCC 76, AFIPS
Press, 1976, pp. 927-933.

2. Strachey, C., "A General Purpose Macrogenerator," Computer Journal, 8,
3, October 1965, pp. 225-241.

3. Kernighan, B.W. and Ritchie, D.C. The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

4. Ritchie, D.M., and Thompson, K.L., "The UNIX Time-sharing System,"
CACM, 17, 7, July 1974, pp. 365-375.

CAPACITY AND
PERFORMANCE ANALYSIS

Finite queueing approximation techniques for analysis of
computer systems

by DIMITRIS A. PROTOPAPAS
ITT/Advanced Technology Center
Shelton, Connecticut

ABSTRACT

Computer systems with finite request sourcing have been an
alyzed in the past using infinite source queues or an M/M/lIN
queue, both of which may lead to large errors. This paper
develops approximations to the response times of the
M/G/l/N and GI/G/lIN queues, allowing application of these
more realistic models in performance analyses of computer
systems.

INTRODUCTION

In a finite source queueing model requests for service are
generated by a finite population of input sources. Such a
system is schematically shown in Figure 1, where each mem
ber of the calling population N alternates betweeri an oper
ational state (Le., being outside the queue), and a service state
(Le., waiting to or being serviced). Each member i of the
calling population is characterized by an operational time dis
tribution with mean lIA; (i = 1, 2, ... , N) and a service time
distribution with mean 1I~; (i = 1, 2, ... , N).

When operational and service times are exponentially dis
tributed with identical statistics for all members of the popu
lation, and First-Come-First-Serve (FCFS) service discipline,
the model is known as the classical machine interference
(CMI) or machine repair model. 1 Analytic expressions for
performance measures of the CMI model (M/M/1IN) are
found in most queueing theory books. 1,2,3,4 Alternatively per
formance measures can be approximated from closed form
expressions which are derived using the asymptotic properties
of the CMI model. 5

The MIG/lIN queuing system can be analyzed only when an
analytic expression for the service time distribution is known.
However, even in this case, the computational load increases
very rapidly with N and requires resorting to numerical com
putation. When the service time distribution is non-analytic or
operational times are non-expoQential (Le. GI/G/lIN queue),
no analytic or approximation results are known to exist.

This paper derives an approximation to the mean response
time of the M/G/lIN queueingsystem, which does not require
an analytic service time distribution. The approximation de
veloped for M/G/lIN queues is subsequently generalized for
application to GI/G/lIN queueing systems. Examples showing

423

the applicability of finite source queueing models in the anal
ysis of computer systems are given. Finally, in the course of
analyzing a disk subsystem, we demonstrate the magnitude of
errors introduced, when an infinite source model ist1sed in the
analysis of a system with finite request sourcing.

M/G/IIN QUEUE

The mathematical analysis of the M/G/1IN queueing system
(i.e., exponential operational times, general service times,
single server, N request sources) is very involved and can be
found in laiswal,6 and Takacs.' laiswal arrives at an expres
sion -for the mean number L of customers waiting in the
system, in terms of the probability po of the server being idle,
assuming servicing on a FCFS basis:

L = N - (1- po)/(A/~) (1)

The probability the serVer is idle, is given in the same refer
ence to be

(2)

where

with

(4)

being the Laplace-Stieltjes (LST) transform of the service
time distribution F(t).

Takacs derives an expression for the queue waiting time W N

in terms of a different parameter. However, taking into ac
count that the composite arrival rate ~ at the queue is

~= (N - L)A (5)

424 National Computer Conference, 1981

REQUEST
SOURCE 1

•
•
•

REQUEST
SOURCE N

QUEUE 1/j1~

Figure I-Finite source queueing system

and applying Little's formulas we can prove that the results
obtained in both references are equivalent, arriving at

(6)

where W RN is the mean system response time (W RN = W N +
1IfJ,).

It is easily seen that

1- po= p (7)

is the equivalent composite utilization factor of the server,
while

(8)

represents the utilization of the server by one request source.
Substitution into Equation (1) yields

L =N -p/u (9)

a surprisingly simple expression.
Thus, the computational task in determining performance

measures of the M/G/11N model amounts to that of calculating
the utilization factor (or equivalently the probability po that
the server is idle) of the server. This, in turn, appears to
necessitate knowledge of an analytic expression for the service
time distribution F(t), as seen from Equation (2). In addition,
for a large N it is necessary to resort to numerical com
putations because of the magnitude of the computational task.

COMPARISON WITH THE M/G/l QUEUE

Application of the M/G/l1N queueing model in the analysis of
computer systems has been very limited9 to date. However,
the corresponding infinite source model, i.e. M/G/l, has been
used very extensively by researchers, with the implied as
sumption that the number of request sources is large enough
to allow approximation by an infinite source queue. Such an
assumption, though, would require more than 150 request
sources in many cases, which is hard to justify even for some
mUltiprogrammed systems. 10

The queue waiting time for the M/G/l queue is given by the
well known P-K formula, found in most queueing theory texts
including Gross: 8

W = [p(1 + C;)]/[2fJ,(1 - p)] (to)

where, fJ, is the service rate, p the server utilization factor, and
C; the squared coefficient of variation of service times, de
fined from

(11)

in terms of the variance (1; of service times.
Buzen and Goldbergto tabulate relative response errors,

(12)

where, WR = W + 1IfJ" and WRN = WN + 1IfJ, (WN being the
queue waiting time of the M/G/l1N system). In their numer
ical computations they assume fJ, = 1, determining E in terms
of p and N for the following analytic service distributions:

E
(%)

400

300

200

100

N = 3 ~e = 0.9

0.0 0.5 1.0 1.5

Figure 2-Relative response error vs. C; for N = 3

E
(%)

200

N = 10 /P=O,9
./

/
150

100

50

Figure 3-Relative response error vs. C; for N = 10

1. Constant (C; = 0)
2. Erlang - 2 (C; = 0.5)
3. exponential (C; = 1)
4. hyperexponential with C; = 1.5

Considering Equations (6), (10), and (12) we observe that,
if we normalize the RHS of the expression for E, f..L and A are
eliminated and E is expressed only in terms of p and u.
Hence, E is independent of f..L, making Buzen's numerical,
results more valuable.

From Equation (12) we have

(13)

and further

(14)

However, even for the tabulated cases we have no means of
relating f..L/A to p through a closed form expression.

We now use the numerical results published in Buzen and
Goldberg lO to gain insight into the variability of the relative
response error E, introduced when a simple MIGl1 model is
used to approximate the finite source MIGI11N queue. Figures
2 to 4 show plots of E as a function of the squared coefficient
of variation C;, using the number of request sources N, and
the equivalent utilization factor of the server p, as parameters.
As seen, these graphs suggest a linear relationship between E
and C; (for N, p, constant). Figure 5 depicts a strong de
pendency of E on N, especially for relatively small values of
the latter. Thus, for instance, in the hyperexponential case
(C; = 1.5), for N = 20 and p = 0.9 the response error is about
150%. However, we observe that (for the same case) even for
N = 95, relative response errors of the order of 50% are intro-

E
(%)

100

80

60

40

20

Finite Queueing Approximation Techniques 425

N = 50

0-

0.0 0.5 1.0 1.5
Figure 4-Relative response error vs. C: for N = 50

duced. On the other hand, for p = 0.5 a relative response error
of 10% is reached with only 10 and 20 independent request
sources, for C; = 0 and C; = 1.5, respectively. Figure 6 shows
that E varies exponentially with the utilization factor p of the
server.

Thus, care must be exercised when applying the MIGl1
model to ensure that the number of independent request
sources is sufficiently large. The latter depends on the distri-

E
(%)

400

300

200

100

I: C~ = a, p = 0.5

II: c~ = 1.5, P = 0.5

III: c~ = a, p = o.g
IV: C~ = 1.5, e = O.g

\~
"-..{m) '-------

~----~-.-----------~:==--_D_

-~~::::--

25 50 75 100
Figure 5-Plot of E vs. N

N

426 National Computer Conference, 1981

E
(%)
400

I: C~ = OJ N = 50

II: C~ = L N = 50

II I: 2
300 Cs = OJ N = 3

IV: C~ = L N = 3

200

100

Figure 6-Plot of E vs. p

bution of the service times and the utilization factor of the
server. Deliberate application of M/G/1 can introduce large
errors which lead to gross overestimation of response times,
especially at high loads. 10

The two queueing models were compared on the basis of
equal utilization factors. Obviously, the increased per
formance of the finite model is due to its "self-regulating"
property, in the sense that as the number of waiting customers
increases, the rate of arrivals decreases, hence preventing a
long waiting line.

APPROXIMATION METHODS

From Figures 2 to 4 and from the values of E tabulated by
Buzen and Goldberg, 10 we observe th~t (for p fixed) the rela
tive response error Ex in the exponential case is about twice
the error ED of the deterministic case, i.e. Ex =2ED. Similarly
we observe for the errors EE in the Erlang - 2 case that
EE = e/2)ED. Expressing botb ED and EE in terms of Ex we
have ED = C12) Ex and EE = e/4) Ex , which suggest the gener
al relationship

(15)

where EG is the relative response error of a general service
time distribution with squared coefficient of variation C;.

In order to investigate the accuracy of the proposed approx
imation we use Equation (15) to calculate ED, EE, and EH
(hyperexponential case), in terms of Ex. We then compare
the calculated values with the corresponding "exact" values
found in Buzen and Goldberg, and tabulate the errors intro
duced by the approximation formula in Table I.

It is seen from Table I that results obtained through Equa
tion (15) do not deviate by more than 14% from exact ones.

Using l!quation (13), it is determined that the maximum rela
tive error on W RN occurs for deterministic service and
amounts to an overestimation of W RN by only 10%. It is noted
that this represents a worst case, since N is only 3, the utiliza
tion factor is 0.9, and the service distribution is deterministic.
Therefore, this approximation may be used to provide reason
ably accurate predictions to response times of the M/G/lIN
queuei~g system, when:

1. The service time distribution is non-analytic.
2. An analytic expression for the service distribution is

available, but N is comparatively large, making an exact
analysis very involved computationally.

Alternatively, Equation (15) may be used to provide direct
ly the error relative to the corresponding infinite source
M/GIl queue, in order to decide if the particular M/G/lIN
model can be approximated satisfactorily by an M/G/1 one.

Substitution of Equation (12) into (15) yields

(WM/G/I - WM/G/IIN)IWM/G/IIN =
(1 + C;)(WM/M/I - WM/M/IIN)/2WMlM/I/N (16):

where W represents response times. Thus, determination of
W M/G/I/N reduces to determining the response time of the re
spective MIMI liN queueing system. Computation of the latter
is comparatively straightforward, or it may be taken from
extensive published tables. II

Now, considering that in an M/G/11N queue the squared
coefficient of variation of arrival times C~ is 1, Equation (15)
may be generalized for G lIG1l1N queues to

EG = Ex (C~ + C;)/2 (17)

or

(W GI/G/I - W GIIG/I/N)IW GI/G/IIN = (C; + C;)
x (WM/M/I - WMlMlIIN)/2WMlM/IIN (18)

Equation (18) allows approximation of performance mea
sures of finite source queueing systems when operational
times are independent and generally distributed. An analytic
expression for the distrib_ution of the operational times is not
required; only the respective squared coefficient of variation
need be known. As seen, prior to determining WGIIGIIIN the
response time ofthe corresponding infinite source generalized
queue (G lIGIl) must be calculated. Although the latter is not
analytically tractable,S reasonably accurate and computa
tionally simple approximation methods exist for its ~nalysis. 12

The factor (C~ + C;)/2 is also known to appear in approxi
m~tion formulas for GI/G/1, and GI/Gle queues. Inter
estingly, the approximation formulas holding for both classes
of queues (i.e. finite source and infinite source), have the
same form, except that for infinite source queues they involve
queue lengths,12 while in finite source queues they involve
relative response errors E.

Finally, from Equations (6),(7), (10), (12) we obtain for the
MIG/liN queue after some algebraic manipulations

fJ-/'A = Nip -11(1 + E) - [p(l + C;)]I
[2(1 - p)(l + E)]

(19)

TABLE I-Percent accuracy of the proposed approximation
for deterministic, Erlang-2, and hyperexponential

service distributions

Percent Error
N p ED EE EH

3 0.5 3.3 4.0 2.3
3 0.7 6.8 4.3 0.8
3 0.8 11.3 1.6 1.4
3 0.9 10.8 5.6 3.1

10 0.5 1.3 1.6 0.5
10 0.7 5.6 2.7 0.2
10 0.8 9.1 3.8 5.7
10 0.9 13.7 5.4 0.4
50 0.8 6.5 3.2 7.3
50 0.9 10.7 8.2 4.7

which given an assumed value of p allows determination of the
corresponding ratio Jj./'A of the request source. It can be
proven that Equation (1), and hence Equation (6), hold under
more general conditions2 than those implied in the M/G/lIN
queue. Specifically, these two Equations hold also for
GIIG/lIN queues. Thus, using again Equations (6), (7), (10),
and the chosen approximation formula for WOllOlh we can
arrive at a relation of the type Jj./'A = f(p,E) for the GIIG/lIN
queueing model. If, for example, we choose the approxi
mation formula 12

W GlIOII = p(c; + C;)/[2Jj.(1 - p)]

we arrive at an Equation similar to (19) except for the paren
thesized term 1 + C; which is now C; + C;.

APPLICATIONS

Infinite source models are easier to analyze (than finite source
ones), and they are used very extensively in the analysis of
computer systems. However, these models are inappropriate
when:

1. The system under study is by structure a finite source
one.

2. The assumption of infinite sourcing is not realistic.

Multi-microprocessor and multi-microcomputer. systems
are representative examples of case 1. Microprocessors/
microcomputers sharing resources enter "wait states" while
waiting for any resource to become "ready"; no other re
quests are issued by a microprocessor/microcomputer until
the Gurrent request is serviced. In common-bus systems the
bus itself constitutes such a shared resource. 9 Hence, fi
niteness of bus requesting is an inherent characteristic of real
microprocessors/microcomputers.

Case 2 concerns systems where request sourcing can be
unlimited, but the actual number of request sources in a par-

o ticular application may not be large enough to justify use of an
infinite source model. In a small timesharing system, for ex
ample, the number of independent sources issuing disk re
quests is comparatively small.

Finite Queueing Approximation Techniques 427

Buzen and GoldberglO were the first to caution against de
liberate use of infinite source models, and point out that use
of such models, when the number of request sources is not
large enough, may lead to large errors. In the following we
demonstrate the impact of the finiteness of request sources in
the particular case of a SIngle-drive moving-head disk sub
system.

Analysis of a Disk Subsystem

Disk models in the literature assume an infinite number of
independent request sources.13.14.15.16.17.18 Here we assume
that disk access requests are generated by N independent
request sources on a cyclic basis, and that all requestors have
exponentially distributed operational times and the same
mean operational times. These, plus the assumption of a
FCFS service discipline allow modeling of the disk using an
M/G/11N queueing system (exponential arrivals and FCFS ser
vice are also commonly used assumptions in infinite source
disk models).

The access time T of a disk consists of a seek time, a latency
time, and a data transfer time. IS Expressions for the mean
seek time and the variance of seek times in terms of the drive
parameters a, b, and the number of tracks L per disk surface,
are reported by Chang, IS Latency time statistics are deter
mined, in terms of the rotational speed r of the drive and the
number of· sectors/track K, from expressions derived by
Fuller. 16 Assuming typically a = 8.33 msec, b = 0.125 msec/

WN -------- -----------------
(MSEt) (MIG/l)

70
___ P =~.8

60

50

40

30

20

7Z

25 50 75 100 125
N

Figure 7-W N vs. N in a disk subsystem

428 National Computer Conference, 1981

W-WN CONCLUSION
WN
(%)

200

150

100

50 '\~
e = 0.6 '-------=---:.:.:.:.-:..-=------:..-

20 40 60 80 100

Figure 8-Relative queue waiting time errors vs. N in a disk subsystem

track, L = 400 tracks/surface, r = 3600 RPM, K = 32, data
transfers at 1MB/sec, and exponentially distributed data block
lengths with a mean of 512 bytes, we calculate T = 34 msec
and 0'2 = 163.25 msec2

, where (I2 is the variance of disk access
times. Hence, the squared coefficient of variation of access
times (i.e., service times in the M/G/lIN queue) is C; = 0.14.
The disk case study represents a typical example, where the
squared coefficient of variation of service times can be deter
mined, while the respective distribution function isuQknown.

The plots of queue waiting time W N in terms of N, shown
in Figure 7, indicate that the queue waiting times predicted by
the infinite source model (M/G/1) are very pessimistic com
pared to those predicted by the correct M/G/lIN model, un
less the number of request sources N is large. As seen in
Figure 7, the functions WN = f(N) for the MIG/liN queueing
model approach asymptotically those corresponding to the
M/G/l model (dashed lines). For N = 20 and p = 0.8 MIGII
predicts a queue waiting time of about 78 msec while the

, actual is only about 52 msec (i.e. 50% error in queue waiting
time prediction or 30% error in response time prediction).
Percent errors in the predictions of the M/G/l queueing sys
tem are shown in Figure 8. Finally, Figure 9 shows the number
of request sources N E required to achieve a 10% error or less,
(when using the M/G/1 model to predict queue waiting times)
in terms of p. As seen, while for p = 0.4 about 20 request
sources will suffice, for p = 0.8 the requirement is 160 sources.
This requirement may be met in large tim~~harin.& systems; in
other computer systems, in general, N is considerably small
er. Therefore for high utilizations, in particular, infinite
source disk queuing models may lead to very pessimistic re
sults, when the actual number of request sources is not suf
ficiently large. The latter is decided on the basis of the re
spective relative response error E, which is determined from
Equation (15) or (17).

Response times of finite source queues are approximated in
terms of the response times of the respective infinite source
queues and the tractable M/M/lIN queue. These approxi
mations (a) simplify the analysis of the MIG/liN queue for
large values of N when the service distribution is known, (b)
allow analysis of the M/G/lIN queueing system when service
times are non-analytic, and (c) provide meaQs of analyzing
generalized GIIG/lIN queues on the basis of the respective
square coefficients of variation. Finite source queueing mod
els are very important in analyzing multi-microprocessor/
multi-microcomputer systems, in which request sourcing is
finite by structure. In addition, such models are more appro
priate (thanjnfinite source ones) when an infinite request
source assumption is not realistic, although the system may
not be characterized by finite sourcing structurally.

REFERENCES

1. Hillier, F., and G. Lieberman. Operations Research (2nd ed.). San Fran
cisco: Holden Day, 1974.

2. Kobayashi, H. Modeling and Analysis: An Introduction to System Per
formance Evaluation Methodology. Reading, (Mass): Addison-Wesley,
1978.

3. Allen, A. Probability, Statistics, and Queueing Theory with Computer Sci
ence Applications. New York: Academic Press, 1978.

4. Kleinrock, L. Queueing Systems, Volume I: Theory. New York: Wiley,
1976.

5. Ferdinand, A. "An Analysis of the Machine Interference Model." IBM
Systems Journal, 1971, 2, pp. 129-142.

6. Jaiswal, N. Priority Queues. New York: Academic Press, 1968.
7. Takacs, L. Introduction to the Theory of Queues. Oxford: Oxford Univer

sity Press, 1962.
8. Gross, D., and C. Harris. Fundamentals of Queueing Theory. New York:

Wiley, 1974.
9. Protopapas, D., and E.J. Smith. "Modeling and Analysis of Single- and

Multiple-Bus Multi-Microcomputer Systems." COMPCON Proceedings of
the IEEE, Fall 1980, pp. 471-478.

NE

150

100

50

0.2 0.4 0.6 0.8
P

Figure 9-Required N to reduce relative error to 10% vs. p in a disk subsystem

10. Buzen, J., and P. Goldberg. "Guidelines for the Use of Infinite Source
Queueing Models in the Analysis of Computer System Performance."
AFIPS Proceedings of the National Computer Conference, 1974, pp.
371-374.

11. Peck, L.G., and R.N. Hazelwood. Finite Queueing Tables. New York:
Wiley, 1958.

12. Protopapas, D. Multi-microprocessorIMulti-microcomputer Architectures:
Their Modeling and Analysis. Ph.D. Dissertation, Polytechnic Institute of
New York, May 1980.

13. Abate, J., H. Dubner, and S.B. Weinberg. "Queueing Analysis ofthe IBM
2314 Disk Storage Facility." Journal of the Association for Computing
Machinery, 15 (1968), 4, pp. 577-589.

14. Abate, J., and H. Dubner. "Optimizing the Performance of a Drum-Like

Finite Queueing Approximation Techniques 429

Storage." IEEE Transactions in Computers, C-18 (1969), 11, pp. 992-996.
15. Chang, J., and S. Gorenstein. "A Disk File System Shared by Several

Computers in a Teleprocessing Environment." Proceedings PIB MRI Sym
posium on Computer Communication Networks and Teletraffic. Brooklyn:
PIB Press, 1972.

16. Fuller, S., and F. Baskett. "An Analysis of Drum Storage Units." Journal
of the Association for Computing Machinery, 22 (1975),1, pp. 83-105.

17. Teorey, T., and T. Pinkerton. "A Comparative Analysis of Disk Scheduling
Policies." Communications of the Association/or Computing Machinery, 15
(1972),3, pp. 177-184.

18. Wilhelm, N. "A General Model for the Performance of Disk Systems."
Journal of the Association for Computing Machinery, 24 (1977), 1, pp.
14-31.

Throughput-response measurements _n ~ distributed
CAD/CAM processing network

by l.R. RAO and W.L. HANNA

McDonnell Douglas Automation Company
. St. !-ouis, Missouri

ABSTRACT

A methodology for monitoring response and throughput of a
distributed graphics CADICAM; processing network is
presented. The hardware and software components of distrib
uted processing include intelligent graphics terminals, remote
minicomputers, high speed communication processing, host
processor, and auxiliary storage devices. Software functions
consist of loading and. executing CADICAM applications such
as computer aided design, computer aided quality assurance,
etc.

The. response and throughput are measured irt terms of
completed graphics functions, which may be as trivial as gen
erating a point and as complex as retrieving a drawing from a
diskfile. The graphics system response performance has been
a critical consideration for its status as a cost-effective design
tool. the data gathering facility discuss~d in this article has
been llsed quite effectively in pr()duction for evaluating the
impact of h&rdware and software changes. As of December
1980, the distributed graphics system at the McDonnell Doug
las Corporation-St. Louis, consists of approximately 70 3-D
graphics terminals, 11 remote processing systems and 5 front
end processors. A sample illustration qf the measured data is
presented in this article. .

INTRODUCTION

The distributed graphics system (DOS) at McDonnell Doug
las Corporation (MDC) has been in production for CADI
CAM applications since 1978. The number of satellite remote
processing centers, PDP 11170s sharing graphics processing
workloaqwith the IBM 370/3033 host, is now at 11 in ~t. Louis
alone. In 1980 tpe r~motes altogether supported abollt 70
Evans & Sutherland (E&S) graphic terminals and about 10
hard copy plott~r terminals. The remote systems interface
with the host system via 9.6KB-56KB high speed communi
cation lines and the PDP 11134 front-end processors. Figure 1a
illustrates the distributed processing concept and Figure 1b
gives an overall DGS network configuration.

The intended purpose of DGS is to: (1) improve CADI
CAM user productivity and (2) distribute application
dependent processing, (3) reduce the cost of graphics pro-

431

cessing on the ~ost, (4) provide state-of-the art hardware and
software graphics technology. As a result, several levels of
processing are introduced, making it a "top-down" system
network configuration; the network operation gets complex
when a graphics-user-oriented software needs to be imple
mented on philosophically different vendor-supplied hard
ware components. No matter how complex these issues may
be, the graphics system performance and the user productivity
are the key factors in deteqnining the acceptability' of the
system. Through the phased-in development approach we
have managed to isolate and resolve individual problems as
they are encountered. The Dds performance monitoring is
being address~d at different levels. In an earlier publication ,1

we have presented a methodology for measuring graphics
application software host execution characteristics for indi
vidual modules and subroutine functions. In this article, we
further extend real-time monitoring capabilities to measqre
network response and throughput.

In an interactive system environment, the user's relative
productivity depends mainly on the system response per
formance. Time will not be spent covering arguments such a~,
the impact of user think time on the system utilization and
performance.

In this paper we will.discqss the tools developed for mea
suring: (1) host interaction response, (2) graphics user work
load, and (3) the impact of altering hardware ami software
configurations. A methodology for interactive computer ser
vice measurements has been proposed in terms of 5 catego
ries:2

•
3

,4 (1) time-based measures, (2) measures of length or
volume, (3) multiplicities and frequencies, (4) rate-based
meaSllres, and (5) ratios. The response and throughput mea
surement concepts presented here for graphics net",orks en
compass the descriptions of categories 1 & 2.

The monitoring tools operate in display and background
data collection modes. The display mode is used in real-time
support of the remotes. The background program collects
data for response and throughput performance trend <?valu
ations. Management has been very interested in knowing the
DGS productivity and response when hardware and software
enhancements are made. Availability of reports had ~o be
made very precise and timely. From the data gathered over a
period of stable system operation, a correlation seems to exist
between response and throughput. Since different CADI
CAM applications put varying amounts of cpu and 1/0 loads

432 National Computer Conference, 1981

Peripherals

E&S
Picture

System 2
(PS2)

Evans and
Sutherland

(E&S)
Microprocessor

• Number Crunching

• Geometric Modeling

• Vector Generation

• Clipping

• Scale

• View
• Function Key and Light Pen

• Menus

Figure la-Distributed Graphic System (DGS)

on the system, a constant effort is made through scheduling to
maintain a balanced mix of users.

The present DGS configuration at the McDonnell Douglas
Corporation-St. Louis, has the capability to provide 24-hour
support for about 70 CAD/CAM graphics users. A similar
organization exists for the Los Angeles, California, MDC
facilities.

In this paper we will discuss how response-data gathering
tools are used in determining the impact of hardware and
software configuration changes on DGS response and
throughput.

DISTRIBUTED GRAPHICS PROCESSING SYSTEM

The DGS hardware configuration is based on four steps of
processing: (1) picture generation, (2) remote processing, (3)
communication processing, and (4) host and direct access
storage device (DASD) processing. The picture generation
function features include picture clipping for display, CRT

electron beam positioning and display buffer refresh control.
These are accomplished with the aid of hardware components
such as geometry and text picture processor, picture system
memory, picture display generator, and display devices. 5

The remote processing is implemented on a PDP 11170. The
processing functions here incht<.l~ execution and coordination
of graphics subroutine tasks initiated by a number of picture
generation systems (Evans & Sutherland intelligent graphics
terminals). Other processing supports provided by the remote
system are local hard copy production, remote-host message
communication interface software, local engineering applica
tion processing, and performance monitoring.

The message communication processing is done mainly
through the high speed bitserial full-duplex communication
using DEC's DMC11 controller pairs. The DMClls provide
for message synchronization, header and message formatting,
error checking, and retransmission control. The message mul
tiplexing for serial-parallel conversions between DMCll and
the host takes place by way of a front end PDP 11134 and DEC
DXll hardware. On the remote side, message multiplexing is
done between DMCll and PDP 11170 through communi
cation's ancilliary control programs (ACP) software. The de
tails of ACP are presented in a paper by Veck. 6

The graphics interactions requiring high speed processing
capability, such as those shown in Figure la, go to the host.
These also include interactions requiring access to different
graphics application and functional modules that need to be
loaded from the DASD. The DASD capabilities are also re
quired for saving and retrieving of the drawing models. The
CAD/CAM DASD processing includes use of a high speed
electronic drum and a number of IBM 3330 and 3350 disk
units.

Basically there are two types of graphics interactions (that
require processing) included under distributed processing: (1)
on remote system only, and (2) on remote and host. Since the
remote systems provide a dedicated service to the graphics
terminals, the interactions of the remote-system-only type are
assumed to take constant processing times (at this point we
have no remote application disk processing). The DGS re
sponse measurements discussed in this article will refer to the
interactions of the second type.

The host interactions pass through two phases of commu
nication processing in addition to the remote, host, and
DASD processing. These phases are: (1) message SEND
message ACKNOWLEDGE (NOT-ACKNOWLEDGE) and
(2) message SENJj~inessage RECEIVE (see Figure 2). The
message SEND-ACKNOWLEDGE is completed between a
remote PDP 11170 and the front-end PDP 11134 processor.
The standard message communication procedure adopted in
cludes-lise- of DEC's DDCMP byte-oriented protocol. The
DMC11s facilitating high speed 9.6KB-56KB line syn
chronous transmission provides for send/receive message and
data integrity. 7 ,8 The data or text transfer between the remote
and the host takes place during message SEND-message
RECEIVE phase. A typical graphics interaction such as re
trieving a drawing from the DASD may involve several byte
receives depending on the size of the drawing for a single
message SEND (or transmit). An interaction for saving a
drawing on the disk (equivalent to a single graphics activity)
may require a number of byte transmits.

The DGS system is always in one of two operational states:
(1) user and (2) system. State 1 is referred as the user think
time period and state 2 is used to determine system response.
The graphics user interaction response is defined as

User Response = (tPS2 + tRMt) + tOMe + TFRO + tHost

+ toASO

Where

tpS2 = PS-2 processing time,
tRMt = Remote PDP 11170 Processing time

E&S
Graphics
Terminal

(1)

Throughput-Response Measurements 433

tOMe = DMCll-DMC11 high-speed processing time (in-
cludes error checking and retransmission)

tFRO = Front-end processing time
tHOST = Host processing time
toASO = DASD Processing time, a function of number of

disk or drum accesses.

Considering tpS2 and tRMt as constants for a host-bound graph
ics interaction, the host response is defined as

Host Response = tOMe + tFRO + tHOST + toASO (2)

Figure Ib-Distributed Graphic System network configuration

434 National Computer Conference,· 1981

E&S Front Graphics
User Terminal Remote Clock Message Send End Host DASD

LS zs LS ZS zs
User

Think
Time

tDMC tFRD tDASD

Message Ack
t1 <"W-~ ___ _

Data Receive
t2<~~ __________ ~ __________________________ ~

Data Receive
t3<~:~ __________________________________ __

t ~-----------------, i~ ________________ ~

< Completed
Interaction

<
Data Receive

Figure 2-Send-Ack-Receive concepts

As shown in Figure 2, the difference in clock measurements
gives the elapsed time. The graphics transaction could be of
any size from a trivial one to a large one involving a number
of receives and transmits. In a trivial interaction, such as
generating a geometric point on the graphics terminal, there
may be a single data receive for a successful SEND-ACK
completion.

By definition,

Remote/front-end communication time (tc) = (Tl - To) (3)
Host response time (tH) = (Tn - To) (4)

The tc and tH are measured as clock ticks and converted to
seconds for convenient representation. Next we will discuss
the software tools used for collecting and analyzing the data.

RESPONSE DATA GATHERING

The DGS network-response evaluation programs discussed in
this paper operate in two modes, (1) display and (2) back
ground data gathering. The display mode is used by the sys
tem support operator for real-time monitoring of user activity
on geographically distributed remotes. This feature is invoked
by using telephone dial-up capability into each remote. The
display program, when active, maps to a common statistics
area in the application at the specified sample intervals and
displays updated interaction information. The communication
interface routines collect communication statistics between
the remote and the host systems for all the active application

tasks using graphics. The display program calculates running
averages indicating the response trends of poor, average and
good over the total session. The display data is used to identify
and resolve user, remote, communications, or host problems.
When the remote production support operator notices user
problems, he initiates appropriate system corrective-action
procedures. (See Figure 3 for display output format and Ap
pendix A for field descriptions.) In Figure 3, eight active users
are shown on Remote system #8. The average interaction
time over the previous 60 seconds for all users· (2.2 seconds),
being less than the averages taken over the beginning-of
session periods (2.8 seconds), indicates a good response
trend.

The background data collection task is kept active all the
time on all the remotes; its execution command is made part
of remote system booting sequence. This program writes out
statistics records to a disk file at fixed intervals and whenever
there is an asynchronous event such as logon or logoff. The
asynchronous events are generated by the response monitor
software of the application (see Figure 4). The background
program attends to these asynchronous events on a FIFO
basis with priority to logoff (user return to job scheduling)
events. In Figure 4, two functional flow charts are presented.

The response monitor code is made part of the commu
nication interface, which interfaces graphics application soft
ware and the remote system communication software. The
response monitor recognizing the logoff, logon, system
abend, and system cancellation, sets up event flags as they
arise, and sends a IS-word data packet to the background
program. The data packet consists of application task name,

Throughput-Response Measurements 435

DGS RESPONSE MONITOR

SAMPLING INTERVAL 15 SECONDS

Host Channel Address 281 Date 1 Oct-80
DGs Remote #8 Time 12:50:47

SESS CURR PREY LAST AVER # XMTS BYTES RCVS # RMT

TUBE STRT WAIT ELAP FNCT MIN SESS HOST TO TRANS FROM BYTES COMM
TIME MODE TIME WAIT WAIT WAIT INST HOST MITTED HOST RECVD -TIME--
1 12:18 U(R) 135 0.17 0.3 2.6 136 160 2106 356 117632 0.05
2 12:13 H(R) 0 0.28 0.4 2.2 5 19 296 50 25438 0.05
3 12:48 H(R) 0 21.55 7.0 4.3 45 60 5412 230 114072 0.07
4 12:42 U(R) 0 0.22 0.3 2.3 115 132 10400 329 135366 0.06
5 12:42 U(R) 30 0.25 1.2 5.1 49 49 2414 138 73334 0.12
6 12:48 U(R) 15 12.32 0.6 3.5 29 51 4792 171 73608 0.08
7 12:44 U(R) 45 19.73 28.5 7.4 29 29 1422 88 45360 0.15
8 12:44 U(R) 0 19.35 1.8 3.9 34 44 5908 134 39424 0.08

Avg.2.2 Avg.2.8 Response Trend-Good
Figure 3-DGS real-time monitor display output

common block address, and other mapping information. This
response monitor program also develops host and remote/
communication statistics histograms. The background pro
gram maps to the area pointed to by the common block ad
dress in data packet for response and other statistics. This
program uses receive-data-packet directives for processing
data packets passed on to it by the response monitor. The

Response Monitor (Software in Communication Interface)

Exit

response monitoring software- has been efficiently coded in
order to impose minimum overhead on the resource-limited
remote systems.

Each statistics record written by the background program is
248 bytes long (256 bytes with overhead, exactly one-half
block size), and consists of data on application task name,
remote ID, terminal ID, etc., as shown in Appendix B. The

Background Program (lndependant Task)

Set 15 min Interval
Event Flag

Asynchronous Event Flag

Exit

r---------
I
I
I
I
I
I
I
I
I
I

-I

Empty

Figure 4--0verview of respo-nse data gathering software

Receive Data
Packet

436 National Computer Conference, 1981

Transfer Routines
Remote ~ Host

Thruput· Response
Reports

Transfer Routines
H ost ~ Remote

r-----,
r'-----1
~ Response Data~

.!~ :"R~~ _ ----l File ~

II -;r:;u~:)1
Remote No. i ,----",

Host .. Remote

Figure 5-Response data transfer facility

record-type codes indicate graphics session cancellations, ses
sion aborts, logoffs, mUltiple Iogons without logoff, etc. Based
on these codes, the record summaries are prepared for re
sponse and throughput reporting.

REPORT GENERATION CAPABILITIES

The geographically distributed remotes normally do not have
report generation capability. This is done mainly to reduce the
remote system overhead; besides, the application users are
often little interested in network management information.

A general capability of transferring data from remotes to a
central location is developed, as illustrated in Figure 5. The
response data files from each of the production remote disks
are transferred to appropriately named files on the host (Prod
1, Prod 2, ...) and from there the data is transferred to the
production support remote for report generation. The backup
procedures include keeping the response data for at least two
weeks. Every day about 600 248-byte binary data records are
transferred from each remote; the system tags 8 bytes of over
head to each record, making 256 bytes total transfer. We have
automated most of the transferring and data sorting functions
in order to minimize human intervention, errors, and pro
cessing requirements.

To accommodate various requirements, three 1evels of re
ports are generated:

1. DGS Individual Remote Management Report,
2. DGS Response Cumulative Management Report, and
3. DGS Individual Remote Detailed Report.

Some details of level 2 reports are discussed in this paper. The
other two types of reports are used mainly for detailed analy
sis of DGS network operation. Due to a combination of hard
ware and software maintenance error, the date, remote sys
tem ID, LDL, etc. were recorded incorrectly. A program
"Detail" is used to rectify some of these problems.

The type 2 management report consists of cumulative sum
mary for all the specified remotes. (See Figure 6 and Appen
dix C for explanations.) The maximum number of active users
is determined, based on simultaneous graphics users on the
DGS network. The response time· histogram indicates the
number of user interactions completed in each time interval
and their relative percentages. The graphics throughput per
tube-minute is calculated _based on the number of host in
stances (user interactions) completed over the user session
tube-minutes. As shown in Figure 6, over a 12-hour produc
tion period, 77% of the interactions were completed within
one second. About 3.1 % of the interactions took longer than

- 10 seconds. Interactions· taking longer than 10 seconds are
normally activities such as filing or retrieving a drawing from
DASD. On the average, slow response is indicated by the
instance histogram skewed to the right. For example, observe
the data for hours 130~1500 in the figure. The throughput

between 1300-1400 was about 5 interactions/tube-minute,
with a maximum of 37 users, and the average response of 2.11
seconds. During 1400-1500 the average response improved to
1.77, and the throughput is about 6, with-the maximum num
ber of users remaining at 37. In the next section we will further
illustrate how such data is used in evaluating the impact of
changes in hardware and software configurations.

EVALUATION PROCEDURE

The response data has been gathered on the DGS network for
more than a year. During this period we have gone through
many hardware and software changes. The development and
expansion of the DGS network has been scheduled so that the
productivity impact on users will be minimal. The host system
also supports other workloads in addition to the DGS system
load.

The results discussed in this article are only a sample repre
sentation of response reports' development as a barometer of
DGS activities. For instance, the three major phases'DGS
went through Qver the last year were: (1) changing the host
system from IBM 3701168 to IBM 370/3033; (2) implementa
tion of computer-aided design and drafting (CADD) software
on the two different host configurations; and (3) implemen
tation of Large Model Access (LMA) software on IBM
370/3033. The processing speeds of the two host configura
tions are different. The 3033s offer higher cpu processing
capabilities. The CADD and LMA software concepts are also
different. Under LMA, drawing sizes approximately 20 times
larger than CADD's can be created and saved, offering ex
tremely powerful design capabilities. LMA also provides
geometry group compress/expand features that were absent in
CAD D software. For LMA, drawing file/retrieve software has
been considerably modified to keep track of common entities

Throughput-Resp~nse Measurements 437

necessary for building a working file for a large drawing. The
interaction byte transfer requirements between remote sta
tion and host are also higher for LMA.

A summary of response and throughput for the three major
configuration changes are presented in Figures 7 and 8, based
on the -data collected during their production use. Changing
host configurations resulted in a considerable improvement in
response, though implementing LMA software slowed re
sponse down slightly. The response seems to be much more
balanced throughout the day with the IBM 370/3033 hardware
configuration.

The DGS throughput has improved with the new host con
figuJ'ation. However, the degree of improvement is not as
great as that shown by the response improvements, indicating
that the return from response improvements in the form of
throughput will be marginal beyond a certain level of response
service.

For example (Readings from Figures 7 and 8):

CADD
on

IBM 370/168

LMA
on

IBM 370/3033
%

improvement

Avg. Avg. Avg. Avg. Avg. Avg.
Time response throughput response throughput response throughput

0800-
1200 3.06 5.225 1.585 5.91 48% 13%

At the best response service level, the user think time be
comes a determining factor of productivity and graphics de
sign throughput.

We are continuing work in this area of improving
CAD/CAM productivity and evaluating it. With the rapid
changes in CAD/CAM· technology ,the c{)nfiguration dis-.
cussed in this paper may be altered in the next six months.

MANAGEMENT REPORT

DAILY DGS RESPONSE

REMOTE SYSTEMS (8): 1 3 4 5 6 8 10 11 APPLICATION: LMATSK DATE: 9/29/80

HR. OF DAY NO. OF NO. OF MAX TOTAL NO. OF AVE. % HOST RESPONSE TIME/INSTANCE HISTOGRAM
SESS SESS ACTIVE SESS HOST HOST SESS (RESP. TIME INTERVALS (SEC), NO" REL. %)
INIT. TERM. USERS TUBE MIN. INSTANCES RESPONSE TIME 0-<=1. 1 - < = 3. 3 - < = 5. 5 - < = 10. > 10.

6-7 8 0 8 168 1119 0.60 6.69 1017 90.9 68 6.1 10 0.9 13 1.2 11 1.0
7-8 37 10 23 952 5742 1.04 10.49 4899 85.3 524 9.1 121 2.1 78 1.4 120 2.1
8-9 19 11 28 1680 8266 1.95 16.02 6212 75.2 1256 15.2 293 3.5 203 2.5 302 3.7

9-10 17 16 35 2092 10522 2.24 18.75 7427 70.6 1877 17.8 512 4.9 335 3.2 371 3.5
10-11 14 13 36 2160 9848 2.81 21.34 6365 64.6 1955 19.9 646 ·6.6 439 4.5 443 4.5
11-12 8 20 37 1873 9673 1.94 16.68 73"15 - 76.2 1357 14.0 358 3.7 274 2.8 309 3.2
12-13 27 15 26 1560 9280 1.19 11.82 7862 84.7 870 9.4 213 2.3 118 1.3 217 2.3
13-14 18 19 37 2154 10709 2.11 17.47 7825 73.1 1852 17.3 417 3.9 273 2.5 342 3.2
14-15 12 20 37 1792 10142 1.77 16.72 7853 77.4 1433 14.1 319 3.1 213 2.1 324 3.2
15-16 21 32 21 1042 6063 1.22 11.82 5023 82.8 621 10.2 139 2,3 112 1.8 168 2.8
16-17 14 14 15 897 5260 0.93 9.06 4465 84,9 528 10.0 86 1.6 81 1.5 100 1.9
17-18 12 10 10 600 4192 1.09 12.71 3542 84.5 429 10.2 69 1.6 57 1.4 95 2.3

AVG. L78

%15.58

TOTAL 207 180 17250 90816 69865 12770 3183 2196 2802
AT ANY INSTANT MAX USERS ON SYSTEM: 37 TOTAL % 76.9 14.1 3.5 2.4 3.1

Figure 6--DGS response cumula!ive management report .

438 National Computer Conference, 1981

• Wi," CAOO and IBM 370/168

• Wi," CAOO and IBM 370/3033

... Wi," LMA Ind IBM 37QI.3033

O~ ____ ~ ______ L-____ ~ ______ L-____ ~ ____ ~

0600 0800 1000 1200 1400 1600 1800
Hour of Day

Figure 7-Average host response pattern

ACKNOWLEDGMENTS

We acknowledge the considerable effort put in by E. Acker
man, F. Dawson and B. Durham in coding and testing the
software. We further extend our appreciation to the National
Computer Conference's referees for reviewing the paper.

APPENDIX A: DESCRIPTION OF FIELDS IN
REALTIME DISPLAY (see Figure 3)

DGS Remote #-Remote system being monitored
Sampling Interval #-specified interval in seconds for up
dating display data

Tube - Graphics terminal ID

10r------r------.------.------r-----~----~

• Wi," CADD and IBM 370/168

• WiI" CADD and IBM 370/3033

0
01)00 0800 1000 1200 1400 1600 1800

Hour of Day

Figure 8-Average host throughput pattern

SESS - Graphics user session start-time (hour:minutes)
STRT
TIME

WAIT
MODE

- Indicates graphics activity mode by A(B), where
A = H if the activity is on the host side
A = U if the activity is on the remote or user side
B = R if user is in receive mode
B = S if previous activity was send from remote
B = 0 if in wait for open communication to host
B = W if hung on host sid~

CURR - Elapsed time in seconds in the current wait mode
ELAP
TIME

IMME - Elapsed time in seconds in completing the
PR.E immediately previous function
WAIT

LAST
MIN
WAIT

AVG
SESS
WAIT

I
N
S

XMTS

BYTS
XMTD

- Average elapsed time in seconds over all functions
done during last 1 minute

- Average elapsed time in seconds over all functions
done since the beginning of the user graphics
session

- Number of host interactions completed

- Total number of transmits from remote to host

- Total number of bytes transmitted from remote to
host

- Total number of receives from host to remote
RECP

- Total number of bytes received from host to
BYTS remote
RECV

REMT - Elapsed time in seconds on remote side, as shown
COMM in Figure 3
TIME

APPENDIX B: STATISTICS RECORD LAYOUT

Field Length (in bytes) Description

1 4 Number of transmits
to host

2 4 Number of bytes
transmitted to host

3 4 Number of receives
from host

4 4 Number of bytes re-
ceived from host

5 4 CAD/CAM Applica-
tion task name

6 4 Total host interaction
time (in ticks)

7 2 Remote system ID
8 2 Logical data link
9 2 Graphics terminal ID

10 2 Record code
11 2 Total number of host

interactions
12 2 Average remote-front

end communication
time

13 48 Remote-front end
communication time
histogram data

14 2 Remote-front end
communication min-
imum time

15 2 Remote-front end
communication max-
imum time

16 94 Host interaction time
histogram data

17 2 Host interaction
maximum time

18 3 Date
19 3 Time of day
20 3 User logon time
21 3 User logoff time
22 1 Number of times file

open failures
23 51 (Reserved for future

use)

APPENDIX C: DESCRIPTIONS OF FIELDS IN
DGS-RESPONSE CUMULATIVE MANAGEMENT
REPORT (see Figure 6)

Hr. of Day - Hourly interval of the day

No. of SESS - Number of user logons on DGS using
INIT graphics application task

Throughput-Response Measurements 439

No. of SESS - Number of user proper logoffs (i.e., proper
TERM return to job scheduling)

MAX
ACTIVE
USERS

TOTAL
SESS
TUBE MIN

NO. OF
HOST
INSTANCES

AVG
HOST
RESPONSE

% HOST
SESS
TIME

- Maximum number of active graphics users
at any instant during an hour on the remote

- Total number of tube minutes for all logged
on users during an hour

- Total number of interactions completed by
all logged-on users during an hour

- Average time (seconds) to complete a host
interaction

- Total host time of all the active users during
an hour percentaged over the users' tube
connect time

The host response time is broken into 5 histogram intervals.
Each column consists of the number of host instances com
pleted within the time interval and the relative percentage.

REFERENCES

1. Rao, J. R, W. F. Winters, and L. D. Schmidt. "Performance Evaluation of
a Test Distributed Graphics System. 0, IEEE Computer Society's Third Inter
national Computer Software and Applications Conference (COMPSAC) ,
November 1979, pp. 512-518.

2. Abrams, M. D., and S. Treu. "A Methodology for Interactive Computer
Service Measurements." Communications of the ACM, (Vol. 20, No. 12),
December 1977, pp. 936-944.

3. Abrams, M. D., I. W. Cotton, S. W. Watkins, R. Rosenthal, and D. E.
Rippy. "The NBS Network Measurement System." IEEE TR. on Commu
nications, (Vol. COM-25 No. to), October 1977, pp. 1189-1198.

4. Mamrak, S. A., and M. D. Abrams. "A Taxonomy for Valid Test Workload
Generation." Computer IEEE Publ., December 1979, pp. 60-65.

5. The Picture System 2 User's Manual, Evans & Sutherland Computer Corp.,
Salt Lake City, Utah, 1976.

6. Veck, F. R., "User Written Ancilliary Control Processors." To be presented
to 1980 Fall DEC US, U.S. Symposium, November 4-7, 1980, San Diego,
California.

7. Loveland, R. A. and C. W. Stein. "How DECNET's Communications Soft
ware Works." Data Communications, January 1979, pp. 49-65.

8. Terminals and Communications Handbook, Digital Equipment Cor
poration, Maynard, Mass., 1979.

DATABASE SYSTEMS

Effective inference control mechanisms for securing
statistical databases*

by V ANGALUR S. ALAGAR, BERNARD BLANCHARD, and DAVID GLASER
Department of Computer Science
Concordia University

ABSTRACT

A database that provides statistical summaries for the purpose
of research, planning, and decision making must remain rich,
functionally useful, and protected from fraudulent usage.
Unless restrictions are placed on the types of queries and
responses, protecting an individual's information in the data
base is impossible. Some effective inference control mecha
nisms that make it extremely hard for any user to control and
compromise a database are discussed. For each method it is
argued why the method is effective, supported by some test
results.

INTRODUCTION

A database with the main function of providing statistical
summaries required in planning, decision making, and re
search will be called a statistical database. Medical informa
tion in hospitals, personal information held in centralized data
banks, and sociological information collected, screened, and
preserved by the Census Bureau are typical. instances of sta
tistical databases.

There are broadly two classes of users of a statistical data
base, of which one class of users will have ~authorization to
read, write, and update data and the other class of users will
have "read-only" access to data. The latter class of users may
require extensive statistics on subsets of the database. The
security problem considered here arises when unlimited
"read-only" access is granted to the users seeking statistical
summaries.

Any statistical database, regardless of its content and func
tion, must remain rich and useful. Thus the data must be
guarded against damage and fraudulent exposure. Protection
mechanisms and encryption schemes3 are appropriate to en
force such safeguards. Recent studies6

,8,12,
18 have shown that

there is a real and great threat of invasioh of privacy through
user inference. It is intuitively obvious that unrestricted and
intensive on-line dialogue will lead to the isolation and expo
sure of any sensitive information in the database. The surpris
ing and rather unexpected conclusion of this recent research

* This research is supported by the National Sciences and Research Council of
Canada grant no. A3552.

443

is that such inference will lead to fast compromise, even under
restricted dialogues, and that the cost of compromise is little.
Many questions are not satisfactorily resolved, howeve.r, and
hence remain open for investigation. These are:

1. The minimum amount ·of restrictions (inference con
trois) that retain the integrity of the database and the
usefulness (or accuracy) of the statistical summaries and
yet guarantee security of data in the sense that no se
quence of answers to user queries can be correlated to
isolate and identify an individual's information in the
database.

2. Proving that a strategy of response is secure, easy to
implement, and adaptable to statistical databases of all
sizes.

In this paper three strategies are discussed; of which one is
old with a new approach and two are new. It is argued why
making a statistical database secure against user inference.is
inherently difficult; however, we do not offer any ·rigorous
proof for the complexity issue. In the following sections we
give formal definitions, discuss complexity, review the recent
research', and :summarize our proposals. Detailed discussions
on the proposals together with analyses of each will appear
elsewhere.

BASIC CONCEPTS ON DATABASE MODEL'
AND SECURITY

We conceive of a statistical database as a single relation over
a fixed number of attributes. A record R has k attributes and
is defined to be a k-tuple (rl' .. . ,rk) when~ r;. the value in
the ith field (or attribute), is derived from a domain D;,
l:sh:;k. Some of the attributes are qualitative in nature and
others are quantitative, and among them they may or may not
uniquely identify a record. All the records are forced to have
the same attributes and the same number of attributes. For
example, the qualitative attributes can be sex; status, age,
with their corresponding domains+-male, female; professor,
student, administrator; 20, .30, 40, 45. The quantitative do
mains usually derive values from real or integer numbers.

In general a subset of the attribute values will identify a
subset, pnssibly empty, of records. One particular attribute, if

444 Natio.nal Co.mputer Co.nference, 1981

retained as part o.f reco.rd o.ccurrences, may uniquely identify
a reco.rd. The existence o.f such a field may be a matter Df fact
to. the system; however, when it is masked frDm the user's
view and hence no.t made available for retrieval purposes,
o.nly subsets o.f attributes are to. be used for retrieval. Depend
ing o.n what the user is permitted Dr not permitted to. see, Dne
can classify the user queries.

A query will have two. parts, that is, a qualificatio.n part and
a target part. The qualification part specifies the extent Df

info.rmatiDn the user has, and the target part indicates the
extent Df info.rmation the user demands frDm the system.

The co.mplexity o.f a query depends Dn the number of attri
butes and the mo.de o.f specification o.f the value of each attri
bute. Since -the qualification part in a query is a predicate
expressio.n, all predicate calculus o.peratiDns can be extended.
Mo.reDVer Dne o.r mo.re values Df one o.r mo.re attributes may
be related by boo.lean operators, the class Df intersectio.n
queries. The response to. such a query is in general a quantifi
cation o.f the subset o.flbe database. This quantification is
based o.n the specificatio.n in the target part. If the qual
ificatiDn part o.f a query is allo.wed to. specify o.ne Dr mo.re
keys, we call the query a "key-specified query;" if the qual
ificatio.n part o.f a query specifies a predicate calculus expres
siDn (characteristic fo.rmula), we call it an "attribute-speciffeo
query."

The decisiDn to. include o.r exclude a query type for any
retrieval purpo.se is dictated mo.re by the user envirDnment,
rather than by the inherent mo.del. Fo.r example, in small
databases it may be necessary to. permit just key-specified
queries, whereas in large data'bases o.nly attribute-specified
queries seem more natural, althDugh each reco.rd may be
uniquely identified by a single attribute.

Within each bro.ad catego.ry of query types, o.ne can further
classify queries depending o.n the nature o.f the statistics per
mitted to. be drawn o.ut. A "co.unt query" is an attribute
specified query that requests the number o.f reco.rds satisfying
a predicate expressio.n. A "sum (average, median) query"
may be either attribute-specified or key-specified. In either
case the query will specify a particular quantitative attribute.
If the query is attribute specified, it requests the sum, average',
o.r median o.f the data values o.ccurring in the specified quan
titative fields o.f reco.rds that satisfy the predicate expressio.n
specified. If the query is key specified, it requests the sum,
average, or median o.f the data values in the specified quanti
tative fields o.f reco.rds that are uniquely identified by the keys
given in the query.

The system must have a strategy o.f respDnding to. each
query o.f each type; the strategy will remain the same Dver
each query type. We can define several levels o.f co.mpro.mise,
varying directly with the extent Df inferred info.rmatiDn,
thro.ugh a sequence o.f permissible queries under a strategy. \

In key-based queries the existential problem of a record
do.es no.t exist. Ho.wever, the existential pro.blem Df the value
in a quantitative attribute is very_much existent. In attribute
based queries bo.th types o.f prDblems exist. Let us start with
the hYPDthesis that a subset o.f attributes do. exist to' uniquely
identify a recDrd. Under this hYPo.thesis a user with attribute
based queries might infer Dne mo.re qmllificatiDn part o.r quan
tificatio.n part of a reco.rd. (He or she already kno.ws a Po.rtio.n
o.f a recDrd.) We call this partial local compromise. When all

Df the qualificatio.n and quantificatiDn parts have been in
ferred, the existential pro.blem has been so.lved (tDtally in
ferred). We say that this is total local compromise. If thro.ugh
a sequence o.f queries, a user gathers a subset o.f recDrds and
achieves partiallo.cal co.mpromise fDr each, we say that there
is weak global compromise. We say the database is strongly
globally compromised if every recDrd is IDeally tDtally cDm
prDmised. A strategy cDnsists Df a methDd Df respDnse to' a
predetermined set Df queries within a particular query type.
The effectiveness o.f a strategy sho.uld be measured in terms Df

its preventio.n of co.mpromisability at Dne Df the levels de
scribed as well as its ease o.f implementatiDn.

COMPLEXITY OF DATABASE SECURITY

A statistical database system usually must admit o.nly queries
belo.nging to. specific query types. Mo.reDVer suitable restric
tio.ns must be set o.n the number Df keys to. be specified in
key-specified queries and the number Df attributes specified in
attribute-specified queries. The first restrictio.n is necessary12
but can be shDwn to. be no.t sufficient fo.r securing cDnfiden
tiality in the database. The restrictio.n Dn the number o.f attri
butes is suggested due to. the explo.siDn o.f the query set size.
By query set we mean the set o.f permissible queries (no.t in the
sense defined by Denning). 5 Fo.r example, let us ignDre or and
not and cDnsider o.nly and as an allDwed bDo.lean Dperato.r in
queries. Let there be k qualificatio.n attributes. Let
h,h, ... ,jk denDte the cardinalities o.f the dDmains; that is,
attribute A; can specify any o.ne o.r mDre Df the j; values o.r do.
no.t care to. specify. Then fDr any query A; can specify j; + i '
values. The number o.f queries in the query set that co.ntains
queries specifying at mo.st r o.ut o.f k attributes is

r

~ am ,am = ~8; 18;2 ••• 8;m
m=O

i ~ i1 <;2 ... < im ... <im ~ k

Example 1

Co.nsider fo.ur qualificatio.n attributes At. A2, A3, A4,
whDse value sets are {Vl1 vd fo.r A., {V21 V22 V23 V24} fDr A2, {V31 i

V32 V33 V34} fDr A3, and {V41 V42 V43} fDr A4. Assume each recDrd
has Dne value from each attribute. There are 96 recDrds.
Ho.wever, the number o.f pDssible queries o.f the allDwed type
is

where

Even when we igno.re the Dther bDo.lean DperatDrs and
quantificatio.n parts Df attributes, we end up with a large num
ber o.f queries. We are bound to' increase the number Df

queries by admitting or and not. Thus permitting just o.ne
query type enables a user to. co.nstruct a large number Df

queries within that type; the size Dfthis set is much larger than
the size o.f the database. If we imagine these queries spread
suitably in an Dverlapping set Df layers o.ver a sequential
reco.rd placement, then clearly the query set is a maximal
co.vering for the recDrds, and it is o.nly necessary to' identify a

set of layers that intersect pairwise at individual records to
isolate and identify. them. Thus the sheer size, availability,
and unrestricted browsing gives the ability to compromise,
thus making security a difficult task. We argue, therefore, that
the type and number of attributes must be restricted without
adversely affecting the statistical summaries. Most of the pre
vious research was concerned only with limiting the size of
response and proving that this strategy can be easily sub
verted.

Given a file F and a set of queries Q, does there exist a
strategy Sp that safeguards the database to a maximum degree
in the following sense: Let SB be an opposing strategy that
tries to infer through Sp. If it can be shown that finding an SB
that compromises in none of the levels described by us is
impossible, then Sp is an effective strategy. It may be very
hard or impossible to find such an Sp for a given Q . However,
if it can be shown that finding an S B for a local total compro
mise is hard, then the chances of global partial compromise
would be low and global total compromise can be ruled out.

It was DeMillo, Dobkin, and Lipton4 who first pointed out
the underlying principles of combinatorial inference and data
base security. Their observations lead to the conclusion that
proving database security for a strategy may be very hard.
However, if a strategy Sp can be built on a strong set of axioms
similar to those in the theory of complexity, it may just be
possible to prove that finding an SB is hard, thereby establish
ing that Sp is safe until it is proven to be otherwise. There may
just be an element of hazard in such an approach when com
plete security is to be virtually assured.

COMPROMISE VERSUS SECURITY

We will briefly review some of the recent research reported in
the area of security of statistical databases. Most of the past
research has been devoted to methods that systematically aim
at breaking the security, rather than methods to effectively
safeguard a statistical database. The notable exceptions to this
are Yu and Chinz4, Denning 11, and Beckl.

We can classify the studied methods on the basis of the
inference controls, which are the strategies defending against
compromise, as follows:

1. Set controls on the size of response; that is, when
attribute-based count queries are asked, true count is
given only when the count is neither small nor large.

2. Set controls on the overlaps of queries; that is, in key
specified queries a minimum amount of overlap be
tween queries is enforced; in attribute-specified queries
a minimum amount of overlap in response must be set.

3. Distort the responses to queries; that is, random pertur
bations are applied to true responses.

4. Give response by sampling from the database; that is, in
response to attribute-specified queries, a random sam
ple selects a subset of the true response and the result
is computed on this random sample.

Kam and Ullman 16 modeled a database as a collection of
records with a key of k bits uniquely identifying each record.
Every allowable query is a string over (0,1, *), and clearly
every p query (that has k -p *s in it) will have a response of
2k

-
p records. Thus any sum would be in a subgroup of 2k

-
p

Securing Statistical Databases 445

values. They have given necessary and sufficient conditions of
compromisability. Such a model is too restrictive, however, to
be realistic.

Chinz overcame the restriction by letting fewer than 2k
records in the database when each record in the database
requires k bits for identification. This data model would per
mit attribute-specified queries, which can be transferred to a
k -bit string. Thus the query type is a hybrid set. Any subset
of attribute values will be transferred to an s- bit key. Thus the
response to a count query that specifies attributes is a subset
of the database. Chin'sz strategy is to give responses if the
count is ~2, that is, the exact count and the exact sum; how
ever, if the count <2, no response is given. The very fact that
no response is given will make the user uneasy and suspect in
the usefulness of the database. Chin gives necessary and suf
ficient conditions for compromisability.

We find that even extending Chin's results for m =3 is not
easy. However, we have the result: if N ~ t (2k) + 1, the data
base can be compromised when the response level. is ~ 3.
Consider the following databases:

0\ O2 0 3 0 4

000 000 000 001
001 001 010 010
010 011 100 100
110 110 101 101
111 111 111 110

Consider the set of queries:

Q = (ql = 1··,qz = .1·,q3 = •• 1)

and the response to COUNT [qi: Dj] = the number of records
satisfyingqi in database D j = 3, i = 1,2,3,j = 1,2,3,4. Since all
Dj return the same count for each qiEQ, it is impossible to
determine using qiS with which database we are dealing. Even
if we know the existence of one record (even up to four), we
cannot find with certainty the remaining keys. In our case,
however, one can systematically isolate and then regroup bit
strings so that all four databases are constructed. In general
for any k and response level m, there exists 1m (k) such that
if N < 1m (k) and the strategy is to respond only if the re
sponse ~ m, there is no compromise. The existence of track
ers and the restrictive nature of this database model make all
these results unattractive.

A tracker 8 is a "characteristic formula" or predicate expres
sion built on the qualitative attributes. This· formula can be
padded to any query to force a response from the system. The
tracker itself can be posed as a query and will be responded
to because the tracker is built to circumvent any restrictions
imposed on the response level. Not only do trackers exist, but
they are also easy and inexpensive to construct9

• Thus no
amount of controls on the size of response will secure a data
base under attribute-specified queries.

When attribute-specified queries are to be permitted, the
only alternate scheme is to set controls on the type of response
(and not on the size). One can modify the true answer by
introducing an element of uncertainty. The type and extent of
uncertainty ultimately depends on the query type, whereas

446 National Computer Conference, 1981

the effectiveness of such a strategy must be tested to prove
total randomization.

One approach is known as pseudo-random rounding; that
is, the measure of uncertainty is a function of the attributes
characterizing the record so that the same query returns with
the same response. Such methods can be effective most of the
time, although if symmetric errors (rounding up/rounding
down) are introduced the uncertainty can be removed through
standard statistical techniques.

The second approach is to apply queries to a random subfile
of the database. This is known as random sampling. (See the
recent paper of Denningll. It has been shown that random
sampling is reasonably effective in preventing compromise
and is inexpensive to implement.

An effective method of preventing a user from compromis
ing a record by a sequence of queries is to partition the entire
database into a number of groups of small size 24 . The response
to a query is based on the groups to which the characteristics
refer and not to individual records in the groups. The effec
tiveness of this strategy critically depends on the size and
nature of each group. Ill-formed and large groups will affect
-the statistics. Although Yu and Chin24 proposed this four
years ago, not enough results have been reported on jts per
formance. The algorithm as reported by Yu and Chin is both
inefficient and ineffective. Our recent study shows that there
are faster methods of partitioning the result into nicer groups,
which will hence be effective. (See the following section of this
paper for details.)

Another strategy that has been studied is to control the
extent of overlap in key-specified queries or the extent of
overlap in response to attribute-specified queries. In the case
of key-specified queries, two restrictions are imposed. (1) The
number of keys per query is the same. (2) Any two queries
should not overlap in more than a predetermined number of
positions.

The results reported by Dobkin, Jones, and Liptonl2 con
firm that when exact answers are given to queries, even when
we restrict the overlap, it is relatively easy to compromise in
the sense that only a few queries are required. If we can keep
track of this sequence of queries, however, and forbid one or
more of them, compromise may be avoided. But it is extreme
ly difficult and may be impossible to monitor the queries of
users for at least two reasons: (1) A user can query at various
times correlating the results at the end. (2) Several people can
collaborate and query at various times, correlating their final
responses.

Schwartz, Denning, and Denning23 studied linear queries
further. Their strategy has been to give a weighted sum of
values corresponding to the keys specified in an average or
sum-seeking query. If k keys are permitted in a query, they
associate k weights that are independent of the actual keys
that may be specified in a query. The immediate consequence
is that the responses to queries in which the same set of keys
appear in different order will be different. We believe this is
too misleading and very simplistic. It seems that an appropri
ate way would be to associate weights with keys so that re
sponses to queries, regardless of the order of specification of
keys, would be the same at all times; but then the problem of
fixing the weights, as we shall discuss in the next section, is not
that easy.

INFERENCE CONTROL PROPOSALS

There are three methods that can effectively control inference
and prevent compromise. The first method discusses a protec
tion strategy when key-specified linear queries are permitted
in the database. We will show how a maximum subset of such
queries can be given true responses in a very stringent envi
ronment; we-will show why random linear combinations of
values is the only solution to enhance security when certain
conditions are relaxed. To preserve the accuracy of statistics
and to assure security, the random weights must be associated
with keys and these weights must be kept secret. The other
two methods are applicable to attribute-specified queries.
One discusses a partitioning strategy in a different way than
Yu and Chin did; the other method proposes that in response
to count queries, an interval containing the true count be
given and in response to sum-seeking queries, the true value
be given. We will comment on the effectiveness of these meth
ods.

Key-Specified Linear Queries

The results of Dobkin, Jones and Liptonl2 confirm beyond
doubt that any database that permits key-specified queries
cannot afford to return true values to queries, since in such a
strategy only a small number of queries are required to com
promise the database. Not all forms of lying can ensure
security4. The main aim of this section is to demonstrate strat
egies in each of which the error in any response can be con
trolled and kept to a predetermined level, whereas the error
in any inferred value will be unpredictable.

Queries involve exactly t keys, t > 2, and we permit average
seeking queries. We will determine (It, ••• (IN, (li for the ith
record (hence for the i th key) once and for all. The response
to a query that specifies keys kt, ••• , k t is

R(q) = «lIVI + ... + (ltvt)/(al + ... + at),

where Vi is the value associated with the ith record.
The following algorithm determines the (lS:

Algorithm Kl
1. Order the records such that VI < V2 ••• < VN.

2. Divide the database into k + 1 groups, as evenly as pos
sible. Let Gt, G2 ••• , Gk + 1 be the groups.

3. Find a group representative for each group. Let VI, V2,
... , Vk+ I be the repre~entatives.

4. Determine (lGp (lG2' ... (lGk+ I' using the group represen
tatives (see the discussion later).

5. Determine individual (lS for each record as follows:
do the following steps for i: = 1 to k + 1

for each record j in group Gi do

(lj ~ (lGi - dj/s,
where dj ~ Vj - Vi

s ~V~d/

To complete the algorithm, it remains only to explain Step 4.
Given a set of k + 1 values, we wish to determine the (lS, one
for each value, such that: (1) For any query q that actually

requests the average of any k of these k + 1 values, the re
sponse R(q) differs from the true value T(q) (true average)
by at most a predetermined limit. And (2) the individual
values that may be inferred by solving a system of linear
equations will differ considerably from the true individual
values.

To optimize the error in the inferred values, the region of
optimization is the convex polytope determined by the set of
linear inequalities imposed by Condition 1. It is well-known
that the extreme value of a function in this convex region must
be attained only on the boundary, that is, must be at one of
the vertices of the polytope determined by the linear inequal
ities. One may simply choose anyone vertex or the vertex that
minimizes the maximum error so that the choice of these as
assures a maximum error in the inferred values.

We commeniliere that the set of as cannot be ·iilferred
unless one knows the strategy and exhaustively examines all
choices of as corresponding to the boundary of the polytope.
Thus even if the strategy is known, it is hard to know the
group as. Moreover, in Step 5 of Algorithm Kl, the individual
as are computed as a function of the true values. Thus the as
can be compromised if and only if the v s are compromised.
That is, it is as hard to compromise the vs as it is hard to
compromise as. In turn, this is much harder than finding the
group as. Since the number of faces and vertices of a convex
polytope increases with the number of independent linear
inequalities, it is reasonably hard to find the set of as chosen
by this strategy.

There is one drawback in this strategy. For queries involv
ing records in the same group, we have no control on the error
introduced in Step 6 of Algorithm Kl. The next strategy is an
attempt to remedy this situation. -

The response to a query that specifies keys kt, • • • k t is

R(q) = (atvt + ... + atkt)/(at + ... + at),

where Vi is the value associated with the ith record. How
ever,the as here are determined dynamically; that is, the as
are computed for each query and thus are not fixed. The main
deviation of Algorithm K2, below, from Algorithm Kl is in
the way the groups are formed and not in how the as are
computed once group representatives are chosen. Assume
t = 2 for the following description; the generalization for t > 2
is easy.

Algorithm K2
1. Sort the records such that Vt < V2. • . < VN.

2. Initialize the group boundaries. Set m = 1, mm = N
(all records are in one group)

3. Read a query q(k;, k j) (this requests the average of
values Vi and Vj associated with k i and k j).

4. Divide database G into three groups.
5. If Vi and Vj are in the same group G then do:

;;1. set m = lower boundary of G
b. set mm = upper boundary of G.
Else execute Step 7.

6. If the size of group G is less than 3, extend one of its
boundaries by 1. Execute from Step 4.

7. (Now we have t + 1 = 3 groups such that Vt and Vj are
not in the same group.)
Do Steps 3 to 5 of Algorithm Kl.

Securing Statistical Databases 447

If the group representatives are suitably chosen in this
method, then we have complete control over the extent of
error introduced in responses, and our test results reveal that
most of the inferred values have error greater than the maxi
mum error allowed in the query responses. We defer discus
sions on complete error analysis, since it may be out of place
here.

An alternate strategy to successfully eliminate compromise
through linear queries will be outlined later. The main thrust
in this strategy is to identify a smallest subset of queries with
out which compromise is impossible. We will call this subset
a forbidden query set. If a user's query is a member of this
forbidden query set, a perturbation (either to the true result
or by means of random convex linear combinations) will be
introduced in the response. However, if a query is not a
member of the forbidden query set, the true answer is given.
To assure security the query type must be restricted to contain
queries of size t (t keys per query) and exactly t - 1 elements
are common between any two queries. We will-not discuss
here fire algorithm that forms a forbidden query-set but will
explain the strategy through an example.

Example 2

Let N = 7 (the number of records)
t = 3 (number of keys per query)

Q = {qllql = 3}·IQI = G) = 35.

Without loss of generality let us denote the keys of records by
{I, 2, ... 7} and the associated values {vt, ... V7}. There are
15 queries each specifying the first key 1. If we remove from
this set the five queries

{(I 2 3), (1 2 7), (1 3 6), (1 4 5), (1 6 7)},

we can not solve for the valuevt by asking the 10 other
queries. In general consider the set

F = {(I 2 3), (1 2 7), (1 3 6), (1 4 5),
(1 6 7), (2 3 6), (24 5), (2 4 6),
(2 5 6), (3 4 5), (3 4 7), (3 5 7)
(456)}

If these 13 queries are forbidden from Q , the database cannot
be compromised under the restrictions on permissible que
ries.

In general for any Nand t, if we allow only queries that
overlap in exactly t - 1 places, a forbidden query set of
minimal size can be chosen and the strategy would be not to
answer a query if it is a member of this set. For moderately
large values of N and even small values of t, the size of a
minimal forbidden query set will be very large. Thus the deci
sion to totally disallow queries from this forbidden set will
adversely affect the usefulness of the database. An attractive
proposition would be to give true responses for every query
not in the forbidden query set and to lie for every query in the
forbidden query set. The following comments summarize the
complexity and effectiveness of this approach:

1. The proportion IFI/IQ I is at least lit + 1. The lower
bound remains independent of N; the size of the data-

448 National Computer Conference, 1981

base and the lower bound is achievable for several val
ues of Nand t.

2. Finding a set F of minimal size is hard.
3. If a set F is found for which IFI is 10% to 15% above the

lower bound, the number of instances of lying is close
to the minimum.

4. By controlling the extent of lying, it is possible to pre
dict the error in the inferred value of any individual
record.

5. Since minimal F is hard to find and there may exist
several F, it is difficult to identify and distinguish que
ries on which a lie is given from those on which true
response is given.

6. If we relax the restriction on the overlap to "at most
t - 1," then our strategy fails to protect the database.
Under this modified restriction we can show that the
only strategy that protects a database is lying on every
query.

Attribute-Specified Queries

Random samplingll and partitionini4 are effective methods
that prevent a user from isolating an individual's information.
In random sampling the response to a query is computed from
a random subset of the records in the database. When the
database is large, the summaries obtained this way may be
statistically significant; in small or medium size databases,
however, the statistics may not be significant. Although par
titioning a database into several small groups and restricting
the response to groups effectively secures the database, it has
been generally believed that partitioning fragments the data
base to the extent that it may become functionally useless.
Partitioning methods have not been tested thoroughly
enough, however, to be disregarded as useless.

In this section we study two strategies. One of them is
partitioning and the other is a form of approximate response
to queries.

An attribute-specified query may require two types of sta
tistics: the count and the value. When the qualitative part of
a query specifies a predicate P and a quantitative attribute v,
the required response is either the number of records (count)
for which P is true or the sum of the values in the v field of
these records, depending on the specification in the target
part of the query.

Range response to count queries

Our strategy is to give a range, instead of the true count, for
count queries and exact sums for value queries. By giving a
range th~t includes the true count, we are not misleading the
user. Since exact values are given to queries that request sums
of data values, the richness and usefulness of statistical sum
maries are maintained.

For any predicate P, let Xp denote the subset of records
such that for every record in X p, P is true. Let np = IXpl. We
consider a sequence of non-overlapping intervals of fixed size
s each, that is,

(0, s - 1), (s, 2s - 1), (2s, 3s - 1), ...

Formally stated, our strategy of response is as follows:

Count (P) = (a, b), a :5np :5b, a = (i- 1) s, b = is- 1.

Sum (P V) = {unde~ined if a = ?, b = s - 1}
, ~Vi' lEXp otherwise

where Vi is the value of the data field v in the ith record.
Thus for all queries the exact interval containing the exact

count is given. There are two major reasons why Sum is
undefined when 0 :5 np:5 s - 1. The first reason is that the
user can easily infer and force a local compromise. For exam
ple, let the response to Sum (P, V) be given as T when
o :5 np:5 s - 1. If T= 0 then it readily follows that np= 0, and
if T> 0 then np lies in the range (1, s - 1). The other reason
is that if a user knows from sources external to the database
that P uniquely identifies an individual, a response to Sum
query will reveal the data value corresponding to the individ
ual and then there is local total compromise.

Under this strategy it can be shown that no individual's
information can be identified with certainty. There exists a
small element of hazard that might lead to total local compro
mise; such an instance arises only when a clever sequence of
querying and manipulation of responses lead to the reduction
of a particular range to a single point. Our investigation shows
that in the majority of cases a range cannot be reduced; in a
small number of cases, a range can be reduced to a single
point. We will simply state a theorem without proof on the
reducibility of an interval to a point.

Theorem 1 Let each attribute derive values from a domain
of size t, and all these t values are equally likely to be specified
in a query. Let the count of this query belong to the interval
[(i - 1)s,is - 1]. Let P(i,t) denote the probability that this
interval can be reduced. Then

P(i,t) = _+x ,where
x y

x = (~= D (:)
y = (t + s t - 1) [(t + it - 1) _ (~)]

and (~) is the binomial coefficient.

Since P(i,t) = 0 if i < t or s < t, it follows that no reduction is
possible in these cases. Reduction to a single point is possible
only when t = s, and in all other cases a range can be reduced
by at most t - 1. For example, if s = 3, t = 3, and i = 5, the
probability of reduction is .0234.

No general tracker can possibly be constructed to reduce
more ranges than are already reducible to points. The number
of cases in which reduction in range is possible decreases as
the number of values per attribute increases. Moreover when
the number of values per attribute is large, the amount of
work required per one reduction is also large. Thus in large
databases reductions to single points would be really rare, and
hence the level of security is high.

Partition and protect

Our next strategy can be best described as Partition and Pro
tect. Although Yu and Chin24 first proposed this strategy, the
method that they suggested for partitioning seems to produce
ill-defined groups. Let us first review their method and then
propose our modifications.

Assume that there are k attributes per record, and the
number of different values of the ith attribute from a domain
is d;. Construct a k-dimensional matrix of size dt, d2 ••• dk •

Any record R with values (rt, ... , rk) can be mapped onto
some cell Cj in the matrix, such that the coordinates of Cj

match the k-tuple describing the record R. After all records
have been mapped in this fashion, the cells with their weights
(or frequencies equal to the number of records in the cells) are
a partition of the database, though perhaps not an acceptable
partition. If t > 0 is a threshold, Yu and Chin require reorga
nization of this primitive partitioning into an acceptable parti
tioning wherein each non-empty cell has at least t records.

The cells that are empty can be ignored; those non-empty
cells that have fewer than t records must be merged somehow
with neighboring cells to create an acceptable partition. The
merging procedure suggested (but not implemented) by Yu
and Chin is to merge a non-empty cell having fewer than t

records with one of its neighboring cells by combining all the
cells with those two adjacent values in that domain. This
procedure is repeated until the cell has at least t records. To
fix ideas, let us consider an example in two dimensions; that
is, there are just two attributes per record. Let Zt, ... Zn and
Yt, ... Ym denote the set of values in the domains from which
the fields derive their values. Thus we start with a two dimen
sional matrix B of size nm (there are tim cells). Let B(i,j)
contain all records (x,y) such that x = Z; and Y = Yj. If this
region is non-empty and has fewer than t records, Yu and
Chin's algorithm merges this region with its neighbors in the
arbitrary order B(i,j + 1), B(i + 1,j), B(i,j - 1), and
B (i - 1 ,j), until the resulting region will have at least
t records. Suppose B(i,j) is merged with B(i,j + 1)
and B(i + 1,j), then the new domains will be Dl = {zt, ... ,
ZiUZi+\, ... Zm} and D2 = {yt, .. -. yjUYj+l ... Yn}. See Figure l.

When carried to completion, this method makes many un
necessary combinations of cells, resulting in partitions where
in the number of non-empty cells will be small and the size of

Securing Statistical Databases 449

z.

Z_1

---Figure I-Merging Bij with its neighbors Bi.j+l and B,+1.j

each ceil will be much greater than t. As a consequence the
database would have virtually collapsed in its usefulness. See
Figure 2.

We have designed an algorithm that partitions a database
into groups so that each group has at least t records. If the
database is mapped onto a k-dimensional matrix, our algo
rithm obtains a disjoint set of rectangular regions (rectangular
parallelopipeds for k > 2) that cover all the non-empty cells of
the matrix, such that: (1) Each region has at least t records.
(2) The number of rectangular regions obtained is maximum.
And (3) the difference between the area (volume) covered by
the non-empty cells in the original configuration and the sum
of the areas (volumes) of the covering rectangles is minimum.
See Table I for selected test results.

In general, obtaining an exact solution subject to the above
requirements is hard"in the sense that any algorithm obtain
ing such an optimal covering will invariably be required to do
an exponential amount of work proportional to the input size.
What we have designed is an "approximate algorithm" that
produces a "nearly optimal" partitioning in time 0 (x 210g2x)
for most of the input and in time 0 (x 3) for some rare kind of
input database in which the distribution of values in the do-

TABLE I-Selected test results of our partitioning method

d, d2 N x Nit Nix Nld,d2 % area covered XINlt

5 5 25 3 7 7 3.57 1.0 72 100
8 8 25 3 6 8 4.17 .391 59.4 75

10 10 25 3 7 8 3.57 .25 53 87
5 5 50 5 8 8 6.25 2.0 96 100

10 5 50 5 9 9 5.56 1.0 90 100
10 15 50 5 8 10 6.25 .33 76.7 80
20 30 50 5 8 10 6.25 .083 70 80
8 8 100 5 15 19 6.67 1.562 89.1 78.9

10 15 100 5 16 20 6.25 .667 83.3 80
24 24 100 5 17 20 5.88 .174 63.9 85
15 15 500 5 80 100 6.25 2.22 94.7 80
50 50 500 5 84 100 5.95 .2 68.3 84

450 National Computer Conference, 1981

Figure2-Merging a sample database by Yu and Chin's l1!ettiod. (Arrows in
dicate which cells are being merged. Brackets indicate which val
ues are being merged. Each record is represented by an x. For
this example, k = 2, t = 2, N = 15, d. = 4 and dz = 5.)

1 2 3 4 5

1 X-~X X

X X X X 2

3 X X X

X X X
X X 4

v
(a)

1 2+3 4 5

X X

1

2

3

4

X X
X X X X 1,2+3 1,2+3

X X

X X
4 X

X X
4

v
(c)

1,2+3 4+5

X X X X X X X X X X
1,2+3

X X
4 X

X X

1

X
X

X

1

X
X

X

....
v

TABLE II-Comparison of the performance of three methods

Method d. dz N x Nix NId.dz

Yu and Chin 6 6 25 3 5 5.0 .694
Alagar, Blanchard,

and Glazer 6 6 25 3 7 3.57 .694
Optimal 6 6 25 3 8 3.125 .694

2+3 4

X
X

X
X

X

X
X

X
X

(b)

2+3

X X
X

X X

X X
X X

(d)

X

%area covered
d.dz

91.7

75
63.9

5

X ,

)-

X J

4+5

X X
X

xlNlt

62.5

87.5
100

Figure 3--Comparison of three methods for partitioning a sample database.
(The thick lines indicate the boundaries of the partition.)

1 2 3 4 5 6

1 X X X
X X

X X X X
X

2

3 X X X

4 X X X' X

X X X
X

5

X X X
X

6

a. Unpartitioned database

1 2 3 4 5 6

1 X X X
X X

2 X X X

3 X X X

4 X X X

5 X X

6 X X

c. Our method

Securing Statistical Databases 451

1 2 3 4 5 6

1 X X X
X X

2 X X X X
X

3 X X X

4 X X X X

5 X X
X
X

6
X X
X

b. Yu and Chin's method

1 2 3 4 5 6

X
X X

1 X X

2 X X

3 X X X

4 X X X

5 X X

6 X X

d. Optimal partitioning

(The thick lines indicate the boundaries of the partition.)

452 National Computer Conference, 1981

mains of records is concentrated, where x is the number of
groups formed.

The algorithm and its analysis are too detailed to be de
scribed here. See Figure 3 and Table II, which compares Yu
and Chin's method, our algorithm, and an optimal algorithm
on one input. Our preliminary results show that our algorithm
does indeed produce nearly optimal partitioning almost all of
the time. The groups that are produced by our method seem
more homogeneous, and hence we expect the statistics pro
duced to be more relevant. One of the important features of
our algorithm is that the time complexity remains indepen
dent of k, the dimensionality of the matrix (the number of
attributes), and is thus superior to Yu and Chin's method both
in speed and performance. It is needless to say that compro
mise is impossible if the strategy of response is to base statis
tics on groups and not individual records relevant to a query.
This strategy is appropriate only for static databases. In fact,
any scheme modeled on a matrix type is not suited for dynam
ically changing databases.

CONCLUDING REMARKS

We have discussed effective methods to prevent compromise
in a statistical database. In each method we have pointed out
the reasons why the method should prove effective. We have
also commented on the complexity of any opposing strategy
that aims at a level of compromise in a database guarded by
a strategy; the effectiveness of the guarding strategy is directly
related to the complexity of creating an opposing strategy. We
have also indicated how and why the statistical summaries
produced by these methods are not unduly affected by our
complex strategies.

REFERENCES

1. Beck, L.L. A security mechanism for statistical databases. ACM Trans.
Database Syst. 5,3 (Sept. 1980), 316-338.

2. Chin, F. Y. Security in statistical databases for queries with small counts.
ACM Trans. Database Syst. 3,1 (March 1978),92-104.

3. Davida, G.I., et al. Database security. IEEE Trans. Softw. Eng. SE-4,6
(Nov. 1978), 531-553.

4. DeMilio, R.A., Dobkin, D., and Lipton, R.J. Even data bases that lie can
be compromised. IEEE Trans. Softw. Eng. SE-4,2 (Jan. 1978), 73-75.

5. Denning, D.E. A review of research on statistical database security. In
Foundations of Secure Computation, R.A. DeMilio et at. Eds. Academic,
New York, 1978.

6. Denning, D.E. Are statistical data bases secure? Proc. AFIPS 1978 NCC,
Vol 47, AFIPS Press, Arlington, Va., pp. 525-530.

7. Denning, D.E. and Denning, P.J. Data security. Comput. Surv. 11.3 (Sept.
1979), 227-249.

8. Denning, D.E., Denning P.J., and Schwartz, M.D. The tracker: A threat
to statistical database security. ACM Trans. database Syst. 4.1 (March
1979), 76-96.

9. Denning, D.E., and Schlorer, J. A fast procedure for finding a tracker in
a statistical datab~se. ACM Trans. Database Syst. 5,1 (March 1980).
88-102.

10. Denning, D.E. Complexity results relating to statistical confidentiality.
Computer Science and Statistics: 12th Ann. Symp. Interface, Waterloo,
Canada, May 1979, pp. 252-256.

11. Denning, D.E. Secure statistical databases with random sample queries.
ACM Trans. Database Syst. 5,3 (Sept. 1980) 291-315.

12. Dobkin, D., Jones, A.K., and Lipton, R.J. Secure databases: Protection
against user influence. ACM Trans. Database Syst. 4.1 (March 1979)
97-f06.

13. Fellegi. I.P., and Philips, J.L. Statistical confidentiality: Some theory and
applications to data dissemination. Ann. Econ. Soc. Meas. 3,2 (April
1974), 399-409.

14. Haq. M.1. On safeguarding statistical disclosure by giving approximate
answers t~ queries. Int. Computing Symp., 1977, pp. 491-495.

15. Hoffman, L.J., and Miller, W.F. Getting a personal dossier from a statisti
cal data bank. Datamation 16,5 (May 1970), 74-75.

16. Kam, J.B. and Ullman, J.D. A model of statistical databases and their
security. ACM Trans. Database Syst. 2,1 (March 1977). 1-10.

17. Nargundkar, M.S., and Saveland, W. Random rounding to prevent statis
tical disclosure. Proc. Am. Stat. Assoc .• Soc. Stat. Sect. (1972). 382-385.

18. Reiss. S.B. Medians and database security. In Foundations of Secure Com
putation, R.A. DeMilio et aI., Eds. Academic, New York, 1978.

19. Schlorer, J. Identification and retrieval of personal records from a statistical
data bank. Methods Inform. Med. 14. 1 (Jan. 1975),7-13.

20. Schlorer, J. Disclosure from statistical databases: Quantitative aspects of
trackers. Inst. Medizinische Statistik und Dokumentation, Univ. Giessen.
Giessen, W. Germany. Mar. 1979. To appear in ACM Trans. Database
Syst.

21. Schlorer, J. Statistical datab'ase security: Some recent results. Inst. Medi
~inische Statistik und Dokumentation. Univ. Giessen. Giessen, W. Ger
many, 1979. Presented at Medical Informatics, Berlin, 1979.

22. Schwartz, M.D., Denning, D.E., and Denning, P.J. Securing data bases
under linear queries. Proc. IFIP Congress 77, North-Holland. Amsterdam,
1977, pp. 395-398.

23. Schwartz, M.D., Denning, D.E., and Denning, P.J. Linear queries in
statistical databases. ACM Trans. Database Syst. 4,2 (June 1979), 156-167.

24. Yu, C.T., and Chin, F.Y. A study on the protection of statistical data bases.
ACM SIGMOD Int. Conf. Management of Data; 1977, pp. 169-181.

Using partitioned databases for statistical data analysis*

by RUVEN BROOKS
University of Texas Medical Brpnch
Galveston, Texas

MEERA BLATTNER
University of California, Davis, and
Lawrence Livermore National Laboratory
Livermore, California

ZDZISLA W PAWLAK

Polish Academy of Sciences
Warsaw, Poland

and

EAMON BARRETT

Jaycor Corporation
Washington, D.C.

INTRODUCTION

The statistical analysis of scientific data is a process that can
be viewed as consisting of three fundamental phases. First,
the observations are recorded. Next, they are encoded into a
numeric form suitable for statistical analysis. Finally, the cal
culations are performed for the particular type of analysis
needed for the design of the study. This ordering is, however,
only conceptual; in most real studies, the three phases interact
and are overlapped. Thus, it may be the case that a prelimi
nary analysis run indicates that a more refined coding scheme
is needed or that the coding process reveals deficiencies in the
data collection.

A consequence of this interaction is that the data analysis
caICtlU!!l0ns are done repeatedly over time using new coding
schemes;new variables, and new selections of grouping of the
cases. We propose the structure of a data organization that
can result in substantial savings in the amount of calculation
needed across these repeated calculations.

OPERATIONS NEEDED IN STATISTICAL ANALYSIS

Case Structure

For most statistical analyses, the data is structured in terms
of a row vector consisting of the information relating to a
particular observational unit. Typical observational units

*This research was supported in part by NSF Grant No. MCS 77-02470.

453

might include a single individual in a psychological study, a
single experimental animal in a medical study, or a single
household in a sociological survey. The information recorded
in each case can be a mixture of classification variables which
indicate to which experimental group the particular case be
longs and measurement variables which are the values of mea
surements for that particular case. (Note that it is possible for
some variables to serve both functions.) The set of cases for
any particular study or experiment can then be viewed as a
rectangular matrix with each case being a row and all the
values across cases for a given variable occurring in a single
column.

User Operations

In preparing data for statistical analysis and in the course of
performing the analyses, users of statistical packages typically
perform the following operations:

1. Addition and deletions of cases (row addition and dele
tion).

2. Updating of variable values within individual cases.
3. Addition and deletion of variables across cases (column

addition and deletion).
4. Variablewise transformations, such as multiplying a

variable by a constant, adding two variables together to
create a new one, etc. Such transformations may also
involve conditional operations.

5. Value replacement (recoding) in which all occurrences

454 National Computer Conference, 1981

of specific values for a particular variable are replaced by
new values. This may involve collapsing several values
into a single value.

6. Case selection on the basis of predicates applied to vari
able values. This operation may be used to designate
subsets for particular analyses or for the application of
variable transformations and recodings.

Statistical Operations

While the variety of possible statistical analyses is ~xtremely
large, nearly all of the commonly used analyses begin with a
common· set of calculations. If X is an m x k data matrix in
which rows are cases and columns are variables, then these
calculations can be specified as follows:

1. On the basis of values of the classifier variables, parti
tion the rows of the matrix into sets which are not neces
sarily disjoint. Let n be the number of rows in a set.

2. For each set, form the following sums:
a. For each of the j variables (columns), sum Xi, i =
1 ... n, where n is the number of rows in the partition.
b. For all pairs of variables j and k, sum Xi *X;, i =
1, ... ,n. (Note that j = k is included.)

These sums form the basis for further calculations in analy
sis of variance, analysis of covariance, multiple regression
analysis, discriminant analysis, factor analysis, partial corre
lation, canonical correlation, and multivariate analysis. They
are also useful for the calculation of descriptive statistics, such
as mean and standard deviation.

In conventional statistical systems such as SPSS' and
BM02

, these quantities are calculated de novo for each analy
sis, an extremely costly process if the amount of data is large.
The data organization we propose here is intended to save this
cost by updating and preserving these quantities across user
manipulations.

BASIS FOR THE PROPOSED ORGANIZATION

Partitioned Databases

The organization is based on the work of Z. Pawlak and
colleagues (Marek and Pawlak3

, Lipski and Marek4
, Lipski5)

on partitioned databases. In their terminology, a database
consists of a set of objects which have attributes. If our objects
are patients participating in a research study, then the patients
have certain attributes of interest for data analysis purposes.
Typical attributes might include sex, age group, weight, blood
pressure, amount of cigarettes smoked, region of the country,
etc. A case for analysis purposes then consists of the values of
these attributes for some particular object.

In a partitioned database, those attributes which will be
used to identify and select cases from the database are desig
nated as selection . attributes. Typically, though notnecessari
ly, selection attributes have a small number of possible values
and are referred to as "nominal" or "categorical" variables.

The values of selection attributes are considered to be divided
into disjoint descriptors so, for example, sex is divided into
male and female, age is divided into ranges of years, etc. Each
object must have a value for each selection attribute, though
certain values might be used to indicate "unknown" or "data
missing." The attributes will be referred to by capital (sub
scripted or unsubscripted) letters and the descriptors will be
referred to by small letters. The selection attributes are or
dered in some way so that the list of attributes is A" A 2 , ••• ,

An. Since each attribute has a list of descriptors, a, b, c, ... ,
m (we need not have the same number of descriptors for each
attribute), the description of an object may be made by a
vector (a" a2, . . ., an) where ai is a descriptor in the set of
attributes of Ai' We will ordinarily use the designation a,
a2 ... an instead of (at, a2, ... , an). The A" A 2, ... An are
a coordinate system for class descriptors. Observe that each
object falls into one and only one class, hence the name par
titioned database.

An example will illustrate this notation. Suppose that the
following selection attributes have the following values:

sex
a. male
b. female

age range
a. 20--30
b. 31-40
c. 41-50
d. over 50

region
a. north
b. east
c. south
d. west

The class of all women 41-50 years old and living in the
north would be designated by bca; there would be a total of
32 possible classes.

The proposed data organization is based on specifying se
lection attributes which define groupings of cases that are
important for analysis purposes and storing with the classes
that these attributes define the quantities described earlier.
Performing a statistical analysis would then require forming a
query which specified the classes that were required, retriev
ing the summary quantities stored with the class, and perform
ing the necessary statistical calculations on these quantities.
For example, if sex and age group had been specified as the
only selection attributes, and an analysis of variance were to
be performed on blood pressure data for cells defined by sex
and age group, sum (x) and sum (X2) would be retrieved for
each of the eight classes of cases that sex and age group
define. To collapse across these classes, the sums for the
individual classes need only to be added together.

A Query Language for Partitioned Databases

In order to specify which classes of objects are to be used
for a statistical analysis, a query language is needed. A formal
syntax for a formal language for partitioned databases was
thoroughly and rigorously described by Lipski and Marek4

•

The query language described in this section is not the same

one described by Lipski5, however, much of our reasoning
follows his proofs closely. Our query language is called Q.

Definition: An alphabet for Q is:
1. The set of lower case Latin letters, L.
2. The set of lower case Latin letters with a superscripted

c, Le.
3. The set of lower case Latin letters with superscripts g,

Lg.
4. The set of lower case Latin letters with superscripts 1,

LI.
5. The symbol, @.

Definition: If the descriptors D(B) of attribute Bare
(a,b,c,d), the cnmplement of x, xC, are those descrijlli>rs,
D(B) - {x}. The set of descriptors greater than x , x 8 , are those
elements of D(B) that appear after x in the linear ordering of
the descriptors (for convenience, we will assume that the de
scriptors of an attribute always begin with a and continue
sequentially through the alphabet) and the set of descriptors
less than x, x I, are those elements of D(B) that come before
x. @ is a "don't care" symbol, used to indicate that an attri
bute is not of interest for a particular query.

Definition: A simple term is a concatenation of n symbols
from Q, where n is the number of attributes. A constant
simple term is a concatenation of n symbols from L while a
variable simple term contains an occurrence of a symbol not
in L. Note that a simple constant term is also a class descrip
tion as long as t = al a2 . . . an and each ai is in the set of
descriptors of Ai.

A term is defined recursively as:
1. A simple term.
2. If t and s are terms, then t, t + s, t*s, t~s are terms. If we
wish we may define a set of formulas over Q that use the
equality sign as well as the above Boolean operations and
introduce the symbols, TRUE and FALSE. We will omit this
part of the query language from the current discussion, since
formulas do not increase the complexity of the implementa
tion procedures as presented here. The value of a term v(t) is
as follows:
1. If t = @@@@@ ... @, then v(t) is the set of all objects X.
If t = e, then v(t) = $.
2. The value of @@ ... @a@ ... @, where a is in the ith p-osi
tion, is the set of all objects that have descriptor a of Ai. The
value of @@ ... @x c @ ... @ is the set of all objects that have
y in the Ai attribute, where y is in the complement of x and
x is a descriptor ofthe ith attribute. Similarly with @@ ... @x 8

@"'@ and @@ ... @x t @ ... @.
3. If t is a simple term and t = at a2 ... am then v(t) is the set
of objects v(at @ ... @)*v(@a2 @ ... @)* ... *v(@@ ... @an).
4. v(- t) = X - v(t), where X is the set of all objects in the
data base, v(t + s) = v(t) + v(s), where + is union, v(t*s) =
v(t)*v(s) where * is set intersection, and v(t~s)=

(X - v(t» + v(s).

Definition: t =s if v(t) = v(s).

Definition: Term t is in normal form if t = tl + t2 + ... + tn and
each ti , 0 ~ i ~ k, is simple.

Partitioned Databases for Statistical Data Analysis 455

Theorem 1. Let t be a term. Then there is a term s such that
t = sand s is in normal form.

The proof is straightforward and omitted.
The result we obtain from these definitions and Theorem 1

is that if we wish to identify the classes that have class descrip
tors satisfying a query, then we may put the query in normal
form and find the set of class descriptions for each simple
variable term separately.

STORAGE ORGANIZATION

We now describe a storage organization that will permit stor
age of data for statistical analysis as a partitioned database,
and that will allow efficient implementation of the user data
manipulation operations described earlier while preserving
the advantages of a partitioned database for the statistical
analyses themselves.

Data Structures

For each equivalence class defined by a set of values of the
selection attributes, a block of storage would be allocated to
contain the following items:

1. The summary quantities described in Statistical Opera
tions;

2. Head and tail pointers to a chain of blocks containing the
values of the variables for each case.

In order to minimize overhead, users creating a new data
base would be asked to estimate the maximum number of
variables they are likely to require. This estimate would be
used to determine the size of both the class header blocks and
the data blocks. (Suitable utilities could be provided to re
build the database, should the estimate prove grossly in
error.)

Retrieval

The major problem in retrieval from a partitioned database
is that the number of possible classes may be very large; if
there are 10 selection attributes with only 5 values each, 510

classes are possible. There are two circumstances which make
it likely that, at any point in time, a substantial number of the
classes will be empty. The first is that in the initial stages of the
research, when the researcher is still making decisions about
appropriate coding schemes, the number of cases actually
entered may be quite small, even though the number of
classes needed to store them may be quite large. Second,
there _ may be functional dependencies within the data that
insure that some classes remain empty; for example, if every
one who smokes has at least one heart attack, then the class
for smokers who have not had a heart attack will always
remain empty.

In order to-avoid storage wastage, it would be desirable to
avoid creating class headers for non-existent classes. Hence,

456 National Computer Conference, 1981

the problem becomes one of searching a sparse space of class
identifiers.

The solution we propose is to treat the search for class
headers as a substring search problem. The nonempty class
descriptors are formed into a string sequentially. By sequen
tially, we mean one class descriptor follows another without
separator characters. The order in which class descriptors are
placed in this string is the same as the order of the class
headers. This string will be referred to as the data stream.

Let f be a comparison function where:
1. f(a,b) = 0 if a = band 1 if a =F b.
2. f(@,a) = 0 for all a.
3. f(aC,b) = 0 if a =F band 1 if a = b.
4. f(a 8,b) = 0 if b > a and 1 otherwise.
5. f(a I,b) = 1 if b < a and 1 otherwise.

We may assume that when a query is entered, it may be
analyzed and simplified and changed to normal form. The
query is now of the form where each term is of the form,
tl + t2 + .. , + tn, and each ti is a simple term. A pattern is
query in normal form where the terms are concatenated in the
following order: p = tl t2R t3 t/ ... tn or tk R if k is even and tk R
is the reversal of tk' The data stream is d l d2 ... dn , where each
d; is a class descriptor.

First, we shall take the case where p has only one simple
term. Then the pattern p is passed over d l and compared
symbol by symbol using the comparison function. The com
parison continues until the comparison function registers a 1
or all n symbols in the pattern have been compared. If the
comparison function registers a 0 for all the symbols in the
pattern, then we know d l is in the value set of the query. The
pattern then goes on to d2 • If a 1 has been registered, then the
pattern goes directly to d3 • The pattern match continues this
way until the entire data stream has been matched.

If the pattern is composed on more than one simple term,
then after tl is compared, the pattern and-data flow are re
versed and d1is compared to t21, and so on until the entire
pattern is coml-'ared' to dl~ A similar procedure is used for
d2 ... dm • A tally is kept as the data stream advances so that if
the d; class description is being examined, the tally contains an
i. The system can lhen locate the ith class header to retrieve
the desired information.

If each term is t descriptors long, there are c classes in the
database, and there are q terms in the query, the algorithm
will have a worst case performance of O(q * t * c * t). While this
bound will be large, particularly if the number of descriptors
is large, we note several advantages to this approach over
other methods of locating items in a sparse space. First, since
the information is stored in a highly compact form, without
any space needed for pointers, it will usually be possible to
contain the entire data stream in primary memory; hence, the
time required for a search is keptto a minimum. Second, it is
easy to add new classes by simply adding their descriptions to
the end of the data stream; deletions can be handled by re
placing a descnption by a symbol not in the alphabet so that
a match never nccurs. Finally, since the pattern matching
problem already occurs in a wide variety of applications, it is

a likely candidate for hardware enhancement, such as the use
of VLSI components.

User Operations

In a previous section we specified operations that users of
statistical analysis systems desired to perform on their data
before doing the statistical analyses. We now describe how
these operations would be performed using the structures
proposed here.

Operations that do not create new classes

Adding cases. If a case to be added falls into an existing
equivalence class, then addition of a case will involve (1)
locating the class header via the pattern match mechanism just
described, (2) updating the summary information in the head
er by adding the quantities from the new case, and (3) storing
the case values in a data block. This last step could be accom
plished most rapidly by using the tail pointer stored in the
header.

Deleting a case. If a case to be deleted was not the only
case in the class, it could be deleted by the following steps: (1)
Locate the class header. (2) Subtract out the case quantities to
update the summary information. (3) Search the chain of data
blocks to locate the case. (4) Mark the case as deleted. (A
special variable or bit in each case might be reserved for this
purpose.) If desired, the spaces for deleted cases might be
chained into a free storage list.

Adding a non-selector variable. If the preallocation
scheme described earlier is used, then values for the new
variable would be placed in the next available slot in all of the
cases. (We assume that each case has the same number of
variables even though some of the variables may have missing
values.) The problem that this presents is how to locate a
particular case for which a value is to be added. If each case
has stored as a variable an identification number or case num
ber, then it is easy to specify which case is desired. Finding it,
however, could, conceivably, require a search of the -entire
file. A more tractable scheme is to require that the user spec
ify values of selector variables for the case. Search would then
be confined to a single equivalence class.

Deleting a variable. This would require a pass through all
the data blocks and changing the value of the variable to some
distinguished value. Alternatively, ifa·table is maintained
which links names of variables to their locations within a case,
the entry for the variable could be removed.

Transforming a non-selector variable, including recoding it.
This operation would, in general, also require a pass through
all data blocks. Note that if all the blocks for all classes are
stored in the same file, this can be done by reading the blocks
sequentially as if they were not linked. If the transformation
is needed for only one analysis and is not to be saved after
ward and if the transformation only involves operations with
a constant, the summary information in the header block is
sufficient to calculate the quantities needed for statistical
analysis of the new variable.

Operations that create new classes

Operations that do not change the length of class descriptions

Adding cases that cr~ate new classes. This will occur when
the combination of selection attributes in a new case has not
occurred previously. When this happens, (1) a new class head
er is set up and the class description for the new class is added
to the end of the search string, and (2) a new data block is
allocated and the values of the new case are placed in it.

Deleting the only case in a class. This can be accomplished
by (1) replacing the class description in the search string with
symbols not in the alphabet so that a match against it always
fails and (2) returning the data block to a free storage list.

Operations that change the length of class descriptors

All of the following operations will require rewriting the
entire search string. Note, however, that even for the 100,000
class example, this could be accomplished in less than 50
milliseconds on the slowest commercially available proces
sors.

Adding a new selector variable. This includes situations in
which an existing non-selection variable is declared to be a
selection variable, as well as those situations in which a new
variable is created either by user entry or by transformations
on existing variables. The steps involved are: (1) Recopy the
search string to permit extending the length of a class. Pad
each descriptor with a dummy, constant attribute. (2) For
each existing class, examine the value of the new variable for
the first case in that class. Use this value to replace the dummy
attribute for that class. If the remainder of the cases in that
class have the same value, no further work is needed. Other
wise, delete each case from its former class and create a new
.class for it. Repeat this process for all existing classes.

Partitioned Databases for Statistical Data Analysis 457

CONCLUSION

The problem of performing a statistical analysis on an entire
database is equivalent to computing a function over that en
tire database. Addressing or indexing schemes that aid in the
localization of particular entries are not of much help in such
situations; indeed, if all access to the database must be
through these schemes, their use can be slower than sequen
tial processing of an unordered file. The scheme described
here relies, instead, on computing and updating that functio-fi
on the data as it is entered into the database. This notion is
similar to the concept of "alerters" in relational databases
(Buneman & Clemons6

). Since most statistical analyses are
based on a common set of initial computations, this means
that if these quantities are computed at the time of entry they
are available for all subsequent analyses. The use of this type
of partitioned architecture for the database, thus, offers con
siderable advantage over simple, sequential organizations or
conventional indexing structures.

REFERENCES

1. Nie, N.H.; Hull, C.H.; Jenkins, J.G.; Stenbrenner, K.; and Bent, D.H.:
Statistical Package for the Social Sciences, New York: McGraw-Hili Book
Company, 1975.

2. Dixon, W. J. (Series Ed.) Biomedical Computer Programs P-Series. 1977,
Berkeley, Ca.: University of California Press.

3. Marek W. and Pawlak, Z. Information storage and retrieval systems: Math
ematical Foundations. Theoret. Computer Science, 1976, 1, 331-354.

4. Lipski, W. and Marek, W. On information storage and retrieval systems. In
Mathematical Foundations of Computer Science, A. Mazurkiewicz and Z.
Pawlak (Eds.), 1977, Banach Center Publications, Vol 2, Warsaw Poland:
Polish Scientific Publishers, 215-259.

5. Lipski, W. On semantic issues connected with incomplete information data
bases. A.eM. Transactions on Database Systems, 1979,4(3),272-296.

6. Buneman, O. Peter and Clemons, E. K. Efficiently monitoring relational
databases. A.CM. Transactions on Database Systems, 1979,4(3),368-382.

7. Wong, E. and Chiang, T. C. Canonical structure in attribute based file
organization. Comm. A.eM., 1971,14, 593-597.

Development of an automatic sleep
EEG analysis and staging system

by M. W. -v ANNIER

University of Kansas Medical Center
Kansas City, Kansas
and Washington University School of Medicine
St. Louis, Missouri

E. OTHMER and S. OTHMER
University. of Kansas M etlic~-enter
Kansas City, Kansas

P. FISHMAN
University of Kansas Medical Center
Kansas City, Kansas
and Massachusetts Institute of Technology
Lexington, Massachusetts

INTRODUCTION

The application of computers to sleep staging has not replaced
manual classification techniques because of the simplifying
assumptions employed in the design of most systems. These
assumptions result in significant deviations-from the results:of
automated analysis when compared to manual techniques ap
plied to the broad spectrum of sleep electrophysiologic signals
that may be observed.2

We undertook the development of a minicomputer (PDP-
11)-based software system for the accurate classification of
sleep EEG and sleep stage analysis9 based on the Recht
schaffen and Kales standard.5 This system is intended to obvi
ate the need for manual analysis in sleep staging.

The system described here, which uses statistical and deter
ministic pattern recognition algorithms developed to permit
accurate and sensitive detection of the characteristic structu
ral elements that comprise sleep, is a powerful tool for sleep
research. The system, requiring a relatively modest hardware
environment, off~rs remark:able- flexibility. The user may
specify the parameters that define the specific structural fea
tures of each sleep EEG transient to accommodate personal
bias in the results or to accommodate individual differences
between subjects. Careful attention has been paid to the syn
chronization of the analysis result and the original sleep
record. The user may request a detailed analysis of the data
record relating to one specific segment of the analysis proced
ure. Excerpts may be taken from a long sleep record and be

-stored in secondary stoJ:~ge for subsequent analysis. These
techniques have greatly facilitated the debugging of the sys
tem, allowing us to concentrate on difficult passages selected
from multiple records.

459

In standard sleep laboratory practice1
,5,6 the analysis of

sleep stages from an all-night recording of 6 to 8 hours is
carried out by manual scoring of a polygraphic chart record
(Figure 1), applying standard criteria. 5 The human observer
evaluates the record one page at a time, where a page consists
of a 2O-secondplot of the electroencephalogram (EEG),
electrooculogram (EOG), and electromyogram (EMG). The
observer is required to classify the stage of sleep as awake,
movement (artifact), light sleep (Stage 1) to deep sleep (Stage
4), or a rapid-eye-movement (REM) episode-.

By using the automated system described in this paper, a
polygraphic chart record of the electrophysiologic activity is
produced as it would be in manual analysis. During the same
period, the signals are recorded on digital magnetic tape by
the computer, and optionally on analog tape as well (Figure
2). After the magnetic tape is rewound, an off-line analysis
program is run that will classify the predominant EEG pattern
for each two-second epoch. These two-second results are
stored in an intermediate disk file, and- after the first pass
through the data is complete, the sleep-staging routine will
make a final-stage determination for each page of the record
(Figure 3).

KUMC SLEEP SYSTEM

The data acquisition phase acquires five analog signals (Table
I) and stores them on digital magnetic tape. These data are
stored as ADC units with calibration information, so that
direct computation of the measured potential in microvolts is
possible using linear interpolation. The availability of the raw.
data in absolute units is essential, since the standard criteria5

require decisions based on these units.

460 National Computer Conference, 1981

POLYGRAPHIC PME FORMAT

TIMER

1---1---+----20 SECONDS--------;

2 SECONDS

Each polygrapnic page contains 20 seconds of data that is analyzed in 10 equal 2-second
segments. Five signals. including EEG. left EOG. right EOG. EMG and timing. are
recorded by the computer. The EEG playback signal originates in the analog tape
recorder. and is used for quality control.

Figure 1-Sample polygraphic page format

Figure 2-Data acquisition scheme used in sleep signal (processing involving
sampling of 5 analog signals by the PDP-ll)

When the acquisition phase is complete, the pattern recog
nition phase may be initiated. This is implemented in an over
lay structure (Figure 4) with phases dedicated to (1) EEG:
background EEG pattern analysis and refinement; (2)
TRANSIENT: the detection of EEG transients such as sleep
spindles and K complexes; (3) MISC. ANALOG: adjunct
signal analysis, including detection of eye movements from
the EOG and muscle tone from the EMG; (4) SUMMARY:
preparation of a page summary from 10 individual two-second
epochs with refinement of the background analysis and forma
tion of a preliminary'stage score, and (5) OUTPUT: the cre
ation of a pattern listing and intermediate file with scores used
in the final-stage analysis, and optionally a debugging file
containing detailed information on each step used in the deci
sion process applied to the raw data for one aspect of the
feature extraction procedure.

The hardware requirements for the system are modest; the
present hardware configuration at the University of Kansas
Medical Center Sleep Laboratory is shown in Figure 5. The
system is implemented in Fortran IV under the RT-ll oper
ating system.

PATTERN RECOGNITION

Feature extraction procedures have been implemented to
identify the EEG background activity (Table II) and to detect

the presence of EEG transients, spindles, and K complexes,
which occur sporadically and are important in sleep stage
identification. Determination of muscle tone level from the
EMG and detection of eye movements from the EOG are
included in the system.

The determination of EEG characteristics is performed for
every two-second interval in the record, where 500 samples
are available for each determination. Using a linear discrimi
nant analysis-ftmction-determined from teaching samples that
had been classified earlier, 9 the EEG background activity is
assigned to Qne of 15 categories (Table II). This discriminant
analysis procedure is augmented by deterministic criteria to
refine and improve the accuracy of these elements_. A detailed
exposition of the operation of these routines is available else
where,4,9 and in general the EEG background activity is esti
mated using a bisector analysis applied to the turning points
in the raw EEG.4 As shown in Figure 6A,_the line segments
joining the turning points in the raw EEG are bi-sected, and
their average amplitude and frequency are computed. This
procedure correlates closely with manual analysis, and valida
tion of these procedures including accuracy and sensitivity
results have been described previously.4

For improvement of the accuracy of delta' EEG activity,
stringent amplitude criteria must be applied when using stan
dard analysis techniques5 to distinguish theta and delta
rhythms. As shown in Figure 7, we measure the percentage of
each epoch in which the EEG amplitude exceeds 75 micro
volts. If this measure is greater than a specified minimum, the
epoch is termed delta, otherwise theta.

Time synchronization of the analog tape recording, poly
graphic plot, and digital computer was accomplished using a

ANALOG
DATA

Figure 3-Sleep EEG analysis and staging system block diagram

Figure 4-0verlaid software system block diagram

Type

EEG
EMG
R. EOG
L. EOG
Timing

TABLE I-Input signals

Sampling Rate

250 Hz
25 Hz
25 Hz
25 Hz

250 Hz

TABLE II-EEG types recognized

Abbreviation
AH
AL
AM
B
TL
TH
TR
DL
DH
M
X
DF
<
>
F

Definition
High alpha
Low alpha
Alpha wi muscle artifact
Beta
Low theta
High theta
Rhythmic theta
Low delta
High delta
Muscle (movement) artifact
Artifact
Delta, based on frequency
Theta, based on amplitude
Delta, based on amplitude
Awake, non-alpha

simple electrical device7 that produced a measurable voltage
transition at each 20-second interval.

Sleep spindles are defined as rhythmic bursts of 13-18 Hz
activity having a minimum duration of one-half second and
lasting no longer than two seconds. The presence of sleep
spindles is detected by inspection of the turning points in the
raw EEG data to determine the average frequency within a
window of one-half second. If the frequency and amplitude
criteria are met within a region of appropriate background
EEG activity, a spindle is identified (Figure 6B).

K complexes are sharp biphasic waves consisting of a nega
tive peak immediately followed by a positive deflection. A
simple application of slope criteria to each transition above a
given threshold is used to identify the presence of K com
plexes (Figure 6C).

The EMG envelope width is taken as a measure of muscle
tone. The EMG envelope width is determined by undersam
pling the EMG signal, sorting the 50 samples from each two
seconds in ascending order and selecting the thirty-fourth
largest value. Selection of the sixty-eighth perce,.ptile (thirty
fourth of 50 values) results in a relatively artifact-free estimate
of envelope width.8

Eye movements occurring during sleep are essential com
ponents of REM periods, and computer processing of the
EOG is directed at the detection of these movements. Devia
tions of the EOG in either the left or right channel beyond a
specified threshold above baseline are inspected to determine
the presence of a rapid eye movement. 4,8 The duration of the

Automatic Sleep EEG Analysis 461

deviation above threshold and the presence of corresponding
activity in the other eye channel must meet specified criteria
for an eye movement to be considered REM (Figure 6D).

The system supports the formation of an external secondary
data file containing important or difficult regions of the raw
data record for repeat analysis at a later time. Analysis may
be started at any point in the data record by specifying the
starting page number. The raw data may be plotted in the
same format as the polygraphic chart record to assure abso
lute registration of the time signals. Extensive debugging in
formation is available concerning each important decision in
the classification of EEG background, EEG transients, EOG,
and EMG. These data are written to a disk file, which may be
printed or summarized as required. The debugging data is
hierarchical, and the operator may be selective regarding the
level at which decision data on the classification algorithms
are retained.

Reports of the intermediate two-second epoch scores may
be printed, and stage summaries and plots (Figure 8) are also
available.

CONCLUSION

A comprehensive system for the analysis of the stages of sleep
has been developed for the PDP-ll minicomputer. The sys-

A

c

KUMC SLEEP LABORATORY HARDWARE CONFIGURATION

Figure 5-University of Kansas Medical Center Sleep Laboratory
hardware configuration

I SECOND

B

o

~
' E, E. E,E'E"

E.

E.

E2 E6 ElO

A ~ ...

'.} YEO.
>-----:c-=-==-~--I

05 SECONDS '2N+1

I)'R(I) ~
,Y.(I,)

RIGHT ---;.+--r-' -"C--- BR+AVI/

EYE -....,C""'>.~..<+-i -1-: +; -=0-...-- B.

----i---i----'---- B.-A~V

---~,. -':-;1,+,,---'1 TIME

LEfT ----,---- B, +A~V
EYE --="'--___ .;.-,' .-d-O""""~ B,

____ \-\-vl"'~=y':"-"(1·'_) -- BL -AJJV

Figure 6-Pattern recognition algorithms. A. EEG bisector analysis. B. Sleep
spindle detection. C. K-complex detection. D. Rapid eye

movement (REM) detection.

462 National Computer Conference, 1981

;\--.---------]~-t--- ... Emin+75IlV

----------------~~~--------~·· ... Emax-75IlV

2 SEC.

Figure 7-Delta algorithm

tern consists of data acquisition, pattern analysis, and stage
decision modules. Exceptional flexibility in the operation of
the system is a major feature of the system, where key param
eters in the decision processes may be interactively modified
by the operator to match personal bias or adjust for individual
differences between subjects.

REFERENCES

1. Handbook of Electroencephalography and Clinical Neurophysiology. Vol
ume 7: Physiological Correlates of EEG. Part A: EEG and Sleep. 1975.95
pp.

2. Smith, J.R. "Computers in Sleep Research", CRC Crit. Rev. in Bioengrg.,
3 (1978), pp. 93-148.

3. Cox, J.R., F.M .. N9I1e, and R.M. Arthur. "Digital Analysis of the Electro
encephalogram, the Blood Pressure Wave, and the Electrocardiogram."
Proc. IEEE, 60 (1972). pp. 1137-1164.

I I
o I 2 3

EMG 1ruunm-n!-~~.!6ur~"""~-umr-~~
K I!! II II I I I IIII II I II

s IU.L.' .JIL,,,'I. "'"I ~".IJ. ,11.,.1..

REM .J h,~'

Figure 8-Plot of the stages of sleep

4. Othmer, E., M. Vannier, S. Othmer, and P. Fishman. "Pattern Recognition
in Sleep Research." Proc. Vth Inti. Conf. on Pattern Recog., December 1-4,
1980, Miami Beach, Florida.

5. Rechtschaffen, E.A., and A. Kales. "A Manual of Standardized Terminol
ogy, Techniques and Scoring System for Sleep Stages of Human Subjects."
Public Health Service. Washington. D.C.: U.S. Government Printing Of
fice, 1968.

6. Karacan, I., W.C. Orr, T. Roth, et al. "Establishment and Implementation
of Standardized Sleep Laboratory Data Collection and Scoring Procedures. "
Psychophysiology, 15 (1978), pp. 173-179.

7. Othmer, E., S.c. Othmer, M.W. Vannier. P.M. Fishman, and W. Holland.
"A Simple Time Synchronization Device for Polygraph. Analogue Tape and
Digital Computer as Used in Sleep Research." J. Biomed. Eng., 1 (1979).
pp. 127-128.

8. Othmer, E., S.c. Othmer, P.M. Fishman, and M. Vannier. "Electromy
ogram Processing for Sleep Research." Int. J. Bio-Med. Comput., 11 (1979).
pp.33-39.

9. Fishman, P.M .• and E. Othmer. "An Algorithmic Description of the SLEEP
Program for the Analysis of Sleep Polygraphic Records ... Washington U niv.
Biomed. Comput. Lab Monograph 282, St. Louis, Missouri, June 1976.

Embedding an information system within
a generalized network environment*

by DARRELL L. WARD
North Texas State University
Denton, Texas

ABSTRACT

This paper introduces a generalized network information fa
cility called· HYPERTEXT, which is currently implemented
on a TANDEM-16 loosely-coupled, high-availability multi
processor minicomputer. The overall structure of HYPER
TEXT is described as well as several important user functions
available within HYPERTEXT. An actual example of em
bedding a complete information system (a clinical data man
agement system) within the HYPERTEXT facility is devel
oped, as well as the -underlying motivations for such an
incorporation. The inclusion of peripheral aspects of an in
formation system, such as user and system documentation, is
presented in the HYPERTEXT context, along with some
components that HYPERTEXT supports very well and that
are typically not considered part of a large information sys
tem.

INTRODUCTION

Information systems have typically evolved as unique soft
ware packages with the usual complement of user and system
documentation necessary for using the system. This generally
consists of user documentation to assist the end user of the
system as well as system documentation to aid the system
maintainer. Recently, several approaches have been devel
oped to aid developers in the design, implementation, and
documentation of large computer systems. 1,2,3.4 The motiva
tion' underlying such systems is to insure an organized and
consistent approach during the development cycle. However,
upon completion of an information system, the documenta
tion typically is distributed to various users of the system,
requiring, in many instances, massive efforts when that docu
mentation must be revised. One objective of this paper is to
introduce a total environment providing the developer facili
ties for program development and documentation as well as
providing the end user with an environment representing the
totality of information needed to use the end system effective
ly.

HYPERTEXT5 ,6,7,8,9,1O is a facility designed to provide a
rich informational structure within which information and as-

* This work was supported in part by USPHS Grant P50A20543.

463

sociations among information can be represented and tra
versed easily and flexibly. The HYPERTEXT informational
environment will be introduced as well as the functions avail
able to the user of such a facility. HYPERTEXT, as it is
currently implemented on the TANDEM-16 minicomputer
system at The University of Texas Health Science Center at
Dallas, will be introduced in the next section of this paper.
The hardware/software features of the TANDEM-16 -have
been presented elsewhere and will not be developed in this
paper; however, it is appropriate to point out that the TAN
DEM design criteria include reliability and responsiveness in
a transaction environment. 11,12 The section "An Information
System Within HYPERTEXT" will demonstrate how a com
plete information system (a clinical data management system
[CDMS] may be represented in the HYPERTEXT informa
tional environment. The advantages of such an arrangement
to the developer, maintainer, and end user will be presented
in that section.

THE HYPERTEXT FACILITY

The description of the HYPERTEXT facility will be
presented in two parts as follows:

1. Development of the informational environment
2. Development of the operations applicable to the infor

mation environment

HYPERTEXT INFORMATIONAL ENVIRONMENT

The HYPERTEXT system logically consists of two major
components, the information environment and the HYPER
TEXT monitor. The HYPERTEXT monitor is responsible
for creating and maintaining the informational environment
as well as interpreting and accomplishing requests of the HY
pERTExT user. The logical view of the HYPERTEXT en
vironment and its relationship to the rest of the world is illus
trated in Figure 1.

In introducing the environment presented by HYPER
TEXT, it is first appropriate to present some basic definitions.
A HYPERTEXT page is an entity designed to contain a finite
amount of information. Each page will have a unique number

464 National Computer Conference, 1981

IIYPERTEXT

MJNITOR

Figure I-The hypertext environment

LE SYSTFM

HYPERTEXT

PAGES

assigned to it by the HYPERTEXT monitor and may contain
two .types of information:

1. Textual information
2. HYPERTEXT language commands

a. Commands that are interpreted as encountered
b. Commands that must be specifically invoked by the

user in order to be interpreted
The page is the basic unit of information in the HYPER

TEXT system; and, as such, pages are objects of operations.
A page is typically configured to correspond to the output
screen· of a CRT type of terminal. Although any teletype
compatible terminal may be used for most of the operations
to be developed later, the HYPERTEXT system is best used
on a page mode terminal with local intelligence to support
most basic editing functions. A user, upon entry to the HY
pERTExT system, will be presented one unique entry page
associated with that particular user and chosen because of the
user's sign-on account number. This entry page of each user
represents the first node of a network structure of information
pages available for visitation during a HYPERTEXT session.
A visit to a page is defined to be the invocation of a page by
the HYPERTEXT monitor. When one visits a page, two
activities are possible:

1. HYPERTEXT commands on that page, if any, are in
terpreted by the monitor.

2. Textual information on that page, if any, is presented to
the user at a terminal.

Pages will be further categorized depending on the type of
functions occurring as the page is visited. A page is called a

(RUN EXTERNAL PROCESS

CIMS

GOTO 20)

PAGE 35

(1) DATA ENTRY SYSTEM

(2) USER DOCUMENTATION

THIS IS TIlE 1st PAGE

OF THE USER DOCUMEN-

TATION. TO REVIEW

THE INDEX PRESS FUNC·

TION KEY 16.

THIS IS THE PAGE OF

CAl. TO REVIEW THE

INDEX PRESS RINCfION

KEY 16.

Figure 2-Example hypertext pages and relationships

passthrough page if when it is invoked it contains a HYPER
TEXT command that automatically invokes another page. On
the other hand, a page is called a presentation page if no other
pages are automatically invoked when that page is visited.
Whenever a presentation page is invoked, the user is placed
in user command mode so that user operations may be inter
preted by the HYPERTEXT monitor at that point in time.
Command mode is apparent to the user as the text on the page
is presented, followed by a line at the bottom of the screen as
follows:

ENTER:

The user maynowente-r-a· single· ·IIYPERTEXT command.
Some of these commands will be illustrated in the section
"HYPERTEXT Operations."

A page A is said to be directly linked to Page B if a HY
pERTExT command is embedded within Page A, permitting
the user to invoke Page B by explicitly using the HYPER
TEXT monitor. Any page validated for public access may be
visited by merely requesting the HYPERTEXT monitor to
invoke that page (the page must be referenced by its page
number).

Figure 2 illustrates the above concepts. The type of struc
ture represented is a generalized network structure, since any
page is accessible from any other page. Page 20 is the entry
page, designated by the HYPERTEXT monitor to be
presented at the beginning of a HYPERTEXT session. Page
20, a presentation page, is directly linked to Pages 30,35 and
40, since the choices (1), (2), and (3), represent embedded
commands pointing to other pages. Page 35 is a passthrough
page, as it contains a command, (GOTO 20), causing Page 20
eventually to be reinvoked. In this particular example, Page
35 will invoke a process capable of being executed by the
hardware of the system, and upon completion of execution
Page 20 will be reinvoked. When the user visits each of the
presentation pages-Pages 20, 30, 40-the HYPERTEXT
system presents the textual information, interprets and ex
ecutes any HYPERTEXT commands embedded on that
page, and immediately places the user in command mode.

HYPERTEXT OPERATIONS

This section introduces some of the language elements facili
tating use of the information environment. This is not de
signed to be an exhaustive development, nor is it designed to
be syntactically precise. Rather, it is intended to provide the
background for the presentation of the section "An Informa
tion System Within HYPERTEXT." The following repre
sents operations or functions that users may wish to accom
plish within an informational system such as HYPERTEXT:

1. Create and maintain pages of information.
2. Establish relationships among the pages making up the

informational environment.
3. Traverse the information network in a flexible manner.
4. Invoke application programs (systems) outside the HY

PERTEXT environment under control of the HYPER
TEXT monitor.

An Information System Within a Network Environment 465

(*2900) PATGUNG IN YOUR TERMINAL

(*3502) LOGGING IN

(*510) DATA ENfRY SCREENS

(*7500) DATADICTIONARY

PAGB 2510

Figure 3a-A page as it appears in edit mode

The remainder of this section will develop the first three of the
above items; the section" An Information System Within HY
pERTExT" will address the invocation of application pro
grams within the HYPERTEXT environment.

In order to create a new page, one merely responds with
"NEW PAGE" while in HYPERTEXT command mode
e.g.,

ENTER: NEW PAGE

Immediately, a blank page is presented and the user is placed
in edit mode in order to place information on that page. Any
existing page may be edited by using ·the "EDIT" command
while on that page in presentation mode-e.g.,

ENTER: EDIT

In both of the above situations, the user is in local mode,
capable of designing or altering the page to suit the applica
tion. The edit session is terminated by depressing a special
function key (Function Key 1 in this implementation) signi
fying that the page is to be stored for subsequent access within
the HYPERTEXT system.

Establishing and maintaining relationships among pages re
quires the use of page links. A page link, a facility for directly
invoking another page within HYPERTEXT, is either explicit
or implicit. An explicit page link is a pointer placed within a
page that subsequently requires the user to merely make a
menulike selection to invoke that page. Figure 3a shows a
page in edit mode with several explicit links showing. When
the page in Figure 3a is actually invoked by the user it will
appear as shown in Figure 3b, with the explicit links trans
formed to menu selection items. Thus pages are linked explic
itly by implanting explicit links on the parent pages.

One implicit link may be implanted per page. An implicit
link is merely a method for indicating a next page. For exam
ple, if a serial set of information is needed, these pages can be
nicely linked together via the implicit link, and the user re
peatedly depresses the next function key (Function Key 16 in
this implementation) to review all pages representing the in
formation. Figure 4a shows three pages in edit mode form
with the implicit links shown; Figure 4b illustrates how those
pages would appear when invoked.

(1) PATGIING IN YOUR TERMINAL

(2) LOGGING IN

(3) DATA ENTRY SCREENS

(4) DAiA DICTIONARY

ENfER: 0
~ PAGE 2510

CURSOR POSITION
Figure 3b---Page in command mode form

Traversing the network is done using several function keys
and/or traversal commands. The traversal commands are

1. GOTO <page number>
2. NEXT
3. BACK <n> PAGES
4. BACK <n> LANDMARKS
5. BACK <n> TURNS

The first two commands have previously been informally ad
dressed; thus we will address the BACK commands in their
respective order.

HYPERTEXT "remembers" the pages that have been vis
ited in a session (up to 200) and the BACK <n> pages allows
the user to revisit pages. This is extremely important in re
viewing plevious infolmation as well as in· reinvoking-menu
pages, as illustrated in Figure 2. We clearly could have re
placed the command (GOTO 20) with the command (BACK
1 PAGE) and accomplished the same function.

As a user traverses pages, there may be pages that are
special, in the sense that they need to be revisited. In such a
situation the user can mark that page with a LANDMARK.
This is accomplished by depressing the LANDMARK func-

DATA FRCM REIATION NAMES

NAME LI CENSE NO.

Jones, B.
Sims, K.
Wilson, R.

52532146
00043217
53217421

Harris, J. 00214381

James, L.
Bone, O.

Smith, J.

~.

87123478
19163214

39241798

(continued on next page) (continued on next page)

1-(_ •• _81_10) __ --'-PA.,..GE 2"""-'OO ("10) PAGE 8110

NAI-!E LICENSE NO.

Ross, R. 17214300
Doe, J. 84326458

Ward, D. 00001234

END OF REIATION

PAGE 10

Figure 4a-Implicit links shown in edit mode

DATA PRCM REIATION NAMES

NAME LICENSE NO. NAME LICENSE NO. NAME LICENSE NO.

James, L. 87123478 Ross, R. 17214300
Bone, O. 19163214 Doe, J. 84326488

Jones, B. 52532146
Sims, K. 00043217
Wilson, R. 53217421

Smith, J. 39241798 Ward, D. 00001234

(contilUled on next page) END OF REIATION

Harris, J. 00214381
(continued on next page)

ENTER: ENTER: ENTER:
PAGE 2j)~ PAGE 8110 PAGE 10

Figure 4b---Traversing implicit links via NEXT key (Function Key 16)

466 National Computer Conference, 1981

VETERINARY PATIIOLOGY SYSTIM

(1) DATA EN1RY, UPDATE, PATIENT INQUIRY

(2) RETRIEVAL AND REPORTING

(3) AD HOC RETRIEVAL

(4) USER DOCUMENTATION

(5) CCJ.1PUTER AIDED INSTRUCTION

Figure5-An example entry page

tion key or typing in LAND MARK when in user command
mode. Then, when needed, the page may be recalled by mere
ly depressing the BACK 1 LANDM/\RK function key or
iss"uing the command BACK <n> LANDMARKS.

Any page containing branches or multiple explicit paths is
designated as a TURN-page. Users may return to TURN
pages by using the function keys or BACK· <n> TURNS,
analogous to the LANDMARK operation. This function may
be oJ particular importance if an index of information items is
available and the user is in the midst of traversing an area of
information. With this function one can immediately return to
the index and select another area for traversal.

AN INFORMATION SYSTEM WITHIN HYPERTEXT

A generalized clinical data management system (CDMS)13,14
has been developed to support the research activities of the
clinical environment at the University of Texas Health Science
Center at Dallas. The embedding of this complete system

CG1PUTER ASSISTED INSTRUCTION

(1) CAl - HYPERTEXT

(2) CAl - CIMS

(3) CAl - STATISTICS

(4) CAl - ENFORM

-r,

Figure 6-CAI index page

within the HYPERTEXT environment will be illustrated as
well as underlying motivations. At this point· the system con
sists of two major software components:

1. A data entry/update component responsible for all al
terations to the data of the system

2. A retrieval and report writing system for extraction of
information from the system

After passing the HYPERTEXT security check and success
fully entering the HYPERTEXT environment, the CDMS
user is presented the entry level page. This entry level page is
shown in -Figure 5. The menu selection of data entry/update
will cause the invocation of a process external to the HYPER
TEXT informational environment, this case being the process
that supports the entry or update of patient information. A
passthrough page is create&to·aceomplish the foHowing:

1. Invoke the process that supports the data entry and
update functions.

2. Upon return to the-H¥PERTEXT environment, an
explicit command, BACK 1 PAGE, will immediately
re-present the menu page to the user.

The two commands accomplishing the above on the pass
through page are

(CALL EXTERNAL PROCESS CDMS
BACK 1 PAGE)

The effect of the above is to invoke the process CDMS with
the suspension of the HYPERTEXT monitor process. Upon
termination of the CDMS process, the HYPERTEXT moni
tor will resume with the interpretation of BACK 1 PAGE and
immediately present the presentation page containing the
menu.

Thus the user is presented an environment of HYPER
TEXT pages with selection menus and flexible traversal op
tions with the capability of selecting a page that can effectively
invoke a portion or all of an information system. The second
menu option provided to the user of CDMS presents the end
user with a set of predefined retrieval operations, each identi
fied by an explicit link to a set retrieval procedure file. The
third menu option (AD-HOC RETRIEVALS) will invoke a
page initiating the execution of the TANDEM-16 relational
ret~ieval facility called ENFORM. 15

Within the ENFORM environment the user can interact
with a relational database directing output to the terminal,
external files, or line printer; creating procedure files of com
mands for future use; and performing the entire spectrum of
operations associated with a retrieval facility. Thus the selec
tion of the ENFORM menu item provides the user with a
complete retrieval system complemented by the availability of
the system text editor. Again, upon completion of the EN
FORM session, the user will return to the page that invoked
ENFORM, and the HYPERTEXT monitor will interpret ad
ditional commands within that page. Typically, the user will
be directed back to the original selection menu.

Reviewing additional user options from the top page, one
easily sees that user documentation is available in an on-line
mode for traversing in the flexible manner described above.
Additionally, the CDMS information system has incorporated
a Computer-Assisted-Instruction (CAl) component for users
wishing to train personnel on the structure and use of the total

An Information System Within a Network Environment 467

information facility. HYPERTEXT provides a rich structure
enhancing the on-line training of personnel within the facility
itself; this is a significant feature of the approach.

The motivations behind the embedding of the CDMS
project within the HYPERTEXT information environment
are as follows:

1. The end user is provided with an open-ended and flex
ible intertace to the information system.

2. The end user is provided with documentation and train
ing tools within the informational environment.

3. The system implementer-can use the HYPER 'fE*f
environment as a structured tool assisting the imple
mentation process.

4. The system maintainer is capable of dynamically alter
ing various components of the system to satisfy chang
ing user objectives over the life 6f tIre system.

Most of this presentation constitutes the basis forthe motiva
tions supporting the end user. As one can clearly see, there
definitely are benefits to both the user and maintainer with
respect to the management of an information system or sys
tems. For example, the maintainer can develop a CAl module
for instruction on the use of an information system and make
that module available via appropriate links to all the informa
tion systems of that particular mode. This has been accom
plished in CDMS and provides an excellent training tool for
all users as well as residing in an environment permitting
effective maintenance of thecAl modules. FigureOittustraTes
the CAl table of contents when that selection is made.

SUMMARY

The generalized network environment HYPERTEXT and its
current implementation on the TANDEM-16 minicomputer
system at the University of Texas Health Science Center at
Dallas has been developed. The clinical data management
system (CDMS) has been used as an example of embedding
an information system within this informational environment.
During the process of developing the above topics the advan
tages that the end user accrued from this approach were
presented. Finally, some advantages from a management ap
proach were developed illustrating the richness and feasibility
of using the environment for the totality of the life of the
information system.

There are currently the following production systems that
operate in this environment:

1. A funded five-year study of the effects of various treat-
ments on kidney stones

2. A funded five-year study of ischemic heart disease
3. A funded five-year study of the effects of hypertension
4. A veterinary pathology research applicatioo
5. A neuropathology research application
6. An internal terminal location and status database

application

Each of the above applications has complete HYPERTEXT
access to the user documentation, the CDMS data entry sys
tem, and predefined retrieval requests; ad hoc relational re
trieval facility (ENFORM); and complete CAl sessions on
ENFORM, HYPERTEXT, and the functions of CDMS.
User experiences to date have been very supportive of the
interface provided. Extensive evaluation of the positive im
pact of this envIronment on the user poputation Is currently
under review; but clearly their experiences, as well as those of
the system maintainers, are positive.

Future work can certainly be directeEi to the oontinued
investigations of tools that will enhance the interface associ
ated with the development and use of information systems.
The environment described herein, it is hoped, can serve as a
model for additional work to provide useful, user-oriented
tools enhancing the decisiea-making processes that emanate
from information systems.

REFERENCES

1. Software Technology Company. "SADT The Softect Approach to System
Development." The Software Technology Company, Jan. 1976.

2. U.S. Department of Defense. Automated Data Systems Documentation
Standards Manual. Manual 4120. 17M, Dec. 1972.

3. IBM Corporation. HIPO-A Design Aid and Documentation Technique.
Order No. GC201851, IBM Corporation~ iJara Processing Division, White
Plains, New York 10504.

4. Meyers, G. Software Reliability. Witey Interscience, John Wiley and Sons,
New York, 1976.

5. Nelson, T.H. "A File Structure for the Complex, the Changing and the
Indeterminate," Proceedings, ACM 20th National Conference, 84-100.

6. Nelson, T.H. "No More Teacher's Dirty Looks." Computer Decisions,
Sept. 1970.

7. Nelson, T.H. "A Conceptual Framework for Man-Machine Everything."
Proceedings, National Computer Conference, 1973.

8. Nelson, T.H. "The hypertext." Proceedings, World Documentation Fed
eration, 1965.

9. Carmody, S., W. Gross, T.H. Nelson, D. Rice, and A. van Dam. "A
Hypertext Editing System for the 360." In Faiman and Neivergelt (eds.),
Pertinent Concepts in Computer GraphicS. Urbana, IIIinois:University of
Illinois Press, 1969, pp. 291-330.

10. Ward, D., and S. Bush. "HYPERTEXT-a General Purpose Educational
Computer Tool." Available through the Medical Computing Resources
Center as a technical report.

11. Bartlett, J.F. "A Nonstop Operating System." Proceedings, 11th Hawaii
International Confetence on the System Sciences, Honolulu, January 1978.

t2. Katzman, l.A:; '-'kFauIt-'folerant Computing System," Proceedings, 11th
Hawaii International Conference on the System Sciences, Honolulu, Jan
uary 1978.

13. Ward, D., D. Mishelevich, C. Pak, and A. Sheehan. "A Relational Clinical
Data Management System Supporting Urclithiasis Research." Proceedings,
3rd Annual Computer Applications in Medical Care, Washington, D.C.,
1979, pp. 314-318.

14. Rothenberg, L., D. Ward, and D. Mishclevich. "The Logical Structure and
Use of a Relational Clinical Data Management System." Proceedings, 13th
Annual Hawaii International Conference on System Sciences, January
1980.

15. TANDEM-16 Enform Reference Manual. Tandem Computers Incorporat
ed.1979.

The design of the Clinical and Research Information
System for Psychiatry

by RUVEN BROOKS
University of Texas Medical Branch
Galveston, Texas

ABSTRACT

The Clinical and Research Information System for Psychiatry
(CRISP) is a general mental health information system for
clinical, research, and administrative functions. From a soft
ware perspective, CRISP is designed to solve three problems:
First, by attaching procedures to databases, it is designed to
permit dynamic addition of new database formats and organi
zations without the need to restructure existing information.
Second, CRISP uses a message-passing architecture with se
curity checks on each message so that each user can be given
a different set of access rights on each individual patient.
Finally, the process attachment combined with message archi
tecture makes it easier to distribute CRISP across a network.
The network can, in turn, be used to provide smooth storage
migration across different secondary storage devices.

INTRODUCTION

The Clinical and Research Information System for Psychiatry
is intended to be a general mental health information system I
for use in inpatient, outpatient, and community mental health
settings. It will incorporate a variety of clinical, evaluation and
assessment, and administrative functions, including basic
demographic and admissions data, mental status, progress
notes, treatment plans, direct patient services, and billing.
From a computing perspective, the system is intended to be a
paperless medical record in which interactive access to the
computer system replaces paper charts. This paper describes
the software design intended to support construction of the
system.

Software Design Criteria

The software design for this system is intended to meet five
major design criteria:

1. The database should permit equally easy access to all the
information on a given patient or to any particular type
of information across all patients.

2. The database should efficiently accommodate the fre
quent, continuous addition of new types of information

469

without modification to existing programs or existing
files.

3. The database should support the design of a security
system that could be used to restrict access to selected
groups of patients and to selected information about
each patient.

4. The database should assume the existence of a hierarchy
of storage devices with widely varying access times and
should provide for graceful migration of the least recent
ly used data to media with longer access times.

5. The database should be distributable across a network of
processors in such a way as to minimize communications
traffic and to maximize reliability.

Elaboration

1. One of the fundamental assumptions behind the design
of the entire information system is that there will be no inher
ent distinction between clinical and research data and that the
same information that is used by a clinician to make decisions
about treating a patient will also be used for research. There
will, however, be some differences in the use of this informa
tion. From the clinician's viewpoint, the stress will be on the
individual patient. Since the problems, history, and treatment
course of patients in the database will be extremely varied, it
will be the case that only the barest minimum of kinds of
information-perhaps only name and birthdate--can be
expected to be uniformly present for all patients. In using the
database, therefore, the clinician's first task will be to find out
what kinds of data are available on the particular patient and
then to retrieve the particular data relevant to a clinical
decision.

From the researcher's viewpoint, the stress will be on
groups of patients on whom a common body of measurements
is available. In using the database a frequent task will be to
locate all patients who meet certain "criteria. These criteria
may be stated in terms of some particular measurement or
classification, as in "retrieve the records of all schizophrenics"
or in terms of the information available on them, as in "re
trieve all patients on whom a SADS score is available." The
database should accomodate this type of retrieval as well as
the kind needed by the clinician.

2. An implicit assumption in most database designs is that

470 National Computer Conference, 1981

the number of different kinds of data schemas (or record
formats) will be relatively small· and static, with additions
being made to the schemas only at the time of systems main
tenance and reorganization. This assumption is unduly re
strictive in a patient record system. Clinical recording devices
continuously evolve over time; therefore information record
ing and retrieval requirements are constantly changing. Re
searchers will frequently want to be able to add new measure
ment devices in response to new research objectives. A goal
in the design of the database will be to permit the continuous
addition of new kinds of information with their associated
schemas, without the need for recompilation or reorganiza
tion of the entire database. (A likely consequence of this
property is that very few items will be common to all patients.
If there are 10 versions of the initial admissions data, but the
data collection is done only once per patient, then only 10%
of the patients can be expected to have a database entry for a
particular version of the intake data.)

3. There are many situations in which a user's access should
be restricted to selected information about a patient. Further,
the restrictions may vary from patient to patient. The data
base system should contain tools for implementing such a
security system.

4. Judging from the size of current paper medical record
systems, it seems that the data on even a small number of
patients may consume large quantities of storage. Conse
quently, the system must provide for migration of information
onto offline storage. This is done conventionally by marking
patients as inactive and moving all the data on them to second
ary storage. If patients are hospitalized or treated for exten
sive periods of time, however, a great deal of rarely needed
data will accumulate on them. Thus, it may happen that data
that are currently still being used for research are moved to
archival storage because the patient is not currently being
treated while valuable space is wasted on unused data on
current patients. To avoid this problem, the system should be
designed so that just the least used portions of a record can be
moved to archival storage. Additionally, as is desirable in an
archiving system, when data are moved offline, pointers to
them should be left in the online storage.

5. As processors and storage become cheaper, multiple
processor installations are inevitable. Both for reliability and
to reduce communications costs, the database should be dis
tributable among processors. The design ought to assume a
reasonable degree of repeated locality of access: if a datum
has been accessed by one processor, there is an increased
likelihood that the processor will access it again.

DESIGN OVERVIEW

To meet these criteria, the design for the CRISP system is
based on a collection of asynchronous processes that commu
nicate by means of messages. Data structures and databases
are attached to particular processes and are only accessed via
messages to the'm. An example will illustrate: The system
maintains a master index of all patients that includes funda
mental demographic information such as address. The process
that controls this information is called the master patient in
dex guardian. To retrieve information or update it, the user

runs an entry or display program at his terminal. This program
does not read or write the master patient index directly; in
stead, for each access or update, the entry program sends a
message containing the relevant information to the master
patient index guardian. The guardian then accesses the file to
retrieve the necessary information to perform the requested
operation.

Processes fall into one of three classes:

1. Access control processes. These processes are re
sponsible for controlling user access to various portions
of the database. Their data structures contain access
rights and pointers to the locations of information.

2. Terminal Interaction Processes. These processes handle
terminal interaction with users of the system. They are
responsible for formatting and displaying information
for the user and for reading user commands and input.
They do not directly access any of the databases except
via messages to other processes.

3. Database read/write processes. These processes handle
the actual storage and retrieval of data for users when
authorized to do so by the access control processes. They
send data to users or retrieve it from them by messages
to the terminal interaction processes.

Access Control Process

The system has three basic access control processes. The
master patient index guardian is responsible for the funda
mental identification of the patient on whom information is
being requested; it makes use of a data structure that contains
basic identifying information, such as name and birthdate.
The document header guardian is responsible for determining
what kinds of additional information are available on that
patient and for starting the appropriate process to read or
write that information. The user security checker is respon
sible for determining whether users have the right to perform
a particular operation; it is used by both the master patient
index guardian and the document header guardian.

Terminal Interaction Processes (TIPS)

In every user interaction with CRISP, communication to
and from a user's terminal is performed by terminal interac
tion processes. None of these processes accesses files directly;
insfead, all their accesses are made via the access control
processes and the reader/writer processes. Depending on re
quirements, terminal interaction processes may access multi
ple types of information from multiple data bases.

In order to permit users to write or modify their own termi
nal interaction processes without potentially compromising
system security, it is assumed that no security checking is done
in the terminal interaction processes themselves and that all
security checking is done by the access control processes.
Since a terminat interaction process may accidentally or inten
tionally alter patient or user identification between messages,
every message received from a terminal interaction process
must be verified, even if the data contained in it were pre
viously sent to the terminal interaction process by another
process.

Since diffetent documents may be stored by using different
database systems, and since Terminal Interaction Processes
are not permitted to access documents directly, a set of pro
cesses are needed to actually perform the database accesses.
In CRISP, reader/writer processes perform this function. In
order to provide security, however, these processes are not
started by the terminal interaction processes directly. Instead,
they are spawned by the document header guardian in re
sponse to user requests to access a particular database for a
particular type-of information. They then communicate via
messages w~t:tSel'-program to performthe-needed acces
ses or updates.

There may be mUltiple reader/writer processes for any par
ticular database if the database must be accessed in different
formats or via different access strategies. In particular, differ
ent databases may be constructed using different database
management systems; thus, it is possible to use CRISP with
systems such as AMBASE, TOTAL, or ADABAS. Addition
ally, the same terminal interaction process may communicate
with multiple reader/writer processes. Tables available to the
document header guardian are used to decide which prQcess
to start in order to satisfy a particular request.

RELATIONSHIP BETWEEN THE DESIGN AND
THE CRITERIA

The structure that has been described here effectively pack
ages together data bases with processes that access them. This
has two consequences that are useful in meeting the design
criteria. First, since the linkage between patients and data
bases is itself a database, it permits researchers to easily select
patients with entries in particular databases without the need
to actually access the databases themselves. Second, by estab
lishing new reader/writer processes every time a new type of

The Design of CRISP 471

informati()n needs to be stored, existing databases do not have
to be modified by the addition of new fields or linkages.

In this structure, before a terminal interaction program can
begin communicating with a reader/writer process, it must
first communicate with the master patient index guardian and
the document header guardian to locate the needed informa
tion. These access control processes can, therefore, check
each interaction both as to the patient and as to the type of
information being accessed.

This design is also useful in providing for appropriate stor ..
age migration. Individual document~thout
the need to move other data relating to a patient; and, since
the patient-database linkage occupies only a small amount of
storage, the linkage can be left in place to indicate the exis
tence of the information. When an attempt1smade-toTead or
write the document,--too document header guardian indic-ates
to the reader/writer process the information's location in off
line storage. Depending on the user's desires, the lequest may
be canceled or provision can be made for retrieval of the
document.

A final useful property of the design is that the decomposi
tion into processes provides a useful tool for distributing the
system across a network of processors, with different pro
cesses located on different processors. To minimize network
traffic, one might, for example, locate databases on the pro
cessors with terminals most likely to use them. If one of these
processors went down,only that--mttabase would be unavail
able to users of other processors.

REFERENCES

1. Hedlund, J., B. Vieweg, D. Cho., R. Evenson, C. Hickman, R. Holland, S.
Vogt, C. Wolf, and J. Wood. Mental Health Information Systems: A State of
the Art Rep()rt. Health Services· Research Center/HealthCare Technology
Center, University of Missouri, Columbia, 1979.

A concurrency control algorithm in a distributed
environment

by PAUL DECITRE
Centre de Recherche Cii-Honeywell Bull
Grenoble, France

ABSTRACT

As a continuation of the POL YPHEME 1 study, the Cii
Honeywell Bull research center has launched a project on
co-operating transactional systems with particular attention
paid to distributed concurrency control and commitment.

Following the presentation of the application-driven ap
proach being taken, the distributed concurrency control algo
rithm is described as an improvement of the proposal made by
Rosenkrantz, Stearns and Lewis. 14 Salient technical features
such as deadlock prevention, wrong aborts, parallel execu
tion, and relation between concurrency control and commit
ment are detailed. Then the main choices are justified, and
the rejected techniques criticized.

INTRODUCTION

Concurrency control is the technique used in multi-user data
management systems to make each user feel as if he were
alone on the system. The fact that several users use the same
data concurrently may cause wrong results to be delivered to
the user or wrong data to be stored in the database. These
kinds of inconsistency have been widely studied in the litera
ture.8

To solve this problem in a centralized system, the working
session of each user is chopped into units of work called
transactions (or commitment units). All along a transaction
execution, the system avoids interferences with the other run
ning transactions in such a way that the results delivered to
users and the changes made to the database are equivalent to
a serial execution of the same transactions. This property is
called "serializability. ,,4.18 To enforce the serializability of
transaction executions, the locking technique is commonly
used.

When a transaction wants to use a piece of data, the system
locks it until the transaction has been completed. A trans
action that wants to use data already locked must wait for the
completion of the transaction owning the lock. To improve
the parallelism between transactions two types of locks are
-introduced. Exclusive access locks are used when a change
may occur on the data, shared access locks when no change is
anticipated on the data during the transaction. A sharable
lock means that a transaction denies, until its end, another

473

transaction the right to make changes to the accessed data.
Several transactions may simultaneously access data as long as
they acquire a shared access lock. This locking technique
introduces deadlocks in several steps as soon as a transaction
acquires resources. If deadlock detection is no longer a prob
lem in centralized systems, distributed deadlock detection
mechanisms still pose implementation problems. 12.13 The
main difficulties lie in the delay and in message traffic caused
by deadlock detection messages in the case of wait. Recent
research in centralized or distributed resource allocation pro
poses a technique based upon time ordering to ensure concur
rency control. This technique avoids deadlocks instead of de
tecting them. The main idea is to define an a priori ordering
of transactions using timestamps (or circulating tickets), then
to try to force the ordering of (conflicting) transaction ex
ecutions to be the same as that of the timestamp. Many prop
ositions of that kind can be found in the literature. 9

• 11. 14. 18
If there are many propositions for distributed concurrency

control algorithms it is still hard to find a good overview of
these algorithms and of their best environment. We find clas
sifications and descriptions,3.17 but it is difficult to guess for
each distributed application scenario which distributed con
currency control algorithm should be chosen. Furthermore,
we find few simulations and almost no performance indication
on distributed applications using concurrency control.

THE SCOT APPROACH

A major goal of the SCOT project is to select the best solu
tions to fit the requirements of a given distributed application
and to measure on a functional prototype the corresponding
behavior. So the first step of the project has been a survey to
select an "interesting" distributed application, "interesting"
meaning realistic, truly distributed on several computers, rep
resentative of a large class of management applications, and
of reasonable complexity. We have chosen a distributed bank
ing system. To remain coherent with the real world, we de
cided to work in close cooperation with a French bank and to
select in common one of their computerized applications in
which distributed concurrency control would be needed.

At the same time we sought among the proposed distrib
uted concurrency control algorithms the ones that could best
fit the requirements of that particular distributed application.

474 National Computer Conference, 1981

We now are at the end of the second step, which consists of
both the specification of distributed concurrency control and
the specification of the distributed banking application. The
next step for SCOT will be the validation of our algorithms by
proving techniques2 (using PETRI nets), leading to the imple
mentation of the SCOT system on a set of Level 6 connected
through the Transpac network under the DSA protocols. This
implementation will be accompanied by a simulation of the
rejected distributed concurrency control algorithms.

SOME DEFINITIONS

A "local transaction" is a sequential process running an algo
rithm (user's code) under the control of a transactional
system.

A . local transaction can

• compute,
• access data,
• cooperate with other local transactions using the cooper

ation rules given below, and
• exchange messages with an end User.

A "global transaction" is the result of the cooperation of
several local transactions. The cooperation rules are de
scribed within the SCOT protocol. These cooperation rules
are of one of the three following types:

1. The launching of a remote "son" transaction by another
local transaction, providing that these two transactions
run for the same global transaction.

2. The inter-transaction synchronization based upon mes
sage exchange.

3. The synchronization of the local transaction ends in
order to provide the atomic execution of the global
transaction (commitment phase).

The "superior" transaction is the initial transaction (the first
local transaction of the global transaction), and is connected
to the end user. (This rule is justified in the SCOT research
report. 16) The transactional system that is in charge of the
superior transaction controls the global transaction commit
ment.

A local transaction is said to be "inferior" if it ha~ be~n
launched by another transaction (father transaction). An in
ferior transaction can in turn launch another inferior trans
action without reporting to its parent. An inferior transaction
is subordinate to the superior's decisions in the commitment
phase.

A BRIEF DESCRIPTION OF THE SCOT
CONCURRENCY CONTROL ALGORITHM

This paper focuses on the concurrency control aspect of the
SCOT protocols. The complete description with distributed
execution, commitment and error recovery can be found in
Scot Group Research Reports no.s 8 and 9. 16. 17

The SCOT concurrency control algorithm is derived from
the Rosenkrantz et al. proposition,14 which we suggest im
proving in the following ways:

• links with a commitment phase,
• parallel execution of local transactions,
• two kinds of locks (shared and exclusive),
• decrease of wrong aborts number in case of deadlock

prevention,
• lessening of the impact of an abort.

A global transaction acquires its resources dynamically as they
are Claimed by the user's programs representing local trans
actions. The resources are controlled by locks in the shared
memory of each transactional system. These locks are of two
types: shared access locks and exclusive access locks. The
proper type of lock is obtained through the access primitive to
the database. For example, a read may be done with an exclu
sive lock because an update is anticipated by the programmer.
A lock is set until the end of the commitment phase. The
lockable resources are local to the transactional system so that
the memory lock technique can be used. On the other hand,
the fact that locks cannot be set at once on several entities
located on independent sites, combined with a dynamic (step
by step) resource allocation, may lead to distributed dead
locks.

A deadlock is caused by a chain of waiting global trans
actions Ti as follows

TO~T1 ... Tn ~TO

We note Ti ~ Tj when Ti waits for a resource owned by Tj.
The transaction Ti waits for the transaction Tj if one (or
more) of its cooperating local transactions requests a resource
owned by one of the cooperating local transactions of Tj. A
"chain" of waiting transactions is a subset of connected ar
rows in a general wait-for graph, as shown in the example
below.

TO~T1~T2

~ ~
T6~T3~T8

~ ~
T9~T7~T4~T5

One global transaction Ti can wait for several other global
transactions in two ways:

1. One of the local transactions of Ti waits for an exclusive
access to a resource owned in a shared access mode by
several local transactions.

2. Several cooperating local transactions of Ti are simulta
neouslywaiting for other global transactions at different
sites. This case is introduced by parallel execution possi
bility inside a global transaction.

No conflicts can occur between two local transactions of the
same global transaction. This kind of multiple Wait is impos
sible in the Rosenkrantz et al. algorithm because the locks are
all exclusive and the parallelism is not allowed inside a global
transaction. Rosenkrantz et al. propose to avoid deadlock by

an algorithm using timestamps. Each global transaction is
given a unique timestamp in the system. Each local trans
action of a global transaction inherits the global transaction
timestamp. The timestamps are created in such a way that two
global transactions are always related by a strict order accord
ing to their timestamps. This order is "close to" a real time
order of the events occuring in the distributed system. The
timestamps are generated by the Lamport method; 10 the cur
rent value of local time is added to each message exchanged
between transactional systems.

We have chosen the "WOUND-WAIT" technique: The
transaction entering in conflicts with another transaction must
"WAIT" for the end of the other if it is younger and
"WOUND" it ifit is older. The WOUND (a WOUND mes
sage broadcast to all the cooperating local transactions of the
wounded global transaction) will kill the concurrent trans
action only if the concurrent transaction waits for a resource.

The Rosenkrantz algorithm, allowing that a younger trans
action waits on an older, allows the building of chains as
follows:

with the following relation order on the Ti timestamps

TSO > TSI > TS2 > ... > TSi

assuming that TSO. . . TSi are the timestamps of the trans
actions T1 ... Ti.

This relation order of the transaction timestamps, being
strict, implies that two transactions in the chain are always
different.

The WOUND broadcast allows the last transaction of the
chain to wait on a transaction Ti + 1 younger than Ti (with the
relation TSi < TSi + 1). We denote a wait with WOUND by
-w~. The Rosenkrantz algorithm allows the chains

TO~T1~ ~Ti-w~Ti + 1

with TSO> TS1 > > TSi and TSi < TSi + 1
Although TO ... Ti + 1 may be on different sites, the con

trol of the chain construction is done without intersite commu
nication except for the Wound broadcast. No portions of the
"wait-for graph" are exchanged. The elements (~T ~) and
(~T-w~) are licit, while the elements (-w~T-w~) and
(-w~T~) are forbidden.

We propose as an improvement the construction of chains
with the elements (-w~ T -w~) in order to permit the
following:

T~Tl~ Ti-w~Ti+l-:-w~ -w~Tj

with TSO>TSl> >TSi and TSl<TSi -r1< <TSj
The elements (-w~T~) are still forbidden and this con
straint is sufficient to avoid the construction of a loop.

We also propose to transform the Roll-back in case of dead
lock prevention into a partial rollback. To break the possible
deadlock, the local transaction that owns the resource at the
origin of the Wound must rollback after releasing its resources
so that the older transaction waiting the younger's resources
can get them and run. The rollbacked local transaction, re
questing the same resources again, will probably wait for the

Concurrency Control in a Distributed Environment 475

end of the older transaction responsible for its wound and
rollback. To force the Wounded local transaction to rollback,
the site that detects the conflict with Wait will send a rollback
command to the "wounder" site" (see the section "Abort
Impacts").

TECHNICAL POINTS

Link with the Commit Phase

In a transactional system, concurrent access control is not
the only source of inconsistency. The main ones are hardware
or software failures in the middle of transaction execution.
These failures may leave the database in a transient state,
usually invisible.T~ cope with this difficulty, transactional
systems propose the commitment technique, whose main idea
is now briefly described~

After· an error, the recovery· process validates all the up
dates if a transaction has completed before error; otherwise It
undoes the updates. To detect the completion of transaction

updates, the transactional system writes a record in a journal
at the beginning and after the end of each transaction. When
an error occurs, a recovery process analyzes the journal and
executes the undo operations for all the transactions started
but not completed.

The extension of this technique to the-distributed environ
ment is one of the goals of the SCOT project. The complete
description of the SCOT commitment protocol may be found
in SCOT Group Technical Report #9. 17

The technique used in SCOT to commit a global transaction
is to subordinate the commitment of the inferior local trans
actions to the commitment of the superior transaction.

1. Each inferior warns the superior of its end by sending an
END message.

2. When all the END messages are received by the superior
it broadcasts a PRE-COMMIT message to all the in
feriors.

3. Each inferior writes on a journal a PRE-COMMIT
record and sends to the superior an acknowledgment of
pre-commit.

4. When all these acknowledgments are received by the
superior, it commits (writes a COMMIT record in its
journal, resources release). Then it broadcasts a COM
MIT message to the inferiors.

5. On the reception of these COMMIT messages, inferiors
write a COMMIT record in their-Journal and release the
resources.

The time interval between the writing of I?-RE-COMMIT
record and the writing of COMMIT record is called the "grey
zone." When a system crashes, the recovery process detects
the local transactions in grey zone and either commits the
local transaction if the superior has committed during the
crash, or undoes the updates in the other case. To avoid a
"domino effect," the resources owned by local transactions in
grey zone must be kept locked until the recovery process
receives a commitment status from the superior (or from a
cooperating local transaction).

476 National Computer Conference, 1981

In a complete system, which SCOT claims to be, concur
rency control and error recovery must be studied simultane
ously, because they are closely related. Concurrency control
deals with resources allocation and release, while error recov
ery deals with resources release after a failure. Both tech
niques provide the atomicity property of transactions (nobody
can see transient states).

The resource release must respect simultaneously the con
ditions required by concurrency control and error recovery.

• The concurrency control conditionS is that a "well
formed" transaction begins the resource release after the
end of the acquisition of all its resources (no resource can
be requested after the first resource release). An easy
way to satisfy this decreasing condition is to release
resources at the end of the transaction. This condition
implies that for each local transaction the resource re
lease begins when the local transaction knows that all the
cooperating local transactions are terminated. For an
"inferior" transaction this point is the beginning of the
grey zone (arrival of the pre-commit message). For a
superior transaction this point is the commitment point.

• Error recovery management implies- that updated data
remain inaccessible until all the updates are successfully
completed. That is to say, no lock release for updated
data is allowed before the end of the commitment. The
locks on updated data must be maintained until the end
of the grey zone to avoid a domino effect in case of abort.
For an inferior transaction, this point is the end of the
grey zone (reception of the commit message). For a
superior transaction this point is the commitment point.

The merging of concurrency control and error recovery
conditions is straightforward. For an inferior transaction, un
modified data can be released at the beginning of the grey
zone. Locks on updated data must be released at the end of
the grey zone. For a superior transaction, the resource release
of all accessed data is- done at the commitment point.

The early unmodified data release improves the data avail
ability and lessens the impact of long waits in grey zone.

Parallel Execution and Concurrency Control

In Rosenkrantz's proposal no parallelism is allowed
between cooperating local transactions. This restriction,
adopted for the sake of presentation clarity, does not simplify
the concurrency control protocol. Furthermore, it implies
some artificial complexity in the writing of global transactions
performing a long dialogue between two sites.

Partial knowledge of sibling

Parallel execution means that a local transaction can start
two or more "son" transactions. The first son and its own sons
are unaware of the existence of brothers. This lack of total
knowledge of the sibling imposes the forwarding of Wound or
Abort messages. When a transactional system wants to broad
cast a Wound or Abort message to all the sites running those

local transactions implied in a same global transaction, it
broadcasts this message to the known family of the local trans
action and inserts the list of addressed sites in the Wound or
Abort message. Once received at one of the addressed sites,
the message is forwarded to all the sons known at this site but
without the list of addressed sites. The address list in the
message is increased at each forwarding step with new ad- ,
dressed sites. As a local transaction has only one father, this
forwarding transmission is able to reach all the family without
double messages. This forwarding technique is slightly more
complex than the forwarding technique of the Rosenkrantz's
algorithm, where a Wound or Abort message is always for
warded to the unique son or to the father. Nevertheless,
broadcasting the Wound or Abort directly to the known list
seems to be more efficient in most simple transaction sce
ios. The delay implied by this Abort or Wound transmission
is shorter.

Several loci of control

Parallel execution means that local transactions are allowed
to run simultaneously on several sites. The problem raised by
this simultaneity is with the consistency of the decisions taken
at each locus. The commitment protocol ensures that if one of
the sites decides to abort while another has terminated and is
waiting for the commit, both sites will eventually abort the
same global transaction. In the same way, one site can decide
to enter a wait state while another site decides to abort the
same global transaction. The message forwarding technique
ensures that this Abort will eventually reach the waiting local
transaction.

The low complexity implied by parallel execution is amply
compensated by the gains that can be expected in terms of
response time or global transaction design effort.

Wrong Abort Due to Deadlock Prevention

A criticism often addressed to the deadlock prevention
technique is the possibility of wrong aborts (to prevent a
deadlock, a transaction may be aborted without being in a real
wait loop). One of the ways to lessen the wrong aborts rate is
to set a timeout before the final abort of a wounded trans
action, so giving more chances to the wounded transaction to
complete. This improvement, _simple to implement, will be
tested in SCOT. The difficulty of this timeout technique is, as
usual, the choice of the timeout value.

However, the wrong abort is a real problem only if jts
frequency is high. Preliminary simulations of concurrency
control systems show that the Wound rate is ! of the conflict
rate in the case of the wound-wait technique. This ratio is due
to the fact that it is the younger transaction that waits for the
older's end. A second interesting characteristic of wrong
aborts is that they occur just after the aborting conflict. There

-is no delay introduced by a cyclic deadlock detection algo
rithm. This quick reaction implies a quick restart and so a low
impact on the response time. One of the SCOT goals is to
offer significant inputs to simulation models allowing a serious
comparison of those two techniques.

Abort Impacts

The Abort of transactions for the sake of deadlock pre
vention must be studied precisely in order to lessen its impact
on the end user. The first improvement is to substitute a
rollback for a brutal abort. The user will notice an automatic
restart only if he has entered some data after the beginning of
the global transaction. The initial parameters can be saved to
keep the user from repeating them. The second improvement
is to rollback the minimum subset of local transactions. When
a Wound is changed into a transaction abort, the aborted
transaction must release the resources that caused the wound
to break a possible wait loop. To lessen the impact of this
abort, we can limit the rollback to the only local transaction
owning the resource responsible for the wound. A local trans
action identifier is recorded in the Wound message to let the
aborting transactional system know the site running the local
transaction at the origin of the Wound, and to send to it a
rollback message. Sending a rollback to this local transaction
forces it to release its resources and to restart the minimal part
of the global transaction. The rollback of a local transaction
may imply the rollback of other transactions if some messages
have been exchanged with them or if some other local trans
actions have already been started. This rollback can be entire
ly invisible if the local transaction has no son and has not
exchanged messages with other local transactions (Figure 1).
In the worst case, the partial rollback can lead to a total
rollback (Figure 2).

Starvation

The Rosenkrantz algorithm is free from starvation (endless
repetitive rollback). The protection technique is really simple.
A transaction keeps the same timestamp after an abort for
deadlock prevention reasons, so the actual priority to get
resources increases with the time as the chances to be wound
ed decrease. The probability of being wounded and roll
backed is a decreasing function of time, so the endless roll
backed transaction is impossible.

DESIGN JUSTIFICATIONS

The SCOT concurrency control algorithm is not really origi
nal. It is a mixture of existing proposals and punctual improve
ments. The main interest of the study is an attempt to find the
best tradeoff for a given application class. This section is an
attempt to justify the choices made.

Use of Locks versus Timestamped Data

In distributed concurrency control algorithms, timestamps
are used in two different ways, definition of a strict order
between distributed events and detection of conflicts between
accesses to data. The SCOT algorithm uses timestamps for
transaction ordering and locks for conflict detection. The
locks are chosen for two main reasons. The use of locks allows
a dynamic allocation of resources without prerequest. We
think that most of the distributed data processing applications

Concurrency Control in a Distributed Environment 477

ACCESS (RI)

SI

WAIT (R2)

i
I
I

I
I
I

ABORT I :

~ I , I
ABOR~

SI

RESTART

A transaction older than T requires RI with a WOUND while T waits for R2
owned by a transaction older than it. The local transaction on S3 is restarted and'
then waits for Rl.

Figure I-Efficient partial rollback

require a dynamic allocation of resources. In the SCOT dis
tributed banking application, we may compute an account
number and its management site in the course of a trans
action.

The second reason to use locks is the high level of parallel
ism reachable. The timestamps technique creates an ordering
of the real execution order according to the timestamps~This
implies a sequential execution of transactions at each site,9 or
a sequential execution in each class. 18 This property is accept
able for applications where the number of concurrent trans
actions at each site is low. It is not the case in distributed
banking systems where there are a lot of transactions acces
sing a small amount of data at the same time.

Some propositions6 use timestamps to prevent conflicts and
allow high level of parallelism between transactions and
dynamic allocation of data. In this kind of algorithm, the
commitment must be done with an exclusive access to the
database. This constraint may be bearable in centralized envi
ronments but is certainly not possible in distributed environ
ments. Our conclusion is that in case of a great number of
transactions simultaneously active with a small number of
granules accessed, the timestamp ordering must be prohib
ited. Furthermore, the existing database systems offer locks
and dynamic allocation primitives.

S3 52

ACCESS (RI)

I
I
I
I

51 I S3 I S2
I I
I c .. 1 i \l.O\.\·-\\i"

REILI\SF (RI)

RESfART

WAIT(RI)
I

~i

WAIT (R2)

I
I
I
I
I
I
I
I
I
I
I

SI

Same case as above, except that the rollback message arrives after S3 has sent
a message to S2. Transaction on S3 is aborted, a Rollback is sent to S2. trans
action on S2 is aborted and a Rollback is sent to Sl.

Figure 2---Partial rollback leading to a total rollback

478 National Computer Conference, 1981

Parallel versus Sequential Execution
of Cooperating Local Transactions

Parallelism has been chosen, as said before, because of the
simplicity of this powerful technique. It should be interesting
in some cases to use parallelism, although in the SCOT appli
cation it is not a requirement. We can imagine global trans
actions sending the same questions to many sites and waiting
for a few replies. In this case the parallelism is a must.

Deadlock Detection versus Deadlock Prevention

Deadlock detection is distributed environment has been
studied in various papers.7. 12. 13. t9 The most recent proposal
is Obermack's algorithm, which provides significant optimiza
tion that, using timestamps, lessens the number of deadlock
management messages. This algorithm is interesting for hav
ing very few wrong aborts and a relatively low traffic overhead
due to deadlock detection as compared with what is usually
encountered in distributed deadlock detection. We consider it
as a good algorithm, combining and improving previous dis
tributed deadlock detection proposals. Nevertheless, some
criticisms may be made:

1. It is designed and proven for migrating transactions,
with one locus of control at a time; consequently, paral
lel execution inside a global transaction is impossible.

2. Deadlock detection is made at time intervals whose de
termination is as difficult as that of the choice of a time
out value.

3. The propagation of "wait-for" information is not broad
cast to all the cooperating local transactions concerned
by a conflict. The propagation is made by forwarding the
"strings" all along the possible cycles. This step-by-step
propagation causes the detection delay to increase with
the number of elements in a cycle.

4. The wrong deadlock cycles are still possible in a simple
version of the algorithm but can be avoided either by
waiting some extra periods (to see whether the deadlock
cycle persists) or by sending an invitation to abort all
along the suspected cycle. Again, both solutions in
crease the detection delay.

5. The choice of the victim is not described in the IBM
research report and needs to be closely studied. In fact,
the SCOT Wound-Wait technique aborts the younger
transaction, giving priority to the older ones. This policy
improves the throughput of the system, since trans
actions close to their end will survive a conflict while the
younger ones, with few resources acquired, will be rolled
back. The second advantage of this policy is that it re
sequences the transactions according to the timestamps
order, so diminishing the Wound rate. The same policy
may be adapted to the Obermack's algorithm, giving it
similar benefits. A side effect of this policy is to elimi
nate the tricky case where two sites, detecting the same
cycle simultaneously, choose two different victims.

6. The partial rollback is not possible, because the site
name of the local transaction owning the wait-for re
source is absent from the deadlock detection messages.

Each deadlock detector knows only the global trans
actions names.

One of the SCOT goals is to offer significant inputs to
simulation models to allow a serious comparison of the dead
lock detection and deadlock prevention techniques.

Our choice for deadlock prevention was justified mainly by
the simplicity of the distributed algorithm and the apparent
low overhead in messages for deadlock management. The new
propositions in deadlock detection should improve the
chances of this technique and will confirm the need for serious
comparison based on real application measurements.

CONCLUSION

One advantage of the concurrency control in SCOT, as de
scribed above, is that it integrates most advanced techniques
with a give and take acceptable in an important class of appli
cations. The strong points of the algorithm are the dynamic
resource allocation, the low message overhead caused by con
currency control, the parallelism within global transactions,
the absence of starvation, and the imbrication with the distrib
uted commitment. The main drawback as compared with
deadlock detection technique is the existence of wrong aborts.
The performance of the choices will hopefully be confirmed
by simulation results and prototype measurements, which are
under way.

REFERENCES

1. Adiba, M., 1.M. Andrade, P. Decitre, F. Fernandez, Nguyen Gia Toan,
"An Experience in Distributed Database System Design and Implementa
tion," International Symposium on Distributed Databases. (Paris: North
Holland, 1980), pp. 67-84.

2. Azema, P., B. Berthomieux, P. Decitre, "The Design and Validation by
Petri Nets of a Mechanism for the Invocation of Remote Servers," IFIP
Congress, Melbourne, Oct. 1980.

3. Bernstein, Philip A., and Nathan Goodman. "Fundamental Algorithms for
Concurrency Control in Distributed Database Systems." Technical Report
CCA-80-05, Computer Corporation of America. (Cambridge: Feb. 1980).

4. Bernstein, Philip A., D.M. Shipman, W.S. Wong, "Formal Aspect of
Serializability in Database Concurrency Control," IEEE Transactions on
Software Engineering, Vol. SE.5 (1979) #3.

5. Eswaran, K.P., J. Gray, R.A. Lorie, I.L. Traiger, "The Notion of Consis
tency and Predicate Locks in a Database System." Research Report, IBM

. Research Laboratory, San Jose. November 1976.
6. Gardarin. Georges, and Brigitte Piot. "Detection and Frequency Evalua

tion of Concurrency Conflicts." 1st European Cont on Parallel and Distrib
uted Processing. ". Toulouse. France. February 1978. pp. 236-261.

7. Gligor. Virgil D .• and Susan H. Shattuck. "On Deadlock Detection in
Distributed Systems." University of Maryland Computer Science Technical
Report 837. December 1979.

8. Gray, J .• "Notes on Database Operating Systems." Research Report. IBM
Research Laboratory. San Jose. February 1978.

9. Herman, D .• and J.P. Verjus. "An Algorithm for Maintaining the Consis
tency of Multiple Copies," First International Conference on Distributed
Computing Systems, Huntsville, Alabama. October 1979.

10. Lamport. Leslie. "Time. Clocks. and the Ordering of Events in a Distrib
uted System." CACM. Vol. 21 #7 (July 1978).

11. Le Lann. Gerard. "Algorithms for Distributed Data-sharing Systems
Which Use Tickets," 3rd Berkeley Workshop on Distributed Data Manage
ment and Computer Networks. San Francisco, August 1978. p. 259.

12. Menasce. Daniel, and Richard R. Muntz. "Locking and Deadlock Detec
tion in Distributed Databases," 3rd Berkeley Workshop on Distributed

Data Management and Computer Networks. San Francisco, August 1978,
pp. 215-232.

13. Obermack, Ron, "Global Deadlock Detection Algorithm." Research Re
port, IBM Research Laboratory, San Jose, June 1980.

14. Rosenkrantz, D.J., R.E. Stearns, and P.M. Lewis, "A System Level Con
currency Control for Distributed Database Systems," 2nd Berkeley Work
shop on Distributed Data Management Computer Networks. Univ. of Cali
forniaatBerkeley, May 1977, pp. 132-145.

15. Wilms, Paul. "An Overview of Update Algorithms in Distributed Data
bases. Formalization with Nutt's Evaluation Nets." SCOT Research Re
port #7, Centre de recherche CII-Honeywell-Bull, Grenoble, France.

Concurrency Control in a Distributed Environment 479

16. SCOT group. "SCOT, Presentation generale des mecanismes." SCOT Re
search Report #8, Centre de recherche CII-Honeywell-Bull, Grenoble,
France.

17. SCOT group. "Description du protocol SCOT." Scot Research Report #9,
Centre de Recherche CII-Honeywell-Bull, Grenoble, France.

18. SDDI Group. Technical Reports. Computer Corporation of America,
Cambridge, Mass., 1980.

19. Stonebraker, M., "Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES," IEEE Transactions on Software
Engineering, Vol. SE 5 (May 1979) #3.

An alternative approach to distributed database updating

by RICHARD J. GREENE
Sperry Univac
Blue Bell, Pennsylvania

ABSTRACT

This paper presents a new updating approach for a fully re
dundant DDB operating in a transaction-based environment.
Existing approaches utilize either a single, migrating control
ling process (DBMS) or multiple controlling processes to
access the DDB. Updating approaches based on a single,
migrating DBMS generally exhibit simplicity of design and
lock-based concurrency control. Unfortunately , access to the
DDB is usually single-thread. Approaches based on multiple
controlling DBMSs generally exhibit complex design and con
currency control but do permit multi-thread access to the
DDB. The approach proposed in this paper, called "Coopera
tive Multi-Thread" (CMT), is based on a single, migrating
DBMS and lock-based concurrency control and yet permits
multi-thread access of the DDB. The basis of this approach is
the time-driven, cooperative scheduling of control migration.
Contrast this with the request-driven, competitive scheduling
of control migration of the existing approaches in the genre.
The advantages of the proposed approach are an economical
communications structure, high throughput, flexibility, and
predictable performance. This paper presents the technical
aspects of CMT approach as well as a quantitative and qual
itative appraisal of it.

INTRODUCTION

The introduction of distributed database (DDB) systems into
the marketplace seems imminent. Two major conditions sup
port this belief: the technological feasibility of DDB systems
and the compatibility between the characteristics of DDB
systems and the characteristics of many end-user operational
environments. Within the computer industry, two factors con
tribute to the technological feasibility of DDB systems. First,
technological advancements have increased the performance
of communications media and decreased the cost of computer
and computer-related hardware. One result of this trend has
been a proliferation of online, centralized database systems
accessed via remote terminal interfaces. In short, the hard
ware vehicle for DDB systems exists. Second, while applying
technological solutions to the information processing needs of
industry and government, the computer industry has broad
ened and deepened its understanding of the needs of these

481

sectors. Increasingly, end-user needs are driving technological
solutions. The similarity between the characteristics of many
operational environments and DDB systems suggest a natural
matching of information processing problems to solution tech
niques. For example, the availability of accurate and timely
information is often a requisite in meeting organizational
goals. Toward this end, online, centralized database systems
have played a key role. Nevertheless, access patterns to the
database may reflect the geographically and functionally dis
tributed nature of a user's operational environment. In other
words, centralization implies that the logical information
needs of users and the physical point of data use are also
centralized even though this may not be the case. The cost of
communication, the degradation of response times due to
communication bottlenecks, and the catastrophic impact of
hardware/software failure suggest that database users might
be better served if the database were reorganized by phys
ically fragmenting it, replicating portions if necessary, and
locating the fragments closer to their points of use. In short,
the idea is to evolve a distributed database.

A DDB system may offer the user several important advan
tages over a centralized database system. Fragmentation of
the logical database can increase database security and sim
plify the control of database growth. On the other hand, the
physical proximity of the database portion to its point of use
reduces communications costs and decreases response times.
An added advantage is the decreased impact of failure. In
short, DDB systems offer Sperry-Univac an additional tech
nique for achieving availability, reliability, and maintain
ability in software.

Nevertheless, obtaining the advantages of a DDB system
may not be a simple matter. A tenuous balance must be pre
served between the abstract model of the DDP system and its
realization, while complex interactions among system com
ponents confound design decisions. The choice of updating
approach can serve as a basis for structuring aDD B system
because all subsystem architectures should support it and po
tential performance depends on it. The general lack of prac
tical experience regarding the implications of the updating
approach to the overall system is diminishing with emergence
of prototype DDB systems. Such experiences, coupled with
increased technical expertise, should provide a firm founda
tion for the future of DDB systems.

Currently, much attention is being devoted to the devel-

482 National Computer Conference, 1981

opment of new updating approaches. Yet the relationship
between the approach and the user's operational environment
is vague ...

The purpose of this paper is twofold: to provide a general
·framework for evolving DDB updating approaches and to
present a new approach designed for a transaction-based
operational environment.

The remainder of this paper is organized in three parts.
First, relevant concepts and terminology are introduced.
Next; the new algorithm, Cooperative Multi~Thread (CMT),
is described, analyzed, and evaluated. Finally, the conclusion
reviews the main points of the paper and proposes future
areas of research.

CONCEPTS AND TERMINOLOGY

For the purpose of·describing DDB systems, a concise work
ing vocabulary needs to be introduced. A more complete
treatment of distributed computing concepts and terminology
may be found in LeLann. 2

The basic conceptual building block of the DDB system is
the process (task). Informally, a process is a computation that
can execute concurrently with other processes. Both user pro
cesses ("programs") and system processes ("software") con
sume system resources such as memory space, processor time,
peripherals, and informatiol1. Processes communicate with
each other only via messages. Processes may be grouped to
form specific functions such as database management. To il
lustrate, a user process requesting database access commu
nicates indirectly with the database management function
whose process set communicates in turn with each other to
perform the desired function.

The notion of distributed control distinguishes the DDB
system from the centralized database system. A centralized
database system has a unique, omniscient controlling process
within the database management function which insures that
all processes accessing the logical database receive consistent
and identical views of the global database state. A true DDB
system has no unique controlling process although there is a
single, logical database.

Figure 1 depicts the general framework for designing dis
tributed database updating approaches.

A full discussion of the tree diagram, which is beyond the
scope of this paper, can be obtained in Greene. 3 Nevertheless,
the abbreviated version should clarify the major design deci
sions addressed by any updating approach. The purpose of the
general framework is to provide a conceptual scheme for
designing DDB updating approaches. Once derived, the ap
proach is refined into an algorithm which provides the actual
details of sharing the DDB.

Essentially, database utilization is viewed as resource shar
ing. Level one of the tree diagram indicates the key design
decisions of an updating approach. The successive levels rep
resent the components of each key decision while the leaf
nodes represent the actual choices for each decision. In short,
the major design decisions pose four questions:

1. What is the prime performance goal of the approach?
2. How is the resource (granule) defined?

3. What are the constraints on allocation?
4. When are resources allocated and reclaimed?

Finally, the two basic methods used to distribute the logical
database, replication and partitioning, distinguish DDB sys
tems. Replication implies that the logical database is distrib
uted by physical redundance while partitioning implies the
opposite. Actually, both types of DDB systems are extremes.
Nevertheless, the replication case applies in one form or an
other to most DDB systems and is the more general case. For
these reasons, this paper assumes the fully replicated case.

THE COOPERATIVE MULTI~THREAD
ALGORITHM (CMT)

Overview

The major design goals of the CMT Algorithm are sim
plicity, high throughput, and predictable performance. To ef
fect these, control of the DDB is passed cooperatively in a
time-shared fashion from DBMS to DBMS. This time-driven,
cooperative migration of DDB control distinguishes CMT in
its genre.

Basically, the CMT Algorithm operates as follows. A single
DBMS controls DDB access for a specified time quantum
during which it services requests in a multi-thread mode and
maintains an "update list" reflecting its modifications to the
DDB state stich as granule allocation and granule mod
ification. At quantum expiration, the controlling DBMS
passes both the control token and the update list to its prede
termined successor.

The allocation policy of the CMT Algorithm is to allocate
all of a user process' required granules in advance. This sim
plifies concurrency control and deadlock prevention.

The CMT Algorithm makes several assumptions regarding
its supporting environment. First, each DBMS should be kept
busy by a pool of waiting requests. Second, inter-DBMS com
munication is based on a logical ring network structure.

In sum, time-driven cooperative control migration is the
basis of the CMT Algorithm. Simple in design and capable of
high throughput via multi-thread mode, the CMT Algorithm
also offers predictable performance: each of n DBMS' may
allow DDB accesses every (n-l)q seconds where q is the quan
tum length.

Description

The CMT Algorithm must perform two related functions:
cooperative control migration and DDB state migration. The
description of the four steps along with two supportive tables
which make up the algorithm follows below.

Two tables, the control and update tables, provide key in
formation needed by the algorithm to perform the two major
functions. Resident at each DBMS is the control table speci
fying the order of control migration (control cycle); it contains
integer tuples in the form (i,p,s) where i is a unique DBMS
identifier and p and s are the predecessor and successor of
DBMS i in the control cycle. In short, DBMS i receives

Distributed Database Updating 483

The Components of an Updating Approach

DISTRIBUTED DATABASE UPDATING APPROACH

GRANULE
DEFINITION

METHOD
OF

ALLOCATION

\ \
SUBSET PREALLOCATE

OF ALL REQUIRED
DATA'BASE GRANULES

D!~:~Rfs! \REMENTAL

READ OTHER
SET

ACCESS
CONTROL

SCHEDULE

METHOD TECHNOLOGICAL PERFORMANCE OF ISSUES GOALS RECLAMATION

/ / /
AFTER TIMEKEEPING TURNAROUND OPERATION

AFTER
COMPUTATION

PHYSICAL

COMMUNICATION

1\ RING

SEQUENCER

THROUGH·
PUT

WRITE
SET

PLACEMENT
OF

CONTROL
DECISIONS

OF CONSISTENCY BROADCAST

/\
ACCESS /

co.! CO~TITIVE
INTERNAL

LOGICAL

SINGLE MULTIPLE (Concurrency MUTUAL

/\ Control) / \

/ \ SERIALIZED \ CO.Op COMPETITIVE
MIGRATION AVOID PREVENT SERIALIZABLE

CONFLICTS CONFLICTS

DETECT
CONFLICTS

Figure 1-The components of an updating approach

control from DBMS p and passes control to DBMS s. The
control table is initialized at system generation time and may
be modified by the communication subsystem as con
tingencies arise. The second table, the update table, indicates
the current state of the DDB. This state logically consists of
granule locking and modification information. To represent
this, the update table consists of two parts, a sublist and a
modification sublist, which pass with the control token to a
DBMS.

The CMT Algorithm proceeds in four steps: waiting, ac
counting, user, and termination. These steps implement the
ingress and egress of control as well as maintain a current,
consistent DDB.

The waiting step is passive. During this step, user requests
for DDB access must wait, read operations waiting until the
user step and write operations waiting until the accounting
step.

The accounting step which prepares the DDB for the user
step commences with the advent of the control token and the
update table. The controlling DBMS appends the waiting
write operations to the modification sublist and applies it to

the replication. This action creates the current state of the
granule values of the DDB. Next, the DBMS applies the lock
sublist to the replication. This action creates the current state
of granule allocation. When these two actions are completed,
the controlling DBMS exclusively owns the current logical
DDB. Finally, the update table is itself updated; each entry in
the update-table is associated with an integer sub-cycle num
ber. When a controlling DBMS applies an entry, it increments
the entry's sub-cycle number by one. If the sub-cycle number
equals the number of DBMSs in the DDB system, the entry
has been noted globally and can be removed from the update
table. Each DBMS must maintain a list of unresolved user
processes whose granule locks span a control cycle. When
control passes to the DBMS, these locks are re-initiated.

The user step is the most active step. The controlling DBMS
operates in a multi-thread mode and reflects all new allo
cations and modifications in the update table. Due to the fixed
order of control migration, an implementation may require an
enhancement to the allocation policy. Basically, it is possible
that a user process can be starved by its predecessors of its-
needed granules. To remedy this, a locking queue of DBMS

484 National Computer Conference, 1981

identifiers can be associated with the locking sublist. Then a
DBMS may allocate a granule only if the granule is unlocked
and that DBMS has claimed it. This strengthening of the
allocation policy may not be necessary if the granule size is
small.

The termination step commences at quantum expiration.
At this time, the DBMS initiates the migration of control and
DDB state by presenting its successor to the communication
subsystem.

In sum, the description of the CMT Algorithm is intended
as a guide to further refinement. The flexibility of the algo
rithm allows several variations which will be mentioned in the
conclusion.

Analysis of the CMT Algorithm is based on storage and
communications requirements. These two measurements pro
"ide a common basis for the comparison of qualitatively dif
ferent approaches.

The control and update tables compose the key storage
requirements. Each DBMS in a DDB system of 'n DBMS'
requires a control table of size 3 n which remains relatively
fixed. The size ot this table varies slightly as the DDB system
adds or deletes a DBMS. The update table's size is more
volatile. Although its size may vary at any given time, it is
expected that for a fixed request arrival rate and time quan
tum, the size of the update table will stabilize.

Due to cooperative control migration, the CMT Algorithm
exhibits an apparent economy in the number of required
inter-DBMS messages: Each lock and modification is circu
lated (n-1) times, resulting in a minimum of 2n-2 messages
per update. User processes requiring more than one control
cycle to complete must recirculate their locks, adding to the
minimum figure.

Evaluation of the CMT Algorithm

Where the analysis is quantitative, the evaluation is qual
itative. The purpose of the evaluation is to suggest subsystem
architectures which promote the performance of the CMT
Algorithm and to elucidate several critical performance areas
of the algorithm. Following this, a supportive operational en
vironment will be suggested.

The architectures of the nodes, database, and communi
cation subsystems strongly influence the performance of the
CMT Algorithm. Node architecture alludes to the organiza
tion of local functionality consisting of communications, data
processing, and data management functions. Node through
put can be enhanced via parallelism and overlap by functional
and geographical distribution at the node level. In actuality,
node architecture would consist of a front-end processor for
communications processing, a multi-processor for applica
tions processing, and a back-end processor for data manage
ment processing. Note that a mUlti-processor would enhance
throughput at the processor level. Database architecture, too,
can enhance throughput by supporting rapid access.

A judicious choice of the database model and access meth
ods as well as frequent tuning can all aid in this effort. Finally
the architecture of the communication subsystem can enhance
throughput if the speed and bandwidth of the communications
medium is chosen with the expected communications load in

mind. However, this is no trivial matter; the choice of a suit
able bandwidth depends on the average size of the update list,
which in turn depends both on the frequency of request ar
rivals and the quantum length. Adequate information needs
to be available to guide this choice. Analytic methods and
simulation can also provide a basis for a sound decision. For
tunately, the quantum length can be adjusted to increase per
formance and compensate for errors in judgment. On the
technological side, high speed, very high bandwidth, long dis
tance communications links using microwave radio links, and
satellite links expand the performance potential for the CMT
Algorithm by providing an efficient means for large data
block transmission.4

A brief examination of several critical performance areas
completes the qualitative analysis. The CMT Algorithm is
evaluated beldw with respect to mutual consistency, dead
lock, robustness, equalization of access opportunities, and
throughput/turnaround considerations.

Mutual consistency, the "agreement" among the replica
tions at time t denoted eft), is a customary measure of the
"quality" of a DDB system. 5 Since there is only one logical
database, all physical copies of it should, theoretically, be
identical.

However, due to non-instantaneous communication media
and different methods of message passing, complete agree
ment among the replications is seldom the case. The mea
surement of mutual consistency is the number of granules of
one replication which differ with their counterparts in all rep
lications. Thus, eft) === (N + 1)/2 for the CMT Algorithm
where N = max {n}, n being the number of granules differing
from their counterparts in the most recent replication of the
DDB. Based on this, the CMT Algorithm provides relatively
weak mutual consistency since e(t)~O only if all updating
actions cease for a full control cycle. However, this should
cause little concern as a user may access only the most recent
version of the DDB.

The CMT Algorithm prevents deadlock by forcing users to
claim all required granules prior to execution. A complete
granule inventory can be stored as part of the program infor
mation block either by user declaration or by system software
designed for this purpose. A DBMS will allocate a granule
only if all required granules are available.

The CMT Algorithm simplifies robustness and recovery in
several ways. Failed hosts can be bypassed by modifying the
control table. Predecessor update tables aid recovery by fur
nishing the most recent legal replication. A more elaborate
description of robustness and recovery procedures of the
CMT Algorithm may be found in Greene. 3

The CMT Algorithm equalizes access opportunities at the
DBMS level rather than the user process level. By time
sharing the DDB at the DBMS level, the allocation of time
increments within a quantum is under local control, re
sponding to local needs. This adds to the overall flexibility of
the algorithm.

The topic of throughput has been mentioned; however, the
potential of acceptable turnaround exists also. A host can
execute a user process regardless of the current location of
DDB control because the lock list ensures mutual exclusion of
access at a global level.

Finally, the topic of DDB system evolution reveals the true

flexibility of time-driven, cooperative control migration. As
the DDB system changes its workloads and/or nodes are
added or deleted, appropriate adjustments can be made to the
quantum length to stabilize resource utilization and per
formance.

At this point, the characteristics of an hospitable operating
environment for the CMT Algorithm can be suggested. First,
frequent and consistent demand sufficient to justify cooper
ative control migration should exist at each node. This sup
ports the assumption made by cooperative control migration:
each DBMS has waiting users. This also aids in stabilizing the
size of the update table. Second, to prevent granule locks
from being re-initialized, the execution time of user processes
should fall within a control cycle. Third, the operating envi
ronment should be distributed both functionally and geo
graphically. In other words, the users are performing the same
functions in different physical locations but potentially re
quiring the same data. This characteristic suits the concept of
time-sharing a DDB. A transaction-based DDB system might
easily exemplify the above characteristics.

CONCLUSION

The emergence of DDB systems in the marketplace is immi
nent. In order to efficiently serve the target user population,
particular attention needs to be given to the updating meth
odology, which must meet performance expectations within a
user's operational environment. Although all current up
dating approaches "work," each is based on different proper
ties of a DDB system, depicted in the general framework, and
offers the user qualitatively different choices. The com
patibility of the updating approach with the user's operational
environment can be a critical factor in the overall success of
the DDB system. An updating approach is compatible with an
operational environment only insofar as its fundamental as-

Distributed Database Updating 485

pects approximate the fundamental characteristics of its oper
ational environment.

The design of the CMT Algorithm is oriented to a transac
tion-based operational environment and a performance goal
of high throughput. These two characteristics guide the design
of the approach and culminate in an algorithm with a time
driven, cooperative control structure.

The future offers several challenges for future research in
DDB systems. Within the CMT Approach, the determination
of quantum length and node scheduling seem to be productive
areas of future research. For example, if the quantum length
were dynamically adjusted, perhaps by heuristic methods,
what would be the effect on performance? Similarly, what
other node scheduling methods besides round-robin apply to
the CMT Approach? Since control migration is cooperative,
it is suspected that control table would be constructed using
artificial intelligence techniques. With regard to DDB systems
in general, simulation studies designed to match updating
approaches with specific types of operational environments
might provide the necessary basis for intelligent DDB system
design.

REFERENCES

1. Bernstein, Phillip A. et aI., "Analysis of Serializability in SOD-I: A System
for Distributed Databases," IEEE Transactions on Software Engineering.
IEEE, NY, NY, 1978.

2. LeLann, G., "An Analysis of Different Approaches to Distributed Com
puting," Proceedings of the First International Conference on Distributed
Computing Systems, IEEE, NY, NY, 1979.

3. Greene, Richard J., "Updating Approaches for Distributed Databases,"
Thesis, University of Alabama in Huntsville, 1980.

4. Wilkes, Maurice V., "The Impact of Wide Band Local Area Communication
Systems on Distributed Computing," 1979.

5. Centralized and Distributed Data Base Systems, Edited by Wesley W. Chu,
and Peter P. Chen, IEEE, NY, NY, 1979.

Multibase-integrating heterogeneous distributed
database systems*

by JOHN MILES SMITH, PHILIP A. BERNSTEIN, UMESHWAR DAYAL, NATHAN
GOODMAN, TERRY LANDERS, KEN W. T. LIN, and EUGENE WONG
Computer Corporation of America
Cambridge, Massachusetts

ABSTRACT

Multibase is a software system for integrating access to pre
existing, heterogeneous, distributed databases. The system
suppresses differences of DBMS, language, and data models
among the databases and provides users with a unified global
schema and a single high-level query language. Autonomy for
updating is retained with the local databases. The architecture
of Multibase does not require any changes to local databases
or DBMSs. There are three principal research goals of the
project. The first goal is to develop appropriate language
constructs for accessing and integrating heterogeneous data
bases. The second goal is to discover effective global and local
optimization techniques. The final goal is to design methods
for handling incompatible data representations and inconsis
tent data. Currently the project is in the first year of a planned
three year effort. This paper describes the basic architecture
of Multibase and identifies some of the avenues to be taken in
subsequent research.

1. INTRODUCTION

What is Multibase?

The database approach to data processing requires that all
of the data relevant to an enterprise be stored in an integrated
database. By "integrated," we mean that a single schema
(i.e., database description) describes the entire database, that
all accesses to the database are expressed relative to that
schema, and that such accesses are processed against a single
(logical) copy of the database. Unfortunately, in the real
world many databases are not integrated. Often, the data
relevant to an enterprise is implemented by many indepen-

* This research was jointly supported by the Defense Advanced Research
Projects Agency of the Department of Defense and the Naval Electronic Sys
tems Command and was monitored by the Naval Electronic Systems Command
under Contract No. NOOO39-80-C-0402. The views and conclusions contained in
this document are those of the authors and should not be interpreted as neces
sarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the Naval Electronic Systems
Command or the U.S. Government.

487

dent databases, each with its own schema. Such databases are
nonintegrated. Furthermore, these databases may be man
aged by different database management systems (DBMS),
perhaps on different hardware. In this case, in addition to
being nonintegrated the databases are distributed and hetero
geneous. Thus, the real world of nonintegrated, hetero
geneous, distributed databases differs greatly from the more
ideal world of an integrated database.

Nonintegrated, heterogeneous, distributed databases arise
for several reasons. First, many of these databases were cre
ated before the benefits of integrated databases were well
understood. In those days, total integration was not a prin
cipal database design goal. Second, the lack of a central data
base administrator for some enterprises has made it difficult
for independent organizations within an enterprise to produce
an integrated database suitable for all of them. Third, the
large size of many data processing applications has made dis
tribution a necessity, simply to handle the volume of work.
Since integrated distributed DBMSs have not been available,
it has been necessary to implement applications on different
machines. Since different applications often have different
performance and functionality requirements, different
DBMSs were often selected to run on these machines to meet
these different requirements. Many data processing organiza
tions have experienced these problems, so there are many
nonintegrated, heterogeneous, distributed databases in the
world.

A principal problem in using databases of this type is that
of integrated retrieval. In such databases, each independent
database has its own schema, expressed in its own data model, .
and can be accessed only by its own retrieval language. Since
different databases in general have different schemata, differ
ent data models, and different retrieval languages, many diffi
culties arise in formulating and' implementing retrieval re
quests (called queries) that reqUire data from more than one
database. These difficulties include the following: resolving
incompatibilities between the databases, such as differences
of data types and conflicting schema names; resolving incon
sistencies between copies of the same information stored in
different databases; and transforming a query expressed in the
user's language-into a set of queries expressed in the many
different languages supported by the different sites. Imple
menting such a query usually consumes months of program-

488 National Computer Conference, 1981

local
schema

local
host
schema

global schema

local
schema

local
host
schema

Figure I-Schema architecture

integration
schema

ming time, making it a very expensive activity. Sometimes,
the necessary effort is so great that implementing the query is
not feasible at all.

Multibase is a software system that helps integrate non
integrated, heterogeneous, distributed databases. Its main
goal is to present the illusion of an integrated database to
users without requiring that the database be physically inte
grated. It accomplishes this by allowing users .to view the
database through a single global schema and by allowing them
to access the data using a high level query language. Queries
posed in this language are entirely processed by Multibase as
if the database were integrated, homogeneous, and non-dis
tributed. Multibase uses the Functional Data Modell to define
the global schema, and the language DAPLEX I as the high
level query language.

Implementation Objectives

There are many approaches to the design of the Multibase
system. In deciding which approach to choose, we begin with
the following design objectives.

1. Generality: we do not want to design an application
specific Multibase system. Instead, we want to provide
powerful generalized tools that can be used to integrate
various database systems for various applications with a
minimum of programming effort.

2. Extendability: we want a design that allows expansion of
functionality without major modification. There are
areas in the Multibase design where substantial research
effort is still required, so we must be able to add addi:
tional features to the Multibase system as we learn more
about the problems.

3. Compatibility: we want a design that does not render
existing software invalid, because such software repre
sents a very large investment. Thus, we must leave the
existing interface to the local DBMS intact.

The proposed architecture of the Multibase system consists
of two basic components: a schema design aid and a run-time
query processing subsystem. The schema design aid provides
tools to the "integrated" database designer to design the glob-

al schema and to define a mapping from the local databases to
the global schema. The run-time query processing subsystem
then uses the mapping definition to translate global queries
into local queries, ensuring that the local queries are executed
correctly and efficiently by local DBMSs. The schema design
aid is discussed first.

Schema Architecture

The Multibase architecture has three levels of schemata, a
global schema (GS) at the top level, an integration schema
(IS) and one local schema (LS) per local database at the
middle level, and one local host schema (LHS) per local data
base at the bottom level. These components and their inter
relationships are depicted in Figure l.

The local host schemata are the original existing schemata
defined in local data models and used by the local DBMSs.
For example, they can be relational, file, or CODASYL sche
mata. Each of these LHSs is translated into a local schema
(LS) defined in the Functional Data Model. By expressing the
LSs in a single data model, higher levels of the system need
not be concerned with data model differences among the local
DBMSs. In addition, there is an integration schema that de
scribes a database containing information needed for integrat
ing databases. For example, suppose one database records the
speed of ships in miles per hour, while the other records it in
kilometers per hour. To integrate these two databases, we
need information about the mapping between these two
scales. This information is stored in the integration database.

The LSs and IS are mapped, via a view mapping, into the
global schema (GS). The GS allows users to pose queries
against what appears to be a homogeneous and integrated
database. Roughly speaking, the LHS to LS mapping pro
vides homogeneity and the LS and IS to GS mapping provides
integration. The schema design aid provides tools to the data
base designer to define LSs, the GS, and the mapping among
them and the LHSs.

Query Processing Architecture

The architecture of the run-time query processing sub
system consists of the Multibase software and local DBMSs.

Multibase
Software

global queries

Figure 2-Run-time query processing subsystem

Integrating Heterogeneous Distributed Database Systems 489

These components and their interrelationships are depicted in
Figure 2. The users submit queries over the global schema
(called global queries) to the MuItibase software, which trans
lates them into subqueries over local schemata (called local
queries). These local queries are then sent to local DBMSs to
be executed.

Since the global queries are posed against the global schema
with()ut any knowledge of the distribution of the data and the
availability of "fast access paths," the Multibase software
must optimize queries so they can be executed efficiently. In
addition, the translation process must also be correct; that is,

_ the local queries must retrieve exactly the information that the
original global query requests.

Meeting the Objectives

The proposed architecture meets the objective of gener
ality. The only component of the MuItibase system that is
customized for the application is the global schema and its
mapping definition to the local schemata. The only com
ponent of Multibase that is customized for the local DBMSs
is the interface software that allows MuItibase to commu
nicate with the heterogeneous DBMSs in a single language.
These are only small eomponents of the-MuHibase system.
Thus, most of Multibase is neither application-specific nor
DBMS-specific. Multibase also meets the objective of com
patibility, because local databases are not modified; there
fore, existing application programs can still access local data
bases through local DBMSs. And as the details of the
architecture are discussed in later sections, it will become
clear that the objective of extendability is also met.

Project Status

The Multibase project is a three-year effort. Within the first
two years, the research problems in the system design will be
resolved and evaluated, using a "breadboard" implementa
tion of the system. In the final year, a revised design will be
developed and implemented in ADA. The ADA version will
be made available for experimental testing within the Navy
"Command and Control" environment.

It is anticipated that the major research problems are

1. basic architecture of the system,
2. global and local optimization, and
3. handling incompatible data.

At the time of this writing, an architecture has been designed
that supports a restricted version of DAPLEX with reason
able efficiency and that can be tailored to handle certain kinds
of data incompatibility. This basic architecture is currently
being implemented as a breadboard system. Subsequently,
research will be devoted to removing the restrictions on DA
PLEX and investigating algorithms for processing incompat
ible data. The breadboard system will then be enhanced to
include the new capabilities. This paper describes the basic
architecture developed to date.

Organization

The architecture of the Multibase system is expanded in
more detail in Section 2. The process of mapping each LHS to
a LS and merging LSs into a GS is discussed in Section 3.
Section 3 also-discusses the problem of data incompatibility
and inconsistency. -The method by which user queries are
translated into efficient local queries is discussed in Section 4.
Section 5 is a summary.

2. QUERY PROCESSING ARCHITECTURE

The architecture of the Multibase run-time subsystem consists
of

1. a query translator,
2. a query processor,
3. a local database interface (LDI) for each local DBMS,

and
4. local DBMSs.

A global query references entity types and functions de
fined in the global schema. Before it can be processed, it must
be translated by the query translator into a query referencing
only entity types and functions defined in the local schemata.
In other words, the query translator translates a global query
over the global schema into a global query over the disjoint
union of local schemata. The query processor decomposes the
global query over the disjoint union of local schemata into
individual local queries over local schemata. The query pro
cessoralso does query optimization and coordinates the
execution of local queries. The LDI translates local queries
received from the query processor into queries expressed in
the local DML and translates the results of the local queries
into a format expected by the query processor. These com
ponents andtheirjDlerrelationships are de_picted in Figure 3.

The User Interface

The global schema is expressed in the functional data mod
eLl In this data model, a schema is composed of entity types
and functions between entity types. Each entity type contains
a set of entities, S(} func-tiGns map entities into entities. Func
tions can be single-valued or multi-valued, and can be partially
defined or totally defined.

The functional data model was selected because it embodies
the main -Structures.-.of botlLthe.ilat file data models, such as
the relational model, and the link structured data models,
such as CODASYL. Entity types correspond roughly to
relations in the relational model or record types in the
CODASYL model. Functions correspond to owner-coupled
sets in the CODASYL model.

The query language that we use with the functional data
model is called DAPLEX. DAPLEX is a high level language
that operates on data in the functional data model and is
designed to be especially easy to use by end users.

490 National Computer Conference, 1981

query over global schema

query translator

query over disjoint union of LSs & IS

query processor

query over
LSI

query over
LHSI

query over IS

Figure 3--Run-time query processing subsystem

Query Translator

The query translator receives global queries expressed in
DAPLEX over the as and translates them into queries ex
pressed in an internal language over the disjoint union of LSs
and IS.

To perform the translation, the query translator must use
the mapping that defines how entity types and functions of the
as are constituted from the entity types and functions of the
LS and the IS. The query translator uses these mapping defi
nitions to substitute global entity types and global functions in
the global query by their mapping definitions. The substi
tution results in a query containing only entity types and func
tions of the LSs and the IS. Therefore references by the global
query to entities in the as are now expressed as references to
the actual entities at particular sites that implement the global
as. Any extra data needed from the integration database to
resolve incompatibilities among LSs is now explicitly refer
enced in the translated query.

The query produced by the query translator only referenees
data in the LS and the IS. Thus, we can imagine that this query
is posed against a database state that is the disjoint union of
the LSs together with the IS. This disjoint union is a homoge
neous and centralh.ed view of the distributed heterogeneous
database.

The language used fQr defining the mapping between sche
mata must be compatible with the global DML. Otherwise, it
would be awkward to translate the query from the as to LSs
and IS using conventional query modification techniques.
(Query modification composes the given query, which is a
{unction from as states to answer states, with the mapping
from LS and IS states to GS states, to produce a query from
LS and IS states to answer states. 2

) Therefore, we propose to

use the same language DAPLEX as both the query and map
ping language, The. process of constructing the global schema
from the local schemata is discussed in Section 3.

Query Processor

The query processor translates a query over the disjoint
union of LSs and IS into a query processing strategy. This
strategy includes the following: a set of queries, each of which
is posed against exactly one LS or the IS; a set of "move"
operations to ship the results of these queries between the
local DBMSs and the query processor; and a set of queries
that is executed locally by the query processor to integrate the
results of the LS and IS queries. The main goal of this trans
lation is to minimize the total cost of evaluating the query,
where cost is measured by local processing time and commu
nication volume.

A query processing strategy is produced in two steps. First,
the query is translated into an internal representation called a
query graph. Using this representation, the query processor
isolates those subqueries of the given query (which are essen
tially subgraphs of the query graph) that can be entirely eval
uated at one local DBMS. Thus, the result of the first step is
the set of single-site subqueries of the given query.

The second step is to combine the single-site queries with
move operations and local queries issued by the query pro
cessor. Move operations serve two purposes. First, they are
used to gather the results of the single-site queries back to the
query processor. These results can be integrated by the query
processor by executing a query local to itself. The integrated
results may be the answer to the query, in which case they are
returned to the user. Second, they may be used as input to
other single-site queries. In this case, a move operation is
issued to ship the data to the local DBMS that needs it. The
method by which single-site queries, move operations, and
queries local to the query processor are sequenced to produce
a correct and efficient strategy is discussed in Section 4.

Local Database Interfa~e (LDI)

Local queries posed against the LSs are sent by the query
processor to the LDIs in an internal format. The LDI trans
lates these local queries into programs in the local DML and
programming language over the local host schema (LHS).
This translation is optimized to minimize the processing time
of the translated 'query. When the local DBMS uses a high
level (i.e., set-at-a-time) language, such as DAPLEX, this
translation is fairly direct. However, when the local DBMS
uses a low level (i.e., record-at-a-time) language, such as
CODASYL DML embedded in COBOL, this translation may
be quite complex and may require nontrivial optimization.
Translation methods for a file system and CODASYL lan
guage are described in Section 4.

To do the translation, the LDI must have information about
how entity types and functions in the LS are mapped to ob
jects in the LHS. These mappings are defined using the rules
discussed below.

Integrating Heterogeneous Distributed Database Systems 491

3. SCHEMA INTEGRATION ARCHITECTURE

"Schema Integration" is the process of defining a global sche
ma and its mapping from the existing local schemata. The
general architecture of this design process is discussed in this
section.

There is one local host schema (LHS) for each local data
base. Each LHS can be expressed in a relational, CODASYL,
or a file language. To merge these LHSs we must convert them
into a common data model first. Otherwise, we would be
mixing relations from a relational model with record types and
set types from a CODASYL model. Thus· the first step of
schema integration is to translate LHSs into Local Schemata
(LS) defined in the Functional Data Model of DAPLEX.

The second step is to merge LSs into a GS. To do this, an
integration schema which defines an integration database is
often needed. An integration database contains: information

. about mapping between different scales used by different LSs
for the same entity type; statistical information about im
precise data; and other information needed for reconciling
inconsistency between copies of the same data stored in differ
ent databases. The integration schema and LSs are then used
to define a global schema.

The overall architecture of schema integration consists of

a) a global schema,
b) a mapping language,
c) local schemata (LS) and an integration schema (IS),
d) a mechanized local-to-host schema translator, and
e) local host schemata (LHS) and local DBMSs.

These components and their interrelationships are depicted in
Figure 4. The local host schemata are translated into local
schemata by the mechanized local host schema translator, and
local schemata and the IS are mapped into the GS by using the
mapping language facility.

Mapping between LHS and LS

Since an LHS can be defined in the relational, CODASYL,
or file model, how an LHS is mapped into an LS depends on
the data model used.

CODASYL model

If an LHS is defined in the CODASYL model, then it
consists of record types and set types. The functional data
model consists of entity types and functions on entity types.
So, to map the LHS into an LS one simply maps record types
and set types into entity types and functions respectively.

The concept of record type in the CODASYL model is very
similar to that of entity type in the functional data model. A
record in the CODASYL model has a record ID, and one or
several attributes. The record ID uniquely identifies the
record, and the attributes describe properties of the record.
Similarly, in the functional data model, an entity is an object
of interest, and the functions defined on the entity return
values that describe the properties of the entity. Therefore, a

record type corresponds to an entity type, and the attributes
of the record type correspond to functions defined on the
entity type.

If an attribute of a record type is a key (in CODASYL •
terminology, a key is the data item(s) declared "NO DUPLI
CATE ALLOWED") then the corresponding function must
be a totally defined one-to-one mapping. If the attribute is a
repeating group (declared to have multiple occurrences in a
CODASYL model), then the corresponding function is a set
valued function.

A set type in the CODASYL model is a mapping between
an owner record type and one or several member record
types. A set type maps an owner record to a set of member
records, or, conversely, a set type maps a member record to
a unique owner record. Therefore, a set type resembles a
function that maps an owner entity to a set of member -enti
ties, or, conversely, maps a member entity to a unique owner
entity.

In a CODASYL model, a set type implies not only certain
semantic information but also the existence of access paths.
For example a set type "work-in" between "department" and
"employee" record types implies that the employees owned
by a department work in that department. But it also implies
that there is an access path from a department record to the
employee records owned by that department and another ac
cess path from each employee record to its own department
record. Since the LSs will be used for query optimization, we

LSI

users

LS2 Integration
Schema

Mechan1zed Local Host
Schema Translator

Figure 4-Schema integration architecture

492 National Computer Conference, 1981

must capture all this access path information in the LSs.
Therefore, for each set type in an LHS, not only a set-valued
function from the ownerentity type to the member entity
type, but also a single-valued function from each of the mem
ber entity types to the owner entity type must be defined in the
corresponding LS.

In a CODASYL model, a recont-type can be declared- to
have a "LOCATION MODE CALC USING KEY." This
means that an index file is- created for the key, and the record
type is directly accessible through the indexed key. Therefore,
for each record type with "CALC KEY" in the LHS, a system
set function of which the domain is the key value and the
range is the entity type (corresponding to the record type)
must be defined in the LS. This system set function will be
used only for query processing optimization. It is not visible
to the database designer. Therefore, it cannot be incorporated
into the global schema. This restriction is imposed to preserve
the data independence of the global schema.

For example, the CODASYL schema shown in Figure 5 is
translated into the schema in the functional data model shown
in Figure 6. In Figure 6, the inverse of a function F is denoted
by "F-inv."

Relational model

A relational database schema consists of a set of relation
definitions. To translate a relational LHS to a functional LS
we essentially map each relation to an entity type. A tuple of
a relation in a relational model is similar to an entity in a
functional data model. A tuple is uniquely identified by its
primary key and has one or more attributes, just as an entity
has one or more functional values. Therefore, to map a re
lational model LHS into a functional data model LS, for each
relation in the LHS an entity type is defined in the LS, and for
each attribute of the relation a function is defined on the
corresponding entity type. The range of the function is the
domain of the attribute. If the attribute is a primary key, then
the function must be totally defined and one-to-one. If it is a
candidate key, then the function can be partially defined, but
it must still be one-to-one. In any case, due to the relational
format, the function must be single-valued, not set-valued.
For example, the relational LHS shown in Figure 7 is trans
lated into the functional data model LS shown in Figure 8.

File model

A file model consists of record files and indexed fields
(keys) in those files. A record file consists of a set of records
of the same type, which is similar to the concept of record type
in the CODASYL model or a relation in the relational model.
To map a file LHS to a functional data model LS, for each
record file in LHS a corresponding entity type must be defined
in the LS, and for each field of the record file a functlon- must
be defined on the entity type. Since a key supports an access
path to the record file, for each key of a record file, a system
function must be defined whose domain is the key field's
entity type and whose range is the entity type corresponding

Shipclass Record
*classname char(24)
length char(6)
draft char(2)
beam char(3)
displacement char(S)
endurance char(3)

* primary key
** key within a set

Ship Record
* UIC

VCN
name
type
flag
owner
hull

char(6)
char(S)
char(26)
char(4)
char(2)
char(2)
char< 4)

all-ship

Trackhist
** DTG

speed
lati tude
longitude
course

Figure 5-A CODASYL schema

Record
char nO)
char(3)
char< S)
char(6)
char (3)

to the record file. This system function is not visible to the
database designer; it is used only for query optimization.

Integration of LSs

To integrate LSs into a global schema, the database de
signer designs an integration schema that defines an integra
tion database. He then designs a global schema and defines it
in terms of the LSs and the Integration Schema by using the
view support facility.

An integration database contains information needed for
merging entity types and their functions. For example, two
entity types, E1 and E2, from two schemata are shown in
Figure 9. These two entity types represent information about
ships. There are two functions defined on each entity type;
one function returns the ship-id of a ship and the other returns
the ship-class of the ship. The ship-class of E1 and E2 are
coded differently. A sample of entities and their functional
values are also shown in Figure 9. To merge E1 and E2 into
a single entity type, a uniform code must be defined, and the
two existing codes must be mapped to the new code. Defini
tions of the new code and the mapping function are shown in
Figure 10, and a sample of the function is shown in ~igure 11.

Integrating Heterogeneous Distributed Database Systems 493

~ shipclass
classname
length

ll~

draft
beam
displacement
endurance
consists-of
~~;

~ shipll~

stringCl •• 24);
stringCl •• 6);
string(1. .2);
string(1. .3);
string(1..S) ;
string(1. .3);
~ .Q.f ship;

UIC : stringC1. .6);
VCN str ing (1..5) ;
name string(I •• 26);
type string(1. .4);
flag string(I •• 2);
owner string(I •• 2);
hull : string(1. .4);
positions: ~.Q.f trackhist;
consists-of_inv : shipclass;
~~;

~ system II ~
all-class : ~ .Q.f shipclass
all-ship ~.Q.f ship;
~~;

~ trackhist II ~
DTG string (1 •• 10);
speed : string (1. .3);
latitude : string (1. .5);
longitude: string n .. 6);
course : string n .. 3);
positions_inv : ship;
~~;

Figure 6-A schema in the functional data model

The definitions of the new code and the function are stored in
the integration database. A global schema defined on the two
local schemata and the integration schema is shown in Figure
12.

As the discussion above indicates, integration of local sche
mata which are not disjoint involves two activities: merging of
entity types and merging of their functions. These activities
are discussed in the next section. Two special problems re
lating to schema integration, the creation of new entity types,

Relation Platform
VesselName
class
type
hull
flag
category

{

PIF
* NOSICID

IRCS

Relation Position

fPIF
* NOSICID

DTG
latitude
longitude
bearing
course
speed

* primary key

char(26)
char(2S)
char(6)
char(6)
char(2)
char(4)
char(4)
char(S)
char(S)

char (4)
char(S)
char(lO)
char(S)
char(6)
char(3)
char(3)
char(3)

Figure 7-A relational model

and the integration of incompatible data, are discussed in
subsequent sections.

Merging Entity Types and Functions

To merge two entity types, say E1 and E2 in Figure 9, into
an entity type, say E in Figure 12, the database designer must
first determine whether the set of entities of type E1 is disjoint
from the set of entities of type E2. If E1 and E2 are disjoint,
then E is simply the union of E1 and E2. If E1 and E2 are not
disjoint, then the condition under which two entities from E1
and E2 respectively are identical must be specified. To specify
the condition under which entities are identical, entities of E1
and E2 must be able to be identified by their attributes.
Therefore, for each entity type to be merged, a function or
combination of functions of the entity type must be a primary
key. Two entities from two entity types being merged can then

~ platform II ~
VesselName :string (1 •• 26);
class :string (1 •• 25);
type :string (1 •• 6);
hull : string n .. 6) ;
flag :string n .. 2);
category :string (1 •• 4);
PIF :string (1. .4);
NOSICID :string (1 •• 8);
IRes :string (1 •• 8);

.en.d ~;

~ position li ~
PIF :string (1. .4);
NOSICID :string (1 •• 8);
DTG :string (1 •• 10);
latitude :string (1 •• 5);
longitude :string (1 •• 6);
bearing :string (1 •• 3);
course :string (1. .3);
speed :string (1 •• 3);

.ewi~;

Figure 8-A schema for the functional data model

~ E2.is~ ~ El.is~
shipidl : integer;
class1 : code 1 ;

~~;

shipid2 : integer;
c1ass2 : code2;

~~;

EI shipidl class1 E2 shipid2 class2

ell 1212 c1 e21

e12 1240 c3 e22

el3 2341 c5 e23

Figure 9--Local schemata

~ code is entity
.e.rui entity;

Define ~ ~ function

3440 d2

3651 d3

4411 d4

f (codel union code2> -> code.

Figure 10-~ntegration database

494 National Computer Conference, 1981

Sample of function f

codel,code2 cl c2 c3 c4 cS dl d2 d3 d4

code 1 2 3 4 5 6 7

Figure 11-5ample of function f

~ E ~ entity
shipid integer;
class : code;

.end entity;
Figure 12-Global schema

8 9

be specified as identical if and only if they have identical
primary key valu~s;

In Figure 13, entity types E1 and E2 (which are assumed,to
overlap), are merged into an entity type E. The syntax used
is a subset of DAPLEX. Notice that "shipidl" and "shipid2"
are assumed to be primary keys of E1 and E2 respectively.
Further, it is assumed that an E1 entity and an E2 entity are
identical if and only if they have the same primary key values.

Creation of a New Entity Type and its Functions

Merging two entity types into a single entity type is a special
case of creating a new entity type. Essentially, a new entity
type may be created which is a combination of the existing
entity types. However, this combination does not create new
objects in the database. Rather, it simply presents many exist
ing objects of different types as objects of a single type to the
global schema users. Properties of the new global entities are
simply those that previously existed in the local schemata.

However, in some cases, a database designer may want to
design a more sophisticated global schema in which new (vir
tual) objects derive their properties (attributes) from many
dissimilar existing objects. An example is used to illustrate
this process, and general principles can be drawn from the
example.

~E.i§~
shipid : integer;
class : code;

.e.nd ~;

.fQ.I. ~

J.ru:u2

x in El ~ nQt (shipidl(x)-.i§in
shipid2(E2»

~ ~ E(shipid => shipidl(x)
class => f (classl(x»);

.fQ.I. ~ x in E2

~ ~ E(shipid => shipid2(x),

class => f(class2(x»);

.e.nd -1.o~;
Figure 1~ The mapping definition of entity type E

Local Schema 1:

supplierl partsl

~ supplierl li. ~
sname : string(30l;
sno : integer;
supplying : ~ Qf supplyl;

.!UW~;

~ partsl.u ~
pname : string(lSl;
pno : integer;
supplied-by : ~ Qf supplyl;

.!UW~;

~ supplyl li. ~
sno : integer;
pno integer;

.e.ru1 ~;

Local schema 2:

supply2
1---------1-------------1 1 sno 1 pno 1
1---------1-------------1

~ supply2 .u ~
sno : integer;
pno integer;

~~;

Figure 14-Two local schemata

Suppose a global schema with two entity types, "supplier"
and "parts," is to be designed from two local schemata shown
in Figure 14. The global schema must capture all the informa
tion contained in both schemata. Notice that in the second
schema, "supplier" and "parts" entities do not exist, but their
existence is implied by the presence of supplier numbers and
part numbers: "sno" and "pno." To capture this information,
virtual "supplier" and "parts" entities corresponding to those
"sno" and "pno" must be created in the global schema. A
definition of the global schema is shown in Figure 15. Notice
that in the definition primary keys "supplier. no" and
"parts.no" are used to map the new entities to existing entities
in the first schema and the implied entities in the second
schema.

Data Incompatibility

Several sources of data incompatibility are discussed in this
section. The objective of the discussion is to show how the
proposed architecture allows us to incorporate our present
understanding of incompatible data into Multibase. The de
tails of solutions to the problem are to be fully investigated
later in the project.

Some sources of data imprecision ate:

1. Scale difference. For example, in one database fout val
ues (cold; cool, warm, hot) are used to classify climates

Integrating Heterogeneous Distributed Database Systems 495

~ supplier II ~
sno : integer;
supplying : ~ ~ parts;
~~;

~ parts ll~
name: string(lS);
no : integer;

~~;

~ ~ x in (sno(supplierl) ~ snoCsupply2»
~
~ supplier (sno => x);
~~;

~ ~ y in (pno(partsl) ~ pno(supply2»
~
~ parts (pno => y);
~~;

~ ~ s in supplier ~
supplying(s) :+ (p in parts ~ (~~ yl in supplyl:

sno(s) = sno(yl) and pno(p)= pno(yl» ~
(~ ~ y2 in supply2 :
sno(s) = sno(y2) and pno(p) = pno(y2»);

~~;

Figllre IS-A global schema

of cities, while in another database the ~verage tem
peratures in Fahrenheit may be recorded.

2. Level qf Abstraction. For example, in one database
"labor cost" and "material cost" may be recorded sepa
rately, while in another they are combined into "total
cost." Another example is recording an employee's
"average salary" instead of his or her "salary history"
for the previous five years.

3. Inconsistency Among Copies of the Same Information.
Certain information about an entity may appear in sever
al databases, and the values may be different due to
timing, errors, obsolescence, etc.

There are many other sources of data incompatibility. Data
incompatibility must be resolved if different databases are to
be integrated. The architecture of schema integration devel
oped previously can be extended to handle the problem.

Let E1 and E2 be two entity types, and f1 and f2 be func
tions defined on E1 and E2 respectively. If E1 and E2 have
been merged into an entity type E, then f1 and f2 can be
merged into the function f defined on E as follows,

f(e) = T1(f1(e))
T2(f2(e))
g(f1(e),f2(e))

if e in E1-(E1 intersect E2)
if e in E2-(E1 intersect E2)
if e in (E1 intersect E2)

The transformations T1 and T2 are typically used to map
the ranges of f1 and f2 into a common range as discussed in the
section "Merging Entity Types and Functions." On the other
hand, the function g is used to reconcile any inconsistencies
between the values of f1 and f2 over the same entity. Typi
cally, g will involve accessing data described in the integration
schema.

For example, in Figure 16, the entity types E4 and E5 are
merged into the entity type E6 by using functions IS2 and IS3
of the integration database. In the figure, the data values of
the entities and functions are shown in tabular form. In this
example, T1 and T2 transform the climate of cities from two

different scales, (cold,cool,warm,hot) and Fahrenheit, into a
unified scale (temperature range, probability) by combining
E4 with IS2 and E5 with IS3. The function g could return all
the (temperature range, probability) pairs from the two data
bases without any further processing, as is shown in Figure 16.

Alternatively, g could use some statistical technique to pro
cess sets of (Temp range, probability) pairs, and return a
simpler but descriptive summary of those pairs. For example,
the function g could return the average value and the standard
deviation of the distribution represented by these pairs; it can
make statistical estimation and return a confidence interval;
or it can do time series analysis and return information about
the spectral function.

The above examples are merely illustrative of potentiaf dam-
integration problems and their solutions. More complete ap
proaches to the problem will be fully investigated later in the
project.

4. RUN-TIME QUERY PROCESSING SUBSYSTEM

Overall Architecture

Now we will show how the schema mappings developed
during schema integration are utilized to drive query pro
cessing over the global schema. As we explained in Section 2,
the run-time sllbsystem consists of a query translator and a
query processor. Here we will expand these two components
in further detail.

A "Global Database Manager" (GDM) is that part of the
Multibase System which consists of the query translator, and
the query processor. A query over the global schema is nor
mally sent to the nearest site that has a Global Database
Manager (GDM). There maybe one or more GDMs in a
Multibase system. A GDM stores a copy of global schema,

E4 Cof LSI) IS2 Cof integration database)

cityl climate climate range of temp probability

Boston cold
Norfolk cool
Dallas warm
Miami hot

cold
cold
cold
cold
cold
cool
cool

o - 20 F 20%
20 - 40 F 40%
40 - 60 F 25%
60 - 80 F 10%
80 - 100F 5%
o - 20 F 10%

20 - 40 F 20%

E5 (of LS2) IS3 (of integration database)

city2 mean temp mean temp range of temp probability

Denver
Chicago
Los Ang

52 F
54 F
75 F

52 F
52 F
52 F

E6 (of global schema)

o - 20 F
20 - 40 F
40 - 60 F

city temp range probability

Dos ton 0 - 20 F 20%
Boston 20 - 40 F 40%

Figure I&-Example of data incompatibility

20%
35%
30%

496 National Computer Conference, 1981

local schemata, integration schema, and the mapping defini
tions among them. It uses this information to parse, translate,
and decompose queries over the global schema into local
queries over local schemata, and coordinates execution of the
local queries. The structure of a GDM and its interface with
local DBMSs is shown in Figure 17.

A query expressed in DAPLEX over the global schema is
first parsed by the parser and a parse tree is generated. Com
ponents of the parse tree, which are entities and functions of
the global schema, are then replaced by their corresponding
definitions, which are expressed in terms of the local schemata
LSs. The result is a parse tree consisting of entities and func
tions of the local schemata. The parser is part of the query
translator.

The parse tree is then simplified to eliminate the inefficient
boolean components. For example, the boolean expression
"(a> 5)or(a < 20)" is reduced to "true," and "(a> 5)and
(a < 2)" is reduced to "false. " The query simplifier is also part
of the query translator.

The parse tree is then decomposed by the decomposer into
subtrees. Each subtree represents a local query referencing
only entities and functions of a single local schema.

The "ACCESS PLANNER" transforms the local queries
into "data movement" and "local processing" steps. De
pending on the memory size and processing power of each
individual site, and the capacity of the communication chan
nels, the "ACCESS PLANNER" may move data and distrib
ute the computing load among several sites, or it may move

,~

Query Translator

:Parser, View ~ Global Schema
Mapper, Query and Views

Local Schemata
LSi

V if

Query Processor
Integration

Schema
:Decomposer, ./

Access Planner "'
Query Optimizer

Workspace

",

EXECUTION STRATEGIST
,.

! \
LDIl LDI2 LDI3 ... LDIn

DBMSl DBMS2 DBMS3 Integration
Database

Figure 17-Run time query processing subsystem

data to a central site which has large memory and computing
power and do most of the processing there. In doing this
planning, the "ACCESS PLANNER" tries to produce steps
which minimize the cost of processing the query. The meaning
of "cost" depends on the individual systems being integrated.
It may mean the amount of data moved between sites, or the
amount of processing time.

The execution of the access plan is coordinated by the
"EXECUTION STRATEGIST." It sequences the steps of
the access plan and it makes sure that the data needed by a
step are there before the step is initiated.

The "EXECUTION STRATEGIST" communicates with
local DBMSs through the Local Database Interface (LDI).
The LDIs receive "data move" and "local processing" steps
from the "EXECUTION STRATEGIST," translate these
steps into programs in the local query language or Data Ma
nipulation Language (DML), or call local routines to process
these steps, and translate the results of these steps into the
format expected by the "EXECUTION STRATEGIST."
The LDI may reside in a GDM if the local site does not have
enough memory or cpu power; otherwise it resides with the
individual local DBMS at the local site.

The query processor to be described in this section is orient
ed towards the initial breadboard system. It is designed to
handle restricted versions of the user interface language and
view mapping language with reasonable efficiency. Subse
quent research is needed to extend the query processor to
efficiently handle the unrestricted languages.

Within the "Query Processor," the database is modelled as
a collection of entity types and links. A link L from entity type
R to entity type S is a function from entities of S to entities of
R; S is called the owner entity type and R is calleCl the member
entity type relative to L. We assume that if L links R to S, then
L, R, and S are all stored at the same site. We also assume that
there is a database schema describing the entity types and
links of the database.

We, will sketch the Multibase query processing strategy- in
three steps. First, we define the set of queries that can be
posed. Second, we define the set of basic operations that
Multibase is capable of executing. Third, we describe how to
translate a query into a sequence of basic operations that solve
the query. Finally, we describe how to translate a local query
posed over a CODASYL local host schema into a program in
a low level Data Manipulation Language.

Queries

A query consists of a target list and a qualification. A target
list consists of a set of function terms of the form A(R) where
R is an entity type and A is a non-link function of R. A
qualification is a conjunction of selection clauses, join clauses,
and link clauses. A selection clause is a formula of the form
(A(R) op k) where A(R) is a function term, op is one of
{ = , :e; , < , > , ;::: , =1= } and k is a constant. A join clause is a
formula of the form (A(R) = B(S» where A(R) and B(S) are
function terms. A link clause is a formula of the form
(L(R) = S) where L is a link from R to S.

Let rand s be entities in Rand S respectively. We say that

Integrating Heterogeneous Distributed Database Systems 497

r satisfies the selection clause (A(R) op k) if the A-value ~f r
is op-related to k (Le., (A(r) op k)). We say that rand s satIsfy
the join clause (A(R) = B(S» if the A-value of r equals ~he
B-value of s (Le., A(r) = B(s». And we say that rand s satIsfy
the link clause L(R) = S if L connects rand s (Le., L(r) = s).

Let Rl, ... , Rn be the entity types referenced by qual
ification q, and let rl, ... ,rn be entities in Rl ~ ' ... ,.Rn r~
spectively. We say that rl, ... ,rn satisfy the qualiflcatwn q If
r1, ... ,rn satisfy all of the clauses of q.

Let Q be a query consisting of target list T = «Ajl(Ril),
... ,Ajm(Rim» and qualification q. Let Rl, ... ,R? be the
entity types referenced in T and q. The answer to Q IS the set
of all tuples of the form «Ajl(ril), ... ,Ajm(rim))) such t~at
rl, ... ,rn are in Rl, ... ,Rn (respectively) and rl, ... ,rn satI~
fy q. Given a database Rl, ... ,Rn and a query Q, our goal IS.
to compute the answer to Q efficiently.

The subset of DAPLEX that we have just described makes
the following simplifications:

1. Set expressions in range predicates and qualifications
have been "flattened out," and quantifiers eliminated.
This allows us to utilize existing view algorithms for re
lational databases. Further research will be devoted to
handling the novel aspects of view processing in the
DAPLEX functional model.

2. The type-subtype hierarchy is not explicitly handled.
This hierarchy will be useful in the schema integration
step. However, the mechanics of interpreting queries
against the hierarchy require further research.

A query graph QG(N,E) is an undirected labelled gra~h
that represents a query Q. The nodes, N, of QG are th~ entIty
types referenced in Q. Each node is labelled by the entIty type
name of the node, the non-link functions of the entity type
that appear in the target list, and the selection clauses of Q's
qualification that reference the entity.t~pe. The edg.e set E of
QG contains one edge (R,S) for each Jom clause or lInk clause
that references Rand S. Each edge is labelled by its corre
sponding clause(s).

A query is called natural if (a) join clauses are of the form
(A(R) = A(S», that is, the functions referen~ed i~ both te~ms
of a join clause have the same name; and (b) If A IS a non-lInk
function of two entity types Rand S, then A(R) and A(S) are
"connected" by a sequence of join clauses. There is a simple
and efficient algorithm that, given a database description and
a query 0, renames the functions of the entity types where
necessary to produce an equivalent natural query 0'; 0 and
Q' are equivalent in the sense that they produce the same
answer for any database state (up to the renaming of fields).
We will therefore assume, without the loss of generality, that
our queries are natural. Given that we deal only with natural
queries, the edge labels corresponding to join ~lauses ~re
unnecessary. Also target lists need only contam functIon
names instead of function terms.
Giv~n a join clause (A(R) = A(S» and a selection clause

(A(R) op k), we can deduce that (S(A) op k). We assume that
the qualification of each query is augmented b~ ~ll clauses .t~at
can be deduced in this way. A simple and effIcIent transItIve
closure algorithm is sufficient for performing such deductions.

Basic operations

There are three types of sites in the breadboard Multibase:
File, CODASYL, and GDM. Each type of site is capable of
executing' a different set of basic operations. This section de
scribes these basic operations.

1. File Select. If record type R is stored at a File site S, then
the only operation that caJ;1 be applied to R at S is a
selection of the form

R[(AI = kl) and (A2 = k2) and ... and (An = kn)].

The result of the selection is a record type consisting of
the set of all records r in R such that r[Ai] = ki for
i = 1, ... ,n; this result is always transmitted to the
GDM.

2. File Semijoin. In principle, File select can be generalized
into File semijoin J~YJ)erforming selections it~ratively.
Let R be a File file and Sa GDM file, and suppose-
AI, ... ,An are fields of Rand S. Then the semijoin of
R by S on AI, ... ,An, denoted R[Al, ... ,An]S, equals

{r in R I (there exist s in S)
(r.Al = s.Al ... r.An = s.An)}.

This can be computed by the following program.

Result: = 0;
for each sin S
loop
kl: = s.Al, ... ; kn: = s.An;
Result: = Result U R[(AI = kl) ...

(An = kn)];
end loop;

In practice, this operation may place an unacceptable
load on the File system and hence may not be usable.

3. CODASYL tree queries. The basic operation that can be
performed at a CODASYL site S is to solve a natural
tr-ee query (defined-below}, retul'ning--the result to the
GDM. A natural tree query 0 at site S has two proper
ties: (1) All record types referenced in 0 must be stored
at S. (2) Let 0' be Q minus its join clauses (Le., all
clauses of 0' are selections or links), and let OG' be the
query graph of Q'; then QG' must be a tree.
To solve a tree query 0 using CODASYL DML, one

essentially expands the cartesian product of the record
types referenced by Q and evaluates the qualification Oil

each element of the cartesian product. We describe how
this cartesian product can be systematically generated in
the section "Processing CODASYL Tree Queries."

4. CODASYL Tree Semijoins. The preceding operation
can be generalized into a semijoin-like operatioll. Let Q
be a CODASYL tree query and S a GDM record type,
and suppose AI, ... ,An are fields of S and fields of
record types of Q. Let Q' have the same qualification as
Q, and the target list augmented by AI, ... ,An. Finally,
let R' be the result of Q'. The semijoin of Q by S on
AI, ... ,An, denoted Q < AI, ... ,An], equals

{r' in R' I (there exist s in S)
(r' .A2 = s.A2) ... (r'.An = s.An)}.

498 National Computer Conferencw981

This can be computed as follows. Suppose AI, ... ,An
are fields of R1, ... ,Rn respectively where R1, ... ,Rn
are record types of Q. (R1, ... ,Rn need not be distinct.)
Augment the qualification of Qf by adding the clauses
(R1.A1 = k1) ... (Rn.An = kn). And execute the fol
lowing program.

Result: = 0;
for each s in Sloop

k1: = s.A1; ... ; kn: = s.An;
Result: = Result U Q';

end loop;

5. GDM Queries. The GDM can process any natural query
Q provided (1) all entity types referenced in Q are stored
at the GDM, and (2) Q contains no link clauses. Suppose
Q references entity types R1, ... ,Rn. Q is processed by
constructing a request to the local DBMS (the Datacom
puter for the initial breadboard system) of the form:

for each r1 in R1 where (selection clauses on R1)
for each r2 in R2 where (selection clauses on R2)

and (join clauses on R1 and R2)

for each rn in Rn where (selection clauses onRn)
and (join clauses on R1 and Rn)
and (join clauses on R2 and Rn)

and (join clauses on Rn-1 and Rn).
print (target list).

It is important that the "for" statements be in a "reason
able" order for performance reasons. Optimization
techniques developed by Wong for the SDD-1 DM3 are
directly applicable.

Query Decomposition

To solve a query Q, we must decompose it into a sequence
of basic operations. Our basic strategy is to find subqueries of
Q that can be entirely solved at File and CODASYL sites,
move the results of these subqueries to the GDM, and solve
the remainder of the query at the GDM.

To follow this strategy, we must isolate File and CODASYL
subqueries of Q. File subqueries are easy to find. We simply
find entity types in Q that are stored at File sites. For each
such entity type R, we produce a subquery consisting of the
selection clauses on R.

Let QG be the query graph of Q. To find CODASYL
subqueries, we begin by deleting from QG all entity types not
stored at a CODASYL site and all join clauses. Each con
nected component of the resulting graph includes entity types
and links that are stored at the same site, because no link can
connect two entity types stored at different sites (c.f., the
section on "Overall Architecture"). If a connected com
ponent is a tree, then it corresponds to a tree query and can
be solved by the CODASYL site. If it has a cycle, then it must

be further decomposed into two or more tree queries. (In the
breadboard version of Multibase, we will only handle queries
whose CODASYL subqueries are tree queries; if some CO
DASYL subquery is cyclic, the query cannot be processed.)

Having extracted the File and CODASYL subqueries, we
must now choose an order for these subqueries to be exe
cuted. As a first-cut solution, we propose to solve all File and
CODASYL subqueries before processing the results of any of
these sub queries at the GDM. This strategy will be an es
pecially poor performer if a File or CODASYL subquery has
no selection clauses. For such cases, we recommend use of
File and CODASYL semijoin operations, so that the results
of some subqueries can be used to reduce the cost of other
subqueries. However, this tactic brings us into the realm of
new query optimization algorithms and will require further

, research.

Processing CODASYL Tree Queries

Let Q be a CODASYL tree query and QG its tree. The
following algorithm compiles Q into a program that solves Q.
The program contains statements of the form:

1. for r in set(s) loop . .. end loop; where S owns R via
set;

2. r: = set inv(s) ; where R owns S via set. Note that set-inv
is the inverse function of set and is always a function.

Algorithm

1. Do a pre-order traversal of QG. The result is a list of the
nodes of QG. Call this list P.

2. Let Rand S be nodes of QG; with R the parent of S.

Cases
R is the root of QG; replace "R" by "for r in R

loop" in P.
R owns S: replace "S" by "for s in set(r)" in P.
S owns R: replace "S" by "s: = set)nv(r)" in P.

3. Push loop independent assignments up as high as possi
ble.

4. Add an "output (target list)" statement, add selections,
and joins as high as possible, tack on enough ends to
balance the fors.

As an example let QG be the query graph of Figure 18.

1. Preorder traversal: R,S,T,U,V.
2. for r in R loop

for s in L1(r) loop
t: = L2 inver)

for u in L3(t) loop
v: = L4 inv(t)

3. Push up T and V; add an output statement; add ends to
balance the fors.

for r in R loop
t: = L2 inver);
v: = L4- inver)
for s in- L1(r) loop

Integrating Heterogeneous Distributed Database SYSteIllS 499

s

R

U
Figure 18-A query graph

for u in L3(t) loop
output (target list);

end loop;
end loop;

end loop;

5. SUMMARY

This report describes the architecture of the Multiba~e sys
tem. Details of the components of the architecture to be

implemented in the initial breadboard version are also de
scribed. Although additional research is required to fill in the
details of optimization and incompatible data handling, the
architecture already contains several innovative ideas in inte
grating distributed heterogeneous databases. These include
the following:

1. the idea of using an integration database to resolve data
incompatibility;

2. the idea of using a ~mapping language to uniformly define
the global schema in terms of the local schemata and the
integration schema; and

3. the idea of using query' modification and query graph
decomposition to transform a global query into local
queries and queries over the integration database.

REFERENCES

1. Shipman, D., "The Functional Data Model and the Data Language
DAPLEX", SIGMOD 79, Boston, MA, 1979.

2. Stonebraker, M.R.: "Implementation of Integrity Constraints and Views
by Query Modifications." Proc. ACM-SIGMOD Con!, San Jose, CA,
1975, pp. 65-78.

3. Wong, E., "Retrieving Dispersed Data from SOD-I: A System for Dis
tributed Databases," 1977 Berkeley Workshop on Distributed Data Man
agementand Computer Networks, Univ. ofCA, Berkeley, CA, May 1977.

Architecture of a distributed database
information resource

by JAMES R. SWAGER
Honeywell, Inc.
McLean, Virginia

ABSTRACT

In today's world, it is becoming quite clear that database
management systems form a very important element in a
"Distributed Information Resource" environment; however,
there are other components, and the purpose of this paper is
to present all of the components in a unified system.

Creation of a distributed information resource implies that
a number of hardware and software components are to be
designed and integrated into a controlled environment. These
components include one or more database management sys
tems, a user language interface, a data/dictionary/directory
catalog, a transaction controller, and a data input/output con
trol module.

The inclusion of automated office facilities: word/text pro- ~

cessing, electronic mail/message, computer-assisted inquiry,
etc., in such a distributed processing environment increases
the requirements for careful planning and control. I

This paper describes the various system components and
demonstrates the integration of them with the International
Organization for Standards (ISO)2 communications architec
ture and a data storage and retrieval architecture (DSRA).
The seven layers of the DSRA are defined and certain func
tions are assigned to each. In addition, the possible placement
of the DSRA is presented in two different scenarios.

INTRODUCTION

Distributed database management· systems are one com
ponent of a number of components in an enterprise. I have
written this paper to provide a better understanding of the
enterprise environment that is referred to as a "Distributed
Information Resource."

As the definition of distributed information resource be
comes more clear and work stations themselves become more
distinct, more and more systems will be developed that take
into account the requirements of the user. Whether the user
wants transparency, data sharing, data transfer, process trans
fer, or a combination of strategic, managerial and operational
reporting, he/she should take into account the following envi
ronmental constraints:

• data communications,
• data storage and retrieval,
• meta data,

501

• user language support,
• process and resource management,
• information representation,
• system management,
• integrity, and
• security
Vendors address these and other issues in different perspec

tives. The challenge arises when a user's needs evolve so as to
require the integration of the "communications" with cooper
ative processing of the multiple vendor's software and hard
ware.

This paper addresses the current considerations of the
Database Interface with Distributed Systems Task Group3 for
integrating these components and requirements.

FUNCTIONAL FRAMEWORK

Creation of a distributed information resource requires that a
number of hardware and software components be designed
and integrated into a controlled environment. The required
features for this environment, whether remote or centralized,
could be categorized as: (1) communications from the user or
processor to the data; (2) tools for the user to manipulate the
data; (3) methodology for storage and retrieval of the data.

For the category of communications, the form of commu
nications architecture should follow the ISO seven layer archi
tecture. These layers are physical, link, network, transport,
session, presentation and application. They are portrayed on
the left-hand side of Figure 1. In addition, you will notice that
the communications device, such as a terminal, is connected
to the physical layer.

The tools for manipulation of the data include host lan
guages, queries, report generators and data dictionaries.
These are represented by the middle section of Figure 1.

The storage and retrieval of data involvesOatabase manage
ment systems and access methods that handle the physical and
logical data storage process. These are represented by the
right-hand side of Figure 1.

System Components

By breaking the functional framework (Figure 1) into three
categories of system components, the seven components in

502 National Computer Conference., 1981

Figure 2 can be derived. The Transaction Controller (TR)
performs the data communications functions. The User Lan
guage Interface (ULI) and the Data Dictionary/Directory/
Catalog (DD/D/C) are the tools for data manipulation func
tions. -the Data Base Management Systems (DBMS), Data
Base (DB) and the External Data Storage (non-DBMS) pro
vide the methodology for data storage/retrieval. The Data
Input/Output Controller (DIOC) acts as a traffic manager for
data that is retrieved and stored within the node, regardless of
whether the request is external or internal to the node. Thus,
you can comprehend that the DIOC is considered the most
crucial element because of its function to link the other ele
ments into a unified system of components.

The definition and functions of each component are given
below.

Transaction controller

The Transaction Controller (TR) controls the transfer of
information between nodes of a network (data commu
nications) and functions as the focal point for all transactions
and data in and out of a system.

Its functions are

1. Network control-

• polling
• message switching
• status maintenance of nodes/devices
• graceful degradation
• TR error control

2. Schedule control-
• journalizing (TR)
• security (level 1) (User/node ID [from DD/D])
• message translation
• Scheduling (criteria)-priority, response required,

and resource availability and allocation, both for
data and hardware

• TR statistical collection
• TR recovery

3. Message control-
• TR process control modules
• user status reporting

Data input/output controller

The Data Input/Output Controller (DIOC) manages and
controls the exchange of information among all components
of the environment, and the flow of data to and from the data
base.

DIOC functions are

1. DML generation-
• multiple DBMS
• multiple nodes-sites
• sub-schema translations

2. Validation-
• Level I-based on message content
• Level 3-results of computation (prior to output or

DB update)

APPLICATION LAYER

PRESENTATION HOST LANGUAGE P
D L H

SESSION QUERY'
B 0 Y I". M G S REPORT S I

TRANSPORT GENERATOR C I
C A A

NElWORK DATA L L
DICTIONARY I I LINK ,

0
,

ETC. 0
PHYSICAL

I
Figure I-External communications and data storage

3. Statistical collection-
• access to data base
• requirement at multiple nodes

4. Output volume control-

• ULI
5. Security (level 2)-

• data access
• function

6. Error translation

User language interface

(

The User Language Interface (ULI) is a set of problem
oriented languages which provide users with access to data.
ULI functions are

1. n host language(s)
2. Query/multiple criteria-

• natural language
• relational

3. Report program generators

Data dictionary/directory/catalog

The Data Dictionary/Directory/Catalog (DD/D/C) is an or
ganized, integrated repository of data describing the entire
processing environment. The catalog is a subset of the data
dictionary, limited to general data describing the location and
contents of data at remote locations. Its functions are

1. Meta data-representing-
• process

-system
-program
-module

Figure 2-System components

Architecture of a Distributed Database Information Resource 503

• user profiles
-security and tables: access and function rules

• reports
• transactions
• TR and data journals
• system(s) architecture

-status
-characteristics
-network protocols

• data: validation tables
2. Access and performance statistics
3. Message control modules: storage
4. Schemas

• conceptual
• detail sub-schemas

5. Catalogs: distributed nodes

Data storage and retrieval

The Data Storage can be logically divided into three distinct
parts:

1. The Data Base Management System (DBMS) is a soft
ware tool for the management and control of a pool of
data to be shared by all authorized members of the user
community.

2. The Data Base is a collection of data, organized to satis
fy the information requirements of a community of
users.

3. The External Data is data that is physically stored and
managed in conventional (non-DBMS) media.

The data storage functions are:

1. Data structures
• schema
• sub-schema(s)

2. Physical storage control
• buffer management
• data directory

3. Access methods
• internal representation

4. Data base recovery
• journalizing
• error message ID
• data recovery

-catastrophic
-on-line

5. Contention/deadly embrace
6. Validation

• 2nd level-DB access

DATA STRUCTURE AND·
RETRIEVAL ARCHITECTURE4

Based on the functional framework (Figure 1), the third cate
gory, data storage and retrieval, could be broken down into a
seven-layer architecture similar to the ISO reference model.
As presented in Figure 3, the highest layer would be the
application layer. This layer would provide for tenant tracking

~r- APPLICATION LAYER

EXTERNAL RECORD ACCESS LAYER

INTERNAL RECORD ACCESS LAYER

STORAGE CONTAINER ACCESS LAYER

STORAGE ACCESS LAYER

DEVICE & MEDIA ACCESS LAYER

PHYSICAL ACCESS LAYER

" 1 •
--

Figure 3-Data storage and retrieval architecture

and its functions would relate to the application. The lowest
layer would be physical and it would relate to the-actual phys
ical recording, such as bits-per-inch on the magnetic tape or
tracks on the disk platter. The layers between the application -
layer and the physical layer assemble the elements for the
appropriate execution. An example would be a banking
application accessing disk. The banking application would re
side in the application layer. The subordinate layers would
formulate the information for the disk access. The physical
layer (bottom layer) would then perform the disk access. Then
the data would be passed back through the various layers to
the banking application, which resides in the application
layer. The functions of each layer of the architecture are listed
as follows:

Application layer

• Support of end':'user access to data
• Support of external access layer
• Tenant tracking

External access layer

• Multiple user views of data
• System components

-ULI
-DD/D/C
-DBMS
-external data

• Security and integrity
-data access
-function

• Data independence mapping
-transformation between program needs and storage

• Offers the same services as the ISO presentation layer
• Supports application layer
• Supports internal layer

Internal access layer

• Access to and update of remotely stored data
• Logical integration of existing files
• Integration of textual and structured data

504 National Computer C~ftfereBce, 1-9Sl

• Parallel processing
• Security and integrity

-data access
-data function

• Data dependence
-files
-records
-items
-item groups

• Access support
-sequential
-direct
-primary/secondary key
-data structure
-area

• Storage structure
-sequential
-direct
-indexed
-hierarchical
-network

• Storage media
-magnetic disk
-magnetic tape

• Data location transparency
-local
-remote

• Supports external access layer
• Supports storage container access layer
• Supports internal access level

Storage container access layer

• Maintains multiple copies of areas (files and records)
for
-rapid access at multiple locations
-"time stamped" control
-recovery purposes

• Space management for
-records based upon database keys
-recognition that record content has been changed
-release of the area space whenever it is no longer

needed
• Transfer of area (records and files) between homoge

neous systems
• Supports storage access level
• Supports internal access level

Storage access layer

• Responsible for allocation and control of
-main memory
-cache memory
-main mass storage
-archival storage
-file transfer
-etc.

• Supports storage container access level
• Supports device access level

TR

APPLICATION

PRESENTATION

APPLICATION) EXTERNAL
DlOC

SESSION INTERNAL

TRANSPORT STORAGE CONTAINER

NElWORK STORAGE) DBMS

LINK DEVICE & MEDIA

PHYSICAL PHYSICAL

Figure 4-Residency of architecture of DBMS machine

Device and media access layer

• Supports
-holding, mounting and demounting storage media
-controlling movable read-write heads
-awareness of physical transport of storage media
-protocol for controller and device communications

• Supports storage access layer
• Supports physical access layer

Physical access layer

• Physical recording
-magnetic tape (bits per inch)
-disk (tracks per inch)

• Supports device and media access layer

RESIDENCY OF DATA STORAGE AND RETRIEVAL
ARCHITECTURE (DSRA)

I will explain the residency of the DSRA in two examples to
provide a better understanding of the implementation possi
bilities. Also, you should realize that part of the ISO architec
ture may reside in the DIOC and part in the TR or the ISO
architecture may reside fully in the DIOC or fully in the TR.
However, for clarity in Figures 4 and 5, I have chosen to
present a distinct ISO architecture and a distinct DSR archi
tecture. Since there are numerous papers on the ISO refer
ence model, I will not discuss the TR and its ISO relationship
any further.

In addition, it should be understood that all the layers of the
architecture and their associated functions have to exist par-
tially in the DIOC and partially in the other component. It
should be noted, however, that the placement of the layers
and their associated functions is dependent upon the DBMS
machine and the software function and interface, which are
discussed below.

DBMS Machine

If the component is a machine such as that represented in
Figure 4, much of the intelligence required could be per
formed in this separate machine, creating the benefit of less
work to be performed by the DIOC and allowing more time

Architecture of a Distributed Database Information Resource 505

for it to perform other functions. Therefore, the DIOC would
need only to perform such functions as tenant tracking, deter
mining whether the data is in a particular DBMS machine,
and interfacing to other system components. In addition, the
DIOC would perform the other functions within the Applica
tion Layer and External Access Layer.

However, the DBMS machine would have to perform all of
the functions of the Internal Access Layer, Storage Container
Access Layer, Storage Access Layer, Device and Media Ac
cess Layer and the Physical Access- Layer.

Software Function and Interface

The second factor in decisions about the placement of the
architectural layers is software. If the system component such
as External Data is a conglomerate of software operations
including sequential storage access, then you normally would
not expect the system component External Data to perform
with the amount of intelligence and efficiency that the DBMS
machine could. Therefore, most of the intelligence would re
side in the DIOC and very little in the software component as
depicted by the brackets in Figure 5.

In addition to tenant tracking and having interfaces with
other system components, the DIOC has to perform the func
tions of the Application Layer, External Access Layer, Inter
nal Access Layer and the Storage Container Access Layer.
This is the majority of the functions of the DSRA. The se
quential storage access software would perform only the func
tions in the Storage Access Layer, Device and Media Access
Layer and the Physical Access Layer.

In conclusion, this discussion has, I hope, provided enough
background for you to expand your awareness of implemen
tation concerns to include the other system components such
as the ULI and the DDIDIC, whether these components be
software interfaces or independent equipment.

RELATIONSHIP BETWEEN ISO AND DSRA4

Since both the ISO and DSR architectures work in close asso
ciation, it could be said that they have an orthogonal relation
ship. If you start at a terminal and connect to the Physical
Layer of the ISO architecture (Figure 6), you will pass through
the various layers into the Application Layer. You then would
pass through the various layers of the DSR architecture to the
Physical Access Layer for media connection, such as disk.

In a similar manner, you could walk backwards from the
media access (Physical Access Layer) of the DSRA up
through all the layers to the Application Layer and back
through to the terminal, which connects to the Physical Layer
of the ISO architecture.

SUMMARY

In today's complex world, a large user often has various types
of equipment from different vendors. This equipment per
forms functions to aid the work at manual and semi-auto-- . .
mated work stations and also could perform all of the work at
automated work stations. When requirements change, the
user does not have the time or the capital to reprocure and
convert to a single vendor.

TR

APPLICA TION

PRESENT A TION

SESSION

TRANSPORT

NETWORK

LINK

PHYSICAL

APPLICA TION

EXTERNAl:

INTERNAL

STORAGE CONTAINER

STORAGE

DEVICE & MEDIA

PHYSICAL

)

}

DIOC

SEQUENTIAL

STORAGE

ACCESS

Figure 5-Residency of architecture for sequential storage access

Thus, the time has come for us in the information environ
ment to be concerned that the user will be able to inter
communicate and perform processing in a cooperative mode.

This paper has suggested that the required system com
ponents integrated with the ISO architecture and the DSR
architecture should be the foundation for such a unified
system.

ACKNOWLEDGMENT

ISO developed the communications architecture. There are
over fifty members in the ANSI/X3/SP ARC Database Sys
tems Study Group and in the Distributed Systems Group.
Their contribution is acknowledged. In addition, thanks is
expressed to Elizabeth Fong for editing.

REFERENCES

1. "Info-80 Conference Program," October 1980, p. 14
2. International Organization for Standardization (ISOrrC97/SCI6), "Refe

rence Model for Open Systems Interconnection" (Version 4 as of June 1979),
(m.p.: International Organization for Standardization, August 1979)

3. ANSIIX3/SPARC Database Systems Study Group, Database Interface with
Distributed Systems Task Group, "Working Notes on Distributed Database
Management," August 1980

4. Bachman, Charles, "Second Annual Database Symposium of The Washing
ton Area," April 1980

I I
I I

:.-DATA COMMUNICATIONS ARCHITECTURE--':

z
0
f= « ~
() II:

~
APPLI CATION 0

:J ~ ~ a. z a. « z :J

EXTERNAL
RECORD ACCESS

INTERNAL
RECORD ACCESS

STORAGE
CONTAINER
ACCESS

STORAGE
ACCESS

DEVICE AND
MEDIA

PHYSICAL
ACCESS

8
Figure 6-0rthogonal architectures in distributed computer systems

Optimization of the file access method in content
addressable database access machine (CADAM)

bySADAYUKI HIKITA, HARUAKI YAMAZAKI, KIYOSHI HASEGAWA,
and YUTAKA MATSUSHITA
o KI Electric Industry Co., Ltd., Research Laboratory
Tokyo, Japan

ABSTRACT

The design of the database machine CADAM with an effi
cientlile access mechanism is presented. CADAM can be
used widely for various applications cost-effectively. For this
purpose, the functions of database systems are distributed
over three basic components, and a conventional magnetic
disk device instead of a disk attached with microprocessors
and logic circuits is ·used. One of the most important points in
designing CADAM with high throughput is to minimize the
time for transferring data from the disk to the cache memory.
We analyze the optimal size of physical access unit between
them for various applications in order to show that the size
should be adjustable.

INTRODUCTION

Recent semiconductor technology has accelerated distributed
systems. Many studies on specialized processors based on that
technology have been reported. The database machine is one
of them for database management which is to improve the
system performance of database processing. For designing
such a database machine the following three points should be
taken into consideration.

The first point is to reduce the number of interactions be
tween a host computer and a database machine for enhancing
the p.erformance. In XDMS2 a data request is given to the
database machine by a procedural language such as COBOL,
which needs a number of interactions between them. Such a
data request using a procedural language can be said to be a
obstacle to enhancing the performance. If a higher level lan
guage or a nonprocedural query language is used, the number
of interactions between a host computer and a database ma
chine will be much reduced3,4. Thus if a high bandwidth
communication channel and a nonprocedural query language
are both adopted, the performance bottleneck in the interface
will disappear.

The second point is to shorten the processing time in the
directory management or set operations of union, inter
section, complement, and division which are specified by a
query. Such set operations especially may need exhaustive
comparison. This may require much processing time and may

507

extremely degrade the performance of the database system. If
such an operation is processed by a single processor, the per
formance bottleneck of the total system will result. The data
base machines proposed in RAp3, DBC4, and CASSM7

enhance their performance by using a number of micro
processors, each of which shares one of the functions such as
interface control between a host computer and a database
machine, security check, data retrieval, and attribute value
comparison. Furthermore, since the function of the data re
trieval and exhaustive comparison require a large amount of
processing time, many microprocessors are required to realize
higher performance. On the other hand, existing database
management systems use the hierarchical data model or the
network data model in which complicated data structure must
be handled. This data structure has to be modified in every
data modification request, which leads to deterioration in
performance. The relational data model proposed by Codd1

does not need such a complicated data structure but needs
data stores called flat tables. But much processing time is
required to scan the flat tables by a single processor. In most
of the database machine architecture, a flat table is simulta
neously scanned by many microprocessors; this process is
equivalent to realizing the content-addressable memory3.4.7.
Thus the performance bottleneck for handling so large an
amount of processing could be eliminated by using a number
of microprocessors.

Although memory device technology is rapidly progressing,
we cannot find a large-capacity secondary memory other than
a disk memory from the viewpoint of cost/performance (CCD
and Bubble memories are potential candidates). Since the
access time difference between IC memory and disk memory
is very large, data transfer between them would cause a per
formance bottleneck in a database machine. In other words,
the performance of a database machine depends on how ef
ficiently data are transferred between the main memory and
the secondary memory. This relates to the third point of the
performance bottleneck.

The three points described above are extremely important
in designing a'n efficient database machine. Several studies
have been reported on the former two points3,4.5.6.7.12. Studies
regarding the third point are not so plentifuI8

•
9

• 10.11. In this
paper the outline of the content-addressable database access
machine (CAD AM) equipped with an efficient file access

508 National Computer Conference, 1981

mechanism is described. Furthermore, the optimal physical
file access unit is quantitatively analyzed to show that it should
be adjusted according to database applications.

THE OPTIMIZATION OF THE FILE ACCESS METHOD

If all tracks of the disk storage are always read in one disk
revolution and at the same time compared in parallel for every
data access request as presented by RAp3

, it can be said to be
the fastest data access scheme. However, this scheme will be
extremely expensive, because as many microprocessors and
logical circuits are required as there are disk heads of a fixed
head disk. In addition, in RAP, as many disk revolutions are
required as there are qualifications of a query. In this sense,
RAP's approach does not always give quick response when
such a complicated query is processed.

A new method, in which only a specified relation instead of
all tracks of the disk is read, has been proposed in RAp I2. The
relation read from the disk is compared in parallel by using
numerous microprocessors9.10.12. However, the efficiency of
disk access may not be optimal even in this method. Since the
data really needed may be a part of the relation rather than
the whole relation, most of the data read from the disk may
be useless and may have to be discarded.

Another method, called DBC, in which all the tracks in a
cylinder are accessed simultaneously and compared in paral
lel, has been proposed by Hsiao and colleagues4.6 •

11
• This

method is much more economical than that of RAp3 because
not so many microprocessors and logical circuits are required
as in RAP. Compared with an existing disk, this gives faster
access to the disk because all tracks in a cylinder are simulta
neously accessed. In this method, data are identified by a
cylinder number rather than by each record address.

When the relation needed is stored in more than one cylin
eer, it is sufficient to read only the necessary cylinders rather
than the whole relation. That is why DBC is more economical
than RAp3

•

However, when the data really needed are only a part of the
cylinder, all data in all tracks in the cylinder have to be read
from the disk. In this case, the method of DBC cannot be said
to be very economical. If the traffic of the data access is fairly
high, the DBC method may be said to be cost-effective. How
ever, if not, this cylinder-based access method is fairly costly.
Thus Hsiao's cylinder-based DBC can be said to be cost
effective provided that the capacity of a database is extraor
dinarily large and the traffic of the access request is high.
However, there exist various applications ranging from small
(low) to large (high) storage (traffic). A database machine
should be used in various applications. Therefore a database
machine must be designed so that cost/performance is opti
mized according to given applications.

On the basis of these discussions, we propose the database
machine CADAM (Content-Addressable Database Access
Machine), which has the following characteristics for the data
access method.

1. It uses commercial based floating head disks un
modified.

2. A cache memory is introduced between the main
memory and the disk so as to shorten the disk access
time. The capacity of the cache memory is adjustable
according to each application.

3. Requested records may be evenly distributed over disk
tracks in one application, and the records may be lo
cated in the continuously adjacent disk tracks in the
other. Therefore, the physical data access unit (called
P A U) is optimized by taking the characteristics of the
application into consideration. Each data item can be
accessed by the PAU number.

BASIC OPERATION OF CADAM

In this section, basic operation of CADAM is described by
focusing on the file access efficiency. CADAM supports a
relational data model. Its database consists of a number of
relations stored in disk units, each of which is composed of a
number of PAUs. A database user program in a host comput
er is interfaced with CADAM by a mapping-oriented query
language such as SEQUEU3

•
14. CADAM is located at the

back end of a host computer. A query specifies one t)f four
basic commands (retrieve, insert, delete, replace), and the
following basic operations.

MAPPING OPERATIONS

JOIN

SET OPERATIONS

AGGREGATE OPERATIONS

RESTRICTION,
which selects tuples by
Boolean search condi
tions; and PROJEC
TION, which selects
specified attributes of a
relation.
Combine two relations
into a new- relation
based on equi-join.
UNION, DIFFER-
ENCE, INTER-
SECTION and PI
VISION.
such as MAX, MIN,
AVERAGE, and
COUNT.

CADAM consists of three basic components: interface
processor (INP), directory processor (DP), and file access
processor (F AP). INP receives queries one after another from
the host computer, analyzes them, and decomposes them into
several transactions, which include only MAPPING OPER
ATIONS of a single relation. A transaction is sent to and
executed in DP and FAP, and the output is returned to INP.
INP is further divided into two processing submodules; one is
for a query analysis, decomposition, and output transfer to
the host computer; the other is for basic operations, except
MAPPING OPERATIONS. When a number of queries are
processed in CADAM, some may require only the MAP
PING OPERATIONS, but others may further require JOIN
or SET OPERATIONS, in which much processing time is
necessary.

INP DP

Optimizing File Access in CADAM 509

Transac
tion with FAP

urn rransacti0ffi bAU n DIP ers
I > I

QEP
DM

Host Query

-
PE

O - C
PEl A

CNT - C
Output of H Computer ROP Transaction -=-- E

~E n

INP : Interface processor
DP : Directory processor

F AP : File access processor
QEP : Query processing sub module
ROP : Relational operations submodule
DIP: Directory processing submodule
DM : Directory memory submodule

CNT : Controller submodule
PE : Processing element submodule

CACHE : Cache memory submodule

Figure 1-Basic operation of CADAM

In this situation, queries in CADAM requiring only MAP
PING OPERATIONS of a.single relation do not have to wait
until a query further requiring JOIN or SET OPERATIONS
is completed, since the two processing submodules in INP can
operate concurrently and independently. This feature cannot
be found in CASSM7 , RAp3,9,12, or DBC4 ,5,6,1I.

o P consists of the directory processing submodule and the
directory memory submoaule. The value of specified attri
butes of a reJation is partitioned according to the predefined
scale of the value. The directory memory submodule holds a
mapping table converting from a partition number to a PAU
number or numbers. The directory processing submodule de
cides the partition number from the attribute value of a query.
Furthermore, the independently retrieved PAU numbers by
each search condition are ANDed, ORed in order to get final
PAU numbers satisfied with all search conditions. The attri
bute(s) used in a search condition most often is (are) called
clustering attribute(s). All records of each partition of the
attribute are clustered in a PAU or PAUs. Furthermore, all
PAUs are clustered according to the value of the clustering
attribute(s). Ori the other hand, the attributes used not so
often are called nonclustering attributes. All records in each
partition of the nonclustering attributes may be evenly scat
tered on many PAUs of a relation.

F AP receives transactions with P A U numbers attached by
DP. FAP consists of three submodules: the controller sub
module, the processing element submodule, and the cache
memory submodule. The controller attaches transactions
transferred from DP to a queue and selects one of the PAUs
from the queue which can be read in the shortest time to the
cache memory submodule from disk units. In other words, the
processing order of the transactions in the queue is rearranged
so as to shorten the overall disk access time as far as the
database consistency is preserved.

The specified PAU read from the disk should be divided
according to the number of the processing elements of F AP.
Each processing element compares the value of records with
the specified value of query simultaneously, which results in
the realization of content addressability. The output of the
transaction in the processing element sub module is returned
to the controller submodule every time a single PAU is pro
cessed. The output of the transaction is returned back to INP
from F AP every time a single relation is processed.

The basic operation described above is shown in Figure 1.
In this section the file access method of CADAM and the

distribution of the function over the components of CADAM
are shown. A database machine should be applied to various
applications cost-effectively. In the next section the transfer
time between the cache memory and the disk is analyzed, and
the reason why the size of PAU should be adjustable to appli
cations is shown.

THE ANALYSIS OF OPTIMAL PAU SIZE

The minimization of the time required to transfer PAUs from
the disk to the cache memory is a critical problem to improve
the performance in CADAM. In this section, the optimal
PAU size to achieve this minimization is analyzed, provided
that the two types of queries (random query and clustering
query) are given.

The Random Query Model

If the set of records which satisfies a query with non
clustering attributes may be evenly distributed over the disk
storage space, then that query is called a random query. For

510 National Computer Conference, 1981

example, the query "Retrieve EMP.AGE = 35" on the EMP
relation might be a random query, if AGE is a nonclustering
attribute. If the records are clustered on the basis of a clus
tering attribute, then that query is called a clustering query,
which will be described in the following section.

The following notations are used:
c: number of cylinders for a relation in the disk device
m: total number of the tracks for a relation in the disk
n: number of tracks per cylinder (= mlc)
s : mean seek time
a : mean latency delay
t: number of records in a track
p: probability that the random queries in the queue of

F AP access a track
-y: probability that a record is not accessed by the queries

in the queue
The relation to be accessed is assumed to be larger than a

cylinder capacity and smaller than a disk unit capacity.
Let Pc be the probability that the given cylinder is accessed

by the queries. Then Pc is expressed as follows in terms of p:

Pc=I-(1-pt
Let us denote 1 - P = q; then

pc=1- q n (4.1)

Therefore, the probability that k cylinders in the disk are
accessed is given as follows:

Pr {k cylinders accessed} = cCkP/(l - Pcy-k (4.2)

Therefore, the mean number of cylinders to be accessed by
the queries is given as c(l - qn).

By similar discussion, the mean number of tracks to be
accessed is given as mp .

Note that the probability where no cylinders are accessed is
also defined as a nonnegative value in this model. This proba
bility can be interpreted as the frequency of the occurrence of
the illegal queries.

Let us assume a PAD consists of i tracks within a cylinder
where n == 0 mod(i).

Then the probability that the given PAD is accessed is

(4.3)

Since the mean latency delay is a, 2a is the time for one disk
revolution. Therefore the time required for a PAD transfer
from the disk to the cache memory is (a + 2ai).

Thus, the mean time for the transfer of all required PADs
from the disk to the cache memory T R is given as follows:

TR = (mean seek time) x (mean number of cylinders
accessed) + (time for a PAD transfer) x (mean
number of PADs accessed).

Therefore the following equation is derived:

TR = c·s(l - qn) + a(l + 2i)'!/:- (1 - qi) (4.4)
l

-y is the probability that a given record is not accessed by the
queries, and t is the number of records in a track, so the
probability P is given as follows:

'<

P= 1--yt

Therefore q and TR are given as follows:
q =-yt

TR = c·s(l - -yln)j- a(l + 2i/T (1 - -yli) (4.5)

The Clustering Query Model

If all records of a relation are clustered according to the
value of the clustering attributes, and a query uses the clus
tering attributes, then such a query is called a clustering que
ry. Furthermore, all PADs that store a single relation are also
clustered according to the value of the clustering attributes.
When a clustering query uses a comparator such as greater
than or less than in its qualification, the retrieval efficiency is
further improved by the clustering technique.

Let b be the number of tracks per cluster, assuming b :5 n
and n == 0 mod(b).

Now, let Pb be the probability that a cluster is accessed by
the queries with the clustering attributes. Then the probability
Pc that a cylinder is accessed is as follows:

(4.6)

By the same reason shown in section above, the mean num
ber of cylinders to be accessed is as follows:

cPc=c(1 - qbf) (4.7)

Let us assume that a cluster consists of k PADs and a PAD
consists of i tracks. Furthermore, assume that a cluster is
contained in only one cylinder.

Let a cluster consist of b tracks; then b = k·i. Therefore the

mean number of clusters to be accessed is (~) Pb. Since the

time of transferring a cluster from the disk to the cache memo
ry is given as (a + 2ai)k , the time of transferring all required
PADs from the disk to the cache memory is given as follows:

(~)Pb'k(a + 2ai) = (T)Pb(a + 2ai)

Here, if we assume b = 1, that is, the size of a cluster is one
track, then this query model is equivalent to the previously
stated random query model.

Thus, the mean value of time Tc of transferring all required
PADs from the disk to the cache memory in addition to the
disk seek time is given as follows:

(4.8)

In Equation 4.8, the first term is the expected seek time of
all clusters required by queries and the second term is the
expected transfer time of all clusters required by them.

We assume that the number of records read from the disk
to the cache memory is same both in the random query model
and the clustering query model. Since m is the number of
tracks of a relation, t is the number of records in a track, and
1 - -y is the probability that a record is accessed, the number
of records read in the random query model is mt·(l - -y).

On the other hand, in the clustering query model the num-

ber of records of all clusters accessed is (~)bt.

So the number of records read in the clustering query model
is m ·t·Pb •

Thus
mt·(1- -y) = m ·t·Pb ,

Pb =1- -y,
qb=-Y

Finally, equation 4.8 is expressed as follows in terms of -y
instead of P and q .

Tc=c,s,(1- -y~) + (1- -Y)T(a + 2ai) . (4.9)

Generally the mean transmission time T from the disk to
the cache memory in the combined model of the random
query model and the clustering query model is as follows

(0:50::51),

where 0: is relative frequency when the clustering queries are
used. Thus, by Equation 4.5 and Equation 4.9 the following
equation is derived:

T = C • S • [0: (1 - -y~) + (1 - 0:) (1 - -yIn)]

(4.10)

NUMERICAL EXAMPLES

Figure 2 and Figure 3 describe the transfer time T versus P AU
size i, assuming:
t = 10 records/track
b = 32 tracks/cluster
C = 200 cylinders/relation
S = 30 ms (mean seek time)
n = 32 tracks/cylinder
a = 10 ms (mean latency delay)
For simplicity, the curves are shown with a continuous value
of i in both figures, but the condition b = 0 mod (i) restricts
the possible values of i to i = 1, 2, 4, 8, 16, 32.

Figure 2 describes the transfer time T versus i with 0: as a
parameter. The minimizing value of i changes from i = 1 to
i = 32 depending on 0:.

Note that the parameter -y describes the probability that a
record is not accessed by the queries in the queue in F AP. In
Figure 2 the fairly small value of -y = 0.91 is assumed; that is,
1 - -y = 0.09 for the probability of a record accessed. This
means the required response time for each query is not severe
and the queue in F AP can have many queries or transactions.
Therefore CADAM can process a comparatively large num
ber of queries at a time to improve the total throughput of the
system rather than to improve the response time. This figure
shows that the optimal P A U size is a track if the relative
frequency of clustering queries (0:) is approximately less than
0.8. However, if the value of 0: is greater than or equal to 0.8,
the optimal PAU size is the cluster size.

On the other hand, Figure 3 describes the T vs. i for each
-y, assuming 0: = 0.99. In this case T is minimized by the value
of i = 2 for all -y approximately. In this figure, the compara
tively large value of -y is assumed. For example, -y = 0.9995
means approximately 32 (= 32 x 200 x 10 x 0.0005) records
are accessed by the queries. This means that F AP h~s the

T
("Sec)

110

100

90

80

70

60

50

40

30

Optimizing File Access in CADAM 511

a .. 0.3

a .. 0.5

a .. 0.7

a =0.8

20 ~~~~----~~--~~--~--~----~---1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 2-T vs. i for -y =' 0.91

short waiting queue where a single query (transaction) or
small number of queries (transactions) are processed at one
time, since a quick response for each query is required.

In this example, the optimal P AU size seems to be the
cluster size, since 0: = 0.99, which means that almost all the
queries are clustering ones. However, Figure 3 shows that the
optimal PAU size is two tracks. This is an interesting result
and is explained by the following reason. Even though the
relative frequency (0:) of the random queries is very small
(0.01), the transfer time T is affected and increased by them.
So the optimal PAU size is not the cluster size.

CONCLUSION

As analyzed in Section 5, the optimal P A U size changes from
the smallest (one track) to the largest (cluster) depending on
parameters 0: and -y.

Furthermore, this optimal P A U size is very sensitive to
these parameters. A slight change of 0: or -y produces a great
change of the optimal P AU size. In the real application of the
database system, these parameters reflect the field where that
database system is applied. Those are whether the system
especially requires a quick response or high throughput,
whether each query requires a large number of records, what
percentage of the queries are clustering queries, etc. There
fore, in order to design a database machine system that can be
widely used, the architecture must be adjustable to the differ
ent PAU sizes.

On the other hand, there is an approach that modifies a disk
unit to access a cylinder simultarieously by adding some logic
units to ie· 4. 7. However, this approach cannot improve the
cost effectiveness if the cluster size is sufficiently small or
clustering attributes do not exist (0: is small).

Taking into account this strong dependency of the optimal
PAU size on 0: and Y, the flexiple addressing mechanism and
cache/disk mapping mechanism have been adopted for di
verse use of CADAM. CADAM is a promising architecture

512 National Computer Conference, 1981

1.
(msec)

y 0.9992

y 0.99-95

150

y 0.9998

100

40 '

20

10

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 i

Figure 3-T vs. i for 0: = 0.99

for supporting a cost-effective file access method through the
adjustable PAU size distributing database functions among
three components (INP, OP, FAP).

We are now developing this database machine. The prob
lems of data consistency for concurrency control, optimiza
tion for a query exe{;utWn, a security system, and recovery
from failure are also under research and development.

REFERENCES

1. Codd, E.F. "A Relational Model of Data for Large Shared Data Banks."
CACM 3 (1970), pp. 377-387.

2. Canaday, R.H., R.D. Harrison, E.L. Ivie, J.L. Ryder, and L.A. Wehr. "A
Back-end Computer for Data Base Management." CACM, 17 (1974), pp.
575-582.

3. Ozkarahan, E.A., A.A. Schuster, and K.C. Smith. "RAP-An Associa
tive Processor for Database Management." AFIPS, NCC Proceedings, 44
(1975),pp. 379-387.

4. Baum, R.I., D.K. Hsiao, andK- Kannan. "The Architecture ofa Database
Computer. Part I: Concepts and Capabilities." Ohio State University,
Tech. Rep. No. OSU-CISRC-TR-76-1.

5. Hsiao, D.K., and K. Kannan. "The Architecture of a Database Computer.

Optimizing File Access in CAOAM 513

Part II: The Design of Structure Memory and Its Related Processors."
Ohio State University, Tech. Rep. No. OSU-CISRC-TR-76-2.

6. Hsiao, O.K., and K. Kannan. "The Architecture of a Database Computer.
Part III: The Design of the Mass Memory and Its Related Components."
Ohio State University, Tech. Rep. No. OSU-CISRC-76-3.

7. Hearly, L.D., G. J. Lipovski, and K.L. Doty. "The Architecture of a
Context-Addressed Segment-Sequential Storage." Fall Joint Computer
Conference Proc., 1972, pp. 691-701.

8. Casey, R.G., and I.M. Osman. "Replacement Algorithms for Storage
Management in Relational Databases." The Computer Journal, 19 (1976),
pp. 306-314.

9. Schuster, E.A., E.A. Ozkarahan, and K.C. Smith. "A Virtual Memory
System for a Relational Associative Processor." AFIPS, NCC Proceedings,
45 (1976), pp. 855-862.

to. Ozkarahan, E.A., and K.c. Sevcik. "Analysis of Architectural Features
For Enhancing the Performance of a Database Machine." ACM, TODS, 2
(December 1977) pp. 297-316.

11. Hsiao, D.K. and K. Kannan. "Simulation Studies of the Database Comput
er (DBC)." Ohio State University Tech. Rep. No. OSU-CISRC-TR-78-1.

12. Schuster, S.A., H.B. Nguyen, E.A. Ozakarahan, and K.C. Smith. "RAP
2-An Associative Processor For Data Bases." Proceeding, 5th Annual
Symposium on Computer Architecture, 1978, pp. 52-59.

13. Astrahan, M.M .. et al. "System R: Relational Approach to Database Man
agement." ACM TODS, (1976), pp. 97-137.

14. Chamberlin, D.D., et al. "SEQUEL2: A Unified Approac-h to Data Defi
nition, Manipulation, and Control." IBM J. Res. Develop. (November
1976), pp. 560-575.

Parallel sort and join for high speed
database machine operations

by MAMORU MAEKAWA
University of Tokyo
Tokyo, Japan

ABSTRACT

This paper proposes a parallel joining and sorting algori!~m
that completes in about log2N steps for N records~ The algo
rithm is intended for large database systems. The algorithm
and its required processor interconnection are simple and
realistic. Thus, a performance improvement of three to four
orders of magnitude can be realistically expected by applying
this algorithm to database machines. Analysis is primarily
made by simulations.

INTRODUCTION

Background and Objectives

In database processing, set operations of records such as
sorting and joining are most fundamental. The importance of
sorting operations has been well recognized by data pro
cessing people. The joining operation is one of the funda
mental operations of relational data base systems and is a very
costly operation. A simple method requires N 2 comparisons
for a pair of two files of N records each. The number of
comparisons can be reduced by improving algorithms but the
minimum number of comparisons for a pair of two arbitrary
files can never be less than 210g2(N!) = 2Nlog2N. Parallel
processing is the only method that can substantially reduce the
operation time. Unfortunately, parallel joining algorithms
have seldom been proposed, so virtually no analysis of paral
lel join algorithms is available. However, many results from
the analysis of sorting algorithms are applicable since joining
and sorting -are similar operations.

Batcher,l Stone,4 Thompson and Kung,s and others have
made analyses of parallel sorting algorithms. The Batcher's
algorithm, which is the fastest algorithm known so far, re
quires log2N (log2N + 1)/2 comparisons for a file of N records.
This algorithm is based on the sorting network proposed by
Batcher himself. Stone4 shows that the Batcher's algorithm
can also run on the perfect shuffle interconnection that he has
proposed. If the interconnection is less complete, then a
longer operation time is required, as shown by Thompson and
Kung.5 Thus the interconnection is important. Since the the
oretical lower bound is log2(N!) = Nlog2N, we expect that

515

parallel processing by N processors would reduce the lower
bound to Nlog2N/N = log2N. Thus the Batcher's algorithm
requires (log2N + 1)/2 times more than the theoretical min
imum.

This paper is an attempt to obtain parallel joining and sort
ing algorithms whose operation times are close to their theo
reticallower bounds. The algorithms are mainly analyzed by
simulations. It also attempts to make a required processor
interconnection that will be realistic even for large files. Al
though the algorithms are equally applicable to internal or
external operations, they are primarily intended for large ex
ternal files, and if they are applied a performance im
provement of several orders of magnitude can be realistically
expected.

Problems in Parallel Algorithms

There are two important points in developing parallel algo
rithms, namely the interconnection of processors and the al
gorithm itself. They are strongly related to each other. A
simple interconnection imposes restrictions on algorithms,
and sophisticated algorithms generally require more complete
interconnections. For large database systems, shared memory
schemes usually used in multiprocessor systems are not appli
cable because such schemes are severely limited in size. A
network of independent processors with their own local
memories is the only possible approach. It is important that
the network is technically and economically feasible. Particu
larly crucial is the number of lines fromlto a node, and every
effort should be made to reduce it.

Evaluation of Parallel Algorithms

Ordering or matching of arbitrary KN records to perform
a sorting or joining operation would theoretically require at
least log2[(KN)!] comparisons. Therefore, parallel processing
of KN records by N processors would reduce this lower
bound to log2[(KN)!]/N = KNlog2(KN)/N = Klog2(KN).
This Klog2(KN) can be further divided into two components,
Klog2N and Klog2K. The first component, Klog2N, can be
interpreted as the minimum number of comparisons required
to distribute KN records over N processors, thus making each

516 National Computer Conference, 1981

processor hold K records. The second component, Klog2K , is
then the minimum number of comparisons for each processor
to order its K records. According to this interpretation, any
parallel algorithm which can distribute KN records evenly
over N processors in Klog2N comparisons is optimal. In gen
eral, however, the resulting record distribution will not be
even over N processors and the distribution process itself
takes more than Klog2N comparisons. Therefore, the total
number of comparisons, T, can be expressed as

T = aKlog2(aK) + ~Klog2N,

where aK (a ~ 1) is the maximum concentration of records in
a processor and ~ is the increase in ratio of the number of
comparisons for distributing records. The optimal case is of
course a = ~ = 1. We can observe from the above equation
that for a large K a is more important than~, so efforts should
be concentrated more on distributing records more evenly
than on reducing the number of comparisons for distributing
records.

Another important point to be remembered about parallel
algorithms for large database systems is that a record transfer
between processors usually requires a much longer time than
a record comparison, because records are usually large and a
transfer of records between processors usually involves a rel
atively complex protocol handling. Therefore the number of
record transfers is much more important than that of record
comparisons. In fact, this paper evaluates algorithms mainly
in terms of the number of record transfers (called "steps" in
this paper) rather than in terms of record comparisons.

PROCESSOR INTERCONNECTION

We assume that the system is composed of interconnected
. autonomous, identical processors, where each processor is a
pairing of memory and logic.

When this interconnection is represented as a graph, where
processors are shown as vertices and lines interconnecting
them as edges, it is clear that the diameter of the graph is the
absolute minimum number of steps of record transfers re
quired for a sort or join operation to be completed, regardless
of the method used. The diameter of a graph is minimized
when the graph is complete. However, when the size of the
graph becomes maximal, the system becomes very costly and
may be unfeasible even for a reasonably small system. The
problem is then to find an interconnection or graph whose
diameter and size are both within some practical limits. Such

interconnections are found by Maekawa. 3,6 .'[he optimal inter
connection found allows each processor to reach any other
processor in no more than log2N steps and requires only
2(N -1) edges altogether. In this paper, however, for the sake
of simplicity and better understanding we will base our dis
cussions on cube interconnections. They have the same prop
erty as regards the transfer delay as the optimal inter
connections do, and the same algorithms can be applied to
both. The cube interconnections require (Nlog2N) 12 edges
altogether and are thus inferior to the optimal inter
connections.

JOIN ALGORITHM

In this section, we propose and analyze parallel join algo
rithms. Since a join operation can be considered as repetitions
of a search operation-e.g., each record of one file is searched
against the other to find matching records-its operation time
can be shortened by performing search operations in parallel.
If all the search operations are performed completely in paral
lel, then the total execution time would be shortened to the
execution time of a single search operation, namely log2N
steps. Of course, this is an ideal case, and the success of any
parallel algorithm is determined by how much parallelism can
actually be obtained. In the join operation, the key question
is how much parallelism can be obtained in tracing down the
search tree. (The problem of how the search tree is prepared
will be discussed in the next section.) The simplest way of
obtaining the maximum degree of parallelism is to provide N
search trees, one for each record. However, this method is
clearly not realistic, for N(N -1) nodes of the search trees
would be required. For our interconnection the total number
of necessary search tree nodes is Nlog2N. This Nlog2N is the
minimum number of search tree nodes for a complete parallel
search. For any number less than Nlog2N it is extremely
difficult to achieve a high degree of parallelism.

In our system, the major causes of delays are the limitations
of the lines connecting processors and of the memories of the
processors. The interconnection method, the number of
search tree nodes, and the delays caused by the limitations in
line capacity and memory size are all strongly related. The
interconnection structure should be given the top priority; it
determines the feasibility of system building, both technically
and economically. The number of search tree nodes has the
second priority and is determined as the minimum number
necessary for the complete parallel operations. This number
is Nlog2N, and this Nlog2N nicely matches with the number
of lines. Our problem is, based on these conditions to devise
algorithms that minimize the delays caused by the line and size
limitations and to analyze them. Following the arguments so
far, we define the assumptions and algorithm next.

Assumptions

The assumptions are as follows.
1. The system consists of 2N = 2 x 2D processors, and their

interconnection is the (D + I)-cube. The file R is held in
processors 0 through (N - 1) while the file S is held in
processors N through (2N -1). The case of N = 8 is
shown in Fig. 1.

2. The distance d (Ci, Cj) is defined between two proces
sors Ci and Cj when they are directly connected, as

i=f=j
i=j

If they are not directly connected, the distance between
them is undefined. Similarly, the line connecting Ci and
Cj is called the line of distance d (C, Cj) of processor C
or Cj • The lines of distance d connect two (d - I)-cubes
to form ad-cube so that a cube is recursively defined.

3. The file R is already ordered and is placed in the lower

Records
of File S

Processors

Records
of File R

-3

-0 1,

o Processor - line

Figure I-Interconnection of the 4-cube and routing table

Level 3

Level 2

Level 1

half of the system, as shown in Figure 1. The file S is
arbitrarily ordered. A joining operation is performed by
moving the records of file S among its processors so that
the records are placed at the processors located immedi
ately above their corresponding processors of the file R
(namely, the processors of distance D + 1); then the
records are immediately moved down through the lines
of distance D + 1, at which the join of the records is
immediately performed because the records of the two
files match. In the above operation the lower half of the
system is not used, and it will be ignored in the dis
cussion in this section.

4. Record transfers are synchronized. Records are trans
ferred to directly connected processors in a single step.
The lines are bidirectional, but only one record can be
transferred at a time.

5. Each processor initially holds K records. The record
values are in the range between 0 and (N - 1).

6. Each record has a descriptor whose value can range
between 0 and D .

7. To assist routing, each processor of the file S is provided
with a routing table of size D, as shown in Figure_I.
These tables effectively serve as the search tree as a
whole. As seen in Figure 1, the top entries (level 3) hold
the value that divides the file R into two halves, the 2nd
entries (level 2) further divide the halves into quarters,
and so on. These routing tables are set according to the
ordered file R before the joining operation begins. This
setting is discussed in the section "The Determination of
Routing Tables and Sorting Algorithms."

The Basic Algorithm

The algorithm of the join operation for each processor is
defined as follows:

1. Initialize the descriptor, p , of the record at the processor
to D + 1.

2. Decrease p by 1.

Parallel Sort and Join 517

3. When p = 0, the record is transferred to the lower half
of the system through the line of length D + 1, at which
the record is immediately joined with the corresponding
record of the file R.

4. Compare the record with the level p entry of the routing
table of its processor. When this processor belongs to the
right half of the 2P -processor segment containing the
processor in question and the record is smaller than the
entry, it is moved to the processor of distance p ; other
wise it remains there. Here, a segment of 2P processors
is a group of processors whose numbers are between 2Pi
and 2Pi + (2P - 1) for some integer i, or a p -cube. Simi
larly, when the processor belongs to the left half and the
record is larger than the entry, the record is transferred
to the processor of distance p; otherwise it remains
there. Then the algorithm goes back to step 2. Since, as
mentioned before, a record transfer takes a much longer
time than a record comparison, only the number of
record transfers are counted as our performance
measure.

5. The joining operation is completed when. p becomes 0
for every record and all the records have been trans
ferred to the corresponding processors of the file Rand
have been joined.

The above operations are performed as much in parallel as
possible. If K > 1, there may coexist at each processor the
records initially held in the processor and the records trans
ferred from other processors. This algorithm always gives
priority to the transferred records over the initially held
records. In the algorithm, record transfers are notably domi
nant over other operations, such as record comparisons.
Therefore, the "step" of the algorithm is defined as the record
transfer, usually consisting of the operations 2 through 4.
However, if this cycle of the operations 2 through 4 does not
include a record transfer, it will not be counted as a step. This
step is the unit in the following simulation analysis.

Simulation Analysis

Since the mathematical analysis of the algorithm is extreme
ly difficult, simulations are necessary to evaluate it. Simula
tions are first made in the cases of K = 1 and K = 20 where the
record values are all unique for each set of N records or
permutations of N different records. The results are shown in
Tables I and II. In these tables, parameter q is the number of
simultaneous inputs allowed into a processor. Since only a
single record can be transferred in one direction on a line at
a time, q can not exceed log2N. In the cases that the record
values are independent or randomly chosen, the results are
shown in Tables III and IV for K = 1 and K = 20, respec
tively.

Observations

First, note that the simulation results are very encouraging.
In particular, the results are enlightening when K > 1.

518 National Computer Conference, 1981

TABLE I-Simulation result I:
Unique record-values and K = 1

90%
Confidence

Mean number Standard interval of
N q of steps deviation the mean

1 8.1 0.71 8.1 ± 0.12
64(= 26

) 2 6.7 0.71 6.7 ± 0.12
6 6.7 0.77 6.7 ±0.13

1 10.1 0.95 10.1±0.16
128(= 27) 2 8.3 0.71 8.3 ± 0.12

7 8.3 0.77 8.3 ± 0.13

1 11.8 0.89 11.8 ± 0.15
256(= 28

) 2 10.0 0.77 10.0 ± 0.13
8 9.9 0.77 9.9 ± 0.13

1 15.8 1.00 15.8 ± 0.16
1024(= 210

) 2 13.5 0.89 13.5 ± 0.15
10 13.2 0.84 13.2 ± 0.14

1 19.6 0.77 19.6 ± 0.41
4096(= 212) 2 17.2 0.89 17.2 ± 0.48

12 16.5 0.77 16.5 ± 0.41

Observation 1

For K > 1, the mean number of steps per set of N records
is very close to D = log2N. When the record values are all
unique for each set of N records the mean number of steps per
a set of N records exceeds log2N by at most 1.5 for N s; 4096.
If two-record input is allowed (q = 2), the mean number of
steps is even less than log2N. When the record values are
independent (record value duplications are allowed), the
mean number of steps per set of N records exceeds log2N by
2 to 5 for N s; 1024. This is less than a 50% increase over
log2N. If two-record input is allowed, the excess is only 1 to
3.

In large data base systems, which are the major application
area of our algorithms, each processor would usually hold a
much greater number of records than 20. Thus the above
result is very encouraging. Considering the simplicity of the
algorithm and the technical and economic feasibility of the
interconnection, we can realistically expect a performance
improvement of three to four orders of magnitude by employ
ing this algorithm.

Observation 2

When K = 1, more steps are required. However, when the
record values are all unique, the number of steps exceeds
log2N by only 2 to 7, or a 50% increase for N s; 4096. When
the record values are independent, the number of steps may
reach 2 to 3 times of log2N. This is still a very good result. In
fact, it is rather surprising that the number of steps is within
2 to 3 times log2N considering that "quick sort," one of the
fastest sequential algorithms, requires twice as much as its
theoretical lower bound, Nlog2N. 2

Observation 3

The standard deviations are sufficiently small that in actual
operations a very uniform performance can be expected.

DETERMINATION OF ROUTING TABLES
AND SORTING ALGORITHMS

The algorithm proposed in the previous section assumes that
the routing tables are known. In actual systems, some infor
mation about the distribution of the file in question is usually
available, and from this information the routing tables can be
easily prepared. The distributions of human names and ages,
for instance, are well known. If the distribution is not known,
then it can be obtained by just once sorting the file by some
means. Then the routing table can be easily prepared by keep
ing the obtained information with the file. This distribution
information need not be as exact as search trees. It also need
not be updated each time a file is updated. It can be an
approximate distribution function. Thus the determination of
the routing tables is not as difficult as it seems. Furthermore,
the amount of distribution information will not be large.

A general procedure for a join operation for two files where
the distribution of one file, say file R, is known is first to move
the records of the file R to their proper processors based on
the routing tables determined by the known distribution, and
second to perform the joining operation described in the pre
vious section for the other file, say file S. The first step is
basically the same as the joining operation except that the last
record-to-record joins are not necessary. The total steps of
this joining operation are then twice the steps of a join oper-

TABLE II-Simulation result II:
Unique record values and K = 20

Mean
90% number of

Mean Confidence steps per
number Standard interval of a set of

K N q of steps deviation the mean N records

1 126.0 2.55 126.0 ± 0.43 6.3
64(= 26

) 2 100.7 1.76 100.7 ± 0.55 5.0
6 98.6 1.64 98.6± 0.27 4.9

1 149.7 1.95 149.7 ± 0.60 7.5
128(= 27) 2 119.5 1.55 119.5 ± 0.48 6.-0

7 116.6 1.45 116.6 ± 0.24 5.8

174.1 2.00 174.1 ± 0.33 8.7
20 256(= 28

) 2 138.5 1.38 138.5 _± 0.23 6.9
8 134.8 1.38 134.8± 0.23 6.7

1 221.9 0.95 221.9 ± 0.51 11.1
1024(= 210

) 2 176.8 1.18 176.8 ± 0.63 8.8
10 172.4 1.55 172.4 ± 0.83 8.6

1 270.7 1.84 270.7 ± 0.99 13.5
4096(= 212) 2 215.5 1.34 215.5 ± 0.72 10.8

12 208.9 0.71 208.9 ± 0.38 10.4

TABLE III-Simulation result III:
Independent record values and K = 1

90%
Confidence

Mean number Standard interval of
N q of steps deviation the mean

1 12.9 2.07 12.9 ± 0.64
64(= 26

) 2 12.4 2.03 12.4 ± 0.63
6 12.7 2.12 12.7 ± 0.66

1 19.4 1.63 19.4 ± 0.51
256(= 28

) 2 19.1 1.30 19.1 ±0.40
8 19.5 1.75 19.5 ± 0.54

1 27.8 1.95 27.8 ±0.60
1024(= 2\0) 2 28.2 2.12 28.2 ± 0.66

10 27.8 1.95 27.8 ±0.60

ation for a file of N records, namely 2(lOg2N + 0:). If files R
and S can be simultaneously handled, then the whole opera
tion would be completed in (log2N + 0:).

The first step of the above procedure can be considered as
a sorting algorithm because the records will be ordered.
Therefore there is essentially no difference between joining
and sorting in our algorithm.

Our remaining problem is to find an algorithm to determine
the routing tables when there is no distribution information
available. This problem might not be practically important but
it is necessary for the completeness of our discussion. In this
section, such an algorithm is proposed and analyzed. All the
assumptions remain the same except that the routing tables
are initially blank and K =1.

Algorithm

The first entries of all the routing tables are filled with the
value T1, which is the average of the four records at processors

TABLE IV-Simulation result IV:
Independent record values and K = 20

Mean
90% number of

Mean total Confidence steps per
number of Standard interval of a set of

N q steps deviation the mean N records

1 159.8 6.70 159.8 ± 2.08 8.0
64(= 26

) 2 135.8 6.45 135.8 ± 2.00 6.8
6 132.9 5.95 132.9 ± 1.84 6.6

1 231.3 10.40 231.3 ± 3.22 11.6
256(= 28

) 2 196.7 6.92 196.7 ± 2.14 9.8
8 190.8 6.24 190.8 ± 1.93 9.5

1 299.1 8.28 299.1 ± 2.57 15.0
1024(= 2\0) 2 255.2 7.55 255.2 ± 2.34 12.8

10 254.7 7.72 254.7 ± 2.39 12.7

Parallel Sort and Join 519

0, NI2 -1, N12, and N -1. Then the records are moved
through the lines of distance D so that the left half of the
system holds records smaller than T1, while the right half
holds records larger than or equal to T1 • The second entries of
the left half are next filled with the average of its four corre
sponding records, and the second entries of the right half are
filled with its four records. Then the records are moved
through the lines of distance D - 1. Similarly, the third en
tries are filled with the four records of the newly created
quarters. This step continues until all the entry values are
determined.

However, if the record distribution is unbalanced after one
set of moves, corrections are made. If the ratio of the numbefs
of records of the two halves is not within the given threshold,
we perform corrective record transfers. The threshold. is de
fined by the following inequality

1 - 0 s ratio s 1 + 0

where 0 is some positive number. Since the number of records
is discrete, the range is expanded to include the two boundary
integers.

The corrective transfers are defined below. Let us identify
the left and right halves by H Land H R and denote the number..
of resulted records of each HL and HR by PL and PRo Let us
further denote by BLand B R the left and right boundary
values of the segment to be divided into halves. If the ratio of
jlL and PR is not within the threshold, the present level entry
value is recalculated by

where E is the current entry value that resulted in having P L

and PR records in HL and HR. After the new values are set,
the records are retransferred. This correction is continued
until a satisfactory division is produced. This whole procedure
is repeated until all the entries are determined.

Simulation Results

The simulation results for the above algorithm are shown in
Table V. The distribution of the number of records at a pro-
cessor is shown by its most important value, the maximum
number of records concentrated in a node. A correction is
counted as one step. Although divisions of records can be
made in parallel in each level except the top level, the total
number of steps is computed as the sum of the maximum
number of steps of each level.

We can observe that the record concentration at a node is
less than 4. This is satisfactory. The number of steps is 2 to 3.5
times log2N for N s 1024. This is relatively satisfactory.

Further improvements of the algorithm are possible. There
is the potential for two major improvements; one is to use
distribution information and the other is to improve the
details of the algorithm. The first method is very effective and

520 National Computer Conference, 1981

TABLE V-Simulation result V:
Algorithms for determining routing tables

90%
confidence
interval of

90% Maximum the maximum
confidence number of number of

Mean number interval of records at records at
N 0 of steps the mean a processor a processor

64 0.1 11.23 11.23 ± 0.50 2.27 2.27 ±0.06
256 0.1 22.00 22.00± 0.89 2.90 2.90 ± 0.12

1024 0.1 35.29 35.29± 2.84 3.00 3.00 ± 0.00
64 0.001 12.80 12.80± 0.71 2.10 2.1O± 0.17

256 0.001 25.76 25.76± 0.78 2.71 2.71 ± 0.19

is also applicable in most cases. If detailed distribution infor
mation is available, then both the record concentrations and
the total steps can be kept small. However, even if the
detailed information is not available, some gross or partial
information such as the middle value, the mean value, the
maximum and minimum is a great help. In particular, the
mean and the middle values are very useful because the higher
level entries are more important.

The improvements of the algorithm may involve many
things; the number of sample records, the way of picking
sample records, the correction methods, and the way of trans
ferring records are all important. In record transfers, the
whole record need not be moved, only the key portion. Also
all the lines of different distances may be used from the begin
ning for faster record transfers. As for the correction meth
ods, more sophisticated functions can be used to interpolate
and extrapolate the record value distributions. Finally, it may

be more efficient to vary the number of sample records ac
cording to the level.

CONCLUSIONS

The major application area of the algorithms is in large data
base systems. In such systems, each processor holds a large
number of records and the algorithm can· take advantage of
this. Since the interconnection is technically and economically
feasible, a performance improvement of three to four orders
of magnitude can be realistically expected by applying the
algorithm to large database systems such as database
machines.

Although basic aspects of the algorithm are described in
this paper, more detailed analyses and refinements are de
sirable. The remaining analysis includes more exac-t mathe
matical analysis to further the understanding of the algorit!tm,
applications of the optimal interconnections, the effect of an
unbalanced distribution of records over processors, the effect
of different distributions, and improvements of the routing
table algorithms.

REFERENCES

1. Batcher, K. E., "Sorting Networks and Their Applications," SJCC, AFIPS
Proc., Vol. 32 (1968), Washington, D.C., pp. 307-314.

2. Knuth, D. E. The Art of Computer Programming, Vol. 3, Sorting and
Searching. Addison-Wesley, 1973.

3. Maekawa, M. "Extensibility and Adaptability of Distributed Processing
Systems," Proc. COMPSAC 80, Chicago, Oct. 29-31, 1980.

4. Stone, H. S., "Parallel Processing with the Perfect Shuffle," IEEE Trans.
Computers, Vol. 1 (1971), C-20, No.2, pp. 153-161.

5. Thompson, C. D., and H. T. Kung, "Sorting on a Mesh Connected Parallel
Computer," Comm. ACM, Vol. 20, No.4 (April 1977), pp. 263-271.

6. Uemura, S., and M. Maekawa, "Database Machines," Information Process
ing Society of Japan, July 1980.

Highly parallel associative search and its
application to cellular database machine design

by SAKTI PRAMANIK
Indiana University-Purdue University
Indianapolis, Indiana

ABSTRACT

This paper describes a fast associative search algorithm based
on parallel searching by pattern-splitting. The text is read as
a sequence of substrings and searching is parallel within each
substring. Substring length can be arbitrarily chosen and this
division is independent of the logical partitioning of the data,
such as tuple and domain. This provides a flexible storage
structure across tracks of the secondary storage. The algo
rithm developed is used in the design of a hardware associative
search. It works directly on the secondary storage and is a
basis for database machine design. The design is cellular in
structure and can be implemented by using LSI technology.

INTRODUCTION

A good part of nonnumeric computing is spent in searching
and sorting. This searching is associative because a user wants
to access data by its content or a logical ID. The existing
computer architecture however requires data to be accessed
by its address. This difference in the mode of data access
requires a very complex software mapping of the user's query
into the physical address of the data. In fact, in a generalized
database management system this mapping is performed in
three distinct levels, namely external, conceptual, and inter
nal data models. 5 A lot of auxiliary data structures are used to
implement this mapping. This complexity is imposed by the
conventional Von Neumann machine architecture ofthe exist
ing computers. This architecture is quite appropriate for
numeric processing but is very inefficient6 for nonnumeric
applications.

The machine instructions of the conventional computers are
designed to process data residing in random access main
memory. Though significant progress has been made in the
size and speed of these memory devices, they are still not cost
effective for storing a huge amount of data that need to be
kept on-line. These data are stored in less expensive second
ary storage like rotating disks. The trend in memory tech
nology indicates that newer devices like bubble/ CCD/ holo
graphic/ and electron-beam accessed memory8 will become
available commercially, but they have characteristics similar

521

to those of the rotating disks, i.e., accessing a block of data at
a time. The existing computer architecture is not very efficient
in processing information on secondary storages. This is be
cause a lot of data has to be transferred into the main memo
ry, while only a small fraction of it is really needed. To avoid
unnecessary transfer of a huge amount of data, the informa
tion can be searched directly on the secondary storage. When
the search is successful the needed data is transferred into the
main memory. A technique called "LOGIC PER TRAC~
DEVICES" first developed by Slotnick was used to search
data directly on a head per track disk. 22

,16 He used search
hardware logic for each track. Here data is accessed se
quentially within a track and randomly between tracks.
Searching goes on in parallel between tracks, increasing the
search speed considerably. A significant amount of research
work has been done in developing computer architecture for
database applications based on this logic-per-track devices
approach.4

,IO,14,15,21 For large textual database similar search
technique is also very applicable. Hardware algorithm of pat
tern matching in text has been developed by many authors. 3

,13

This paper describes fast associative search algorithms
based on cellular logic. 13 Here the text is read, one substring
at a time, from a circulating memory and a search-hardware
logic finds all possible matches within the substring. There is
one search-hardware logic for a group of tracks and a sub
string can be stored across these tracks. The complexity of
each search-hardware logic is reduced considerably by split
ting both the pattern as well as the text substrings. It is also
seen that this splitting helps in achieving more parallelism.

BASIC PATTERN-MATCHING HARDWARE BASED
ON CELLULAR LOGIC APPROACH

The hardware algorithms of pattern matching use highly par
allel character-matching techniques. This is explained through
an example below. In this example the pattern is assumed to
be 'ABA' and it is to be matched against the text string
'ABABAB'. Multiple matches will be considered in this ex
ample. The first character 'A' of the text is first compared
against all the characters of the pattern and the result is stored
in a bit vector. The bit vector in this case is '101', '1' represent-

522 National Computer Conference, 1981

Text characters A B A B A B

Bit Vectors 1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 Q 1 0

Figure la-Bit vectors

Text characters A B A B A B

Resul ting Bit 1 0 CD 0 CD 0
Vectors 0 1 0 1 0 1

1 0 1 0 1 0

Figure llr-Resulting bit vectors

ing a match and a '0' representing a mismatch. Similarly the
bit vector for the second text character 'B' is '010', third
character 'A' is '101', and so on. The bit vectors for all the text
characters are shown in Figure la below. Now the bottom two
bits (the count is the number of pattern characters minus one)
of each vector is 'AND'ed bitwise with the top two bits of the
next bit vector. This is done sequentially, starting with the
leftmost bit vector. The resulting bit vectors are shown in
Figure lb. A match is represented by a '1' bit at the top of a
resulting bit vector. Since the pattern is three characters long
we start with the third resulting bit vector for interpreting a
match. The complete match is represented by the circled bits
of Figure lb. The corresponding characters of the text-string
represent the ends of the matching text.

This technique of finding matches can be used to develop a
hardware algorithm for pattern matching. Here we are inter
ested in cellular hardware design involving interconnection of
identical cells. A cell in this design consists of a single charac
ter comparison hardware as shown in Figure 2 below. Here Yi
represents the ith character of the pattern and x is a text
character. The relationship between f;, Si and [;-1 is given in
the algorithm below. A complete pattern matching hardware
for a pattern Yt,Y2 ... Ym is obtained by cascading m cells as
follows: Here text characters are read one at a time and are
compared against all the characters of the pattern.

f. 1 1-

text characters
from aux. storage

s; Y.
1

Figure 2-A basic cell

Figure 3-Pattern matching hardware

Algorithm 1.
Step 1. Initialize S2~ S3~ ••• - Sn~ 0
Step 2. Set SI~ '1'

Read next character x of the string, and compare
it against all the characters of the pattern simulta
neously.

Step 3. f;~ '1' if Si = 'l'andYi = x for i = 1,2, .. . ,m, [;~
'0' otherwise

Step 4. Si + 1 ~ Ii for i = 1,2, ... , m - 1
1m = 1 implies current text character represent
the end of a matching text.

Step 5. Go to Step"2.
A pattern of length j where j :s;; n can be taken care of in the
above circuit by storing it right-justified and setting Sm-j+1 to
'1' in Step 2 of the algorithm.

The above algorithm reads one character at a time from the
text. We may however like to read more than one character at
a time and process it before reading the next text substring.
For example, we may store character bit serially on two adja
cent tracks as follows and read the text string' ABCABCAB'
as 'AB' then 'CA', and so on. (See Figure 4.) Now consider
a pattern 'ABCA', and split it into two subpatterns 'AB' and
'CA', and store them in two adjacent cells as shown in Figure
5. Now a cell needs to be redefined as in Figure 5; only the
equality match in each cell is not enough now. All the partial
matches also have to be considered. For example, the text
substring 'BC' and the subpattern 'CA' will have three pos
sible partial matches as shown in Figure 5. Thus both the cell
definition and the algorithm above have to be extended to
take care of the general case. Some of the advantages of this
general model are more parallelism in searching, greater flex
ibility in memory usage, and better utilization of the storage
device. This is achieved however, at the expense of more
complexity in the design of a cell and the algorithm. But we
will see in later sections that this complexity can be minimized
considerably by using cellular hardware design.

\
T

J

\ ,
t c
I

!
Figure 4-Storing text string 'ABCABCAB' on two adjacent tracks

text

characters

Figure 5-Two-character cells

(B\e
elY
rBc)
\W

1;/. I '/1
X

Case 1. Rear match

'J/II/'II'tA'll'/I'/1t ~

1--' t; '/l'll 11, 1(f'(IJ~Jllq

x

Case III. Middle match

Case II. Middle match

y

1,,///;,'/ '''1

'11/'-1 'lll/ ////;4

x
Case IV. Front match

Figure fr-Four types of overlaps

COMPUTATION OF PARTIAL MATCHES AND
GENERATING PARTIAL MATCH VECTOR

Let X and Y denote the text and pattern substrings re
spectively. X H and X T are used to denote the head and tail of
the substring X. If the substring X= 'abcd', then X H will be
the character 'a' and X T will be the character 'd'. Similarly the
Y H ahd Y T are the head and tail of the pattern Y. Now we
slide the pattern Y over the text X from left to right, as shown
in Figure 6 below. As Y slides over X the amount of overlap
between Y and X changes. This is shown by the shaded por
tions. Each time Y is moved to the right by· one character
position, the characters that are overlapping are compared. If
a match occurs between the overlapping characters, the result
is a bit '1' else it is '0'. There are four possible types of overlaps
between Y and X, as described in Table I below. Each of
these four types of overlaps is also shown pictorially in
Figure 6. We will differentiate only three types of overlaps
namely rear match, middle match, and the front match. The
rear matches as shown in Figure 6 correspond to all possible
overlaps of the rear part of the pattern Y. We will define rear
match bit vector simply denoted by the letter 'R', as the bits
representing all the rear matches. Thus the pattern 'ABAB'
and the text string 'ABA' for example, will have two rear
matches as shown in Figure 7, below. The resulting bit vector
R is also shown in the figure. Similarly, the results of front and
the middle matches will be denoted by the bit vectors "F" and
"M" respectively. The M and F, for the example above, are
also given in the figure. We combine these three bit vectors
into one and call it partial matches vector table, PMT in short.
The PMT for the example above is shown in Figure 7. It
should be noted that reading the bits of PMT downwards
corresponds to sliding the pattern from left to right over the
text substring. The top bit of the PMT corresponds to the
rightmost character of the pattern being aligned over the left
most character of the text substring.

In gen~ral, if the pattern Y consists of m characters, i.e.,
Y = Y,'y2' . 'Ym and text substring X has n characters, i.e.,
X = XJ,X2 • • • Xn, then the sizes of R, M, F and PMT will be
given by Figure 8. It should be noted that the interpretation
of MiS is different for different relative values of m and n. The
length of a PMT is m + n - 1 bits. The following relations are
also true

lenR + lenM = lenM + lenF = Max (m ,n)

where len stands for the length of a section of PMT.

Highly Parallel Associative Search 523

TABLE I-Definition of four types of overlaps

YH has not passed
I

YT has passed XH
XH YH has passed XH II

YT has passed YH has not passed III

XT
XH

YH has passed XH IV

PATTERN MATCHING INLONG TEXlSTRfN(J

Pattern matching in long strings by merging P MT's

Pattern matching in a long text string is found by splitting it
into smaller substrings and obtaining PMT's of the pattern for
each of these substrings. Then the PMT's are merged as
shown below to determine the complete matches in the whole
text string. For example, the text string "ABABAB" can be
split into the three substrings S" S2 and S3, as shown in Figure
9 below. For a pattern "ABA" the PMT's for each of S" S2
and S3 are shown. Now the bottom two bits of each PMT is
'AND'ed with the top two bits of the next PMT and the result
replaces the top two bits. The complete matches are inter
preted from the top two bits of the 2nd and the 3rd PMT's.
Here the first bit of the 2nd and 3rd PMT's equal to 1, im
plying matches at the first character of the 2nd and the 3rd
substrings.

Y = 'ABAB'

X = 'ABA'

R

AB.t _ misnratch _I 0 I
A~A ~ match ~ 1

M

'til-- iniSmatch_G

~ > match~~
F

~B EJ ~ -----JII- mismatch ~

AJ:AB ~ rna tc h -+- 1

Figure 7-Partial match bit vectors

PMT

0

> R
1 -0

>-
M

1

--<
0

-> F

1

524 National Computer Conference, 1981

For this figure the values of land i are as follows:

I = mine m, n) and i = 1, 2, ... , I - 1
Ri = 1 when Ym-i+l, Ym-i+2 •.. Ym matches Xl,X2,· • . ,Xi

= 0 otherwise
Fi = 1 when Yl,y2 .• 'Yi matches Xn-i+l, X n -i+2," ',Xn

= 0 otherwise
K = n - m + 1 and i = 1, 2, ... , K

when m > n
Mi = 1 when Yk-i+l, Yk-i+2, •• ·,Ym-i+l

matches Xl,X2 ••• Xn

= 0 otherwise
when m ~n

Mi = 1 when Yl,y2 .• 'Ym matches Xi,Xi+l.· ,Xm+i-l

= 0 otherwise

PMT

R,
R2
-
-
-
R,_,

M,
M2

M -
-
-
Mk

F,_ ,

F,_2

F -
-
-
F,

Figure 8-PMT for different relative sizes of X and Y

..r--rMatch

text string: ~

Sl S2 S3

PMT# -----..

Pattern: ABA

Figure 9-Merging PMT's of the example problem

General merging algorithm

Let Xl, X 2 , • • • Xj be the j text substrings of lengths
nl ,n2, • •• ,nj respectively. These substrings will have j number
ofPMT's as shown below. If Sr represent the kth bit from the
top of the ith PMT, the algorithm will be as follows:

Algorithm 2.
Step 1. i~1
Step 2. S7+1~S7+1/\sf-k+l for k = 1, 2, ... , (m -1)
Step 3. When S7+1 = 1, and K ~ ni+l, and

nl + n2 . .. + ni + k ;:::= m
it is a complete match, else it is not. Kth charac
ter of the (i + 1)th substring corresponds to the
match

Step 4. i~i + 1
Step 5. i = j::}done else GO TO Step 2.

Step 2 above is a bitwise 'AND' operation of the bottom
(m - 1) bits of the ith stage with the top (m - 1) bits of the
(U-1)th stage. Step 3 gives the-bits that will indicate, after
'AND'ing, the complete match conditions. 'AND'ing of bits
of one stage with those of the next is necessary for finding
complete match conditions. This is because every bit in a PMT
represents only a partial match condition (i.e., only a part of
the pattern is being matched). By 'AND'ing the correspond
ing bits of the successive PMT's we are in effect finding match
conditions for the concatenated text string. If ni ;:::= m the M
bits of the PMT will correspond to the complete match condi
tions. Thus the M bits of the PMT, when ni;:::= m do not
participate in the 'AND'ing because they already represent
complete match conditions. The Rand F bits of the PMT's will

PMT #)

The length of the ith PMT 1 i = m + ni - 1

FIGURE 100Merging PMT's of varying lengths

i+1

Figure II-Merging PMT's when n ~ m

i+1 i+2 i+3

FIGURE 12-Sequential merging of stages i thru i + 3

always correspond to partial matches and participate in the
'AND'ings process. Figure 11 shows the merging process
when ni ::::= m. The algorithm given above however, is general
and works for both ni ::::= m and ni < m .

Figure 11 shows that the middle M bits are unaffected by
the 'AND' operations. Thus each adjacent pair of PMT's can
be 'AND'ed in parallel because the 'AND'ed bits are disjoint
between adjacent pairs of PMT's. In Figure 10 where n < m,
the middle x bits are not disjoint and the 'AND'ing has to be
carried over to several stages.

Suppose n is greater than or equal to m and we keep reduc
ing n while keeping m same. As the length n shrinks so does
the middle section M of Figure 11 and it becomes 1 when n
equals m. At this point the length of the section F is still
m - 1. Reducing n further will increase the size of M again.
But the length of F will start to decrease becoming less than
m - 1. Since the bottom m - 1 bits always participate in the
'AND'ing some of the M bits will not become involved. At
this point more than half of the bits from bottom are 'AND'ed
with equal number of bits from the top of the next PMT. Thus
some of the 'AND'ed bits are not disjoint any more.

Parallelism in merging

The algorithm 2 given in the previous section will work for
varying length substrings. This algorithm is sequential and it
computes PMT's of one substring at a time and then merges
it with the result of the previous merge. Of course, the com
putation time of the PMT's can be overlapped with the time
of merging these PMT's. Moreover, several PMT's can be
merged together simultaneously, achieving parallelism in
merging also. But simultaneous merging is done at the cost of
a uniform design. Instead we can merge groups of several
adjacent stages (i.e. PMT's) sequentially and between the
groups in parallel. This is explained in Figure 12 below. The
bits of stage i are 'AND'ed with the oits of stages up to i + 3.
For example, the C bits of stage i are 'AND'ed with the C bits
of stage i + 1. These resultant bits of stage i + 1 are 'AND'ed
with the C bits of stage i + 2, and so on. The figure above
shows that the bits of stage i have no effect on those of stages
after i + 3. Therefore, only the stages i thru i + 3 have to be
merged sequentially and we merge PMT's by 'AND'ing bot
tom (m - 1) bits of each stage with the top (m - 1) bits of the
next. Assuming the substrings are of equal lengths in Figure
12, the groups to be merged sequentially are as follows:
(1,2,3,4), (2,3,4,5), (3,4,5,6), and so on. If the length of each
substring is n then the number of stages within a group is
[~] + 1. For varying length substrings this will be given by the

Highly Parallel Associative Search 525

following condition: stages i thru i + j have to be merged in
sequence if

ni+ 1 + ni+Z + ... + ni+j-I < m - 1
and ni+1 + ni+Z + ... + ni+j::::=m-l

Since the 'AND' operations are associative we could use the
following repetitive steps to perform the above merging:

1. Merge all adjascent pairs in parallel
(1,2,), (2,3,), (3,4,),

2. Repeat Step 1 [~] times.

HARDWARE IMPLEMENTATION OF THE ABOVE
ALGORITHMS AND THEIR APPLICATION TO
NONNUMERIC PROCESSING

Introduction

The concepts and algorithms developed in the previous sec
tions can be applied to database machines where the content
searching is done in hardware. In database management sys
tems and text processing systems bulk-data is stored on the
auxiliary storage, which can be head per track disk, bubble
memory, CCD devices, or others of this type. These memory
devices are sequential-access within each cell called track and
random-access between cells. Because a piece of data once
read off the device cannot be read again until after one com
plete rotation, pattern-matching algorithms must use the
character only once for comparison with the pattern. Since
characters are read at high speed, the comparison has to be
done at a comparable speed to keep it up with the speed at
which characters are being read. The "Logic per track" tech
nique has been applied by many authors to match patterns on
the storage device directly when the data is on the fly. We will
discuss several techniques here which are based on the con
cepts· developed in the previous sections. This hardware
associative-search is also appropriate for pattern matching in
large-text file editing systems. Many efficient pattern match
ing algorithms for text editing systems are in existence. 9

,1 But
these are complex software algorithms and the complexity is
due to the Von Neumann machine architecture. Data-hand
ling mechanics of on-line text editors is rather inefficient,
because the machines they are implemented on require a com
plex interaction between the auxiliary and the primary stor
ages. 17,18,19 The technique discussed here is the hardware solu
tion of the content searching problem. The searching is done
directly on the auxiliary storage.

A hardware algorithm for finding a match for the pattern
YI ,Yz ... Ym in a text string consisting of fixed length substrings
XI ,Xz ••• Xn is given below. The hardware organization of the
algorithm is shown in Figure 13. The output lines marked * in
the figure do not depend on status bits Si' s. When n < m ,
however, all output lines including some of the feedback lines
may become dependent.

Algorithm 3.
Step 1. SI ~ Sz~ ... ~ Sm-I ~ '1'
Step 2. Compare X and Y and compute the PMT

526 National Computer Conference, 1981

* {' ::~'
n

f n+1

fn+2

f n+m+l

Figure 13-A single stage matching circuit

Step 3. Perform/; ~/; /\ Si fori = 1,2, ... ,m -1, Out
put lines/; for i = 1,2, ... , n represent match at
the ith character of the text substring.

Step 4. Si ~ fn+i for i = 1,2, ... ,m - 1
Step 5. Go to Step 2.

Implementation issues and modular design

For large patterns the hardware to find PMT's or to imple
ment it in a single chip may be impractical. On the other hand,
we can arbitrarily break a pattern into smaller subpatterns and
cascade the results of each of these subpatterns. Thus, the
implementation of each of these stages can be made very
simple and repetitive. Cascading of stages also becomes sim
ple because there will be fewer lines between stages, as shown
in Figure 15 below. Here we will be using the stage of Figure
13 as the basic building block. The output lines of each stage
will be cascaded forward to the next stage as follows. The top
(n - 1) output lines of ith stage are connected to the bottom
(n - 1) status lines of the (i + l)th stage. The nth output line
of the i th stage is connected to the m th status line of the next
stage through a delay. There are altogether m + n - 1 status
lines out of which m - 1 are coming from the feedback lines
of the same stage. The functioning of the circuit of Figure 14
is described in algorithm 4 below. It is assumed that there are
j numbers of stages.

Algorithm 4.
Step 1. Initialize: s~ ~ s~ ~ ... S;'-I ~ 1

The superscript represents the stage number.
Step 2. (a) s;, ~ S;'+I ~ ... S;'+n-I ~ 1

(b) Read ti!e next text substring and compute the
PMT's for all the stages.

f n-1
fn

fn.+1

fn+2

Figure 14-Multistage matching circuit

Stage i Stage i+1 Stage i+2

Figure 15-Gate delays for merging

}to next
stage

Sl

S2-

Sm_

feedback
line

Step 3a. f7 ~ f7 /\ s7 for i = 1,2, ... ,n - 1, k = 1,2, ... ,j
Step 3b. s!!l~ f7 for i = 1, ... , n - 1, k = 1,2, ... ,j - 1
Step 3c. f!+i ~ f!+i /\ S!+i for i = 1,2, ... , n - 1, k =

1,2, ... ,j
Step 3d. Iterate steps 3a thru 3c [~] number of times. No

Step 4.
Step 5.
Step 6.

iteration is necessary when n ~ m.
S7 ~ f!+i for i = 1,2, ... ,n - 1, k = 1,2, ... ,j
S!+I ~ f"
Go to Step 2.

Steps 2 through 5 are called the major cycle while 3a thru 3c
are in the minor cycle. The iteration of the minor cycle is
required when n > m. This is because a text substring may
extend over several subpatterns requiring concatenation of
the subpatterns within the same major cycle. When n ~ m no
such iteration is necessary because a substring does not extend
over subpattern. In the latter- case a subpattern will extend
over text substrings requiring concatenation of the substrings
per subpattern. This is taken care of by the major cycle. Thus
the algorithm above is greatly simplified when n ~ m. Steps
3a, 3b, and 3c can be performed in parallel and then iterating
them once more. Similarly Steps 4 and 5 are also done in
parallel.

9765-AFIPS Pramanik-4, 1514-1518

Computation of cycle time

2/9765

Text substrings are read from the auxiliary storage se
quentially one at a time and are compared against all the

subpatterns simultaneously. A cycle begins with the reading
of a text substring and ends before the next substring-read
starts. Thus a search time per substring must be less than or
equal to the cycle time. The search time consists of the time
to compare the substring against each of the subpatterns and
the time to merge the result of these comparisons. In fact, the
time to compare against each of the subpatterns in the cUl:rent __
cycle can be overlapped with the merging time of the previous
cycle. The relative sizes of nand m determines the merging
time. When n ~ m, r::'l + 1 stages have to be merged in se
quence, consequently the merging time is r::'l + 1 gate delays.
When n < m the merging time is two gate delays. Figure 15
shows the merging time of 3 gate delays because r::'l = 2. It is
theoretically possible to minimize this time by merging several
stages simultaneously. Here the reduction in merging time is
achieved at the cost of a modular design as shown above.

Cellular design and generalized associative search model

We can make the design of each stage above simpler by
choosing the subpattern arbitrarily small. The design can be
further simplified by selecting arbitrarily smaller text sub
strings. Moreover, the design of each stage can be made inde
pendent of the size of the text substring read from the storage
device. Thus the model developed above is now generalized to
searching several text substrings at a time instead of only one.

---+ nth. forward line,-·-·+(m-l)feedback lines, ~ (n-l) forward lines

Xl = xl x2- - -xn

! Xl Xl ! X

! !

-.... h
Y2 output

lines
matched

~~~!~ feed bac~ 
\ 

at Xl 
\ 

" 
\ Ii; 
\ ! \ 

r " -~h 
Y2 

output 
lines 
matched 

~, , .at X2 

I \ I 
, I 

i-
II t ::... 

t 

Xj = x(j_l)x(j_l)n+2Xjn 
I 

\ i X j " Xj 

" 
\ 

\ \ 

ouJiut 
Y2 

lines 
matched 

-r " : 
at Xj 

" i 

~ 
" " ~ i ~ 

A 

I ~ 

-.-.; ',. ... ,; '" .... ; 
Figure 16-Generalized matching circuit 

Highly Parallel Associative Search 527 

We will achieve this by cascading stages in two dimension as 
shown in Figure 16 below. 

The output lines of the right most stages in the diagram give 
the result of complete matches. The result of partial matches 
can be obtained from the output of intermediate stages. The
.stages in the second column for example, gives the matches 
for the pattern Y\, Y2 • The DELAY at -the bottom provides 
synchronization between the text substring Xi in the current 
cycle and Xj+ \ of the next cycle. Xj + \ through X2j are the text 
substrings of the next cycle. 

Initialization of this circuit is done by setting the incoming 
feedback lines of the first stage of first row to 1 'so There are 
no forward lines coming into the stages of the first column. 
These lines are permanently set to l's. 

The cycle time is determined in gate delays and each gate 
delay is due to the propagation of a forward or a feedback 
signal through a stage. Comparison of a substring with a sub
pattern for all the stages is assumed to be done---in parallel. 
These operations can also be overlapped intime withL1re 
propagation of the forward and feedback signals of the pre
vious cycle. Thus, the maximum delay per cycle for the above 
circuit is i + j - 1 gate delays. 

Implementation of a single stage 

A stage can be implemented by. interconnecting simple cells 
as shown below. A cell consists of a single character text 
substring Xj and a single character subpattern Yi as shown in 
Figure 17 below. 

Thus a cell defined above is a special case of a stage where 
substrings are one character long. A stage can be constructed 
by interconnecting several cells in the same way stages were 
interconnected in Figure 16. Since the subpattern and the text 
substrings are one character long, there won't be any forward 
and feedback lines from each stage. The output lines f;j of 
each cell correspond to the nth forward line of each stage of 
Figure 16. Thus a stage of n text characters--in<f In pattern 
characters is as shown below. 

The maximum delay for this circuit is m gate delays. This 
can be reduced by processing outputs of several cells simulta
neously by look ahead circuits. The following design of a stage 
with 3 text characters and 3 patterns characters has only one 
gate delay. 

CONCLUSION 

This paper describes several hardware algorithms for finding 
pattern matches in a linear text string stored on a circulating 

x. ·1 y. r-- f .. 
J 1 lJ 

f .. =1 when x. = y. 
lJ J , 

=0 when x. 
J 

; y. , 
Figure 17-A basic cell 



528 National Computer Conference, 1981 

xl--t-.------_---,,--______ ~ 

x~-_+-.-----~--T----r_--, 

(n-1 ) 
forward 
lines 

nth forward 
1 ine 

}

(m-l) 
L--______ +----=-=_:~ feedback 

'--------------1---- lines 

Figure 18-Design of a stage 

type device. The search process here is highly parallel because 
the text string is split into smaller substrings, and the search 
progresses within each cell in parallel. Reduced complexity of 
the hardware is achieved by properly cascading many simple 
cells, where each cell can be a single character comparator. 

REFERENCES 

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, "The Design and Analysis of 
Computer Algorithms" Addison-Wesley, 1975: Reading, MA. 

2. G.F. Amelio, "Charged-coupled devices for memory applications", AFIPS 
Conf. Proc. Vol. 44 pp. 515-522, 1975. 

3. R.M. Bird, J.e. Tu and R.M. Worthy, "Associative/parallel processors for 
searching very large textual data bases", 3rd Workshop on Computer Archi
tecture and Nonnumeric Processing, Syracuse Univ., Syracuse, NY, May 
17-18, 1977. 

4. G.P. Copeland, G.J. Lipovsky, and S.Y.W. Su, "The Architecture of 
CASSM: A cellular system for nonumeric processing", 1st Annua! Symp. 
on Computer Architecture, 1973. 

5. C.J. Date, "An Introduction to Database Systems" 2nd Edition, Addison
Wesley, 1977: Reading, MA. 

6. J.F. Gimpel, "Algorithms in SNOBOL4", Wiley Interscience, 1976. 
7. A.K. Gillis, et aI., "Holographic memories-fantasy or reality?". AFlPS 

Conf. Proc. Vol. 44 pp. 535-539, 1975. 
8. N.e. Hughs, et aI, "BEAMOS-A new electronic digital memory", AFIPS 

Conf. Proc. Vol. 44, pp. 541-548, 1975. 
9. D.E. Knuth, J.H. Morris, and V.R. Pratt, "Fast pattern matching in 

strings", SIAM J. Comput. Vol. 6, No.2, pp. 323-350, June 1977. 
to. C.S. Lin, D.e.P. Smith, J.M. Smith, "The design of a rotating associative 

- r 
I 

Figure 19--Design of a single stage with one gate delay 

forward 
1 ines 

memory for relational database applications," ACM Trans. Data Base Sys
tems, Vol. 1, pp. 53-65, 1976. 

11. Stephen W. Miller, Ed. "Memory and Storage Technogy-@Vol. II" 
AFfPS Press, 1977. 

12. N. Minsky, "Rotating storage devices as partially associative memories," 
Proc. ACM SIGFfDET Workshop on Data Description, Access, and Con
trol, 1972. 

13. Amar Mukhopadhyay, "Hardware algorithms for nonnumeric com
putation", IEEE Trans. Comput., Vol. C-28, June, 1979. 

14. E.A. Ozkarahan, S.A. Schuster, and K.e. Smith, "RAP-An Associative 
processor for database management", National Computer Conference, 
1975. 

15. B. Parhami "A highly parallel computer system for information retrieval", 
Proc. Fall Joint Computer Con/., 1972. 

16. J.L. Parker, "A logic per track retrieval systems", IFfP Congress, 1971. 
17. S.B. Pramanik, Edgar T. Irons "A data-handling mechanics of on-line text 

editing systems with efficient secondary storage access", National Compu
ter Conference, 1979. 

18. S.B. Pramanik, "A mathematical model of character string manipulation", 
National Computer Conference, 1980. 

19. S.B. Pramanik, "MAP EDITING", Ph.D. Thesis, Yale University, 1974. 
20. e.V. Ramamoorthy, J.L. Turner, and B.W. Wah, "A design of a fast 

cellular associative memory for ordered retrieval", IEEE Trans. Comput. 
Vol. 2-27, Sept. 1978. 

21. S.Y.W. Su, G.P. Copeland, and G.J. Lipovsky, "Retrieval operations and 
data representation in a context addressed disk system", Proc. A CM Pro
gramming Languages and Information Retrieval Interface Meeting, 1973. 

22. D.L. Slotnick, "Logic per track devices", Advances in Computers, Aca
demic Press, 1970. 



A generalized database access path model 

by GEORGES S. NICOLAS 
The MITRE Corporation 
McLean, Virginia 

ABSTRACT 

Access paths are essential for the operation of database access 
methods, and their structures can greatly influence the search 
efficiency and storage requirements. In this paper we develop 
a general access path model that is shown to characterize a 
wide class of file organizations. An integrated file organiza
tion, which includes all the basic file organizations as special 
cases, is subsequently derived. If used as the underlying struc
ture for a database, this integrated file organization can be 
subjected to optimization techniques to yield an optimal data
base performance. 

INTRODUCTION 

Access paths are essential for the operation of database access 
methods, and their structures can greatly influence the search 
efficiency and storage requirements. All of the important 
structures underlying a database system can be characterized 
by modelling the corresponding access paths. When opti
mized, the access paths structures will produce efficient or
ganizations for the corresponding database files. 

Generalized access path and file organization modelling 
have been studied by many researchers. The most important 
results are reported by Hsiao,l Yang,2 Severance/ and Yao.4

•
5 

However, in every case the model presented suffers from lack 
of completeness and/or of significant practical value. 

In this paper, we will develop a general access path model 
capable of characterizing a wide class of file organizations. 
This model will be used to identify a general file organization, 
which will be shown to include all the basic file organizations 
as special cases. More details on this general access path 
model can be found in an earlier article by Nicolas.6 

REVIEW OF BASIC POINTS 

Using the relational model terminology/·8 we consider the 
database as consisting of a collection of named relations in 
normal form. These time-varying relations are of assorted 
degrees; and as time progresses, each n -ary relation may be 
subjected to transformation, extraction, deletion, and alter
ation of som:e or all of its existing tuples. Consequently, we 

529 

think of a file as a normalized relation or as a two-dimensional 
table in which rows correspond to records and columns corre
spond to attributes. The records in a file correspond to occur
rences of a single record type that describes a specific class of 
real-world entities. A record is subdivided into a number of 
fields corresponding to the associated file attributes. The 
fields can, in general, be classified into two kinds: key fields 
and data fields. The contents of key fields, called keys, are 
used to distinguish one record from another and they can be 
used to specify the retrieval criteria in queries. A key is a 
generic key if it appears in more than one record in the file; 
otherwise it is called a non-generic key. 9 

Define a keyword, named K, to be a unique ordered triple 
if, a, v), where f represents a file name, a represents the 
name of one or more concatenated key attributes in the file, 
and v represents a key value from the set of values -in the 
attributes represented by a . 

The physical storage space on secondary storage devices, 
where the database is assumed to reside, is divided into fixed
size blocks that are considered the units of secondary storage 
allocation. A storage cell, hereafter referred to as simply a 
cell, is defined as a logically related set of blocks bearing 
numerically sequential addresses. It is completely specified by 
a cell identifier (CID) and a cell size. The cell is also consid
ered to be a unit of data transfer between the processor main 
memory and the secondary storage devices. 

Cells are divided into two categories: index cells and data 
cells. Index cells are used for storing indexing information, 
and data cells are used to store the records of the database 
files. A data cell may contain records from more than one file. 
Each record is assigned a unique identifier, called the record 
identifier (RID), which indicates the whereabouts of the 
record in the secondary storage space. The RID has two com
ponents: the CID and the record address relative to the cell 
(AID). 

In the next section, the general access path model will be 
developed. 

ACCESS PATH STRUCTURAL MODEL 

The memory elements needed to represent an access path 
structure can be modelled by the following two basic storage 
objects: The data object (DO), which normally contains the 



530 National Computer Conference, 1981 

, 
" , 

I I 
I I 

I I 
/ I 

Data ~ 
objectsD U ~ [] 0 

o Represents a data object 

o Represents an access object 

~ Represents a similarity relationship 

} Represents a hierarchical relationship 

Figure 1-A graphic representation of the access path structural model 

desired data such as a data record, and the access object (AO), 
which usually contains intermediate information leading to 
another object, such as the address of the next object (i.e., the 
address of either an AO or a DO). 

The concept of "successor object" or "next object" is suf
ficient to describe the structural relationships that may exist 
among the various AOs and DOs and that are also necessary 
for the representation of the various access paths. The con
cept is used here to represent a two-dimensional relationship. 
The first dimension, the similarity relationship, pertains to the 
successor object on the same level, and the second dimension, 
the hierarchical relationship, pertains to the successor object 
on the next lower level of the hierarchy. 

A binary-tree-like graph, as shown in Figure 1, is sufficient 
to represent a general access path model. The circles and 
squares represent the AOs and DOs respectively, and the 
double-headed arcs (~) are used to represent the successor 
object relationships. The horizontal arcs represent the sim
ilarity relationships, while the vertical arcs represent the hier
archical relationships. 

Since a DO can be reached from more than one AO, we 
introduce here an imaginary object, called a shadow object* 
(SO), the purpose of which is purely limited to simplifying the 
graphical representation of the access path model. Those 
shadow objects are shown as small circles in Figure 1. For each 
DO there exist as many SOs as there are AOs associated with 
this given DO. This association, a function from the set of SOs 
onto the set of DOs, is represented in Figure 1 by the dashed 
lines between the SOs and the corresponding DOs. As an 
example, in muItilist or inverted list file organizations, a data 
record with d key fields may be associated with d lists, and 
consequently can be reached via d different access paths. This 
record, a DO, is thus associated with d different SOs, one SO 
for each list. 

* They are also referred to as virtual records. 

Let a DO represent a data record, and let the first, second, 
and third level of AOs, as seen in Figure 1, represent the 
hierarchy of the keyword, CID, and RID levels respectively. 
The vertical arcs representing the transitions between the 
levels of the hierarchy are interpreted as follows: a vertical arc 
emanating from an AO on the keyword level serves to reach 
all the corresponding cells associated with the keyword. In 
turn, a vertical arc emanating from an AO on the CID level 
serves to reach all the corresponding records associated with 
the keyword and located in the cell. Finally, a vertical arc 
emanating from an AO on the RID level serves to reach a 
unique shadow object representing a data record associated 
with the keyword. Thus the vertical arcs serve to identify 
unique access paths from each keyword to all of its associated 
data records. We interpret the horizontal arcs as serving to 
represent a particular sorting order of the elements of each of 
the three levels, as dictated by the particular file organization. 
As an example (see Figure 1), the third AO on the first level 
reaches two AOs on the second level, the first and second of 
which reach one and three AOs respectively on the third level. 
In turn, each one of those AOs on the third level reaches a 
unique shadow object assigned to a data record (DO). 

Model Interpretation 

Let an AO be associated with an ordered pair (x,y) of 
object (AO or DO) addresses, whereby x and y represent the 
addresses of the two successor objects on the next and same 
levels respectively. A successor object can be located in any 
one of four possible locations with respect to the given AO: 

1. In a cell not containing the given AO, but with a variable 
displacement from the cell. 

2. In a cell not containing the given AO, but with a fixed 
displacement from the cell. 

3. In a cell containing-the given AO, but with a variable 
displacement from the AO. 

4. In a cell containing the given AO, but with a fixed dis
placement from the AO. 

The time consumed by the access method is modelled by the 
time spent traversing the arcs from the AOs to their successor 
objects. This time is then a function of the actual values of 
(x,y) associated with the given AOs. Hence, the arcs can be 
marked to indicate the amount of time consumed by the cor
responding traversals. 

Here an arc is assumed to be marked if it takes anyone of 
the following four possible graphic representations: the solid 
shank with a heavy tip ( ...... ), the dashed shank with a heavy tip 
(-.~), the solid shank with a light tip (~), and the dashed 
shank with a light tip (--~). These four arc representations 
correspond to the four previously listed cases describing the 
possible locations of the successor object with respect to its 
associated* AO. Note that the shank is associated with the 
displacement (fixed or variable) of the next object from the 
current object, and the tip is associated with the location 

* A special value for y can be used to indicate that the corresponding AO has 
no successor on the horizontal level. In this case, no horizontal arc will be shown 
in the graph. 



(same or different cell) of the next object with respect to the 
current object. Consequently, the shank models the storage 
requirement while the tip models the access time. Also note 
that it is not necessary to mark the AO nodes, since the 
associated (x,y) values are directly related to the correspond
ing arc representations (i.e., a given unique value for x or y 
dictates a unique arc representation, and vice versa). 

Since x (y ) can be anyone of four possible types, the set of 
vertical (horizontal) arcs for a given level of AOs can be one 
of fifteen (24 - 1) possible combinations (the power set with 
the exception of the null set <1». As an example, all arcs being 
-is one combination, all arcs being .. ~ is another combina
tion, and some arcs being ~ and the rest of the arcs being ...... 
is yet another combination. Hence, an AO level can take one 
of 15 x 15 = 225 possible representations, and the three AO 
levels produce a total of (225)3 possible representations. Con
sequently, it can be said that there exist a corresponding 
(225)3 classes of file organizations. 

Fortunately, it can be easily shown that the majority of the 
(225)3 possible representations are impractical, inefficient, or 
insignificantly different. Hence, they can be eliminated from 
further considerations. As an example, consider the horizon
tal arcs of the first-level AOs: the three combinations of all 
arcs being .-~, all arcs being ~, and some arcs being .-~ and the 
rest of the arcs being ~ are not practical. In addition, the 
three combinations of all arcs being ~, all arcs being .... , and 
some arcs being -+-and the rest of the arcs being .... are less 
efficient than other possible combinations. Thus, only nine 
combinations should be considered out of the fifteen possible 
combinations for the horizontal arcs of the first-level AOs. As 
an additional example, consider the vertical arcs of the third
level AOs. The only feasible combinations are: all arcs being 
~, all arcs being .-~, and some arcs being ~, some .-~. Thus, 
only three combinations should be considered out of the fif
teen possible combinations for the vertical arcs of the third
level AOs. It is concluded that the number of potential file 
organizations is several orders of magnitude smaller than 
(225)3. Moreover, these potential file organizations are real
ized by the basic file organizations (discussed in the next 
sub-section) and their many possible variations. The ex
amples* in the next sub-section will serve to illustrate how the 
structural access path model can characterize the various po
tential file organizations. 

File Organizations 

The basic file organizations can be classified into the follow
ing categories: 9

•
11 

A. Sequential Organization 
B. Primary Keyed Organization 

B .1. Direct Organization (also called Hashed or 
Mapped Random Organization) 

B.2. Indexed Organization 
B.2.1. Indexed Sequential Organization 
B.2.2. Indexed Random Organization 

* For the examples, the DOs are not shown in the corresponding graphs. 

A Generalized Database Access Path Model 531 

Keyword~ Level 

C/O 
Level cell transition 

- : ;( 
L~~/ c{--V-Y-V-~--9--V-Y--y.~ 

I I I I I I I I I 

~?~~O 6 0 6 0 6 0 0 0 

Data 
area 

aJ Access path Model Representation 

the symbols K)~ and..A represent a keyword, 
a C/O or RID, and a record respectively. 

[[]~ rn ___ [iJ ___ Q 
rii1 I 
~ I 

(]] 0 

b) File Structure Representation 

Figure 2-An example of sequential file organization 

C. Secondary Keyed Organization 
C.1. Multilist or Multi-chained Organization 
C.2. Inverted List Organization 
C.3. Cellular List Organization 

An elaborate file organization is usually made up of some 
combination of the previously listed basic organizations (e.g., 
rings, two-way chains, trees, plexes, and inverted bit-map 
organizations) . 

There are two general methods for gaining access, via key
words, to data records. The first is the index or table look-up, 
and the second is an algorithmic translation or hashing. The 
index, required for secondary keyed organizations, is by itself 
a file usually stored in the same medium as the data files. 
Hashing functions, applicable only to primary keyed organiza
tions, do not normally require any extra storage. Being a 
simple and special kind of file, the index file is cast in a 
primary keyed organization allowing a relatively large scope 
for compaction and optimization techniques. 

In the remainder of this subsection it will be shown how the 
basic file organizations can be characterized by the gener
alized structural access path model. In each of the Figures 2 
to 8, an example of both an access path model and a file 
structure representation for the basic file organizations are 
shown. As we discuss the access path model in each of these 
figures, the reader should examine the corresponding file 
structure representation exhibited in the-same figure. 

Figure 2 represents a typical Sequential file organization. 
One entry point to the data records is needed, as represented 
by the single AO on the keyword level. The only AO on the 
CID level does not have a horizontal successor. However, its 
vertical successor occupies a fixed location in the same cell. 
The first five AOs on the RID level share the same cell, while 



532 National Computer Conference, 1981 

a) Access path Model Representation 

Index 
area 

Primary 
data area 

OverfkM 
area 

~I"not shown in fig.3Q 

etc... '---__ .-J 

o 
Q 

I 
I 

o 

1--:_7 ~--- [ ~ I 
b) File Structure Representation 

Figure 3-An example of Indexed Sequential file organization 

the next four AOs share the next physically contiguous cell. 
Consequently, as also seen from the shadow objects, the first 
five records are contained in the same cell, while the next four 
records are contained in the next physically contiguous cell. 
Note that no storage space is required for the CID and RID 
level ADs, as evident from the nature of the arcs (i.e., --~ and 
__ ~ with dashed shanks). 

Figure 3 represents a typical Indexed Sequential file or
ganization. The keyword level represents the lowest level in a 
multilevel index structure. The figure shows that the first 
three index elements are in one cell, whereas the next two and 
the last four elements are located in the next two physically 
contiguous cells, respectively. For each AD on the keyword 
level there exists one and only one AD on the CID level. In 
turn, for each AD on the CID level there exists one or more 
ADs on the RID level. The figure indicates that the first four 
records are physically contiguous in the same cell, while the 
next three overflow records are physically contiguous in an 
arbitrary overflow cell. Note, for example, that none of the 
RID level ADs, except for those leading to overflow cells, 
require any storage space (this is due to the arcs with dashed 
shanks). 

Figure 4 represents a typical Indexed Random file organiza
tion. The keyword level represents the lowest level in a multi
level index structure. The figure shows that the first three 
index elements are located in one cell, the next two elements 
are located in the next physically contiguous cell, and the last 
four elements are located in an arbitrary cell. The vertical arcs 

Data 
area 

a) Access path Model Representation 

b) File Structure Representatioo 
Figure 4-An example of Indexed Random file organization 

Primary 
data crea 

Overflow 
area 

oj Access path Representation 

overflow b--'--~ 
):~ overflow 

D 
D 

I 
I o 

rr---~ 

b) File Structure Representation 

)'('nol shown 

irll'3 54 

Figure 5-An example of Mapped Random file organization 



Keyword 
Level 

CIO 
Level 

RID 
Leve/ 

I 
I 

-~~ 

%~ 
I I 

Shadow ~ 
objects U 

I a 6 
a) Access path Model Representation 

Accessimr~-L......J.--I 

Data 
area 

D 
):~not shown in fig 6a 

b) File Structure Representation 
Figure 6-An example ot Inverted List file organization 

KeYWOrdt_~_~-o-o--!-O-;{) L:: +,k <k +£k +vt +" +d 
Level 

I I I 

L::~ ¢----v--.9 ~ ~ 
I I I I I I I I I I 
I I I I I I I I I I 

Sh9dow6 6 <5 0 <5 <5 6 6 ~ 6 
objects 

Index 
area 

Data 
area 

a) Access path Model Representation 

b) File Structure Representation 
Figure 7-An example of Multilist file organization 

A Generalized Database Access Path Model 533 

Keyword 
Level 

CID 
Level 

RID 
Level 

I 
I 

Shadowo 
objects 

Index 
area 

Accession 
lists area 

Data 
area 

a) Access path Model Representation 

b) File Structure Representation 

Figure 8-An example of Cellular MuItilist file organization 

of the keyword level AOs represent the RIDs corresponding 
to the unique keywords in the primary key attribute. Note that 
there exists a one-to-one correspondence between the sets of 
AOs at the various levels and that none of the AOs at both the 
CID and RID levels require any storage space. 

Figure 5 represents a ty]JICaTMapped RanoomiJ.R;urganiza
tion. The AOs at the keyword level represent the arguments 
used by the appropriate mapping function. A vertical arc at 
this level represents the RID of the first record in a group of 
commonly mapped records. The values of RIDs are generated 
by the appropriate mapping function only when needed and 
thus need not be permanently stored in the database. 

Figures 6, 7, and 8 represent typical Inverted List, Multilist, 
and Cellular Multilist file organizations. The AOs at the key
word level represent the unique keywords from the various 
indexed attributes. The CID level AOs, for both Inverted List 
and Cellular Multilist organizations, represent the various sets 
of RIDs and CIDs, respectively. Each set is associated with an 
AO at the keyword level. The horizontal arcs-oflhe RID level 
AOs, for both the Multilist and Cellular Multilist or
ganizations, represent a chain of pointers linking the records 
associated with the same AO at the CID level. For each AO 
at the keyword level there exists one and only one AO at the 
CID level fOr Multilist organizations. However, in. a . cellular 
organization, for each AO at the CID level there exists one or 
more AOs at the RID level such that the corresponding 
records are located in the same cell. The rest of Figures 6 to 
8 is self-explanatory. 



534 National Computer Conference, 1981 

Keyword 
Level 

CID 
Level 

RID 
Leva 

I 
I 

Shadow .:li. 
objects U 

Figure 9-Access path model representation of type T; file organization 

INTEGRATED FILE ORGANIZATION 

It is shown in this section that only three principal file organi
zations are necessary to replace the basic file organizations 
and their possible variations. 

Figure 9 shows a one-to-many mapping from the set of 
keyword level AOs to the set of CID level AOs, and a one-to
one mapping from the set of CID level AOs to the set of RID 
level AOs. This kind of access path structure was also shown 
to characterize the Inverted List file organization (see Figure 
6). Hereafter, this structure will be referred to as type T; 
structure (remember inverted). 

Figure 10 shows a one-to-many mapping from the set of 
keyword level AOs to the set of CID level AOs, and a one-to
many mapping from the set of CID level AOs to the set of 
RID level AOs. This kind of access path structure was shown 
to characterize the Cellular Multilist file organization (see 
Figure 8). However, the RID level arcs in Figure 8 assume the 
swapped values of their counterparts in Figure 10. The struc
ture of Figure 10 is adopted here, since, in contrast to the one 
shown in Figure 8, it does not require any modification to the 
data record structure. Hereafter, the structure shown in Fig
ure 10 will be referred to as type Tc structure (remember 
cellular). 

Figure 11 shows a one-to-one mapping from the set of key
word level AOs to the set of CID level AOs, and a one-to
many mapping from the set of CID level AOs to the set of 
RID level AOs. The access path structures for the basic file 
organizations shown in Figures 2 to 5 and Figure 7 are special 
cases of the structure shown in Figure 11. The proofs are 
straightforward. As an example, if at the RID level,- we let the 
horizontal arcs assume -... and ~ and all the vertical arcs 
assume ._-,., then we ended up with the Multilist file organi
zation (see Figure 7a). Hereafter, the structure shown in 

Keyword 
Level 

CIO 
Level 

RID 
Leva 

Figure lO-Access path model representation of type Tc file organization 

Figure 11 will be referred to as type Td structure (remember 
distributed). 

Finally, we conclude that the three principal access path 
structures (T;, Tc, Td ) are sufficient to cover the seven basic 
file organizations and their possible variations. Hence, an 
access path structure in which a tree with a keyword level AO 
as a root takes on any of the three principal structures (T;, Te , 

or T d) can form the architecture of a corresponding integrated 
file organization. This integrated organization can be used as 
the underlying file organization for a database, and con
sequently, it can be subjected to performance optimization. 

CONCLUSION 

A general access path model has been developed in this paper. 
This model is capable of characterizing a large class of file 
organizations. Three principal access path structures, which 
can be used to model an integrated file organization, have also 
been identified. The integrated file organization, which in
cludes all the basic file organizations as special cases, is capa
ble of supporting the multidimensional key access feature. 
This organization is a general and flexible organization, and 
any of its components can change its structure dynamically. 
Hence, if it is used as the underlying structure for a database, 
the integrated file organization can be subjected to optimiza
tion techniques6 to yield an optimal database performance. 

ACKNOWLEDGMENT 

The author wishes to thank Dr. Jerome R. Cox of Washington 
University in St. Louis for his constructive comments during 
the development of this access path model. 

REFERENCES 

I. Hsiao, D. Systems Programming, Concepts of Operating and Data Base 
Systems. Addison-Wesley Inc., Reading, Massachusetts, (Chapter 6), 1975. 

2. Yang, C.S. "A Class of Hybrid List File Organizations," Information Sys
tems, 1975, Volume 3, pp. 49-58. 

3. Severance, D.G. "A Parametric Model of Alternative File Structures," 
Information Systems, 1975, Volume I, pp. 51-55. 

Sequential, Indexed Sequential, Indexed Random, Mapped 
Random, and Multifist organizations are special cases of 
type T c/ Fife organization 

Figure ll-Access path model representation of type Td file organization 



4. Yao, S.B. "Evaluation and Optimization of File Organizations Through 
Analytic Modeling," Ph.D. Dissertation Presented to the University of 
Michigan, Ann Arbor, Michigan, 1974 

5. Yao, S.B. "An Attribute Based Model for Data Base Access Cost Anal
ysis," ACM Transactions on Data Base Systems, March 1977, Volume 2, 
Number 1. 

6. Nicolas, G.S. "Access Path Optimization in Multidimensionally Accessed 
Database Files," Sc. D. Dissertation Presented to the Sever Institute of Wash
ington University, St. Louis, Missouri, 1979. 

7. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks," 

A Generalized Database Access Path Model 535 

Communications of the ACM, June 1970, Volume 13, Number 6. 
8. Codd, E. F. "Further Normalization of the Data Base Relational Model," 

Data Base Systems, Courant Computer Science Symposia Series, Volume 6. 
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1972. 

9. Lefkovitz, D. Data Managementfor On-Line Systems. Hayden Book Com
pany, Rochelle Park, New Jersey, 1974. 

10. Martin, J. Computer Data-Base Organization. Prentice-Hall Inc., Engle
wood Cliffs, New Jersey, 1977. 

11. Weiderhold, G. Database Design. McGraw-Hili Book Company, New 
York,1977. 





Database programming with data abstractions 

by BURT LEAVENWORTH 
IBM Corporation, Thomas J. Watson Research Center 
Yorktown Heights, New York 

ABSTRACT 

This paper describes how a general purpose programming 
language supporting the notion of data abstraction can be 
used as a data definition and manipulation language for data
base management systems. The examples used here are based 
on a functional data model and on a database system called 
NDB. However, the approach is not limited to or biased to
wards any particular data model or architecture. The strong 
typing properties of the data abstraction language are carried 
over to the realm of database manipulation operations and 
provide useful consistency checking. The advantage of the 
approach is that the user deals with but one database pro
gramming language, thereby avoiding a separate query and 
host language. 

INTRODUCTION 

There are three basic approachesll to providing database 
access from a general-purpose programming language: 

1. Defining subroutines that execute database requests 
when called (for example, DLlI).5 

2. Embedding database constructs in an existing language 
and using a preprocessor to translate these constructs 
into runtime calls on the database system (for example, 
SEQUEL2).2 

3. Designing a new programming language in which data
base facilities are integrated into the language environ
ment (for example, Date).3 

This paper describes how a programming language support
ing data abstractions (hereafter called XPLS) plus its support
ing module interconnection language (hereafter called the 
external structure) can be used as a database definition and 
manipulation language. The approach is to use the notion of 
programming in the large4 for the purpose of data definition 
and that of programming in the sma1l4 for the purpose of data 
manipulation. 

XPLS is an experimental data abstraction language that was 
designed as an executable design language/ based onCLU. 8 

It has a PL/I-like syntax and is supported by a preprocessor to 

537 

the PL/I compiler. It was not designed originally with data
base applications in mind. 

The XPLS language has been combined with a database 
system called NDB,12 which provides a set of PLiI data 
manipulation routines. A number of languages have been 
developed recently that exploit data abstractions and strong 
type checking but are based on a relational database (see, for 
example, Rowe and Shoens).9 However, the approach de
scribed here is not biased toward any particular database sys
tem or data model. 

A DATA ABSTRACTION LANGUAGE 

XPLS is strongly typed, with respect not only to its primitive 
types but also to new types defined by the programmer. This 
means that type consistency can be checked by the machine at 
translation (preprocessing) time. 

The language has an external structure mechanism, which 
allows the designer to specify the interface properties of mod
ules and view the design of an application at a high conceptual 
level. Thisromponent-aHews the sef)aFate -e-empilation of indi
vidual modules whereby external references within the mod
ule can be checked for consistency. 

Four types of modules are supported: 

Procedure 

XPLS procedures are like conventional procedures except 
that they accept abstract data objects as parameters and (op
tionally) return abstract data objects as values. This type of 
module is usually called an external procedure, in contrast to 
an encapsulated procedure (see the following section). 

Capsule 

Capsules allow the definition of abstract types in terms of 
the characteristic operations on these types. A capsule con
sists of the definition of the internal data representation for 
the abstract type and the definition of the operations (called 
encapsulated procedures) on this representation. Both of 
these components are hidden from the user. 



538 National Computer Conference, 1981 

Figure I-Database/data abstraction environment 

Iterator 

Iterators produce the elements of a collection, one element 
at a time, where the collection is an abstract data object the 
representation of whose data elements is hidden. 

Interface Module 

An interface module is a procedure written in a dialect or 
adjunct of XPLS called IPLS. The purpose of an IPLS pro
cedure is to allow an "escape" into PLiI code while preserving 
the type integrity of the overall program. This approach guar
antees that an IPLS procedure cannot violate the data space 
of XPLS programs. 

For further details on the XPLS language, see Leaven
worth. 6 

Figure 1 is a layers-of-abstraction view of how IPLS forms 
the interface between XPLS and a database. 

FUNCTIONAL DATA MODEL 

The data model we use is based on the functional data model 
and DAPLEX language described by Shipman. \0 This model 
matches closely the architecture of NDB, 12 which is described 
later. The basic constructs of the functional model are the 
entity and the function. Entities represent real-world objects; 
functions, which map entities to other entities, are used to 
model an object's properties. For example, a student may be 
considered an entity and a particular class in which the student 
is registered another entity. The function courses applied to a 
particular student would return a set of entities-that is, all 
the classes that the student is registered in. Finally, if a class 
has an instructor of property, then it is possible to derive an 
instructor of property of a student from the instructor of prop
erty of the classes in which he is enrolled. The function which 
models this type of property is called a derived function. \0 The 
basic constructs of the functional model and the correspond
ing element~ of XPLS are shown below. 

Functional Constructs 
Entity 
Function 
Set 
Derived function 

XP LS Elements 
Data abstraction 
Encapsulated procedure 
Parameterized set 
External procedure 

Figure 2 shows a sample database taken from Shipman. \0 

The nodes represent entity types, and the arrows indicate 
functions mapping their argument types into their result 
types. The double-headed arrow indicates that the function 
returns a set of elements. 

MODELING WITH DATA ABSTRACTIONS 

The external structure allows the designer to specify for each 
data type the operations characterizing the type, and for each 
operation the operation name, types of its parameters, and 
return type (if any). For the purpose of describing data 
models, the operations are used as value-returning access 
functions, which are applied to entities (instances of a data 
type) and return scalar values or other entities. To model a 
database, our approach involves defining abstractions corres
ponding to the entity types of the application. The definition 
of these abstractions takes the place of the conceptual schema 
for a particular database. For example, the external structure 
definition for an employee type would have this form: 

TYPE EMPLOYEE 
DEFINES 
( * : = EMPLOYEE 

NAME( *) ~ STRING 
SALARY(*) ~ INT 
MANAGER(*) ~ EMPLOYEE) 

where the asterisk is used as shorthand for the employee type. 
For a given data model, a parameterized set abstraction 

(generic type) would be defined by a systems programmer or 
database administrator. The particular set abstraction that we 
use for the functional model is given below (we show an ab
breviated version). The operations shown are the retrieval 
and data manipulation functions for the functional model. 
The set abstraction is used by the applications programmer 
and can be instantiated with any of the entity types given by 
the example database. 

TYPE SET < < T:TYPE > > 
DEFINES 
(* : = SET < < T> > 

SOME( * ,PROC(T) ~ BOOL) ~ BOOL 
IN(T,*)~BOOL 

UNION(SET< < * > »~ * 
SEL(*,PROC(T)~ BOOL)~* 

THE(*,PROC(T~BOOL)~T SIGNALS 
(EMPTY) 

Figure 2-University database 



SLICE < < T1 : TYPE > > (* ,PROC(T) ~ T1) ~ 
SET < <T1> > 

INSERT( *, T) 
DELETE(*,T) 
EACH ITER( *) ~ T 
FILTER ITER( * ,PROC(T) ~ BOOL) ~ T) 

SET is a generic type (has type-valued parameters) with the 
type parameter T. Examples of the use of this type are given 
later. The SLICE function is also generic. Its use will 
be shown in one of the examples to follow. The parameter 
PROC(T) ~ BOOL, which appears in several of tI!~ defini
tions, represents a predicate having the parameter T and re
turning a value having the type Boolean. The purpose of the 
THE function is to return the unique element of a set (first 
argument) satisfying a predicate (second argument). If this 
element is not found, the function signals an exceptional con
dition. The EACH iterator returns each element of a set, one 
at a time, and the FILTER iterator returns just those elements 
of the set satisfying a predicate (second argument). 

Figure 3 gives the external structure definitions for the uni
versity database of Figure 2. These definitions represent a 
conceptual schema for this application (note that, for the sake 
of simplicity, string bounds have not been shown). 

DATABASE INTERFACE 

We will describe enough of the architecture of ND B 12 that the 
reader can understand how the interface routines are de
signed. This architecture presents a view of data in terms of 
entities and named binary relationships. In NDB, a single 
kind of data element, called a V-element, is used to model 
entities and values. The V-element, a composite structure, is 
shown in Figure 4. The three components of a V -element are 

1. The identifier of an element representing the entity type 
of the V-element 

2. An identifier that yields access to all connections of this 
element 

3. A value that is a variable-length string 

Given the identifier of a V-element, an application program 
may extract the value by using a function. V-elements may be 
used to represent real-world objects by using a unique char
acter string as the value. All identifiers have the attributes 
FIXED BINARY(31), and the data values stored in V-ele
ments have the attributes CHARACTER(lOOO) VARYING. 

As stated previously, IPLS procedures are used to "escape" 
into PL/I code while preserving the type integrity between 
programs. IPLS procedures are called by XPLS procedures 
(only abstract'scalar arguments may be passed), but not vice 
versa. Tho transfer functions having single parameters are 
provided: AC (abstract to concrete) and CA (concrete to 
abstract). The idea is to transform abstract scalar arguments 
to PL/I scalar types, which can then be manipulated by stan
dard PL/I code. Abstract scalar values are finally passed back 
to the calling procedure by using the' appropriate transfer 
function. IPLS procedures are type-checked in the same man
ner as for XPLS procedures. 

Database Programming with Data Abstractions 539 

TYPE STUDENT 
DEFINES 
(* := STUDENT 

NAME(*)-STRING 
DEPT(.)- DEPARTMENT 
CHANGE_DEPT(*,DEPARTMENT) 
COURSES( *) - SET < <COURSE> > 
CREATE(STRING,DEPARTMENT)- • 
ENROLL(' ,COURSE) 
DROP(*,COURSE) ) 

TYPE COURSE 
DEFINES 
( * := COURSE 

TITLE ( *) - STRING 
DEPT( *) - DEPARTMENT 
INSTRUCTOR( *) - INSTRUCTOR 
CHANGE_INSTR(*,INSTRUCTOR) ) 

TYPE INSTRUCTOR 
DEFINES 
L* : = INSTRUCTOR 

NAME( *)- STRING 
RANK( *) - STRING 
DEPT( *)- DEPARTMENT 
SALARY(*)-INT 
CHANGE_RANK( * ,STRING) 
CHANGE_SAL(*,INT) ) 

TYPE DEPARTMENT 
DEFINES 
( * := DEPARTMENT 

NAME(*)-STRING 
HEAD(*)- INSTRUCTOR 
CHANGE_HEAD( * ,INSTRUCTOR) ) 

Figure 3--Conceptual schema for university database 

An example of an IPLS (function) procedure named 
ZVAL, which returns the value of an element, given the 
element-id as argument, is shown below. 

ZVAL: PRUC{X:1NT) RETURNS(STRINIT«-1000> >; 
DCL Y CHAR(1000) VAR; 
Y=DBV(AC(X»; 
RETURN(CA(Y»; 

END ZVAL; 

This function transforms the abstract INT (integer) scalar 
parameter denoted by X to a fixed binary concrete scalar 

ENTITY TYPE IDENTIFIER 

• ID~ 

• -----II--------i~ CONNECTIONS 

VALUE 

Figure 4-V-element 



540 National Computer Conference, 1981 

using the AC function. The NDB function DBV is applied to 
this scalar and returns a CHAR(1000) VAR value which is 
stored in Y. Finally, this value is converted to an XPLS ab
stract scalar string and returned. 

We now show the definition of the EACH encapsulated 
iterator with its enclosing SET capsule. This gives an example 
of the use of IPLS routines to sequence through the database. 

SET: CAPSULE < < T:TYPE > > EXPORTS 
( ... ,EACH, ... ) WHERE T HAS (COERCE) 
PROC(INT) RETURNS(T); 

EQUATE REP INT; 

EACH: ITER(X:*) YIELDS(T); 
DCL Y INT; 
Y = ZFIRST(X); 
DO WHILE( ---, ZEMPTY(Y»; 

YIELD(T¢COERCE(ZGET(Y») ; 
Y = ZNEXT(Y); 

END; 
END EACH; 

END SET; 

The EACH iterator uses the following IPLS functions (shown 
below in external structure format): 

ZFIRST(INT) ~ INT / *returns first element of set */ 
ZNEXT(INT) ~ INT / *returns next element of set */ 
ZGET(INT) ~ INT / *returns value of element */ 
ZEMPTY(INT)~BOOL /*tests for empty set */ 

To write these routines, and others, one must understand the 
database architecture. However, although the applications 
programmer must understand the data model defined in the 
external structure, he or she does not need to know the data
base architecture. 

The EQUATE statement indicates that the internal repre
sentation for SET is an INT. This integer represents the XPLS 
abstract equivalent of the V-element identifier for the NDB 
set. After Y is initialized to the first element of the set, the DO 
WHILE loop obtains the element identifiers for each element 
of the set, using the ZGET function. Although these are the 
correct objects that will be yielded by the EACH iterator, they 
are of type INT; and it is necessary to transform them (using 
COERCE) to type T to satisfy the type checker. Note that the 
WHERE clause requires that the parameterized type T have 
an encapsulated (function) procedure COERCE, which per
forms the necessary conversion. 

DATABASE QUERIES IN XPLS 

Consider the following declarations: 

DCL STUDENTS SET < <STUDENT> >; 
DCL ST STUDENT; 
DCL EE STUDENTS SET < < STUDENT> > ; 
DCL_ COURSES SET < < COURSE> > ; 
DCL INSTRUCTORS SET < < INSTRUCTOR> > ; 
DCL INSTR INSTRUCTOR; 

GENERIC NAME 
(WHEN (STUDENT) STUDENT¢NAME, 
WHEN (INSTRUCTOR) INSTRUCTOR¢NAME, 
WHEN (DEPARTMENT) DEPARTMENT¢NAME) 

GENERIC DEPT 
(WHEN (STUDENT) STUDENT¢DEPT, 
WHEN (DEPT) COURSE¢DEPT, 
WHEN (INSTRUCTOR) INSTRUCTOR¢DEPT) 

GENERIC COURSES 
(WHEN (STUDENT) STUDENT¢COURSES) 

GENERIC TITLE 
(WHEN (COURSE) COURSE¢TITLE) 

GENERIC INSTRUCTOR 
(WHEN (COURSE) COURSE(tINSTRUCTOR) 

GENERIC RANK 
(WHEN (INSTRUCTOR) INSTRUCTOR¢RANK) 

GENERIC ENROLL 
(WHEN (STUDENT, COURSE) STUDENT¢ENROLL) 

GENERIC DROP 
(WHEN (STUDENT,COURSE) STUDENT¢DROP) 

Figure 5-Macro definitions for conceptual schema 

The types SET < < STUDENT> > and SET 
< < COURSE> > are instantiations of the paramaterized 
type SET. Using the university database in Figure 2, we can 
write an XPLS program to answer the following query: 

Q1. Find all courses taken by EE students. 
EE STUDENTS = SET < < STUDENT> > ¢SEL 

(STUDENTS, (S:STUDENT ~ BOOL; 
DEPARTMENT¢NAME(STUDENT¢DEPT(S» 

= 'EE'»; 
COURSES = SET < < COURSE> > ¢UNION 

(SET < < STUDENT> > ¢ SLICE 
< <SET< <COURSE> > > > 
(EE_STUDENTS,STUDENT¢COURSES) ); 

The SEL encapsulated function has the compound name 
SET < < STUDENT> > ¢SEL, where the prefix SET 
< < STUDENT> > is the (instantiated) type and the suffix 
SEL is the operation name. The second argument of SEL is 
a predicate having a single parameter S of type STUDENT, 
which returns a Boolean value. The expression following the 
semicolon is called the body of the function. The effect of the 
first statement of the program is that EE STUDENTS refers 
to all the STUDENTS satisfying the predicate. The SLICE 
function is generic and has the effect of applying the (selector) 
function STUDENT¢COURSES to each member of 
EE STUDENTS. This will produce the type SET 
< < SET < < COURSE> > > > , and UNION applied to 
the aggregate will produce the type SET < < COURSE> >. 

As a result of the compound names and instantiations, the 
program becomes very cumbersome to write and read. This 
situation can be remedied by the use of generic declarations, 
as shown in Figure 5 and Figure 6. This facility has been 
inspired by the generic functions in PLiI and is roughly simi-



GENERIC COUNT < < T:TYPE > > 
(WHEN (SET < <T> » SET< <T> >¢COUNT) 

GENERIC IN < < T:TYPE > > 
(WHEN (T,SET< <T> » SET < <T> >dN) 

GENERIC UNION < < T:TYPE > > 
(WHEN (SET< <SET< <T> > > > )SET< <T> >¢UNION) 

GENERIC SLICE < < T:TYPE,T1:TYPE > > 
(WHEN (SET < < T > > ,PROC(T) ~ T1) 

SET< <T> >¢SLICE< <T1> » 

GENERIC SOME < < T:TYPE > > 
(WHEN(SET< <T> > ,PROC(T)~BOOL) 

SET < <T> >¢SOME) 

GENERIC SEL < < T:TYPE > > 
(WHEN (SET < <T> > ,PROC(T)~BOOL) 

SET < <T> >¢SEL) 

GENERIC THE < < T:TYPE > > 
(WHEN (SET < <T> >,PROC(T)~BOOL)SET< <T> >¢THE) 

GENERIC EACH < < T:TYPE > > 
(WHEN (SET < <T> » SET < <T> >¢EACH) 

GENERIC FILTER < <T:TYPE> > 
(WHEN (SET< <T> >, PROC(T)~BOOL) 

SET < < T > > ¢FILTER) 

Figure 6-Macro definitions for set abstraction 

lar. When these declarations are in effect, the query can then 
be written: 

EE STUDENTS = SEL(STUDENTS, 
(S:STUDENT~BOOL; NAME(DEPT(S» 'EE'»; 

COURSES = UNION(SLICE(EE STUDENTS, 
STUDENT¢COURSES»; -

At translation time the function invocation NAME(DEPT 
(S» will effectively be expanded to DEPARTMENT¢NAME 
(STUDENT¢DEPT(S». A more complicated example is the 
function SEL. Its type parameter SET < < T > > is matched 
with the type (SET < < STUDENT> > ) of the correspond
ing argument, thereby binding the type parameter T to STU
DENT. The expansion is then SET < < STUDENT> > 
¢SEL. 

The use of this facility allows the programmer to write 
XPLS queries very similar to those in conventional query 
languages. 

The following queries are all written assuming the use of 
these generic declarations. . 

02. What are the names of all EE students taking courses 
from assistant instructors? 

FOR ST IN FILTER(STUDENTS, 
(S:STUDENT ~ BOOL; 

SOME (COURSES(S),(C:COURSE~BOOL; 
NAME(DEPT(C» = 'EE' & RANK 

(INSTRUCTOR(C» = 'ASST PROF'»»; 
CALL PRINT(NAME(ST»; 

END; 

£?atabase Programming with Data Abstractions 541 

The FOR statement works essentially as follows. The iterator 
(FILTER, in this case) will select just those students who 
satisfy the predicate and will bind them one at a time to the 
variable ST. The predicate has a single parameter S of type 
STUDENT and returns a Boolean value. Each time the iter
at or yields a STUDENT, the body of the FOR statement, 
which is the print statement, is executed. This process is re
peated until the iterator yields no further students. 

03. Among the students who are also instructors, list those 
who are taking a course that they teach. 

We first define an external function, COURSEL 
TAUGHT, which is applied to an individual instructor and the 
set of courses to yield the courses which the instructor teaches. 

COURSES_TAUGHT: PROC 
(I: INSTRUCTOR,CS: SET < < COURSE> > ) 
RETURNS(SET < < COURSE> > ); 
RETURN(SEL(CS,(C:COURSE~ BOOL; 

INSTRUCTOR(C) = I»); 
END COURSES_TAUGHT; 

Then the answer to the query is: 

FOR ST IN EACH(STUDENTS); 
INSTR = THE(INSTRUCTORS, 

(I: INSTRUCTOR ~ BOOL; 
NAME(I) = NAME (ST»); 

EXCEPT WHEN(EMPTY) CONTINUE; 
END; 

IF SOME(COURSES(ST),(C:COURSE~ BOOL; 
IN(C,COURSES TAUGHT 

(INSTR,COURSES»» THEN CALL PRINT 
(NAME(ST»; 

END; 

The preceding program illustrates the use of an exception 
handler. If the THE function has a normal return, then the IF 
statement is executed; otherwise, an exception is signalled, 
and the loop is continued (the IF statement is skipped). 

04. Drop introductory physics from John's courses and add 
organic chemistry. 

ST = THE(STUDENTS,(S:STUDENT ~ BOOL; 
NAME(S) = 'JOHN'»; 

CALL DROP(ST,THE(COURSES, 
(C:COURSE~ BOOL; TITLE(C) = 

'INTRODUCTORY PHYSICS'»); 
CALL ENROLL(ST,THE(COURSES, 
(C:COURSE~BOOL; TITLE(C) = 
'ORGANIC CHEMISTRY'»); 

CONCLUSIONS 

We have described how a general-purpose language support
ing data abstractions can be integrated into a database man-



542 National Computer Conference, 1981 

agement system. The systems programmer or database ad
ministrator defines abstractions (using the external structure 
as a data definition language) based on a given data model and 
database and writes interface routines and capsules corre
sponding to the application entities. The applications pro
grammer then uses XPLS as a data manipulation language, 
using the data model to navigate through the data space. The 
functional model was used as the data model in this paper. 

The advantages of using this approach are as follows: 

• The strong typing properties of XPLS are carried over to 
the realm of database manipulation operations and pro
vide useful consistency checking. 

• A general-purpose data abstraction language becomes by 
extension an integrated database programming language. 
In this way, a separate host language and query language 
are avoided. 

The approach is not biased toward any particular data model 
or architecture. 

ACKNOWLEDGMENTS 

I am indebted to Jerry Archibald, Les Belady, Hamed Ellozy, 
Leigh Power, and Bob Taylor for their many valuable com
ments and suggestions regarding the work described here. 

REFERENCES 

1. Archibald, Jerry L. The Yorktown External Structure User's Guide Tech
nical Memo No. 14, Software Technology Project, IBM Research Center, 
Yorktown Heights, New York (Dec 1979). 

2. Chamberlin, D.D., et al. "SEQUEL 2: A Unified Approach to Data Defi
nition, Manipulation and Control." IBM Journal of Research and Devel
opment, 20, (1976), pp. 560-575. 

3. Date, c.J. "An Architecture for High-Level Language Database Exten
sions." Proceedings 1976 ACM SIGMOD International Conference on the 
Management of Data, pp. 101-122. 

4. DeRemer, F. and H. Kron. "Programming-in-the-Large versus Program
ming-in-the-Small." SIGPLAN Notices (June 1975), pp. 114-121. 

5. IBM Corp. IMSIVS Application Programming Reference Manual. Form 
SH20-9026. 

6. Leavenworth, B. XPLS Reference Manual. Technical Memo No. 19, Soft
ware Technology Project, IBM Research Center, Yorktown Heights, New 
York (Aug. 1979). 

7. Leavenworth, B. "The Use of Data Abstraction in Program Design." Pro
ceedings Software Development Tools Workshop Conference, Pingree Park, 
Colorado (1979), to be published by Springer-Verlag. 

8. Liskov, B.H., et al. "Abstraction Mechanisms in CLU." Comm. ACM, 20, 
B (Aug. 1977), pp. 564-576. 

9. Rowe, Lawrence A., and Kurt A. Shoens. "Data Abstraction, Views and 
Updates in RIGEL." Proceedings ACM 1979 National Conference, pp. 
71-81. 

10. Shipman, D. "The Functional Data Model and the Data Language 
DAPLEX." ACM TODS, 1980 (to appear). 

11. Stonebraker, Michael, and Lawrence A. Rowe. "Observations on Data 
Manipulation Languages and Their Embedding in General Purpose Pro
gramming Languages." Proceedings Third International Conference on 
Very Large Data Bases Tokyo, Japan (Oct. 1977), pp. 128-143. 

12. Winterbottom, N., and G.C.H. Sharman. NDB: Non-programmer Data 
Base Facility. Technical Report TR.12.179 (Sept. 1979), IBM United King
dom Laboratories Ltd. 



Feature analysis of selected database recovery techniques * 

by BHARAT BHARGAVA and LESZEK LILIEN 
University of Pittsburgh 
Pittsburgh, Pennsylvania 

ABSTRACT 

Database recovery techniques in a real-time environment for 
so called single-division databases are investigated. A classi
fication of database recovery goals and a classification of data
base system crashes is presented. It is shown that the (best) 
recovery goal is a function of a crash category against which 
the system is to be protected. In particular, for the broadest 
category of hidden hard crashes an actual past state is an 
attainable recovery goal. It is described how to reach this goal 
using a generic recovery technique, based on an idea of a 
database recovery block. The specific recovery techniques im
plementing the generic technique are described. Then the 
representation of each specific recovery technique in terms of 
atomic "primitives" is demonstrated. The claim is made that 
this "divide-and-conquer" approach can facilitate the analysis 
of the database recovery techniques. 

INTRODUCTION 

Database technology is one of the most rapidly growing areas 
of computer science. to The technology makes it possible to 
reduce data redundancy, as compared to independent file 
systems, simultaneously improving I data availability. But it 
also introduces the potential for disaster; the database is now 
more vulnerable to destruction through hardware and soft
ware malfunction. The loss of "quality" in a database, 
especially its total destruction, may be considered a threat to 
the organization owning the database, because data is one of 
its most vulnerable assets. The problems can be further aggra
vated if a database system is to function in a real-time environ
ment. This case is investigated in this paper. 

To avoid confusion let us indicate the meaning of the words 
fault, error and crash (failure) as used here.4 A fault is a 
malfunction in a hardware, software, or human component of 
the system that may introduce or allow to be introduced er
rors. These are items of data or pieces of program incorrectly 
stored or transmitted within the system or lost altogether. In 
due course, an error may cause a crash, which is cessation of 
normal, timely operation by all or part of the system, or 

*This work was partially supported by the grant GTRS 5680-C-00026 of the 
U.S. Department of Transportation. 

543 

delivery to the outside world of incorrect data. We interpret 
a detection of an error at time t as a crash at time t; the 
moment an error is detected, the system must take some 
special actions and its normal operation is disrupted. But it is 
also possible that some crashes will become manifest directly 
and not through detection of errors that cause them. For 
example, in the case of a major hardware breakdown the fault 
and the crash are simultaneous. 

Clearly it is impossible to avoid hardware or software 
crashes in any computing system. Thus the only way to protect 
a database is through the use of recovery techniques that allow 
one to restore the correct database state in the case of partial 
or total database destruction. 

The steps in the ideal recovery process could be as follows: 4 

• the fact that the system has crashed is recognized, either 
through error detection or directly, 

• the type of crash is determined, 
• the faults in the system which caused the crash are 

identified, 
• the extent ofthe damage is determined, in the database, 

programs, system files and elsewhere, 
• a method of recovery is selected, 
• 'faulty programs and hardware units are repaired, 
• the database is repaired or reloaded, as appropriate, 
• restart programs are run which reset the state of the 

system, undo and reprocess any incorrectly applied 
transactions, and re-open contact with the users, and 

• normal processing is resumed. 

Many of the above operations are so complex that we do not 
know how to implement them. After a crash, hard detective 
work must be done to diagnose the original fault. If it is a 
hardware problem, some help might be had from diagnostic 
software or test equipment. Locating software faults is usually 
more difficult. Many of the faults which occur in real-time 
systems are transient, depending on particular combination of 
events and input data. They may be extr~mely difficult to 
reproduce, and if they are ever traced at all, it is usually as a 
result of ingenuity or guesswork by the maintenance pro
grammer.4 It is not a surprise that such informal diagnostic 
methods, let alone correction methods, are far from on-line 
implementation. Yet there exist some approximate solutions 
to the problems of on-line diagnosis and correction of faults. 



544 National Computer Conference, 1981 

invalid state 

valid state 

potential past state 

actual past state 

state immediately 
before crash 

current 
state 

Figure 1-The hierarchy of database recovery goals 

In the following considerations the notion of a division is 
used. We define a division as a logical subset of a database 
such that integrity assertions of different divisio~ are mutually 
disjoint, and the sum of all divisions constitutes the database. 
In general, database systems can have more than one division. 
If an error is detected in one division, it is possible to carry out 
the recovery process for that division alone. While a g!ven 
division is under recovery, incoming transactions for other 
divisions may continue to be processed. This approach in
creases system availability but makes the recovery procedures 
more complicated. 

We are going to refer to a method for increasing reliability 
of software system components, which is proposed by Rand
all. 8 Its basic idea is that all procedures are encapsulated in 
so-called recovery blocks. Each recovery block comprises a 
predicate called "acceptance test" (AT) and a collection of 
alternative procedures for accomplishing the same task. On 
entry to a recovery block, the primary alternative is tried. If 
it succeeds, i.e. passes the AT, a normal block exit follows. If 
it fails, all variables are restored to their values on entry to the 
recovery block, then the second alternative is tried, etc. (In 
general, an acceptance test has a limited ability to detect 
errors, so it is possib-Ie that erroneous results pass the test.) 

After classifying database recovery goals and classifying 
database. crash categories in the next two sections, we show 
that the best attainable database recovery goal is a function of 
a crash category. Finally, we present some selected database 
recovery techniques and analyze their features. 

DATABASE RECOVERY GOALS 

Each database recovery technique can be viewed as contain
ing three phases: 

1. backing up to a past state;" this phase names goals of 
database recovery, as presented below, 

2. restoration of the immediate before-crash state (even if 
this state is not known explicitly), 

3. reexecution of after-crash database operations. 

The hierarchy of the database recovery goals, somewhat 
different from the one presented by 1.S.M. Verhofstad,11 in
cludes (see Figure 1): 

1. The current (after-crash) correct database state (this can 
be a recovery goal only if the database is completely 
protected from crash effects), 

2. the correct database state as it was immediately before 
crash (what "immediately" means is defined by a single 
update operation), 

3. the actual past database state, i.e. a snapshot of the 
correct database as it was some time ago ("some time 
ago" will be defined more clearly by the notion of Data
base Recovery Block), 

4. the potential past database state, i. e., a correct state that 
is a combination of actual past states of database di
visions (these states of database divisions could never 
exist at the same time, but each ofthem did exist at some 
time in the past), 

5. the valid database state, in which only a proper subset of 
database divisions is in a correct state, and 

6. the invalid database state, in which all database divisions 
are incorrect (for a single-division database this goal is 
equivalent to 5). 

The goals higher in this hierarchy, i.e., those with smaller 
indices, are more difficult to attain than those below. This 
interpretation underlies Figure 1. 

At first glance it seems that goals 1 through 4 are defined in 
the dimension of time while goals 5 and 6-in the dimension 
of the database correctness. Our claim that all goals 1 through 
6 are really related in one dimension-that of the database 
correctness-is based on the following approach: more recent 
correct database state is "more correct" than any previous 
correct database state. 

DATABASE SYSTEM CRASH CATEGORIES 

For our purposes we distinguish the following crash cate
gories: 

1. soft crashes, i.e. crashes which do not damage the data
base contents,3.5 

2. hard crashes, i.e. crashes damaging database contents,3.5 
which may be divided into 
a. overt hard crashes, i.e. crashes that are caused by 

instantaneously detectable errors or faults, and in
stantaneously detected after they occur, and 

b. hidden hard crashes, i.e. crashes that are caused by 
errors detected only some time after these errors oc
curred. For example, if an erroneous data item is 
written into a database, this crash can remain hidden 
for a long time before it is recognized through the 
detection of the original error or its consequences. 



In real-life situations, very few crashes are hard. 5 However 
hard crash recovery is very time consuming once it happens. 
Clearly, hidden crashes are the most dangerous; as long as 
underlying errors are not detected, their effects continue to 
contaminate a database. 

DATABASE RECOVERY GOAL 
AS A FUNCTION OF CRASH CATEGORY 

Protecting against all possible types of crashes is in most cases 
impractical. 3 This implies the importance of a function 

recovery goal=f(crash category) 

We understand this shorthand notation in the following 
way. Given a crash category against which we want to protect 
the database, we aim to achieve the best attainable goal for 
this crash category. For example, for soft crashes goall, which 
is the best, can obviously be reached. For hidden hard crashes 
only goal 3 can be reached; more precisely, we will show in 
this report how to attain the goal 3 and we do not know how 
to attain better goals, namely 1 or 2, for this crash category. 
In this sense a crash category implies a recovery goal. 

Recovery goall, the current (after crash) database state, is 
attainable for soft crashes. The generic "technique" is just 
null. 

Recovery goal 2, the immediate before-crash database 
state, is attainable only for overt hard crashes. For crashes of 
this category we record the database state (e.g., just the old 
item value) before each update. If the crash happens during 
the update, we simply restore the old item value. This 
achieves the required database recovery goal, as a crash is 
discovered instantaneously. Specialized techniques for re
covery goal 2 are not investigated here. 

Recovery goal 3, the actual past database state, is attainable 
for the much broader category of hidden hard crashes. The 
generic recovery technique and its most prominent imple
mentation approaches are discussed in the next section. 

Recovery goal 4, the potential past database state, is not 
considered here. It seems to be of value in a multi-division 
database, whereas we assume below only a single-division 
database. 

Recovery goalS, valid database state, and especially goal 6, 
invalid database state, are of no practical value-they leave 
the database seriously damaged and completely destroyed, 
respectively. Because the proposed mechanism allows us to 
maintain at least potential past database state, the valid and 
invalid database states should be seen merely as a closure for 
the theoretical classification of the database recovery goal 
hierarchy. 

TECHNIQUES FOR RECOVERY FROM 
HIDDEN HARD CRASHES 

Generic Technique for Recovery from Hidden Hard Crashes 

For the hidden hard crashes, the database is being con
taminated, from the moment an underlying error occurs to the 

Feature Analysis of Database Recovery Techniques 545 

Database ---- · 
Correct · · ACy,l ACl ,2 

· • 1 

~C~'l · AC~'2 
· · · · · · I 

A T 

"" +.:----
~---

,---~t'----.., . 
l? ,. - ~C~'l 

error- ~C~'l 
r ..... 

Database /t I '. 
Invalid : - - - .J - ___ : 

• ___ A_ ~ ___ , 

T. 
1 

AT 

AC i,j _ 
k 

i-th transaction, 

acceptance test of a 
transaction, 
k-th acceptance check 
within the j-th alter-
native of T. 

1 

Figure 2-D at abase access by a sequence of transactions-"unsafe" 
system approach 

moment it is detected, through an uncontrolled propagation 
of incorrect database entries. 

One means of error detection is the use of acceptance 
checks (AC). Each transaction can include a number of ac
ceptance checks. Acceptance checks are predicates on values 
of database items and values of variables of the transaction. It 
is important to discriminate between acceptance checks (AC) 
and the acceptance tests (AT) of a recovery block; the former 
can be placed anywhere in the body of the transaction, the 
latter are placed only at the exit from the recovery block 
implementing this transaction. Acceptance checks are, special
ized error-detection mechanisms (looking for only some types 
of errors) that can be used to decrease the time interval be
tween the error occurrence and the error detection. Accep
tance tests should be able to detect all kinds of errors, but they 
allow errors to remain undetected until the very end of the 
currently executed transaction alternative. In general, accep
tance checks guarding against more specific types of errors 
have more diagnostic power. This fact is really not exploited 
in our preliminary mode. 



546 National Computer Conference, 1981 

Database 
Correct 

Database 
Correct 

error-

Invalid 

AC~1:· 

AC12 
1 

AC~2 
T 

T. 
]. 

T. 
J 

I t I I I 
I --------I AT, I 

,--::==---:.=:.. __ I 

~ access by transaction 

~ access by IA Verifier 

DBRB.-th database recovery block 
J 

IA - integrity assertions on 
database 

DBRB 
z 

Figure 3--Database access by a sequence of transactions-"safe" 
system approach 

Let us present two scenarios of database system operation. 
We start with a pessimistic scenario for the "unsafe" system 
operation (see Figure 2). By definition, the database is initial
ly in a correct state. The processing starts with the transaction 

(process) TI. Let the first alternate of TI include two accep
tance checks (ACII.I and AC2

1
•
1
) on the database, which give 

positive validation of its contents. At some moment the trans
action Tj starts. The first two acceptance checks positively 
validate the database. But the third one (AC/I) finds out that 
the database is severely damaged. 

The diagnosis is generally impossible. Each acceptarice 
check verifies database integrity only partially. So the fact that 
Aci l answered positively gives us no help-maybe Aci l did 
not at all check the integrity constraints that Aci l did. We 
know only that a hidden crash has happened, caused by an 
error that occurred after the moment T I has started and be
fore the moment Aci l of TI has detected the error. It is 
important to point out that even if there are backup copies of 
the database in the system, in the case of a hidden hard-crash -
we have no guarantee that any of these copies is correct. 
Therefore we cannot use them for recovery. 

The only recovery possible in this case is the total system 
abortion, followea by the restart from the point where TI has 
started initially. The chances that the crash will not happen 
again are based on the chance that the underlying error is 
transient or that the transactions are implemented as recovery 
blocks. 

Let us now present a pessimistic scenario of the "safe" 
system operation. We propose a mechanism confining the 
database contamination so that a faster recovery is possible 
than for the "unsafe" system operation (see Figure 3). The 
assumption of crash transience or implementation of trans
actions according to a recovery block scheme is still essential 
here. (Note that not only acceptance checks but also accep
tance tests are generally not completely effective; the trans
action results could pass their acceptance test and still be a 
source of errors.) 

The system components T and AC are as described above, 
but new system components have been added. A Database 
Recovery Block (DBRB), defined dynamically by time inter
val, encompasses a number of transactions. A DBRB is cre
ated in such a way that we are assured of a correct database 
state at the entry to this block. Before entering a DBRB other 
than the first one, where integrity assertions are true anyway, 
the integrity of the database is verified by means of Integrity 
Assertion (IA) Verifier. (The efficient organization of the IA 
verification is a problem in itself. What one needs is min
imization of the number of database accesses for purposes of 
the verification. We plan to investigate this subject later.) 

After the positive IA verification a database logical snap
shot is made and the new, z th DBRB is initiated. (In the case 
of a negative IA verification, the previous snapshot is restored 
and processing restarts from that point.) Suppose that AC3

j ,I 
in Tj, which in turn belongs to DBRBz , discovers that the 
database is invalid. Diagnosis is immediate; a hidden crash 
has happened, caused by errors that ocurred during the exe
cution of the current DBRB, i.e. DBRBz • The following steps 
are taken to resume processing: 

1. Transactions are not allowed to query the database. All 
incoming transactions are queued. 

2. The transactions, which are implemented as recovery 
blocks, are reconfigured; some permutation of their al
ternatives is scheduled for execution. This permutation 



is different from that of the ones that are marked so far 
as trouble-makers and are placed on a suspicion list. 
(The suspicion list can be used for an off-line diagnosis 
and repair of transactions. The repaired transactions are 
removed from the list.) 

3. The most recent database snapshot is restored. 
4. All transactions that 

a. were active at the moment of crash~ -Of 

b. were completed during the current DBRB before the 
moment of crash,· 

are processed again. All these transactions are notified 
of the recovery if necessary. 

5. Incoming transactions which were stored during re
covery are processed. 

In the case that errors that happened during a DBRB are not 
detected by Integrity Assertion Verifier at the end of this 
DBRB, a mechanism to restore earliermtapshots must be 
given. The mechanism is not a simple one by any means. If an 
error is detected for the ith time on end in the same DBRB 
during an attempted recovery, we can 

1. try to run the DBRB one more time, assuming error 
transience or using one more permutation of transaction 
alternatives, or 

2. back up to the previous snapshot and thus to the earlier 
DBRB. 

With i growing, obviously the probability of the latter decision 
grows. But optimization of the decision is not easy. 

We assume that the extent, the precision, and thus the cost 
of IA verification are much higher than those of any accep
tance check. This relatively high cost is the reason that one 
cannot afford IA verification too often. Thus acceptance 
checks are still useful as means of earlier, specialized error 
detection~ The costs of IA verification are nothing extrava
gant. T. Gibbons advises "It is wise to run a series of check
programs on the database, to find all the errors before at
tempting a restart.,,4 

Comparison of the performances of the "unsafe" and 
"safe" approaches under pessimistic circumstances shows the 
advantages of the latter. From now on we discuss the "safe" 
approach exclusively. 

Assumptions for the Analysis of the Generic Technique for 
Database Recovery 

We analyze the generic database recovery technique under 
the following .assumptions: 

AI. The database functions in a real-time environment. 
A2. The database has a single division. 
A3. Transactions are implemented accordingly to the re

covery block scheme. 
A4. Database recovery from the hidden hard crashes is 

considered. 
AS. Integrity Assertion Verifier is completely effective 

(Le. detects all errors). (At first sight this assumption 

Feature Analysis of Database Recovery Techniques 547 

seems to collide with our view of recovery-block ac
ceptance tests as not completely effective. But there 
are important differences between the two: 
1. Integrity assertion verification is performed less of

ten than acceptance test execution of any trans
action. Thus integrity assertions can be more de
tailed and comprehensive with the comparable 
overhead. 

2. Integrity assertions are for general use, while ac
ceptance tests are transaction-specific. Thus in
tegrity assertions can be more thoroughly tested. 
Note that the assumption AS could be discarded by 
a modification of our model as proposed above, 
namely by including a mechanism for the restora
tion of earlier snapshots when needed.) 

A6. "Recovery" software is completely reliable. (Unlike 
the software of transactioris, the "recovery" software, 
as a standam-package, can be ther{)Ughly tested and 
made quite reliable.) 

Description of Database Recovery Techniques 

The generic database recovery technique can be imple
mented in many ways. Our candidates are:9

,ll 

1. Complete Database Dump-Before entry to each 
DBRB, the whole database is dumped (copied). 

2. Incremental Dump-An initial or periodic database 
dump creates a basis. Before entering the next DBRB, 
all blocks/files updated in the previous DBRB are 
copied, i.e. incremental dump is created. This permits 
the restoration of the last snapshot, using the complete 
database dump, if necessary, and using the results re
corded on incremental dumps. (Note that incremental 
dumps alone would not ensure recovery; blocks/files of 
the database norchangeduatan-arenot recoroed on any 
incremental dump.) 

3. Audit Trail-An audit trail (a log) records sequences of 
actions performed by transactions on files/blocks inside 
a given DBRB. It can be used to restore the latest snap
shot. It can also be used to back up particular trans
actions, which is important when one needs to allow for 
abortion of a single transaction. 

4. Differential Files-The main file (the frozen database) 
stores the latest snapshot, and the differential file is a log 
recording all later updates, executed inside of a DBRB. 
The merge of the differential file with the main file is 
done only after positive verification of the logical data
base made up by the main and differentlaf files (Le. 
before entering the next DBRB). 

5. Backup/Current Versions-Copies blocks/files just be
fore they are updated for the first time inside a DBRB. 
From then on only this copy of block/file is accessed. The 
"original" is a backup version used, if necessary, for 
database recovery. Using the latest backup copies for 
each block/file, the latest snapshot can be reconstructed. 

6. Multiple Copies-More than one copy of each block/file 
is stored. The different copies are identical except during 



548 National Computer Conference, 1981 

an update. There are two variants of this technique. The 
first uses an odd number of copies and applies "majority 
voting" to select the correct data value. Fewer than half 
of the copies are ever updated at a time. The other 
variant uses only two copies, but each has an "update-in
progress" flag. A flag set indicates that the associated 
copy is under update and thus possibly in an inconsistent 
state. Only one copy at a time can be updated. Copies 
not under update at a moment of crash are consistent, if 
there are no hidden crashes. 

7. Careful Replacement-The principle of this technique is 
the avoidance of updates "in place." Altered data are 
put in a copy of the original. The original is deleted only 
after the alteration is complete and has been certified. 
Note that two copies exist only during update. 

Database Recovery Techniques-
A Qualitative Analysis of Usefulness 

Analyzing the potential usefulness of the presented data
base recovery techniques, we have found out that two of the 
techniques, multiple copies and careful replacement, can not 
be used for recovery from the hidden hard crashes. The mul
tiple copies technique can be successfully used to recover from 
overt hard crashes or even, using majority voting, for error 
detection. But when hidden hard crashes occur, all copies 
could be equally contaminated and useless. The careful re
placement technique deletes the original as soon as the new 
copy is certified. By definition, errors causing overt hard 
crashes are detected instantaneously and the technique can 
protect against them. But if hidden hard crashes occur and the 
IA verification is not completely effective (does not detect all 
integrity violations), the errors may be detected only some 
time after this verification. By then there is no way to restore 
the original, which has been deleted immediately after the IA 
verification. 

Thus for the further analysis we are left with the following 
five database recovery techniques: complete database dump, 
incremental dump, audit trail, differential files, and ~ackup/ 
current versions. 

Let us now try to answer the question: Which database 
recovery techniques could be used in the cases that (1) 
DBRB's are relatively short, (2) DBRB's are relatively long? 

In the first case, clearly, we can afford undoing the results 
of database updates to back up to the most recent snapshot, 
so we do not need to prepare extensive physical database 
snapshots at the entry to a DBRB. Just logging the updated 
item values would suffice. Thus the audit trail technique 
seems suitable here. 

In the second case, undoing the results of database updates 
would take too long. We must record database state (remem
ber that we assume single-division database) at each DBRB 
entrance. The techniques that can be used here include 

• complete database dump, 
• incremental dump with an initial or periodic complete 

database dumps, 
• differential files, 
• backup/current versions. 

Primitives for Database Recovery Techniques 

We claim that it is both feasible and useful to present the 
database recovery techniques in terms of certain primitive 
actions, which we want to consider as atomic elements of the 
selected database recovery techniques. The feasibility is 
proved by the presentation of the set of these primitives, 
which follows. 

Our long-term goal is the time-cost comparison of the data
base recovery techniques. Instead of analyzing each technique 
separately, we will analyze each primitive. As each recovery 
technique is a sequence of these primitives, the resulting re
covery technique cost can be easily obtained. This is one of the 
aspects of the usefulness of the primitives. Others, we hope, 
will include the increased clarity of the description of these 
techniques. 

Below we define the primitives and later we show how to 
construct the selected database recovery techniques out of 
these primitives. 

In the definitions the notion of a_ set of "corresponding" 
pages, or of a "generic" page, is used: whenever page B of file 
Y was initialized as the copy of page A of file X, we say that 
these pages are corresponding or that both pages map into the 
same generic page, even if the content of page B, due to its 
updates, no longer is identical to the content of page A. In a 
sense, a generic page is the generalization, beyond a single 
file, of a page version. The function "pg" (as "page"), used in 
the figures for the next section, maps any file into the set of 
its generic pages. The function "gp[F]" maps a set of generic 
pages into the corresponding pages of a file F. (Note that the 
inverse of pg is not a function.) 

The primitives are as follows: 

C/DUMP(X)-Make complete database dump, and call it 
X. 

COPY(Y,DB,X)-Copy all distinguished, i.e. with their 
IDs in X, pages of the database into the file Y (if a page has 
two versions in Y-delete the old one). 

ERASE(X)-Erase block/file X. 
HALT -Halt normal database processing after trans

actions currently writing into database write their results com
pletely. This primitive ends a DBRB. 

lA/TEST-Test original database consistency, using IA 
Verifier. 

1/ HALT -Halt normal database processing immediately 
upon detection of an error by an acceptance check. This prim
itive initiates restart of the current DBRB unconditionally, so 
we need not wait for writing transactions as in HALT. 

LOG/IA/TEST(X)-Test, using the IA Verifier, the consis
tency of the current logical database. The current logical data
base consists of the most current values of database items that 
are stored in the database or in the block/file X. This corre
sponds to a logical merge of X with the database followed by 
lA/TEST. 

MERGE/parameter(DB,X)-There are two variants: 
1. MERGE/B(DB,X)-Merge the database with the log X 

backwards (i.e. use the oldest recorded values of data of 
X to restore the correct database j. 

2. MERGE/F(DB,X)~Merge the database with the log X 



forward (i.e. use the newest recorded values of data of X 
to build the correct database). 

OPEN(X)-Open file X. 
OVERWRITE(X, Y,Z)-Replace (e.g., by pointer switch

ing) pages of X specified by page identifiers stored in Z with 
the corresponding pages of Y. If Z is omitted-each page of 
Y replaces the corresponding page of X. 

RECIID(X)-Record in X identifiers of database pages to 
be modified. . 

RECIMOD(X)-Record data (e.g., a 4-tuple: transaction 
ID, item ID, old item value, new item value) about mod
ifications on a log X. 

START -Start normal database processing. This primitive 
initiates a new DBRB. 

TRANSHIFT -Shift into system input queue: 
a) all transactions recorded on "completed transaction 

log", i.e. finished but not saved transactions, 

Feature Analysis of Database Recovery Techniques 549 

RESTART 

MERGE/B(DB,AT) 

TRANSHIFT 

ERASE (CT) 

CT completed transaction log 

AT audit trail file (a log) 

DB the database 

Figure 4-Audit trail in terms of primitives 

b) all other transactions present in the system, i.e. un
finished transactions, 

and sort transactions of system input queue in the arrival time 
order. 

UPDATE(X)-Write an update in the file X. This prim
itive specifies which file should be updated when more than 
one file includes the same generic page that is to be updated. 

The Selected Database Recovery Techniques 
in Terms of Primitives 

Using the primitives defined above, we have built the fol
lowing selected recovery techniques: 

1. audit trail (see Figure 4), 
2. complete database dump (see Figure 5), 



550 National Computer Conference, 1981 

3. incremental dump (see Figure 6), 
4. differential files (see Figure 7), 
5. backup/current version (see Figure 8). 

The flowcharts of these recovery techniques combined with 
the definitions of the primitives should be self-explanatory 
(you may wish to consult short description of the techniques 
in the section "Description of Database Recovery Tech
niques.") The completed transaction log, referred to in the 
above-mentioned figures, records all transactions that are 
completed (their results are already written into the data
base), but with updates not saved yet, that is, the end of the 
DBRB in which transaction finished its execution has not 
been reached. This allows it to reexecute completed trans
actions, if necessary. 

CD complete database dump 

CT completed transaction log 

DB the database 

Figure 5-Complete database dump in terms of primitives 

For comparison we present in Figure 9 the list of the prim
itives used by the selected database recovery techniques. This 
demonstrates how much in common the techniques have. 

FUTURE RESEARCH AND EXTENSIONS 

It is our intention to compare the performance of the above 
database recovery techniques for hidden hard crashes. We 
plan to base the analysis of the recovery techniques on the 
analysis of the primitives constituting them, which is to be 
made first. 

The database recovery cost considerations will be limited to 
the time-cost analysis, as the storage cost does not seem to be 
essential in the real-time environment. Time costs can be 



Feature Analysis of Database Recovery Techniques 551 

CD 

INCR 

CT 

x 

DB 

C· RESTART) 

complete database dump 

incremental dump file 

completed transactions 
log 

temporary file 

the database 

Figure 6-Incremental dump in terms of primitives 



552 National Computer Conference, 1981 

RESTART 

classified as fixed and variable costS.2 Fixed time costs, inde
pendent of the number of errors detected, cover all prepara
tory actions necessary for restart when an error is detected. 
Variable time costs, incurred only if an error is detected, cover 
all restart actions. The fixed time costs, as completely predict
able, can be more easily incorporated within real-time con
st-raints of the system operation during system design. But the 
variable time costs are the threat to real-time constraints of 
the system operation (these constraints could be defined as 
the maximum time the system can be left nonoperational 
without grave consequences). Thus in our opinion only the 
time-cost analysis is essential and the variable time cost is the 

CT 

DIFI 

DB 

completed transaction 
log 

differential file (a 
log) 

the database 
Figure 7-Differential files in terms of primitives 

main criterion of the cost analysis for a recovery technique in 
our environment. 

A designer or a database administrator defines Database 
Recovery Blocks by specifying the intervals of regular data
base processing between consecutive recovery preparation 
phases. Long DBRB will increase chances that the restart will 
be time consuming, involving the reexecution of many trans
actions and keeping the system nonoperational too long. 
Short DBRB will increase the costs of the preparatory actions 
(snapshots, etc.), increasing the chances- of breaking the real
time requirements. Thus a compromise is clearly needed. This 
compromise will affect operational costs of a given database 



RESTART 

recovery technique. We want to find the minimum cost sched
ule for all of the above techniques. 

Only the database recovery techniques for hidden hard 

Feature Analysis of Database Recovery Techniques 553 

CT 

CURR 

DB 

x 

completed transaction log 

current version 

the database 

temporary file 
Figure 8-Backup/current version in terms of primitives 

crashes have been discussed. These techniques can obviously 
cope with the overt hard crashes too, but they are much more 
expensive than specialized recovery techniques. The tech-



554 National Computer Conference, 1981 

~ TECHNI-
PRIMITIVE . UE AT CD ID DF BC 

C/DUHP(X) - IP I - -
COpy (Y,DB,X) - - P - P 

ERASE (X) PR PR PR PR PR 

HALT P P P P P 

IA/TEST P P P - -
I/HALT P P P P P 

LOG/IA/TEST(X) - - - P P 

MERGE/par (DB,X) R - - P -
OPEN (X) P P IP P P 

OVERWRITE (X,Y,Z) - R PR - P 

REC/ID(X) - - P - P 

REC/MOD(X) P - - P -
START P P P P P 

TRANSHIFT R R R R R 

UPDATE (X) P P P - P 

AT Audit Trail 
CD Complete Database Dump 
ID Incremental Dump 
DF Differential Files 
BC Backup/Current Versions 
'r Primitive used in initializa-

tion phase 
P Primitive used in preparation 

phase 
R Primitive used in restart 

phase 
X,Y File names 
DB The database 

Figure 9-Use of the primitives by the selected database. recovery techniques 

niques for database recovery from overt hard crashes will be 
investigated later, using the analogous approach. 

There are a number of possible extensions to our work: 

1. increasing the concurrency of normal database pro
cessing by exploitation of elements of a recovery 
mechanism 1 ; 

2. concurrent execution of recovery actions and normal 
database processing, for example, dumping concurre~t_ 
with regular processing4

•
6; 

3. concurrent execution of a few recovery actions, such as 
checking database files concurrent with dumping of 
these files4 or processing several logs (or log sections) in 
parallel (e.g., the Audit Trail Tag File method4

); 

4. creating single transaction backup facilities by use of 
deferred commie·7 or use of transaction save points;6 

5. independent dumping of sections of a database, es
pecially when these sections have varying level of activity 
or the database is large (compare the noncontemporary 
file dumps method4

); 

6. investigation of special database recovery imple
mentation methods, for example the duplexing of logs 
and files4

•
7 or the use of multiprocessor systems; and 

7. investigation of after-implementation tunability of re
covery methods. 

In the refinement of our approach we will include some of 
these ideas. 

ACKNOWLEDGMENT 

We would like to thank Ms. Beverly Hill for the preparation 
of the figures. 

REFERENCES 

1. Bayer, R., H. Heller, and A. Reiser, "Parallelism and Recovery in Data
base Systems," ACM Trans. on Database Systems, June 1980. 

2. Chandy, K.M., J.e. Browne, e.W. Dissly, and W.R. Uhrig, "Analytic 
Models for Rollback and Recovery Strategies in Data Base Systems," IEEE 
Trans. on Software Engineering, March 1975. 

3. Garcia-Molina, H. Reliability Issues for Completely Replicated Distributed 
Databases. Princeton University, Dept. ofEECS, Technical Report #266, 
1980. 

4. Gibbons, T. Integrity and Recovery. Hayden Book Company, 1976. 
5. Giordano, N.J., and M.S. Schwartz, "Data Base Recovery at CMIC," 1976 

SIGMOD International Conference on Management of Data. 
6. Gray, J., P. McJones, M. Blasgen, et. al. The Recovery Manager of a Data 

Management System. IBM Technical Report RJ 2623. 
7. Gray, J. A Transaction Model. IBM Technical Report, February 1980. 
8. Randell, 8., "System Structure for Software Fault Tolerance," IEEE 

Trans. on Software Engineering, June 1975. 
9. Sayani, H.H., "Restart and Recovery in a Transaction-Oriented Informa

tion Processing System," ACM SIGMOD Workshop on Data Description, 
Access and Control, 1974. 

10. Sibley, E.H., "The Development of Data-Base Technology," Compo Surv., 
March 1976. 

11. Verhofstad, J.S.M., "Recovery Techniques for Database Systems," Compo 
Surv., June 1978. 



Data compression procedures utilizing the similarity 
of data 

by YAHIKO KAMBAYASHI 

Kyoto University 
Kyoto, Japan 
and 
NARAO NAKATSU 

Aichi University of Education 
Aichi, Japan 
and 
SHUZO YAJIMA 

Kyoto University 
Kyoto, Japan 

ABSTRACT 

In large database systems, we usually encounter the situation 
when a set of similar data is to be stored. This paper discusses 
efficient data compression procedures utilizing similarity of 
data. These procedures are suitable for compressing versions 
of programs, a series of data produced it). an office etc. 

The procedure to compress one string utilizing regularity of 
data is as follows: 

1. Calculate all maximum repeated substrings in the given 
string. 

2. Since each repeated substring is required to be stored 
only once, replace the second and later occurrence of the 
same substring by the code which shows the position of 
the first occurrence of the substring. 

The procedure to compress two strings WI and W2 utilizing 
data similarity is as follows: 

1. Calculate all maximum common substrings of WI and W2. 

2. Find a minimum cover for W2 using the maximum com
mon substrings contained in WI. 

3. Encode W2 by codes, each of which shows a substring of 
WI. 

These procedures are shown to require time only propor
tional to the total length of data and thus they are efficient. 
Combinations and variations of these two procedures are also 
discussed in the paper. 

1. INTRODUCTION 

In large database systems, we usually encounter the situation 
when a set of similar data is to be stored. This paper discusses 

555 

efficient data compression procedures utilizing the similarity 
of data. 

Popular data compression methods such as Huffman 
coding I and arithmetic coding2 will not produce the best pos
sible results in such cases. Examples of similar data are as 
follows: 

• versions (or variations) of programs or papers; 
• a set of monthly data of some organizations such as data

bases; and 
• periodically dumped files of a large file; 

There are two known methods to handle the problem. 

1. Prepare a dictionary of common phrases which appear in 
the set of data. Then assign a proper code according to 
the frequency of each phrase. 3

•
4 

2. Store one or more sets of original data called the refer
ence data. For other data, store the difference from the 
reference data. 

The first approach is suitable when there are a lot of data. 
In above situations (a), (b) and (c), the most recently gener
ated program or the most recent datum are rather frequently 
retrieved, while other old data are not used often. If we store 
such data by the second approach, the most frequently re
ferred datum is used as a reference datum. So the time for 
reconstructing the most frequently used datum is not neces
sary. The first approach always requires computation to re
cover an original datum. Furthermore the second approach is 
less redundant when the number of data is not large and these 
data have strong similarity. 

The differential file approach; is regarded as an example of 
the second approach. Compression of the data difference is 
not considered in this approach. Kang et at. 6 discussed the 



556 National Computer Conference, 1981 

difference compression problem on a relation, which is equiv
alent to the string data compression problem when all data are 
of equal length. Consider three data, WI =abbcbe, W2= 
abbebe, and w3=acbebe. If WI is stored_ ~s a reference string 
. h d 1 1 
In t e system, W2 an W3 can be stored as 4e and 2c4e' re-

spectively. Here ilhalha2 shows the sequence is equal to Wi 
except that the jkth symbolls replaced by ak(k =T;2). W3 has 

h . 2 d" h anot er expressIon 2c an It IS sorter. Kang et al. used the 

minimal spanning tree algorithm to obtain the least redundant 
codes to express the given set of data. Major problems of this 
approach are as follows: 

1. The approach is not suitable for variable length data. 
2. Permutation of a datum is not handled efficiently. 

If we consider versions of programs, sometimes the same 
procedure blocks are just permuted. So the above two prob
lems must be solved. 

We have developed new data compression procedures from 
this motivation. Our procedures utilize the consecutive re
trieval property of files7

,8 to represent similarity. That is, the 
same part is represented by the interval of the reference 
datum. Consider the two data wI=abeca and w2=abececabe. 
Let w(i) be the ith symbol of wand w(i:j) be the substring 
w(i)w(i+1) ... wU). W2 can be expressed by a set of sub
strings of WI. In this case, W2 <;pn be expressed by WI (1 : 4) 
wI(3:5)wI(2:3). By a proper encoding of Wt(i:j), a compact 
expression for W2 can be obtained. Generalization of this idea 
is used in this paper. 

Basic concepts to be used in this paper are given in the next 
section. In Section 3, data compression procedures for single 
text string and two text strings are described, which are 
realized by encoding the second and latter occurrence of the 
same substring. Using the procedure developed by Weiner, \0 

--all maximum repeated sequence can be obtainedffi time pro
portional to the length of the given string, and thus these 
procedures can be implemented efficiently. These procedures 
can be extended to the cases when there are more than two 
strings. This approach, however, requires long decoding time 
for some text strings. An improved procedure for multiple 
text strings is discussed in SeCtion 4, which is a combination of 
the above procedures, a procedure to find all maximum com
mon substrings and a covering procedure. We can also utilize 
the procedure developed by Weiner to find all maximum com
mon substrings. Usually a covering problem is time
consuming, but we will show that there is a straightforward 
procedure to solve this particular covering problem. By these 
reasons, the procedure presented in Section 4 --requires time 
only proportional to the total length of text strings, when the 
number of the given strings is two. 

The procedures discussed in this paper are summarized as 
follows: 

1. A linear time data compression procedure for a single 
string by detecting all maximal repeated substrings (Sec
tion 3). 

Although more than one string can be compressed by concate
nating all the given strings, the method requires long decoding 

time for a string which is located at the last part of the com
posite string. 

2. A linear time data compression procedure for two 
strings by detecting all maximal common substrings 
(Section 4). 

One of the two strings is selected as the reference string. 
Extensions of the procedure for a multiple data compression 
are rather easy. There is an efficient procedure for such cases 
although the procedure may not produce the optimum solu
tion. 

3. A linear time data compression procedure for two 
strings by combining the above two procedures (Section 
5). 

The assumptions used in this paper are as follows. 

1. The given strings have strong similarity, that is, there are 
substrings appearing frequently. 

2. We are interested in only the coding procedures where 
the decoding procedure can be applied sequentially from 
the top of encoded strings. W = ababa can be encoded as 
abw(1:3) or w(3:5)ba. The former can be decoded from 
the top of the string while the latter cannot. In general, 
if we permit nonsequential decoding, both coding and 
decoding procedures will have more computation time. 

3. We do not introduce an imaginary string as a reference 
string. If we introduce such a string, there are cases when 
a better compression can be obtained. A procedure to 
find the imaginary string which will give the optimum 
solution is time-consuming. (The Steiner tree problem 
can be regarded as a subclass of this problem and even 
a special case of the Steiner tree problem is known as 
NP-complete. ) 

4. We assume that all the characters appear in all data to be 
compressed. A little modification is required, if some 
character is not used in some datum (see Section 4). 

2. BASIC CONCEPTS 

In this section, basic definitions used in this paper are 
presented. 

Definition 1 

A string W is defined over a finite set of symbols I. Let W (i) 
be the ith symbol of string wand w(i:j) (i s,j) be the sub
string w(i)w(i + 1) ... wU) of w.lwl denotes the length of w. 
For a string w, u is called a repeated substring (RS for short) 
of w if u appears in w at least twice. The occurrences of u in 
ware numbered sequentially from the left to right. Thus the 
leftmost occurrence of u is called the first occurrence of u. 
The string w (i:j) is called a maximal RS (MRS for short) 
when w (i:j) is an RS of wand neither w (i - 1:j) nor 
w (i:j + 1) appears in w elsewhere. 

In Definition 1, an RS, u may overlap with another u in w. 



Definition 2 

For strings WI and W2, u is called a common substring (CS 
for short) of WI and W2 if u is a substring of both WI and W2. 
Let u be a CS of WI and W2, i.e. u = WI(i:j) = w2(k:h). String 
u is called a maximal CS (MCS for short) of WI with respect 
to W2 if neither WI(i - 1:j) nor wl(i:j + 1) is a CS of WI and W2. 

In Definition 2, even if WI(i:j) ( = w2(k:h» is an MCS of WI 
with respect to W2, w2(k:h) is not always an MCS of W2 with 
respect to WI, since WI can contain w2(k - l:h) or w2(k:h + 1) 
without violating the condition of the maximality of WI(i:j). 
There may be more than one MCS and two MCSs may be 
overlapped. 

Example 1 

Let us consider the following two strings. 

I 2 3 4 5 6 7 8 9 10 II 12 13 I 2 3 4 5 6 7 8 9 10 II 12 

WI = b a a a a a a a a b a a a W2 = a b b b a a a a a b a a 

"aaaa" is one of the RSs of WI but is not an MRS of WI. 
wI(lO:13) = "baaa" is one of the MCSs of WI with respect to 
W2 since wI(9:13) is not a CS of WI and W2. Note that 
w2(4:7) = wI(10:13) is not an MCS of W2 with respect to WI, 
because W2( 4:9) is a CS of WI and W2. 

Basic terminologies of graph theory are used in this paper 
without definitions (see Harary9). 

Definition 3 

A weighted directed graph G(V,E,c) is defined as follows. 
V is a set of nodes. E is a set of directed edges e;j, where e;j 
corresponds to an ordered node pair (v;,Vj)(v;,Vj E V). c is 
called a cost function which is a mapping from E to N(the set 
of nonnegative integers). 

A directed spanning forest of G is a set of directed trees 
F = {TI, T2 , ••• , Td which satisfies following conditions. 

1. Each directed tree T; = (V;,E;,c;) has one root node 
from which one directed path exists to each node in Vi. 

2. U V; = V and E; C E hold. 
i 

3. V; and E; are disjoint from each other, respectively. 
4. c;(e) = c(e) for any e in E;. 

When k = 1 the tree TI is called a directed spanning tree of G . 
Cost of F is defined by I I c; (e). The minimum cost directed 

; eEEi 

spanning forest is a directed spanning forest of G with min-
imum cost. 

Example 2 

Consider the graph shown in Figure 4. The minimum cost 
directed spanning tree of the graphs is shown by bold lines. 

We define a data structure, a prefix tre~for a string w. 10 

This structure is used in our procedures for data compression. 

Definition 4 

Data Compression Procedures 557 

Figure I-The prefix tree for the string 
W J = baaaaaaaabaaa 

Let W = w(1)w(2) ... w(n) be a string over an alphabet L. 
Let w' = w$ ($ is an endmarker of wand $ is not in I). A 
position identifier W; = w' (i:j) for each position i is defined 
as the shortest string which is not an RS of w'. If W; is given 
we can uniquely identify the starting position i in W'. 

Definition 5 

A prefix- tree P for-a striDg-w-Oi length n-iS-AJree which 
satisfies the following conditions. 1O Let w' = W $. 

1. P has n + 1 leaf nodes each of which has unique label i 
and each edge of P is labeled by a symbol in I U {$}. The 
leaf i has one-to-one correspondence with the position i 
of w'. 

2. The string obtained by concatenation of edge labels on 
the path from the root· to the leaf i is equal to the posi
tion identifier Wi. 

3. For any N;, all edges (N;,Nj ) have different labels, where 
N; is an interior node of P and N j is an immediate 
successor of N;. 

Example 3 

I 2 3 4 5 6 7 8 9 10 II 12 13 

The prefix tree for the string WI = b a a a a a a a a b a a a is 
shown in Figure 1. For example, the position identifier WI for 
the position 1 of WI is "baaaa". Note that all RSs of WI are 
represented in the prefix tree of WI. Let us ~onsider two leaf 
nodes i and j which have the same predecessor in the prefix 
tree. If the level, the path length from the root, of the com-



558 National Computer Conference, 1981 

mon predecessor is equal to k then W; and Wj have the same 
prefix of length k. This means wl(i:i + k -1) = WI 
V:j + k - 1). In this example, nodes 1 and 10 have a common 
predecessor of level 4. Nodes 2 and 5 have a common prede
cessor of level 5. Thus we have the following equations: 

For a given string w, Weiner showed an algorithm for con
structing the compact prefix tree in time of O(lwi). The con
struction algorithm is shown in Weiner. 10 In the following 
section, we show data compression procedures using RSs, and 
in Section 4 we extend our procedures to the compression of 
more than two strings. 

3. DATA COMPRESSION PROCEDURE UTILIZING 
MAXIMAL REPEATED SUBSTRINGS 

In this section, efficient data compression procedures for one 
or two strings are presented. The following example shows 
our basic idea. 

Example 4 

Consider the string WI in Example 1. By Figure 1, we know 
that "baaa" and "aaaaaaa" are RSs of WI. That is, wl(1:4) 
= wl(lO:13) and wl(2:8) = wl(3:9). If we know the above 
property, we need not store the whole string. WI is expressed 
by wl(I:2)wI(3:9)wl(10:13) which can be replaced by 
wI(I:2)wI(2:8)wI(1:4). Corresponding to this sequence we 
will define a coded string, 

WI = ba#2,6#1,3 

Here, except the first one, wl(i:i + k) is represented by #i,k. 
The decoding process is as follows. Since wI(I) = "b" and 
wI(2) = "a", we have wl(1) = "b" and wI(2) = "a". #2,6 rep
resents that the succeeding string of length 7( = 6 + 1) is equal 
to the string starting from the position 2. In other words, 
wI(3) . .. wl(9) corresponds to wI(2) . .. wI(8). Thus 

WI(i + 1) = WI(i) for i = 2, ... ,8. 

We have wl(3) = wI(4) = ... = wI(9) = "a". The last part of 
WI is wI(I)wl(2)wI(3)wl(4) which is known to be "baaa". 
Thus we can decode the expression WI. When we use ASCII 
8-bit Code for each symbol, 8 x 13 bits are required to store 
WI. Each integer in WI can be coded by a bit string of length 
3 in this case. So by our compression method, 8 x 4 + 3 x 4 
= 44 bits are required to store WI. 

In the above example, WI can be reconstructed by decoding 
from the first symbol of WI to the last symbol. More storage 
reduction may be possible unless the sequential decodability 
of WI is assumed. For example, WI = cdababcdabcd can be 
expressed as WI = #7 ,3abcd #5,3. In this case, WI can be re
covered by decoding #5,3 and #7,3 in this order. This coding 
schema is not sequentially decodable and is time-consuming 
for decoding. We only consider the compression procedure by 
which WI is sequentially decodable from WI. 

In order to get a best possible data compression, we have to 
decide whether the code (#i,j) or the original substring is to 
be stored. A threshold value T is determined for this purpose. 
When the length of an RS is greater or equal to T, the RS is 
stored as a pair of integers and if the length of an RS is less 
than T, we should store the original string. The formal pro
cedure follows. 

Procedure 1 

Data compression procedure for one string using MRSs. 

1. For a given string W of length n, construct the compact 
prefix tree of w. Note that each leaf is labeled by a 
number corresponding to a position in w. 

2. Prepare arrays Sand T of n elements and prepare a 
variable V; for each interior node N; of the prefix tree. 
Each element of S and each variable Ni is set to be 00. 

3. Traversing the prefix tree in endorder, the following step 
(4) is applied to each interior node of the tree except the 
root node. 

4. Suppose that the interior node N; has leaves Ud and 
interior nodes {NI } as immediate successors (1 s k s k' , 
1 sis I'). Let Vi be the minimum element of the set 
Uk}U {VI} (1 sk sk', 1 sl s/'). If N; has no leaves as 
an immediate successor, consider next interior node. For 
each j in Ud and j > V;, Sv + L(N;) -1)~Min 
(S(j+L(N;)-I),j) and if SV+L(Nj)-I)=j then 
TV + L(N;) - 1)~V;, where L(N;) denotes the level of 
N j • 

5. Sand T are calculated. R~n. 
6. Find such i that Sci) s R s i and Sci) is minimum. 

If above condition is not satisfied by any i then 
R~R -1. 

If i - Sci) is greater than a threshold value then re
place w(S(i):i) by #T(i),i - SCi) + 1 and R~S (i) - 1 
else R~R -1. 

If R < 1 then stop else repeat (6). 

Procedure 1 requires 0 (n) computation time, which can be 
proved easily by the fact that the compact prefix tree has only 
O(n) nodes"o 

For the purpose of sequential decodability of w, we have 
replaced the latter occurrence of an RS by the indicator to the 
former occurrence. In this paper we will discuss procedures to 
obtain a minimum representation of a sequence consisting of 
I, #, , and integers. Further reduction may be possible by a 
proper encoding of the resulting strings. For the string which 
has a long RS can be compressed efficiently by Procedure 1. 
For storing two strings, Procedure 1 can be also applied. 

Procedure 2 

Data compression procedure for two strings using MRSs. 

1. For given two strings WI and W2, let W be W = WIW2. 
2. Apply the Procedure 1 to wand obtain W. 



3. Store WI and W2 as nlw, where nl is the length of WI. (We 
can separate WI and W2 by nl when decoding is done.) 

When we store two versions of programs, we may be able 
to find a long RS in W = WI W2, which will contribute to a good 
reduction of storage space. When w (w = WIW2) is given, WI 

can be obtained without decoding the whole sequence, since 
w is decoded sequentially from the beginning. In order to 
obtain W2, however, we have to decode the whole sequence. 
By this reason if there are two files WI and W2 where WI is 
retrieved more frequently than W2, then WI W2 must be selected 
instead of W2WI. When WI and W2 are equally retrieved, then 
we can select shorter w for Wa=WIW2 and Wb=W2WI. In Pro
cedure 2, instead of encoding the length of WI we can use a 
separation mark $, i.e. W = WI$W2, which may be better in 
some cases. 

Procedures 1 and 2 are efficient since they require time only 
proportional to the length of input strings. 

4. DATA COMPRESSION PROCEDURES UTILIZING 
MAXIMAL COMMON SUBSTRINGS 

By extending Procedure 2, we can efficiently compress n 
strings WI, W2, ... , Wn • We construct the string W = WIW2 . . . Wn 
and apply Procedure 1 to w. This procedure is useful in some 
cases but it has the following problem. The string Wk can be 
recovered after WI. W2, ... , Wk-I are recovered. So it is time 
consuming to reconstruct Wk when k is large. We should con
sider the decoding time as well as the storage reduction. 

In this section, we introduce a new similarity of two strings. 
By this similarity, an efficient data compression procedure for 
two strings is presented and a procedure for more than two 
strings is also mentioned. 

Definition 6 

The set of substrings C = {W2(it:jl), w2(i2:h), ... , W2(ik:jk)} 
is called an S -cover of W2 with respect to WI if the following 
conditions are satisfied. 

1. For any w2(i), ,there is at least one substring w2(ih :j,,) in 
C such as i"s,i $, jh' 

2. Each W2(ih:jh) is an MCS of W2 with respect to WI. 

w2(ih :j,,) is redundant if C - {W2(ih:jh)} is also an S -cover of W2. 
An S -cover without any redundant element is called a min
imal S -cover and the minimal S -cover with minimum number 
of elements is called a minimum S -cover. 

In general, minimum cover problem is very difficult but in 
our case, the minimum S-cover can be proved to be calculated 
in linear time. 

Definition 7 

The similarity S(WI,W2) from WI to W2 is defined by the 
number of elements of the minimum S -cover of W2 with re-

Data Compression Procedures 559 

spect to WI. S(Wt,W2) is regarded as infinite (denoted by 00) if 
there exists no S -cover of W2 with respect to WI. 

The basic idea of the data compression is shown in the 
following example. 

Example 5 

Consider the next two strings. 

1234567 1234567 

WI : aadcadc, W2: caadcba 

CI = {wl(1:4), wl(5:7)} is a minimum S-cover of WI w.r.t.(with 
respect to) W2. SO S(W2,WI) = 2 by Definition 7. On the other 
hand, the symbol "b" does not appear in WI and there is no 
S-cover of W2 W.r.t. WI and S(Wt,W2) = 00. wl(1:4) and wI(5:7) 
equal w2(2:5) and w2(3:5), respectively. When W2 is used as a 
reference string of WI, WI can be expressed by a concatenation 
of substrings of W2. When w2(i:i + k) is coded as i,k, WI is 
expressed as 2,2,3,3,2, where the first value 2 means that the 
reference string is W2. 

An outline of our data compression procedure for two 
strings is shown as follows. Two parameters a and ~ are used, 
where a and ~ are memory space for a symbol and a numeral, 
respectively. 

Procedure 3 

An outline of data compression procedure for two strings 
using MCSs. 

1. Calculate all MCSs of WI(W2) W.r.t. W2(WI) (Procedure 
4). 

2. Find a minimum S-cover of WI(W2) W.r.t. W2(WI) and 
calculate S(WI,W2) and S(W2,WI) (Procedure 5). 

3. Suppose that alwd + ~(2s(Wt,W2) + 1) $, a.IW21+ ~(2s 
(W2,Wt) + 1). WI is stored as its original form. 

4. If ~(2s(WI,W2) + 1) < alw21 then W2 is stored as a concate
nation of substrings of WI, else W2 is stored as its original 
form. 

In (3) and (4), the selection is determined by the storage 
space requirement. When WI is referred more frequently than 
W2, WI should be a reference string. Even if S(Wt,W2) = 00, we 
had better have a finite S (WI, W2) by adding a dummy string to 
WI or by storing uncovered substring of W2 as its original form. 
Such processing is not considered in this paper. We will show 
procedures used in Procedure 3. 

Procedure 4 

Calculation of all MCSs of WI w.r.t. Wz 

1. For given strings WI and W2, construct the compact prefix 
tree T for the string W = WIAWZ(A $ I). For con
venience, assume that the leaf node corresponding to the 
position i of WI(W2) is labeled by i(i', respectively). 



560 National Computer Conference, 1981 

2. Prepare an array E of length Iwd. Each element of E is 
set to be 00. 

3. For each interior node Ni, a set Vi and a variable Vi are 
prepared. Let each Vi be empty and let each Vi be zero. 
Traversing T in the endorder, following step (4) is ap
plied to each interior node except the root node. 

4. If Ni has a leaf j as an immediate successor, then 
Vi+-Vi U {j}. 
If N j has a leaf j' as an immediate successor, then 
Vj+-Vj + 1. 
If Ni has an interior node Nk as an immediate successor, 
then 

After this processing, if Vi =F 0 then E(k + L(Ni) -1) 
+-Min(k,E(k + L(Ni ) -1» for each k in Vi and then 
-U~ (an empty set). 
Consider next interior node and repeat (4) until all inte
rior nodes are exhausted. 

5. E presents a set of MCSs of WI w.r.t. W2, i.e. wI(E(i),i) 
is an MCS when E(i) =F 00. 

Procedure 4 requires time of O(n), where n = Iwd + IW21. 
This can be proved in a similar way to Procedure 1. By using 
the set of MCSs of WI w.r.t. W2, S(W2,WI) can be computed. 
The minimum cover problem is a famous NP-complete prob
lem in general but the minimum S -cover can be obtained 
easily as described below. Following lemmas are useful. 

Definition 8 

For two MCSs of WI w.r.t. W2, wt(it:h) and wI(i2:jz), wl(il:h) 
« wI(i2:jz) if and only if i l < i2 and jl <jz. 

bemma 1 

For the set of MCSs of WI w.r.t. W2, the relation « is a total 
ordering. 
Proof: It is a direct consequence of the definition of an 
MCS(Definition 2). By Lemma 1, we suppose that wl(il:h) 
« wI(i2:jz) « . .. for the set of MCSs, M = {wI(il:h), 
WI(i2:jz), . .. } 

Lemma 2 

An element wl(il:h) in M must be included in a minimum 
S-covet -of-WI. 
Proof: Because the symbol WI(iI) is not covered by any other 
element in M except wl(il:h). 

Lemma 3 

If wI(ih:jh) E M is in a minimum S-cover of WI then there 
exists a minimum S-cover of WI that has wl(ik:jd as its ele
ment, where WI(ik:jk) is the string in M such as ik-l $.jh and 
j k is maximal for ik • 

Vll ~I ___ ---1 ___ ...;.._.......::..-______ --.... 

Figure 2-The situation considered in the proof of Lemma 3 

Proof: Suppose that Wt(ih:jh) is in a minimum S-cover. To 
cover Wt(jh+ 1), there exists a substring Wt(ih·:jh·) in the min
imum S-cover such as ih<ih· < ik$.jh+l $.jh.<jk (see Figure 2). 
Then Wt(ih·:jh·) can be covered by wdih:jh) and Wt(ik:jk). So 
the S-cover obtained by replacing Wt(ih·:jh·) by Wt(ik:jk) is also 
the minimum S-cover of Wt. Q.E.D. 

A minimum S -cover can be obtained by Lemmas 2 and 3 in 
time proportional to the number of MCSs, that is IWtl at most. 
The set of MCSs of Wt w.r.t. W2 can be obtained in time 
proportional to n = IWtl + IW21 (Procedure 4). Furthermore, 
the array E obtained in Procedure 4 arranges the MCSs by the 
ordering « . Procedure 5 shows a formal description of calcu
lating a minimum S -cover using the resulting E of Procedure 
4. 

Procedure 5 

Calculation of S(W2,WI). 

1. Calculate E by Procedure 4. 
2. DISS+-O, CAND+-O, R+-l, i+-l and set M+-<I>. 
3. If E(i)=oo then go to (6). 
4. If E(i)$.R then CAND+-i and go to (6). 
5. If CAND=O then S(W2' WI)+-OO and stop. 

DISS+-DISS+l, R+-CAND+l, M+-MU 
{wI(E(CAND):CAND)} and CAND+-O go to (4). 

6. i+-i+1. If i>lwd then go to (7) else go to (3). 
7. If CAND=F Iwd thens(w2, WI)+-OO and stop. 

DISS+-DISS+ 1, M +-M U{wI(E(CAND):CAND)}. 
S(W2,WI) is equal to DISS and M is the minimum S-cover 
of WI w.r.t. W2. 

Each element of E is referred only once in Procedure 5 and 
Procedure 5 requires computation time of 0 (n ), where 
n =lwd+lw21. The next example shows how our procedure 
works. 

Example 6 

Consider the following two strings. 

I 2 3 4 5 6 7 8 9 10 II 13 15 17 19 21 23 
WI: aabdabcaabdcabcbcabdabc 

W2: bdabcbcaabdcabdab 

By Proc(!dure 4, an array E representing all MCSs in the 
ordering « is calculated as follows: 

E 1 2 345678 9 1011121314151617181920212223 
00000012003000000 00 00 00 6 00 00 00 1300 00 00 1719 

By this fact, the set of MCSs of WI w.r.t. W2 equals 

{wI(I:4), wI(2:5), wI(3:7), wI(6:14), wI(13,18), wI(19:23)}. 



By Lemma 2, the first substring wI(1:4) should be selected. 
Then we select WI(ik:jk) such as ik-1s4 andjk is maximal by 
Lemma 3. Thus wI(3:7) is selected. In this way, {wI(1:4), 
wI(3:7), wI(6:14), wI(13:18), wI(19:23)} is obtained and it is 
the minimum S-cover of WI w.r.t. W2. We have S(W2,WI)=5 
and 17a + 11~ storage space is required when W2 is used for a 
reference string of WI. Similarly, s(wt,w2)=3 is obtained and 
23a + 7~ storage space is required WI is used as a reference 
string of W2. 

Procedure 3 can be easily extended for more than two 
strings. An outline of the data compression procedure for 
more than two strings is as follows. 

'Procedure 6 

Data compression procedure for more than two strings us
ing MCSs. 

1. Consider a set of strings W ={ WI, W2, ... , WN}. Calculate 
S (Wi, Wj) for any i and j. Consider a weighted directed 
graph G (V,E ,c), where V ={Vo, VI, ... , V N} and each 
Vi corresponds to Wi (lSiSN), E={(Vo,Vi)} U{Vi,Vj)} 
(lSi, jSN, i=l=j) and c((Vo,Vi»=alwil, c((Vi,Vj» 
=2~(1 +S(Wi,Wj». This graph is called a similarity graph 
ofW. 

2. Find the minimum directed spanning forest of the above 
graph. 

3. Encode each string according to the minimum directed 
spanning forest. 

Procedure 6 is least redundant under our assumption stated 
in Section 1 but time consuming because all N (N -1) combi
nations S (Wi, Wj) are required to be calculated and finding the 
minimum directed spanning forest requires O(N4) computa
tion time. 

Instead of the minimum directed spanning forest, a star 
graph may be useful, that is, a most frequently referred-to 
string (say WI) is used as a reference string of all other strings. 
In this case, only N-1 similarities S(Wt,W2), S(Wt,W3), ... , 
S(Wt,WN) are required and the computation time is propor-

Figure 3-A star graph 

Data Compression Procedures 561 

tional to O(Nlwd+lw21+ ... +IWNI) although it may not give 
the optimal result. In such a case, the reference string is the 
root of a star graph shown in Figure 3. 

A dummy string Wo may be used for a reference string in a 
star graph. Advantages of using a dummy string are (1) much 
storage reduction may be possible, (2) update is localized. 
However, finding a proper dummy string is very difficult. 12 

5. UTILIZATION OF BOTH MRSs AND MCSs 

Combination of MRSs and MCSs may reduce storage space 
for more than two strings (The procedure for two strings 
presented in Section 3 cannot be improved even if we utilize 
MCSs). Primary processes are the same as presented in the 
prior section. The S -cover of WI w.r.t. W2 is defined by using 
both MRSs of WI and MCSs of WI w.r.t. W2. The time com
plexity of this combined procedure is also proportional to the 
sum of lengths of two strings. Time complexity of this com
bined procedure for more than two strings is same as the 
procedure using MCSs only discussed in Section 4. Following 
example shows the basic idea of the combined procedure. 

Example 7 

Consider the following four strings. 

I 2 3 4 5 6 7 8 9 10 II 12 13 14 IS 
WI: baaaaaaaa b a a a b a 

W2: abb baaaaa ba d 

W3: abbbbbbbabba 

W4: bbbabbababa 

WI is considered as the concatenation of wI(1:2), wI(3:9) and 
wI(10:15), each of which corresponds tow2(4:5), wI(2:8) and 
w2(4:9), respectively. wI(1:2) and wI(10:15) are MCSs of WI 
w.r.t. W2 and wI(3:9) is an MRS of WI. SO S(W2,WI) is 3. W4 is 
considered as the concatenation of w4(1:4), w4(5:7) and 
w4(8:11), each of which corresponds to w2(2:5), w4(2:4) and 
w4(6:9), respectively. When W2 is used as a reference string of 
all other strings, other strings can be stored as follows: 

WI:2,3,1,-2,6,4,5 w3:2,1,2,-2,7,1,O,3,2 
w4:2,2,3, -2,2, -6,3 

The-first numeral 2 of WI shows that W2 is a reference string of 
WI. An MCS wk(i:i + j) is coded as i ,j and an MRS wk(i:i + k) 
is coded -i,j. Thus (4,1), (-2,6) and (4,5) in WI represent 
w2(4,5), wI(2:8) and w2(4:9) respectively. 

W3 can be also expressed as 4,4,1,-2,5,4,3 and this is 
shorter. When the set of strings is not updated and the de
coding time is not so critical, Procedure 6 is useful. The sim
ilarity graph for these strings is presented in Figure 4. We 
should select an optimal coding schema by this similarity 
graph. For example, consider the directed spanning tree 
shown by bold lines in Figure 4. WI and W2 are storeatn their 
original forms and WI and W3 are used as reference strings of 



562 National Computer Conference, 1981 

7f3 

4a.+4f3 
6a.+4f. 

--------------------~ 
V3 

Figure 4-:-The similarity graph of the four strings in Example 7 

W3 ~nd W4, respectively. As ~tated in the previous section, 
usually the utilization of star graphs (Figure 3) is more prac
tical than th~ utilization of the minimum cost spanning trees 
although the latter gives the optimum results. 

CONCLUDING REMARKS 

There are increasing demands for generalized database sys
tems which can handle text strings, programs, and picture 
data, as well as ordinary business:-oriented data currently han
dled by commercially available database systems. These data 
are usually large and have some kinds of redundancy. We 
expect that the procedures developed in this paper are suit
able to compress these kinds of data. 

Further research problems are as follows: 
1. Development of more efficient algorithms for large 

amounts of data: Although the procedures discussed in this 
paper are linear time algorithms, th.e coefficients are not small 
enough to be applicable to large data files-. High-speed heuris
tic procedures which will not always produce the optimum 
code are also reqqired. All the procedures presented in this 
paper can be easily modified to adopt such heuristic pro
cedures. 

2. Discussions on the optimum compression: Further com~ 
pression is possible by adding redundant data tJ:lat is used as 

a reference datum. Steiner tree is known as a minimum span
ning tree which utilizes some dummy nodes. 12 In many cases 
it is shown that this r~dundancy will contribute to decreasing 
the cost of the spannipg tree . 

. Furthermore, our similarity q~es not satisfy the condition 
S(WI,W2) + S(W2,W3) === S(WI,W3).SO the generation of redun
dant data Will reduce the total storage space. 

ACKNOWLEDGMENT 

The authors wish to express their thanks to Professor G. T. 
Toussaint of McGill University for informing them of the 
Steiner tree problem. -

REFERENCES 

1. Huffman, D.A. "A Method for the Construction of Minimum Redundancy 
Code", Proc. IRE, 40, 1098, 1952. 

2. Rissanen, J. and Langdon, Jr., G.G. "Arithmetic Coding", IBM J. Res. 
Develop .• vol. 23, no. 2, pp. 149-162, March 1979. 

3. Wagner, R.A. "Common Phrases and Minimum Space Text Storage", 
CACM, vol. 16, no. 3, March 1973. 

4. Ting, T.C. "Compacting Homogeneous Text for Minimizing Storage 
Space", International Journal of Computer and Inforrpation Sciences, vol. 
6. no. 3, pp. 211-221, 1977. 

5. Severence, D.G. anl;\ Lohman, G.M. "Difference Files: Their Application 
to the Maintenance bf Large Diltabases", ACM Trans. pn Database Sys
tems, vol. 1, no. 3, pp. 256-263, Sept. 1976. 

6. Kang, A.N.C., Lee; R.C.T., Chang, c.L. and Chang, S.K. "Storage Re
, duction T~rough Minimal Spanning Trees an~ Spanning 'Forests", IEEE 

Trans. on Computers, vol. C-26, ~o. 5, pp. 425-434, May 1977. 
7. Ghosh, S.P. "File Organization: The Consec~tive Retrieval Property", 

CACM, vql. 15, no. 8, pp. 802-808. 1972. 
8. Tanaka. K, Kambayashi. Y. and Yajima. S. ~'Organization of Quasi

Consecutivt: Retrieval Files". Information Systems, vol. 4. no. 1. pp. 23-33. 
~n ' 

9. Harary. F. Graph Theory, Reading. Mass.: Addison Wesley, 1969. 
10. Weiner. P. "Linear Pattern Matching Algorithms". IEEE 14th Annual 

!)YlTIPosium 011 Switching and Automata Theory. pp. 1-11. 1973. 
11. Even. S. and Rodeh, M. '!Economical Encoding of Commas Between 

Strings". CACM? vol. 21. no. 4. pp. 315-317. April 1978. 
12. Pollak. H.O. "So1Ue Remarks on the Steiner Problem", J. of COIl!!lina

torial Theory. Series A. pp. 278-295, 1978. 



INFORMATION PROCESSING 
MANAGEMENT 





Choosing application development tools and techniques 

by V. KEVIN WHITNEY and JANE G. MORSE 
Arthur D. Little, Inc., Information Systems Section 
Cambridge, Massachusetts 

ABSTRACT 

Many different tools and techniques for assisting application 
system development are available today, but there is no good 
method available for choosing the proper ones to use in a 
particular application. This paper presents a fivefold classifi
cation of application systems and the tools and techniques 
most suitable for each class. Characteristics of each class of 
applications are explained, and methods of using this analysis 
to select application development tools and techniques are 
discussed. 

INTRODUCTION 

In most. data processing shops today, as the maintenance 
workload continues to grow more burdensome, the backlog of 
new development projects is also increasing. Converting older 
production systems to newer and more maintainable technol
ogy without stopping the development of new systems means 
an ever increasing load on the applications development staff. 

A bewildering array of tools and techniques to assist in this 
development and redevelopment is available today. All the 
following kinds of software and methodologies are designed 
partly or wholly to provide such assistance: 

• Database managers 
• Teleprocessing transaction monitors 
• . Structured analysis and design methods 
• Librarians and precompilers 
• Documentation support packages 

In our work with many clients in the past few years, we have 
had the dubious privilege of reviewing unsuccessful develop
ment projects. A frequent problem, which could easily have 
been avoided in many of these cases, is the inappropriate 
choice of systems development tools and techniques. Com
plex projects are often attempted with only the simplest of 
tools, and sometimes simple projects are developed using 
overcomplex techniques. In retrospect it is easy to understand 
the underlying causes of a problem, but sometimes it is very 
difficult to recognize those same causes in a new development 
project. 

565 

One approach we have found useful in helping to decide 
which software tools and techniques are appropriate for a new 
development project is based on the observation that various 
products are designed to emphasize support for difficulties in 
different aspects of application development. Some tools help 
with display screen formatting, others with data storage and 
retrieval, yet others with transaction error recovery. You may 
not discern this from the software salesman, but a talk with 
the implementer of the package is certain to identify the 
aspects of applications development for which the product is . 
most suitable. 

Furthermore, different application systems seem to empha
size different computing functions. We have found that most 
application systems seem to be dominated by one of the basic 
computing functions: processing logic, output reporting, data 
management, transaction input, and task management. By 
classifying an organization's applications according to their 
dominant computing function and using that classification to 
choose the tools which assist most in managing that function, 
we can identify the application development tools that are 
most appropriate for an organization. This approach is sim
plistic, but it has proved useful in a variety of real cases where 
half an answer is better than none. It is interesting to note that 
our experience with this technique has been that it is particu
larly effective in giving early warning signals for situations 
where inappropriate tools and techniques are used and which 
as a result are likely to fail. In today's processing world, it 
seems that identifying the paths to failure is easier than iden
tifying the paths to success. 

In the following sections we describe the classification 
scheme we use for analyzing applications and then indicate 
which types of tools and techniques are most suitable for each 
application class. Finally, we identify some ways DP managers 
can apply the ideas for choosing the tools and techniques best 
suited to their installations. 

APPLICATION SYSTEMS CLASSIFICATION 

A data processing application system can usually be grouped 
into one of the five classes shown in Table I, based on its 
dominant computing function. Usually this assignment is 
easy. For example, small scientific application systems are 



566 National Computer Conference, 1981 

TABLE I-Characteristics of five classes of application systems* 

Class Dominant Function Scope of Application 
Number of 

Data Elements 
Size of Typical 

Development Project 
Main Barriers to 

Development Productivity 

A 

B 

C 

D 

E 

Processing and 
algorithm logic 

Output reporting 

Data management 
and structure 

Transaction input 
and processing 

Task management 

Individual 
programs 

Collection 
of reports 

Applications on 
an integrated 
data base 

Group of related 
transactions 

An integrated 
business system 

10--30 

50--300 

1~00 

2~00 

200-800 

1 person 
3 months 

2 people 
9 months 

3 people 
15 months 

6 people 
2 years 

10 people 
3 years 

Problem specification & 
solution verification 

Organizing many details of 
report format specification 

Database design and 
modifications 

Keeping transactions 
self-contained and simple 

Specifying and implementing 
time-dependent processes 

* An application system is a collection of processing modules and related data that exhibits a high degree of integration but is loosely coupled to 
programs outside the application system. Thus, an application system cannot easily be divided into subsystems that are designed, implemented, 
or operated independently of one another. 

typically dominated by the processing or computing functions, 
and large accounting application systems are of ten "dominated 
by the output reporting function. When an application seems 
to have two equally dominant computing functions, it is often 
seen to be two separate, but linked, application systems. For 
example, many modern systems involve a transaction input
dominated data collection portion and an output-dominated 
reporting portion. 

No system, of course, consists entirely of a single function 
such-as input or outpuLAlthough all five functions are found 
to a greater or lesser degree in all application systems, most 
applications can be classified according to their dominant 
function. When an application seems to fit two categories 
equally well, it is often best to assume that the application 
belongs to the more complex of the two categories. 

Let us explore the characteristics of systems belonging to 
each of these five basic types and the development tools and 
techniques that are llJost particularly suited to them. Table 1 
shows the characteristics of applications of each class. 

• Processing logic is the dominant function in applications 
involving complex logic and computations, a small or 
moderate amount of data, and simple control structures. 
Examples of this type of application include most scien
tific programs and many of the analysis applications typi
cally run on time sharing service bureaus .. These applica
tions involve only a few data elements and are normally 
developed in a few months. 

• Output reporting is the dominant function for the class of 
applications that has extensive reporting requirements. 
The processing, control, and data relationships are sim
ple. Usually these systems produce a great many differ
ent reports from essentially the same data. Applications 

written using RPG and MARK IV are often of this class. 
• Data management is the dominant computing function 

for the third group of application systems. These applica
tions usually have a very stable database whose structure 
models the business. Data values are loaded into the 
database, the database is processed for updating, and 
reports are derived from the stored data. Applications 
with complex database structures are usually data
dominated. 

• Transaction input dominates applications of the fourth 
type. Here data collection is the main data processing 
activity, and the system functions are driven by the arriv
al of the appropriate data. There are many types and 
sources of data. Data are gathered once, stored, and then 
used for many different types of processing....Ttansaction 
processing applications, like distribution company order 
entry and online teller banking, are good examples of 
input-dominated systems. 

• Task management is the dominant computing fUnction in 
applications that have very complex or very dynamic pro
gram structures. These applications are likely to have a 
very complex job control network or online control struc
ture linking together a complex array of time-dependent 
processing modules. Small applications are rarely com
plex enough to be control-dominated. Integrated manu
facturing control systems and corporate financial consol
idation systems are often examples of this class. 

This classification of applications by their dominant com
puting function is related to other application characteristics; 
such as their size or complexity. Although the chart is orga
nized in a way that implies a strong correlation between size 
and application class, this need not always be the case. There 



Choosing Application Development Tools and Techniques 567 

TABLE II-Development tools and techniques for each application class 

Class Dominant Function System Design Aids 

A Processing Logic Decision tables 
Flow charts 
Function libraries 

B Output Reporting Output-input matrix 
Data Dictionary 
Jackson methodology 

C Data Management Data Designer 
Data Dictionary 

D Transaction Input HIPO 
Data Dictionary 
Jackson methodology 

E Task Mana~ment SADT 
Structured Design 

are minicomputer-based applications that are task-manage
ment-dominated and super-computer applications that are 
processing-logic-dominated. There does seem to be a natural 
hierarchy of complexity among these application classes, and 
we will see that today's software development tools are better 
suited to implementing the simpler classes of applications. 

As applications evolve and grow, they may change focus. 
Thus, when a simple payroll system dominated by its output 
reporting is upgraded to become part of a more general ac
counting system, it may need to be replaced with a data-based 
system. Later, as part of a more comprehensive financial man
agement system, those data-based modules may need to be 
replaced with programs that are transaction input-oriented. 
Thus, as applications grow in complexity and sophistication 
within -an-organization, the dominant computing---funGtioo--Of
those applications may change, requiring a change in the ap
plication development methodologies used to develop subse
quent generations of the system. 

CHOOSING DEVELOPMENT PRODUCTIVITY AIDS 

We have found that each of the classes of applications con
fronts the developers with different kinds of development 
problems to be overcome. As a result, we have found that 
application development tools and techniques suited to appli
cations with one dominant computer function may not be 
appropriate for applications of another dominant computing 
function. For example, there is no need for a database man
agement system (which is appropriate for data-dominated ap
plications) when development is simple Fortran applications 
for engineering or scientific calculations. Table I shows the 
problems we believe characterize each class of application. 

Each class of applications has a collection of development 
productivity aids that are most effective for solving problems 
associated with that application class. Some tools and tech
niques are useful for more than one class of application, of 
course; and sometimes it is difficu!t _to identify a single class 

Programming Languages Data Management Aids 

FORTRAN 
APL, PLil 
Problem-oriented languages 

COBOL (report writer) EASYTRIEVE 
RPG, MARK IV Inverted DBMS 

COBOL (CODASYL DML) CODASYL DBMS 

CICS/DMS IMS/DB-DC 
COBOL TOTAL 

VSAM 

PASCAL, ADA Relational DBMS 
PLll, ALGOL 

for a particular application. But by identifying which classes of 
applications each tool or technique is best suited to we can 
simplify the decision of which to use for a new application. 

Some of the tools and tecl:lIiiques SUltaOie lOr each class of 
application are shown in Table II. The entries in the chart 
reflect our observations of some techniques that have worked 
well for our clients on various types of applications. It is not 
our intent to include all the development tools and procedures 
available, but only to illustrate the analysis. 

For Class A processmg applIcations, the maID application 
development problem is specifying the problem and its solu
tion in an appropriate computer language. FORTRAN, 
BASIC, and APL are commonly used for implementing scien
tific, business, and analysis applications. Higher-level, prob
lem-oriented languages.-are-also--usedi some specialized sub
ject areas. Flow charts, decision tables, and structure 
diagrams are often useful in the design phase. Because Class 
A applications seldom have complex input, output, or data 
management requirements, the overhead of the more elabo
rate application development tools often outweighs any pro
grammer productivity gains resulting from their use. 

For Class B output-dominated applications, the main task is 
specifying the report formats and verifying that the coding to 
create them has been done correctly. Report -writing lan
guages like RPG, MARK IV, and the COBOL reporter 
writer feature are particularly helpful. The systems develop
ment methodologies based on the output-input matrix, such 
as the Arthur Anderson methodology, 2 are suitable----6nl-y for 
output-dominated applications. In this approach, the devel
opment procedure begins by defining all the output reports 
and their data elements. Then the matrix showing the data 
inputs needed to generate these output data elements is gen-
erated. Finally, the programs based on the matrix are written. 
This approach works best, of course, in situations where the 
output reports remain relatively unchanged throughout the 
entire application development process. Inverted file data 
management systems, such as INQUIRE and ADABAS, are 



National Computer Conference, 1981 

often used in implementing output-dominated applications 
because they support good report generator packages. 

For Class C data-management-dominated applications, the 
main productivity problem is designing the database correctly 
and modifying it effectively when changes are found to be 
required. DBMS software packages are, of course, the natural 
choice of implementation technology. Note, however, that 
some database management software systems are more ap
propriate than others for managing a complex database. The 
CODASYL-compliant systems with extensive backup and re
covery features are particularly helpful in a stable database 
environment. A data dictionary, usually integrated with the 
DBMS, is normally essential. Unfortunately, none of the con
ventional systems development methodologies currently pro
vide assistance for the important task of database design. At 
Arthur D. Little, Inc., we are developing DBAid3 to assist in 
the database design; and Data Base Design, Inc., has devel
oped the Data Designer4 software for relational database de
sign. Few other tools for improving development productivity 
for this class of system are generally available. 

For Class D input-dominated applications, the chief barrier 
to high development productivity is the difficulty of partition
ing the application into independent self-contained transac
tions, each with its unique inputs. Not only is the design task 
difficult, but most programming languages do not have special 
features for processing conversations of transactions or re
covering from errors in partially completed transactions. 
Thus, teleprocessing monitors, such as CICS, are particularly 
helpful for implementing this application class. The applica
tion development methodologies that focus on identifying the 
flow of data through the elementary processes of the business 
work well for input-dominated applications. The Jackson 
methodology~ and IBM's HIP06 are two examples of this type 
of application design. A data dictionary can be quite helpful, 
particularly if it has features that permit capturing data flow 
and usage parameters. DBMS packages used for implemen
tations of this application class must provide fast access to the 
database, but they are not required to be able to manage 
complex data structures. 

For Class E task management applications, there are few 
general-purpose aids for improving development produc
tivity. Because control is the dominant computing function in 
this class of applications, there is usually complex time
dependent task control structure. PASCAL, PLll, and the 
other block-struCtured programming languages and the well
developed network job control languages are best for these 
applications. The systems development methodologies most 
helpful for control-dominated applications are the top-down, 
iterative refinement techniques, such as SADT7 from Softech 
and Structured Design8 by Yourdon, which incorporate the 
specifications of the control structure as well as the data struc
ture in the system design. For DBMS support, the relational 
systems are most likely to be helpful in providing the flexible 
database support for dynamic applications. 

CASE STUDY 

An examp!e will help show the importance of choosing devel
opment tools appropriate to the particular class of applica-

tions. A large manufacturing company had decided to auto
mate its order-processing services. As a rapidly growing busi
ness, it needed the system to speed paperwork processing. 
From the initial concept stage, the design was based on the use 
of online transactions to automate as much of the order
processing task as possible. It was a big project and required 
hundreds of data elements and many years of development 
effort. 

The data processing department tackled the project, using 
tools and techniques that seemed appropriate. A CODASYL 
data management system was installed. An output-input ma
trix system development methodology was used to specify the 
application characteristics, and CICS was used to bring the 
system on line quickly. The system turned out to be much 
more elaborate than anticipated, with cost and time overruns 
as well as poor operational performance. 

What went wrong? In this case, the application was clearly 
a transaction input-dominated (Class D) system. But the 
DBMS software used for implementation was the more struc
tured type, suitable for stable, complex data-dominated prob
lems. And the application development methodology started 
the design process by cataloging the output reports and their 
data elements, then building the system design on them. That 
resulted in a more complete and complex system than initially 
expected. It also forced the project into a monolithic design, 
which prevented an incremental, successively refined imple
mentation. Worse than that, because the analyst's attention 
was focused on the output reports, the underlying business 
processes that were to be automated were never clearly un·· 
derstood and incorporated in the design. As a result, the 
implement ... J ;system did not fit well into the operational busi
ness practices and was eventually abandoned. 

Could these problems have been avoided? In retrospect, we 
see that they could certainly have been anticipated. The appli
cation cried out for a transaction-oriented system, but the 
tools used were more appropriate for output reporting and 
data management projects. The rigid, output-dominated, de
sign methodology used was certain to produce a system that 
would be inappropriate and difficult to modify. The database 
management system chosen for the implementation stressed 
an integrated design, rather than an incrementally modifiable 
and expandable system design. Using our method of choosing 
software tools, the data processing manager would have real
ized that this was a Class 0 system and used a more appropri
ate riesign methodology, such as the Jackson method, and a 
more suitable database management system than the 
CODASYL DBMS that was chosen. 

WHAT'S A DP MANAGER TO DO? 

Now that we have defined five basic application classes and 
described the development tools best suited to each class, let's 
outline a simple program to check an installation's tools and 
techniques for suitability to its application needs. It is really 
very straightforward. 

First, the existing applications and those proposed or under 
development should be categorized in the five classes de
scribed in Table I. Normally, older applications will fall into 
classes dominated by processing logic and output reporting. 



Choosing Application Development Tools and Techniques 569 

TABLE III-Techniques used for applications at D.P. Installation X 

Techniques Used Techniques Used 
Development Application Best Suited to Best Suited to 

Application Date Class This Class Other Classes Score 

General ledger 1965 B COBOL +1 

Plant materials 1970 B RPG +1 
control system 

Order entry 1975 D CICS a-I Matrix -2 
CODASYL DBMS 

Engineering 1980 A FORTRAN +2 
analysis CMS 

-

Distribution In development D CICS/DMS a-I Matrix -2 
inventory CODASYL DBMS 

Budgeting In development A FOCUS Data Dictionary -2 
CODASYL DBMS 

NOTE. Score is count of matching techniques less not-matching techniques. 

Newer applications are more likely to fall into the more com
plex classes. In classifying the proposed applications, try to 
understand the class of the underlying business problem, rath
er than the proposed implementation technology. 

Second, prepare a version of Table II showing the applica
tion development tools in use or potentially available at your 
organization. Don't be alarmed if the matrix is rather sparsely 
filled in; that is typical of many DP shops. It is often helpful 
to include tools and techniques the staff is interested in and to 
exclude those the staff is not interested in learning to use. 
Highlight tools that are current installation standards. 

Then review the use of application development tools and 
techniques at· your organization on an application-by-appli
cation basis. This can be organized as shown in the example 
of Table III. This analysis is interesting for all applications, 
but most important for new or planned applications. If the 
tools available and in use do not match the needs of the 
applications planned, then a potentially serious problem 
exists. Immediate action to install more appropriate applica
tion development tools and techniques is needed; this may 
require staff training, outside consultants, and new software 
or documentation. 

Mismatches identified for applications currently under de
velopment are the most critical. Both of the two situations
simple needs/sophisticated tools and complex needs/simple 
tools-can lead to project failure. In the first case, the techno
logical overkill can lead to overelaborate systems that are 
harder to develop and more complex to use. Very strong 
management control is needed to keep the systems being 
developed suitable for the -actual need. In the second case, 
inadequate tools make project success technologically much 
more difficult. Either case requires prompt attention. 

Another method of showing the overall match of tech
niques and tools to the characteristics of an organization's 

systems is the matrix shown in Figure 1. This figure is derived 
from Table III as follows: For each application system in 
Table III, we place numbers or application names in the array 
in the cells. corresponding to the class of the application and 
the class of the techniques used in developing that application 
system. A concentration of applications along the diagonal 
indicates that the tools in use are appropriate to the applica
tions. If the applications are clustered above the diagonal, the 

U) 

ffi 
I-
U) 

>-
U) 

z 
C) 

~ 
~ 
U 

-I 
CL 
CL 
~ 

LL 
C) 

U) 

w 
U) 
U) 

~ 
-I 
U 

" Tools w too 
simple 

~ 
3 5 3 5 3 5 

U 

CCI 1 2 

4 4 Tool s 
too 

~ complex 
6 6 6 ~ 

A B C o E 
CLASSES OF TOOLS & TECHNIQUES 

Figure I-Array showing march of development tools aria techniques 
to application systems 



570 National Computer Conference, 1981 

tools in place are likely to be inadequate; and if the focus is 
below the diagonal, the tools may be getting in the way of 
development. This array is useful ia-portmying-O¥el'aiLtt:ends 
in an organization's use of software development tools and 
techniques. 

CONCLUSIONS 

We hope this article has illustrated a simple but useful frame
work for choosing the proper systems development tools for 
the five classes of applications. Naturally, it will not fit all 
situations; but even a simple method is often better than none. 
No experienced manager expects to use the same project 
management techniques for both a three-person-month 
project and for a 300-person-month project. Similarly, we 
hope we have-shewn that the techniques that work best for an 
output-dominated application project are likely to differ from 
those that are best for an input-dominated application and 
that neither of these is likely to be most suitable for a large 
task control structure-dominated application. 

This framework is also useful in selecting installation stan
tlaftls. There is value in limiting the number of tools in any 
one installation so that the staff can become familiar with 
them and so that starting a project does not require learning 
a new tool. If the standards groups review the kinds of appli
cations in place and planned for the installation, they can 
favor tools and techniques that are suited to these kinds of 
applications. As the nature of the applications changes over 
time, it may be necessary to review the standard tools and 
techniques in use at the installation. 

There is also a lesson here for career development paths of 
programmers and analysts. Professional growth must include 
learning when to use the various systems development tools 
and techniques as well as how to use them. What distinguishes 
the top analysts from the novices is not necessarily the profi
ciency they have with a few development techniques, but the 

variety of techniques they can use effectively when required. 
The tools a novice will need for assignments differ from those 
of the .expert. A good. career development plan should pro
vide exposure to a variety of tools, adding new ones when they 
are needed. 

COBOL failed to be the universal programming language 
suitable for all kinds of applications that was sought 20 years 
ago. Similarly, there is no universal DBMS, teleprocessing 
task monitor, screen formatter, or system development meth
odology suitable for all classes of applications. But identifying 
the dominant computing function of an application can help 
insure a good choice of application development tools and 
techniques and thereby improve the probability of project 
successes. Naturally, the standards in place in an installation 
should be suited to the applications running there; and its 
career development program should provide staff experience 
with the several tools and techniques needed for its own 
classes of applications. 

REFERENCES 

1. EDP and Systems Development: Some Management Issues, Arthur D. Little, 
Inc., Cambridge, MA, 02138, 1980. 

2. Automation Concept for Business Information Systems, Arthur Anderson & 
Co., Chicago, Illinois, 1974. 

3. Curtice, R.M. and Jones, P.E., Jr., "Key Steps in the Logical Design of Data 
Bases," Proceedings of the NYU Symposium on Database Design, New York 
University, May 1978. 

4. Holland, R.H., "Developing User Views," Datamation, Vol 26, No.2, 
February 1980. 

5. Jackson, M.A., Principles of Program Design, Academic Press, New York, 
New York, 1975. 

6. HIPO-A Design Aid and Documentation Technique, GC20-1851, IBM Cor
poration, 1976. 

7. An Introduction to SADTTM Structured Analysis and Design Technique, 
9022-78R. SoITech., Waltham, MA, 02154, 1976. 

8. Yourdan, E. and Constantine, L.L., Structured Design, Yourdan, Inc., New 
York, 1975. 



A software requirements analysis and definition 
methodology for business data processing 

by ISAO MIYAMOTO and RAYMOND T. YEH 
University of Maryland 
College Park, Maryland 

ABSTRACT 

A well-defined set of work breakdown structures for require
ments analysis and definition activities, three levels of system 
modeling techniques, and the application methodologies are 
proposed. The experimental result in using the proposed re
quirements-engineering methodology is introduced and shows 
remarkable improvement in the quality of requirements docu
ments. The methodology was originally developed for the 
business data processings. 

THE REQUIREMENTS PROBLEM 

The high cost of software has now reached an alarming level. 
Unless major breakthroughs are made, the data processing 
industry is headed towards becoming the most labor intensive 
one as more and more of its labor force will be tied up to 
maintaining old, ill-structured, and difficult-to-modify soft
ware. 

Although there are many reasons for the high cost of soft
ware maintenance, lack of thorough attention to the early 
phase of software development is a major reason. For exam
ple, in two large command and control systems, the software 
had to be rewritten 67% and 95% respectively after delivery 
because of mismatches to user requirements. 3 There are also 
many examples of total cancellation of projects due to lack of 
appropriate requirements and feasibility analysis. In general, 
it was found that design errors range from 36% to 74% of the 
total error count. 9 Also the cost of fixing a design error is 1.5 
to 3 times more expensive than to fix an implementation er
ror. 

The above discussion illustrates the importance of devel
oping good requirement methodology as a means to control 
the maintenance cost. But there are other equally important 
reasons for paying more attention to the requirements phase, 
such as design validation, communication, operations control, 
etc. Therefore, a bad requirements document can severely 
compromise the design because of difficulty in validation, and 
that top-down design may not be possible. Furthermore, both 
the customer and management may lose control. 

Although there are a number of approaches to require
ments analysis,6,10 most techniques are inadequate. One ofthe 
major problems in current approaches is the lack of a set of 

571 

well-defined work breakdown structures that can be used as a 
systematic guide in using the methodology. 

In this paper, we propose a requirements analysis and defi
nition methodology for business data processing systems with 
a well-defined work breakdown structure. We have heavily 
borrowed notations from existing approaches. 

REQUIREMENTS ENGINEERING METHODOLOGY 

The requirements engineering methodology we propose here 
has three major components: a well-defined work breakdown 
structure; a validation methodology; and a set of modeling 
formalisms for each phase of requirements activities. 

A framework of the work breakdown structures is illus
trated in Figure 1 as a phase plan with objectives, inputs and 
outputs of each phase. The validation methodology for the 
requirements documents consists of a reviewing technique for 
customer, developer, and analyser, a well-defined set of 
checklists for consistency, completeness, and feasibility, a 
cause-effect graph checking technique for the requirements 
described in the form of natural language texts; and a flow
path predicates checking technique for the flow-oriented rep
resentations of requirements. The modeling formalisms con
sist of an abstract task modeling for the existing system in the 
enterprise, a conceptual system modeling for alternative ideas 
of future systems, and a requirements flow modeling for de
tailed level representation of the chosen alternative. 

In this paper, the emphasis is placed on the work break
down structures and the modeling but not on the validation 
methodology. 

WORK BREAKDOWN STRUCTURES 

In this section, a brief description of the requirements analysis 
and definition (RA&D) procedures is given. The items to be 
contained in each output document of each phase are given in 
the checklists shown in the figures. For the validation or re
quirements documents, another set of precise checklists is 
prepared._ 

The work breakdown structures developed here are mo
tivated by ideas proposed by Boehm,4 and consist of three 
phased processes. These are the Investigation Phase, the Con-



572 National Computer Conference, 1981 

Investigation 
objectives; 
inputs; 

• investigate and understand actual state of enterprise, and their needs 

Phase 
• relevant documents describing the enterprise and its associated world 

(e.g., other enterprise or government regulation) 
review • investigation phase reports 

• study ch~rter for next phase 

Conceptual 
objectives; • establish existing and alternative concepts 

Phase 
• screen alternatives to manageable number 
• determine preferred concept for development 

V&V • formulate basic concept of systems operation 
• determine rough life cycle cost 

inputs: 
• ?btai~ de~initive go/no-go for development project (approve draft development contract) 
• mvestlgatlOn phase study reports 
• conceptual phase study charter (study objectives, scope, constraint resources & schedule) 

outputs: • draft of development contract 
• conceputal phase study report 
• go/no-go decision for development project 

objectives; • develop life cycle plan 
Requirements 

Definition • specify detailed requirements 
• refine cost estimation Phase 

V&V 
• achieve mutual commitment to development contract by developer, buyer, user on 

-what is to be developed 
-what is the development plan 
-what are the required resources 

(approve development contract) 

, , 
I , 

inputs • draft development contract 
• conceptual study report 
• concept of operation 

outputs; • life cycle plan , , 
,.. _____ i _____ ~ • requirements specification and acceptance plan 

I Basic Design t 
• agreed-upon development contract 

I Phase I 
I , 

, V&V ' L ___________ J 

Figure 1-Proposed RA&D phase plan 

ceptual Phase, and the Requirements Definition Phase. Es
senti ally , the input information for these comes from real 
~orld en~ironment Of an enterprise that needs an improved 
mformatlOn processing system. And outputs of these-are the 
l~fe-cycle plan. of the system and the requirements specifica
tIO~, from WhICh we can derive software designs {e.g., code 
deSign, output design, input design, file/database design, pro
cess design, reliability design, security design, design of oper
ation, recovery design, etc.), and some aspects of hardware 
system design or selection (e.g., users' terminal devices com
munication network, computing devices, peripheral d~vices, 
etc.) .. From the outputs of RA&D, all of these design or 
selectIon processes must be smoothly derived. 

Investigation Phase 

This is the front-end stage of the RA&D activities and 
~ontains !wo sets o~ procedural steps. This phase is pri~arily 
mformatIon collectIon. Its goal is to bound the problem space 
and develop an overall logical model of the systems environ
ment. The study results are to be written as two separate 
reports. 

,!,he inputs ~f this phase are the documents describing the 
object enterpnse and the associated industrial world. If noth
ing of this sort is available, an investigation should be done 
mainly by interviewing. The outputs are the two investigation 
reports and the study charter for next phase. 

Step I: Environmental investigation 

This step is mainly achieved by documentation reviews. The 
proposed substeps are the following: 

1. To investigate the characteristics of the industrial world 
in which the enterprise belongs, and the general and 
historical background of the enterprise. 

2. To investigate the organizational macrostructure of the 
enterprise, such as staff divisions, production-line di
visions, their geographical distributions, types of their 
business, associated suborganizations, etc. 

By investigating the organizational macrostructure of 
the enterprise, we gain understanding of the business 
information flows and of the flows of materials and prod
ucts associated with the information processing system. 

3. To investigate the laws, regulations, or policies applied 
to the enterprise or the associated industrial world by the 
government or other organization. 

These regulations might become external constraints 
for an information processing system design. 

4. To investigate the current state of the associated market, 
and a share or competitive power of the enterprise. 

The information obtained will help to estimate the 
future growth and direction of the enterprise and its 
implication on the information system design. 

These results may contribute to deciding the objectives and 
scope of the new information processing system, and to deter-



1. Summary of report 
2. Characteristics of associated industrial world 
3. Historical and general backgrounds, and macro

structure of enterprise 
4. Associated laws, regulations, and policies 
5. Current state of associated market, share or com

petitive power cif enterprise 
6. Comments and references 

Figure 2-The checklist for the environmental investigation report 

mining the interviewing activities to assess users' hopes or 
requirements for new system or ideas to improve or solve 
current issues on an existing information processing system. 
The checklist for the items to be contained ilJ the report 
produced by this step is shown in Figure 2. The report is 
described using natural language. 

The documentation review is quite efficient. However, the 
investigation results should be validated by feeding back the 
results to the information sources (users and customers) and 
by detecting and correcting misunderstandings, incorrect 
items,. ambiguities, and missing items. 

Step II: Study of enterprise 

The techniques used in this step mainly consist of inter
views, questionnaires, and documentation reviews. 

Based on the external investigation report, the interview of 
all levels of users or customers (i.e. management, clerk, oper
ator, etc.) should be done to make clear and identify enter
prise's objectives (e.g., to improve company profit and 
morale), system-internal objectives (e.g., to improve payroll 
operational efficiency and reliability or, to accommodate 
100% growth ia. personnel), external constraints (e.g., to 
comply with the government's new tax reporting rule), exter
nal alternatives (e.g., to develop a personnel information sys
tem, to reorganize company financial organization, or to do 
nothing), internal alternatives (e.g., to develop new payroll 
program, or to buy a payroll program), and internal con
straints (e.g., to perform payroll calculation in 128KB com
puter, or to represent files in particular form). 

The major output is the report describing the macro
structure of the enterprise and a set of information about 
currently existing information processing systems in the enter
prise. 

The sub steps consist of the following: 

1. Defining the scope and objectives of the investigation, 
and planning the investigation activities (e.g. interviews, 
etc.); 

2. Investigating and analyzing the enterprise's objectives 
and goals, i.e. external objectives of the information 
processing system (these may contribute to deciding sys
tem capabilities and their priorities during the devel
opment, and to estimating the benefits to be expected by 
the new system); 

3. Investigating the organizational microstructures (sec-

A Software Requirements Methodology 573 

tions, departments, divisions, etc.) in the enterprise in 
detail and the types of business of each suborganization; 

4. Investigating the management policies for operations, 
accounting, and information-processing systems of the 
enterprise as external constraints (these may provide 
some constraints on the installation, operation, and 
maintenance of the new system); 

5. Investigating the inputs, outputs, and the resources used 
the enterprise's activities (the types, quantities and some 
characteristics of them should be analyzed); 

6. Analyzing the business operations (physical operation 
for production or business, and the information process) 
and their objectives (internal objectives for information 
processing system) (the events, entities, and re
lationships among events and entities, and flows of phys
ical operations should be made clear); 

7. Investigating and analyzing the information-processing 
system from the viewpoint of current states of input 
information, processings (abstract task mode-ling), files, 
output information, and codes; 

8. Analyzingthe probtemsimrn{t-in the correnrty-existing 
information processing system; 

9. Surveying ideas to solve or improve the problems and 
the enterprise's desires for new capabilities to be de
livered by the information processing system; 

10. Reviewing the above results and exploring incorrect 
items, misunderstandings, and ambiguities (usually an 
iterative process). 

The items to be contained in the report produced in this 
step, given in Figure 3, are usually described using special 
forms with natural language texts, and partially described in 
the forms of abstract task models to be introduced later. An
other output of this step is a study charter for the next phase. 
Through the investigation of the enterprise, the various types 
of issues regarding information processing might be recog
nized, and in principle the problems identified should be 
solved by the new system. 

By the interview technique~wecan easily pick up "whats" 
. and "whys" from interviewees (users and customer), but the 

1. Summary of report 
2. Scope and objectives of investigation 
3. Objectives and goals of enterprise 
4. Micro-structure of enterprise, and types of business 

done in each sub-organization 
5. Management policies in enterprise 
6. Inputs, output products and resources used in the 

activities of enterprise 
7. Physical operations for production or business, and 

their objectives 
8. Input information, tasks, files, output information, 

input/output timing, and code information of cur
rently existing information processing system 

9. Issues of current information processing system 
10. Ideas of improvement or solution of problems, and 

desires for new capabilities 
11. References and glossary 

Figure 3-The checklist for the internal investigation report 



574 National Computet ConfeIenee, 1981 

interview results may contain some bias of both of inter
viewers and interviewees. Thus the validation of the interview 
results is very important. To validate and correct the mis
understandings, incorrect information, ambiguous informa
tion, and inconsistent information. This can be done, for ex
ample, by repeating the interviews and feeding back the pre
liminary results to all levels of interviewees. Needless to say, 
this is a time-consuming process. 

Conceptual Phase 

In this second phase of RA&D, a logical model of the 
enterprise system concepts is established. 

From the results of the investigation phase, it should be 
clear that the structure of the enterprise and the types of 
business done in each of the individual suborganizations are 
often distorted by the internal or external environments or by 
the power struggle among different suborganizations. Also, 
additional (nonessential) information is manipulated by the 
specific method or equipment used, because of specialities of 
the method or equipment. 

Therefore, the basis of the system's structure should only 
consider the capabilities and information critically required 
for the enterprise's information processing. 

In this phase, a conceptual model of the new system is to be 
constructed, and relationship among the input, file or data
base, task, and output information to be used in the new 
system, as well as the components in the enterprise that create 
or use these pieces of information, should be made clear. The 
basic approach is as follows. First, based on the individual task 
and system-level task diagrams, the tasks to be computerized 
should be determined. During this investigation, by paying 
attention to the information flow in the organization the re
lations between input information and output information, 
and their transformation processes, should be defined for 
each task. Next, the components that create the system's in
put information and the components that use the system's 
output information are examined. Then, interfaces between 
the environment and computerized tasks should be made 
clear. Then the input information required to generate the 
output information is investigated, and sometimes a lack of 
information might be found. In this case, a computer file is 
called for. By referring to the documents files and master files 
used in currently existing information-processing system, the 
necessary computer files might be determined. A daily ac
counting file and a journal file for keeping records of input 
information and data processed should be also considered, for 
example. These are to be done at the first step of the concep
tual phase. 

The best choice in this phase is to select a good solution 
among a wide range of alternatives, and to establish the fea
sible logical concepts of the system and its operation. 

The inputs are the investigation phase study reports, con
ceptual phase study charter, and various ideas for new systems 
that come from users, customers, developers, operators, man
agers, or similar systems. The outputs are the draft of devel
opment contract, the conceptual phase study report, and the 
go/no-go decision for development project. . 

The substeps detailed in this phase are the following: 

1. to construct a system diagram of the desired capabilities 
that are to be computerized by using a conceptual mod
eling technique (Conceptual System Modeling); 

2. to list major objectives, alternatives, environmental 
constraints, and to refine them; 

3. to characterize the likely system workload; 
4. to define systems evaluation criteria; 
5. to specify desired and acceptable levels (valq.es) for 

each criterion; 
6. to prepare models of cost-effectiveness, performance, 

and life-cycle cost for each alternative; 
7. to screen alternatives using a screening matrix; 
8. to pick the best alternative and investigate its feasibility 

(if infeasible, try others till all are exhausted); 
9. to expand the systems architecture, concept of oper-

ation, and life cycle plan of the best alternative; 
10. to validate the feasibility; 
11. to develop a detailed plan for the next phase; and 
12. to review and baseline results, to write a draft of the 

development contract, and to get a solid commitment 
to proceed. 

The items to be contained in the report produced during 
this step may be checked by referring to Figure 4. The system 
concept of the best alternative idea should be described by 
using conceptual system modeling techniques to be described 
later. 

The procedure itself contains some aspects of validation, 
feasibility analysis, and screening analysis. 

The selection of the best alternative idea of the system 
concepts is done by screening analysis. Take, for example, the 
following evaluation criteria:4 

a. cost criteria (dollars of acquisition, dollars of operation, 
schedule, and key personnel) 

b. effectiveness of functions (functional capabilities, 
throughput, response time, accuracy, ease of use, ease 
of maintenance, staff morale arid growth, sales poten
tial, reputation, and side effects) 

c. risks (technology risk, availability/reliability, control
lability, and others). 

Additional evaluation criteria can be added according to the 
system objectives. And according to the importance level of 
criteria (for example, unimportant, optional, important, and 
critical), all of the alternative ideas might be rated as un
acceptable, marginal, acceptable, and strong. 

In order to establish the feasibility of alternative ideas, 
workload and environment characteristics, acquisition and 
operational costs, and all critical-importance criteria must be 
investigated in more detail. Then we should validate the fea
sibility in terms of responsiveness to all objectives, prefera
bility to external alternatives, sensitivity to assumptions, and 
compatibility with other initiatives. 

Requirements Definition Phase 

Base~L on the system concepts resulting from the former 
phase, the detailed requirements for the system's functions, 



1. Summary of content 
2. Background and a charter 
3. System objective 
4. Systems alternatives 
5. Screening analysis and screeningmatrix9 

6. Analysis of cost/effectiveness and validation. _ 
7. System concept of the best alternative in terms of basic architec

ture, concept of operation, and life-cycle plan 
8. Feasibility analysis and validation 
9. Decision of go or no-go 

to. Draft of development contract 
11. Detailed plan for next phase . . . 
12. Comments, recommendations, references, and glossary 

Figure 4-The checklist for the conceptual phase report 

desired properties of the system, and desired constraints are 
specified. Basic questions (such as: what is to be dev~loped, 
what is the development plan, and what are the required 
resources?) must be answered by the end of this phase. 

The inputs to the requirements definition .phase are the 
draft development contract, conceptual study report, and the 
concept of operation; the outputs are the life cycle plan, re~ 
quirements specification, an acceptance plan, and the agree
ment upon the development contract. 

The major purpose of this phase is to produce and specify 
a well-organized set of requirements and constraints for devel
opment and operation. In addition to the purely user-origi
nated requirements, the detailed requirements are to h.e cre
ated by analysts, developers, or managements, and their rea
sonableness should be discussed. The reason is to produce. a 
complete requirements specification, which covers not only 
functional aspects of system but also the various properties of 
system and some constraints on development and operation, 
and from which we can derive smoothly the various types of 
system designs. 10 The procedures are the following: 

1. Based on the conceptual study report, to expand the 
basic architecture and concept of operation, and then to 
construct the refined abstract system model (Require
ments Flow Representations). 

2. To describe the properties of the system model. In de
tail, this is done through the following steps: 

a. identifying all of the entities in the system and its 
environment; 

b. specifying inputs to the system and functional re
sponse expected; 

c. specifying system performance parameters and al
lowable value ranges; 

d. specifying properties of the system (e.g. reliability, 
availability, maintainability, human engineering, 
etc.). 

3. To specify requirements for inputs and outputs, termi
nals, code system; communication line, network, pro
cessing devices; system operations; recovery processing; 
and files and database. For each, functional, perfor
mance, and reliability aspects must be specified. 

4. To verify the system model with respect to com
pleteness, consistency, and correctness. One must re
view the system requirements by using checklists, verify 
the consistency by using traceability, verify the consis-

A Software Requirements Methodology 575 

~ency of flow predicates by using flow path tracing, etc. 
5. If the model is invalid, to remodel it by collecting addi

tional information from users, customers, developers, or 
simllar systems. 

6. To validate the feasibility of the abstract system model 
(a) by non-real time simulation and (b) by taking into 
account technical risks, cost/schedule risks, and environ
mental risks. 

7: To repeat above steps until a complete model is ob
tained. 

The items to be contained in the specification are shown in 
Figure 5" and the doc1lment may contain the natural language 
texts and,graphical representations. To the flow represent
ation of requirements should be applied the modeling tech
nique to be described next. 

The requirements V & V techniques used in this meth
odology are: 

1. review by customer, developer, analyst and manager, 
2. checklists (e.g. consistency checking, completeness 

checking, etc.), 
3. (if there is any control flow-oriented representation) 

flow path predicates checking, 
4. cause-an9-effect graph checking for natural language 

texts, and 
5. decision table checking. 

Some of the examples of completeness checklists are 

• Are there any elements of requirements not stated? 
• Are there any TBDs? 
• Are decision criteria missing? 
• Is interface missing? 

1. Summary of contents 
2. Overview of system in terms of objectives and environment of 

system 
3. Functional requirements to system in terms of organization of 

functions, description of. each function, flow representation 
(data-oriented or control-oriented), and test provisions 

4. Performance requirements to system in terms of timings, re
source utilization, accuracy, acceptable limits of degraded system 
performance, and validation points 

5. Requirements to operations of system starting, normal operation, 
termination, and recovery processing 

6. Interface requirements in terms of interfaces with external sys
tems, and human interfaces 

7. Requirements to database or file in terms of organization, capaci
ty, and medium 

8. Requirements to inputs, output, terminals, communication line, 
network, and computing devices 

9. Requirement to code system 
10. Developmental constraints on operational environment (i.e. 

hardware, software, data, man-machine interface), implementa
tion (i.e. virtual machine, languages, operating system, DBMS), 
required documentations, development or maintenance cost, and 
end-product quality (e.g., reliability, availability, maintainabil
ity, portability, etc.) 

11. Definitions and references 

Figure 5-The checklist for the requirements specification 



576 National Computer Conference, 1981 

system/task symbol meaning example 

for SYSTEM • information flow among tasks and subtasks within organization order information 
(CF-AF) TASK • 

DIAGRAM 

---------+- information flow between internal and external of organization invoice 
---------+-

D financial 
task or subtask affairs 

task 

II II associated section II customer II 
(external of organization) 

for TASK 
... ---_ ......... _ . ..., rmanagemerit-, I I 

(CF-AF) DIAGRAMS I I interfacing task I & I , I 
I I 

L'p~a~~~~_t:~~J I I 

(in addition to above) '-.. - .J. 

OJ task or subtask with processing issuing- >. 
cycle slit ~ 

subtask "0 

Figure 6-Graphical notations for task/system task diagrams 

• Is processing cycle for task missing? 
• Are the recovery requirements missing? 

By using the above techniques, we should validate the overall 
set of requirements in terms of completeness, consistency, 
testability, feasibility, compatibility and planned resources, 
off-nominal performance, and responsiveness to quality 
goals. The individual requirements we should check in terms 
of traceability to system objectives, testability, feasibility, 
completeness, and clear distinction between goals and re
quirements. 

MODELING TECHNIQUES 

There are three levels of modeling techniques in the meth
odology proposed here. The abstract task modeling, concep
tual system modeling, and requirements flow representation 
are to be used in investigation phase, conceptual phase and 
requirements definition phase, respectively. An important 
point is that these models consist of only a part of the activ
ities. 

Abstract Task Modeling 

Every information-processing activity in the enterprise 
should be modeled. A task is an abstract entity that performs 
(computerized or manual) information processings in the en
terprise, and in many cases, it may correspond to the role of 
each component in the information processing in a rough 
sense. During the modeling, the following questions should be 
explored. 

• What is processed in the task? 
• What are inputs and outputs of the task? 

• Where are they located? 
• What is the processing method used? 
• What is the mechanism or equipment used? 
• What is the validity checking method for output pro

duced? 
• What is the degree of necessity? 
• What are the exception handling method and frequen

cies? 
• What are the processing timings? 

Task-Name: "Order-Processing" 
This task has following three subtasks. 

Subtask-Name: "Receiving-Order&Price-Estimation" 
description: "This subtask receives orders, inquiry for price in

formation, and request for price estimation from customers 
on demand base. For every order, this subtask should check 
credit limit of each customer and price of product (by getting 
information from Financial Affairs Task), then forward the 
order information to Arrangement Request/Order subtask. 
For the inquiries, because it requires rapid processing, this 
subtask should contact with and request to Production Plan
ning & Management Task. For the request for price esti
mation, according to the request, this subtask must get the 
information of product specification, production cost esti
mation, and product development schedule from Production 
Planning & Management Task (and indirectly from Design! 
Technical Management Task). Then based on this informa
tion, this subtask should estimate a sale price and a date of 
delivery, and must return this information to the customer. " 

Subtask -Name: "Arrangement Request/Order" 
description: "This subtask should .......... 

Figure 7-Example of task/subtask description 



, , , 
I 
I 
I 

I 
I 

f+\-;:-;:;;;m'"T;;"!':-,1 task 

standard product shipment--....lIL--"'-r-; r----------, 
re rot information 

L _________________________ _ 

I management & I 

sales statistilcs planning l, 
: task 

invoice L ________ ..:_J 

Figure 8--Task diagram "order-processing" 

The results should be represented as a list of tasks, task dia
grams, and system task diagram. For the diagrams, graphical 
notations are prepared and shown in Figure 6. 

As a modeling strategy, any of the strategies such as top
down, bottom-up, outside-in, inside-out or their combination 
can be used. 

For example, in a case of topdown strategy, the following 
modeling procedures can be applied: 

1. find and list every information processing task in the 
enterprise; 

2. list every input and output information of each task; and 
3. represent the relationships and the information flows 

among tasks by using a modeling notation. 

Note that above set of procedures should be applied to macro
level organizations (e.g., divisions) in the enterprise, then 
repeated to the next lower level (e.g., departments), and the 
next, until the lowest level is reached (e.g., sections or 
groups). 

The examples of task modelling for the order processing 
and inventory control system are described in Figures 7 and 8. 

input/output information 
for task or 5ubtask 

file information 

task or subtask (name in upper-left part) 
nth processing cycle (in right-most part) 
and responsible section/mechanism (in lower-left 
part) 

information flow among tasks/subtasks. and 
files 

Figure 9-Conceptual modeling notations 

A Software Requirements Methodology 577 

Conceptual System Modeling 

In the conceptual phase, there are two sets of procedures to 
be done. One is to construct submodels for each task, and 
another is to build a system model. The subsystem modeling 
procedures are to 

1. determine tasks to be computerized, 
2. define output information from each task or subtask to 

be computerized, . 
3. define input information for each task or sub task to be 

computerized, 
4. determine computer files, and 
5. represent the above results as a set of system submodels 

by using a modeling notation. 

The system modeling procedures are to 

1. represent each sub model of each task as the blackbox, 
and abstract the input informa.tion. the output informa
tion, and the file information, 

2. by using abstracted information as the junction points 
(or interfaces), combine the abstracted submodel with 
another abstracted submodel, 

3. repeat the combining job until all submodels are com
bined as a system model, and 

4. represent system model by using the modeling notation. 

The modeling notation is given in Figure 9 and the descrip
tions for the previous example system are given in Figures 10 
and 11. The conceptual system modeling is based on a bottom
up approach. 

Requirements Flow Representation 

In order to smoothly understand and design a system based 
en the .feqUirements specification, cleady some type of flow 
representation for the requirements will be helpful. Therefore 
the requirements engineering methodology has applied three 

Outputs to 
~~i~~~:r~;'I-:--:-~.-__ -illI.~~"l!l:d!!.!l.e!::p!;!.:r!l.!i.oC"",eSl<.O.S1n~" ----r-::--::-::-::-l ~~;~~!e of 

system subsystem 

Figure 10-An example of a subsystem model 



578 National Computer Conference, 1981 

inputs outputs 

inputs from input from other input from output to file output to other output to 
outside of submodels files subtask within sub models outside of 

system this submodel system 

INl = orders inl = progress in 10= standard ot3=order otl = request for OTl=price/ 
report info product information estimation schedule 

development estimation 
in2 = product schedule ot2=emergency 

IN2=inquiry for specification information ot7=customer inquiry on = notice for 
price master request accepted 
information in3=estimated information order 

schedule ot6=standard 
IN3 = request information ot8 = order product OT3=invoice 

for transactions development 
estimation in4=change order 

notice ot9=accepted 
order ot4 = non-standard 

in5=credit limit master product 
development 
order 

in6=price list otll=sales 
statistics ot5=accepted order 

in7 = non-standard information 
product 
development ot1O= invoice 
schedule info information 

in9 = non-standard 
product 
shipment 
report 
information 

Figure ll-Supplemental 110 table 

levels of modeling, and the requirements flow representation 
technique we propose contains the integrated representation 
technique that combines data-flow oriented modeling and 
control flow oriented modeling. Since any kind of computer 
system and software has both data-oriented and control
oriented characteristics, it is unnatural to represent a system 
by using only one of two aspects. Therefore, it would be 
desirable to use both types of primitives. If a systems function 
can be represented as a series of transformations of sequential 
data (e.g. sequential file, printer outputs, communication 
message data), a data flow representation can be used. If a 
control sequence of processing has a more important role in 
the systems function, the control flow representation will be 
the better notation to use. 

The modelling primitives concepts used in our methodolgoy 
are mostly borrowed from existing approaches (e.g., Bell's7), 
as is shown in Figure 12. 

As an interprocess communication mechanism, we used the 
concept of message buffer. This concept has the following 
restrictions on its use: 

1. for each message buffer, only one producer process that 
sends data to message buffer, and only one consumer 
process that receives data from message buffer are al
lowed; 

2. each process has no means of knowing the states of 

message buffer (Le. "empty" or "full"). They may have 
only send and receive operations. (If a process is ac
cessed to an "empty" message buffer to receive data 
from, or a "full" message buffer to send data to, the 
process is always made to wait.) 

By these, the system functions can be defined deterministical
ly, independently from a scheduling of processes. 

The following rules should be observed when one is using a 
message buffer:8 

1. If a process C of data flow representation is decomposed 
into data flow representation, the message buffer used in 
C may be used by only one of the internal subprocesses 
of C. The usage in subprocess should follow the usage of 
process C. (E.g., if C sends data to the message buffer, 
the subprocess can only do same thing.) 

2. If a process C of data flow representation is decomposed 
into control flow representations, the message buffer 
used in C may be used by any of the internal sub
processes of C. The usage in subprocesses must follow 
the usage in process C. 

3. If a process C of control flow representation is decom
posed into data flow representation, the process called 
by process C may be accessed by only one of the internal 
subprocesses of C. 

4. If a process C of control flow representation is decom-



y 
o 

<$ 
o 

event 

external interface 

: validation point 

: process 

~ : subnet 

: parallel processing/ 

synchronization 

:--4-: : decision 
: , 

f-<? 
L--c? 

L 

: repetition 

: termination 

Xc==J- : input message with 
(" ... ,,) creator (xxxx) 

: output message with 
destination (xxxx) 

: input/output information 
(peripheral ) 

: human interface 

: database/file 

: journal file/log file 

: message buffer 
(conununication mechanism) 

~ : online message flow 

: offline r.:tessage flow 

: internal information 
flow or control flow 

Figure 12-Primitive concepts for requirements flow representationsl •2 

posed into control flow representation, the process 
called by process C may be accessed by any of the inter
nal subprocesses of C. 

Note that rules land 3 are the restrictions to define system 
functions deterministically. If there are no parallel operations 
and no processes that keep internal states, then rule 3 can be 
removed. 

The examples shown in Figure 13 and Figure 14 are the case 
in which the component of data flow representation is decom
posed into control flow representation. 

CONCLUDING REMARKS 

The proposed requirements-engineering methodology has 
been used experimentally in the real world environment. The 
object system is not a business-oriented system but a control
oriented military system.5 Though the methodology was de
veloped originally for business systems, the results of this use 
in real-time control system environment shows that the meth
odology has a wide range of application areas, and is not 
limited to business systems. 

To summarize the experimental results, we achieved follow
ing things: 

1. Through the experimental use, we achieved a great im
provement of the quality of requirements documents. 
Because of the detailed work breakdown structures and 
validation techniques, the understandability, feasibility, 
and some other characteristics of quality of specifica-

input 
message 

A Software Requirements Methodology 579 

process flow representation 

IIreal time-order-process" 

output 
message 

"reply" I 
(branch
office) 

reply=. error-m 

description 

.out-of- ock-msg 

.postpone -shipment 

.accepted order-msg 

Figure 13-Example of data flow-oriented requirements representation 
(top level) 

tions are improved. Actually, the rate of requirements 
problems per page has decreased definitely from 0.801 
( = 185 errors/231 pages) of traditional methodology to 
0.301 (= 205 errors/682 pages) of new requirements
engineering methodology. Figure 15 shows the require
ments error distributions of traditional requirements 
methodology, and of the new requirements-engineering 
methodology proposed. 

The most important point is the improvement in the 
understandability of documents because of the remark
able reductions of unclear descriptions and of missing 
descriptions. On the other hand, the relative per
centages of incorrect and inconsistent/incompatible de
scriptions have increased. The reason for this phenom
enon may be that due to the reduction of ambiguous 
descriptions and improved traceability of the specifica
tions, the checkings for correctness and inconsistency 
became easier than before. Hence, validation can be 
done properly. As a result, more errors of these types 
were detected. 

error- sg
editi g 

subnet 1Iorder-process" 

( in "inventory-maste'i 

Figure 14-Example of control flow representation 
(2nd level of decomposition) 



580 National Computer Conference, 1981 

Traditional Improved 

Requirements out of scope 1.2% 2.9% 
Out of scope 1.2% 2.9% 

Missing requirements 23:T% 17.6% 
Elements of requirements not stated 3.2% 2.5% 
To be defined 3.7% 0.9% 
Decision criteria missing 1.0% 1.4% 
Interface missing 5.9% 4.0% 
Processing cycle missing 1.5% 2.0% 
Recovery requirements missing 1.0% 1.4% 
Performance/reliability requirements missing 4.3% 2.5% 
Developmental constraints 1.5% 2.0% 
Others 1.0% 0.9% 

Incorrect requirements 18.6% 22.7% 
Requirement not testable 7.3% 8.0% 
Requirement satisfaction probabilistic 0.5% 0.9% 
TIming requirement infeasible 2.8% 1.9% 
Accuracy requirements not realizable 0.5% 0.9% 
Parameter units incorrect 0.5% 1.4% 
Equation incorrect 1.6% 1.9% 
Unnecessary requirement 2.1% 2.4% 
Required processing wrong 2.8% 3.5% 
Requirement reference incorrect 0.5% 1.4% 
Others 0.0% 0.4% 

Inconsistent requirements 13.0% 25.1% 
Conventions not consistent 3.8% 5.0% 
Requirements information not same in plural locations 9.2% 20.1% 
Others' 0.9% 0.0% 

Unclear requirements 40.7% 23.2% 
Terms need definition 17.9% 8.2% 
Requirements need restatement in other words 22.8% 15.0% 
Others 0.0% 0.0% 

Typographical errors 3.4% 8.5% 
Typos 3.4% 8.5% 

Figure 15-Requirements error distributions of traditional and improved 
requirements methodologiesS 

2. Systems analysts can get clear requirements analysis and 
definition guidelines, and this implies the potential pos
sibility of standardization, and makes data collection and 
analysis meaningful on cost and quality. 

3. Projects may have less dependency on the experience of 
the project manager in requirements analysis and defini
tion. 

4. Planning and scheduling of requirements analysis and 
definition phases are made easier, and this allows the 
analysts to spend adequate time and resources. 

5. User involvement in the RA&D phases can be expected 
more than before. 

6. Because of use of data-oriented and control-oriented 
requirements representation techniques, the under
standability of expected system behavior has been im
proved. 

The new methodology does point to some problems. A 
. typical one is concerned with the cost of requirements analysis 
and definition activities. In the traditional approach, the cost 
and resources used for RA&D were almost nothing (not zero, 
of course, but very small because almost nothing was done 
during the requirements analysis and definition phase). The 
cost of requirements engineering in the improved approach 
has become very large, and is considered to be budgeted. This 
may force the necessity of a two-stage contract system for 
RA&D, and development, has been appeared. Also the high 

cost problem seems to be very severe for small and medium 
scale software projects, although for large scale projects it 
may payoff. 

Finally, it should be pointed out that no automated tools 
exist for the proposed methodology. 

ACKNOWLEDGMENTS 

We are grateful to Drs. Barry Boehm, Roland Mittermeir, 
and Victor Basili for many helpful comments and stimulating 
discussion. This research was supported in part by the U.S. 
Air Force under Contract No. AFSORF 49620-80-C001, and 
by the U.S. Army under Contract DASG 60-80-C-0024. 

REFERENCES 

1. Alford, M. "A requirements engineering methodology for real time pro
cessing requirements," IEEE Tr. Soft. Eng. VoI.SE-3, No.1, pp. 61-69, 
Jan. 1977. 

2. Bell, T.E. et ai, "An extendable approach to computer-aided software 
requirements engineering," ibid, pp. 49-60. 

3. Boehm, B.W., "Software and Its Impact; A Quantitative Assessment," 
Datamation, May 1973, pp. 48-59. 

4. Boehm, B. W., "Seminar on Software Requirements Analysis and Design," 
Berlin, 1979. 



5. Miyamoto, I., "On the way to a practical requirements analysis and defini
tion methodology," 14th Hawaii International Conf. on Systems Science, 
Jan. 1981, pp. 140-152, Vol. 1. 

6. Ramamoorthy, C.V. and Yeh, R.T., "Tutorial: Software methodologies," 
IEEE catalog No. EHO 142-0, 1978. 

7. Ross, D., "Structured Analysis (SA): A language for communicating 
ideas", IEEE Tr. Soft. Eng., Vol. SE-3, No.1, 1977. 

A Software Requirements Methodology 581 

8. Shigo, 0., et aI., "A software design system based on a unified design 
methodology," Journal of IPSJ, Vol. 21, No.5, 1980 pp. 528-538. 

9. Thayer, T.A., et ai, "Software Reliability Study," TRW System Report 
SS-76-03, 1976. 

10. Yeh, R.T., et ai, "Software Requirements: A report on the State of the 
Art," in Software Engineering, Ramamoorthy & Vick, eds, Van Nostrand, 
1981 (to appear). 





A methodology for information system design 

by COLETIE ROLLAND 
Universite de Paris 
Paris, France 

ABSTRACT 

This paper concerns.the design of large and integrated infor
mation systems (IS) in organizations. We propose to organize 
the.IS development process in two interdependent steps, the 
first one centered on the semantic representation of the real 
world system, the second step including technical aspects of 
the solution ignored in the first one. 

We present an original model to design the solution at the 
first step we named IS conceptual schema. This model allows 
a complete, consistent, non redundant and economic repre
sentation including static and dynamic aspects of the real 
world system. 

INTRODUCTION 

We are concerned with the design of information systems (IS). 
We mean by IS a collection of data structured in a database, 
a collection of programs and transactions in a programs base 
and a collection of synchronization commands that control the 
triggering of programs and transactions upon data. Our ex
perience is derived from the application of research results to 
the design of a complete information system for enterprises of 
the Electronics industry. 

It is known that the development of a complete and consis
tent IS is a very hard task. This task involves, for a long 
period, a great variety of people doing particular activities, 
especially when the domain to inform is large and complex. 
We are now developing a complete information system for a 
company employing one thousand people. The development 
is planned for three years and involves ten information sys
tems specialists on one hand and forty user-managers on the 
other hand. 

Furthermore, when the system is complex it is not easy to 
undertake the development of the whole system at the same 
time without any risk of great confusion in the current activ
ities. 

A frequently used solution for this kind of complex devel
opment is to organize the process in several interdependent 
steps. In our approach, we have retained two steps: a concep
tual step and a physical step. 

For each step the solution is 

1. obtained by a modelization using theoretical concepts 
and tools, and 

583 

2. expressed with a formal language. 

The first step is centered on the semantic representation of the 
real world system. The first step solution, named information 
conceptual schema, l is a formal representation of the natural 
structure of facts perceived in their static and dynamic dimen
sions.2 The second step includes the technical aspects of the 
solution ignored in the first one. It complements the initial 
solution by introducing parameters that were not necessary 
before. 

The IS conceptual schema allows a complete, consistent, 
nonredundant, and economical representation of the real 
world system. It has the same role and advantages as the 
database conceptual schema in the design of a database but it 
is more complete. We make the hypothesis that the complete 
aspects of real phenomena must be represented in IS design. 
Not only must static aspects of the organization (as in a data
base) be represented but also the evolution of the items in 
time. The transformations of the organization components 
must complete the static structure expressed by the data 
schema. 

From our point of view, the information system conceptual 
schema is a unique schema where the static structure, the 
transformations, and the time interrelations must be repre
sented. Our IS conceptual schema is the integration of these 
three aspects. 

To define the IS conceptual schema we need a conceptual 
model. This model provides elements for the construction of 
the set of data, the set of programs and the control of the time 
relations between data and programs. 

There are many data models 3,4, 5, 6, 7 but very few proposals 
that attempt to integrate data, processes and dynamic com
mand. 8

, 9 We have developed for this IS conceptual schema an 
original information system conceptual model,2' 10 that we 
now present. 

A PROPOSED MODEL 

What do we need to represent? 

The model has been defined by an analysis of the real world 
phenomena, which lead to the two following conclusions: 

1. In a dynamic perspective we have to represent three 



584 National Computer Conference, 1981 

ldifY oper,s 
Ob

j
\ jger 
Ascertain Events 

Figure I-Definition of organizational dynamics 

categories of phenomena, described according to their 
properties as objects, events, and operations; 

2. The dynamic dimension is completely represented by 
three categories of associations between the three cate
gories of phenomena, modify (operation, object), 
ascertain (object, event), and trigger (event, operation). 

An object is a durable, concrete or abstract component of 
the organization that can be particularised.8

, 3, 7, 11 Examples 
might be the customer DURAND or the product number 33. 

An operation is an action that can be executed at a given 
time in the organization and that modifies the state of one or 
more objects. For example, the operation "order analysis" 
number 312 creates the object "accepted order" number 202. 

A modify association is an association connecting an oper
ation and one or more objects. In it the operation modifies the 
objects. 

An event is anything that can happen at a given time. It is 
the ascertainment of the state change of one or more objects 
by means of operations execution. For example, the event 
"order arrival" is the acknowledgement of the creation of the 
object order number 44 which triggers the operation "order 
analysis. " 

An ascertain association is an association connecting an 
event and one or more objects. It expresses that the state 
changes of objects are events. 

A trigger association is an association connecting an event 
and one or more operations. It expresses that an event triggers 
one or more operations. 

We propose a causal definit~n for the organization dynam
ics: the events cause the execurl~o. f operations issuing state 
changes of objects that could hav events (see Figure 1). 

Our representation is based upo a clear difference be
tween state, state change, and event. A state change is differ
ent from a state. The state of an object can be durable, but a 
state change is instantaneous. 'A state change expresses the 
passage from one state to anothet one. An event is different 
from a state change; not all state changes of an object are 
events. For example, any modification affects the stock and 

generates an multitude of state changes of the stock, but only 
some of them are events issuing restock orders. A state change 
desaibes--a-Change, an- event is a state change that triggers 
determined operations. 

It should be noted that the phenomena of one category 
belong to classes, for example, the customer class or the order 
arrival class. In a class all the phenomena are described by the 
same collection of properties. 

How to represent it? 

The conceptual model must satisfy two main requirements: 
to be formal and to represent easily and homogeneously the 
classes of facts previously defined. 

1. We choose a typed relational model. 4 

2. We introduce types for relations in order to represent 
different categories. 

3. We introduce time. 

The correspondence between reality and conceptual repre
sentation is that 

1. each class of phenomena and each class of associations 
is represented by one or several relations; 

2. each property of a class of phenomena is represented by 
an attribute of relation; and 

3. the category of a class of phenomena is represented by 
its relation type (denoted C-object, C-operation, or C
event). 

The three types of relations, c-object, c-operation, and c
event can be expressed in a normal form we name temporal 
normal form. We give the definition of concepts below. 

The c-object concept 

A c-object relation type is a permanent relation, i.e. a third 
normal (3NF) relation12 where each attribute is in a per
manent dependency13 with the identifier's relation. A perma
nent dependency between two attributes A and B (denoted 
A~B) is an elementary direct and canonical dependency 
where V a (occurrence of A) and the dependent b (occurrence 
of B), a and b have the same life duration. For example the 
3NF relation CUSTOMER (NeLl, NAME, FIRSTNAME, 
ADDRESS, IDENTNUM, CAl is decomposed into the three 
c-objects 

• CUSTOMER-PER (NeLl, NAME, FIRSTNAME, 
IDENTNUM), 

• CUSTOMER-AD (NeLl, DATEM, ADDRESS), and 
• CUSTOMER-ACTIVITY (NeLl, DATE, CAl 

because the name, the first name and the identification num
ber of the customer are permanent; the address can be mod
ified and the turnover (CA) increases for each order of the 
customer. 

We can interpret a c-object as being the biggest set of prop
erties of an object having identical dynamic behaviour, that is 



to say, properties created, modified or suppressed at the same 
time. A c-object represents a time-consistent aspect of the 
real-world objects class. Several c-objects represent a reai 
world objects class. We named c-class the gathering of all 
these c-objects. 

A c-object represents an atomic state of the information 
system. 

The c-operation concept 

A c-operation relation type is a permanent relation. The 
normalization of a c-operation must satisfy the following con
straints: 

• C-OP~C-OB 
• C-OP~TYPE-CHANGE 
• C-OP~TEXT-OP 

We express the constraints using functional dependency nota
tion.14 We make C-OP, C-OB the identifiers of c-operations 
and c-objects; we make TYPE-CHANGE the designation of 
the three state change types of objects (creation-destruction
modification) and TEXT-OP the name of texts of c
operations. 

We define the c-operation by reference to the c-object con
cept. The c-operation is the expression of the smallest trans
formation that can happen to a c-object. More precisely, the 
first two constraints express the fact that the occurrences of 
one c-operation represent the operations that modify, in the 
same way, the states of objects corresponding to the same 
c-object. In other words, a c-operation modifies in a unique 
way the state of one and only one c-object. The third constraint 
expresses _ the fact that a c-operation represents an or-
ganization's management rule. -

As ac-object, a c-operation represents a temporal aspect of 
a real world operations class and several c-operations repre
sent the complete r~ru opera!jons class. For example, the real 
operations class "order analysis" is represented by three c
operations, 

1. EXECUTION-ORDER ANALYSIS (NOR-AN, 
DATE-EXEC, NOR), 

2. PERMANENT-ORDER ANALYSIS (NOR-AN, 
TYPECRE), and 

3. MANAG-RULE-ORDER ANALYSIS (NOR-AN, 
DATETEXT, TEXTOP), 

because there are many executions of "order analysis" oper
ations (1), several management rules used at different periods 
of the c-operations' life (3), and only one type modification of 
objects corresponding to the c-object order (NOR) for all the 
life of the c-operation (2). 

A c-operation represents an elementary transformation of the 
information system. 

The c-event concept 

A c-event relation type is a permanent relation. The nor
malization of a c-event must satisfy four constraints: 

Information System Design 585 

• C-EV~C-OB 
• C-EV~TYPE-CHANGE 
• C-EV~P-INIT, P-FIN 
• C-EV~C-OP 

We express the constraints using functional dependency 
notation14 and multivalued functional dependency!5 We de
note by C-OB, C-EV, and c-op identifiers of c-object, c
event, and c-operation relations; we make TYPE-CHANGE 
the designation of the three change types of objects and P
INIT, P-FIN the designations of predicates that express the 
states of a c-object. 

We define the c-event by reference to the c-object concept. 
The c-event is the expression of the smallest noteworthy state 
change of a c-object. More precisely, the two first constraints 
express that a c-event represents the class of events that ascer
tains only one type of state changes of objects corresponding 
to the same c-object. The third constraint expresses that the 
state change iliat is the event is aefined by the inftlal state and 
the final state expressed with predicates. For example, the 
events belonging to the c-event "restock" are connected with 
the modification of the c-object "stock" defined by the two 
predicates 

• P-INIT: = any stock 
• P-FIN: = stock < limit 

The fourth constraint expresses that the events of a c-event 
trigger the operations corresponding to one or several deter
mined c-operations. In other words, a c-event is the state 
change type ascertainment of only one c-object, which triggers 
one or more c-operations. 

A c-event represents a temporal aspect of a real events 
class, and several c-events represent the complete real events 
class. For example, the real events class "order arrival" is 
represented by the following three c-events: 

1-.- ORDER-ARRIVALS (NOR-ARR, DATE-ARR, 
NODER) 

2. PERMANENT-ORDER EVENT (NOR-ARR, PI, PI, 
TYPECRE) 

3. TRIGGER-ORDER EVENT (NOR-ARR, NOR-AN, 
DATE-TRIG) 

Relation (1) describes the arrivals of the event type "order 
arrival." Relation (2) describes the state change that defines 
the event. Relation (3) describes the triggering of the oper
ations belonging to the type "order analysis" associated with 
the events "order arrival." 

EVALUATION OF THE MODEL 

Not many approaches define the IS in a dynamic way and 
attempt to integrate the data, the transformations, and the 
command actions. Our originality is in the capability to anal
yse structurally the interrelations between the three aspects. 
We give the opportunity to define in a complete description 
the functional behavior of the information system to be built. 
The following example expressed by the IS conceptual schema 



586 National Computer Conference, 1981 

Q, 0, 1, E, xecuted P, roduction V Order', 

EVI 

Conditions c.- : Particular Customer 
C2 : An Order Corresponding to the Manufactured Product 
C3: The Current Week Corresponds to the Week Certified 

in the Order Line 

Products
Stocks 

Delivery Execution 

Notations 

Line Delivery 
Completion 

o 
D 

C - Object 

C-Event 

--to-- C-Operation 
Figure 2..,..,.Graphic representlltion of the dynamic conceptual schema 

(described with graphic notation in Figure 2) iilustrates the 
mutual'dependencies that conne~t the c-Qbjects, f-operatioijs 
and the c"eventsoftheproblem. ' 

The example concerns the information problem pf lhe elec-

trpnic sector. The firm sells approximatively 40,000 products. 
Every month, the firm receives 3,000 orc:lers. For one product 
the corresponding part of th~ order could be divided in quan
tities according to deliv~ry date. We named tpe order part 



corresponding to this quantity "order line." Several products 
of the same order could have the same "order line" delivery 
date. The delivery date retained after negotiation between the 
customer and the firm is expressed in week number in the 
year. When the week arrives and if all the "order lines" for 
this week and the order are available the delivery is done. At 
the end of the week all the available order-lines for an order 
are delivered. The delayed remaining "order lines" are deliv
ered as soon they are available. Systematically each delivery 
is immediately billed. For certain customers the billing is post
poned until the total delivery of the complete order is done. 

In Figure 2, the creation of art 01 object is an event (EVl) 
that triggers 

1. the update (OP2) of the products-stocks (03) if condi
tion C2 is false 

2. The update (OP1) of the stock of products-to-be
delivered (02) if condition C2 is true. 

The arrival of a product in the stock of products-to-be
delivered is an event (EV2) that triggers 

1. the update (OP3) of the weekly-order-line-delivery-state 
(04) if the new product has been manufactured in time. 

2. the immediate delivery (OP4, OP5) of the order part 
that has been manufactured with delay. 

When an order line is completed (EV3) we update (OP6) 
the weekly-order-delivery-state (05) and when all the current 
weekly order part is completed (EV4) we deliver it (OP7; 
OP8). 

The delivery is an event (EV5) which triggers the invoicing 
(OPB)to the customer if he is not a special customer (condi
tion C1). 

The week-change is an event (EV7) that triggers the update 
(OPJ; OPH) of the objects weekly-order-line-delivery-state 
(04) and weekly-order-delivery-state (05) and the immediate 
delivery (OPA, OP9) of the uncompleted part of customer 
order that has been produced in the last week (06,OE). 

A new order line (09) arrival is an event (EV9) which 
triggers the two operations (OPC, OPB) of creation of the two 
objects weekly-order-line-delivery state (04) and order-line
delivery-state (OB) if the delivery delay corresponds to the 
current week. 

The creation of a new order (OA) is an event (EVA) that 
triggers the operations (OPE, OPF) of creation of the two 
objects weekly.:order-delivery-state (05) and order-delivery
state (OC). 

Each creation or a delivered-order-line (OE) is an event 
(EV6) that triggers the update (OPK) of the order-line
delivery-state (OB). 

When an order line is completely delivered (EVB) we up
date (Of H) the order-delivery-state of the customer and 
when the order is delivered (EVC) we invoice the customer if 
he is a particular custorrier (condition Cl). 

THE USE OF THE MODEL 

Based on the information system conceptuall11odel, we have 
developed a complete method for the design of information 

Information System Design 587 

systems. This method is today used for the design of complex 
information systems implying automatic data processing, net
work communications and real time response. Our goal now 
is not to present the method but only to insist on few specific 
aspects of the model and on the possibilities of its use. 

Description of the Information Problem 

It is well known today that a central question in the Is
design consists in a general difficulty of expressing exactly and 
competely the information problem to solve. 

Users know their information problem. They are perma
nently confronted with aspects of it. But they have a partial 
and personal view and it is not their task to obtain a complete 
and consistent description of it. In fact, they expect the de
signer to do it and more directly it is his task. But to do it, he 
needs a model allowing the description. of all the particular 
aspects of the problem to represent. The proposed model 
allows the definition of the information system conceptual 
schema that gives a global and complete view of the real world 
represented. The concepts of the model are precisely defined 
and formally connected and there is no possible ambiguity in 
their use nor real difficulty to build the conceptal schema. 

We have noticed that the designer does not confuse events, 
objects, and operations when he uses the model. Better, he 
could, in certain situations, correct any misunderstanding due 
to a superficial analysis. In general, users and designers reach 
a more precise understanding of reality, especially in the defi
nition of the events triggering the operations. A dynamic de
scription of the reality expressed with simple and accessible 
concepts is a fruitful output appreciated by the users, es
pecially because they get a better control of their information 
problem. As a result of the model's use We obtained more 
direct and efficient interactions between the users and the 
designers. The users were more confident iii the capability of 
the designers to comprehend their information problem and 
solve it. The model makes the designer less dependent on the 
users. With a starting collection of facts he could develop his 
description, controlling the consistency, the correctness, and 
the lacks. He could determine independently of any sugges
tion when its analysis is completed. Conversely, he knows 
when he needs more facts in order to complete or correct his 
description. 

Finally, with the model used for the description of the con"" 
ceptual schema it becomes more natural to separate system
atically the step of description of the information problem and 
the step of research of possible solutions. We are surprised at 
the confusion existing between the two aspects before using 
the model. In general, this confusion induced suspicion and 
doubts about the competence of the designer. 

the Design and the Evaluation of the Solutions 

As was illustrated in the example, the conceptual schema 
gives a complete definition of the information problem that 
must be solved by the future IS that the designer will defIne 
technically. Said in other words, the IS conceptual schema 
presents all the collections of objects, actions and events that 



588 National Computer Conference, 1981 

the technical information system will operate. Starting from 
the IS conceptual schema, the work of the designers is to 
define the technical solution to implement. 

If the information problem is complex it is beneficial to 
undertake progressively the technical design and the construc
tion of the future system. In this case, the information prob
'tem must be split in parts as independent of one another as 
possible. But the splitting is often arbitrary. It is clear that it 
neither burdens the design task nor complicates the interface 
and the implementation aspects. By way of the IS dynamic 
conceptual schema it is possible to clearly and simply evaluate 
where the frontier between the parts could be established. 
The dynamic associations between objects, operations, and 
events represented in the IS dynamic conceptual schema illus
trate the connections between any part of the future system 
and arrange elements in order to reduce the arbitrariness of 
the partition. The experience demonstrates that the c-object 
class concept is a central but not unique parameter of the 
partitioning. 

For any information system, complex or not, the solution is 
simultaneously technical and administrative. Technical be
cause actions and events will be automatically processed, ad
ministrative because people will be totally responsible for the 
execution. It is known that the success of any system results in 
the balance between the two. Our scope is not to give the 
parameters for the successful solution but to insist on the fact 
that in this case also the designer must establish a frontier 
between the technical part and the administrative part. This 
frontier introduced in the diagram representation of the IS 
dynamic conceptual schema allows the designer to appreciate 
the consistency of any part and to evaluate the complexity and 
adequacy of the interfaces needed. Of course, the more com
plex the IS, the more extended and various the technical and 
the administrative parts and the more difficult is to establish 
and evaluate the interfaces. In the conceptual schema the 
range and the variety of the interfaces appear clearly and 
could alert the designer on the difficulties he would certainly 
meet. 

The Evaluation of the Flexibility of the Technical Solutions 

For large and complex ISs the flexibility of the solution is 
today an advantage that could with profit increase the lifetime 
of the system or improve the service given to the users. Many 
kinds of change are possible: 

• a change in the organization's behavior that transforms 
the information problem 

• a change in the nature of the service expected from the 
IS by the user involving the extension of the technical 
domain to the detriment of the administrative domain 

• a change in the nature of the technical solution retained 
due to technological transformations. 

For any kind of change the consequences are not similar and 
it is worthwhile to have the opportunity to evaluate the major 
consequences of the change and the technical possibility of 
taking it into account. 

If we consider a change in the organization behavior, many 

consequences could result for the information problem. Ob
jects, operations, or events could be created or suppressed, 
implying the transformation of the technical solution. In the 
delivery example, the adoption of the rule "every available 
order line must be delivered without waiting for the other 
order lines of the week" results in the suppression of the 
c-objects 04,05 and 07, the events EV3, EV4, and EV7 and 
the operations OP3, OPC, OP6, OPE, OHP, OP7, OP8. The 
operations OP4, OP5 become unconditiona1.21 

A change in the nature of the service expected by the user 
could be appreciated in the same way. In the same example, 
the necessity to manage automatically the delivery of the 
products in stocks (03) would force the designer to introduce 
new objects, operations, and-events. 

Using the IS conceptual schema it is easy'to appreciate the 
probable transformations needed for the present system to be 
adapted. The estimation of the efforts, the time;-and the costs 
resulting gives an idea of the flexibility of the present solution. 

The Organization and Planning of the Technical Design 

Starting from the concepts included in the model, we have 
developed a method for the organization and the planning of 
the technical design. As we have shown, the splitting of the 
problem in order to develop limited technical parts is essen
tially based on the connections between the c-class of objects 
(others economic aspects that are not illustrated here also 
interfere). For the construction of the planning for the tech
nical design and the estimation of the resources we have estab
lished a simulation tool based for any te~hnical part on the 
range, the variety, and the interferences between any c-class 
of objects, c-operations, and c-events. As a result, we obtain 
an estimation of the realization testing and implementation 
time and costs. These estimations based on the IS conceptual 
schema make possible to plan people's activities and to nego
tiate with the customer the costs and the schedule for the 
future IS. 

CONCLUSION 

From our experience of the IS design we can assume the 
following: 

1. The interest in defining a conceptual solution, 
2. The necessity of disposing a set of precise concepts al

lowing a rigorous analysis and design, and 
3. The advantage for project management of using a com

plete method based on a formal model. 

Our effort is now devoted to the development of tools in order 
to reenforce the method. 16 

REFERENCES 

1. AnsilX3/Sparc: report on data base management systems--Interim Report 
(1975). 

2. Rolland, C., Foucaut, O. Concepts for design of an information system 
conceptual schema and its utilization in the Remora project-Fourth inter
national conference on Very Large Data Bases (1978) Berlin. 



3. Chen, P.P .S. The entity relationship model-toward a unified view of data. 
ACM transactions on data base systems (1976) Vol. 1, no. 1. 

4. Codd, E.F. A relation model of data for large shared data banks. Commu
nications ACM, Vol. 13, no. 6 (1970). 

5. Delobel, C. Contribution theorique Ii la concepti9n et Ii l'evolution d'un 
systeme d'information applique it la gestion-these d'etat-Grenoble 
(1973). 

6. Institut d'lnformatique de Namur. Proc. of the international workshop on 
data structure models for information systems (1975). 

7. Kent, W. Describing information (not data reality): technical report TRO 
3012. 

8. Benci, G., Bodart, H., Cabanes, A. Concepts for the design of a conceptual 
schema. Modelling in data base management systems. Proceedings of the 
IFIP Working Conference TC2 (1976). 

9. Bodart, F., Pigneur, Y. A model and a language for functional specifica
tions and evaluation of information system dynamics. IFIP TC8 WG8, 
(Working Conference on "Formal Models and Practical Tools for Informa-

Information System Design 589 

tion System Design. Oxford, England, 1979) 
10. Rolland, c., Foucaut, 0., Richard, c., Thiery, O. Information system 

design and computer-aided design-Euro-IFIP Conference (1979) London. 
11. Lindgreen, P. Basic operations on information as a basis for data base 

design-Proc. IFIP TC2, North-Holland (1974). 
12. Berstein, P.A. Synthesizing third normal form relations from functional 

dependencies-ACM transactions on data base systems-Vol 1, n04 (1976) 
13. Rolland, c., Leifert, S., Richard, C. A proposal for information systems 

design and management. ACMlSIGDA Newsletter (1980). 
14. Codd, E.F. Normalized data structures: a brief tutorial ACM SIGFIDET 

workshop in data description access and control-San Diego, California 
(1971). 

15. Fagin, R. Multivalued dependencies and a new normal form for relational 
data bases. ACM transactions on data base systems. Vol 2, no 3 (1977) 

16. Rolland, C., Leifert, S., Richard, C. Tools for information system dynamics 
management-Fifth International Conference on Very Large Data Bases 
(1979) Rio de Janeiro. 





EDUCATION AND 
SOCIETAL ISSUES 





CSDP: A model for continuing education in data 
processing 

by DENNIS M. OLIVER, ROBERT A. ROUSE, and ROBERT J. BENSON 
Washington University 
St. Louis, Missouri 

ABSTRACT 

The Center for the Study of Data Processing (CSDP) was 
formed in cooperation between Washington University and a 
group of St. Louis corporations to create a local source of 
programmers and a business-oriented data processing (DP) 
curriculum and to provide inexpensive professional training 
for corporate personnel. 

The Center oversees three academic programs. The B.S. 
provides continued academic training and a degree in systems 
and data processing. The 30-hour intensive degree specializes 
in retraining selected people for entry-level DP positions. The 
master's degree offers training in managerial issues. 

The Center also offers 25 seminars yearly in data pro
cessing. Their subjects range from basic training to advanced 
managerial issues. 

Much of the staff for seminars and evening classes comes 
from the cooperating corporations. This pooling of practical 
experience both in the academic and the professional pro
grams has created an up-to-date curriculum and provided in
expensive, high-quality seminars for the region. 

THE CENTER FOR THE STUDY 
OF DATA PROCESSING 

In 1968 the School of Continuing Education at Washington 
University first offered a B.S. degree with a major in systems 
and data processing. Seven years later a master's degree in 
data processing (MDP) was added to the curriculum. In that 
same year, a group of St. Louis corporations joined with 
Washington University in an attempt to construct a profes
sional development program that would offer continuing edu
cation to their programming and systems staff. To focus these 
activities, the Center for the Study of Data Processing was 
formed in July 1978 as a cooperative venture between local 
industry and the university. 

The specific needs of the St. Louis data processing commu
nity have determined most of the Center's activities. One of 
these needs is for trained applications programmers and ana
lysts. According to recent Department of Labor estimates, 
between now and 1985 the demand for programmers will in
crease by 50% and the demand for analysts by 65%. Able 
people are always and everywhere hard to come by. National 

593 

recruiting efforts are expensive, and the older urban areas of 
the Midwest llave the additional disadyan---.tage of trying to 
attract the young college graduate who can choose between 
California's beaches antl-Beston-'-s-museums. 

A second need is for applications-oriented training. All too 
often the typical computer science graduate responds to the 
prospect of writing and designing business applications with a 
mixture of disdain and confusion. He or she has not been 
educationally prepared to function in such an environment, 
has little knowledge of business needs and procedures, and 
has even less interest in acquiring any. 

A third industrial need is for continued training in DP. The 
cost of sending someone to a vendor for training is large, but 
often not as large as the cost of transportation and lodging for 
the attender. A local training program offered on a regular 
basis, with content determined by general agreement among 
the participating organizations, can significantly reduce the 
training costs. 

It is worth noting that these needs are not peculiar to the St. 
Louis area. They represent the needs of any urban area above 
the critical mass that allows cooperative support to flourish. A 
local source oftrafning pays muntpte diVtOends. The COSlsav
ings of recruiting and training are obvious, but an important 
additional benefit is the ability of local industry to directly 
influence program and curriculum content. The purpose of 
this paper is to present some of the ways in which such a 
cooperative venture can prosper and to point out how the 
experiences, contacts, and skills gained in one program have 
been used to build or improve other programs. 

Currently the Center's areas of responsibility are the B.S. 
and M.D.P. programs, the professional development program 
(P.D.P.),an intensive B.S. program for students who already 
hold a bachelor's degree, and the -development and mainte
nance of an audiovisual instructional facility as well as a re
search library. 

The bachelor's degree program is by far the oldest and the 
busiest Center activity. About 25 courses with nearly 40 sec
tions are offered every semester for about 900 students. Of 
these students, 120 are degree candidates, and figures for 1980 
indicate that about 30 B.S. degrees will be granted in the next 
year. But the nature of the student body and faculty tell more 
about the program than these numbers. 

Over 90% of the undergraduate degree candidates are cur
rently employed, and about 75% of that group are engaged in 



594 National Computer Conference, 1981 

data processing on a full-time basis. Most of the rest are 
employed in closely allied fields, like accounting or data re
trieval. In addition, about 90% of the faculty practices what it 
teaches: Systems analysis is taught by analysts, programming 
by experienced programmers, and DP management by ad
ministrators. The remaining faculty is drawn from Center 
staff, who also have DP experience, either from previous 
positions or through their duties in Washington University's 
computing facility. None, it might be noted, has a straight 
computer science. background. 

The particular nature of the faculty and students has signifi
cantly enhanced the value of the B.S. degree, since both 
groups continually encounter real-world DP problems on a 
daily basis, then hring that experience to bear upon the aca
demic subject matters they deal with. The M.D.P. was estab
lished as a natural extension of this educational environment. 
The heart of the master's degree program is a curriculum of 
.four courses emphasizing the control of DP activities through 
wider knowledge of technology, database management prob
lems and principles, management information systems, and 
general managerial techniques. The remaining courses are 
selected from computer science or business offerings. The 
typical master's candidate is not a recent college graduate; he 
or she has five to ten years' experience in data processing and 
is expected to contribute that experience to the program. 

The ability to pool experience is not only a benefit to pro
gram participants; it feeds several other Center activities. 
First, the knowledge gathered from M.D.P. students often 
finds its way back into the undergraduate curriculum, which 
has just undergone an extensive revision. Second, the issues 
encountered in the master's program (e.g., management 
problems, employee productivity, long-range planning) have 
created direCtions for research that are currently being pur
sued by Center staff. Finally, both the M.D.P. and the B.S. 
programs have served as contacts for and models of the pro
fessional development program, through which the Center 

---nas'Decome an important adjunct to the training efforts of 
more than a score of large St. Louis data processing facilities. 

For an annual fee these corporations become subscribing 
members of the Center. As such, they have guaranteed access 
to all Center offerings. The P.D.P. program presents about 25 
seminars and classes every year (not counting in-house 
presentations), which total over 180 days of instruction. The 
offerings concentrate on three levels of experience: the pro
grammer trainee and the new programmer; the program
mer/analyst and systems analyst; and the data processing ad
ministrator (senior analyst, project manager, data base ad
ministrator, D P manager). More than half of the teaching and 
more than half of the material for these seminars is supplied 
by the Corporate Affiliates, * who are able to pool their ex
perience through th~ Center. 

* Affiliates as of October ~980 are as follows: 

Angelica Corporation 
Anheuser Busch Companies, Inc. 
Banquet Foods Corporation 
Blue Cross Hospital Services 
Brown Group, Inc. 
Citicorp Person-to-Person, Inc. 
Emerson Electric 

May Department Stores Co. 
Missouri, State of 
Missouri Pacific Railroad Co. 
Monsanto Company 
Peabody Coal Company 
Pet Incorporated 
Price Waterhouse and Company 

Of the seminars offered for entry-level personnel and pro
grammers (Intensive COBOL, Structured Programming, 
IBM Operating Systems, Testing Methods, and Programming 
Efficiencies) perhaps the most unique and successful is' In
tensive COBOL. It is offered four times a year and generally 
has 16 to 20 enrollees. It is assumed that the students have no 
knowledge whatsoever of COBOL or of programming, and in 
four weeks (20 class days with about 40 hours of lecture and 
120 hours of programming) they are expected to complete 15 
programming projects. t At month's end the successful stu
dent has a working knowledge of COBOL and experience in 
analyzing programming tasks and implementing the principl~s 
and techniques of structured programming .. Although the 
course is mainly peopled by Corporate Affiliate employees', 
many individuals have enrolled on their own and have used 
the skills acquired there to embark on a new career. 

The majority of the remaining seminars appeal to a group 
delimited on one side by the programmer/analyst and on the 
other by the project manager. These offerings divide them:.. 
selves between technical and managerial issues. A few semi
nars are directly aimed at upper level DP personnel (Long
Range Planning, Financial Planning and Modeling), in an 
effort to offer them the broader skills needed to manage DP 
operations. This latter group also has access to a series of 
colloquia, which brings figures with a national reputation to 
the Center every few months. The general goal of the collo
quia is to supply DP administrators with the widest possible 
perspective on current and future trends in data processing.:/: 

A new P.D.P. activity has proved quite successful: this past 
year a series of round-table discussions on topics of special 
interest to middle and upper DP management has been under
taken. The discussions have been conducted by employees of 
the affiliates who have common concerns or areas of re
sponsibility. The three held so far have dealt with DP training, 
continuing support management, and word processing. The 
round-table format offers affiliate staff the ability to examine 
special problems in depth by creating (as in the M.D.P. 
classes) an occasion for pooling their knowledge and experi
ence. 

P.D.P. activities have had an immeasurable impact on the 
traditional academic programs the Center oversees. For in
stance, the projects and skills which were posited as goals for 
Intensive COBOL have been incorporated into accelerated 
evening COBOL classes, and the problems discussed in the 
Systems Analysis and Structured Programming seminars have 
been integrated into a half-dozen courses. Long-range plan
ning and database design seminars have found their way into 
the core M.D.P. curriculum, as well as into some day school 

First National Bank in St. Louis 
General American Life Ins. Co. 
Kellwood Company 
Laclede Steel Company 
Mallinckrodt, Inc. 

Ralston Purina Company 
Regional Justice Information System 
U.S. Army DARCOM ALMSA 
Wagner Electric Compariy 

t Besides a basic knowledge of COBOL, at month's end the student is able to 
use nested and compound IF statements; edit all incoming data; do multiple-file 
inputs, merges, updates, and printing; create sequential and ISAM files on disk; 
and do table-handling, sorting, subscripting, indexing, and 2- or 3-level breaks. 

* The last six speakers were Ted Withington, Gerald Weinberg, ~jck Brandon, 
Richard Nolan, John Toellner, and Harvey Poppet. 



computer science courses. In the last two years the whole 
undergraduate curriculum has been closely restructured to fit 
more closely the practices and needs of DP shops in the busi
ness world. The content and structure of all programs, as the 
round-table format indicates, must constantly be reviewed in 
the light of changes in the DP environment. 

The maturity and vitality of the undergraduate curriculum 
and the experience of Center staff in implementing and run
ning this curriculum permitted the creation of an additional 
program: the 30-hour intensive degree in systems and data 
processing. This program is directed toward a specific audi
ence: those who already have a college degree in a field where 
employment chances are slim, or those who are attempting to 
make a career change. Through two years of evening classes, 
the intensive degree candidate who, we assume (as we do in 
Intensive COBOL), has no prior programming experience, is 
given a thorough grounding in programming, computer tech
nology, and business systems. * 

Because of the demanding nature of the program (the 30 
hours of credit is, in the actual effort demanded, more like 45 
hours), admission is competitive. About one applicant in 
three is granted admission to the program. The quality of the 
student is high: the cumulative GPA of the most recent class 
is 3.4, about 30% of the students hold a master's degree 01' 

higher, and all have demonstrated (through college records or 
employment history) the ability to successfully handle such a 
curriculum. There are three profiles typical of the intensive 
degree candidate: the housewife in her thirties whose children 
are off to school and who wants a skill that will give her access 
to the job market; the high school teacher (usually of lan
guages, English, or mathematics) who has decided to change 
careers; and the employee who wishes to change his or her lot 
and move from a support position (documentation writer, 
data gathering) to a data processing position. 

The intensive degree is a timely activity for several reasons. 
First, we anticipate no immediate slackening in the demand 
for qualified DP personnel: Corporate Affiliates and the St. 
Louis business community at large can certafnly supply entry-

*The curriculum in the 30-hour program consists of eight hours of COBOL 
(from the beginning through data-base programming), four hours of computer 
technology, three hours of effective communications, four hours on financial, 
managerial, and business information systems, three hours of DP manage
ment, four hours of systems analysis and design, and a four-hour systems 
design and implementation project. 

Continuing Education in Data Processing 595 

level positions for these graduates. Second, both the high 
school teacher who feels, after years of training and years of 
teaching, that a financial or personal dead end has been 
reached, and the housewife with a solid education but no 
marketable skill will certainly be valuable employees because 
they bring to the job stability of attitude as well as an above
average ability to communicate. Third, the population in need 
of retraining increased dramatically throughout the 1970s, 
and a corollary shrinkage in the technically competent youn
ger population has produced (and will continue to produce) 
skill shortages in technical and semi technical occupations. 

The goal of the intensive program has been achieved for the 
first class: in the 15 months since they began study, 24 of the 
26 students have successfully made the career change, and 
more than half of them-arecurrently-employed by Center 
affiliates. 

In addition to these various programs, the Center manages 
two facilities in support of all of its activities: an audiovisual 
room and a library. The NV facility is used as a support too~ 
for P.D.P. and evening teaching activities-.- A-Iarge-screen 
television and a videotape recorder are used to present special 
topics to classes and seminars. ASI (Advanced Systems, Inc.), 
a company involved in producing training tapes for data pro
cessing, has contracted to supply the Center with certain tapes 
made available on a selected basis to affiliate and university 
staff. The Center library is designed to support Center pro
grams and to create a research capability for Center staff and 
M.D.P. students. Its budget, holdings, and administration are 
entirely independent of the main library facility at Washington 
University. Currently the library has about 2000 bound vol
umes and subscribes to about 100 periodicals. 

The decade we have just entered is an arena of opportunity 
in DP education. Because of the shortfall in younger people, 
continuing education in general will be expected to undertake 
massive retraining efforts in many areas. The close affiliation 
between local industry and education allows schools of con:'" 
tinuing education to respond much more quickly than could a 
traditional academic department to changes ill the enviwn
ment. The kind of relationship the Center has established with 
its affiliates allows us to perform stimulating and gratifying 
services, both for the affiliates and for the students. At Wash
ington University the relationships have not cOine easily, nor 
have they been problem-free; but we believe that the Center's 
success can serve as a model for similar efforts in similar 
environments. 





People teaching people: A cooperative education venture 

by EDWIN F. KERR 
Q.E.D. Information Sciences, Inc. 
Wellesley, Massachusetts 

ABSTRACT 

Personnel problems faced by DP executives will continue to 
be a major obstacle in developing systems for the 1980's. Both 
corporate and DP management are now viewing personnel 
development expenditures as an investment ~ather than an 
expense. This paper stresses the need for a career develop
ment program and a well planned education and training ac
tivity. It discusses the difficulty of providing the training, par
ticularly classroom instructor-led courses. It next discusses a 
cooperative EDP Education Program (ED PEP) covering the 
concept, the establishing of a network of regional learning 
centers and the impact it has made. The program provides 
regularly scheduled classes to member companies at under 
$100/day. Since its inception in 1974, it has grown to 75 mem
ber companies. In 1980 over 3,600 students attended the 
courses. 

INTRODUCTION 

"A company is known by the people it keeps." This trans
position of an old adage is central to professional development. 
It is especially important in data processing because business is 
overwhelmed by the need to find, develop and retain competent 
personnel. The rapid growth of the computer field has created 
such a great demand for technicians and managers in so short 
a time that development of these people has fallen behind and, 
with few exceptions, has been treated as low priority by cor
porate management. 

I wrote this paragraph in an article "Let's Look at People
ware Maintenance," published in Infosystems in 1975. Very 
little has changed in the five years since except that at last 
corporate management has accepted the fact that the person
nel problems faced by DP executives are a major obstacle in 
developing systems for the 1980's. This was very much on our 
minds in 1974 when we were experimenting with ideas for a 
cost-effective cooperative education program. We knew that 
at some point, management would be forced to take a more 
active role and view professional development expenditures as 
an investment rather than an expense. We also were con
vinced that even though instructor-led education is the most 
difficult to provide, it is the most effective. Why? 

597 

Turn-On To Learning 

Ask yourself when you first "turned on" to learning. Proba
bly in a classroom situation when you realized the excitement 
of discovery and problem solving. Probably an image of a 
particular teacher comes to mind. Maybe the image of a par
ticular classroom and the memory of sharing ideas and solving 
problems. Again a teacher provided the stimulus and encour
aged student involvement. 

However, in my 24 years in the computer industry, es
pecially during the last 10 devoted to education, I have seen 
that this ideal learning environment has not been the norm. 
Material is generally transmitted through media with little 
student-teacher interplay. This reliance on media has gener
ated problems. Students may be passive, there is little ques
tioning or probing and students cannot learn from each other. 
Furthermore, there is no teacher to shift the emphasis to suit 
a particular need or environment. In short, this is not teach
ing, this is information transmission! 

The essence of learning is exposing people to ideas, con
cepts, experiences, and then providing them with practical 
situations in which they can apply their knowledge and skills. 
I am not saying that media based education does not have a 
role. I am questioning the over-reliance on it by many compa
nies. You were not "turned on" to learning by a television set. 

COOPERATIVE EDUCATION 

In 1974, when we began setting up career development and 
education programs, there were few classroom instructor-led 
courses. The public courses were questionable because of 
cost, travel and lack of dependability. They were and continue 
to be subject to cancellation on a moment's notice. 

We wanted an option that provided instructor-led work
shops at a reasonable cost on a continuing basis. These work
shops had to provide high quality education, reduce or elimi
nate travel costs and provide a means whereby companies 
could help shape and fine tune the program. 

EDP Education Program 

To meet this need, Q.E.D., in association with Babson 
College, pioneered a unique EDP Education Program called 



598 National Computer Conference, 1981 

EDPEP. In 1974 eight Boston area companies joined with us 
in this experiment. 

Q.E.D. provided the curriculum, course materials, in
structors and program guidance. Babson provided the facili
ties, lunches and administration. The companies provided the 
students, the dollars, and Advisory Council members to help 
us fine tune the program. The intent was to gain support from 
enough companies so that we could plan, schedule and pro
vide an on-going program without being concerned about 
spending large amounts of money on marketing in order to fill 
classes. The savings would be passed to the member compa
nies in the form of low fees. 

The success of EDPEP was immediate. From the original 
eight companies it has expanded to over 75 members. In 1980 
over 3,600 students will attend approximately 180 courses at 
five regional centers. The five regions are located at Babson 
College serving New England; Fairleigh Dickinson University 
serving New York and Northern New Jersey; Drexel Univer
sity serving Eastern Pennsylvania and Southern New Jersey; 
The University of Texas at Arlington serving the Southwest 
and Raleigh, North Carolina serving the Southeast. A typical 
curriculum at a regional learning center would include the 
following courses: 

Systems development topics 
• Systems Analysis 
• Systems Design 
• On-Line Systems Design 
• Structured Programming Workshop: Techniques for 

Productivity 
• Structured Design Workshop 
• Computer Control and Audit 
• Effective Methods of Quality Assurance 
• Strategic Planning for Information Systems 
• User's Role in Systems Development 

Date base topics 
• Data Base Fundamentals 
• Data Analysis and Data Base Design 

Data communication topics 
• Data Communication Fundamentals 
• Network Analysis and Design Workshop 
• Distributed Computing Systems 

Management topics 
• Project Management and Control 
• Leadership: Managing and Motivating People 

Human relations topics 
• Human Relations 
• Effective Presentations 
• Writing for Results: A Workshop for EDP 

Professionals 

These courses are two to five days in length. Other environ
ment-sensitive courses are run periodically at the request of 
member companies. The curriculum varies from region to 
region depending upon the recommendatioqs of the advisory 
council. 

The courses are constantly reviewed and improved so that 
they may continue to meet the ever changing needs of our 
industry. The advisory council plays a major role in the shap
ing of the program. Our instructor teams spend a great deal 
of time modifying courses to meet this ever changing need. 

The concept of EDPEP is simple ... a curriculum of courses 
is scheduled at each regional learning center. At each region 
we have a spring session (February-June) and a fall session 
(September-J anuary). 

Each course is scheduled at least once per session. Addi
tional sessions are often scheduled to handle over enrollment. 

A company may join EDPEP by purchasing a membership 
in any region it chooses. In effect, the organization is pur
chasing the right to use a block of seats. The company uses the 
inventory of seats by sending participants to the courses 
scheduled at the region. In addition, a company may send 
participants to courses scheduled at other regions. We keep 
track of the usage. A company may purchase as many mem
berships as it requires. Many of our members do exactly that. 
Further, a member company, rather than purchase an addi
tional membership, may purchase seats in a particular course. 
The current cost for this is $100 per student per course day. 

I. mentioned low-cost education as a requirement of ED
PEP. The first membership costs approximately $100 per stu
dent day. The additional memberships cost approximately $85 
per student day. This makes the cost of high-quality classroom 
education affordable, and at the same time it is education for 
which you can budget and schedule in confidence. 

Although Q.E.D. 's EDPEP was never intended to meet the 
total education needs of an organization, many companies do 
use it as the center piece of their educational option mix. 
Others use it as one of several options, selected when 
instructor-led education is needed. Also many members sup
plement EDPEP by having Q.E.D. conduct courses for them 
in-house. In this way they can provide education to a larger 
number of people at a reasonable cost. The break-even point 
is from 12 to 15 people. 

In 1979, we expanded the EDPEP concept to allow non
member companies to participate in selected courses. The 
cost for non-members is higher than for members, but it is 
more than competitive with other public courses. This non
member participation has grown steadily, often leading to 
new memberships. The companies who use the program on a 
selected open enrollment basis are pleased because they can 
plan that the courses will be held: this is often not the case 
with the normal public course market. 

The Benefits of Cooperative Education 

The benefits of cooperative education are many. (1) All of 
our members plan and schedule their usage of the program in 
advance. Many member companies have begun to do some 
extensive educational planning. This planning is done with 
confidence that the scheduled courses will be held. (2) The 
cost of membership is very low, enabling member companies 
to use classroom education as an option; (3) The flexibility in 
participation options has made the courses available to small 
and large companies. (4) A wide range of courses is taught in 
a variety of disciplines. We provide a comprehensive program. 



(5) Another advantage is the flexibility of schedules. Compa
nies are now beginning to look at EDPEP as a network that 
provides a broad range of courses at regional learning centers 
with many dates that can be selected to fit the need. 

This movement among regions is gaining momentum which 
has created a need for course quality control so that the same 
course· is taught at all regions. To do this, we develop in
structor guides. Each new instructor must take the course that 
he/she will teach and then team teach it at least twice with an 
experienced instructor. Each major topic area is assigned a 
Resource Manager. Part of the Resource Manager's responsi
bility is to insure that quality is maintained in each course and 
that the same course is taught at each regional learning center. 

There are two other important aspects of EDPEP that I will 
mention. 

1. Student profiles/installation profiles 
2. Regional advisory councils 

Student Profiles/Installation Profiles 

Because of the nature of the program, companies are able 
to select students well in advance. Each student completes a 
Student Profile form which is returned to Q.E.D. These forms 
provide us with the necessary background, experience, and 
job related information about each student. These are re
viewed to insure the stl1dent is qualified to attend. If there is 
a question, we contact the appropriate advisory council mem
ber. Conversely, th~y contact us if they have a concern. Our 
objective is to insure that the mix of students is controlled; not 
so diverse that it is impossible to meet the objectives of the 
student and the course. 

The instructor also reviews the profiles, as well as a profile 
of the companies represented. This includes the necessary 
information about the hardware, software, and environment 
from which the students come. These tools, coupled with a 
unique student introduction exercise we use, prepares the 
instructor and the student to participate in an effective course. 

Regilmal Advisory Councils 

I have mentioned th~ advisory council previously. It is time 
to discuss the role in detail. Each advisory council is made up 
of two members from each member company. One is the 
person in charge of professional development and the other a 
senior DP line manager. The advisory council is the link be
tween members and Q.E.D. It meets as often as necessary to 
carry out its responsibilities. The council reviews student cri
tiques and discusses course content and the overall curricu-

People Teaching People 599 

lum. This helps us to fine tune the program and to insure that 
it meets the members' needs. This has become increasingly 
important. We have designed a three part course evaluation 
form to provide much of the information -for the council. 

At the beginning of the course, the student answers the 
question, "What do you expect to learn from the course?" At 
the end of the course, the remainder of the form is completed. 
We go beyond the normal course critiques, which in some 
cases are a popularity vote for the instructor. We address such 
issues as how useful the course will be to the student on the 
job and will it make a contribution to productivity. 

One copy is retained by the instructor, one copy returned to 
the Q.E.D. administration function, the third copy is kept by 
the student. The student reviews the course evaluation with 
his/her advisory council member. The instructor and Q.E.D. 
review the form to determine what improvements have to be 
made to the course. At the next advisory council meeting, 
each course' is discussed in detail. The program we run today 
is far different than the program of 1974. 

This mechanism has proven to be very important to the 
success of the program in a number of ways. 

1. Th~ student is forced to give some thought to ex
pectations from the course. This focuses on the issue of 
student objectives versus course objectives. -

2. The instructor gains immediate insight into student ex
pectations and objectives which are related to the back
ground information contained in the student profile. 

3. Learning is reinforced because the students and advisory 
council members are forced to discuss what was learned 
and how it will b~ applied. This interest in career growth 
has made the students more receptive to the program 
because they see that the companies are committed to 
professional development. 

4. The courses are continually enhanced to meet the chang
ing needs of the member companjes. 

The council meetings are very productive since they give all 
members an opportunity to share ideas. The meetings have 
become a clearing house of ideas; ~s a result, they are well
attended. The topics range from -immediate needs to long
term directions. Occasionally a guest instructor is invited to 
discuss a course in detail. Non-members are also welcomed in 
order for them to learn more about the program. 

The benefits to the member companies -are many, and the 
impact it has made on professional growth indicates to us that 
it is the model for things to com~. 

REFERENCES 
1. Sullivan, R. Handbook for. Data Processing Educators. Wellesley, Massa

chusetts: Q.E.D. Information Sciences, Inc., 1979. 





Computers and the future of literacy 

by FREDERICK L. GOODMAN 
University of Michigan 
Ann Arbor, Michigan 

INTRODUCTION 

My goal is to get people who make, buy, and use computers 
to consider more carefully the impact the computer is likely to 
have on our culture by recognizing the way it is both changing 
what it means to be "literate," and perhaps more importantly, 
changing how people become "literate." 

In the simplest sense, to be literate is to be able to read and 
write. For an individual person this means that s/he must both 
live in a literate society as contrasted to a pre-literate society 
and have moved from a condition of illiteracy within a literate 
society to a condition of literacy. Thus literacy may be a 
function of both the role that literacy plays in a society and the 
wayan individual comes to be more or less literate. Within the 
last 50-100 years, the electronics industry has significantly 
changed the nature of what it means to be literate in many 
societies. Within the last 5-10 years the same industry has 
begun to change the wayan increasing number of children 
learn to become literate by making sophisticated electronic 
devices available to them, especially in the form of micro
computers. 

People in pre-literate societies use language to commu
nicate; illiterate people in a literate society use language to 
communicate. The difference between pre-literates and il
literates on the one hand, and people who are literate on the 
other, is (or was) that pre-literates and illiterates must use oral 
(or gesturing) messages that are momentary with respect to 
time and proximate with respect to space, i.e., we can think 
of them as short-duration and short-distance messages. Writ
ing, and reading, clearly involve messages that can have a long 
duration and can be communicated over long distances. Prior 
to the advent of electronic means of recording short-dura
tion/short-distance (SD) messages, writing and reading were 
the only ways of converting such messages to long-dura
tion/long-distance (LD) messages. Indeed, it is the availability 
of electronic transmission, recording and play-back equip
ment that requires the insertion of the phrase "or was" in 
parentheses in the second sentence of this paragraph. The 
transformation of SD messages to LD messages can now be 
accomplished electronically so pre literates' or illiterates' SD 
messages may be transmitted by telephone, recorded, stored, 
shipped, played back, and so forth. Indeed with the advent of 
television there has been a virtual explosion of LD messages 

601 

for a whole range of "nonlanguage" messages are now trans
mitted, recorded, etc. 1 

Put simply, if literacy, taken to mean writing and reading, 
involves the creation and use of LD messages, then an analysis 
of literacy may be very much a matter of an analysis of the 
difference between SD and LD messages and anything that 
changes the relationship between SD and LD messages may 
alter the nature of literacy. 

My intent here is to focus on the role of the computer in 
altering this relationship but it is appropriate to comment first 
upon the impact of television upon literacy. A conventional 
concern among educators, parents, and the public at large 
involves television's role in making children passive, lazy, and 
perhaps spoiled, in the sense that they are conditioned to 
rapid-fire, attention grabbing communications. These may 
well be legitimate matters of concern but I do not wish to 
attend to them here. I simply wish to point out that a lengthy 
chain of technological innovations, from the printing press to 
radio, television, and the computer, has multiplied the avail
ability of LD messages, vis-A-vis anyone person to such an 
extent that an individual is literally surrounded with "there 
and then" (LD) messages, many of which come crashing in as 
"here and now" (SD) messages. Television is a dramatic 
source of such messages, bringing yesterday's horror-filled 
war action from the other side of the globe into today's living 
room. But I submit that it is not simply that one form of 
technology lies at the heart of the problem if the problem is 
seen as a dramatic mismatch between the availability of LD 
messages and the individual's ability to deal with all this at the 
SD message level. A basic premise of this argument is that LD 
messages can only be decoded at a rate that is determined by a 
person's ability to process SD messages, i.e., the rate at which 
a person may hear or see what is placed in front of him/her at 
anyone moment in time. It is not simply television that "over
whelms" children; I submit that schooling can also "over
whelm" children insofar as it represents an enormous source 
of LD messages. 

Education in pre-literate societies is mostly a matter of 
teaching by example and by passing along one's traditions 
orally. Reading and writing is, by definition, impossible in 
such a society. If a society possesses a written language, but 
many people are illiterate, education divides immediately into 
an "example and oral" mode of operation or a "schooling" 



602 National Computer Conference, 1981 

mode which means, typically, "reading and writing." The 
irony is that "reading and writing" not only are the keys to 
"power" as educators from Horace Mann to Paulo Freire2 

point out; "reading and writing" may also be the keys to an 
awareness of one's relative "importance." Once you begin to 
see the role LD messages might play in your education and 
sense that the experience of countless people over thousands 
of years is available to you via the LD message route, it 
shouldn't be too surprising that a sense of despair follows 
more commonly than does a productive sense of wonder. The 
potential "there and then" messages are so numerous they 
can easily drown anyone intent on living in the "here and 
now." 

This point deserves more attention than I can give it here 
for I feel constrained to return as quickly as possible to consid
eration of the role of computers in all this. The significant step 
in so doing is to focus on the role of reading as contrasted to 
writing in the process of education. The answers to the ques
tion, "Why should you teach someone to read?" are obvious. 
If you can read, all the world's LD messages (in your lan
guage) are available to you. But why do we ask people to 
write? If you mean by that question, "Why do you ask a 
person to learn to write?" the answer may be, "So s/he can 
function in society, fill in forms, write checks, apply for jobs, 
etc." But if you ask the question a little differently, "What is 
gained when a person translates SD messages into LD mes
sages? ... a person's answer might look something like this: 

1. So I can return at a later date and see what I was 
thinking/saying. 

2. So I can make my thoughts clearer (for there is some
thing about writing that forces greater clarity than just 
"thinking out loud"). 

3. So I can communicate rather specifically with other 
people-at a later time, in other places-perhaps so they 
can understand me, do what I want them to do, or have 
them see if I know something. 

4. So I can at least suggest something to others that is 
interesting or important to me, perhaps so they can see 
the matter differently, more richly, more productively 
than I. 

This list could be extended in many ways; it is not intended 
to be exhaustive, just illustrative. I wish to illustrate that when 
a person writes something it is either entirely personal (as in 
items 1 and 2) or it commits someone else to do something. 
With the ~xception of "making lists for oneself" (or perhaps 
keeping records or writing a diary) or writing "to clarify one's 
thoughts," if one's writing isn't read by someone else "it is 
wasted." Ideally, someone should give the writer some "feed
back," ranging from a parental pat-on-the-head to an in
formed, detailed critique. 

A cursory look at mass education illustrates the difficulties 
associated with going to the expense and trouble of making 
this commitment to paying attention to what students write. 
Most LD messages may be potentially "long in duration" but 
they are extremely brief in nature. Indeed, multiple-choice 
markings and "short-answers" are the rule, not the exception 
in institutions devoted to mass education. Society simply does 
not supply the resources for converting frequent, voluminous, 
lengthy LD messages into SD form by teachers. Thus learning 

is characterized by either talk (with students mostly receiving 
SD messages and occasionally sending some) or reading (con
version of LD messages to SD by students). The net effect of 
this is for the student to spend most of his/her time in a 
"decoding" or passive.mode. 

It is into this "passive at home due to television" and "pas
sive at school due to the nature of mass education in an infor
mation glutted world" environment that the electronics indus
try has introduced micro-computers. Given the approach I 
have been taking here, it should come as no surprise that I 
think of micro-computers as devices, like all computers, that 
allow their operators not only to write them LD messages, but 
devices that will really "pay attention" and "do something 
with" those messages. Indeed, computers are, essentially, 
very active LD message environments. 

For the first time in history it is becoming economical for 
children to grow up in an environment that allows them to 
experience to a much fuller extent than before what it means 
to be actively literate-to actually deal extensively with the 
encoding of LD messages and the consequences thereof 
rather than just the decoding of LD messages. The sense of 
"power" that the phenomenon of literacy gives to a society, 
the micro-computer gives to the individual. You send the 
computer a series of messages that have implications for one 
another for a long time to come, that interact with messages 
that have been sent by other people at other times in other 
places (e.g., the programmers of the language being used), 
and something "happens." You are held very precisely ac
countable for what you have said in the past; things combine 
in both predictable and not-so-predictable ways; you can 
study your messages and alter them; you recognize that you 
are issuing "commands." In short, you begin to actually ex
perience the consequences of "writing," what it really means 
to "be literate"-as contrasted to what it means to "com
municate" on a short-term basis or to be a mere spectator in 
a literate society. 

The "power" that I claim this implies is dramatically illus
trated by Joseph Weizenbaum's description of the "compul
sive programmer" in Computer Power and Human Reason. 
The "compulsive" programmer, as contrasted to the "profes
sional" programmer, derives his satisfaction from "having 
bent a computer to his will," not from "having solved a sub
stantive problem.,,3 "The computer challenges his power, not 
his knowledge."4 "He seeks reassurance from the computer, 
not pleasure. ,,5 

i am seeking to contrast the sense of impotence that is likely 
to accompany an awareness of all the LD messages that are 
"out there" to be found, organized, and made relevant (the 
position one is likely to be in if one assumes a passive, de
coding posture vis-a-vis all the LD messages of the world) with 
the sense of power that an active, encoding posture en
courages. Clearly Weizenbaum's "compulsive programmer" 
stands at one end of a continuum and serves to exaggerate the 
person's plight. I mean to compare him/her to the intensely 
"literate" person in the conventional sense of the word, a 
person who also can mistake the real world for the symbolic 
world that s/he lives in, complete with the "delusions of gran
deur" that accompany his/her sojourns in quest of the "grand 
system," behavior which Weizenbaum also attributes to the 
"compulsive programmer.,,6 



If my only goal were to highlight the relationship between 
literacy and the computer, when the latter is seen as an envi
ronment that accepts, manipulates, uses, abuses, and com
ments upon one's LD messages, allowing the student to be
come either a little more active and powerful----or at the other 
extreme "compulsively" active and powerful-I think the goal 
would be an easy one to meet. The larger problem is to gain 
some perspective on the limits of this particular kind of LD 
messaging activity. I value the feelings of efficacy, power, 
associated with what has been said so far, and I do not partic
ularly fear the excesses suggested by the extreme illustration 
of the "compulsive programmer." Anything, if taken to ex
cess, needs attention and so forth .... 

What I would like to understand better is how children who 
become active in the LD environments of computers will dif
fer from those who do manage to participate "actively" in 
more conventional LD environments. What is different about 
writing a computer program that interacts cleverly with the 
programs of others and writing a clever essay on The Odyssey? 
If there is a significant difference, and I suspect there is, then 
the matter is very important because it is going to be so much 
easier and economical to get children, in school and out (with 
all the attendant benefits of learning in an environment of 
one's choice), to become "actively literate" vis-a-vis comput
ers, than to become "actively literate" in a conventional man
ner. I am asserting that more people are likely to become 
more actively "literate" because of the opportunities pre
sented by computers~ but that there may be a cost associated 
with this in terms of the deflection of people away from other 
styles of "literacy." Not only are electronics infiltrating all 
aspects of society, thereby changing what it means for a soci
ety to be literate; there may also be a way in which an individ
ual is likely to be initiated into the intricacies of literacy that 
is "different" because of the availability of microcomputers at 
certain points in their childhood and youth. 

I submit that we might not only be changing the nature of 
the dart board at which we are teaching people to aim (liter
acy), we are changing the nature of the darts (the means of 

Computers and the Future of Literacy 603 

achieving literacy)-and good "new" darts are getting very, 
very inexpensive compared to good "old" darts. How will the 
use of the "new darts" change the nature of the game? 

Earlier I claimed that, "For the first time in history it is 
becoming economical for children to grow up in an environ
ment which allows them to experience, to a much fuller extent 
than before, what it means to be literate .... " (underlining 
added at this point). By this I meant that they would find it 
much more attractive, interesting, and rewarding to "write" 
rather than just to "read," to encode LD messages rather than 
just decode them. The challenge now is to try to figure out if 
there are some dimensions of "fullness" that are restricted 
rather than enhanced by "writing" in the modality of modern 
computers, and if so, what could and should be done about it. 

NOTES 

1. My initial exposure to the concept of "SO" and "LO" messages came as a 
result of a collaboration with Laurence B. Heilprin in 1965. A paper entitled 
"An Analogy Between Information Retrieval and Education" appeared as 
a challenge paper in the September, 1965, American Documentation Insti
tute Symposium on Education for Information Science. It was published 
both in the Proceedings of that Symposium (Washington, O.c.: Spartan 
Books) and in American Documentation, Vol. 16, No.3, July, 1965. Heil
prin's use of the SO and LO notation involved only short-duration and 
long-duration messages. The idea that distance is involved as well occurred 
to me in reading the Encyclopaedia Britannica's account of "Forms of Writ
ing" (15th edition, v. 19, pp. 1033-45). I am also indebted to that En
cyclopaedia Britannica article for clarifying the relationship between "pre
literate" and "illiterate." 

2. The 19th century architect of the American "common school," Horace 
Mann, is probably familiar to most readers. Freire, a contemporary radical 
Brazilian educator, has argued brilliantly for the need to connect the ability 
to read and write with a person's political awareness. See either his Pedagogy 
of the Oppressed or Education for Critical Consciousness. 

3. Joseph Weizenbaum, Computer Power and Human Reason (San Francisco: 
W. H. Freeman and Co., 1976), p. 117. 

4. Ibid., p. 119. 
5. Ibid., p. 121. 
6. Ibid., p. 118. 



COMPUTERS AT WORK 



Keeping CAl humane in the humanities 

by HELEN 1. SCHWARTZ 
Oakland University 
Rochester, Michigan 

ABSTRACT 

Existing courseware in the humanities includes text feedback 
(such as readability formulas), drill and practice (such as 
grammar and punctuation drill), and tutorials (including tu
toring in composition and poetry interpretation). Sample pro
grams show limitations in hardware and the state of the art in 
programming and rhetoric can cause problems unless the in
structor announces such limitations and uses them as a basis 
for instruction beyond the capabilities of the courseware. Tu
torials should be open-ended and thoughtful in anticipating 
students' responses. In summary, CAl for the humanities 
should be designed to respect and build on the students' re
sponses in order to serve their needs. 

INTRODUCTION 

The potential of computer-aided instruction (CAl) for the 
humanities has become clearer as computer programs have 
actually been written and used. Over 120 programs are listed 
in the most complete bibliography available, Anastasia 
Wang's Index to Computer-Based Learning (1978), and even 
this listing is incomplete and scheduled for a new edition. 1 

Now, in the early stages of development, we need to think 
about what the computer can do well in light of subject matter 
in the humanities and in accord with humanistic teaching 
methods. Otherwise, the computer will not be a kindly genie 
or mentor, but a monster which, as poet Howard Nemerov 
warns, can brutalize the mind to the level of the machine. 2 

This article gives a progress report, reviewing some typical 
programs to show what kinds of computef applications exist in 
the humanities and to see the capabilities, limitations and 
dangers. Based on this review, I'll suggest some questions for 
evaluating CAl programs and their integration in an edu
cational setting. 

Let's look first at some examples of the three kinds of CAl 
available at present: (1) text feedback, (2) drill and practice, 
and (3) tutorials.3 

TEXT FEEDBACK 

Computerized text analysis can sometimes see surprising and 
problematic configurations in writing that a writer can miss 

605 

(even when s/he knows what s/he's supposed to do). But ulti
mately it is not the machine but the writers who must proceed 
after text analysis to the human hammering out of meaning. 

One simple example of such a compute_~ application is a 
program of a "readability formula. " The user types in his/her 
text, and the computer calculates the reading difficulty of the 
passage according to the scale of the formula. Several such 
formulas have been computerized, and the programs are easy 
to use and easy to get.4 

Such formulas are roughly reliable in flagging problems at 
the extremes-"Dick and Jane" prose and gobbledygook. 
You'd think that just knowing the formula, based usually on 
average sentence length and word familiarity, would help the 
writer. But sometimes writers are influenced by the pride of 
creation. For example, when I checkerlpart of a paper I was 
writing, I realized from computer feedback that the style (18th 
grade level!) was inappropriate for a speech-and Lrevised __ 
accordingly. 

But text feedback must be joined to human judgment. Ex
perts agree that a readability score doesn't measure compre
hensibility, because the formulas cannot test for sense (or 
nonsense!), for grammar or -Organization.5 lfthestudent has 
mastered sentence structure and punctuation, and s/he is will
ing to type and run the program, then a computerized read
ability formula can suggest whether revision is badly needed. 
But human judgment and response are crucial to help the 
student improve comprehensibility along with readability. 6 

DRILL AND PRACTICE 

Computer programs that drill students can provide patient, 
individualized, though rather impersonal, illstruction. But the 
teacher must supervise drill and practice and carry instruction 
beyond CAl's capacities, or CAl drill's inherent limitations 
will be harmful. 

One 'such program involving grammar and punctuation drill 
is available through the Engineering School's Department of 
Humanities at the University of Michigan. This program illus
trates several good features possible in CAl drill: 

1. The student controls the process by selecting modules, 
calling for help or explanations, and choosing when to 
stop. 



606 National Computer Conference, 1981 

2. The number and difficulty of problems are geared to the 
individual student's pace in mastering principles. 

3. The program's form is effective for learning, using fill-in
the-blanks questions drawn randomly from a large data 
base. 

CAl drill can work well (even after the novelty fades) be
cause it can give the student a sense of mastery. But it's 
important to be aware of its limitations in providing that sense 
of mastery. Ideally, the program would evaluate an answer to 
see if it is acceptable usage. But currently two problems pre
vent a program from doing this: first, the computer system 
usually has space limitations which restrict what the program 
may do; second, the state of the art limits what the program 
can do. 

According to Professor Leslie Olsen, the administrator of 
the program, the need for keeping the program to a size 
reasonable for small or space-cramped systems led to an im
portant programming decision: the program accepts only one 
answer as "right" and responds to all other answers as 
"wrong." Yet for many sentences, there are several accept
able usages. To get around this problem, the instructions tell 
students to change a sentence presented to them only if it is 
wrong, but to mark acceptable uses (even if not preferred) as 
"ok." For example, here's a sample sentence on using com
mas in a series: "The Iroquois Indians, the Dutch and the 
English fought the French." If you put a comma before the 
"and," the program would say "Too bad" and explain, ending 
with the announcement that "a comma before the 'and' is 
optional." So your acceptable answer would be acknowl
edged, but in the computer's calculation of your progress 
you're marked wrong and get additional problems. 

Now, technically, you would be wrong, since the instruc
tions say to make a change only if the form of the sentence 
given is unacceptable. But notice how this programming deci
sion subtly affects the educational goal of the program. The 
program cannot really promote a student's personal writing 
style by answering the question, "Is the student's preferred 
choice acceptable? Instead, it tests for editorial skills: "Is the 
given usage acceptable?" 

Here the teacher must take over to help the student develop 
a consistent personal style and choose the best of acceptable 
usages in the larger context of a paragraph and essay. Such 
contextual and individualized editing is beyond the course
ware's capability. 

Another problem arises from limitations on space. At 
times, the introductory explanations include material that is 
missing from responses to student answers. For example in the 
section on agreement of pronoun and antecedent, the intro
ductory explanation raises the issue of sexism in language, but 
the explanatory responses do not include this information: 

EXAMPLE: "Every child who passes their test will be given 
a prize." 

"RIGHT" ANSWER: his 
EXPLANATION GIVEN WITH ALL OTHER 

ANSWERS: Too bad. 
"Every child" is singular and any pronoun referring 
to "every child" must be singular. Therefore, you 
must use the singular pronoun "his" [my italics] in 

"his test." "Every child who passes his test will be 
given a prize." 

Notice that the explanation mandates ("must") the use of 
"his" and doesn't even mention the alternate forms--"his or 
her," "his/her," "her"--explained in the introduction to this 
module. Now, remember, the program can accept only one 
"right" answer. "Their" is clearly wrong and should be 
changed. But "his/her" is judged wrong, despite pro
nouncements of publishing houses and professional groups 
prescribing non-sexist language. Thus, space limitations lead 
to truncated explanations and right/wrong decisions about 
input that can frustrate or mislead students if the teacher does 
not use the program well. 

Here's where the integration of CAl into the class as a 
whole can turn the limitations of the program into assets for 
education. Professor Olsen suggests three ways to increase the 
effectiveness of the program: 

1. Alert the students to the limitations of the program and 
use these limits as a starting point for discussing ques
tions of style and contextual editing. 

2. Make the use of CAl payoff for the student. Make clear 
that a student's improvement in grammar on assign
ments will improve his/her grade. 

3. Give CAl a social dimension by encouraging group work 
at terminal sessions. This encourages peer-tutoring, is 
more fun, and cuts waiting time. It can also dispel frus
trations when the program judges an acceptable answer 
as "wrong." 

In this way, students are motivated to learn and also realize 
that they must ultimately pass beyond the lessons of the com
puter program. The student in consultation with the instructor 
or with peers makes·the final judgment-thus having people 
take responsibility for what they do better than the computer 
does. 

TUTORIALS 

While drill and practice can lead a student to master skills, a 
good tutorial program can help him/her to internalize a pro
cess of learning. Such a tutorial program can guide a student 
to discover his/her own original ideas and then refine them 
using a generalizable disciplinary approach. The programs do 
not depend on the programmer anticipating every "right" 
answer or "right" approach by the user. For example, James 
Garson and Paul Mellama have developed EMIL, a tutorial 
for helping a student construct formal proofs in logic. 7 And 
Ellen Nold has led the way in devising creative, open-ended 
programs in composition.8 Such mentor programs can provide 
an "Open Sesame" to the adventuring student. 

For example, three programs developed by Hugh Burns 
stimulate rhetorical invention in composition according to 
three strategies involving (1) Aristotelian topics, (2) Burke's 
dramatistic pentad, or (3) the tagmemic matrix. The tutor 
provides the method through questions; the student provides 
content with his/her responses. 

After a student typed in his name and a 2-3 word summary 



of his topic ("fear of death"), the tutorial run included the 
following actual excerpt, using the Aristotelian topics as an 
approach (student input in italics): 

DURING THIS EXPLORATION PROCESS, YOU 
WILL BE ASKED TO CLARIFY THE PURPOSE OF 
YOUR PAPER ON FEAR OF DEATH. SO NOW 
WOULD YOU BRIEFLY DESCRIBE THE PURPOSE 
OF YOUR PAPER BY COMPLETING THIS STATE
MENT: THE PURPOSE OF THIS PAPER IS TO ... 
Examine the fear of death people have, where we got those 
fears, and how we may reduce those fears. 
... WHAT OBJECTS DO YOU ASSOCIATE WITH 
FEAR OF DEATH? 
fear of the unknown, cessation of life, fear of causing pain to 
our loved ones 
THAT'S THE IDEA, WALT. GIVE ME SOME MORE 
INFO NOW. 
pain is another fear causer, knowing we have to die does not 
relieve the pain/fear of dying 
SUPER, WALT! 
ANYTHING ELSE? 
(YOU CAN ADD MORE INFO, ASK A QUESTION, 
OR GIVE A COMMAND-WHATEVER YOU WISH.) 
How do euthanasia, mercy killing, suicide, murder, and ac
cidental death add to our fears? 
I COULD SAY THAT'S FOR ME TO KNOW AND FOR 
YOU TO FIND OUT. SERIOUSLY, I CANNOT PRE
TEND TO KNOW 'HOW,' BUT YOU SHOULD KEEP 
EXPLORING FOR AN ANSWER.9 

The benefit of tutorials, however, depends on the skill of 
the programmer in anticipating where and how students will 
need help and in offering freedom to explore within the guid
ance of the program. For example, the Aristotelian-topics 
program just described allows over three million possible ave
nues (or branchings) in a full exploration of just the first 
question in the program. 10 Without this disciplined flexibility, 
a program that purports to be a tutorial can really turn into a 
pernicious form of drill and practice. 

One such well-intentioned program that turned into a mon
ster is "Black Box" (developed by Pauline Jordan on the 
PLATO system). The student is prompted to read sensitively 
by considering certain word choices in the following poem by 
e. e. cummings 11: 

Buffalo Bill's 
defunct 

who used to 
ride a watersmooth-silver 

stallion 
and break onetwothreefourfive pigeons just like that 

Jesus 
he was a handsome man 

and what i want to know is 
how do you like your blueeyed boy 
Mister Death 

The program asks the student to type in synonyms for var
ious words and phrases. Sometimes. the program will accept 

Keeping CAl Humane in the Humanities 607 

any input; sometimes, only certain responses. For example, 
for "blueeyed," the program only anticipates the following as 
acceptable synonyms: favored, favorite, special, perfect, idol
ized, fair-haired, much liked. If you typed in "naive" or "in
nocent," as I did, the computer would respond: "a figure of 
speech: 'blue-eyed boy' means a favorite." After this re
sponse, I stopped being serious and started typing in ob
scenities. But the computer ignored my bad manners and 
continued to "help" me with all the aplomb of a recorded 
message that didn't anticipate my problem. 

At first it might appear that the programmer has simply 
failed to anticipate enough responses. The solution would 
then be difficult but feasible. But let's look again. Is it possible 
for a person-or even a group of people----to anticipate all 
potentially supportable responses to poetry? If so, then why 
are scholars continuing to publish books on Shakespeare's 
sonnets? Great literature (or a great idea) is universal, yet it 
can and should be reinterpreted in the light of a changing 
cultural context, historical reality, and personal experience. 
To suppose we can anticipate all possible supportable answers 
is to deny to our students what we cherish for ourselves-
human creativity and the need to reinterpret the world in 
terms of new evidence. 

The poetry program is not merely flawed, but funda
mentally anti-humanistic. If the program "works," the stu
dent learns a lesson in pedantry. If it doesn't "work," the 
student affirms his/her ideas in futile protest. In contrast, an 
"open sesame" tutorial, keyed to the user's content, can cre
ate interest even in seemingly trivial responses because the 
program takes the user and his/her responses seriously. Like 
a good teacher, a good tutorial can help provide a way of 
seeing, but the sights perceived are still the student's. 

CHOOSING AND USING CAl 

No one sets out to write a monstrous program. But, as I have 
discovered from my own mistakes, the challenge and tedium 
of coding a program can tempt the author from her/his origi
nal idea-for better or for worse. The programmer is tempted 
to make program code conform to techniques s/he is familiar 
with or to fit the "hardware" and support systems that are 
available. As a result, a good idea can metamorphose into a 
monster. (Do you remember Charlie Chaplin's encounter 
with the automatic feeding machine in Modern Times?) To 
make CAl a mentor, we must make sure that the program's 
idea, design, and integration in the educational setting work 
together iri support of a humane experience. 

In choosing or using CAl, we should remember one funda
mental principle: Let people do what they do well, and let the 
computer do what it does well in ways that serve the human 
user's needs. More specifically, here are some questions for 
applying this principle. They start with an evaluation of the 
program itself and go on to the program's use within an edu
cational setting. 

1. Does the program respect the human rights of the user? 
Can the user sign on and off to fit his/her interest 
and time? 



608 National Computer Conference, 1981 

Is the program "polite" in the tone of its 
responses? 

2. Does the program respect and promote the originality 
and individuality of its user? 

Does it anticipate the questions, problems and 
input of the user in a useful way? 
Does it know and announce its limitations (in the 
program or in supplementary material)? 
Does it allow the student a safe "playground" for 
developing skills or ideas-without grades or 
punishment? 

3. Is the program easy to use? 
Is it fun?-not boring, not cutesy? 
Is the amount of training the user needs to oper
ate the machine and the program within an ac
ceptable limit for your purpose? 
Are there enough terminals to make use possible 
at times and places convenient for the student? 
Is the computer system reliable (with minimal 
"down" time)? 
Is there technical assistance available to the stu
dent for using the program and coping with any 
malfunction?12 

4. Is the program integrated in an educational setting to 
"support the essential social character of human learn
ing" and motivation?13 

Does use of the program involve or lead to stu
dent-teacher or student-peer interaction? 
Does the student perceive that the program de
velops skills that will gain him/her recognition? 

5. Is the student involved in evaluating and modifying the 
program and its integration into the educational setting? 

Is there a channel of communication the student 
can use to register complaints, problems, sug
gestions, reactions? 
Does the student perceive that slhe can suggest 
modifications or develop new applications?14 

This last question suggests that educators who use CAl, as 
well as their students, will want to be able to develop and 
modify CAl programs. And this is as it should be if we are to 
develop the best potential of CAL If computer programs are 
to be mechanical mentors, and not monsters, they must be 
developed and tested by human mentors experienced in 

teaching and in the unique qualities and procedures of their 
discipline. 

NOTES 

1. The 1981 edition of Wang's Index can be ordered from Instructional Media 
Laboratory of the ,University of Wisconsin in Milwaukee. 

2. Nemerov, H., "Speculative equations: Poems, poets, computers," Ameri
can Scholar, 36 (1966-67), 414. 

3. For a fuller discussion, see K.M. Jaycox, Computer,Applications in the 
Teaching of English, Illinois Series on Educational Applications of Com
puters, 1ge (Urbana, III.: University of Illinois, 1979). 

4. The sources for several formulas are listed in G.R. Klare, "Assessing Read
ability," Reading Research Quarterly, 10 (1974-75), 87-91. And two pro
grams written in BASIC for microcomputers are reproduced in the April 
1980 issue of Creative Computing: D. Goodman and S. Schwab, "Compu
terized Testing for Readability;" and R. Carlson, "Reading Level Diffi
culty." 

5. Gunning, R. The Technique of Clear Writing. N.Y.: McGraw-Hili, 1952, p. 
13; Klare, G.R. The Measurement of Readability. Ames, Iowa: Iowa State 
University Press, 1963, pp. 24-25; Redish, J. Readability. Washington, 
D.C.: Document Design Center, 1979. 

6. See H.J. Schwartz, "Fighting Gobbledegook in Technical Writing with 
Computer Magic: A Preliminary Study," Annual College English Associ
ation Conference, April 1980; and H.J, Schwartz, "Teaching Stylistic Sim
plicity with a Computerized Readability Formula," International Con
vention of the American Business Communications Association, December 
1980. 

7. Garson, J. W. "Giving Advice with a Computer," Proceedings of the Na
tional Educational Computing Conference, June 1980, pp. 42-45. 

8. Nold, E.W. "Fear and Trembling: The Humanist Approaches the Compu
ter." College Composition and Communication, 26 (October 1975), 
269-273. 

9. Burns, H.L. and G.H. Culp. "Stimulating Invention in English Com
position through Computer-Assisted Instruction." Educational Tech
nology, 20 (August 1980), p. 8. 

10. Burns and Culp, 7. 
11. In Collected Poems (New York: Harcourt, Brace, 1938), no. 31. 
12. For a more technical rating mechanism, see Appendix A in J.R. Dennis, 

Evaluating Materials for Teaching with a Computer, Illinois Series on Edu
cational Applications of Computers, 5e (Urbana: University of Illinois, 
1979). 

13. Dwyer, T.A. "Some Principles for the Human Use of Computers in Edu
cation." International Journal of Man-Machine Studies, 3 (July 1971), 
221-222. 

14. Several experts note that the problem analysis involved in writing a program 
may provide a greater learning experience than the running of the program: 
M. Masterman, "Computerized haiku," in J. Reichardt, ed., Cybernetics, 
Art and Ideas (Greenwich, Conn.: N.Y. Graphic Society, [1971]), p. 183; 
M. Critchfield, "Beyond CAl: Computers as Personal Intellectual Tools," 
Educational Technology, 19 (October 1979), 10, p. 24. 



The effects of computers on library staff and users: 
How can the administrator cope? 

by RICHARD W. BOSS 
Information Systems Consultants Inc. 
Bethesda, Maryland 

INTRODUCTION 

A library normally prepares for the automation of one or 
more functions by undertaking systematic technological and 
economic planning. A set of specifications is normally drawn 
up, setting forth the functional requirements for the system, 
whether that system is to be a "turnkey system" (one supplied 
by a vendor who provides hardware, software, installation, 
training and maintenance-some 85% of libraries choose this 
course of action), a custom development by a systems house, 
or an in-house effort. The budget will be drawn up at least 
several months in advance, setting forth the anticipated costs. 
While most library cost projections tend to be too conser
vative, the effort is nevertheless made. The area of auto
mation planning that is most often neglected is that of the 
psychological impact of the new system on the library's staff 
and users. 

Automation brings with it many negative side effects. 
Among them are 

1. Strain on resources. A library may realize too late that 
it lacks the human and financi,al resources to see the 
project through to its conclusion. There can then be 
painful reallocations. If these are not made and the 
project is abandoned, there may be recriminations 
among the staff, library administration, and higher ad
ministrative authority. 

2. Fear of job loss. Automation is associated with staff 
reduction in the minds of many individuals. Insecurity 
among employees often runs high, particularly among 
those who do not regard themselves as mobile or who 
have limited marketable skills. 

3. Fear of changes in duties. Even in organizations where 
there is no fear of job loss there may be fear about duties 
being changed to ones that will be less liked. Underlying 
that fear is often an even more serious, unspoken one 
that the individual may not be able to perform the new 
duties as well as the old. 

4. Organizational changes. One of the effects of auto
mation least frequently mentioned is the impact on or
ganizational structure. The departments in a library have 
historically developed around particular functions and 
files. When all departments are tied to on-line files, the 

609 

interrelatedness among departments increases and the 
ability of a single department to control access to partic
ular files comes to an end. 

5. Patron criticism. Libraries are service-oriented and sen
sitive to the criticism of their users. New technologies 
often have their vocal critics who decry the new ap
proach as "dehumanizing." 

6. System breakdown. Computer systems can normally be 
expected to be "down" or non-operational from 1 to 4 
percent of the time. When this occurs in the case of a 
public service function such as circulation during a busy 
period, criticism c~n be swift and sharp. The staff, not 
the library administration, bears the brunt of it. Their 
response to the criticism may worsen, rather than im
prove the situation. 

These are but some of the risks associated with the intro
duction of a complex technology. Yet library administrators 
continue to acquire automated systems. And it is well that 
they do so, for as Tom Galvin of the University of Pittsburgh 
has said, 

"The manager who makes fewer mistakes may actually 
be declining in managerial effectiveness and side
stepping or avoiding the very administrative and super
visory responsibilities which are, or ought to be, the 
essential content of his or her work. "I 

There are risks and they should be accepted, if the purposes 
for automation are sound. There can be significant benefits: 
work can become more satisfying for library staff and service 
can improve for library users. 

A great deal of librarianship is clerical and repetitive, even 
for professional librarians. Checking books in and out, pre
paring overdue notices, and handling reserves or holds are all 
mundane tasks that require a friendly, alert staff member, but 
ideally one with a powerful tool such as an automated circu
lation control system. Cataloging is costly, time-consuming 
and, until the on-line shared cataloging concept was devel
oped, duplicated all over the country. Literature searching 
through dozens of bound and paperback indexes and abstracts 
can be agonizing. Librarians who have become accomplished 
searchers of on-line bibliographic data bases hate to do man-



610 National Computer Conference, 1981 

ual searching. With automation, work can become more sub
stantive. 

Library users should be the principal beneficiaries of library 
automation. They should be able to check books out faster, 
inquire about the status of a book and get a reliable answer, 
and have the library duplicate high-demand books promptly. 
They should be able to find books on the shelves sooner as the 
result of shared on-line cataloging. Literature searches should 
provide them with more suitable references and the assurance 
of evenness throughout the period searched. 

The problem that library administrators face is that it may 
be a year or more from the time of the decision to automate 
before the benefits of automation become apparent. What 
does one do in the interim? How does one plan automation so 
that those who may be affected, positively or negatively as 
they might see it, will support the automation effort-or at 
least, withhold their opposition-during the planning and im
plementation period? 

There are several things which can be done to improve staff 
reaction to a planned introduction of automation: 

• Participation: The involvement of those most affected by 
the new system may gain understanding and commit
ment. 

• Orientation: Carefully prepared presentations compar
ing the planned with the existing system and explaining 
the pros and cons of each. 

• Demonstrations: In-house demonstrations, with hands
on experimentation allowed may be successful if the ter
minals to the proposed system are "user-cordial" (that 
term will be discussed later). 

• Site visits: Visits to other libraries that have successfully 
installed the same or a similar system may be more effec
tive than in-house demonstrations, especially if time is 
provided for individuals to talk with their counterparts at 
the other institutions. 

• Handouts: Clear, concise written materials might be dis
tributed to the staff. A letter from the director is a good 
format. 

• Reassurances: If the library is able to tell staff that no one 
will be terminated, written or oral statements of reas
surance to that effect should be made. 

• Neutralizing critics: Special efforts could be made to in
volve, orient, and reassure those who work around a 
particularly negative person. 

• Reassignment: A person who appears to be unalterably 
opposed and who might adversely affect the program 
might be transferred to another position that is equally 
attractive, but less sensitive. 

• Gradual implementation: Pilot installations or function
by-function implementation may be undertaken to estab
lish the performance and benefits of the system. 

The critical test will come when the system is installed. Its 
ease or lack of ease is usually the biggest single factor in 
acceptance or rejection. As Mooers' Law says, "An informa
tion retrieval system will tend not to be used whenever it is 
more painful and troublesome for a customer to have informa
tion than for him not to have it. A terminal is the computer to 
most users. Resistance to it means resistance to the system." 

What too many purchasers overlook is the terminal. Virtually 
all terminals in use in libraries are standard off-the-shelf ter
minals with few if any features to make them easily acceptable 
to a user who is less than fully-trained and experienced. On 
occasion a vendor is sensitive to the issue of user cordiality and 
has developed software to prompt the user through a series of 
multiple-choice steps. That has solved the problem of the 
first-time user, but it created an equally serious one for the 
skilled operator. Just how many times a day can a person 
stand to have a computer flash the message, "Hello, how are 
you? Which of the following would you like to do?" 

User cordiality has to be defined as responsiveness to the 
user at his/her level of ability and confidence. It should be 
possible for the skilled operator to override the prompting 
mode and "command" the system. 

The Lister Hill Center for Biomedical Communications, 
the research and development arm of the National Library of 
Medicine, has been the only library agency that has system
atically studied user cordiality. They have sought to eliminate 
the need for a terminal operator to know the correct method 
for entering a query-where the blanks go, where the commas 
are to be placed, and whether periods are needed after ini
tials. They have sought to complement the simplicity of design 
with a series of instructions that are displayed as needed. At 
the same time, they have tried to provide the means for the 
skilled operator to bypass the instructions. These efforts are 
part of the development of a conceptual library information 
system that will include acquisitions, cataloging, circulation, 
and several other functions necessary to a fully integrated 
system. The software documentation is available from NTIS 
for approximately $2,000. 

Lister Hill has not been alone in its concern, however. 
Greater user cordiality is being incorporated into many of the 
commercially vended systems. The on-line catalog terminal of 
CLSI is one of the simplest terminals of all. It is a touch 
terminal that merely requires the user to respond to options 
by pressing the appropriate part of the screen. Ambiguities in 
the instructions are still being worked out, but the terminal 
already is a delight for the person who has never used a 
computer terminal before. The company recommends this 
terminal for use by library patrons, with a more flexible termi
nal for staff. 

Even a system with user cordiality built in is nof truly 
simple. Considerable training is required for the performance 
of any other than the most basic functions. The specifications 
of many libraries stipulate that the vendor is to train the 
library staff. We normally recommend that the number of 
staff trained by the vendor be limited both to reduce training 
costs and to assure the library of an ongoing capability for 
training new staff. The specifications should stipulate that 
those trained by the vendor shall be able to train others. 

It is highly desirable to have an orientation program for the 
entire staff shortly after the system is installed. A representa
tive of the vendor should demonstrate the system, ideally with 
opportunity for some hands-on use by staff. It is even more 
important that a member of the library's administration ex
plain again why the library is automating circulation. Our 
experience has been that staff fears are most often based on 
unclear objectives. Our interviews suggest that administrative 
staff share a common perception that improvement of service, 



not staff reduction, is the reason for automating. That should 
be stressed. 

We recommend a carefully planned program to tell patrons 
of the automation plans. Again, the objectives should be 
stressed. We recommend that several of the following ap
proaches be selected.3 All have been successfully used by 
libraries throughout the country. It is our experience that the 
libraries which have not undertaken such systematic orien
tation have experienced patron resistance. 

• Newspaper stories: Articles in a newspaper describing a 
library automation program are the most common form 
of promotion. Success has been mixed, however. A press 
release carefully setting forth what the library wants to 
say is a must. Unplanned interviews often lead to empha
sis of the high cost, the difficulties of making the system 
work, etc. 

• -Leaflet: A handout describing the why, how, and when 
of a new system is inexpensive and usually effective. The 
leaflet should emphasize the prospective benefits to the 
library user, but should also set forth the possible dis
advantages, especially possible short-term reliability 
problems .. 

• Radio and television: A few libraries have arranged inter
views or demonstrations on radio or television. This is 
particularly effective when the library representative has 
a good media personality. 

• Displays: Displays in the library or in another high-traffic 
area can be very positive promotions. Simple expla
nations of how the computer works ar~ of panicular in· 
terest. Photographs of the various components of the 
system in use are inexpensive and often equally useful for 
newspaper stories. 

• Support groups: The friends of the library, whether a 
formally organized group or not, can be an important 
source of support from the earliest planning stage 
through implementation. They often are heterogeneous 
groups of people who will pose the questions that are on 
the minds of library users generally. 

• Contacts with opinion leaders: The library administration 
have usually identified the people who are most influ
ential in their community, company, or academic institu-

Effects of Computers on Library Staff and Users 611 

tion. Personal letters and personal contacts are a good 
way of informing these individuals and soliciting their 
opinions. The timing of these contacts is critical. It 
should be before a decision is reached, before a news
paper story appears, and before the system is imple
mented. One library had a very successful open house by 
invitation only shortly before launching its system. Those 
invited were all those "who had provided advice during 
the course of the planning." The open house and the 
demonstrations were reported in the local press . 

• Remedial activity: Even the best of systems will frustrate 
some library users at times, by any action from losing a 
record temporarily to tying two different ones together. 
A phone call to someone who has had a bad experience 
with the library'S new automated system can keep the 
library'S administration and staff alert to progress and 
also possibly avoid a broadcast of the bad experience by 
the affected library user. Staff should be instructed to 
record the names of those who were inconvenienced so 
that follow-up can be made. 

These techniques are already being used by many libraries 
as part of their ongoing efforts to promote the library as 
a whole. The higher risks associated with the introduction 
of automated library systems warrant these efforts by all 
libraries. 

All of these comments assume that the choice of an auto
mated system has been made wisely. No amount of special 
effort can long conceal a poor choice-poor because auto
mation was not really the solution to the problem posed or 
because an inadequate system was selected in an effort to hold 
costs down. Good choices do not sell themselves, however; 
there has to be some special effort. 

REFERENCES 

I. Galvin, Thomas J. "Management ~esting.l'imes.,." keynote address at 
the Army Library Institute, EI Paso, Texas, May 22, 1978. 

2. Mooers, C. N. "Mooers' Law on Why Some Retrieval Systems are Used and 
Others are Not," American Documentation vol. 11, 1960, p. 204. 

3. Boss, Richard W. Library Manager's Guide to Automation. Knowledge 
Industries Publications, Inc., 1979, pp. 80-81. 





Libraries as local database producers 

by ROBIN CRICKMAN 
University of Minnesota 
Minneapolis, Minnesota 

Sale of citations retrieved from bibliographic database services 
began more than a decade ago. Data as well as literature cita
tions were later made available from the same companies. 
Recently, other information vendors have entered the market 
and offered databases on such things as automobiles for sale or 
barter exchange of skills. 

Information offerings aimed at the consumer market are 
beginning to be common. Perhaps the best-known service aim
ed at the general public is available from The Source, which 
sells access to databases on airline schedules and social ameni
ties such as cultural events and restaurants in major American 
cities. The Europeans ami the Canadians are actively devel
oping systems designed to provide access to a variety of rapidly 
changing information , such as weather, stock prices, news, 
and cultural events. The individual consumer using the foreign 
system needs only a simple terminal to access whatever infor
mation is of interest. A small fee is charged for each use. 

At a different level, the coming of the microcomputer and 
the development in home hobby computing has meant that 
many people now have at least limited capability not only to 
consume information but also to provide the organization for 
its storage and retrieval. The technology is present. These 
hobbyists are learning database collection and management as 
rapidly as possible. Bulletin board systems that run on modest 
microcomputers are a significant service activity for many a 
hobby computer club. 

One seeks in vain, however, for an online people's informa
tion system. Nowhere can the general public find easy-to
operate systems at a very low cost that provide information 
about the community rather than a mechanism by which indi
viduals can exchange information of interest to them. Until 
recently, of course, such an endeavor would have been too 
expensive. In addition, few individuals in the community had 
any familiarity with computer equipment. Until there are us
ers for a database, there is very little reason to create one. Now 
some people have equipment in their homes that is able to 
accesS a community information system. More people will 
probably own such equipment as time goes by. And there are 
literally thousands of high school students who encounter 
small computer terminals in their classrooms. The next gener
ation may well use terminals as easily as most of the current 
one uses television sets. 

There is sufficient skill and equipment in the population that 
databases, if offered, would be used by at least part of the" 

613 

community. What information might these databases provide? 
One possibility is the availability and quality of locally provid
ed goods and services. Organizations such as Consumers' 
Union, the publisher of Consumers' Reports, provide one 
source of unbiased information on consumer purchasing deci
sions. Their evaluations are available for much nationally mar
keted merchandise. When a service or product is produced 
and sold locally,. however, unbiased information on avail
ability and quality of the offered good or service can be diffi
cult to obtain-for example, many find trying to select a high
quality physician difficult. General guidelines can be found in 
consumer publications, but exactly which plumber or auto re
pair shop delivers high-quality service at reasonable prices is 
information available mostly from personal advising through 
one's network of acquaintances. A database that combines 
information on availability and quality of goods and services, 
then, should be of considerable community interest. 

Another database that might be useful would be one offer
ing locally significant, ephemeral information. One example 
of such information is prices in local supermarkets. Many peo
ple would find it useful to list their weekly grocery items and 
have a computer report which store or stores offer the best 
prices on those items. Such a service would be especially help
ful to persons of limited income with a large number of house
hold members to feed. 

A different type of ephemeral information is related to so
cial and cultural activities taking place within the community. 
The occurrence and availability of some of these activities can 
be announced through the usual channels of information, such 
as newspapers, radio, and television. Other organizations 
sponsoring activities have more limited interests and treasuries 
and must depend on free or low-cost channels of information, 
such as public service announcements. Still other groups pub
licize their meetings only to current members-as often be
cause the pUblicity effort is excessive for/the number of out
siders the group would attract as because they desire to main
tain an exclusive membership. A database on local events 
would provide access to both heavily attended activities and 
those of very limited interest. It would allow a new bicycle 
enthusiast in town to find when and where the bicycle club(s) 
meet. It would also give anyone in the community a resource 
to consult when that person wishes- to select an activity. A 
community database on local events is. particularly likely to 
succeed if some organization can offer the hardware and soft-



614 National Computer Conference, 1981 

ware to allow access. The one thing that most local groups have 
in abundance is volunteer labor to assist in input and mainte
nance of database entries. The thing they have in short supply 
is skill in creating the software and funds to support the pur
chase of the hardware. A communal effort might provid~ suf
ficient funding for several community organizations together 
to purchase a system, but some mechanism for coordinating 
the database entries would still be necessary. 

Who should be providing databases of interest to a local 
community? Commercial services that want entry into more 
limited markets than the nationally vended databases are a 
logical possibility. Some local information has been sold by 
traditional media such as newspapers for many years now. 
Much of the information that might logically be part of a com
munity information system is not readily amenable to for
profit providers. There are several reasons for this. The first is 
the collection of the information: hiring individuals to do this 
would be fairly expensive, and so would entering the informa-

- tion into the database. However, if volunteers were willing to 
collect the information as part of other activities (such as their 
weekly shopping trip) and enter it into the system, the effort 
could be modest. Further, personal evaluations of locally pro
vided goods and services could be sought from anyone in the 
community who has used a service or patronized a shop and 
used for another database. Such a process would require that 
the appearance of unbiased evaluation be maintained if the 
database were to be credible to the community. A for-profit 
organization selling evaluations might have a difficult time 
gathering consumer opinion and a more difficult time con
vincing the public that the information gathered was not 
changed in any inappropriate way. 

A second problem with community information services is 
that those who are most in need of the information are not 
those with the resources to pay for the information. For exam
ple, information about grocery purchases is likely to be most 
valuable to the poorest elements of the popUlation; and those 
with the most time for social and cultural events are those who 
are not in the labor force, because they are too yO\~ng, retired, 
or temporarily unemployed. These individuals oft~n have lim
ited resources, and the organizations that would b'enefit from 
their participation can afford only very limited expenditures 
to attract them. 

A community organization would be a sensible place to 
coordinate and house the community information system. It 
should probably be a nonprofit organization, with the ability 
and resources to support such a system. I would like to suggest 
that the public library is a reasonable choice. It has a number 
of advantages over other public agencies. 

Let us start with technical aspects. Although it is true that 
the public library is no more likely than the public school or 
the welfare office to know a great deal about computer hard
ware and software, the librarian does know a great deal about 
the storage and retrieval of information; they are one of the 
most important aspects of a librarian's work. Thus, the library 
is one place to find expertise in local demand for information 
and knowledge of how best to organize it for ready retrieval 
in the context of local interests and approaches. Further, li
brarians have considerable experience in helping people lo
cate information. This combination of skills in the creation of 
database and the use of the information placed in it would 

make librarians and the library a strong technical base for the 
locatiop. of this system. 

Equally important is an appropriate social climate for the 
system. Here also the library has distinct advantages over 
other organizations. The library is an agency that is not usu
ally seen as delivering service'to any particular segment of the 
population. It does not suffer from the age bias of the public 
school. It does not have to overcome any stigma to its use, as 
the welfare office might. It is not type-cast, as the Red Cross 
or the Salvation Army might be. Using a service provided by 
the public library would neither make the poor feel stig
matized nor make the wealthier feel that they are using a 
resource that should be kept for those who cannot afford to 
pay for it. The traditions of the library support use by both 
poor and wealthy. 

The library also has a tradition of volunteer assistance to the 
provision of its services. Every library has its "Friends" or
ganization, and there is considerable skill in some libraries in 
the coordination of volunteer labor. Thus the library can 
readily use volunteer assistance to build a community data
base and to keep it accurate and up-to-date. 

The library has a third important strength in its tradition of 
full and free access to information. To have a truly useful 
database, someone is going to have to exercise considerable 
skill in deciding what will be in the database and what will not. 
This form of selection must not be allowed to turn into censor
ship, or the value of the database to the community will be 
defeated. Librarians begin learning early in their professional 
training the distinction between selection and censorship. 
Public libraries in America have a long tradition of being an 
unbiased source of information. That tradition, coupled with 
the skills in which librarians are trained, will be of consid
erable value in the maintenance of a community information 
system. Without some selection, evaluation of services could 
degenerate into a vituperative attack on a service or product 
provider by a few disgruntled individuals or be so bland as to 
provide no valuable information whatsoever. 

There are still challenges to be addressed before such a 
service can become a reality in a library. While libraries often 
have a tradition of active volunteers who support their pro
gram, few libraries have the experience to organize and co
ordinate a volunteer effort to gather and tabulate information 
on the scale that a community database would require, even 
if the information generators assist by supplying some of the 
information. 

Then there is the need for algorithms to consolidate opinion 
data on services. How can an unbiased evaluation be pre
pared? Can the computer's technical abilities contribute? Is 
there some means to· aggregate many people's opinion in a 
routine fashion, so that it is not necessary to read a large 
number of comments on a product or service to determine 
whether it has been satisfactory? What about the differences 
in values among the members of the community? What may 
be high quality to one person may be unacceptable to another; 
what is a friendly attitude to one might be overbearing to 
another. Just how are the disparate value structures behind 
the evaluations to be reconciled? How can the individuals in 
a community be persuaded to enter their evaluations of ser
vices or goods? 

What is to be done about people who want to interrogate 



the database but do not have their own terminals? Should they 
call and have another person do the search for them? Would 
it be acceptable to expect them to present themselves at the 
database site? 

There will be many questions to resolve before community 

Libraries as Local Database Producers 615 

information systems become part of the expected resources of 
our nation's towns and villages. The resources are there, hu
man as well as computer. Those of you who also see this as an 
idea whose time has come can readily contribute willingness 
to solve the problems and organizational effort. 





Data files as library materials: 
policies, procedures, and politics* 

by RICHARD C. ROISTACHER 
Bureau of Social Science Research 
Washington, D.C. 

ABSTRACT 

Increasingly, organizational and public policies call for 
machine-readable data files to be treated as publicly available 
archived material. Data producers will be required to produce 
public-use files and documentation as well as the printed re
ports and on-line access they presently provide. An archivable 
machine-readable data file (MRDF) consists of three objects: 
The data file itself (either with or without a machine-readable 
dictionary), a set of documentation materials describing the 
file to the secondary user, and a set of bibliographic materials 
which lead the secondary user to the documentation and the 
file. Computing and data centers know how to produce data 
files. They can develop procedures for documenting files and 
producing bibliographic identification materials. By devel
oping working relationships with technical libraries, data cen
ters can relieve themselves of bibliographic, clerical, and 
financial burdens associated with the maintenance of a data 
archive. This paper outlines some procedures for the docu
mentation and bibliographic identification of machine-read
able data files. Some strategies for developing working re
lationships with technical libraries are suggested. 

POLICIES 

Until fairly recently, most machine-readable data files 
(MRDFs) were treated much like working notes. While pub
lished tables and reports are often criticized and reworked, 
the data files underlying the reports are not usually subject to 
public inspection. In the social sciences, it was discovered that 
copying a tape costs several orders of magnitude less than 
redoing a study. As a result, many large social data collections 
are now sent to data archives where they are made available 
to secondary analysts. Some studies, such as the biennial Na
tional Election Study, have no primary analyst, but are de
signed for dissemination through data archives to a clientele 
of secondary analysts. 

Federal agencies are beginning a policy of making statistical 
data files available for public use. In addition to such statisti .. 
cal series as the Census Public Use Samples and the Current 

*This work was supported by Grants No. 78-SS-AX-0028 and 79-SS-AX-0026 
from the Bureau of Justice Statistics, U.S. Department of Justice. 

617 

Population Survey, many one-time surveys and formerly in
ternal files are beginning to appear in public-use format. The 
National Technical Information Service (NTIS), which origi
nally disseminated only hard copy and microform editions of 
printed materials, now disseminates an increasing number of 
machine-readable data files. The U. S. Department of Justice 
requires all of its research grantees and contractors to provide 
the National Criminal Justice Data Archive with public-use 
versions of any machine-readable data files generated in the 
course of research. 

An increasing number of public and corporate entities are 
likely to adopt data access and archiving policies in order to 
comply with canons of public accountability, public regula
tion, and scholarship. As a result, data and computing centers 
will have to develop their own data archiving policies and 
procedures. The development of a data archiving policy is 
outside the scope of this paper. The basis of any such policy 
is that any data file be considered a potential resource for 
public use, subject to the constraints of privacy and legal 
confidentiality. The remainder of this paper will be an outline 
of some procedures for documenting public-use data and for 
developing a working relation with technical libraries in order 
to share the burdens of data archiving. 

PROCEDURES 

An archived machine-readable data file consists of three ob
jects: The data file itself, either with or without a machine
readable dictionary; a user's guide describing the file to the 
secondary analyst; and a set of bibliographic materials that 
lead the secondary analyst to the file and its documentation; 

The Data File 

The public-use data file usually differs little if at all from the 
operational file from which it was·produced. Where the oper
ational file bears information on the level of the individual 
person, it may be necessary to delete personal identifiers from 
the public-use file. A small but important set of files, most of 
them from the Bureau of the Censlls, require elaborate con
fidentiality procedures to protect the identity of small aggre
gates of people or small geographic areas. Most public-use 



618 National Computer Conference, 1981 

files, however, require no more than the deletion of personal 
identifiers. 

At this point in the discussion it is traditional to mention 
that public-use files should not be padded with extraneous 
data fields, that numeric data items should be purged of alpha
betic characters, and that funny representations of numbers 
should be transformed to more usual forms. It is clear that the 
enlightened reader of this paper would never allow him! 
herself to labor under such a burden as an ill-formatted file, 
only to provide some stranger with a file more pure than the 
original. 

The User's Guide 

MRDF documentation consists of information that de
scribes the file's identity, organization, contents, physical 
characteristics, and relation to computer hardware and soft
ware. Items of documentation have been called codebooks, 
tape layouts, data dictionaries, program manuals, etc. 
Roistacher1 has suggested that the comprehensive manual be 
called a "user's guide." This term has been chosen for its 
generality, simplicity, aptness, and conformity with Federal 
Information Processing Standards (FIPS) for documentation. 

All machine-readable data in the form of numeric or coded 
records to be preserved for later analysis should be docu
mented in the same fashion. It matters little whether a file 
consists of responses to a questionnaire, income figures for 
counties, or temperatures and barometric pressures. A file's 
format and documentation style is affected by whether the file 
represents a data matrix, a tree, a hierarchy, a graph, or a 
multidimensional table. However, its format and documen
tation are not affected by the nature of the data that are stored 
in the matrix, tree, hierarchy, or table. 

The preparation of a documentation is a task for the data 
producer. While an archive may polish the original documen
tation into a user's guide, the archive should not have to do 
any substantive documentation itself. In particular, there 
should be no need for the archive to apply to the producer for 
materials not provided with a file's documentation. 

A user's guide has five major sections: 

1. Preliminaries-bibliographic attributes, title and title 
page construction, pagination, and headings; 

2. A history of the project that produced the MRDF, de
scribing the evolution of the data from the point of 
collection until conversion to machine-readable form; 

3. A summary of the MRDF's data-processing history; 
4. A dictionary listing of the data items in the file (the 

"~odebook" proper); 
5. A set of appendices containing glossaries, error listings, 

bibliographies, and other information. 

While there is much to be said about the preparation of 
each of the chapters in the user's guide, most of chapters 2-5 
will be familiar to data processing professionals. The biblio
graphic information that constitutes the first section of a user's 
guide is essential to a file's successful dissemination, and is 
probably less familiar to the computing professional. 

Bibliographic Identities 

Both the public-use file and its documentation are designed 
to be library materials. While the data file itself is an un
familiar object to most librarians, the user's guide is a publica
tion and is the mainstay of most technical libraries. As a 
publication, the user's guide has a bibliographic identity. One 
of the main uses of the user's guide is to provide a biblio
graphic identity for its data file, thus converting the data file 
into a library item. 

A machine-readable data file's bibliographic identity is pro
vided by six kinds of information: 

1. Information which identifies the MRDF and prepares it 
for integration into existing manual or automated infor
mation systems. This information consists of biblio
graphic elements that can be processed by librarians, 
converted to catalog records, and integrated into biblio
graphic storage and retrieval systems. 

2. Information that describes the contents of a MRDF. 
This information is contained in a data abstract, which 
also can be automated and integrated into existing infor
mation systems. 

3. Information that classifies a MRDF is contained in a set 
of descriptors or keywords that will facilitate the re
trieval of a group of MRDFs on the same or similar 
subjects. 

4. Information required to access a MRDF includes a de
scription of the physical characteristics of the file and its 
relation to the computer hardware and software. 

5. Information necessary to analyze the MRDF describes 
the data items in the file, the methods used to create the 
file, and the file's linkage to methodologically similar 
data files. This information is usually presented in a 
"data dictionary listing" or "code book. " 

6. Information necessary to accession or archive the 
MRDF, to evaluate its quality, and to prepare it for 
future use. 

The bibliographic identity of a MRDF is composed of 

1. title, 
2. subtitle, 
3. authorship, 
4. author responsibility statement, 
5. edition, 
6. edition responsibility statement, 
7. producer, and 
8. distributor. 

The bibliographic identity of a user's guide, while parallel 
to that of its MRDF, is not the same as that of the MRDF. A 
terse example is shown in Figure 1, which is a sample title page 
from a user's guide. The title of the MRDF is "Juvenile De
tention and Correctional Facility Census of 1971." The title of 
the user's guide is "Juvenile Detention and Correctional Facil
ity Census of 1971: User's Guide to the Machine-Readable 
Data File." 

The bibliographic elements in Figure 1 are 



1. title, 
2. subtitle (if appropriate), 
3. special sponsorship or funding source, 
4. producer's name, 
5. date of production or collection, 
6. authorship, 
7. address, 
8. edition statement (if appropriate) for data, 
9. distributor's name, address, and telephone number, 

10. acknowledgement of organization/funding source re
sponsible for publishing the related documentation 
(only if different from the producer or distributor of the 
data file), 

11. date of the documentation's publication, 
12. edition statement (if appropriate) for documentation. 

Bibliographic Citation 

Many MRDF that have value for secondary analysis are 
eventually turned over to data archives, but before this hap
pens such data files are first cited in the published literature. 
Certain data producers rely primarily on the practice of schol
ars citing their data in the various research journals as the 
means of publicizing the existence of such MRDF. Con
sequently, the initial access route for many MRDF isviathe 

-

JUVENILE DETENTION AND CORRECTIONAL FACILITY 
OF 1971 (1) 

User's Guide for the Machine-Readable Data File (2) 

Produced by 

U.S. Bureau of the Census (4) 
Washington, D.C. 

1971 (5) 

for 

National Criminal Justice Information and Statistics Service (6) 
Law Enforcement Assistance Administration 

U.S. Department of Justice 
Washington, D.C. 20537 (7) 

Rev. LEAA 1975 ed. (8) 
Revised by LEAA Data Archive and Research Support Center (9) 

Center for Advanced Computation 
University of Illinois 

Urbana, IL 61801 
(217) 333-3234 

User's Guide Prepared by 
LEAA Data Archive and Research Support Center (to) 

(Under LEAA Grant 77-SS-99-6003) 
December 1978 (11) 

LEAA User's Guide 4th ed. (12) 

Figure i-A hypothetical title page for a user's guide 

Data Files as Library Materials 619 

cited reference in the research literature. The bibliographic 
elements outlined above for the title page are also used to 
create a citation or end-of-work reference. For example: 

1. author's full name, 
2. title of data file, subtitle (if appropriate), and [material 

designator], * 
3. statements of responsibility (if appropriate), 
4. city and state (abbreviated) of the data producer, 
5. name of production organization [producer], 
6. date of production, 
7. city and state (abbreviated) of data distributor (if appro

priate), 
8. name of distribution organization [distributor], and 
9. notes (optional). 

Item numbers refer to the bracketed numbers in the following 
example: 

<1> U. S. Law Enforcement Assistance Adminis
tration. < 2> Juvenile Detention and Correctional Facili
ty Census of 1971 [machine-readable data file]. <3> 
Conducted by the U. S. Bureau of the Census for the 
National Criminal Justice Information and Statistics Ser
vice, LEAA, U. S. Department of Justice. LEAA rev. 
1975 ed. Revised by LEAA Data Archive and Research 
Support Center, University of Illinois at Urbana. <4> 
Washington, D.C.: <5> U. S. Bureau of the Census 
[producer], <6> 1971. <7> Urbana, Ill: <8> LEAA 
Data Archive and Research Support Center [dis
tributor]. 

The Abstract 

A bibliographic citation-may also-be-used as a beading for 
the abstract. An abstract is an abbreviated and informative 
representation of the file being described. It is not intended to 
give information on a question-by-question level, but rather is 
a summary of the major subject content. Its purpose is to tell 
the reader whether the file might be of interest and what is 
involved in obtaining it or securing more information. 

Components of an abstract should include 

1. UniqueTdentification nUnibers either for the abstract or 
study, if appropriate; 

2. Type of file (e.g., text, numerical, graphic, program 
source, etc.); 

3. Bibliographic citation; 
4. Methodology-

a. source(s) of information, 
b. chronological coverage, 
c. universe description of target population, 
d. type of sample, 

>I< The material designator is used to denote the generic form or type of material 
being referenced and to distinguish one type of medium from another. It is 
always enclosed in brackets and follows immediately after the title. Brackets are 
used to enclose the material designator, producer, and distributor statements. 



620 National Computer Conference, 1981 

e. instrumentation characteristics (e.g., telephone in
terview or mail questionnaire, and 

f. dates of data collection; 
5. Summary of the major subject content-

a. purpose or scope of study, 
b. special characteristics of the study, 
c. subject matter, and 
d. number of variables, observations, and records; 

6. Geographic coverage; 
7. Descriptors that express an idea or concept or 

phenomenon not covered in the body of the abstract 
(using terms that summarize the underlying conceptual 
framework of the study); 

8. Technical notes-
a. file structure (rectangular, hierarchical, etc.), 
b. file size, 
c. special formats (SPSS, SAS, etc.), and 
d. computer or software dependence; 

9. Terms of availability-
a. condition of data (e.g., statements that edit checks 

have been made), 
b. restrictions on access, if any, and 
c. contact person or organization (full address and tele

phone number); and 
10. Cited references to any written or published reports 

that were based on these data and might provide addi
tional information for the potential user. 

The following is an example of an abstract for an MRDF. 

Unique identification number(s): Accession number QP-
003-004-USA-1957. 

Citation: American Family Growth, i957-1967. 
[Machine-readable data file]. Principal investigators, 
Charles F. Westoff et al. DPLS ed. Edition prepared by 
Mary Ann Hanson, under the direction of Larry Bumpass, 
Center for Demography and Ecology, University of 
Wisconsin-Madison. Madison, Wis.: University of Wiscon
sin Center for Demography and Ecology [producer], 1978. 
Madison, Wis.: University of Wisconsin Data and Program 
Library Service [distributor]. 

Methodology. The target population was urban, native
born white couples with two children, couples whose mar
riages so far had been uncomplicated by death, divorce, 
separation, or extensive pregnancy wastage, with the sec
ond birth to have occurred during September 1956 for 
every couple. A probability sample, stratified by metro
politan area, was drawn from 7 SMSAs with population 
over 2 million (exclusive of Boston). Couples were inter
viewed three times in February-March 1957, 1960, and 
between 1963 and 1967 to determine eligibility and to com
plete questionnaires. Data checks and full-seale processing 
were run on the public use version. The final sarnple size 
is 1,165 couples; 814_ couples completed all three inter
views. 

Summary of contents. American Family Growth, 1957-
1967is a longitudinal study which examines the fertility 
history of Amt'rican couples in metropolitan America and 
the motivational connections between the environment 
and fertility decisions and behavior; Phase I looks at the 

social and psychological factors thought to relate to differ
ences in fertility. Phase II focuses on why some couples 
stopped at two children while others had a third or fourth 
child during the first and second phase. Phase III examines 
how well attitudes and events of the early marriage deter
mined the record of the later years of childbearing. The 
data file contains over 1000 variables. 

Geographic coverage. United States SMSAs (New York, 
Indianapolis, Chicago, Los Angeles, Milwaukee, Cleve
land, Minneapolis). 

Descriptors. Fertility, family planning, family composi
tion, socioeconomic status, work satisfaction, contracep
tive practices, religiosity. 

Technical notes. Rectangular file with 1,165 obser
vations. 

Terms of availability. Data checks and full scale pro
cessing have been performed on the public-use file. There 
are no restrictions on access to the public-use file. Copies 
of the data and documentation can be obtained by writing 
to the Data and Program Library Service, 4452 Social 
Science Building, University of Wisconsin-Madison, 
Madison, Wisconsin 53706 USA; telephone number: 
( 608)262-7962. 

Cited references. Principal monographs include Family 
Growth in Metropolitan America by Charles F. Westoff, 
Robert G. Potter, Jr., Philip C. Sagi, and Elliot G. Mishler 
(Princeton, NJ: Princeton University Press, 1961); The 
Third Child: A Study in the Prediction of Fertility by 
Charles F. Westoff, Robert G. Potter, Jr., and Philip C. 
Sagi (Princeton, NJ: Princeton University Press, 1963); 
and The Later Years of Childbearing by Larry Bumpass 
and Charles F. West off (Princeton, NJ: Princeton Univer
sity Press, 1970). 

POLITICS 

By producing a user's guide, the data center has created a 
library item describing a library non-item. Most data centers 
are not data archives, nor do they wish to become data ar
chives. One possible way to relieve a data center of much of 
the burden of serving as an archive is to form an alliance with 
the organization's technical library. Copies of the user's guide 
should be sent to the technical library to be accessioned as 
part of the technical collection. (A university library'S rehic
tance to deal with MRDFs and user's guides was overcome 
when an instructor placed a number of user's guides on his 
course reserve list.) 

The librarians should be asked to follow the catalog entry 
for the user's guide with a catalog entry for the data file, listing 
the data center rack nuinber (or other data center locator) as 
the file's location. (The latest edition of the" Anglo-American 
Catai()ging Rules" (AACR-II) contain detailed procedures 
for the cataloging of machine readable data files.) The paper
work fot filling external requests can then be delegated to the 
library as part of its interIibrary loan function. Where a data 
center must recover costs from its users, it may be easier to 
establish a single internal account with the library than to 
initiate billing arrangements with external clients who wish to 
obtain copies of archival data files. 



By producing comprehensive documentation, the data cen
ter can· comply with data access policies without incurring a 
continuing burden of data consulting. By producing standard 
bibliographic idehtity information for archived data files, the 
data· center facilitates the establishment of cooperative re
lations with a technical library, which is equipped to handle 
customers for archival materials. Such a collaboration yields 

Data Files as Library Materials 621 

advantages for the data center, the technical library, and the 
data user. 

REFERENCES 

1. Roistacher, R.C. A Style Manualfor Machine Readable Data Files and Their 
Documentation. Washington, DC: U. S. Government Printing Office, 1980. 





Computerized weighted voting reapportionment 

by L. PAPAYANOPOULOS 
Rutgers University 
Newark, New Jersey 

ABSTRACT 

A general model of a weighted voting legislature is described. 
The voting power of each of the N members is measured using 
the Banzhaf index. The voting power vector is a function of 
the vector of voting weights. An optimal weighted voting plan 
is one in which the voting powers are proportional to the 
respective constituencies. The optimization procedure is de
scribed in general terms and is demonstrated through real 
examples. 

INTRODUCTION 

Computer methods of legislative apportionment have been 
attended to since the "one man-one vote" Supreme Court 
decisions were handed down in the Sixties. I However, diffi
culties of various kinds have plagued the efforts to computer
ize. Single-member districting, by far the best-known means 
to attain constitutional representation, is subject to great com
binatorial complexity. Even the best heuristics do not guaran
tee near-optimality or even feasibility. 2 Interactive districting 
techniques, on the other hand, create horrendous problems 
with data generation and graphical display, both essential ele
ments of this approach. 

The computerization of multimember districting is even fur
ther behind because this form of apportionment lacks quan
titative definition. The legal and political criteria for evalu
ating it have not been established. However, some studies 
have explored the use of criteria and computational tech
niques that are multimember district generalizations of the 
weighted voting model. 3,4 

In this paper we focus on the third major form of rep
resentation, weighted voting, which is widely used in counties 
of New York State. This type of reapportionment is also com
putationally complex because of the combinatorial measures 
it employs. A subtask that involves astronomically large num
bers is that of finding the "voting power" of each of N mem
bers of a legislature. It requires the examination, perhaps 
implicitly, of all possible voting combinations that may arise 
and the determination of those that permit each member to 
"exercise power." This relatively expensive calculation repre
sents an iteration that may be repeated until the power is 
equitably distributed according to established criteria. 

623 

Here we describe the axiomatic models and mathematical a 
priori voting-power measures which have come to character
ize this type of analysis. The fairness of a legislative decision 
game, like that of an ordinary card game, is assessed on the 
basis of its rules. This paper is about reapportionment and 
"reapportionment is about fair rules, not fair play. ,,2 

A central ingredient in weighted voting is the notion of 
voting power. Given N decisionmakers with diverse voting 
weights w;>O, i=l, ... , N, Shapley and Shubik5 proposed a 
measure for each voter's relative a priori strength which has 
been studied for some time and which has merits of its own. 
However, here we employ the mathematical model implied by 
Banzhar because his index of voting power was accepted by 
the New York courts7

,8.9 and has been used in numerous reap
portionments in the state. It is elegant by virtue of its sim
plicity and its computational and mathematical properties. 

After reviewing this model and the associated voting power 
index, we shall see, through real examples, how these were 
implemented in various instances. In these and other cases, an 
iterative search procedure is involved. It terminates with an 
optimal (or adjusted) weighted voting plan that, when adop
ted, allocates a voting weight to each legislator. This plan 
remains in effect until a new census shows a population shift. 

Although traditionally weighted voting is cast in the politi
cal setting it must be remembered that it also arises in the 
corporate environment. It is usually employed in stockholder 
meetings. 

THE A PRIORI MODEL OF SIMPLE 
WEIGHTED VOTING 

The model can be described in terms of statutory rules nor
mally found in the weighted voting environment. 

1. The legislature consists of N members. 
2. Each member represents a well-defined district with 

known population. 
3. Each district is represented by a single member. 
4. The legislature adopts or rejects resolutions through a 

voting procedure. 
5. A majority rule (such as simple majority, two-thirds 

majority, etc.) decides the outcome. 
6. Each legislator votes Yes or No only. 
7. Each legislator holds several votes (these are his voting 



624 National Computer Conference, 1981 

TABLE I-Analysis of voting power under weighted voting for Putnam County, N. Y. 
(proportional plan; simple majority rule; 1970 census; Putnam-74-1) 

A B C D E ** F *** G* H 
Town Population Vote # Decisive % Vote Voting % Population Discrepancy 

Combinations Power 

1. Carmel 21,639 22 26.0 38.596 54.167 38.167 41.921 
2. Southeast 9,901 to 6.0 17.544 12.500 17.463 -28.421 
3. Kent 8,to6 8 6.0 14.035 12.500 14.297 -12.571 
4. Phillipstown 7,717 8 6.0 14.035 12.500 13.611 -8.164 
5. Ptnm Valley 5,209 5 2.0 8.772 4.167 9.188 -54.649 
6. Patterson 4,124 4 2.0 7.018 4.167 7.274 -42.717 

Totals 56,696 57 48.0 100.000 100.000 too. 000 

Majority 29 Votes 
41.921 -54.649 Maximum Discrepancies 

* Percentage ratio of column B to sum of column B. 
** Percentage ratio of column C to sum of column C. 
***Percentage ratio of column D to sum of column D. 

weight denoted by Wi which mayor may not be equal to 
the voting weight of some other legislator). 

8. A legislator casts his assigned votes as a block, either all 
Yes or all No. 

9. There are no vetoes or other special privileges. 

Furthermore, it is reasonable to make the following assump
tions about voting behavior in view of the a priori nature of 
this model. 

10. A legislator may vote Yes or No with equal likelihood 
and independently of his colleagues. 

The model thus defined is sufficiently complete to support 
the quantitatively precise Banzhaf power index. 

A MEASURE OF VOTING POWER IO 

A 20-member legislature of the above type may vote in more 
than a million different ways. The number of Yes/No combi
nations for a 32-member body exceeds-four billion. The num
berof possibilities rises to about one trillion in an assembly of 
40 legislators. In general, a N-member legislature is capable 
of 2N voting combinations. 

Consider some specific voting combination. If the total 
weighted Yes vote is not vastly different from the total weight
ed No vote, then it is possible for some members to reverse 
the outcome by reversing their own votes. 

For example, if a legislature consists of five members A, B, 
C, D, and E who hold, respectively, 3, 4, 2, 1, and 9 votes, 
then the voting combination (Yes, Yes, Yes, No, No) results 
in 9 weighted Yes votes and 10 weighted No votes. Under a 
simple majority rule this combination defeats the resolution 
being voted on. However, if D were to reverse his vote (10 
Yes, 9 No) the resolution would pass. The (Yes, Yes, Yes, No, 
No) combination is said to be critical (or decisive) to member 
D. 

The definition of voting power is based on the notion of 
decisive voting combinations." ... In a case in which there are 
N legislators ... the ratio of the power of legislator X to the 

power of legislator Y is the same as the ratio of the number 
of possible voting combinations of the entire legislature in 
which X can alter the outcome by changing his vote to the 
number of combinations in which Y can alter the outcome by 
changing his vote.,,6 This suggests a method for computing 
voting power. 

a. List all 2N voting combinations. 
b. Count those which are critical to the first member; re

peat for the second member, the 3rd, etc. The numbers 
obtained are shown under column D of the accom
panying tables. 

c. Add all counts just obtained in (b). 
d. Divide each number in (b) by the sum (c) and multiply 

by 100. This is a percentage of the relative voting power 
of each legislator (shown as column F in tables). 

This explicit method of calculating voting power works well 
for small problems such as that of Putnam County shown in 
Table I but becomes infeasible when N exceeds 20. Calcu
lations for the larger bodies such as Oswego County (Table II) 
or the Electoral College II require special mathematical short
cuts, discussed elsewhere. 12

•
13 Indeed, our computerized 

weighted voting methods, used since 1967, have been exclu-
sively of the implicit type. . 

PROPORTIONAL AND ADJUSTED 
WEIGHTED VOTING IO 

The simplest way to design a weighted voting plan is to allo
cate votes in proportion to each member's constituency. Thus, 
if legislator X represents 5% of the total number of persons 
in the polity, he is assigned 5% of the votes. However, this 
proportional approach does not guarantee that X's voting 
power will necessarily equal 5%. 

According to Imrie, "An illustration of the .. .'simplistic' ap
proach to weighted voting is provided by !assuming a four
member legislative body made up of members representing 
20,000, 20,000, 20,000 and 10,000 people, respectively. If 
each representative is given one vote for each 10,000 people 
he represents, three of the representatives will have two vot~s 



Computerized Weighted Voting Reapportionment 625 

TABLE II-Analysis of voting power under weighted \loting for Oswego County, N.Y. 
(This is a simple majority plan. ID: Oswego-73-1.5 A) 

A B C D E ** F *** G* H 
Town Population Vote # Decisive % Vote Voting % Population Discrepancy 

Combinations Power 

1. Albion 1,452 147 2046266024.0 1.457 1.437 1.439 -0.13 
2. Amboy 557 56 778329728.0 0.555 0.547 0.552 -0.98 
3. Boylston 276 28 389087906.0 0.277 0.273 0.274 -0.10 
4. Constantia 3,547 356 5000637790.0 3.528 3.512 3.515 -0.09 
5. Fulton 1 2,252 227 3167871266.0 2.249 2.225 2.232 -0.31 
6. Fulton 2 3,830 384 5403902986.0 3.805 3.795 3.796 -0.01 
7. Fulton 3 2,230 225 3139722112.0 2.229 2.205 2.210 -0.23 
8. Fulton 4 2,106 213 2970941262.0 2.111 2.087 2.087 -0.03 
9. Fulton 5 1,666 168 2339891050.0 1.665 1.643 1.651 -0.47 

10. Fulton 6 1,919 194 2704157880.0 1.922 1.899 1.902 -0.14 
11. Granby 4,718 471 6673496764.0 4.667 4.687 4.676 0.23 
12. Hannibal 3,165 318 4456816724.0 3.151 3-.130 3.137 -0.21 
13. Hastings 6,042 596 8555394018.0 5.906 6.009 5.988 0.34 
14. Mexico 4,174 418 5896868950.0 4.142 4.141 4.137 0.11 
15. Minetto 1,688 171 2381875488.0 1.694 1.673 1.673 -0.00 
16. New Haven 1,845 187 2606000458.0 1.853 1.830 1.829 0.09 
17. Orwell 836 85 1181794162.0 0.842 0.830 0.829 0.17 
18. Oswego Town 6,514 639 9223672398.0 6.332 6.478 6.456 0.33 
19. Oswego 1 3,645 366 5144398558.0 3.627 3.613 3.613 0.01 
20. Oswego 2 1,419 144 2004361312.0 1.427 1.408 1.406 0.09 
21. Oswego 3 3,405 342 4799841400.0 3.389 3.371 3.375 -0.11 
22. Oswego 4 2,170 219 3055302808.0 2.170 2.146 2.151 -0.22 
23. Oswego 5 2,402 242 3379228570.0 2.398 2.373 2.381 -0.30 
24. Oswego 6 2,528 255 3562719466.0 2.527 2.502 2.506 -0.13 
25. Oswego 7 2,168 219 3055302808.0 2.170 2.146 2.149 -0.13 
26. Oswego 8 3,176 320 4485351170.0 3.171 3.150 3.148 0.07 
27. Palermo 2,321 234 3266457910.0 2.319 2.294 2.300 -0.27 
28. Parish 1,782 180 2507901732.0 1.784 1.761 1.766 -0.27 
29. Redfield 386 39 541980046.0 0.386 0.381 0.383 -0.50 
30. Richland 5,324 528 7521798554.0 5.232 5.283 5.277 0.11 
31. Sandy Creek 2,644 266 3718239378.0 2.636 2.611 2.620 -0.34 
32. Schroeppel 7,153 696 10131234510.0 6.897 7.115 7.089 0.36 
33. Scriba 3,619 363 5101242068.0 3.597 3.583 3.587 -0.11 
34. Volney 4,520 451 6379167888.0 4.469 4.480 4.480 0.00 
35. West Monroe 2,535 256 3576850952.0 2.537 2.512 2.512 -0.01 
36. Williamstown 883 89 1237479890.0 0.382 0.869 0.875 -0.69 

Totals 100,897 10,092 142384955392.0 100.000 100.000 100.000 

Majority 5,047 Votes 
0.366 -0.980 Maximum Discrepancies 

*- Percentage ratio of column B to sum of column B. 
* * Percentage ratio of column C to sum of column C. 
***Percentage ratio of column D to sum of column D. 

each and the fourth will have one vote .. .lt will be seen that 
[under a simple majority rule] the representative with but one 
vote can never, by changing his vote, make any difference in ' 
the outcome of any issue before the legislative body. Hence, 
his constituency has no real representation on the legislative 
body and this type of weighted voting does not cure inequality 
in representation. ,,14 

It is this simplistic approach of proportional weights that 
prompted the Banzhaf statement: Weighted Voting Doesn't 
Work!6 The New York Supreme Court demonstrated that 
weighted voting can indeed be made to work. 8 The court 
adopted a logical criterion for determining the quality of a 
plan: 

"Ideally, in any weighted voting plan, it should be mathe
matically possible for every member of the legislative body to 
cast the decisive vote on legislation in the same ratio which the 
population of the constituency bears to the total popu
lation ... This is what is meant by the one man-one vote prin
ciple as applied to weighted voting plans for municipal govern
ments .... ,,7 

This sets the required standard. A weighted voting plan 
must be assessed in terms of the discrepancies between voting 
power and population. A plan is acceptable if the discrep
ancies are as small as possible. 

If the discrepancies are not small, the voting weights are 
adjusted so as to reduce them. This involves a combinatorial 



626 National Computer Conference, 1981 

TABLE III-Analysis of voting power under weighted voting for Schoharie County, N.Y. 
(Simple majority deCisions SCHO-1O.5 P) . 

A B C D E "'!I' F "''''''' G'" H 
Town Population Vote # Decisive % Vote Voting % Population Discrepancy 

Combinations Power 

1. Cobleskill 4,573 588 18561.0 19.600· 22.500 19.606 14.760 
2. Schoharie 3,088 397 10733.0 13.233 13.011 13.240 -1.727 
3. Middleburgh 2,486 320 8633.0 10.667 10.465 10.659 -1.813 
4. Richmondville 1,903 245 6513.0 8.167 7.895 8.159 -3.232 
5. Esperance 1,567 202 5327.0 6.733 6.458 6.718 -3.882 
6. Sharon 1,566 201 5301.0 6.700 6.426 6.714 -4.290 
7. Seward 1,271 163 4287.0 5.433 5.197 5.449 -4.633 
8. Wright 1,086 140 3665.0 4.667 4.443 4.656 -4.581 
9. Fulton 1,060 136 3569.0 4.533 4.326 4.545 -4.801 

10. Carlisle 1,040 134 3515.0 4.467 4.261 4.459 -4.438 
11. Gilboa 854 110 2877.0 3;667 3.488 3.661 -4.748 
12. Jefferson 840 108 2833.0 3.~ 3.434 3.601 -4.642 
13. Summit 690 89 2331.0 2.967 2.~~6 2.958 -4.482 
14. Broome 551 71 1859.0 2.367 2.254 2.362 -4.606 
15. Conesville 489 63 1643.0 4.100 1.992 2.097 -5.001 
16. Blenheim 260 33 845.0 1.100 1.024 1.115 -8.109 

Totals 23,324 3,000 82492.0 100.000 100.000 100.000 

Majority 1,501 Votes 
14.760 -8.109 Maximum Discrepancies 

'" Percentage ratio of column B to sum of column B. 
'" '" Percentage ratio of column C to sum of column C. 
""""'Percentage ratio of column D to sum of column D. 

optimization procedure. Voting assignments derived in this 
manner are called adjusted plans and satisfy the one man-one 
vote prin~iple as required by the Court. 

In the accompanying tables, Column H measures the dis
crepancy between voting power and population ~md is obtain
-eOVfa tne following formula: 

100 Power - Population 
Population 

This call be regarded as the percent difference between what 
a legislator's v()ting strength is and what it should be. 

In summary, the computational procedure consists of (a) an 
iteration, which' given a set of voting weights computes the 
number of critical combinations for each legislator and (b) a 
search, which repetitively adjusts the voting weights until the 
relative discrepancies are minimized. 

Table III shows a proportional plan* for S,:hoharie County. 
Under this plan the legislator from Cobleskill enjoys excessive 

"'This plan was obtained by distributing 3000 votes among the 16 
members,n proportion to their respective constituencies. The total 
vote figur~ (3000) was arbitrarily selected. It provides simple and 
two-thirds quotas that are mnemonically convenient-1501 and 2000 
(or 2001), respectively. The choice of such a high total vote serves two 
purposes. On one hand, it minimizes the round-off error that occurs 
when integral votes are assigned, and qn the other hand, facilitates 
!~e adjustment phase of the computation. 

power, which is not so surprising in view of the fact that he has 
nearly one fifth of all the votes. His ability to control such a 
large block of votes may suggest a disproportionate amount of 
power. This is actually bo~ne out by the numbers of this exam
ple. With 588 votes, Cobleskill commands 22.5% of the pow
er. The towns of Esperance, Sharon, Summit, Conesville, and 
Blenheim, on the other hand, have a total of 18.7% of the 
power even though their aggregate vote is also 588. 

This relative dictatorial effect is common under weighted 
voting. It tends to be amplified as a single member's voting 
weight is enlarged, relative to the weights of the other mem
bers. In fact, past the maj()rity point, it r~nders him an abso
lute dictator. We can therefore conclude that the whole voting 
weight is not necessarily equal to the sum of its parts. The 
inequities in a plan can be reduced by decreasing the voting 
weights of overrepresented towns while at the same time in
creasing those of the underrepresellted. Such an adjusted plan 
for Schoharie County is shown in' table IV. It ~ontains sub
stantially smaller discrepancies than its proportional counter
part. This plan was enacted by the' S,:hoharie legislature in 
1975. 

SPECIAL MAJORITIES tO 

Voting power, as defined here, is explicitly tied to th~ effective 
majority rule. This means that under a specified apportio!l= 



Computerized Weighted Voting Reapportionment 627 

TABLE IV-Analysis of voting power under weighted voting for Schoharie County, N.Y. 
(Simple majority decisions. SCHO-IO.5 A) 

A B C D E ** F *** G* H 
Town Population Vote # Decisive % Vote Voting % Population Discrepancy 

Combinations Power 

1. Cobleskill 4,573 523 16542.0 17.439 19.280 19.606 -1.666 
2. Schoharie 3,088 400 11534.0 13.338 13.443 13.240 1.536 
3. Middleburgh 2,486 323 9198.0 10.770 10.720 10.659 0.579 
4. Richmondville 1,903 251 7010.0 8.369 8.170 8.159 0.137 
5. Esperance 1,567 208 5798.0 6.936 6.758 6.718 0.583 
6. Sharon 1,566 208 5798.0 6.936 6.758 6.714 0.647 
7. Seward 1,271 169 4698.0 5.635 5.476 5.449 0.481 
8. Wright 1,086 145 3994.0 4.835 4.655 4.656 -0.024 
9. Fulton 1,060 141 3882.0 4.702 4.524 4.545 -0.444 

10. Carlisle 1,040 139 3830.0 4.635 4.464 4.459 0.111 
11. Gilboa 854 114 3118.0 3.801 3.634 3.661 -0.749 
12. Jefferson 840 112 3062.0 3.735 3.569 3.601 -0.907 
13. Summit 690 92 2574.0 3.068 3.000 2.958 1.409 
14. Broome 551 74 2010.0 2.467 2.343 2.362 -0.835 
15. Conesville 489 65 1798.0 2.167 2.096 2.097 -0.047 
16. Blenheim 260 35 954.0 1.167 1.112 1.115 -0.255 

Totals 23,324 2,999 85800.0 100.000 100.000 100.000 

Majority 1,500 Votes 
1.536 -1.666 Maximum Discrepancies 

* Percentage ratio of column B to sum of column B. 
* * Percentage ratio of column C to sum of column C. 
***Percentage ratio of column D to sum of column D. 

TABLE V-Analysis of voting power under weighted voting for Schoharie County, N.Y. 
(For a two-thirds majority rule only. ID: SCHOHARIE-75-10.67 B) 

A B C D E ** F *** G* H 
Town Population Vote # Decisive % Vote Voting % Population Discrepancy 

Combinations Power 

1. Cobleskill 4,573 523 8192.0 17.439 16.691 19.606 -14.869 
2. Schoharie 3,088 400 6652.0 13.338 13.553 13.240 2.370 
3. Middleburgh 2,486 323 5326.0 10.770 10.852 10.659 1.812 
4. Richmondville 1,903 251 4126.0 8.369 8.407 8.159 3.036 
5. Esperance 1,567 208 3436.0 6.936 7.001 6.718 4.204 
6. Sharon 1,566 208 3436.0 6.936 7.001 6.714 4.270 
7. Seward 1,271 169 2794.0 5.635 5.693 5.449 4.467 
8. Wright 1,086 145 2384.0 4.835 4.857 4.656 4.322 
9. Fulton 1,060 141 2318.0 4.702 4.723 4.545 3.922 

10. Carlisle 1,040 139 2288.0 4.635 4.662 4.459 4.549 
11. Gilboa 854 li4 1866.0 3.801 3.802 3.661 3.837 
12. Jefferson 840 112 1846.0 3.735 3.761 3.601 4.436 
13. Summit 690 92 1550.0 3.068 3.158 2.958 6.753 
14. Broome 551 74 1214.0 2.467 2.474 2.362 4.705 
15. Conesville 489 65 1074.0 2.167 2.188 2.097 4.374 
16. Blenheim 260 35 578.0 1.167 1.178 1.115 5.646 

Totals 23,324 2,999 49080.0 100.000 100.000 100.000 

Majority 2,000 Votes 
6.753 -14:869 Maximum Discrepancies 

* Percentage ratio of column B to sum of column B. 
** Percentage ratio of column C to sum of column C. 
* * *Percentage ratio of column D to sum of column D. 



628 National Computer Conference, 1981 

TABLE VI-Analysis of voting power under weighted voting for Schoharie County, N.Y. 
(For a two-thirds majority rule only. ID: SCHOHARIE-75-1O.67 A) 

A B C D E ** F *** G* H 
Town Population Vote # Decisive % Vote Voting % Population Discrepancy 

Combinations Power 

1. Cobleskill 4,573 633 9871.0 21.114 19.393 19.606 -1.089 
2. Schoharie 3,088 379 6771.0 12.642 13.303 13.240 0.476 
3. Middleburgh 2,486 312 5449.0 10.407 10.705 10.659 0.439 
4. Richmondville 1.903 242 4173.0 8.072 8.198 8.159 0.484 
5. Esperance 1,567 199 3423.0 6.638 6.725 6.718 0.098 
6. Sharon 1,566 199 3423.0 6.638 6.725 6.714 0.161 
7. Seward 1,271 162 2789.0 5.404 5.479 5.449 0.551 
8. Wright 1,086 138 2365.0 4.603 4.646 4.656 -0.210 
9. Fulton 1,060 134 2301.0 4.470 4.521 4.545 -0.529 

10. Carlisle 1,040 132 2275.0 4.403 4.470 4.459 0.238 
11. Gilboa 854 109 1861.0 3.636 3.656 3.661 -0.144 
12. Jefferson 840 107 1823.0 3.569 3.582 3.601 -0.553 
13. Summit 690 87 1533.0 2.902 3.012 2.958 1.807 
14. Broome 551 70 1211.0 2.335 2.379 2.362 0.711 
15. Conesville 489 62 1067.0 2.068 2.096 2.097 -0.014 
16. Blenheim 260 33 565.0 1.101 1.110 1.115 -0.423 

Totals 23,324 2,998 50900.0 100.000 100.000 100.000 

Majority 1,999 Votes 
1.807 -1.089 Maximum Discrepancies 

* Percentage ratio of column B to sum of column B. 
** Percentage ratio of column C to sum of column C. 
***Percentage ratio of column D to sum of column D. 

ment of voting weights the voting power of member X will be 
different under different majority rules. 

In Slater versus Board of Supervisors of Cortland County 
the court states: "Ordinarily, a weighted voting plan applica
ble to a simple majority vote of the County Legislature will 
not comply with acceptable standards when matters need a 
two-thirds or three-fifths vote for affirmative action. A legis
lator's voting power will differ when the votes needed for 
affirmative action are increased above a simple majority.,,9 

The very identical vote assignment of Table IV can be re
evaluated under a two-thirds rule to yield discrepancies of up 
to 15% as shown in Table V. Such deviations render this plan 
unacceptable under the one mao-one vote" criterion cited 
above. 

However, it is possible once again to obtain an adjusted 
plan with substantially smaller discrepancies. Such a plan is 
shown in Table VI. 

One must conclude, therefore, that weighted voting plans 
designed for a given majority rule must be used under that 
majority rule only. If the legislature must decide certain 
matters under two-thirds, three-fifths, or other special major
ity formula then separate weighted voting plans must be de
vised for use under such circumstances. 

COMPUTATIONAL CONSIDERATIONS 

An explicit enumeration of all voting combinations obviously 
is exponential in N. Banzhaf's original program required 

about two hours of IBM17094 time for a single iteration with 
N =20. This time would double for N =21 and again for each 
unit increase in the size of the legislature. 

Through implicit enumeration the same iteration can be 
solved in less than one second of IBM/360-91 time. The com
plexity of the problem is linear in N. 

REFERENCES 

1. Baker v. Carr 369 U.S. 186, 1962. 
Gray v. Sanders 372 U.S. 368, 1963. 

2. Papayanopoulos, L., "Quantitative Principles Underlying Apportionment 
Methods," Annals of the N. Y. Acad. of Sci., Vol. 219,1973, pp. 183-191. 

3. Papayanopoulos, L., "Voting Power and Multimember District Reappor
tionment in New York's Municipal Legislatures," Paper given at the Public 
Choice Society Meeting, Chicago, April 3-5, 1975. 

4. Banzhaf, J. F., III, "Multimember Electoral Districts-Do They Violate 
the 'One Man, One Vote' Principle," Yale Law Journal, Vol. 75, 1966, pp. 
1309-1338. 

5. Shapley, L. S. and Martin Shubik, "A Method for Evaluating the Distribu
tion of Power in a Committee System. " American Pol. Sci. Review, Vol. 48, 
1954. 

6. Banzhaf, J. F., III, "Weighted Voting Doesn't Work: A Mathematical 
Analysis" Rutgers Law Review, Vol. 19, 1965. 

7. Iannucci vs. Board of Supervisors of Washington County and Saratogian, 
Inc., vs. Board of Supervisors of Saratoga County, 20 N. Y. 2d 244, 299 NE 
2d 195,282 NYS 2d 502, 1967. . 

8. Dobish vs. Board of Supervisors of Wayne County, 279 NYS 2d 565, 282 
NYS 2d 791, 1967. 

9. Slater vs. Board of Supervisors of Cortland County, 330 NYS 2d 947, 346 
NYS 2d 185,42 A.D. 2d 795, 1972-73. 



10. Papayanopoulos, L. Reapportionment reports to N.Y. municipalities, 
1967-present. 

11. Banzhaf, J. F., III, "One Man, 3,312 Votes: A Mathematical Analysis of 
the Electoral College," Villanova Law Review, Vol. 13, 1968. 

12. Papayanopoulos, L. "Power Indices and Combinatorial Frequency Func
tions," TIMS/ORSA Conference paper, May 1978. 

Computerized Weighted Voting Reapportionment 629 

13. Papayanopoulos, L., "Power Computations for Large Weighted Voting 
Bodies," ORSArrIMS Conference Paper, November 1978. 

14. Imrie, R. W., "The Impact of the Weighted Vote on Representation in 
Municipal Governing Bodies of New York State," In L. Papayanopoulos 
(ed.), Democratic Representation and Apportionment: Quantitative Meth
ods, Measures, and Criteria. New York: The New York Academy of Sci
ences, 1973. 





Hospital information systems tutorial: 
a guide for computer scientists and practitioners 

by DAVID J. MISHELEVICH 

Dallas County Hospital District and The University of Texas Health Science Center at Dallas 
Dallas, Texas 

ABSTRACT 

With the United States spending in excess of two hundred 
billion dollars per year on health care, it is clear that only the 
small percentage of that likely to be dedicated to computer
based hospital information systems offers both a tremendous 
opportunity and a responsibility for those in computing. This 
is particularly true because both software and hardware tech
nologies have evolved to the point where comprehensive on
line systems are now functionally and financially a practical 
reality. This tutorial provides an overview of the software and 
hardware approaches that have been successfully applied, the 
delineation of success factors in the realm of human engineer
ing, a cost per incident of service distribution methodology, 
and a review of cost/benefit considerations. The session is 
directed to those in the computing arena as opposed to those 
in health care, but the items covered will be of direct applica
tion to those on the medical side as well. 

INTRODUCTION 

The U.S. health industry as-a whole accounts for approxi 
mately 9% ofthe Gross National Product. Even just 3% ofthe 
$200 billion (a minimal projection) to be spent in health in 
1980 amounts to $6.6 billion. It is highly likely that we will 
evolve to spending at least this percentage on computing with
in the health industry. Thus there is economic impetus for a 
further thrust in medical computing, particularly in hospitals, 
which represent more than 40% of the health industry funds 
to be spent. 

A critical ingredient is outside the realm of the economic. 
That factor is the desire of those in data processing to partici
pate in systems that offer direct benefit to one's fellow person. 
Hospital information systems represent such an opportunity. 

I have developed this tutorial as a self-described hard-core 
realist with respect to hospital information systems (HIS). My 
experience has been in the implementation of POlS, the Park
land On-Line Information System, at the Dallas County Hos
pital District (DCHD), otherwise known as the Parkland 
Memorial Hospital. This activity has been documented in 
various sources. I-I I In addition, current or past HIS consulting 
engagements include the American Hospital Association, the 
East Texas Chest Hospital (now The University of Texas 
Health Center at Tyler), the Harper-Grace Hospitals, the 

631 

National Center for Health Services Research, the North
western Memorial Hospital, the St. Joseph Hospital (Mt. 
Clemens, Michigan), St. Thomas fIospjt~! (Nashville), Sisters 
of Charity of the Incarnate Word Hospital System (headquar
tered in Houston), the University of Cincinnati General Hos
pital, the University of Florida (Gainesville) Shands Teaching 
Hospital, the University of Mississippi Medical Center, and 
the University of Texas Medical Branch (Galveston). 

Although my major personal experience has been with the 
IBM patient care system, the principles outlined in this paper 
are applicable to essentially any hospital information system. 

BASIC PHILOSOPHY 

The fundamental objective for a Hospital Information System 
is to install a health care delivery system with charge capturing 
as a logical by-product rather than an end. Thus health care 
and administrative/financial applications represent concur
rent rather than conflicting priorities. It is appropriate to note 
that a comprehensive HIS will not just deal with order entry 
and results (and administrative) reporting, but will also play 
an active role intlIe work management ~ of aH compo
nents, including ancillary departments such as the clinical lab
oratories and radiology. 

BASIC STRATEGY 

The fundamental HIS strategy is to put the computing power 
where it belongs: in the hands of the user. Since the ultimate 
user for much of both order entry and inquiry is the physician, 
it is logical to have a human-engineered system that can easily 
and effectively be used by the physician. A major component 
thus is the use of cathode ray tube (CRT) display terminals 
with the capability for the use!Jo point to the screen to select 
a desired item. The menu selection process, via light pen or 
other mechanism, as opposed to keyboard-only operation, is 
a critical necessity for other users as well as physicians to 
promote easy use as well as user training. 

HIS CLASSIFICATION 

In the past decade various classifications have been put forth 
for defining the levels of functionality of hospital information 



632 National Computer Conference, 1981 

POlS SEPTEMBER 1980 

Figure I-Status of installed POlS Parkland On-Line 
Information System applications in fall 1980 

systems. Extracting from these, I define a Class I system as 
one which has data collection only for the collection of charge 
information. A Class II system is one which also includes 
reporting results back to the nursing station. Class I or Class 
II systems fall under the heading of message-switching sys
tems. At the level of Class III, one gets work management 
within the ancillary departments. A Class IV system is one 
that actually supports medical decision making and normally 
will provide direct terminal interaction with the ultimate user 
of much of the systems capabilities, the physician. It is im
portant not to be fooled by what one sees in advertisements, 
which make systems of different levels appear to be much 
closer in functionality than they actually are. 

POlS-THE PARKLAND 
ON-LINE INFORMATION SYSTEM 

To familiarize the reader with the environment in which the 
principles evolved, a brief description of POlS follows. 

Description of The Hospital 

The Dallas County Hospital District (DCHD), with its 
Parkland Memorial Hospital, is the primary teaching hospital 
for The University of Texas Health Science Center at Dallas 
Southwestern Medical School, which has slightly more than 
200 medical students per class. There are a number of house 
officers as well (in excess of 500, representing 331 full-time 
equivalents). The hospital has 775 beds and 102 bassinets. In 

1979 it had approximately 39,000 admissions, generating 
275,000 inpatient days. There is a large ambulatory care com
ponent as well; in 1979 there were 173,000 emergency room 
visits and 218,000 outpatient visits. Approximately 60% of 
Parkland's funds come from hospital district taxes to support 
medical care for the indigent of Dallas County. The hospital 
is due for renovation and some expansion based on an $80 
million bond issue passed by the voters of Dallas County at an 
election in January 1980. 

Hardware and Software Environment 

As to hardware, the hospital has an IBM 3701168 Model 3 
with 8 megabytes of main memory. There are four paths to 
disk storage, with IBM 3350 disk units (28 spindles) installed. 
There are some 470 terminal devices inst~Ued, approximately 
three-quarters cathode ray tube (CRT) displays (mainly IBM 
3278) and one-quarter printers (mainly IBM 3287). 

The system software includes MVS (multiple virtual stor
age) operating system, with CICS (customer information con
trol system) for terminal control, DLiI (Data Language/I) as 
the database management system, TSO (time-sharing op
tion), SPF (structured programming facility), COBOL, PLlI, 
the ALC assembly language, and of course the patient care 
system (PCS) itself. 

Applications 

The state of applications in fall 1980 is shown in Figure 1. 
In mid-1976, the IBM Health Care Support/Registration and 
Health Care Support/Admissions packages were installed. In 
December 1977, radiology, the first DCHD application of the 
Parkland version of the patient care system, was installed in 
two nursing stations. The Parkland implementation is called 
the Parkland On-Line Information System (POlS). As of mid
February 1978, 18 nursing stations, each with a CRT and a 
printer terminal, were using the POlS radiology module, in
cluding results reporting. All the then existing 40 nursing 
stations were active in late April 1978. The next application 
installed was the central supply room (CSR) module, installed 
at the beginning of March. Pharmacy went into production in 
July 1978, labor and delivery in September of 1978, part of the 
emergency room in January 1979, electrocardiography in Feb
ruary of 1979, and the first laboratory, the immunopathology 
laboratory, in April 1979. In August 1979, the medical records 
chart deficiency and locater system was installed; in October, 
the ability to input transfers and discharges from the nursing 
stations was added. 

In November 1979 the University of Michigan clinic ap
pointment system was put into production for the first clinics, 
the 10 obstetrics and gynecology clinics (the fourth floor of the 
Clinic Building). In January 1980 the 30 clinics on the second 
floor of the clinic building (surgery, surgical specialties, and 
allergy) were added. In February 1980 the general medicine 
clinics on the third floor were added, with a new feature. Each 
of the house staff physicians was scheduled as an individual 
resource. In March the rest of the third floor, the medical 
specialties, and neurology were completed. Some of the facul
ty physicians in the medical specialty clinics chose also to be 



scheduled as individual resources. In April the clinics on the 
ground floor-ophthalmology; ear, nose, and throat; and 
Oral Surgery-were added. Psychiatry was also put into pro
duction. In March of 1980, the ancillary department of physi
cal medicine and rehabilitation was added. 

Production in our first laboratory with automated instru
ments, the special chemistry laboratory, began in September 
1980. Two pairs of blood-gas instruments were interfaced to 
POlS on the IBM 370/168 via an IBM Seriesll minicomputer. 

Current development includes the rest of the clinical lab
oratories, a new patient accounting system and a new payroll/ 
personnel system. The status projected for mid-1981 is shown 
in Figure 2. Examples of screen flows and reports and a 
description of benefits are beyond the scope of this article but 
are covered elsewhere l

-
s. Cost distribution on an incident-of

service basisI.9 and cost/benefitIO,Il for POlS have also been 
covered. 

HIS ALTERNATIVES 

The three basic alternative possibilities are (1) a completely 
do-it-yourself implementation, (2) a turnkey system, and (3) 
installation using a package system approach, such as the IBM 
health care support/patient care system (PCS). 

The Do-It-Yourself Approach 

To develop a hospital information system on a develop-it
yourself basis, is rarely if ever justified, particularly since 
viable alternatives are now available in the other two cate
gories. Organizations that have produced effective hospital 

POlS PROJECTED IN MID 1981 

Figure 2-Status of POlS projected for mid-1981 

Hospital Information Systems Tutorial 633 

information systems have put a significant amount of time and 
money into that activity. That a vast quantity of resources 
were put into such projects does not mean the organizations 
were always incompetent or unknowing; the development of 
a comprehensive HIS from scratch is a large undertaking in 
any circumstances and should not be taken lightly. The proba
bility of doing so functionally and cost-effectively is so low as 
to be essentially dismissed out of hand. 

Turnkey Systems 

Philosophically, it is easy to fall into the trap of feeling that 
just because one has a contract with a turnkey vendor, auto
matically all the problems will be solved and all the deadlines 
met. While certainly the use of a turnkey vendor is a potential
ly viable option and should be seriously considered, it is still 
necessary to be vigilant and to participate fully in the design 
and the implementation of the specific system installed in your 
hospital. 

The Package/ SystemApproach 

The IBM Health Care Support/Patient Care System l
-

II of
fers an integrated approach. The IBM patient care system 
(PCS) provides the installation of the basic system as it was 
developed as the Duke Hospital Information System (DHIS) 
at the Duke University Medical Center. It offers the possi
bility of the addition of other packages as well. The additional 
package currently available in applications arena is Patient 
Care System-Radiology, which was developed at the Dallas 
County Hospital District; other products are being made 
ready or being planned as well. The radiology package l2

-
14 is 

available as an installed user program (IUP). Other IUPs 
currently available have to do with architectural enhance
ments to the patient care system: Patient Care System
Edit, 15,16 which was developed at the Sisters of Charity of the 
Incarnate Word Hospital System headquartered in Houston; 
and the Patient Care System-Data Manager,17,IS which was 
developed at the Cedars-Sinai Hospital in Los Angeles. 

It is possible to get the IBM patient care system partially 
installed, and probably in the future fully installed, by another 
organization; one will still have to give a significant amount of 
effort to specify the user requirements. Of course, what the 
user wants must be balanced by what is practical; a reasonable 
equilibrium must be maintained. 

No matter which system is being considered, those to whom 
marketing is directed need to be able to touch and feel the 
system, not just deal with artist's conceptions. 

SUCCESS FACTORS 

The following are major success factors that are generally 
applicable and have been found to be extremely helpful. 

Administrative Mandate 

A constant theme in this tutorial is the hospital information 
system being a hospital project rather than a data processing 



634 National Computer Conference, 1981 

project. This attitude must emanate from the top, and all 
concerned must have a self-fulfilling prophecy of success. The 
installation of an HIS is second only to major capital construc
tion of a new building or a major renovation in its impact on 
the hospital. Clearly much compromise will be involved be
cause of the hospitalwide aspeets of the project. In addition, 
the significant change represented will often be greeted either 
with some inertia or an impetus to do the job in some other 
way that will be more effective for an individual department
at least as that department perceives it. 

Strong administrative leadership is needed, and it must be 
consistent. Progress will be markedly slow or will be stopped 
if an HIS is installed in an environment of noncooperative 
leaders, each with his or her own fiefdom. 

Quantitative Objectives 

As part of the planning process it is terribly important for 
the chief executive officer to set quantitative objectives. How 
many hours of waiting time are to be reduced? What should 
be the time cut for the delivery results back to the nursing 
station from the laboratories? How many days in receivables 
shall be deleted in the accounts/receivable function? How 
many fewer days should discharge or final discharge bills be 
issued after the patient leaves the hospital? All these and 
other questions make legitimate and important goals, so that 
one can tell if one has been successful or not. Unfortunately 
such projections or goals are rarely stated. Thus the evalua
tion of hospital information system implementation deals fre
quently with complaints about the system, from either users 
or external political forces. One needs to bring the process out 
of the realm of the anecdotal into the realm of the quantita
tive. 

Interaction with Hospital Board 

One wishes to avoid board politics if at all possible. It is 
tempting for the vendor to. elicit as much support for a given 
position during the selection process as it can. Members of the 
hospital board who have had experience directly or indirectly 
with systems from that firm are occasionally viewed as im
portant potential allies. It is a dangerous game at best. Fre
quently board members do become involved in the decision of 
which HIS is to be installed. They should work at a policy
making level in general, and certainly, because of the mag
nitude of the project, they will be interested in following it. 
Board support of an HIS project is a strong part of the admin
istrative mandate. 

Directions Committee 

Continuing on the theme of stressing that HIS implementa
tion is a hospital project rather than a data processing project, 
the directions committee or steering committee must repre
sent multiple sources, namely all the interest groups involved. 
It operates in the realm of priority resolution, information 
dissemination, education, and provision of a forum for inter
group interaction. We have representatives from nursing ser-

vices, the medical staff, the ancillary departments involved in 
the implementation, the hospital administration, the hospital 
engineering group, the financial and internal audit represen
tatives, the vendor, and information systems. 

At our institution the committee is chaired at the level of an 
associate administrator, at least in part to emphasize the com
mittee's importance and overall hospital participation in the 
project. 

In some institutions there will be an additional committee 
operating at a higher level administratively than the directions 
committee. It might be composed of the chief executive offi
cer and individuals at the associate administrator or vice
presidential level within that organization. If this higher level 
committee exists, that is fine, and it can work effectively; but 
it should not substitute for the directions committee, which 
tends to be inclusive in its membership. The directions com
mittee of the DCHD meets biweekly for one-half to one hour. 

In order to continue its work, the directions committee at 
DCHD has three standing committees, which in turn report to 
it. These will be described: 

Fiscal committee 

The fiscal committee has representatives from patient ac
counting, general accounting, and internal audits. Its re
sponsibility is to insure system financial and statistical in
tegrity. On large implementations a member of the committee 
will work with the task force doing that implementation. The 
committee will also get involved with special projects (which 
might have cross-application aspects). Inherent in this ap
proach is the auditing concept, in which one endeavors to 
check out applications and test them appropriately to get rid 
of problems before they actually affect performance and prod
uction. The fiscal committee also provides a link to the patient 
accounting task force, active at DCHD, which is a group 
responsible for the fiscal integrity of the hospital district. This 
group performs direction committee functions, in some cases, 
with respect to some of the financial applications, such as 
patient accounting. 

PIPOIS committee 

The physicians' interaction with POlS (PIPOIS) committee 
provides the mechanism for medical staff input to system 
development as well as ongoing activities. PIPOIS has repre
sentatives from the faculty attending staff, the house staff, 
nursing services, information systems, and two POlS asso
ciates. This group is becoming more active as the· clinical 
laboratories come on stream. 

Laboratory executive committee 

Because of the magnitude (in depth, breadth, and length of 
implementation time) of the clinical laboratory application, 
we also organized the laboratory executive committee (LEC). 
The LEC has representatives from administration, pathology, 
nursing services, two POlS associates, the vendor (IBMY, and 
information systems. 



Each individual HIS will have· its own character and will 
have different committees constituted to meet specific imple
mentation needs. Thus the three committees reporting to the 
directions committee are presented for illustrative purposes. 

Associates 

The associates are the users, who are health and other 
hospital professionals assigned full time to what has pre
viously been considered data processing jobs. We currently 
have six, two from nursing services, one from education and 
training, one from radiology (representing also the non
laboratory ancillary departments), one from the clinicallabo
ratories, and one from the business office. As shown in Figure 
3, they report to their individual departments as well as to the 
Chief POlS associate. The latter individual, reporting to 
nursing services, has a dotted-line relationship to the informa
tion systems department project manager fot medical apptica
tions. 

The responsibilities of the associates are wide-ranging as to 
type of function-e.g., analyze old work flows, design new 
work flows, design and code CRT screens, design and code 
printer formats, participate in logic implementation, create 
user manuals and a portion of the systems documentation, 
prepare (and actually perform some of) the ed:ucation and 
training programs, and trouble shoot (including ongoing 
maintenance). When a new application comes up, we have at 
least one POlS associate in the hospital for at least the first 72 
hours. As to geographic considerations, while they have pri
mary responsibilities, the associates work in any area
nursing, financial application, ancillary department-as need
ed, regardless of the particular associate title. 

While in our hospital the associates hold full-time positions, 
they may be (at least in some cases) part time. This is fine as 
long as their basic associate function is not adversely affected 
by the press of other duties. 

Besides the definite nser-Orientation,b.ecause the associates 
as users are designing a user-oriented system), there is the 
benefit of getting individuals who, as they are performing 
what would often have traditionally been a data processing 
function, are deeply committed to the given application and in 
fact likely to that given institution. This makes attrition less 
likely. This is important in the face of the highly competitive 
and highly mobile data processing market. 

Task Forces 

A good deal of time is spent by POlS associates par
ticipating in the various implementation task forces, which get 
deeply into the realm of individual applieation design, imple
mentation, documentation, and training. The task forces 
come and go as needed as specific areas are addressed and 
may well lie dormant for long periods. 

Payback for Users for Participation 

A critical element of ease of system implementation, as 
transmitted through the directions committee, the associates, 
and the task forces, is to give advantage to the users for being 

Hospital Information Systems Tutorial 635 

Figure 3-Relationship of POlS Associates to information systems 

involved. It is important to find out what the users want out 
of a given application and work hard to give it to them. 

Productivity Enabling 

Any hospital information system is going to require at least 
some tailoring to individual hospital requirements. Thus easi
ly tailored systems, such as the IBM Patient Care System, are 
important. Factors inherent in a productivity-enabling or ap
plication development system are 

1. Data independence 
2. Logic independence 
3. Ease of logic implementation 
4. Ease of CRT screen design and coding 
5. Ease of printer format design and coding 
6. Ability of non-data-processing personnel to do 3, 4, 5 
7. Extensibility 
8. User-Friendly Production System 

The IBM patient care system has these features, as discussed 
by Mishelevich and Van Slyke. 19

,20 

Modular, Phased-In Implementation 

Because of the magnitude of the education and training 
effort involved in getting the large numbet9f users. com
fortable with the system used, usually a modular phased-in 
implementation is preferable. This is run more functionally 
than geographically. Successful implementations have been 
accomplished on a whole-house basis, however. 

Reporting Structure 

The most effective structure is to have the data processing 
director report directly· to the chief executive officer. This 



636 National Computer Conference, 1981 

emphasizes the overall importance of and commitment to the 
HIS and does not get projects sidetracked. If the DP director 
reports to a financial officer, the generally existent suspicion 
of priority only for financial and administrative applications 
can markedly undermine HIS efforts. 

Sharing 

Fortunately, for historical reasons, hospitals are much more 
likely to share software, approaches, manuals, etc., than 
other organizations. For example, the DCHD has had produc
tive interactions with the Cedars-Sinai Hospital, Duke, 
Forsyth Memorial Hospital, Samaritan Health Services, the 
Sisters of Charity Hospital System, University of Iowa, Uni
versity of Michigan, and The University of Texas Medical 
Branch (Galveston). 

COST DISTRIBUTION 

An important question is how much a given system will cost 
and/or should cost. There is not an easy answer; it will clearly 
depend on the size and functionality of the system. It is clear, 
however, that just taking the total cost and dividing by the 
number of inpatient days to get a cost per patient day is not 
appropriat~_ if there is a significant ambulatory care com
ponent in terms of emergency room and/or outpatient visits. 
Thus one must resist doing so. There is a simple methodology 
available, based on volume of charges generated in given 
areas, for proportioning the cost for the hospital information 
system, on a cost-per-incident-of-service basis, among the 
three components of cost per inpatient day, cost per emer
gency room visit, and cost per outpatient visit9

• This method
ology also appears in a publication of the Texas Hospital 
Association!. It can deal with multiple inpatient sources and/ 
or combinations of ambulatory care sources. 

For the DCHD, the 1979 figures using this methodology 
were $5.81 per inpatient day, $3.05 per outpatient visit, and 
$3.64 per emergency room visit. This covers all data process
ing costs, whether they be in patient care functions or related 
to patient accounting, payroll/personnel, etc. Such figures are 
less useful for comparisons between hospitals because of the 
difference of functionality and volumes and more useful in a 
single environment to track from year to year. The DCHD 
figures are relatively somewhat higher (factoring out infla
tion) than they will be in the future because of the large 
amount of development activity ongoing. 

It is interesting to note that in the early to mid-1970's-even 
prior to the great inflationary spiral, which brought escalation 
of costs for hospitals as well as the other sectors of the 
economy-costs of $10.00 per patient-day were frequently 
stated as typical for a hospital information system. Thus 
economies have clearly been achieved in hospital information 
systems. This is due to the availability of better software and 
the marked decrease in the cost of hardware. 

It is appropriate to note that when a number (often hun
dreds) of terminal devices are to be involved in a hospital 
information system, the cost of terminals becomes a signifi
cant part of the system. The use of nonspecialized terminals, 

which frequently are about half the cost or less of specialized 
terminals (a standard IBM 3278 terminal with a light pen costs 
about $3,500 per CRT terminal as opposed to CRT terminals 
from Technicon or Datacare, which would be $7,000-$8,000 
each), makes quite a difference indeed. At DCHD, there are 
currently more than 350 CRT devices (mainly IBM 3278) 
installed, in addition to some 100 printers (IBM 3287). By the 
end of 1981 over 400 CRT devices will be installed. At perhaps 
$3,500 difference per terminal times 400 terminals, there is a 
difference of $1.4 million dollars for this single set of com
ponents for the system alone. 

There is no magic in the reason for the difference in termi
nal costs. It is a matter of the volume of production. The IBM 
terminals are sold to cover a variety of applications in all 
industries, and many tens of thousands will be sold. Clearly 
the market for a specialized HIS terminal is much, much 
smaller. Amortizing the development and some of the pro
duction costs over a much smaller quantity of terminals is 
clearly going to increase the unit cost markedly. 

COST BENEFIT 

Cost-benefit methodologies are currently rudimentary. The 
reader is referred to a recent A.D. Little study!! for a review. 
In practical terms, personnel are rarely reduced (although 
avoidance of adding personnel as hospital functional volumes 
grow appears to be a true factor), mainly because of the 
difficulty of displacing partial full-time equivalents. 

OTHER CONSIDERATIONS 

Many other factors are relevant for consideration. I have 
selected a number for discussion, as follows: 

Advocate Role 

The data processing function must play an active advocate 
role rather than just wait and see what is asked for. This is 
particularly true because in most hospitals the practical reali
ties of computerized systems are either over- or underinter
preted a great deal, and data processing is frequently used in 
an attempt to solve problems that are not data processing 
problems. 

Database Approach 

It is interesting to note that development of software and 
hardware technology adequate to support on-line hospital in
formation systems arose at a point when database manage
ment systems became both effective and popular. As a result 
of on-line systems installed, it is more likely that database 
management systems will be used in the health industry as 
opposed to other industries. This is at least in part because 
applications are delivered to customers, rather than just the 
tools to produce them. Thus in the IBM world the DLiI data
base management system has a higher penetration in the 
health industry than in any other segment of IBM marketing. 



Not Inpatient Care Alone; Ambulatory Care As Well 

A hospital information system is much easier to develop 
and install in an environment that involves the inpatient ser
vice alone. The inpatient arena is more controlled and may 
have lower service volumes. Thus it is important to consider 
whether a system being evaluated is designed for ambulatory 
care and has demonstrated its ability to operate effectively in 
this domain. This is particularly true because there is now an 
evolutionary thrust toward preventive medicine in the context 
of ambulatory care. 

Multiple Hospital Systems 

Not all hospital environments are single entities. Some hos
pital systems have two units close together or far away, and 
some systems may have a number of units, which may be 
widely distributed (e.g., in multiple states). In some cases the 
patient care applications will be distributed while financial/ 
administrative functions, such as patient accounting or pay
roll/personnel, are handled centrally. Having standards and 
consistency while allowing individual tailoring for individual 
facilities is a constant challenge. 

Education and Training 

For both initial installation of applications and ongoing 
activities, education and training are vital functions. This is 
particularly true because of the high turnover that frequently 
exists in a hospital. Our initial education and training program 
for each application is developed, including manuals, by the 
POlS associates. The POlS associates also participate in the 
initial round of training for the application. Thereafter the 
education and training department takes over completely. 
The training itself takes place in (1) a training room within the 
education and training department which has six CRTs and 
two printers, (2) a training room within the clinical labora
tories which has two CRTs and one printer, and (3) overflow 
areas as needed. Education and training is serious business, 
especially since it is likely that thousands of person-hours of 
training will be involved per year. 

Role of Consultants 

The responsible and effective use of consultants is much too 
broad and deep a topic to be dealt with reasonably here. It is 
important to note that knowledge and experience in hospitals 
is mandatory. The magnitude and complexities are such that 
an HIS is by no means just another on-line system. In addi
tion, the 24-hour-a-day, 7.;.day-a-week functionality must be 
appreciated. 

Interface to Laboratory Systems 

While an increasing number of computer-based clinical lab
oratory systems will be done as integral components of the 

Hospital Information Systems Tutorial 637 

central HIS, many hospitals have installed or will install stand
alone laboratory systems which will have to be interfaced. 
This may not always be trivial, and the work involved is likely 
to be underestimated. Do not take such projects lightly. A key 
factor is to insure that the results are sent where the patients 
are at the time the results are available, not where the orders 
were placed. 

Interface to Patient Accounting 

As stated under "Basic Philosophy," near the beginning of 
this paper, charge capturing and other administrative/finan
cial functions should be transparent to the user. Thus an effec
tive interface must be provided. 

Reliability 

As more and more applications are brought on stream, 
particularly in the medical care arena, reliability becomes a 
greater concern. While a single CPU can adequately serve (we 
average approximately 97% up-time of the 164 hours of 
planned availability per week on the IBM 370/168 at DCHD), 
the decrease in the cost of hardware will soon permit both 
redundancy and volume considerations to be routinely ad
dressed in a multiple-CPU environment. 

Technological Evolution 

We are clearly in a time of rapid technological change, with 
respect to both software and hardware. This has implications 
in procurement, as discussed in the following two sections. It 
also means constant planning and reassessment. It is im-
tant to note here that in on-line systems such as an HIS the 
projected transaction volumes are almost always under
mated. 

Certificate of Need 

Responding to changing needs is especially difficult when 
additional layers of control, with associated time delays, are 
present. One such factor to be reckoned with is the certificate 
of need process mandated by Federal laws and regulations 
having to do with Medicare/Medicaid portions of the Social 
Security Act. Procurements involving $150,000 or more of a 
capital expenditure, or individual related units adding up to 
that amount, or the rental, lease, lease-purchase, or install
ment-purchase of combined items whose value is that amount 
or more, must have an approved certificate of need granted by 
the individual state through a health syst~ms agency (HSA) 
and/or health facilities commission (HFC). This process can 
take four to ten months and can make life very difficult. 
Advance planning becomes especially important. An unusual 
factor is that technically even the acquisition of a replacement 
item at less cost also requires an approved certificate of need 
if the dollar amount falls within the monetary guidelines. 



638 National Computer Conference, 1981 

Procurement by Bid 

Depend~-enthe type ofbospital- or hospital system-in
volved, hardware and/or software may by policy have to be 
procured via bidding. This is another important factor, with 
its potential for attendant delays and its additional paper
work, with appropriately-drawn specifications which must be 
dealt with. 

Scheduling and Target Dates 

Setting of target dates and/or deadlines is a tricky area. 
There is unfortunately a tendency for such dates to be set for 
geopolitical reasons, frequently external, rather than to be 
based on a careful analysis of the time and resources, consid
ering all relevant areas, not just data processing, required to 
accomplish a given task. One must watch being railroaded. A 
well-documented, well-tracked project is a particularly good 
vehicle for defense and maintaining credibility. 

Extension to the Physician's Office 

The physician is the one who brings patients to the hospital, 
not the hospital itself. Thus good service to the medical staff 
may well give a particular hospital a competitive marketing 
edge. A potentially powerful approach is to offer to provide 
CRT terminals in physicians' offices to permit them to directly 
check status, place orders, or inquire as appropriate into the 
system. If there IS a charge for this service, it would be possi
ble to at least break even or perhaps underwrite partially the 
cost of the HIS itself. 

Local Vendor Personnel Make the Difference 

Wherever a vendor is involved, the corporate commitment, 
however great, must be translated into reality by the individ
uals actually doing the work. Thus excellence in the local 
vendor staff is important to success. Adopting them as part of 
the HIS team and as full responsible and accountable partners 
is an important process. 

Love and the "Family" Orientation 

Implementing an HIS is a difficult and complicated task. It 
requires a lot of patience and cooperation. The whole hospital 
and related components must act as a family to maximize 
responsible service to and support of the hospital. Love is a 
key ingredient. 

SOURCES OF INFORMATION 

There is fortunately an increasing number of materials avail
able in the area of hospital information systems. The Ameri
can Hospital Association released in summer 1980 a docu
ment, "How to Request for Proposal for the Acquisition of a 

Hospital Information System,,21. The National Center for 
Health Services Research (NCHSR), which is the Federal 
organization primarily responsible for spreading the word 
about and encouraging the development of hospital informa
tion systems, is currently sponsoring, via a contract being 
performed by the University of Southern California, a project 
for which the product will be an automated hospital informa
tion systems (AHIS) workbook. The AHIS workbook will 
deal with the process of deciding when to acquire a hospital 
information system, including what background studies are 
desirable; how to go through the acquisition process, includ
ing the release of a request for proposal (RFP) and system 
selection; and how to carryon through the installation pro
cess. The AHIS workbook will also present a survey of appli
cations and potential vendors. This NCHSR-sponsored study 
is scheduled for completion in 1981. 

Though it is impossible to be in any way exhaustive about 
the documentation available, the journal Computers in Hospi
tals has come on the scene, the publication National Report on 
Computers and Health has been initiated, and additional spe
cial reports are coming out, such as the NCHSR-sponsored 
study by A.D. Little on cost-benefit methodologies applicable 
to hospital information systems II . It is important to note here 
that there are user groups for various systems, such as the 
Electronic Computing Health Oriented (the IBM health in
dustry users group), the Technicon MIS users group, and 
others. They are a valuable source of information about what 
is currently going on and should definitely not be overlooked. 
Too often those who are actually doing the work and produc
ing effective systems are exactly not those likely to produce 
papers in journals and/or write books. The user groups
which in some cases, like other sources, produce what has 
been termed "fugitive literature"-are key information re
sources with respect to knowledge in the field. 

CONCLUSION 

The simple concepts covered here, which were usually 
adapted from the work of other groups, do work. Thus they 
should not be taken lightly. It takes great effort to have a 
system as complex and far-reaching as a hospital information 
system woven into the fabric of an institution. It is, however, 
one of life's great, exciting, and personally rewarding experi
ences. The challenge is great; the time is now! 

REFERENCES 

1. Mishelevich, 0.1., and L.D. Cranfill, "On-line Hospital Information Sys
tem," THISS (Texas Hospital Information Systems Society) Installation 
Planning Guidelines, pp 43-54, 1978. 

2. Mishelevich, 0.1., Borden, Ruby and 1.F. Stay. "Implementation Factors 
in Hospital Information Systems," In press, National Computer Conference 
1979 Proceedings on Computers in Health Care, 1981. 

3. Hudson, Betty G., Mishelevich, 0.1., Mize, Elaine I.. and 1.R. Roberts, 
lr. "POlS-the Parkland On-line Information System," Electronic Com
puting Health Oriented Boondocks, 8:65-116, 1979. 

4. Mishelevich, D.J. "Installation of the IBM Patient Care System at the 
Parkland Memorial Hospital," Electronic Computing Health Oriented 
Boondocks, 7:36-56, 1978. 

5. Mishelevich, 0.1., Hudson, Betty, G., Van Slyke, D., Cranfill, L.D., Mize, 
Elaine, Robinson, Anna L., Brieden, Helen c., Atkinson, 1., Willis, 1.R. 



and J. Robertson. "The Parkland Order Information System (POlS): In
stallation of the IBM Health Care Support/Patient Care System at the 
Parkland Memorial Hospital," In press, National Computer Conference 
1979 Proceedings on Computers· in Health Care. 1981. 

6. Mishelevich, D.J., Hudson, B.O., and E.1. Mize. "Parkland System: POlS 
(Parkland On-line Information System) Update," Electronic Computing 
Hea/(h Oriented Boondocks. 9:17-58, 1980. 

7. Mishelevich, D.J., Hudson, B.O., Van Slyke, D., Mize, E.I., Robinson, 
A.L. Brieden, H.C., Atkinson, J. and J.O. Robertson, Jr. "The POlS 
(Parkland On-line Information System) Implementation of the IBM Health 
Care· Support/Patient Care System," Proceedings of the Fourth Annual 
Symposium on Computer Applications in Medical Care. 4:19-33, 1980. 

8. Mishelevich, D.J., Hudson, B.O., Van Slyke,D., Mize, E.I., Robinson, 
A.L., Atkinson, J., Robertson, Jr., J.O. and R.O. Newman. "Success 
Factors in the Implementation of a Comprehensive Hospital Information 
System: POlS, the Parkland On-line Information System," Computers in 
Hospitals, 2 :26-36, 1980. 

9. Mishelevich, D.J., Day, M.W., Oipe, W.O., and L.D. Cranfill. "Distribu
tion of Data Processing Costs for a Hospital Information System on a Cost
Per-Incident-of-Service Basis," Proceedings of the Fourth Annual Sym
posium on Computer Applications in Medical Care, 4:658-664, 1980. 

10. Mishelevich, D.J., Oipe, W.O., Roberts, Jr., J.R., Denne}', c., Stem, 
A.D., and M. W. Day; "Cost-Benefit Analysis in a Computer-Based Hospi
tal Information System," Proceedings of the Third Annual Symposium on 
Computer Applications in Medical Care. 3. 339-347, 1979. 

II. ArthurD. Little, Inc. "Methods for Evaluating Costs of Automated Hospi
tal Information Systems·," Report of National Center for Health Services 
Research Contract 233-79-3000, 192 pages, March 14, 1980. 

Hospital Information Systems Tutorial 639 

12. IBM Corporation. Availability Notice for "Patient Care System-Radiolo
gy," 0320-6092-0, 1979. 

13. IBM Corporation. Program Description/Operations Manual, "Patient Care 
System-Radiology," SH20-2159, 1979. 

14. IBM Corporation. Terminal Operators Guide, "Patient Care System-Ra
diology," SH20-2160, 1979. 

15. IBM Corporation. Patient Care System/Edit Availability- Nonce, 0320-
6344-0 (Unlicensed Material), Program Number 5796-AYR, 1980. 

16. IBM Corporation. Patient Care System/Edit Program Description/Opera
tions Manual. SH20-6143-0. (Unlicensed Material), Program Number 
5796-A YR, 1980. 

17. IBM Corporation. Patient ,Care SystemlData Manager Availability Notice. 
0320-6343-0 (Unlicensed Material), Program Number 5796-A YQ, 1980. 

18. IBM Corporation. Patient Care System/Data Manager Program Descrip
tion/Operations Manual. SH20-6142-0 (Unlicensed Material), Program 
Number 5796~AYQ, 1980. 

19. Mishelevich, 0.1., and D. Van Slyke. "An Overview ofthe Software.Archi
tecture of the IBM Health Care Support/Patient Care System," Proceedings 
of the 1980 Conference on Application Development Systems. " Special Issue 
of the ACM Special Interest Oroup on Business Data Processing DATA 
BASE, II :64-75, 1980. 

20. Mishelevich, 0.1., and D. Van Slyke. "Application Development System:. 
The Software Architecture of the IBM Health Care Support/Patient Care 
System," IBM Systems Journal, 19:478-504, 1980. 

21. American Hospital Association. "Hospital Computer Systems Planning: 
Preparation of Request for Proposal," AHA Catalog No. 1445, 117 pages, 
1980. 





VISUALS, 
NATURAL LANGUAGE PROCESSING, 

AND ARTIFICIAL INTELLIGENCE 





Issues in the development of natural language front-ends 

by JAMES HENDLER, THOMAS P. KEHLER, PAUL ROLLER MICHAELIS, 
BRIAN PHILLIPS, KENNETH M. ROSS, and HARRY R. TENNANT 
Texas Instruments 
Dallas, Texas 

ABSTRACT 

This paper will discuss some issues we believe to be important 
to the design of a natural language front-end. These are di
vided into three categories: conceptual coverage, linguistic 
coverage, and implementation issues. The section on concep
tual coverage discusses the use of a domain expert, which 
understands what the user is saying even though the system to 
which the front-end is interfaced might not be able to properly 
do what the user wants. The section on linguistic coverage 
discusses attempts to allow a natural language interface to 
handle natural, interactive human communication. Two solu
tions are explored: First, the design of a robust natural
language-understanding system, composed of many experts 
that know about some aspect of the organization of language, 
is considered; second, because the design of a robust system 
is a large task, the intermediate goal of limiting the vocabulary 
and constructions that can be used while retaining all the 
user-oriented benefits of natural language is considered. The 
implementation issues considered are the design of a system 
in which the grammar and the domain of discourse can be 
easily extended and which can be used for more than one 
domain without extensive rewrite. 

INTRODUCTION 

In this paper we will present some of the ongoing research 
from the Texas Instruments Intelligent Interactive Systems 
(lIS) Branch. Specifically, we will be discussing research in 
natural-language processing. Some of the goals of the -lIS 
group are to develop advanced educational software, expert 
systems in various fields, hardware systems compatible with 
artificial intelligence technologies, and personal computer 
applications. 

One of the problems faced by the group when designing 
these systems is making them accessible to users who may not 
have the time or motivation to learn (or frequently relearn) a 
complex, esoteric computer interaction language. We hope to 
develop the natural-language-processing technology that will 
give users access to sophisticated software packages. 

We are simultaneously investigating the three main areas of 
interest in natural-language processing: conceptual coverage, 

643 

linguistic coverage, and implementation issues. We feel that 
before a truly useful natural-language-understanding system 
can be delivered to a large user population, advances must be 
made in all three of these areas. 

In the following sections we will consider each of these 
areas of interest. We will indicate some of the limitations of 
the current technology in these areas and present our solu
tions for overcoming these limitations. 

CONCEPTUAL COVERAGE 

One area in which we see a potential for near-term application 
of natural-language-processing technology is access to data
base systems. One of the ways in which our approach differs 
from others is in our intention to provide the system with 
expanded conceptual coverage. 

Most natural-language question-answering systems rely on 
the premise that users will use a natural-language interface to 
access data in a database and nothing more. Dialogues col
lected from actual pwblel1l-sol\ling situations illustrate that 
this is an oversimplified view. In actuality a significant portion 
of the interaction is devoted to the asker and the answerer 
coming to a mutual understanding of what the interaction can 
accomplish and what was meant by utterances from each side. 

This process of coming to a mutual understanding is unique
ly characteristic of natural-language communication-one 
that sets it above more constrained fofhls-olcomn'flmlcation, 
such as menu selection or formal query languages. Examples 
of several classes of these utterances are shown below. Only 
a few examples will De given in each category, but many more 
were found. These examples were gathered from a study done 
on the PLANES system. (See Tennane l for a description of 
the study and more examples.) 

1. What parts or system caused the NOR or RMC time in 
1971? 

The example above illustrates that the user's incomplete 
knowledge of the database system sometimes encourages him 
to ask poorly formed or unexpectedly expensive queries. The 
retrieval for this question would have taken about 30 minutes. 
If the user was simply asking for data in order to gain insight 



644 National Computer Conference, 1981 

about another process, a more efficient way of gaining the 
insight might be found. 

Even after getting the results of an extensive search, the 
user might find them of little value. The results of the above 
search would consist of thousands of elements. In the actual 
situation from which this example comes, such a long list 
would have been worthless to the user. 

2. Were more landings made with arresting equipment in 
1971 than in other years? 

The query above could not be answered because there did 
not happen to be any data in the database on arresting equip
ment. If a natural-language interface to a database will allow 
casual use of the database, one must expect that the users will 
not have detailed knowledge of the contents of the database. 

3. How far from a supply base is PUC 38 and 306? 

This question is an attempt by the user to clarify his under
standing of the general domain of discourse. He knew that the 
answer to thisquestion was not in the database, but he needed 
this information to pursue this theory for possible causes of 
increased down time. Once again, the conceptual coverage of 
the system must exceed the scope of the data in the database 
in order to understand (let alone answer) questions like this. 

4. Were the aircraft equipped differently during 71? 

Questions in this category require judgmental inter
pretations. "Equipped differently" implies significantly dif
ferent equipment. The interpretation of this phrase depends 
upon understanding what the norms are for the domain of 
discourse and what have been established as norms in the 
course of the conversation. 

The solution that we propose to the problem areas listed 
above is that a knowledge base be maintained within the 
natural-language interface that describes the database, includ
ing its contents and search sizes, describes the domain of 
discourse, giving it knowledge about concepts that are not 
described in the database, and describes the system itself 
along with the course of the current interaction. This knowl
edge allows a change in the accepted paradigm of question 
answering. Where in the past each utterance was interpreted. 
as a database query, then evaluated, now the utterances 
would be understood prior to forming a query. A query would 
be formed and evaluated only if the system had determined 
that that would most efficiently help the user achieve his goals. 

More broadly, what we are proposing is to build a domain 
expert as an integral part of the natural-language-processing 
system. Its task is to try to understand what the user wants, 
then determine how or whether it can provide it. The idea of 
a domain expert acting as an intermediary between the user 
and computing facilities can be applied in a variety of situa
tions, which we are considering. 

The difference between the approach to natural-language 
processing presented here and the approaches that have been 
generally taken in the past primarily hinge on what is to be 
expected of the users. Few assumptions about the users of 
natural-language processors have been explicitly described by 

system designers. One can infer, however, that users are ex
pected to be familiar with the domain of discourse, that they 
will restrict themselves to questions that can be interpreted as 
database queries, and that they will generally understand the 
dialogue as it progresses. Our assumptions are much more 
sympathetic to the user. He is still expected to be very familiar 
with the domain of discourse and the specialized nomen
clature of the domain. We do not expect him to know (or 
necessarily want to learn) anything of the structure of the 
database. We do not expect him to remember much about the 
system's capabilities or limitations between sessions. In other 
words, the user should be able to forget everything about the 
interaction from session to session and retain only his knowl
edge of the domain. But he should still be able to use the 
system effectively in spite of his forgetfulness. 

LINGUISTIC COVERAGE 

The most fundamental human-oriented question in the field 
of natural language processing is this: What is natural lan
guage? Specifically, when people spontaneously communicate 
in an electronic medium, such as telephone or teletypewriter, 
what does their communication look like? It has been demon
strated by several researchers2 that natural, uninhibited inter
active human communication is characterized by extreme 
errors in grammar and spelling. It is clear that natural lan
guage and immaculate English are two very different styles of 
communication. We are interested in natural language. 

As an initial step, we are examining person-to-person 
dialogue. In a study by Michaelis,6 two-person teams worked 
together to assemble an abstract model made of colored 
wooden dowel rods and wheel-shaped connectors. The two 
team members were in different rooms, and all communica
tion between them was via teletypewriter. One team member, 
the source (or SO), was given a completely assembled model 
and was required to assist the other member, the seeker (or 
SK), who had to build an identical model from the separate 
parts. It should be noted at this point that all the teams in this 
study were able to assemble the model correctly. Below is a 
portion of one of the protocols from the study. The dialogue 
begins at a point where the seeker has assembled what he 
believes is a correct model, only to recheck it and find other
wise. 

SK: i think i have it let's check it over 
SO: describe 
SK: yellows form tri.s and the greens form 1 trio 2 blues 

stick straight up while the other blue connects the two 
large wheels of which the green goes through one of 
the center holes? 

SO: bzzzzz wrongo completely 
SK: let me review clues 
SO: looking from end to end: tri w/2 sides yellow and one 

side blue green st 
SK: i got it! 
SO: what? 
SK: does the top green go through the big hole of sliding 

wheel? 



so: define TOP green-
SK: from side to side view the top? 

Although the task performed by the subjects in this study 
was abstract, the nature of the dialogue is essentially what we 
would expect if a person could interact with a true natural
language-understanding system. Notice how many of the 
statements are ambiguous and how few of them are gram
matically correct. There are presently no natural language 
systems capable of understanding such dialogue. However, we 
hope to build one. As a first step we are creating a system that 
will be forgiving of minor grammatical errors. 

The common approach of completely separating syntax and 
semantics is too rigid for tackling the problems in designing a 
robust language understander. We view language as com
posed of many "experts" that know about some aspect of the 
organization of language. 7 Each expert has something to con
tribute to the process of understanding, but it can offer several 
different views of the data. The process of understanding is 
one, then, of the subsystems "negotiating" among themselves 
to achieve a consistent view of the data, out of which comes 
the understanding of the text. Our approach to creating such 
a model is to use the notion of a society of communicating, 
knowledge-based, problem-solving experts, called actors. 3 

These experts will be "objects,,1 that can communicate by 
passing messages to any other expert in the system. Thus a 
flexible control structure is achieved-one that allows experts 
at any level of the analysis to talk to experts at other levels. 

We are designing a system that is basically quite normative, 
and hence aware of errors, which then explicitly takes action 
in the context to accommodate anomalies. This contrasts with 
other approaches, where designers effectively anticipate ill
formedness by weakening the constraints built into the basic 
analysis scheme,')· 13. 15 thus achieving robustness (though this 
may not be an explicit purpose of the systems). 

A robust system must first exhaustively explore the domain 
of well-formed input. Otherwise it could blunder through the 
analysis, forcing an erroneous analysis of a well-formed string. 

An error can be detected only at an equal or higher phase 
in the analysis, assuming there is a hierarchy from word, to 
syntax, to semantics, to pragmatics. Thus for example, the 
semantic error in "The stone ate the rose" cannot be detected 
by dictionary lookup or by syntax. 

We also need to establish how a sentence is judged accept
able. The goal must be pragmatic acceptance, which, given 
the earlier statement on the hierarchy of phases, implies that 
all lower phases have accepted it. 

Once an anomaly is detected, one possibility is to have the 
system cycle through a set of metarules that designate certain 
constraints that can be relaxed to find one that could produce 
an analyzable string.1O But a blind search ignores the possi
bility that the error can give some insight into the problem. 

When analysis is blocked, there are likely to be several 
points of blockage; which is taken to be the one to be re
worked? Weischedel and Black l4 suggest a hypothesis in 
which the analysis that has consumed most of the input string 
is taken. Even after the string to be reworked is chosen, the 
error will not necessarily be located at the point where its 
existence was detected. 

We are proposing that the actor that determines an anomaly 

Natural Language Front-Ends 645 

will dispatch messages to the actors that proposed the infor
mation that led to the impasse. These actors then function to 
see if they can propose some way of modifying the input so 
that analysis can proceed. Rather than designating a subset of 
the rules of the system as relaxable, we are allowing an actor 
to examine all the rules available to it. Of course, this may be 
too generous; it may be the case that errors are clustered 
around the inapplicability of certain rules. In this case the 
remedial tactics of actors will have to be modified. When 
several proposals are offered, the problem of choosing among 
them has to be faced. 

Consider a dialogue between an automated tutor and a 
student. Semantic and pragmatic errors are explicitly shown 
to the student to correct his misunderstanding of the activity, 
in this case changing a car tire. 

STUD ENT:With a hammer. .. 
TUTOR: You mean a wrench. You have to undo some 

bolts. 

A script expert is tracking progress. The script shows that 
the next action expected is the removal of bolts. The predic
tion includes the kind of tool to be used. A syntactic expert 
finds the prepositional phrase, which is interpreted as being a 
match for the predicted tool. But it is not of the bolt-removing 
kind, hence the interruption of the student by the system. 

Because of the enormous processing burden required of a 
fully robust parser, it will be many years before such a parser 
is completed. In the meantime, we are pursuing the inter
mediate goal of designing a limited language that would retain 
all the user-oriented benefits of natural language while simul
taneously reducing the processor's workload to currently 
attainable levels. In one study6 24 teams solved the model 
assembly problem without any restrictions. The portion of the 
protocol shown previously is a sample of their dialogue. On 
the average, these teams used 545.5 word tokens to solve their 
problems and took 27.6 minutes. An additional 24 teams 
solved the same problem but were instructed to use as few 
words as possible. These teams used an average of only 128.6 
word tokens, but, what is more interesting, they took signifi
cantly less time to solve their-problems, an average of only 
20.5 minutes. A complete protocol from one of these teams is 
shown below. 

SO: 3 round, 2 yellow, 1 blue form right triangle 
green through each middle 
slide rounds on greens, blue between 
same triangle at other end 

SK: which green for 2nd line 
SO: long 
SK: on right triangle, which slide on green 
SO: same size as other rounds: 9 holes 
SK: slide on green with round on two yellow? 
SO: no, slide 2 round with one blue onto 2 greens 
SK: 3 parallel blues? 
SO: right, also three parallel green perpendicular to blues 
SK: down? 
SO: yes 



646 National Computer Conference, 1981 

It should be stressed, once again, that this team, as well as all 
the others in this study, correctly assembled the model. Al
though the subjects on this team were not conversing in gram
matical English, the manner in which they did converse never
theless had all the user-oriented benefits of natural-language 
dialogue. For example, these subjects had no prior formal 
experience with this type of dialogue. Yet it is clear that the 
restricted subjects adapted very quickly, since they, on the 
average, solved their problems in significantly less time than 
did the unrestricted subjects. Further, none of the restricted 
subjects in the study complained about having to commu
nicate in this manner. (By contrast, in a similar experiment,S 
some subjects were required to work with a restricted vocab
ulary; although the restricted subjects in this study were just 
as fast as their unrestricted counterparts, they voiced frequent 
complaints about the awkwardness of their communication.) 

We are presently examining, from a natural-language-pro
cessing viewpoint, the potential benefits of asking users to be 
concise. It is apparently a restriction on natural language that 
people can adapt to easily, and it may also reduce the com
puter's processing burden. However, even if this particular 
user-oriented heuristic fails to decrease the computer's bur
den, we are confident that we can discover and develop other 
user-acceptable dialogue modifications that will bear fruit. 

IMPLEMENTATION ISSUES 

Developing natural language front-ends for extended use in a 
variety of domains raises a number of implementation issues. 
Of these, three will be considered: Extendability of the gram
mar, extendability of the database, and transportability of the
system to different domains. 

To achieve grammar extendability, the grammar descrip
tion and semantic base should be as easy to understand as 
possible. inaddifion, user interfaces to the language model in 
the form of model-oriented editors and a supportive executive 
environment are essential to grammar extendability. A well
designed language-modeling system has an additional benefit 
in aiding the original language model developer in the task of 
creation and debugging of the language model. 

Current natural language systems focus on the research 
environment for the specialist in artificial intelligence. In most 
cases one must have a strong background in Lisp program
min,g1techniques of AI programming, and linguistics. Gram
mars are oite-n 'not directly transportable among specialists 
because of special features of the local programming environ
ment. To obtain transportability and extendability for 
language-modeling systems there is a need to design systems 
that focus on language-modeling skills exclusively. Some con
siderations for a language modeling system are as follows: 

1. Ease of use for both novice and expert modes of 
operation 

2. Perspicuity of model representation 
3. Support for a variety of Iingustic theories 
4. Transportability to a variety of systems and domains 
Most of the time in the grammar development process is 

spent cycling between editing and debugging tasks. Thus an 
easy-to-use editor for the grammar and knowledge represen-

tation is of importance. Syntactic knowledge of grammar and 
of lexical and knowledge representation forms, when incorpo
rated into the editor as special modes, can be used to enhance 
ease of use and efficiency of development for the model 
grammar. 

For large systems, comprehensive utilities are needed with
in the system to obtain an overview of rule types or summaries 
of lexical structure. For example, one would like to determine 
"which rules reference rule NPl?" or to check to see that 
syntactic categories used in rules match the lexical representa
tion. Queries to the knowledge database are also important. 

A second aspect of grammar development as a process is 
debugging the language model. Clear displays of parsed struc
tures, tracing facilities, and perspicuous error messages are 
required in this phase of the language model development. A 
supportive executive that handles grammar, lexicon, and 
knowledge database files; provides error diagnostics; and per
mits grammar efficiency studies through performance tools is 
an alternative. 

An approach to developing a grammar editor for network
based models (e.g. ATNs)4 introduces the following 
functions: 

• Network creation 
• Arc deletion or editing 
• Arc insertion 
• Arc reordering 
• State insertion and deletion 

Illustrative of the kind of supportive functions provided by the 
editor are diagnosis of network integrity on creation-for ex
ample, looking for arcs that point to nonexistent nodes. 
Knowledge of the form of a network permits diagnosis of 
improperly inserted states. Warnings to the user may be given 
when a state is deleted that is pointed to by other nodes. 

Given a specific linguistic model for developing the compu
tational model, syntactic restrictions at all levels of design can 
be used in special editor modes to maintain the integrity of the 
implementation. By placing a series of checking functions in 
an editor, it is possible to filter out many potential errors 
before a grammar is tested. The user is able to focus on the 
grammar model and not on the specific programming require
ments. 

A more difficult problem is that of detecting execution 
errors in the grammar. Incorrectly parsed structures, refer
ences to non-existent lexical items, or incorrect reference to 
the knowledge database are but a few types of errors that are 
detected dynamically during interpretation of a structure. 
Facilities for tracing and inserting breakpoints are useful aids 
in solving some of the problems with debugging. A supportive 
executive should be used to incorporate as comprehensive and 
clear a set of diagnostic tools as possible. Performance mon
itoring is an additional facility that can be provided through 
the executive. 

Development of a relatively easy-to-use, transportable 
grammar design system can make possible more extensive use 
of grammar modeling in education, the applied linguistics 
environment, and linguistics research, in addition to providing 
features that support extendability of computational models 
of language for the end user. The issue of developing inter
faces for user extension of grammars in natural-language-pro
cessing systems can be more effectively handled within a sys-



tem that focuses on a model environment with an associated 
editor and supportive executive. 

Another issue of extendability is extending the database for 
the system. Some databases, sayan employee data collection, 
are very neatly structured, and adding new facts is simple. In 
the case of the employee database we could just add a new 
record for a new employee. However, many databases are not 
structured in any neat way and are constantly changing. An 
example of this is the database in the CYRUS program writ
ten by Janet Kolodner at Yale University.9 In this program the 
database to be addressed is knowledge about Cyrus Vance, 
then Secretary of State. This program was given information 
about Vance's travels and duties and added these into its 
database for later question-answering retrieval. This sort of 
database is needed in some of the applications the TI group is 
looking into. 

One of the major problems in dealing with these sorts of 
databases is the knowledge representation used. The repre
sentation must be flexible enough to allow the database to be 
extended, but fixed enough to let one access the data already 
stored. The data must be parsed into this knowledge repre
sentation, and the memory must be updated accordingly. 

The key to accessing this information is a good question
answering system. This must be able to determine the intent 
of the user's question and find the appropriate information in 
the database. Imagine a library system with information about 
medical books and papers. The user may ask, "What books 
deal with disease treatment?" If the system is not able to 
access information about cancer, diabetes, etc., as "disease," 
the question will not be answerable. Similarly, if the user asks 
about cancer, the system must be able to examine information 
about disease. 

Another feature of this sort of system is that the user must 
be able to add to the information about a domain. In the 
medical example, a user may want to add the information 
that, for example, "Hypoglycemia is a blood-sugar-related 
disease." The system must be able to add this new information 
to its database. In a more complicated example, say a gener
alized library system, the user may wish to add a whole new 
domain to the systems knowledge base (say, science fiction 
books). An editor, similar to that described earlier for adding 
grammatical information, is needed to add to the semantic 
knowledge of this system. The user must be able to relate the 
new knowledge to the existing knowledge in the representa
tion. He must also be able to add new word definitions, new 
word senses of existing words, and new semantic categories to 
existing word senses. 

Another important implementation issue is the study of 
transportability. By transportability we mean the ability to 
move from one domain to another with the same front-end 
program. The most important questions here are the follow
ing: 

• What parts of the program have to be changed when 
moving to a new domain? 

• How much of the program has to be changed when 
moving to a new domain? 

Clearly the best case would be to implement a natural
language front-end that would work for any domain without 

Natural Language Front-Ends 647 

change. Given current technology, this is not possible. None
theless, we do not think the idea of developing a transportable 
natural language front-end should be abandoned. Even if it is 
not possible to write a completely transportable system, a 
large portion of the system should in theory be able to remain 
the same. We propose to isolate the portions of the system 
where changes will be required and investigate what sorts of 
changes are required to each of these pieces. This in
vestigation will provide crucial information necessary for the 
design of a natural-language front-end which is transportable 
without making massive unspecified changes. We contend 
that a natural-language front-end which meets the criteria of 
being transportable must be modular and that the choices of 
how to segment the system into modules must be strongly 
influenced by the kinds of changes required to the modules 
when moving from domain to domain. Thus each module will 
require either very specific changes or no changes when 
changing domains. 

For the most part, existing systems are not af all trans
portable. Moving from one domain to another usually 
requires massive changes, and these changes are generally not 
isolated to specific pieces of the system. They must be scat
tered throughout the code. Implementers of natural-language 
front-ends often make off-the-cuff remarks about their sys
tems being transportable, but no one has yet demonstrated 
that a system is indeed transportable. Furthermore, there 
have been no discussions of what sort of work it would take or 
has taken to move from one domain to another. If natural
language front-ends are ever to be useful tools, they must exist 
for a wide range of domains. If we had to start from scratch 
and generate a totally new system for each domain, the job 
would be insurmountable. New domains that required natural 
language would be generated far faster than new natural
language front-ends. If we are unable to use one system with
out change for all domains, then we must at least understand 
the process of going from one domain to another well enough 
to do the conversion in reasonable time. Furthermore, if this 
process were reasonably well understo~ we could consider 
the problem of automating the change as much as possible. 
Thus, the change could be accomplished by the computer 
after consulting with experts on the domain in question. This 
latter project is clearly quite difficult; however, we see the 
investigation of transportability that we are proposing to be a 
necessary predecessor to the design of this automated system. 

CONCLUSION 

The lines of research outlined in this paper are certainly not 
the only ones that need to be pursued. However, we believe 
that the research we are doing is extremely important to the 
ultimate success of natural-language-understanding systems. 
Of course, our beliefs can be confirmed only after our work is 
completed. 

REFERENCES 

I. BirtwistIe. Graham M., Dahl. Ole-Johan, Myhrhaug, Bjorn, and Nygaard, 
Kristen. Simula Begin. Lund. Sweden: Studentlitteratur. 1973. 



648 National Computer Conference, 1981 

2. Chapanis, A., Parrish, R.N., Ochsman, R.B. and Weeks, G.D. Studies in 
interactive communication: II. The effects of four communication modes on 
the linguistic performance of teams during cooperative problem-solving. 
Human Factors, 1977, 19, 101-126. 

3. Hewitt, Carl. Viewing control structures as patterns of passing messages. 
A.I. Memo 410. Cambridge, MA: MIT AI Laboratory, 1976. 

4. Kehler, T.P. and Woods, c.A. ATN Grammar Modelling in Applied Lin
guistics. ACL 1980 Conference Proceedings. 

5. Kelly, M.J. and Chapanis, A. Limited vocabulary natural language 
dialogue. International Journal of Man-Machine Studies. 1977,9,479-501. 

6. Michaelis, P.R. Cooperative problem solving by like- and mixed-sex teams 
in a teletypewriter mode with unlimited, self-limited, introduced and 
anonymous conditions. JSAS Catalog of Selected Documents in Psychology. 
1980, 10, 35-36. (Ms. No. 2066) 

7. Phillips, Brian, and Hendler, James A. The impatient tutor: an integrated 
language understanding system. Proceedings of the International Confer
ence on Computational Linguistics. Tokyo, 1980, pp. 480-486. 

8. Schank, Roger C. Conceptual Information Processing. NY: American 
Elsevier. 1975. 

9. Schank, Roger C. and Kolodner, Janet. Retrieving Information from an 
Episodic Memory, or, Why Computers' Memories Should Be More Like 
Peoples. Yale University Depart. of Computer SCience Research Rpt. 159 
1979. 

10. Sondheimer, Norman K., and Weischedel, Ralph M. A rule based ap
proach to ill-formed input. Proceedings of the International Conference on 
Computational Linguistics, Tokyo, 1980, pp. 46-53. 

11. Tennant, Harry. Evaluation of natural language processors. Ph.D. Thesis, 
University of Illinois, 1981. 

12. Thompson, B.H. Linguistic analysis of natural language communication 
with computers. Proceedings of the International Conference on Com
putational Linguistics, Tokyo 1980. 

13. Waltz, David L. An English language question answering system for a large 
relational data-base. Comm. ACM 21, 1978,526-539. 

14. Weischedel, Ralph M., and Black, John E. Responding intelligently to 
unparsable inputs. American Journal of Computational Linguistics 6, 1980, 
97-109. 

15. Wilks, Y. A preferential, pattern-seeking, semantics for natural language 
inference. Artificial Intelligence 6, 1975, 53-74. 



Text-critiquing with the EPISTLE system: an author's aid 
to better syntax 

by LANCE A. MILLER, GEORGE E. HEIDORN, and KAREN JENSEN 

IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

ABSTRACT 

The experimental EPISTLE system is ultimately intended to 
provide office workers with intelligent applications for the 
processing of natural language text, particularly business cor
respondence. A variety of possible critiques of textual materi
al are identified in this paper, but the discussion focuses on the 
system's capability to detect several classes of grammatical 
errors, such as disagreement in number between the subject 
and the verb. The system's error-detection performance relies 
critically on its parsing component which determines the syn
tactic structure of each sentence and the grammatical func
tions fulfilled by various phrases. Details of the system's op
erations are provided, and some of the future critiquing objec
tives are outlined. 

A. INTRODUCTION 

EPISTLE is the name of both a research project and a soft
ware system-a system in which the project goals are being 
implemented. The acronym is to be read as "Evaluation, 
Preparation, and Interpretation System for Text and Lan
guage Entities." As a project, the long-term objectives are to 
provide office workers-particularly mid-level-management 
principals-a variety of applications to assist in their inter
action with natural language texts. We are focusing initially on 
business correspondence and are working toward the eventual 
development of two classes of applications. The first is con
cerned with the processing of incoming texts, providing for 
the principal-qua administrator-such· services as· synop
sizing letter contents, highlighting portions known to be of 
individual interest, and automatically generating document 
index terms based on conceptual or thematic characteristics 
rather than "key words." The second class of applications 
would provide services for the principal-qua author
primarily in terms of a series of increasingly sophisticated 
critiques of the latest draft of a letter or other text (see Miller 
1980). EPISTLE as a system addresses only this second kind 
of application at the present time. It is this working-but 
highly dynamic and experimental-system that is the primary 
focus of the paper. 

We first provide a perspective on possible text critiques 
(Section B) and then discuss the two very limited areas in 

649 

which we are presently making some headway: the assessment 
of features violating some sense of "good style", and-the quite 
definite detection of true grammatical errors. Although we 
describe the characteristics of the former, almost all of our 
actual implementation has been in the second of these areas; 
and we characterize in detail the 14 classes of textual phenom
ena which constitute our grammatical critique targets (Section 
C). The following two sections discuss our implementation for 
these target classes with an overview of the EPISTLE archi
tecture and our parsing philosophy (Section D), followed by 
an outline of our approach to syntactic error detection, with 
two detailed examples of specific detection rules (Section E). 
Finally, we conclude with a brief discussion of our longer
range objectives (Section F). 

B. SOME CRITIQUE POSSIBILITIES 

Our classification of critiques involves three separate factors: 
(1) the different hierarchical levels in text, (2) the perspective 
from which units at a particular level are examined, and (3) 
the nature of this examination. Concerning the first factor, we 
list the five commonly accepted levels: character, morpheme 
(minimal "meaning unit"), word, sentence, and paragraph; 
for completeness, we would like to add two further levels
those of "chapter" and "book," the latter being the unit for 
which SOIne long-term unified communication purpose has 
been achieved. Concerning perspectives. we feel it is useful to 
consider the examination of texts from three different view
points: those of syntax, semantics, and pragmatics (the tri
umvirate concepts. of "S€mWtic" theory~ cf. Morris 1946). 
Finally, we distinguish between two types of examinations of 
texts: that which examines a text unit (from some perspective) 
and pronounces it correct or incorrect-Type I-and that 
which makes a much more graded judgment of acceptability, 
based on comparison of the features of a unit to some set of 
"standards" (not necessarily well-formed)-Type II. 

These factors combine to form a total of 42 types of cri
tiques, and for each type of examination there may be a num
ber of separate judgments (as the present EPISTLE system 
makes 14 different Type I judgments of sentence grammat
icality). We recognize, however, that for levels above the sen
tence, or for perspectives other than that of syntax (the 
"meaning" or the "purpose" of the text), the standards for 



650 National Computer Conference, 1981 

making Type I judgments are much less than universal. To 
retain the taxonomy, in view of the unquestioned appropri
ateness of the Type I-Type II distinction for syntax, we suggest 
that when there is less than universal agreement about stan
dards of correct-incorrect, the reference or source of the 
authority be characterized as to the model which enables the 
judgments of correct or not and also as to the specific applica
tion domain of the model and of the text. Thus, to make a 
Type I judgment of a text from a pragmatic perspective, we 
would first identify the domain involved: say, that of business 
correspondence and, even more particularly, the type of letter 
one writes when applying for a job. Second, we would identify 
the reference model for the Type I judgment: in this case, that 
skeleton provided by Wilkinson et al. (1980, p. 356) detailing 
the ideal composition and sequence of points to be made for 
such a situation. Thus, if one such letter does not "generate 
interest from the start"-contrary to Wilkinson et al. 's 
dictum-one may then quite firmly make the Type I judgment 
of incorrect. 

C. CRITIQUE OUTPUTS FROM 
THE EPISTLE SYSTEM 

With respect to the three factors of text level, perspective, and 
judgment type just defined, our present work can be de
scribed as (1) focusing on the sentence level, (2) concerning 
only the syntactic perspective, and (3)" emphasizing Type I 
critique-judgments over those of Type II. At the time of this 
writing, only Type I critiques have been programmed and 
tested. Nevertheless, the software capability to provide Type 
II acceptability judgments has" at least been examined for 
several factors. Our plans and current work for the latter type 
of critique are briefly described first, and then the remainder 
of this paper is concerned only with the Type I critiques. 

1. Type II Acceptability Critiques 

This is the type of critique most emphasized by those very 
many "how to" books concerned with writing of all kinds, and 
it is particularly emphasized by those more specialized works 
intended specifically for the writing of business letters (e. g. , 
Bates 1978; Cloke & Wallace 1969; Prentice-Hall 1980; 
Wilkinson et al., 1980). Typically, for every page of discussion 
on the importance of Type I syntactic critiques such as subject
verb agreement these must be 50 pages on the Type II nuances 
of good and bad "style." To some extent, however, this out
pouring of advice and counsel is symptomatic of the complex
ity of these types of judgments: whether something is an in
stance of good or bad style seems to depend on a large variety 
of interacting factors, and the boo-ks are long on examples but 
almost mute concerning concrete feature lists or objective 
evaluation procedures. 

Two basic implementation strategies for detecting such sty
listic aspects are either to follow a simple brute-force storage 
and recognition of all of the" examples of a particular Type II 
rating dimension, or else to distill from the many examples 
those key features whose weighted Boolean combination can 
be tuned to predict "expert" human judgments. An example 

of a critique that w<?uld seem to require this I~tter approach is 
the very complex and many-faceted notion of readability. AI
though simple sentence-length and word-length factors under
lie most quantitative measures of what is called "readability" 
(e.g., the Gunning Fog index; see Dyer 1962), these are in
tended to be very general indicators of the overall readability 
of a long text, and there is no evidence that they are at all 
indicative of individual sentence understandability. Aspects 
of unclear writing-such as ambiguity of reference or of 
scope, excessive modification, extreme abstraction, and awk
ward, deeply embedded, or unbalanced syntactic construc
tions-can occur for even shorter sentences, independently of 
word length. Interestingly enough, however, many of the fea
tures that appear to underlie the examples of "poor style" 
appear to be syntactic rather than semantic in nature. The 
syntactic features our initial analyses suggest as being useful 
for evaluating individual sentence readability all appear to be 
determinable from the approximate parses of sentences re
turned as one of the outputs from the syntactic component of 
our system (see Section D). We therefore plan to implement 
the detection of sentence readability and other problems using 
a (weighted) combination of syntactic features derived from 
the parse tree; we will then evaluate the utility of this syntax
only detection approach by attempting to predict subjects' 
judgments of readability collected in behavioral experiments. 
Even if minimal or no semantic information is required to 
detect style problems, we expect that the needed iterations 
between reprogramming and behavioral testing will probably 
delay the implementation in EPISTLE of this more complex 
type of critique for some time. 

Concerning the former "brute-force" implementation pos
sibility, there is actually one Type II situation for which it 
would appear to be a reasonable and workable solution. This 
is discussed" in every book and concerns the uSe of so-called 
objectionable phrases-objectionable in the sense of being 
overworked, outdated, stilted, unnecessarily lengthy, exces
sivelyformal, or obscure (e.g., "along the same lines as," 
"due to unforeseen circumstances," "effect an alternative 
procedure"). We estimate that these phrases number around 
600-1200, or even fewer" if highly similar patterns are com
bined (e.g., singular-plural differences), and we believe we 
have collected most of the major ones. Detection of these 
phrases will therefore be one of the first implemented Type II 
critique aspects. 

Some of our intended system extensions, such as that for 
questionable phrases, are already implemented in another 
text-critiquing project at Dell Laboratories which has devel
oped a set of programs collectively known as the "Writer's 
Workbench." These programs provide a variety of what we 
would call Type II syntactic evaluations including text-level 
summaries-e.g., readability, sentence type and length distri
butions, breakdown of the parts of speech of sentence 
openers-as well as specific sentence-level critiques, e.g., 
identification of sentences having excessive length or having 
questionable punctuation or word choice (Cherry 1978, 1980; 
Macdonald 1979). These programs are intended for internal 
use and have apparently been received quite warmly. In con
trast to our parser-based approach, the Writer's Workbench 
programs rely on morphological and word~pattern analyses to 
achieve rather remarkable levels of accuracy in the part-of-



speech assignments that appear to underlie many of their 
diagnostics. 

2. Type I Syntactic Error Detection 

Errors of this yes/no grammatical/ungrammatical type 
should theoretically have been prevented by the public grade 
school educational process which, for most citizens, was sup
posed to have dealt once and for all with these issues. None
theless, such errors do appear with alarming regularity in even 
the most prestigious scientific journals, in the most carefully 
written letters, and out of the most learned mouths. These 
errors have no gradations of incorrectness as there are for the 
aspects of poor style; a grammatical error is either present or 
it is not. There is, therefore, something of a "clean-cut" as
pect to the detection of grammatical errors, each revealed 
typically by simultaneously occurring disallowed feature com
binations. We add, however, that the rules required to achieve 
the error detections are dependent upon a wide variety of 
factors, just as we expect the Type II evaluations to be. 

The 14 classes of syntactic errors now detected by the EPI
STLE system, with examples, are as follows: 

1. Disagreement in number between subject and. verb
Your blueprint and statement of correction does not 
contain ... 

2. Disagreement in person between subject and verb-I 
almost always knows ... IHe never write ... 

3. Disagreement in number between determiner and noun 
-This letters ... IThese letter ... I A meetings ... I 

4. Disagreement in number between quantifier and noun
Both letter ... lEach men ... ISeveral of the. book ... 

5. Disagreement in number between relative clause and 
head noun-phrase-The men who writes the letter ... 

6. Use of object pronoun in predicate nominative 
position-If I were him ... II know that it was her ... 

7. Use of object pronoun in subject position-Sally and me 
wrote the letter .. . /Her writes well ... 

8. Use of subject pronoun in direct object position-I 
know he who writes ... IThey saw Mike and I ... 

9. Use of subject pronoun in indirect object position-I 
gave she the letterlThey told Sam and I the story ... 

10. Use of subject pronoun in prepositional phrase
Between Eva and I, we wrote the letter ... 

11. Use of "who" ("whoever") for "whom" ("whom
ever")-Who did you give it to?/I know who you 
mean ... 

12. Use of "whom" ("whomever") for "who" ("who
ever")-Whomever wishes to go now may do so ... 11'11 
give this to whomever asks for it ... IWhom did you 
suppose was coming? 

13. Use of "of' for "have" in auxiliary position-You could 
of gone ... II should of written ... 

14. Use of improper verb form-The letter was wrote by 
him ... II have write the letter ... 

Detection of each of these types of errors has been imple
mented for a wide set of circumstances, but testing of the 
system by users instructed to attempt to "fool" it (by having 

Text-Critiquing with EPISTLE 651 

it classify correct instances as errors, or tricky errors as cor
rect) has not yet been done. 

For demonstration purposes we created a contrived (but 
representative) letter, which illustrates how various errors 
might occur in coherent text. This letter contains seven syn
tactic errors, of the types described above. In addition, the 
letter contains five errors of two further types, for which the 
EPISTLE system now has limited detection capability. The 
first is 

Incorrect use of a homonym (which may be perceived by the 
author, when detected, as a misspelling)-e.g., "This is to 
much ... IThat film has terrific lighting affects ... II except 
your apology and offer you mine in return ... 

and the second is what we call 

Incorrect word choice--e.g., "We are anxious to receive 
your answer" (should be "eager to")/"The book will be 
discussed first among the two of us and then between the 
three of you" (prepositions should be reversed). 

Both of these types probably will require, for generalized 
detection, some level of semantic information, which is not 
now implemented. 

There is another very general type of grammatical error 
which is, in one way or another, involved in all of the other 
errors and may be characterized as 

Unallowed part-of-speech sequence--e.g., "The the .. ; I 
Our slowly car ... lIn all respectfully we ... IHe sang all 
through the through the night ... 

We expect to be able to detectmost errors of this type because 
our grammar is tightly tuned to reject all but grammatical 
sentences (but we do not yet have techniques for determining 
just which words caused the problem in this more general 

_ class). 

Dear Mr. Jones: 

We received your note of August 6, 1980, that asks for 
confirmation of your recent application. 

Although we appreciate your. desire for a prompt reply 
now, we cannot Illexceptl your forms at this point. Un
fortunately, your 12/statementl of deficiencies 12/havel not 
been completed for 13/several reason.! 

First, your /2/blueprint and your planl of building cor
rection 12/doesl not show enough detail. Second, 13/bothl of 
the 13/variancel must be requested from the Industrial 
Board. Third, the Fire and Panic Regulations will have ali 
Illaffectl on /4/these plan.! 

If you wish to complete 14/a new plansl of correction, 
please contact Jim Brown of our department. The person in 
charge of such applications is 15/him'! 

We are happy Illtool have received your correspondence 
and are 16/anxiousl to complete this matter 11Ito.! Thank 
you for your interest. 

Sincerely, 
Thomas Brown 



652 National Computer Conference, 1981 

The preceding constructed letter aggregates and illustrates 
some of the syntactic errors detected by the EPISTLE system, 
in the context in which they might plausibly occur. The letter 
contains 12 separate errors of the six categories given below. 
The words signifying a particular error are bounded by 
slashes, with the error identification NUMber shown on the 
left (i.e., the form "/NUM/ .. . WORDS .. . 1"). 

The syntactic-error categories are (1) use of incorrect hom
onym, (2) disagreement in number between subject and verb, 
(3) disagreement in number between quantifier and noun, (4) 
disagreement in number between determiner and noun, (5) 
use of object pronoun in predicate nominative position, and 
(6) inappropriate word choice. 

D. DETAILS OF SYNTACTIC PROCESSING IN THE 
EPISTLE SYSTEM 

In this section we first discuss the general processing charac
teristics of the EPISTLE system, particularly the syntactic 
aspects, and then describe our parsing philosophy as it is 
represented in the grammar and as it underlies our syntactic
error detection. 

1. General Description 

EPISTLE as a system designed to accomplish a variety of 
text-critiquing activities is built upon a general-purpose natu
rallanguage processing system called NLP (cf. Heidorn 1972, 
1975). NLP itself is embedded in LISP and comprises, in 
addition to the control supervisor, three major components: 
a dictionary, an input decoder, and an output encoder. The 
dictionary contains stems of words and associated part of 
speech and inflection information. Along with the dictionary 
there is a set of morphological rules that permit recognition of 
the word stem as it occurs with prefixes and suffixes to form 
a complete word. The output encoder permits the translation 
of internal representations into natural language output 
whose syntax or grammatical structure is controlled by the 
encoding rules. While this component will figure importantly 
in the longest-range goals of the project, it is secondary to the 
present critiquing ~apabilities of the system. 

The input decoder is the most important component of the 
system for text-critiquing applications. It translates input text 
into internal representations consisting essentially of lists of 
attribute-value pairs. The two major aspects of the decoder 
are a set of grammar rules and a parsing algorithm that deter
mines how the rules are applied and how intermediate and 
final results of rule applications are represented and used. The 
parser involves a strictly left-to-right, bottom-up, parallel
processing algorithm in which all rules that can be applied to 
the input string at a particular time are applied (subject to a 
system variable that controls which decoding rules are "visi
ble" to the parser at any time). 

The collection of decoding rules forms the system's gram
mar, known as an Augmented Phrase Structure Grammar 
(APSG) because it consists of essentially context-free phrase 
structure rules augmented by arbitrary conditions and 
structure-building actions. The schema of an NLP decoding 

Left context 

Constituent elements in New element, covering both 
~ left-side pattern NP and PP elements on left 
I I I 
I I I 
I I I 
I I I 
~ t + 

ADVP(C9)/ NP(Cl,CZ) PP(C3=C4) ---NP(PPS=PPS ... PP) 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I Structure-building 
I I actions 

Arbitrary conditions 
(simple or Boolean) 

Figure I-Example of an NLP Augmented Phrase Structure Grammar 
decoding rule used in the parsing component of the EPISTLE system 

rule shown in Figure 1 illustrates some of the rule features. 
The structure of the rule is best seen by mentally masking out 
all components contained in parentheses; doing so, a context
free type of rule is apparent. The left side pattern in this 
example can be seen to be an adverb phrase providing the left 
context for a two-element pattern composed of a noun phrase 
and a prepositional phrase (the slash "I" is the character that 
separates the context part); the right side consists of a single 
noun phrase, indicating that the prepositional phrase is to be 
incorporated into the noun phrase. The elements within the 
parentheses provide, for the left side pattern, the conditions 
that must hold for each pattern element if complete recog
nition is to occur; in the example these conditions are ex
pressed abstractly (e.g., as "C1, C2") but stand for any test 
involving attribute values, or any Boolean combination of 
such tests. On the right side, the information within paren
theses concerns structure-building actions, with the example 
illustrating the addition of the new prepositional phrase to a 
list of any previous such phrases. 

At this time our grammar consists of about 200 such de
coding rules (although they are much more complex than the 
example). In addition, there are about 200 simpler decoding 
rules concerned with morphology-the recognition of words, 
based on a character-by-character processing of the input. 
Finally, there are some 50 decoding rules for handling the 
detection and correction of syntactic errors. 

Concerning performance, we correctly parse a wide variety 
of English syntactic structures, including a major portion of 
those in our database of 400 business letters (which include 
examples of as tortured a sentence syntax as one is likely to 
find outside of Faulkner and Joyce). A representative ex
ample of the somewhat longer sentences is the following: 
"How nice it was to receive your letter complimenting our 
manager, Bob Halby, on his service and courtesy to you while 
you were shopping in our Buy-Now store in Harrison." 

2. Parsing Approach 

We have held to three strong views in developing our gram
mar. The first, rather unorthodox, position is that we should 



avoid using semantic information in the parsing of sentences. 
That is, the grammar rules should be principally based on the 
part of speech and inflectional characteristics of words, and 
should not depend on what a word means. This view is based 
on four presumptions: (1) that the transferability of a cri
tiquing system among different applications is maximized 
when parsing does not involve semantics (because word mean
ings differ so much from application to application); (2) that 
there is no principled way of limiting the extent to which 
semantic processing may be required; (3) using just a mod
erate degree of semantics for syntactic processing is not a good 
guarantee that the sentence will be parsed correctly; in many 
cases-as in "I hit the man in the street"-all the lexical 
semantics in the world would be insufficient to resolve 
whether "in the street" should be viewed as a description of 
the man or a locative concerning the hitting; and (4) given that 
most parsing projects have employed semantics to one degree 
or another, perhaps the opportunities for squeezing more 
resolution out of purely syntactic aspects have not yet been 
completely exhausted. 

Our second parsing tenet, held generally, is that the num
ber of separate parses obtained for a single sentence should be 
minimized-at least to only those that correspond to different 
legitimate interpretations. We go further, however, and hold 
that we ought to get no more than one parse per sentence, no 
matter how many structural or constituent ambiguities. This is 
not to say that we ignore or are otherwise uninterested in 
significantly differing parses; it is just that we prefer to have 
such information as an attribute of a single parse (so that we 
can obtain the alternatives later if necessary). 

The third tenet is that, for the highly purposive activities we 
intend to support, the theoretical distinctions of competence 
vs. performance or surface vs. deep structure have little util
ity. Rather, we take the very direct view that every commu
nication act is actively designed, however unconsciously, to 
fulfill specific pragmatic objectives; further, the level of design 
includes the selection of the sequence of syntactic structures 
believed best fitted to achieve these objectives. Thus, the 
actual surface structure of a sentence-not any presumed 
deep progenitor-is the key syntactic entity, the structure 
chosen deterministically by the communicator to best repre
sent the thought. 

It is one thing to hold such strong views, and it is quite 
another to realize them in practice. As might be expected, 
something had to give, and we abided by these views at the 
potential expense of the accuracy of our parses. Rather than 
seeking to achieve whatever linguists might be able to agree 
upon as a highly accurate parse of the surface structure of a 
sentence, we decided to make somewhat arbitrary decisions in 
situations of ambiguity and achieve what we call an "approx
imate surface parse." Two of the most important of such 
decisions are (1) to attach structurally uncertain constituents 
(like post-object prepositional phrases) to the- next higher 
verb phrase, and (2) to arbitrarily specify a preference order, 
for cases of constituent rather than structural ambiguity (when 
a text unit can be assigned to different grammatical catego
ries), so that certain constituent assignments will be the first 
attempted (e.g., for "I hit the man in the street," we would 
force the parse in which the prepositional phrase serves as the 
location of the hitting). However questionable these views 

Text-Critiquing with EPISTLE 653 

might be on paper, in practice things have turned out rather 
well: we seldom have more than one parse, and that parse is 
a reasonable approximation of what might be considered the 
ideal parse. 

While we have accepted an approximate surface parse as a 
compromise for the moment, our longer-range plans include 
rectification of any parse inaccuracies. We plan to pass the 
parse information from the syntactic component to the to-be
developed semantic unit to determine the best "fit" of mean
ing to the sentence, as a function ofthe syntactic structure, the 
lexical semantics, and the semantic information obtained 
from the previous text. If the semantic information ultimately 
suggests that some part of the assigned syntactic structure is 
erroneous, alternative parses may have to be obtained or, 
more simply, syntactic substructures can simply be reattached 
to their proper places. 

E. DETAILS OF ERROR DETECTION IN THE 
EPISTLE SYSTEM 

In this section we first discuss the general approach used for 
doing syntactic error detection and then describe two example 
error detection rules written in the NLP APSG rule language. 

1. The General Approach 

The general approach used for doing syntactic error de
tection consists of basically three steps: 

1. We attempt a parse of a given English sentence, using 
fully grammatical syntax rules (where "fully grammat
ical" includes restrictions on, for example, number 
agreement between subject and verb). Only sentences 
that fit the constituent class patterns and obey all re
stfietions-en--tIte patterns will pat'S€- successfully. 

2. If the program is unable to assign structure to the sen
tence, we then try to parse again-this time with the 
restrictions relaxed, and with the help of some additional 
rules. 

3. If the sentence parses this second time, then the program 
will produce a tree, diagnose the error, and display the 
sentence twice, once brightening the focus of error, and 
the second time substituting the correct form in its place. 

The general approach stated here is quite similar to tech
niques described in Weischedel and Black (1980) and in Kwas
ny and Sondheimer (1979), although in each of those papers 
the implementation described is in terms of augmented transi
tion network grammars (ATNs, e.g., Woods 1970), rather 
than APSGs. 

2. Detecting Use of "who" for "whom" 

The following NLP decoding rule comes into play in parsing 
a sentence that contains a relative clause beginning with a 
relative pronoun which is to be considered to be the object of 



654 National Computer Conference, 1981 

the verb of the relative clause, e.g. "The man whom I know 
lives here": 

PRON(REL,.,"WHO") VP(TRANS,SUBJECT,-OBJECT)-+ 
VP(RELCL = eVP,PRMODS = PRON ... PRMODS, 
OBJECT = PRON) 

This rule says that if a relative pronoun other than "who" is 
followed by a transitive verb phrase (actually a clause) that 
already has a subject but no direct object, a new verb phrase 
can be formed to cover these two segments. This new VP is 
marked as a relative clause, and the relative pronoun is picked 
up as a premodifier of the head verb and is also called the 
direct object. (The equal sign is the assignment operator, and 
the cent sign means to make a copy of a record.) 

If the sentence being processed had erroneously been writ
ten with "who" instead of "whom", e.g. "The man who I 
know lives here", the above rule would not be applicable and 
the sentence would not be parsed during the first step of the 
processing" described above. However, during the second step 
the following rule is added to the set of rules to be considered, 
and in fact would be applicable, resulting in a parse: 

PRON("WHO") VP(TRANS,SUBJECT ,-,OBJECT)-+ 
VP(RELCL = eVP ,PRMODS = PRON ... 
PRMODS,OBJECT = PRON, 

ERRORS = ERRORS ... < "ERROR" ,TYPE = 

"PNCASE2", 
EHEADB = PRON ,CSEGS = < ePRON, 'WHOM' > » 

This rule is similar to the one above, but requires that the 
relative pronoun be "who." When this rule is applied, in 
addition to describing the neW segment formed with the same 
information as above, it is also given another attribute 
(ERRORS) with information about the error made by the 
writer. This additional information is itself in the form" of a 
record with attributes to specify the type of error, where it 
occurs in the sentence, and what correction should be made. 
If the segment record created by applying this rule ends up as 
a node in the parse tree, this information will be used to 
produce a diagnostic message to the writer. 

We consider the idea. of having separate error-detection 
rules of this sort as temporary in the current implementation, 
and intend to replace them with a scheme that would simply 
allow restrictions in the original rules to be relaxed semi
automatically, much in the manner described in the papers by 
Weischedel and Black and by Kwasny and Sondheimer, cited 
above; 

3. Detecting Use of "Of" for "Have" After a Modal 

An error that occurs commonly in spoken English and 
sometimes in written English is." to use "of" instead Of the 
contracted form of "have," because they sound alike, e.g., "I 
should of g~ne" instead of "I should've gone." Such a sen
tence would fail to parse during the first step of processing 
with our grammar; However, duririg the secon,d step the fol
lowing rule is added to the set of rules to be considered and 
would be applied iIi such a case: 

VERB(MODAL)/ PREP('OF')-+ 
VERB('HAV' ,-INDIC,INF ,ERRORS = < 'ERROR'; 

TYPE = 'AUXl',EHEADB = PREP, 
CSEGS = < ePREP,'HAV',INF,SEGTYPE = 'VERB' > » 

This rule says that if the preposition "of" is preceded by a 
modal, treat it as if the verb "have" had appeared there in
stead. (Note the use of the modal as a left-context element.) 
As with the error detection rule shown above, this rule creates 
a record describing the segment as it should be and also asso
ciates with it information about the error made. 

F. FUTURE DIRECTIONS 

In the near future we expect to implement a variety of Type 
II syntactically-based stylistic evalua.tions, such as those pro
vided by the Writer's Workbench. In our very long range 
objectives, however, we hope to shift at least two of the three 
critique factors, and move from the sentence to the paragraph 
level, as well as change from a syntactic to a semantic perspec
tive. For exarnple, we would like to be able to represent the 
meaning of a sentence as a series of related propositions, and 
then assess the degree of continuity between these proposi
tions and previous on_es, in particular being guided by a few 
pattern models typifying acceptable exposition principles. 
Two such models that seem to characterize some of our letters 
are a parallel pattern in which the initial one or two sentences 
esta.blish a variety of propositions to be subsequently dealt 
with in turn, and a sequential narrative-type model in which 
the previous sentence's propositions are those to which the 
next sentence's propositions most closely relate. Thus, para
graphs having irregular, nonmodel associations among succes
sive sentence propositions could be judged as much less con
nected or cohesive than those that conform well to a model. 

REFERENCES 

1. Bates, J.D., Writing with Precision, Washington, D.C.: Acropolis Books 
Ltd., 1978. 

2. Cherry, L.L., "PARi8-A System for Assigning Word Classes to English 
Text," Bell Laboratories Computing Science Technical Report, No. 81, 
1978. 

3. Cherry, L.L, "Writing Tools-=-The STYLE and DICfION Programs," Un
published Bell Laboratories Report, 1980. 

4. Cloke, M. and Wallace, R., The Modern Business Letter Writer's Manual, 
New York: Doubleday and Co., Inc., 1969. 

5. Dyer, F.C., Executive's Guide to Effective Speaking and Writing, Eng:e
wood Cliffs, N.J.: Prentice-Hall, Inc., 1962. 

6. Heidorn. G.E., "Natural Language Inputs to a Simulation Programming 
System." Naval Postgraduate School Technical Report, No. NPS-
55HD72101A. 1972. (Copies are available from the author at IBM Re
search). 

7. Heidorn. G.E., "Augmented Phrase Structure Grammars". In Theoretical 
Issues in Natural Language Processing, B.L. Nash-Webber and R.C. 
Schank (Eds.). Association for Computational Linguistics. 1975. 

8. Kwasny, S.c. and Sondheimer. N.K., "Ungrammaticality and Extra
Grammaticality in Naturai Language Understanding Systems." Pro
ceedings of the 17th Annual Meeting of the Association for Computational 
Linguistics, La Jolla, Calif." 1979; pp. 19-23. 

9. Macdonald, Nina, "Pattern Matching and Language Analysis as Editing 
Support," Paper presented at the American Educational Research Associ
ation meeting, Boston. April 1979. 

I O. Miller. L.A., "A system for the Automatic Analysis of Business Correspon-



dence," In Proceedings of the First Annual National Conference on Artificial 
Intelligence, Stanford University, 1980, pp. 280-282. 

11. Morris, C., Signs, Language, and Behavior, New York: Prentice Hall, Inc., 
1946. 

12. Prentice-Hall, Inc., us. Director's and Officer's Complete Letter Book (pre
pared by the editorial staff; 20th printing), Englewood Cliffs, N.J. 1980. 

13. Weischedel, R.M. and Black, J.E., "Responding Intelligently to Un-

Text-Critiquing with EPISTLE 655 

parsable Inputs," American Journal of Computational Linguistics, Vol. 6, 
No.2, 1980, pp. 97-109. 

14. Wilkinson, C.W., Clarke, P.B. and Wilkinson, Dorothy C.M., Commu
nicating through Letters and Reports, 7th edition, Homewood, Ill.: Richard 
D. Irwin, Inc., 1980. 

15. Woods, W.A. "Transition Network Grammars for Natural Language 
Analysis," Communications of the ACM, Vol. 13, 1970, pp.591-606. 





Shifting to a higher gear in a natural language system 

by BOZENA HENISZ THOMPSON 

and 

FREDERICK B. THOMPSON 
California Institute of Technology 
Pasadena, California 

ABSTRACT 

We have completed the development of the REL System, a 
system for communicating with the computer in natural lan
guage concerning a relational database. We have been using 
that system in a series of experiments on how people actually 
do communicate in solving an intellectual task. These experi
ments, together with our general experience with REL, and 
related work elsewhere, have led us to the specification arid 
development of a new system, the POL (Problem Oriented 
Language) System. POL is an evolutionary extension of REL, 
preserving what has worked, and extending and adding new 
capabilities to meet observed needs. These improveritents in
clude more responsive diagnostics, handling of sentence frag
ments, inter knowledge base communications, and 'new facili
ties for building and extending the"knowledge bases of users. 
This' paper introduces POL. 

INTRODUCTION 

We have completed the development of the REL System, a 
system for comm:unicating with the computer in natural lan
guage concerning a relational data base. We have been using 
that system in a series of experiments on how people actually 
do communicate in solving an intellectual task. These experi
ments, together with our general experience with REL, and 
related work elsewhere, have led us to the specification and 
development of a new system, the pot (Problem Oriented 
Language) System. POL is an evolutionary extension of REL, 
preserving what has worked, and extending and adding new 
capabilities to meet observed needs. This paper introduces 
POL. 

KNOWLEDGE BASED SYSTEMS IN THE RAPIDLY 
CHANGING ENVIRONMENT 

The continuing rapid increase in both the capability and avail
ability of computers has raised the expectations of what they 
can do for us. In the near future they should be able to re-

657 

spond intelligently to directions we give to them in our own 
natural language. Intelligent response to natural language im
plies more than the understanding of the structure of lan
guage. It also implies knowledge of the meanings of the tech
nical terms we use in dealing with the complex problems of 
our work domains, and the ability to use that knowledge in 
formulating responses. In communicating about technical 
matters, we make use of many facts and relationships that are 
tacitly understood. Thus the computer must not only have 
available to it a body of facts, a database, but knowledge of 
the relationships that tie that data together .We will refer to 
this wider body of knowledge as a "knowledge base." 

A knowledge base concerning a given subject area contains 
the relevant data concerning that area; the notion of knowl
edge base incorporates and extends the notion of database. 
When one queries a database, one expects to get back only the 
raw data one asks for. Most database systems go somewhat 
beyond simple recitation of data that has been put into them, 
providing, for example, statistical reduction of that data. A 
knowledge base goes well beyond this, incorporating knowl
edge of the domain that it can use in digesting the query in 
conjunction with its data. 

A simple example may be useful. Consider a system con
cerned with the loading of cargo ships. One can instruct it to 
put various items into the ship's cargo spaces. If the system is 
knowledgeable, it will be able to answer a query concerning 
the remaining area available in a given cargo space, for it will 
know that the remaining area is the total area less that oc
cupied by shipments and that it can compute the area oc
cupied by a shipment from the dimensions of each particular 
type of shipment, dimensions contained in its data. 

Knowledge is closely associated with language. Certainly it 
is knowledge of the language that gives a system the capability 
to respond to natural language queries. In the above example 
it was knowledge of the term "remaining area" that allowed 
the system to give a useful reply concerning the remaining 
area of a cargo space after a variety of shipments had been 
placed there. Thus a knowledge base is a language-database 
package where the language component includes the seman
tics of the domain of application. 



658 National Computer Conference, 1981 

Knowledge base systems cover a wide range. We first char
acterize this range and then identify that area within this range 
where our interests lie. At the low end of this spectrum are the 
programming languages, such as Fortran, Pascal, and Coni
ver; they know nothing about the domain of the user. The 
high end of the spectrum is open ended, as there is no "most 
knowledgeable" system. 

The most intelligent systems now are typified by the medi
cal diagnostic systems such as MYCIN. In these systems, the 
physician who is not a specialist in a particular field of medi
cine can call up the computer, hold a highly technical dialogue 
concerning the history and symptoms of his patient, and ex
pect to get diagnostic information reflecting the knowledge of 
the best specialists in the field. We point out several properties 
of such systems. The task of putting into a system the best 
knowledge available in the field is expensive in both time and 
resources. Further, the source of this knowledge is not the 
user, but experts removed in time and place. To make such 
systems economically viable, the domain must be stable, the 
technical terms of the domain widely known and un
ambiguous, the application must be widespread and im
portant, and the expectation must be that the knowledge base 
will change only slowly with time. 

In contrast to this type of knowledge domain, there is the 
knowledge base of the typical research team, management 
staff, or administrative office. A research team may be de
signing, constructing a prototype and testing a new device; the 
inventory control staff of a firm may be keeping track of and 
reordering a large variety of parts; a government agency may 
be administering contracts and evaluating proposals. In each 
of these cases the user is intimately involved in the mainte
nance of his or her knowledge base. It may appear that the 
structures of these respective knowledge bases are rather stat
ic; however, this is not the case. Indeed it is the constant 
shifting in structure of the knowledge base and its associated 
vocabulary that mark these organizations that must operate in 
a constantly changing environment. Not the least of these 
changes is in the personnel themselves, each with their own 
ways of doing things, ways which must be reflected in the 
base. These knowledge base systems are the properties of 
their users, and the principal tasks of their development and 
maintenance lies with their users. 

REL and POL are designed as knowledge base systems for 
these rapidly changing environments. 

In these systems there are two levels of change that are 
important. First, there is change by the users themselves. 
They must be able not only to modify the various data items 
in the knowledge base, but to extend and modify the structure 
of the base itself. They must be able to add definitions and 
other abbreviated means for extracting and manipulating the 
data, and by these means add their own tacit knowledge and 
expectations so that the computer will respond meaningfully 
and succinctly to their further queries. 

The second level of change is at the application pro
grammers' level. Preparing the knowledge base for a particu
lar using community constitutes a major task. For a system 
like MYCIN, the clerical aspects of this task are dwarfed by 
the time resources of true experts. The mundane aspects of 
actually putting their knowledge into the computer can be 
relegated to far less costly resources. However, in the case of 

systems on which we are focusing, the "experts" are more 
local to the using group and are called upon far more fre
quently to prepare knowledgeable working environments to 
fit the newly arising tasks or circumstances confronting their 
user clients. The systems on which we are working must sup
port both levels of change. 

THE REL/POL KNOWLEDGE BASE SYSTEMS 

In designing the REL and POL Systems, we sought to build 
into the system all aspects that would be common to all or 
most rapidly changing knowledge base environments. These 
include managing the input and output, data storage and re
trieval, and processing of the language-parsing and semantic 
interpretation. They also provide facilities for creating and for 
extending and modifying a knowledge base, for adding and 
changing data and vocabulary, and for handling definitions. 
These capabilities are essentially identical in REL and POL. 
Since they are adequately covered in the REL documenta
tion, 11.13 we will cover them only briefly here. Here are some 
of the main features of POL. 

The core of a knowledge base system is its language pro
cessor. The POL language processor consists of four parts: 

• the Preparser, which takes care of such tasks as line 
continuation, multiple blanks, recognizing whole num
bers, and looking up all words in the lexicon; 

• the Parser, which develops the parsing tree for the input 
by using a pattern matching algorithm in conjunction 
with the particular grammar table for the specific lan
guage involved; 

• the Semantic Processor, which uses the parsing tree to 
compose the interpretive routines that are associated 
with the grammar rules; 

• the Output Processor, which does a variety of final ed
iting on the results of semantic processing to prepare 
the lines to be output. 

Following is some information about the various techniques 
we use in each of these four steps of message processing. 

The most interesting aspect of the Preparser is the lexicon 
processing method. We use a triple hashing technique. Given 
an identifier, or word, to look up in the lexicon, we hash it one 
character at a time into the first hash bit table of 2**14 bits. 
If the corresponding bit in this table is 0, then the segment so 
far hashed can not be the initial segment of a word in the 
lexicon, and we can stop. Otherwise we refer to the second 
hash bit table, again of 2**14 bits. If this corresponding bit is 
0, then the segment hashed so far is not itself in the lexicon. 
Only on success here do we finally hash down to 64 hash 
buckets and search the appropriate bucket for identical key. 
This technique is in general very fast, since the hash bit tables 
can be kept in highspeed memory. Moreover, it results in a 
particularly fast, lexicon-driven spelling corrector. 

There are today two parsing algorithms being used for 
grammar-driven natural language processing, the top down 
ATN parser, developed by Woods, 14 and the bottom up Pow
erful Parser of Kay. 6 Both are chart parsers in the sense of R. 
Kaplan,4 and it is now known that their basic algorithms are 



essentially identical (as shown by Papachristidis 7). REL and 
POL use the Kay parser. We feel that the bottom up approach 
provides the basis for more useful diagnostics and for more 
useful information in handling sentence fragments such as 
ellipses, false starts and added information. 

We do not order our grammar rules or multiple parsings, 
thus we get all possible parses of the input message. A dis
tinctive feature is that ambiguities are handled internal to the 
semantic processor routine, and thus interpretive routines, 
associated with the grammar rules, do not have to be aware of 
the possibility of ambiguity. The semantic ptocessor also ex
pands definitions, including instaI'ltiation of variables. This 
again leaves the interpretive routines to deal only with local 
probleins of the immediate phrase and its immediate constitu
ents. 

An interesting aspect of the Output Processor is that it 
distinguishes between diagnostic messages and substantive an
swers. Any interpretive routine, looking at its local context, 
can output a message and may mark it as a diagnostic. At the 
end of output processifig, the Output Processor considers all 
messages, diagnostic and substantive alike. If there is at least 
one substantive response, all diagnostics are repressed. Re
maining ambiguous messages are edited for redund~mcy. We 
give two illustrations of the use of this mechanism. 

First, suppose the input message was "What is the rank of 
the radiation officer of the Alamo?" In the processing of this 
message, an interpretive routine will be called to determine 
the radiation officer of the Alamo; suppose it finds by refer
ence to the data base that the Alamo does not have a radiation 
officer. This interpretive routine then issues the diagnostic 
message: "There is no radiation officer of the Alamo.;' and 
otherwise signals that it was unsuccessful, aborting the re
mainder of semantic processing. This me ass age would then be 
output. 

As a second example, suppose that the term "gross sales" 
was multiply defined, having two entries in the lexicon; one 
that resulted in summing the sales for a given product, the 
other summing the sales made by a given sales person. In 
answering the question "What is the gross sales of diodes?" 
the interpretive routine interpreting the construction "gross 
sales of diodes" would be called twice by the semantic pro
cessor, once for each definition of "gross sales." In the first 
case, it would issue a substantive response; in the second case 
it would issue a diagnostic: "Diodes is not a sales person." 
The Output Processor, seeing that a substantive response is 
forthcoming, would repress the diagnostic, and the user would 
get only the response he or she desired. 

The data base organization underlying both REL and POL 
is the relational one. It is complete, in the technical sense of 
that term as used in relational data base theory. We have 
devoted a great deal of attention to optimization of data base 
algorithms, particularly in regard to access to peripheral stor
age. Indeed, efficiency of processing was a paramount con
cern thtoughout the development of REL. A principal objec
tive of REL was to establish that fully operational, natural 
language, relational data base systems could be realized in the 
near term. A primary requirement therefore was good re
sponsetime. Total throughput message processing time, on an 
IBM37013032 computer and using a data base developed by 
others for testing just such systems (the Navy "blue" file), is 

A Higher Gear in a Natural Language System 659 

averaging about four seconds. The total response time from 
input to output of the answer for the query 

What is the destination and cargo type of each ship whose 
port of departure was some Soviet port? 

is less than 10 seconds. 

THE REL EXPERIMENTS 

We have learned a great deal from REL and, in particular, 
from the series of experiments on human-to-human and 
human-to-computer communication. The majority of these 
experiments involved a real life task of loading Navy cargo 
ships. The total time spent by subjects was over 50 hours, 
which yielded for final comparisons 20 face-to-face protocols, 
11 terminal-to-terminal protocols, and 21 human-to-computer 
protocols, containing over 80,000 words. (See Thompson 12 for 
a complete report.) 

It was found that in task-oriented situations the syntax of 
interaction is influenced in all modes by this context in the 
direction of simplification, resulting in short, simple sentences 
(averaging in all three modes about seven words). Users seek 
to maximize efficiency in solving the problem. When given a 
chance, in the human-to-computer mode, to use special de
vices facilitating the solution of the problem, they all resort to 
them. 

In reporting on the analysis of these protocols, the term 
"message" refers to an utterance of one speaker; a "sen
tence" was required to contain both a noun phrase and a verb 
phrase, be confined to a single message and have substantial 
semantic cohesiveness. Parts of messages not also parts of 
sentences were identified as either "phatics" or "fragments." 
A phatic is any string whose function was to keep the channels 
of communication open, e.g., "okay," "I see," and-to the 
computer-"You lie." The following table presents some of 
the results of analysis (F-F = face to face, T-T = terminal to 
terminal, H-C = human to computer). 

F-F T-T H-C 

Sentence length 6.8 6.1 7.8 
Message length 9.5 to.3 7. 
Fragment length 2.7 2.8 2.8 
% of words in sentences 68.8 72.8 89.3 
% of words in fragments 17.2 21.1 to.7 
sentences per message .96 1.22 .81 
fragments per message .59 .74 .19 
phatics per message 1.1 .59 .04 

The types of sentences used in human to computer commu
nication is of considerable interest: 

All sentences 
Simple sentences, e.g., "List the decks 

of the Alamo." 
Wh-type questions, e.g., "What are ships?" 
Sentences with pronouns, e.g., 

"What is its length?" 

Total Percent 

882 

651 
658 

30 

100 

73.8 
75.0 

3.4 



660 National Computer Conference, 1981 

Total Percent 

Sentences with quantifiers, e.g., "List the 
class of each cargo." 101 11.4 

Sentences with conjunctions, e.g., "List 
hatch width and hatch length of each 
deck of Alamo." 113 12.8 

Sentences with relative clause, e.g., 
"List the ships that have water." 16 1.9 

The dominance of simple sentences is striking. The reason 
is certainly not the lack of availability of complex sentences. 
We think that several factors account for this. The problem
solving situation influences the subject to work in a simple 
manner, often employing what we have termed special strate
gies, e.g., repetition of the same type of requests. Another 
reason is definitions. Once subjects introduce a definition 
whose right hand side is complex, they use it in subsequent 
messages, which are therefore short and simple. Another rea
son may be that subjects tend to be more formal in con
versation with a computer. On the whole, one is forced to 
conclude that monotony of structure is the rule rather than the 
exception in human-computer communication. 

Fragments compose a significant part of communication in 
all three modes. In an earlier paper on human dialogue in 
problem-solving situations, it was noted by Chapanis1 on the 
basis of extensive experiments that "people do not naturally 
speak in sentences" and that "in general great unruliness 
characterizes communication." At first sight of the protocols 
one tends to confirm the impression. But a closer look and 
careful analysis reveals a considerable orderliness. Over the 
course of analysis of these protocols we have been led to 
classify fragments into eleven categories,12 each suggesting 
corresponding procedures for processing them. We will brief
ly comment on three of these categories here. 

Terse Question: e.g., "How about pyrotechnics?" "How 
many?", "Which ones?" Elliptical questions of this type 
should be handleable by computational means. Note that in 
handling pronouns, one looks in the preceding part of the 
protocol for a referent that can be substituted for the pro
noun. The same techniques appear applicable in this case, 
when one seeks a referent that can be replaced or modified by 
the body of the elliptical expression. 

Added Information: e.g., "What are the destinations of 
ships? ... Soviet ships," "It doesn't say anything about 
weight. ... Except for the crushables." The frequency of such 
added information suggests that the termi!1al keyboard should 
be kept open and additional input before start of output 
should be incorporated into message processing. 

False Start: e.g., "Do ships What Ships carry ammunition?" 
Although computer terminals usually provide a convenient 
means for deleting an input and starting over, they are not 
always used. Ways of intercepting these occurrences should 
not be difficult to incorporate. 

Important insights into ways to improve the habitability of 
human-computer systems was gained by analysis of the errors 
that occurred in the protocols. In the human to computer 
protocols there were 446 errors. A breakdown into eight 
categories is given by the following table: 

Total Percent ---
Vocabulary 161 36.1 
Punctuation 72 16.1 
Syntax 62 13.9 
Spelling 61 13.6 
Transmission 32 7.2 
Definition format 30 6.7 
Improper response to prompt 16 3.6 
"Bug," error in system 12 2.7 

THE EXTENDED CAPABILITIES OF POL 

Although the core of the POL System is similar to REL, it 
also embodies several significant extensions. In the first place, 
in the development of REL, very little attention was given to 
problems of habitability, a property of human-computer sys
tems sometimes referred to as "friendliness." For example, 
there was no spelling corrector and substantive diagnostics 
were particularly weak. Analysis of the experimental proto
cols has indicated concrete directions for improvements. To 
illustrate, you will notice in the table immediately above that 
the greatest source of errors was the use of words that were 
not in the socabulary of the particular application. REL did 
not identify those words nor even indicate the nature of the 
problem. The user would often try paraphrases using the same 
missing word before sensing the source of his or her difficulty. 
POL immediately identifies such words, as in the following 
example: 

User: What is the usual use of the super deck of the Alamo? 
REL: Input error: please re-enter request. 
POL: The following word is not in the vocabulary: usual 

Other illustrations will be given below. 
In REL, we were preoccupied with the core of the system 

and with REL English and its relational database system. 
Capabilities beyond these core concerns are, however, also 
important, in particular those facilitating inter database com
munication, the distributed database problem, and also capa
bilities to facilitate the building of specialized user applica
tions. We have had two fine doctoral dissertations which have 
introduced significant improvements in these two areas. 
These have added new dimensions to POL beyond REL, as 
described below. Finally, we are incorporating several meth
ods for augmenting natural language for more efficient 
human-computer communications. These topics will be dis
cussed in the following four subsections. 

All of these topics, however, share a common theme. Prob
lems of natural language processing and efficient database 
processing are now well in hand and quite adequate for imple
mentation of practical systems with good response times. The 
REL System gives quite convincing evidence of this. The next 
stage in improving human-computer communication will be 
through a better understanding of how users will actually be
have as they productively interact with the computer in ways 
that are natural for them. The systems that we can now pro
vide are unfriendly, they are too sensitive to trivial errors, too 
pedantic in the messages they are willing to understand, they 
make inadequate provision for building the user's knowledge 
base and vocabulary into the system, they do not offer ade-



quate protection from catastrophic mishap, and they do not 
provide for normal kinds of inter knowledge base commu
nication. The user is in a position where slhe realizes slhe is 
doing something wrong but has no idea how to proceed. The 
thrust of our work in extending REL to POL is to relieve these 
unfriendly aspects of using the computer and to replace them 
by a habitable working environment. 

Diagnostics 

The user inadvertently makes mistakes. Even when the 
user's message is quite correct and the computer formulates a 
correct response, that response may still be confusing. In 
these cases, the computer needs to provide a more useful 
response. Diagnostics are of two kinds: semantic, which must 
be accounted for in the interpretive routines of the specific 
language involved; and syntactic, which can largely be taken 
care of in the language processor. We give several illustrations 
of POL diagnostic techniques. 

The first step in correcting the diagnostic deficiencies in 
REL was to maintain with each phrase recognized by the 
parser its underlying literal string so that this string is available 
to both the system and the interpretive routines for framing 
meaningful responses. Thus for example: "San Diego ships" 
may be found to be ambiguous, referring both to those ships 
located in San Diego or to those ships whose home port is San 
Diego. REL provides these two interpretations but does not 
provide the user with any indication of the source of the 
ambiguity. In POL, the interpretation routine that is looking 
for San Diego ships discovers the ambiguity and, having the 
string "San Diego ships" available, is able to tag them. Thus: 

> What are the destinations of San Diego ships? 
Ambiguous: 
(1) San Diego (location) ships 

New York 
Tokyo 

(2) San Diego (home port) ships 
Naples 
San Diego 

Using this technique we have been able to incorporate many 
of the ideas concerning diagnostics expressed by S.l. Kaplan,s 
as illustrated by the following example: 

> What is the square foot capacity of the super deck of the 
Alamo? 
The Alamo does not have a super deck. 

A technique we are widely employing in POL, facilitated by 
an "evaluate" procedure that can be called from an inter
pretive routine, is to check out possible corrections by calling 
the parser and semantic processor, and using these evalu
ations in deciding on a response. When corrections are made, 
we signal the interpretation by echoing. If the number of 
potential corrections exceeds some small number at any given 
point, then any attempt at correction is discontinued and a less 
informative diagnostic is given. Thus the query: 

> Who is the commander of the Alemo? 

A Higher Gear in a Natural Language System 661 

might, as the case may be, yield anyone of the following 
responses: 

• Capt H. Smith 
• The Alemo does not have a commander. 
• Spelling corrected: "Alamo" for "Alemo" Capt H. 

Smith 
• Ambiguous: 

(1) Spelling corrected: "Alamo" for "Alemo" 
Capt H. Smith 

(2) Spelling corrected: "Alimo" for "Alemo" 
Capt K. lones 

• The following word is not in the vocabulary: Alemo 

We are augmenting the POL English grammar with many 
rules which recognize what are, strictly speaking, un
grammatical forms. The interpretive routines associated with 
these rules will have checks and safeguards built into them, 
again with use of evaluate, and will echo the corrected form 
before giving the response. For example: 

>width, length of M74 truck 
Width and length of M74 truck? 
96180 

> What is the destination of the Alamo. 
What is the destination of the Alamo? 
London 

These methods do not, however, handle the problem where 
the input message does not completely parse because it does 
not strictly adhere to the grammar. How to frame truly helpful 
responses in these cases is a difficult research question. The 
work of Sondheimer and Weischedel lO provides important di
rections. 

Fragments and Pronouns 

There has been some. excellent work by Grosz on identi
fying and following the focus of a dialogue4 and by Sidner on 
using this notion of focus in identifying the referent for pro
nouns and anaphoric expressions. 9 Using these and other lin
guistic analyses of pronouns, Roach has developed a consid
erably improved method for handling pronouns in POL. 8 We 
hope to be able to apply these same techniques to the pro
cessing of terse questions and added information. The dis
cussion above of the experimental protocols indicates other 
areas where we plan to strengthen POL's ability to handle a 
variety of sentence fragments. 

Inter-Knowledge-Base Relationships 

A research or management staff has not one but many 
knowledge bases. For example, in a manufacturing firm there 
would be a personnel base, an inventory control base, a pur
chasing base, a customer base, etc. Each of these has its own 
practices for updating and deleting, and each is the re
sponsibility of a different part of the firm. In the past, at
tempts have been made to consolidate all of these into a single 
corporate database, but this has been found to be unsatis
factory. Similarly, in a research staff or project team, there 
may be a variety of knowledge bases, each documenting a 



662 National Computer Conference, 1981 

variation of a basic experimental design. In these rapidly 
changing environments, where members of the staff are in
volved in modifying and extending their knowledge bases, 
backup copies must be maintained, contingencies examined, 
alternative plans evaluated-requiring several working copies 
of a co~mon knowledge base. 

POL provides the capability for creating and maintaining 
many knowledge bases within the same knowledge base sys
tem. Further, these several knowledge bases may be inter
related in a variety of different ways. One such relationship is 
"basing." One knowledge base, say B, can be "based" upon 
another, say A. Once this basing operation has taken place, 
all of the information available in A is automatically available 
in B, and any subsequent changes in A are automatically 
reflected in B. Changes in B, on the other hand, will not affect 
A at all. A knowledge base may be based upon several other 
knowledge bases, and many knowledge bases may be based 
upon a single one. 

To see how these capabilities might be used, suppose the 
accounts in a firm were divided into three groups, aa, bb and 
cc, each the responsibility of a separate desk in the accounting 
section. Then three knowledge bases, AA, BB and CC would 
be created, each owned by its respective desk which would 
preserve the rights to modify it. The general accounting base, 
say GG, would be based on all three. The higher management 
ba~e MM and the home office base HH would be based on 
GG. A staff office, studying the effects of a change in pricing 
policy, could also base their study base SS on GG, making 
what ever changes they were interested in in SS but not affect
ing GG at all. These capabilities reflect the doctoral dis
sertation of Yu. 15 

Metalanguage 

POL incorporates a significant new notion of meta
language, the knowledge-base environment for the applica
tion programmer. The bottom "knowledge base" of the POL 
System is POL English, containing the syntax of a subset of 
natural English, a mathematics package and the function 
words of English, e.g., "have," "and," "which" etc. All other 
knowledge bases for users are based upon POL English in the 
sense described in the last paragraph. There is another basic 
"knowledge base," namely MetaEnglish. It contains a variety 
of constructions, including (1) all of Pascal, (2) the capability 
of writing in succinct form new grammar rules for a given 
target language and their associated interpretive routines, (3) 
a similar capability to extend the metalanguage itself with 
either new procedures or macros, (4) a variety of useful utility 
procedures for dealing with the relational database, effec
tively handling input and output, literals, and the evaluate 
function, and (5) a compiler/linker that is able to relate this 
self-extended Pascal and its associated syntax. POL English 
and MetaEnglish are associated with each other. 

When a knowledge base, say AA, is based upon POL En
glish, a parallel knowledge base, MetaAA is also created, 
based on MetaEnglish; AA and MetaAA are associated with 
each other. An application programmer using MetaAA adds 
grammar rules and associated interpretive routines to her us
er's knowledge base AA. In doing this, she may expeditiously 
add new utilities to her own "knowledge base," namely Meta-

AA. Obviously she can use the utilities and procedures of 
MetaEnglish, since her MetaAA is based on MetaEnglish. In 
fact the whole basing structure of hierarchically related 
knowledge bases is strictly paralleled by the associated Meta
basing structure. 

This base/meta-base apparatus is designed to facilitate the 
building of specialized knowledge b~ses that extend and spe
cialize more general capabilities to the needs Of users. This 
aspect of POL reflects the doctoral thesis of Hess. 3 

IMPLEMENTATION 

REL was implemented on a large IBM-370/3032 computer. 
POL, on the other hand, is being implemented on a desk top 
computer, the Hewlett-Packard HP-9845B with a 50 mega
byte disk. POL is written in Pascal. 

At the present time all of the central parts of the system
preparser, parser, semantic processor, output processor, defi
nition handling, paging, list processor-have been completed. 
Basing has been completed and we are in the last stages of 
completion of the metalanguage. Much of POL English has 
been completed, including the optimized utilities for manag
ing the relational data base. 

Of course there is much left to be done. But the most 
important work on POL will start when the system is com
pleted, response times have been brought under control and 
the first applications implemented. For then we can observe, 
in an environment much closer to being friendly and condu
cive to natural propensities, just how professionals with a job 
to do will communicate with computers. That is the exciting 
moment, for as we know from our REL experience, reality 
reveals the directions to truly more responsive systems. 

REFERENCES 

1. Chapanis, A., "Interactive Human Communication," Scientific American, 
April 1975, pp. 39-42. 

2. Grosz, B.l., The Representation and Use of Focus in Dialogue Under
standing, SRI International, Tech. Note 151, 1977. 

3. Hess, G.D., A Software Design System, Ph.D. Dissertation, Calif. Inst. of 
Tech., 1980. 

4. Kaplan, R.M., "A General Syntactic Processor," Rustin, R.(ed.), Natural 
Language Processing, Algorithmics Press, New York, 1973, pp. 193-241. 

5. Kaplan, S.l., Cooperative Responses from a Portable Natural Language 
Data Base Query System, Ph.D. Dissertation, Univ. of Penn., 1979. 

6. Kay, M., Experiments with a Powerful Parser, The Rand Corp., Santa 
Monica, Calif., RM-5452-PR, 1967. 

7. Papachristidis, A.c., Comparison of A TN, Kay and Related Parsing Algo
rithms, Master's Thesis, Calif. Inst. of Tech., 1980. 

8. Roach, K., Pronouns, Master's Thesis, Calif. Inst. of Tech., 1980. 
9. Sidner, c., Towards a Computational Theory of Definite Anaphor Compre

hension in English Discourse, Mass. Inst. of Tech. , Tech. Report 537, 1979. 
10. Sondheimer, N. and R.M. Weischedel, "A Rule-Based Approach to III

Formed Input," Proc. 8th Intern. Conf. on Compo Ling., Tokyo, 1980, pp. 
46-53. 

11. Thompson, B.H., REL English for the User, Calif. Inst. of Tech., 1978. 
12. Thompson, B.H., "Linguistic Analysis of Natural Language Commu

nication with Computers," Proc. 8th Intern. Conf. on Compo Ling., Tokyo, 
1980, pp. 190-201. 

13. Thompson, B.H. and F.B. Thompson, "Rapidly Extendable Natural Lan
guage," Proc. 1978 Nat. Conf. of ACM, pp. 173-182. 

14. Woods, W.A., "Transition Network Grammars for Natural Language 
Analysis," Comm. of ACM, vol. 13, (1970), pp. 591-606. 

15. Yu, K.I., Communicative Databases, Ph.D. DissertatiOn, Calif. Inst. of 
Tech., 1980. 



Computer speech for people with cerebral palsy 

by JAY HEWITI 
University of Missouri at Kansas City 
Kansas City, Missouri 

ABSTRACT 

Using a grant from the Apple Educational Foundation, a 
speech system was constructed using an Apple micro-compu
ter, a Corvus hard disk drive, and the Mountain Hardware 
Supertalker. Since digitized rather than synthesized speech is 
employed, speech quality is extremely high. Use of an 8M 
byte hard disk drive permitted the system to contain approxi
mately 5000 words. In normal operation, user types in the first 
two letters of a desired word. A list of words beginning with 
those two letters than appears on a TV monitor. To select a 
word, user enters the number which is beside each word. At 
the end of a sentence, user types a period and the computer 
speaks the n words in the sentence in approximately 2n sec
onds. For individuals unable to operate a keyboard, two alter
native means of input exist. The paper describes the nature of 
the words in the system, the computer program, and certain 
characteristics of the hardware. 

INTRODUCTION 

Certain individuals are above average in 1.0. and are capable 
of complex communication but lack sufficient control over 
throat and mouth muscles to generate speech. Most of these 
individuals would have cerebral palsy but the condition may 
also be found in those with muscular dystrophy and, on rare 
occasions, in those who have suffered from a stroke. When 
these individuals have reliable control over some other mus
cles (e.g. hand or foot), it is possible to provide them with 
microprocessor controlled artificial speech. 

Two of these speech units, all based on the principle of 
synthesized speech, have recently been developed. One is an 
inexpensive toy-the Texas Instruments Speak and Spell. In
dividuals who can press the keys on this device with either 
hand or toes can use it to spell out the letters of a word. There 
is one key for each letter of the alphabet and a keypress 
generates the sound of that letter. The other device is called 
the Handi-Voice. The unit contains the Votrax speech syn
thesizer and is capable of producing either 500 or 1000 words 
depending on which model is selected. In the model with 500 
words, the words are written on the top of the device and the 
individual touches a particular square to generate a word. In 
the unit with 1000 words, user enter~ a three digit code and the 

663 

device then speaks the word. Although the Handi-Voice is a 
major contribution to the area of artificial communication, 
there are certain built in disadvantages. It has been estimated 
that a child of 5 already has a vocabulary of over 2500 words; 
500 words is far too few for adequate communication and the 
unit with 1000 words requires the user to learn approximately 
1000 3-digit codes. Speech quality is also a problem. The voice 
output has an extremely artificial "robot-like" quality and the 
words are sometimes hard to understand. 

The current paper describes an alternate communication 
system that was designed to overcome the problems of limited 
VOCflbulary and poor speech quality. The system uses an Ap
ple computer, a high quality speech reproduction system sold 
by Mt. Hardware called the Supertalker, and a Corvus hard 
disk drive. Although it is not portable, the unit contains ap
proximately 5000 words with speech quality similar to that 
obtained on a tape recorder. 

SYSTEM OPERATION 

When using the computer keyboard to input words, user types 
in the first two letters of the desired word. A list of words 
beginning with those two letters is then shown on a TV screen. 
If the desired word is not on the list, user can press a particular 
key and another list of words beginning with those two letters 
will be presented. Beside each word is a number. When the 
desired word is located, user types in the corresponding num
ber and the word is then printed at the top of the TV screen. 
Subsequent words in the sentence are printed to the right of 
the first word so that an entire sentence can be generated and 
shown on the TV screen. At the end of the sentence, user 
types a period and the computer then speaks the words in the 
sentence. A sentence of n words is spoken in approximately 
2n seconds. 

ADDITIONAL WORDS IN SYSTEM 

In addition to the usual words found in a dictionary and used 
by a college graduate, several additional sets of words are 
available. One is a set of 67 common first names (e.g. Jane, 
Jack). Another is a set of 82 food items. A third is a list which 
makes it possible for user to generate any n~mber. A fourth 



664 National Computer Conference, 1981 

is a set of 75 locations-primarily names of states and large 
U.S. cities. Finally, one Corvus volume has been set aside for 
idiosyncratic words desired by a given user. A friend or parent 
can record up to 80 of these words and make them available 
to the user. 

USE AND ADVANTAGES OF SYSTEM 

The system makes use of a Corvus hard disk drive which 
makes the unit non-portable and rather expensive. The cost of 
a Corvus is approximately $5000. It is estimated that a school 
system would be the best location for the unit. If there is more 
than one child needing to make use of the unit and both are 
located in the same class, a multiplexer can be purchased 
which will allow multiple users to access the speech system 
simultaneously. For individuals without manual control a 
fi~e-pedal foot switch system is available. When running'in 
thIs mode, the computer asks for the first two letters of a word 
and then presents, on the TV screen, a matrix consisting of 
letters and computer commands. One switch scans up the 
columns, one down the columns, one scans to the right on a 
given row, one scans to the left on a given row, and one 
selects, as input, the letter or command on which the cursor 
is located. A second alternative means of input is a joy-stick. 
Using a joy-stick, user can move directly to the desired row 
and column for a letter or command. These alternative means 
of input together with high voice quality and large vocabulary 
are the central advantages of the current system. Another 
advantage, at least as far as the listener is concerned, is that 
the message is not delivered until it is complete. An individual 
with severe motor handicap could take up to three minutes to 
construct a sentence. It is far easier on the listener to attend 
for a single 20 second period at the end than to attend to the 
user during the entire three minute period of message con
struction. 

DETAILS ON THE SUPERTALKER COMPONENT 

The Mt. Hardware Supertalker device consists of a card that 
fits in the back of an Apple Computer, a loudspeaker, plus 
some software. It is normally used with a single Apple disk. In 
the initial stage, user creates something called a phrase table 
containing up to 18 spoken words. Each word is spoken into 
a microphone, the hardware digitizes the word and then stores 
it in memory. When the phrase table is full, user stores the 
phrase table on disk. Between 80 and 90 words can be nor
mally be stored on one Apple diskette. When it is desired to 
speak a word during program execution, user gives a com
mand to load a given phrase table into the computer and then 
gives another command to send a particular word to the loud
speaker. 

The current system uses not an Apple disk but a Corvus 
hard disk drive. Sixty-four Corvus volumes were used to store 
approximately 500 phrase tables. During program execution, 

when it comes time to speak a given word, the appropriate 
Corvus volume is made the default volume, the desired phrase 
table is loaded into the Apple, and the desired work within the 
phrase table is sent to the loudspeaker. 

DETAILS ON PROGRAM OPERATION 

A phrase table containing only one spoken word would take 
up at least 3k. Storing only one word in each phrase table 
would not be an efficient utilization of the space on the Corvus 
and it would only be possible to store, under this procedure, 
about 2400 words. Furthermore, there would not be sufficient 
memory available in the Apple-about 32K under this 
procedure-to store information about the location of each 
word on the disk. As a result, it was necessary to store several 
words in each phrase table. With up to 20K being taken up by 
a phrase table, only 15K remained in order to store informa
tion about the location of words on the Corvus. An initial 
attempt was made to determine the exact phrase table a given 
word would be in should it be on the disk. There was not 
sufficient computer memory available to do this. As a con
sequence, the program operates by determining the first of 
several phrase tables a given would be in if it should be on the 
disk. A list of these words on the first phrase table is presented 
to the user. If the desired word has not yet appeared-in 
alphabetical order-user can bring in and examine sub
sequent lists with a single keyboard stroke. 

For every phrase table located on the disk there is a cor
responding text file containing a list of the spoken words in the 
phrase table. The text file, which is only 2K in length, is much 
faster to load into the computer than is a phrase table which 
can be up to 19K in length. When a list of words is shown on 
the TV screen, it is the list from the text file that is being 
presented. The name of the text file indicates the location of 
the corresponding phrase table. For example, a given text file 
might have the name Corvus Volume = 32 --- phrase table 
number = 5. If the individual were to select word 7 from this 
list, the program would then have information that the spoken 
word was located on Corvus volume 32 in phrase table 5 and 
that the desired word was word 7. As each word was selected 
the program would keep track of the location of each spoke~ 
word. At the end of the sentence, the program would use this 
information to load in and present each word. Each text file 
also contains both a forward and a backward pointer. These 
pointers contain information about the name of the preceding 
and the name of the subsequent text file that should be loaded 
in and presented should a given key be pressed. With the use 
of text files and pointers, it was thus possible for the user to 
gain quick access to each of 5000 words, at the same time 
preserving the rather scarce RAM memory. 

REFERENCE 

1. Eulenberg, John, ed. Proceedings of the VOCA Conference, Berkeley,.Cal
ifornia, May, 1980. Artificial Language Laboratory, Computer Science De
partment, Michigan State University, East Lansing, Michigan. 



GRASS3, a language for interactive graphics 

by NOLA DONATO 
Wizard Software 
Chicago, Illinois 

ABSTRACT 

With the advance of technology, graphics devices are be
coming more powerful and less expensive, making interactive 
graphics increasingly popular as a method of man-machine 
communication. Often nonprogrammers playa principal role 
in the design and implementation of graphics applications. 
Interactive graphics requires a high level of feedback both 
with the user and with the hardware. For these reasons; con
ventional programming languages are not well suited for such 
applications. 

This paper describes GRASS3, an interpretive language 
designed as a base for interactive graphics systems. The work 
derives from the author's thesis at the University of Illinois at 
Chicago Circle (UICC)l and similar work done by the author 
for the Bally Manufacturing Corp. 2 Design rationale for the 
language is given, followed by an overview including examples 
and a description of a specific real-time graphics system based 
on GRASS3. 

DESIGN PHILOSOPHY 

The GRASS3 language (GRASS3 stands for GRAphics Sym
biosis System version 3) was designed as a base language for 
development of interactive graphics systems. Although 
GRASS3 bear~ very little resemblance to its predecessor, 
GRASS2,3 much of the interactivity and simplicity which 
made old GRASS so powerful have been preserved in 
GRASS3. The language also borrows heavily from C and 
SNOBOL 4,5 for language design and internal structure. 

One of the most serious drawbacks of conventiona~ pro
gramming languages in the graphics environment is the diffi
culty of tailoring them to a particular device. In most of the 
higher level languages, subroutines are the only feasible way 
to add new features. Consequently, it is almost impossible to 
achieve the communication between hardware and software 
needed to support a real-time application. Even the recent 
efforts at graphics standardization such as the Core System 
are aimed primarily at static devices such as plotters. 

So far, the standard way of solving this problem has been to 
design a special purpose language revolving around a particu
lar device or hardware system. This approach was taken by the 
designers of SMALLTALK (which depends heavily on the 

665 

Int~rim Dynabook6
). GRASS2, a language used by artists at 

UICC,3 revolves around the Vector General refresh CRT. 
GRASS3 is designed to interface easily with specialized 

hardware and software. Depending on what devices it must 
talk to, GRASS3 may require a set of special commands, 
device-dependent variables or even new datatypes. A refresh 
Cathode Ray Tube, for example, needs a "picture" datatype. 
Creation and manipulation of display lists require a special set 
of functions. Devicevariabks are also neededif the S}'stem 
has dials or joysticks. 

The GRASS3 language is designed to make such internal 
rearrangements simple and straightforward. To a large extent 
the language is table driven. Because of this, it is not difficult 
to add commands, datatypes, or even new operators. One can 
define new conversions rules or redefine old ones. Manyexist
ing features (such as floating point support, interactive de
bugging, etc.) can be eliminated simply by recompiling the 
source. Almost all of the system commands can be made to 
dynamically swap in and out when needed. (One can also do 
this with user functions). Thus, GRASS3 can be easily config
ured to meet user specifications. 

Another important feature of GRASS3 is that it is inter
active. Almost anything allowed tn a program may also be 
typed directly on the terminal. A user may "tryout" a state
ment, display a picture or inspect her variables all without 
having to write a program. 

This kind of interaction is necessary for interactive graph
ics. The feedback provided by such a system speeds up pro
gram development and the evolution of a graphics applica
tion. One should not have to go througlL the ~whole cycle of 
updating a source file, compiling, loading, initializing and 
then setting up the proper environment in order to determine 
the implications of a trivial change. 

Interactivity is also essential when a human must be in the 
loop to supply decisions about how the animation is to pro
ceed. Much of computer graphics is visual-=tnenracrnne can
not predict whether one will be excited or bored by a particu
lar effect and it is not capable of making artistic judgements. 
Conversational graphics systems are structured to permit just 
this sort of thing. Thomas Standish comes to the same conclu
sion in his paper on computer animation.7 

Recent trends in home computing show that interactive 
systems are better for beginning programmers. Most commer
cially available home computers use some derivative of BA-



666 National Computer Conference, 1981 

SIC. 8 Ev.en experimental home computers, such as the Inter
im Dynabook, rely heavily on interactive feedback.6 

Interactivity can help overcome the qualities of computer 
languages that are unnatural to the novice user. The immedi
ate response available in an interactive system can surmount 
barriers that make a system difficult to program. For instance, 
both LISP and APL9

,l0 are cryptic languages, yet they are very 
popular in interactive environments. LOGO, a derivative of 
LISP designed especially for naive programmers, was used as 
the base language for a graphics system developed by Abel
son. 11 ,12 

The GRASS3 language is high level, but easy to learn and 
understand as well. Novices do not have to become super 
programmers to tryout their ideas and experiment with the 
system. But as they gain experience they are able to expand 
their use of the more general features. GRASS3 can be useful 
to the naive user with minimal learning and, as she demands 
more powerful capabilities, they can be easily absorbed in 
small increments. This is important because problems in com
puter graphics are often tackled by nonprogrammers like edu
cators and engineers. The designers of GLIDE, a language 
developed for CAD applications, discuss this in their book. 13 

If the graphics language is easy to learn and use, small 
projects can be done without hiring a professional pro
grammer. For large projects, a readable language can allow a 
greater level of understanding and communication be,tween 
designers and programmers. By reducing the gap between 
these two classes, systems can be tailored closely to the re
quirements of individual designers. 

Much of learning involves making generalizations upon 
what one already knows. In learning a new programming 
language, one will often look at examples already known to 
work and modify them to suit a new purpose. If the semantics 
of a language are consistent (that is, operators in expressions 
always behave the same way, expressions are allowed when
ever constants of the same type can be used, etc.) the learning 
process will be faster because the user's generalizations will be 
correct more often. 

Consider, for example, the calculation of a subscript in 
FORTRAN. There are explicit rules governing the form such 
an expression.may take, which may be found in any FOR
TRAN manual. Yet many FORTRAN programs are full of 
statements such as 

K=I-5 
B =ARRAY(K) 

when it is perfectly legal to combine the two (B == 
ARRAY(I - 5». One may argue that, since the restrictions 
on subscripts are documented and consistent, cases like those 
above are programming errors and not limitations in the 
FORTRAN language. But constructions such as the above are 
rarely seen in C programs. Because there are no restrictions 
at all on subscripts in C, it does not occur to programmers to 
worry about whether a particular expression is permitted or 
not. Similar views are expressed by Weinberg in his book on 
the psychology of computer programming. 14 

In addi~ion to being interactive, a graphics language must 
do a certain amount of housekeeping for the user. Most spe
cial purpose languages have a set of high level, nonprocedural 

primitives that free the user from the burden of managing 
details and allow her to concentrate on the real problem. 
ORACLE,15 a relational database system, can do very com
plex queries in one -or two statements.' SIMULA,16 an 
ALGOU7 derivative designed for simulation, supports so
phisticated multi-tasking capabilities. This "behind-the
scenes" management is especially important in graphics 
where data must be displayed as well as generated. 

Part of system housekeeping includes maintaining data
types. High-level datatypes such as strings, arrays, pictures, 
and list structures can be very useful for managing and or
ganizing information. Consider the task of comparing two 
strings, something done often in programming. The C lan
guage does not have a string datatype.4 A string is considered 
as a collection of characters. The following C program will 
return TRUE if the two given strings are the same: 

index =0; 
while (string1[index] = = string2[index]) 

{if(string1[index] = = END) return(TRUE); 
index = index + 1 ;} 

return(FALSE); 

GRASS3 allows the user to directly compare strings. Since 
strings are datatypes, the routine can be reduced to a single 
statement. 

The same idea can be applied to computer graphics. A 
graphics programmer is often faced with displaying a series of 
pictures consecutively on the screen. If she can manipulate a 
picture as a single entity and group it with other pictures in an 
array or list she can trivially solve this problem. But if she 
must first create her own mechanism for dealing with pictures 
as whole objects, the simple display problem becomes a time
consuming programming task. 

Another job the system can take over is memory manage
ment. All languages do this to some degree. Many, like FOR
TRAN and BASIC, have only static allocation. A program 
cannot reclaim memory used by arrays for other purposes (not 
even for different arrays). Others, like PL/1 and C, have prim
itives that will parcel out chunks of a dynamic memory area 
and reclaim them again. The programmer is responsible for 
maintaining the integrity of this area. Finally, there are lan
guages like ALGOL and SNOBOL 4 that manage all memory 
automatically. The user thinks only in terms of the logical 
datatypes. To delete a list of items in PLl1, a subroutine is 
needed: 

PTR= LIST; 
WHILE PTR ! = NULL; 

DO 
TEMP = PTR - > LINK; 
FREE PTR; 
PTR = TEMP; 
END; 

LIST = NULL; 
RETURN; 

In GRASS3 a single statement suffices: 

list = null; 



There are other housekeeping burdens the system assumes. 
Conversions between datatypes are done automatically when
ever possible. The system provides simple mechanisms to in
put datatypes fropl the terminal or disk. User functions can be 
easily designed to accept arguments if supplied and prompt 
for them if omitted. Such things allow a programmer to de
scribe her problem in terms which are closer to her logical 
conception of it. 

GRASS3 is extensible and allows the user to program her 
own commands and configure environments easily and quick
ly. She can create independent subroutines and pass informa
tion between them. A logically clear method of passing pa
rameters and returning values permits her to make extensions 
to the system. Local variables ensure that these extensions 
will be independent of one another. 

User-extensible datatypes like structures and arrays help 
the user build complex constructions from simpler ones. Con
sider the implementation of an animation system. An artist 
typically creates a number of separate frames and displays 
them in a fixed order. The individual animation sequence 
determines how many frames there are and how long each one 
is displayed. If the programmer Can associate a display time 
and duration with each frame and then group the frames 
together in a list, implementing a simple animation system 
becomes much ~asier. ' 

String manipulation facilities also help the user configure 
environments. String manipulation is especially important for 
communication with the user on a terminal. If capabilities 
exist in the language to facilitate parsing, a programmer can 
develop a tailored sub-language whose syntax need not be a 
derivative of the syntax of the base system. 

GRABS3 also has many easy-to-use debugging aids. De
bugging tools include the ability to set breakpoints, examine 
variables, patch code, and trace a program's flow. Clear and 
plentiful error messages are part of this, too. Most pro
grammers, especially novices, spend the majority of their time 
debugging. GRASS3 debugging features make programming 
less painful and can significantly decrease the time spent de
veloping an application. 

LANGUAGE OVERVIEW 

The main way of communicating with GRASS3 is ~o type to 
it on the terminal. You can ask it to print information, create 
and run programs, or read files off the disk. Many statements 
are commands requesting the system to do something. For 
example, to print something on the terminal, you can type 

print "The print command prints" 
print "things on the terminal." 
print 1,2,3 

Other statements ask GRASS3 to evaluate an expression and 
perhaps save its value. 

a=2 t 3 

And, of course, GRASS3 can evaluate expressions and use 
their results with a command. 

GRASS3, a Language for Interactive Graphics 667 

print "The sum of 2 and 3 is" ,2 + 3 
print "The value of a is" ,a 
print "The average of 1 thru 5 is" ,(1 + 2 + 3 + 4 + 5)/5 

Expressions need not involve only numbers. There are 
several other datatypes which can also be used in expressions. 

integer 
float 
string 
array 
node 
picture 
process 

16 bit integers 
32 bit floating point 
variable length strings 
N -dimensional arrays 
programmer-defined datatypes 
device dependent 
program which is scheduled 

Most of the operators (like " + " and " - ") operate on num
bers. A few, like "$" (concatenation) or "@" (indirection), 
need one of the other datatypes to operate on. In general, 
GRASS3 will attempt to convert whatever it is given to the 
type it wants. 

print 1 + 2, 'I' + 2, 'I + 2' 

The statement above prints "3 3 1 + 2" on the terminal. In the 
first case, 1 and 2 are added and the result (integer 3) is 
converted to a string and printed. The second case requires 
the string 'I' to be converted to integer 1 before the addition. 
The last case is already a string and is printed as is. 

Most of the commands need their arguments to be of a 
certain type, too. For example, the print command will only 
print strings. Since numbers (integer and floating) can be 
converted to strings, it can print numbers or the results of 
expressions involving numbers, too. ~ut the print command 
cannot print arrays, nodes or pictures. 

To do complicated things you have to write a program. 
Programs are really the same as strings. To create a program, 
you just define a string containing the commands GRASS3 
must execute. To run it, simply type its name. 

hello = [print "howdy"] 
hello 

The example above creates a program called hello with a 
single print command in it. When executed (by the second 
statement above) "howdy" is printed on the terminal. There 
are four sets of string delimiters-single quotes, double 
quotes, square brackets and curly brackets. The quotes 
(" and ') may not be nested. The brackets ([] and {}) may be 
nested so long as they are paired. 

You pass arguments to programs the same way you do to 
system commands. A program gets its arguments by using the 
input command. ' 

max = [;return the maximum of 2 arguments 
input int,A,B 
if A> B, return A 
return B] 

In the example above, the input command fetches the next 
two arguments to the program, converts them both to type 
integer and stores them in the variables A and B. The return 



668 National Computer Conference, 1981 

command returns a single value (A or B) depending on their 
relative magnitudes. 

The prompt command can be. used in conjunction with 
input to provide the program with a means of prompting for 
arguments which were not supplied. 

max = [;return the maximum of 2 arguments 
prompt "enter first value" 
input int,A 
prompt "enter second value" 
input int,B 
return A * (A> B) + B * (A < = B) ] 

The alternate version of max above will prompt the user for 
any argument that is not supplied. She may then enter it on 
the terminal and the program will proceed. Note that the 
relational operators « > < = > = = = ! = ) can be used 
in expressions with other operators. Any line starting with a 
semicolon is considered a comment and ignored. 

There are two types of names in GRASS~ynamic and 
fixed. Fixed names are one or two characters long and may 
only have one kind of datatype associated with them. For 
e~ample, fixed names a,b, .. . ,z can only have integer values. 
FIxed names fa,fb, ... ,fz can only be floating point. De
pending on your system there may be names dO,d1, ... fordials 
and jx,jy,jz for joysticks as well. 

Dynamic names can be up to seven characters long and can 
be assigned any kind of data. No declarations are needed in 
GRASS3. One simply assigns a value or expression to a name 
as needed. When a new value is assigned, the old value is 
deleted. 

Dynamic names that begin with a lower case letter are 
known throughout the system to all programs. Those that 
begin with an upper case letter are local. If a local name is 
used in a program, it is deleted when that program exits. This 
allows programs to use the same names without confusion. 

Transfer of control in GRASS3 can be done with the goto 
command and labels, or by the more elegant structured con
structs like while and do. The following program prints the 
values of an array. 

prompt "Which array" 
input array ,ARRAY 
1=-1 
S = size(ARRAY) 
while + + 1< S, print I,ARRAY(I) 

Statements may also be grouped within brackets as illustrated 
in the following loop, which prints the types of i~s arguments. 

do[prompt "enter argument" 
input value,ARG 
if ARG = = " ,break 
TYPE = type(ARG) 
if TYPE = = "array" ,TYPE = $" of" $ type(ARG(O» 
print "Type is" ,TYPE 

] 

Some explanation is in order here. The do command is like' 
while except that the test (if any) is done at the end of the 
loop. Using value in the input command allows any type of 

argument to be fetched. The type command returns a string 
giving the type of its argument. Note that array arguments are 
further inspected as to the type of their elements. When a null 
argument is gotten, break is used to exit the current loop. 

For beginning programmers, GRASS3 has some nice fea
tures to make programming easier (and more enjoyable). 
First, there are interactive helps. If a user forgets the syntax 
or arguments of a command, she simply types help followed 
~y the command name and GRASS3 responds with a descrip
tIon of the command and examples of how to use it. You don't 
have to look in the manual if you forget what a command does 
or how to call it. 

Second comes interactive debugging. When GRASS3 finds 
something wrong, (it is requested, say, to do something it 
can't do or the system runs out of some resource), an error 
message is printed on the terminal. If this error occurred 
inside a program, GRASS3 puts that program into debug 
mode. When in debug mode, the normal "*,, prompt is re
placed by "#" to let the user know she can issue debugging 
c?mmands. With the debugger, the user can set breakpoints, 
smgle step, trace program execution, and even make simple 
patches. The edit command (which invokes the GRASS3 text 
editor) can also be used in debug mode. In addition to debug 
directives, the user can still issue any other GRASS3 com
mands, too. If one is not absolutely sure a program is correct, 
the debug command can be used to place the program in 
debug mode before an error actually occurs. 

G RASS3 can be configured for small systems where memo
ry is tight using the' automatic swap feature. Some of the 
GRASS3 commands are not resident-they live on the disk. 
When a nonresident command is requested, GRASS3 will 
automatically read it off the disk and then delete it when it has 
finished execution. The user can request some of her own 
programs to automatically swap off the disk, too. The keep 
command allows a nonresident module to remain in memory 
after it has finished execution. Keep can speed up programs 
where a swapping command is used repeatedly or in a loop. 
. One of the most powerful features of the G RASS3 language 
IS that the user can run two or more independent programs at 
the same time. For example, suppose we have already written 
a program called walk, which makes a little person walk 
across the screen. It accepts arguments telling it where to start 
the person and which way she is to walk. On most systems the 
program would have to be completely rewritten if you wanted 
to have two people walking at the same time. In GRASS3 you 
would use the schedule command as follows: 

sched walk,100,10,left 
sched walk,10,10,right 

The walk program can be scheduled twice with different argu
ments to show two people walking. GRASS3 will execute one 
line from the first scheduled program, one line fro~ the next 
etc. to give the illusion that all scheduled programs are run~ 
ning at the same time. 

THE VISION II INTERFACE 

Although the GRASS3 language definition does not include 
graphics prtmitives, the system is designed to make the addi-



tion of new commands and datatypes as easy as possible. The 
VISION II raster graphics system18 is the most recent device 
to be interfaced to GRASS3. The screen is a 256 x 256 array 
of pixels, directly addressable by their X, Y coordinates. Com
mands exist in GRASS3 to draw lines, boxes, and points, 
display text, save areas of the screen on the disk or in memory 
and display them again, etc. A picture datatype and utilities to 
create and manipulate pictures are also part of the system. 

Suppose we have some function describing a particular~ se
quence of X,Y coordinates. It could be algorithmic and coded 
as a program or it could describe some inputs from the outside 
world (joysticks, perhaps). Let us assume the GRASS3 vari
ables x and yare being updated (in real time) according to 
this function. 

If we have a previously created picture, CAR, and we want 
it to move around on the screen according to the path speci
fied by x and y we would code 

sched [plot CAR,x,y,erase 
repeat] 

This would schedule a program to continuously move CAR as 
directed by the variables x and y. Using this method, any 
number of pictures may be moved simultaneously on the 
screen. 

CONCLUSIONS 

Experiments with VISION II and other systems have shown 
GRASS3 to be very powerful in putting together complex 
graphics applications quickly. (The VISION II picture editor 
described by Rocchetti18 was implemented by the author in a 
single evening). The language has proven to be easy to learn 
by a variety of non programmers (several of them children). A 
subset of GRASS3, called ZGRASS, was used by Bally in 
their FUN' N BRAINS home computer system. 2 About half 
of the programs used to demonstrate the above unit were 
written by nonprogrammers (advertising executives) over a 
period of several weeks. The other half were written by the 
developers within the span of a few days. Had the same appli
cations been implemented the conventional way (in assembly 
language), the combined effort would have exceeded many 
man-months. 

Isolation of operating system interface code made it trivial 
to port GRASS3 from UNIX19 to the DEC operating systems. 
This was particularly desirable, since at the time GRASS3 was 
developed UNIX had no real-time primitives. An experienced 
assembly language programmer coded and debugged the RT-
11 operating system interface in under a week. It was running 
under RSX-llM several days after that. Note that the above 
times represent only coding of language features (like file I/O, 
panic traps, etc.). The author does not mean to imply that 
device- or hardware-dependent applications can be ported to 
a new operating system nontrivially. (It would be impossible, 

GRASS3, a Language for Interactive Graphics 669 

for example, to fully support a refresh CRT under UNIX 
without making operating system modifications). 

When GRASS3 was born (1976), the only implementation 
language that spanned all PDP-ll operating systems was 
MACRO-II (PDP-II assembler). Since then, the C language 
has grown in popularity and has been implemented on many 
different machines and operating systems. A portable version 
of GRASS3 (coded in C) is currently being written. The new 
version will have more powerful string manipulation prim
itives and enhanced multitasking capabilities (similar to those 
in the ADA language20 

). We hope that these efforts will also 
yield a GRASS3 compiler, which will produce C or some sort 
of portable macroassembler source. 

Another feature in the works is a picture compiler, which 
will compile a subset of GRASS3 into a form that can be 
loaded and executed by the VISION II graphics processor. 
Thus, picture programs could be created and debugged inter
actively with GRASS3 and finally executed by one or more 
VISION II processors. 

REFERENCES 

1. Donato, Nola, "GRASS~A Base System For Interactive Graphics," 
Masters Thesis. University of Illinois, 1978. 

2. DeFanti, T. A.; Jay Fenton; and Nola Donato, "Basic Zgrass-A Sophis
ticated Graphics Language for the Bally Home Library Computer," Com
puter Graphics, Vol. 12, No.3 (August 1978), pp. 33-37. 

3. DeFanti, T. A. Dissertation. Ohio State University, 1973. 
4. Ritchie, D. M. C Reference Manual. Bell Telephone Laboratories, Murray 

Hill,1974. 
5. Griswold, R. E.; J. F. Poage; and I. P. Polonsky. The SNOBOL4 Pro

gramming Language. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1968. 
6. Kay, Alan and Adele Goldberg. SMALLTALK-72 Instruction Manual. 

Xerox Corporation, March 1976. 
7. Standish, Thomas A., "Remarks on Interactive Computer Mediated Ani

mation," Proceedings of the Ninth Annual VAIDE Meeting, 1970. 
8. Kemeny, John G. and Thomas E. Kurtz. BASIC Programming. New York: 

John Wiley & Sons, Inc., 1971. 
9. Howard, Forrest William. LISP Programmer's Manual. HRSTS Science 

Center, September 1975. 
10. Freeman, Peter. -Software Systems Principles. Chicago: Science Research 

Associates, Inc. 1975. 
11. Abelson, Hal.; Nat Goodman; and Lee Rudolph. Logo Manual. Massa

chusetts Institute of Technology, 1974. 
12. Goldstein, Iran, and others. LLOGO: An Implementation of LOGO in 

LISP. Massachusetts Institute of Technology, June 1974. 
13. Eastman, Charles and Max Henrion. "GLIDE: A Language for Design 

Information Systems," Computer Graphics. Vol. 11, No.2, Summer 1977. 
14. Weinberg, Gerald M. The Psychology of Computer Programming. New 

York: Van Nostrand Reinhold Company, 1971. 
15. Preger, R.L. "ORACLE User's Guide." Relational Software Inc., Menlo 

Park, California, 1980. 
16. Birtwistle, G.M., et al. SIMVLA begin. Auerbach Publishing Co., 1973. 
17. Tanenbaum, A. S., "A Tutorial on ALGOL 68," ACM Computing Surveys. 

Vol. 8, No.2, June 1976. 
18. Rocchetti, R. J., "VISION II-A Small Scale Expandable Graphies Sys

tem," Masters Thesis. University of Illinois, 1978. 
19. Ritchie, D. M. and K. Thompson, ''The UNIX Time-Sharing System," The 

Bell System Technical Journal. Vol. 57, No.6, July-August 1978. 
20. Ichbiah, J. D. et aI., "Rationale for the Design of the ADA Programming 

Language," SIGPLAN Notices. Vol. 14, No.6, June 1979. 





VISION II: A dynamic raster-scan display 

by ROBERT ROCCHETTI 
Wizard Software 
Chicflgo, Illinois 

ABstRACT 

The analog graphics display is one of the triost. fascinating 
devices that computer technology has produced. The fluidity 
and complexity of motion possible with line-drawing displays 
is quite captivating and has initiated many interesting and 
fruitful soft~~re endeavors. 

Unlik~ their analog counterparts, the majority of raster
scan display systems have been capable of producing only text 
or static imagery . Dynamic graphics on raster displays has yet 
to, be explored thoroughly in either the hardware or software 
area. This paper describes a digital video display system archi
tecture with qynam,ic graphics capabilities. The hardware de
sign and. irrtplertleittation derives ftom. th! author's thesis work 
at the Uriiversity of llliilois. 1 

CURRENT DIGITAL VIDEO 
SYSTEM ARCHITEctURES 

A digital video display systetn maintains a digiHll represen
tation of the image in the computer memory, or frame buffer, 
and displays it on a raster-scan cathode ray tube. The ,frame 
buffer may contain the actual screen pixels ()f an encoded 
representation of the picture. Dlspiaying (ot decoding) the 
final image from the frame buffer representation is called 
scan-conversion. 

With a digital display, a picture need not be made up only 
of lines and points. Areas can be shaded, lines can be thick
ened and gray scale or color can be employed. It is precisely 
this rich set of capabilities and potential for realism that allows 
the digital video display to be attractive for dynamic graphics. 

When raster-scan displays first emerged, they had signifi
cant problems to overcome. Screen resolution was limited due 
to the high cost of electronic memory. They were slow because 
of the processing required for scan conversion. Since then, 
memory has become much cheaper, making feaSible systems 
that were impossible a few years ago. 

Scan conversion, however, is still a time-consuming compu
tation. it can be carried out in different ways depending upon 
the representation of the picture before and after the con
version process and the amount of available memory. Various 
scan conversion algorithms may be found in articles by New-

671 

man and Sproull, 'Metzger, and B~rret and Jordan. 2
,3,4,5,6 

Some of the more popular scan coriv~rsion techniques are 
described' below. 

Character mapping is widely used in CRT terminals and 
home computers. It is simple, inexpensive and supports dy
namic motion in a somewhat limited framework. The screen 
is broken up into M by N pixel rectangles, each of which is 
assigned a pointer. The pointer for a position refers to the 
particular member of the character set that will be displayed 
in that position. 

Character mapping is common among alphanumeric video 
terminals because it is ideally suited for displaying text. 7 By 
generalizing the charaCters, the class of possible images can be 
greatly enriched.8

,9 Systems exist that can display text lines or 
binary pictutes. 10 Many home computers provide graphics
orit:nted chatacter sets. two examples of this are the Commo
dore PET and the Radio Shack TRS-80. The Exidy SOR
CERER and the ISC Intecolor have programmable character 
generators with which the user can define her/his own charac
ters. 

Even though they ate not strictly limited to text, most char
acter mapping systems do not have ehotIgh memory to assign 
a unique pointer to every character position on the screen. 
With these systems, it is possible to define static scenes that 
are too complex to display. Since the display may only be 
changed by updating character pointers, motion is not fluid
it is limited to character boundaries. 

One way to enhance character mapping and provide fluid 
motion is to predefine a set of hardware registers that may 
contain objects and their X, Y coordinates. This scheme al
lows motion on bit boundaries but restricts the number of 
objects. A general implementation of this scheme with a rea
sonable number of objects of medium complexity would be 
very expensive. 

Another alternative to character mapping refreshes the 
screen directly from a coded picture definition. This architec
ture is very similar to the use of structured picture definitions 
with vector displays. 

Several recent systems have been based on run-length en
coding, which provides an efficient storage technique for sim
ple graphic displays and is easily decoded by a'raster-scanning 
refresh processor. 11,12,13 There are also high-performance sys
tems which use pipe lined processors to produce real-time 
moving images from three-dimensional edge and surface 



672 National Computer Conference, 1981 

simulation can even remove hidden surfaces and do smooth 
shading. 14 The Interim Dynabook15

,16,17 uses a double buffer
ing architecture to separate the image expansion and raster
scan·refresh processes. Although pictures are stored in highly 
-.Compact fQrm, the system has an expeI!sive scan converter and 
a large amount of memory devoted to storing three represen
tations of the picture. Because the special purpose hardware 
needed to decode the condensed digital representation is very 
expensive, general implementations of the coded picture 
scheme are either severely limited or still in the experimental 
stage. 

The last scan conversion scheme we will discuss is bit map
ping. In a bit mapping system, scan conversion is done in 
software. The picture is displayed directly from the frame 
buffer and requires minimal hardware. Arbitrary shapes may 
be easily defined and displayed at any X, Y position. Although 
it is very flexible, bit mapping has major drawbacks· when 
portraying real-time motion. The amount of data to be pro
cessed is much greater· than with any of the previously dis
cussed methods. Consequently, only small objects may be 
moved quickly if current processor speeds are considered. 

VISION II ARCHITECTURE 

VISION II is a mUltiprocessor raster graphics display capable 
of supporting a high-level programming language. It is de
signed to be inexpensive but able to operate in real-time for 
a significant range of dynamic graphics applications. 

The current system uses two processors linked by a 9600 
baud serial port. A DEC PDP-11ID3 functions as a language 
processor to provide communication between the user and the 
display. It is responsible for terminal I/O, disk 110 and run
ning applications programs. It also supports an interactive 
graphics language called GRASS3. The PDP-11 family of 
computers was chosen because of the wide range of com
puting power and the hardware/software compatibility be-

. tween all of its members. 18 
Software scan conversions (plotting boxes, lines, etc.) is 

performed by a Z80 microprocessor.19 Simple programs in
volving display functions are also handled by the Z80. Al
though the most powerful configuration uses both processors, 
the two components may operate independently. For exam-

. pIe, the Z80 by itself allows the graphics processor hardware 
to emulate devices such as those discussed in the first section. 

The frame buffer is a 256x256 pixel array. The number of 
bits per pixel is determined by how many planes of video 
memory are installed in the graphics unit. Each pixel is 
formed by fetching one bit from each bank. Thus the Nth bit 
of a pixel can be found in the Nth memory bank. The diagram 
below shows a 4 bit per pixel system. 

The frame buffer can be accessed by the graphics processor 
as normal memory. Each bank is 8K bytes. Changing a byte 
will modify one bit of 8 consecutive pixels. The first bank 
contains the least significant bit of all pixels. Successive banks 
are higher order pixel bits. 

Pixels can also be accessed by specifying their X,Y coordi
nates. A single pixel can be modified independently of other 
pixels on the screen. This access method touches one bit of 
each bank simultaneously. 

OK bankO 

-----1- I 
1---1---1---1---1 --- --- --- ---

4 bit pixel 

Each 4 bit pixel is formed by 
fetching one bit from each bank. 

o 2... 30 31 

o ---------------------
32 

64 .------>x 

1 
y 

screen co-ordinate system 
vs. memory addressing scheme 
(byte address) 

The bit-map technique was chosen because it is the most 
flexible display mechanism. Because the X, Y pixel mapping is 
done in hardware, the graphic processor is not bogged down 
with isolating individual bits in memory. Consequently, dis
plays and transformations are faster. A similar technique was 
used at Bell Telephone Laboratories in Murray Hill, New 
Jersey. 20, 21, 22 

In addition to the X, Y pixel mapping, VISION II has 
another important hardware assist called pixel mapping to 
further reduce processor overhead. Each pixel value under
goes a state transformation to another pixel value when the 
screen is refreshed b}' the hardware. This refresh rate may be 
set by the user. If the new state of a pixel is mapped to its 
former value, all of the pixels with that value will remain 
unchanged on the screen. If it is different, all such pixels 
assume the new state during the next refresh. 

By mapping pixels to successively dimmer colors or gray 
levels until the background is reached, an object will appear 
to decay without processor intervention. Unlike coded picture 
definitions described earlier, the pixel-mapping mapping 
technique does not restrict picture definition or movement. It 
is also simple and inexpensive to implement in hardware. 
Pixel mapping can be used to emulate a refresh CRT (albeit 
a slow one) such as a Vector General. 23 It is also flexible 
enough to produce a variety of other effects which would 
otherwise consume considerable processor time. 

THE GRAPHICS PROCESSOR 

The VISION II graphics processor consists of a Z80 CPU, 
ROM (permanent programs), RAM (scratch-pad area), a 
frame buffer and a serial 110 port for communication with the 
language processor. Ports to peripherals such as joysticks, 
dials, a data tablet and buttons may be added easily. Below is 
a block diagram of the VISION II system. 

In the current configuration, ROM contains the SDB-80 
operating system and debugger. The graphics processor soft
ware and data areas (character sets, variables) reside in RAM; 
it will eventually be moved to PROMS. The frame buffer, of 
course, contains the objects being displayed. Communication 
with the language processor is via a full-duplex asynchronous 
serial port. 

The graphics processor scan conversion software has the 
following capabilities: 



�
-------� Q-BUS (asynchronous) 1----1 

LS1.-11 /---------.-------------- ------- ---------------\ bus 
16 bit \---------------------------------------------/ term 

------- /\ /\ /\ ----
II II II 

I --~~~~--I I--~~:~--I I--~::~--I memory TTY port 1/0 port 
-------- -------- --------

/\ 

" I --~:r;;-I/---------------~~~~~~:~!~~~~~~~-------~~-----\ 8bij \---------------------------------------------/ ------- /\ /\ /\ 
. II II " 

I --~:~~--I I--~:~~--I I--~;p~;--I 
memory buffer deVices 

-------- -------- --------
II 
\I 

composite video 
(NTSC standard) 

1. Plot a point (at arbitrary X, Y) of a given color; 
2. Draw an arbitrary rectangle in any color anywhere on 

the screen; 
3. Draw a line of any color between any two points; 
4. Save an arbitrary rectangle on the screen in local 

memory; 
5. Plot a previously saved rectangle anywhere on the 

screen; and 
6. Display a text string anywhere on the screen. 

There are several plot modes possible. A pixel can be 
changed to a given color. It is also possible to conditionally 
modify a pixel depending on the color it contains. For exam
ple, one can tell the graphics software to only plot a pixel if the 
new color is greater (numerically) than the color that was 
there before. This can be used to have one object pass over 
another. One can exchange a pixel or rectangle on the screen 
with one in scratch memory. 

The basic primitives above can be combined in pictures. 
The graphics processor can be asked to display a list of such 
pictures continuously, i.e. it can refresh the VISION II 
screen. Associated with each picture is a plot mode and X, Y 
position. The graphics processor has commands to change the 
attributes of a particular picture. For example, changing the 
X, Y position of a picture will cause it to be displayed at- a 
different spot when it is refreshed. If pixel mapping is en
abled, the picture will be automatically erased. 

THE LANGUAGE PROCESSOR 

The VISION II language processor is a DEC PDP-ll. Choos
ing a PDP-ll gives the widest range of computing power 
possible while still permitting hardware and software com
patibility. All members of the PDP-ll family have the same 
instruction set. Consequently, software that runs on a small, 
single user LSI-ll will also run on a multi-user VAX-llI7S0. 

GRASS3, the language interpreter, is implemented for 
most of the PDP-ll operating systems.24The language is easy 
to learn and use, yet powerful enough to do high-level appli
cations. Although the system is interpretive, a compiler can 
be invoked to speed up individual programs. A user may 

VISION II: A Dynamic Raster-Scan Display 673 

schedule two or more routines to run in parallel. In this case, 
GRASS3 executes one line from each in a round-robin 
fashion. Other features include interactive debugging, file 
I/O, error trapping and on-line helps. 

The GRASS3 base system is device-independent, but a 
software interface for the VISION II graphics unit has been 
implemented. There are commands to draw boxes, lines, 
points and text strings. A user may save an arbitrary rectangle 
on the screen and display it at any X, Y coordinate. Pictures 
composed of the basic primitives can be linked to GRASS3 
variables to control their screen position. Special variables 
allow access to joysticks, dials, etc. Because it is easy to add 
commands to the language, one can write a specialized func
tion in assembler and call it as system directive. 

Communication with the ZSO graphics processor is via a 
serial port. When a user issues a graphics command, informa
tion is sent to the ZSO telling it what to do. When the graphics 
processor has finished its task, it sends confirmation back to 
GRASS3. GRASS3 will wait for confirmation before sending 
another display directive. 

Updates on the analog input devices (joysticks, dials, etc.) 
are sent to the language processor at intervals. The graphics 
processor uses one of its internal timers to determine when to 
send the information. Updates will not be sent if none of the 
devices have changed since last transmission. 

The VISION II interface consists of several new GRASS3 
commands (written in assembly language) and a set of utility 
programs (written in GRASS3). The new commands allow a 
user to directly manipulate the display: 

point X,Y,M 
box S,Y,XL,YL,M 
line X,Y,M 
text X, Y ,M,S 
snap X,Y,XL,YL 
display X,Y,M 
xchg X,Y,M 
move pix,X,Y,M 

plot or read a point 
draw a box 
draw a line 
display a string of text 
save a picture 
display a picture 
exchange pictures 
move picture dynamically 

Data may be displayed in a variety of modes (the M argument 
above). In addition to direct plotting, many btt operations 
such as exclusive or, complement, etc. are provided. For ex
ample, the following program will exclusive-or random boxes 
on the screen forever. 

box ran( -128, 128),ran( -12S,128),ran(lO,40),ran(1O,40] 
,5 
repeat 

The move command links a picture with GRASS3 variables 
that, when updated, control its movement. A picture can be 
a simple screen rectangle, 01' a collection of basic primitives 
such as boxes, lines and text. Associated with each picture is 
an X,Y position and a display mode. If we wanted to move a 
previously created picture called cursor based on the joystick 
variables we would type: 

move cursor ,jx,jy ,5 

Whenever the joystick was moved, the picture would follow its 
movement on the screen.-



674 National Computer Conference, 1981 

A set of utility programs which use the VISION II com
mands have been developed to facilitate the creation and ma
nipulation of pictures as objects. Because they are written in 
GRASS3, these programs are easy to understand and modify. 
Although they are useful as tools, they also make excellent 
tutorial examples for learning VISION II. 

zinit 
zalloc 
zfree 
zmap 
save 
putdsk 
getdsk 
scale 
reflec 
draw 

initialize Z80 memory 
allocate block of Z80 memory 
free previously allocated block 
print Z80 memory map 
save picture from screen in Z80 memory 
save picture on disk 
get picture from disk 
make. picture bigger, smaller 
reflect picture about axes 
picture "editor" to create pictures 

Pictures (rectangular screen areas) may be saved in the Z80 
memory (graphics processor) or in the PDP-1! memory (lan
guage processor). If a picture resides in ZSO memory, dis
playing it is fast but manipulating it from GRASS3 is slow. 
This is because the picture does not have to be sent to the 
graphics processor before it is displayed-it is already there. 
To get at it from GRASS3, the pixels must be accessed indi
vidually with the point command. Keeping a picture in the 
PDP-ll memory requires more space but allows straight
forward manipulation of individual pixels without changes to 
the screen. Displaying such information, however, is very slow 
because the pixels must be plotted one at a time. The utility 
programs can deal with pictures in either place and can trans
fer pictures back and forth between the Z80 and the PDP-ll. 

To create pictures of any complexity, the draw program can 
be used. With draw one can move a cursor of arbitrary size 
around the screen using the keyboard or joystick. By combin
ing draw and scale, a picture can be created at low resolution 
with a larger cursor and scaled down to a higher resolution. 
This feature is useful for creating small, detailed objects such 
as members of a character set. 

After a picture is created, it is easy to manipulate it with 
GRASS3. For example, to move a picture of a car across the 
screen one would write: 

do { 

} 

draw 
... draw the car ... 
car = save(x,y,lO,5) 

disply car,x,y,l 
box car,x,y,lO,5,O 
x=+l0 
repeat 

;draw the car 

;save lO by 5 car 

;display it 
;erase it 
;move it 
;keep doing it 

By using arrays, it is possible to move the car along a prede
termined path. In the program below, successive coordinates 
are sorted in a two dimensional array and used to move the 
car. 

next = array(integer,99,1) ;array of X,Ys 
... store X, Ys in array ... 
S = size (next) ;how many? 

{I = - 1 ;start at Oth pair-
while++I<S,{disply next 
(I,O),next(I,l),l,car box x,y,lO,5,O} 
} 
repeat ;wrap around path 

} 

One of the most powerful features of GRASS3 is that two 
or more independent programs can run at the same time. For 
example, suppose we want to further develop the program 
above to accept the picture of display and the array of points 
as arguments. Let us define a picture of a Volkswagen Beetle 
and an array of points describing a figure 8. Thus we can move 
the beetle picture in a figure 8 with the command below. 

drive beetle, fig8 

To move a pinto in a figure 8, we would type 

drive pinto, fig8 

On most systems, our drive program would have to be com
pletely rewritten if we wanted to move both the Beetle and the 
Pinto at the same time. In GRASS3 one would use the sched
ule command: 

sched drive"beetle,fig8 
sched drive"pinto,fig8 

The drive program can be scheduled twice (or more) with 
different arguments to show two cars moving. GRASS3 will 
execute one line from the first scheduled program, one line 
from the next, etc. to give the illusion that all scheduled pro
grams are running at the same time. Note tha~ if you wanted 
to make the seat on the Beetle eject and the Pinto explode 
whenever they collided it would require extra programming. 

DISTRIBUTED DESIGN 

If you were to poll a group of computer hobbyists on how to 
increase the power of a particular microcomputer system, you 
would most likely get two suggestions, namely "add memory 
and I/O devices" and "substitute a faster processor with a 
more powerful instruction set." If someone suggested "add a 
few more processors," he/she might draw stares of disap
proval. 

There are few examples of distributed processing as applied 
to digital display devices. All too often the solution to scan 
conversion speed problems has been to increase the complex
ity (thereby reducing the generality) of the hardware or im
pose limitation-s on the pictv.res or transformations possible on 
the system. 

With the VISION II system, not only can a graphics pro
cessor support several frame buffers, but multiple graphics 
processors can be attached to a single language processor. 
Connecting the various modules in different configurations 
allows the VISION II system to be tailored to a specific appli
cation. Graphics processors can be added to control different 
groups of objects, thereby alleviating speed problems. The 



generality of pictures and motions is ~ot affected because scan 
conversion is still done in software. 

For example, consider the problem of displaying geolraphic 
maps and panning over landscapes. Each feature (e.g., rivers, 
cities) CQuid be assigne<,i to a graphics processor. The o~tput 
of the processors could then be merged to display the whole 
map. With this approach, a feature can be enhanced or elim
inated independently of the others. Synchronization would be 
controlled by the language processor. 

By using a larger language processor in a timesharing envi
ronment, many graphics units can be handled simultaneously. 
This approach would be useful for an interactive educational 
system. Lessons could be written in GRASS3. Each student 
would have his/her own terminal and graphics unit but would 
be able to communicate with others through a common data
base. 

Because scan conversion is in software, VISION II can 
easily be programmed to emulate other systems. By changing 
the graphics processor software, the display unit can behave 
like a vector plotter, incremental plotter, plasma panel, CRT 
terminal, etc. The VISION II display can thus be used with 
existing software packages. This allows users to run software 
already written with little or no modification. 

CONCLUSIONS 

Experience witp VISION II has shown that dynamic graphics 
is possible on a raster-scan display with relatively simple hard
ware assist. Several small objects can be moved simulta
neously with somewhat fluid motion on the current system. 
Increasing the speed of the graphics processor CPU could 
improve this. The Z80 currently runs at 2 MHz and could be 
replaced with a 4 MH~ version. It could also be replaced with 
one of the newer, faster 16 bit microprocessors which have 
recently been developed. . 

Software on the VISION II system evolved gradually. Ini
tially the software was very primitive. The graphics processor 
could plot points, lines, and boxes, and the GRASS3 interface 
merely provided these capabilities to the user. The next phase 
was to allow the qser to define arbitrary screen rectangles, 
save them, and display them. This was still essentially static 
graphics, since movement could be achieved only in a very 
procedural way and was not at all fluid. 

The most recent software development allows the graphics 
processor to emulate a display list processor. It maintains a 
display list in local memory and constantly refreshes screen 
mem,ory. Each picture has an X,Y position associated with it, 
which may be updated by the language processor. If the pic
ture's 'position has changed since it was last refreshed, it is 
redisplayed by the display list processor. Note that it does not 
have to be erased first-the pixel mapping feature takes care 
of this. In this way, the graphics pro~ssor looks like a (slow) 
refresh CRT. Admittedly; the number and complexity of the 
objects that may be moved in this way is not compara.ble to a 
vector display, but neither is the cost. 

It is worth mentioning. h~re that the generality of bit map
ping more than offset the increased processing time necessary 
for movement of object~. Becau:se the system is bit mapped, 

VISION ~I: A Dynamic Raster-Scan Display 675 

a user qm define an arbitrary picture on the screen easily and 
move it to any position. Pictures can be scaled, rotated and 
otherwise transformed. There is no limit to the size of a pic
ture (although defining pictures larger than the screen is diffi
cUlt) Qr to its complexity. 

VISION II has proven to be easy to configure and expand. 
The first versipn had 1 bit per pixel (one plane of memory) 
and a resolution of 256 by 256. Two other memory planes were 
added to the system-it now has 3 bits per pixel. The next 
version will have 4 bits per pixel and a resolution of 512 by 
512. 

Experience with naive users ~as shown that more commu
nication between the language processor and graphics pro
cessor is needed. The graphics primitives are nonprocedural 
and do much of the behind-the-scenes work necessary to re
fresh the display. For this reason, it is not straightforward to 
synchronize the movements of one object with the movements 
of another. To do this currently places the burden on the 
programmer and is beyond the ability of most beginners. 

Future plans for the software include a GRASS3 picture 
compiler which will translate a subset of the GRASS3 lan
guage into a form executable by the graphics processor. The 
user will then be able to use GRASS3 control structures in 
pictures to initiate or synchronize movement. GRASS3 multi
tasking primitives are also being enhanced. Process control 
capabilities such as those of the ADA language25 are being 
considered, along with a general message-sending facil~ty to 
communicate between GRASS3, multiple graphics processors 
and the host operating system. 

REFERENCES 

1. Rocchetti, Robert, "VISION II: A Small Scale Expandable Graphics Sys
tem," Master's Thesis. Univ~fsity of Illinois, 1980. 

2. Newman, WilUam M., and Robert F. Sproull. Principles of Interactive 
Computer Graphics. McGraw-Hill, 1973. 

3. Metzger, Richard A., "Computer Generated Graphics Segments in a 
Raster Display," Proceedings of the SJCc. 1969. 

4. Jordan, B.W. Jr., and R. C. Barret, "A Scan Conversion Algorithm with 
Reduced Storage Requirements," Communications of the ACM. Vol. 16, 
No. 11 (November 1973). 

5. Barret, R. C., and B. W. Jordan, Jr., "Scan Conversion AI~orithms for a 
Cell Organized Raster Display," Communications of the ACM. Vol. 17, 
No.3 (March 1974). 

6. Thornhill, D. E., and T. B. Cheek, "Raster-Scan Tube Adds to Flexibility 
and Lower Cost of Graphic Terminal," Electronics. February 1974. 

7. Articles ()O theModel2640A Interactive Display Termi~al Family. Hewlett
Packard Journal. June 1975. 

8. Jordan, B. W. Jr., and R. C. Barret, "A Cell Organized Raster Display for 
Line Drawings," Communications of the ACM.Vol. 17, No.2 (February 
1974). 

9. Articles on the Tektronix 4925 Computer Display Terminal. Telescope. Vol. 
10, No.1, 1978. 

10. B~kett, Forest, and Leonard Sustek, "The Design of a Low Cost Video 
G;aphics Terminal," Computer Graphics. Vol. to, No.2 (Summer 1976). 

11. Hunter, Gregory M., "Full~Colour Television from the Computer, Re
freshed by Run-Length Codes in Main Memory," Technical Report Num
ber 182, Computer Scie!lce Laboratory, Princeton University, April 21, 
1975. 

12. Laws, A., and W. M. Newman, "A Gray-Scale Grapbic Processor Using 
Run-Length Codil1g," Proceedings of the Conference on Computer Gr.h
ics, Pattern Recognition, and Data Structure, IEEE ComplJ.t,er Society. May 
14-16, 1975. . 



676 National Computer Conference, 1981 

13. Myers, Allan J., "A Digital Video Information Storage and Retrieval Sys
tem," Computer Graphics. Vol. 10, No.2 (Summer 1976). 

14. Rougelot, R.S., "The General Electric Color TV Display," Pertinent Con
cepts in Computer Graphics. University of Illinois Press, 1969. 

15. Kay, Alan. Presentation at the First Annual Conference on Computer 
Graphics and Interactive Techniques, Boulder, Colorado, July 1974. 

16. Learning Research Group. Persollal Dynamic Media. Xerox Palo Alto 
Research Center. 1976. 

17. Baecker, Ronald M., "A Conversational Extensible System for the Anima
tion of Shaded Images," Computer Graphics. Vol. 10, No. 2 (Summer 
1976). 

18. Digital Microcomputer Processors. Digital Equipment Corp., 1979. 
19. SDB-80 Software Development Board, Operations Manual. Mostek Inc., 

May 1977. 

20. Noll, Michael A., "Scanned-Display Computer Graphics," Communica
tions of the ACM. Vol. 14, No.3, March 1971. 

21. Denes, Peter B., "Computer Graphics in Colour," Bell Laboratories 
Record. Vol. 52, May 1974. 

22. Denes, Peter B., "A Scan-type Graphics System for Interactive Com
puting," Proceedings of the Conference on Computer Graphics, Pattern 
Recognition, and Data Structure, . IEEE Computer Society. May 14-16, 
1975. 

23. "Vector General, System 3 Reference Manual." Vector General Inc., 1974. 

24. Donato, Nola. "GRASS3-A Base System for Interactive Graphics." Mas
ters Thesis. University of Illinois, 1978. 

25. Ichbiah, J. D., et. aI., "Rationale for the Design of the ADA Programming 
Language," SIGPLAN Notices. Vol. 14, No.6 (June 1979). 



The development of the reactor safety film 

by NANCY N. SHEHEEN and PATRICK J. HODSON 
Los Alamos Scientific Laboratory· 
Los Alamos, New Mexico 

ABSTRACT 

The first computer-generated film of LASL's Reactor Safety 
efforts was developed using the ANIMATE framework, a 
program that adds visual capabilities to MAPPER. Numerous 
software limitations had to be overcome within a very limited 
production schedule. A significant achievement was the 
15,OOO-vector-per-frame sequence depicting a pressurized wa
ter reactor core with parts flashing while pumps circulate fluid 
through the system. 

INTRODUCTION 

In August of 1978, the Energy Division of the Los Alamos 
Scientific Laboratory (LASL) was asked to participate in the 
Seventh Annual Energy Technology Conference to be held in 
Washington, D.C., in March of 1979. Subsequent meetings 
regarding our contribution- crystallized the idea of presenting 
an overview of LASL's Reactor Safety efforts using the very 
computers on which we develop large and sophisticated codes 
to evaluate postulated accidents as well as actual occurrences 
in nuclear reactors. 

Visual sequences are often used by the Reactor Safety ana
lysts for presentation of technical data; however, these usually 
present only singular concepts and are limited to highly tech
nical data. Before the present work, no attempts had been 
made to develop computer-generated technical material into 
educational form. Using the software packages MAPPER, 
ANIMATE, and ANIPLT developed here at LASL, we cre
ated a film about our Reactor Safety efforts. 

The following hardware was used in the development of the 
film: a Tektronix model 4014-1 graphics terminal, a Tektronix 
model 4954 tablet, a CDC-7600 computer, and an FR-80 mi
crofilm recorder. The personnel irivolved included a senior 
programmer, a data analyst, a technical writer, and a graphic 
artist in addition to program sponsors who served as technical 
advisors. 

*The Los Alamos Scientific Laboratory was renamed the Los Alamos National 
Laboratory on January 1, 1981. 

677 

PROGRAM DESCRIPTIONS 

MAPPER is a program created by David A. Dahl, of the 
LASL Environmental Surveillance group. MAPPER reads 
English language-based commands from a file that has been 
generated by the user. These commands tell MAPPER to 
draw boxes, circles, ellipses, characters, complex line seg
ments, etc. on a specified graphics device in a wide variety of 
line format characteristics-. The following is a list of some of 
the options available in MAPPER: 

• six types of label commands, 
• twelve different character styles, 
• color controls, 
• shading controls, 
• projection ports, 
• symbol generation and distortion, and 
• movie controls 

ANIMATE is a program created by David A. Dahl and 
Kenneth H. Rea, also with LASL. ANIMATE reads a spe
cially constructed movie file and produces an input file. The 
user starts with a MAPPER command file that defines every
thing that needs to be drawn in one frame. Then the user 
modifies this command file using the ANIMATE commands 
and syntax to define how things should be changed from frame 
to frame during a movie sequence. ANIMATE allows the user 
the following capabilities: 

• to switch on or off specified sections of the command file, 
• to overlap switches, 
• to specify how much and in what way specified values in 

the command file should vary from frame to frame, and 
• to specify the number of frames for each sequence 

PROGRAM DEVELOPMENT 

Two new commands were added to the MAPPER program to 
aid in the production of the Reactor Safety movie. The first 
command assists in the drawing of pipes. The user simply 
specifies where the pipes in the reactor are to go and MAP
PER inserts them with speed and precision. The second addi-



678 National Computer Conference, 1981 

tion is a command to assist in drawing wavy lines for the 
simulation of water level and movement. The user specifies 
the X-Y start and stop points, the numbet of points to use in 
drawing the curve, and the type of curve desired. MAPPER 
then draws the wavy line as specified. , 

The ANIMATE program required two modifications. The 
first changes the way ANIMATE handles the frame-to-frame 
variations for specified value~ inside a MAPPER cOmmand 
fiie. The chanJe makes. the frame-to frame :~~ 
on a circular function. This fix Il1akes it easier to do the same 
series of fratne-to-frame variation repeatedly without having 
to specify duplicate variations for different frame periods. The 
se'cond modification to ANIMATE dumps to a file tfie values 
for each switch and variable on a frarne-by-frame i)asis. This 
provides an accurate record of what happened during a se
quertce, of frames so that the user can, with greater eaSe, 
match soundtrack to action. 

To get a t>ttter idea of what happens to certain values during 
a movie sequence, a program called ANIPLt was created. 
ANIPLT reads the ANIMATE dump file cOlitaining the 
frame-by-framevalues and then makes two-dimeitsiofial plots 
of each variable vs. frame number. the fraltle 't1urtlber i~ the 
i axis a~d t~ SWitch or variable is the Y axis. This' tfiAkes it 
very easy to 'see the appro'xitnate cortdition of a particular 
switch or variable at any ftame number in a sequence. 

PROGRAMMING THE FILM'S MAJOR SEQUENCE 

The Reactor Safety flIl'n's maJor seq~nce starts M.th a basic 
drawi~ of a nuclear reactor poWtr pla.nt. The dr~win:t was 
made on a finely meshed sheet of graph paPer. Actual X-V 
locations for each line drawn were manually read from the 
drawing and typed into the computer in a forinat compatible 
with the MAPPER program. Then MAPPER shaditlg and 
color commands were used to set up the diffei~nt c610r tones 
for the various reactor corrtpottents. The col'iuftiUld file .was 
then modified for the ANIMATE program. These lit'odffica
tions included the following: 

• setting up the variables to illustrate pump action, 
• setting up the variables to show water level and wave 

action, 
• setting up a variable to handle the turbine blade rotation 

-at a c06s1ant rate, 
• setting up the variables to control the projection port 

capabilities in MAPPER so that we could zoom in on the 
various reactor coriiponents, 

• setting up the switches and variables for ANIMAtE to 
control the pump actions, , ' 

• setting up a complex switching and shading scheme in the 
command file to give the illusion of water flow in the 
pipes and the reactor vessel, and 

• setting up the switches to control the flashing of thev-at
ious components as they wete being described. 

After the MAPPER. command file had been preplted, it 
was then processed by ANIMATE to generate a command file 
for MAPPER and a file to be postprocessed by ANIPLT. 
When the results from the running of ANIPLT revealed that 

70 
CSTORt RUN 

60 .+ ............... -r--............. . 
SO 

40 

Q::;' 30 ...J 
U 

" 20 

10 

o~----~----~----~----~~--~~--~ 
o 20 40 60 eo 100 120 

F'RRMt NUMBER 
FIGURE l-ANIPL'T pl6iindieafing variance of ohe color. 

This shows the user how ANIMATE chang8d the variable CUt.1 through a 
range of 60 different colors starting at 3() on frime 1. 

all of the variables and' swit~hes were performing correctly, 
the conim~tld file genetated'by ANt'MAfE wis trio. through 
MAPPER to ge~rate a graphics file to be processed by the 
FR.-80 microfilm recorder. After vieWing the film and making 
some corrections and modifications the command file was 
again run through ANIMATE, ANIPLT, MAPPER,_and the 
FR-80 thiCrofilm recorder to ot>taip the final copy of the se
quence. It was then spliced in with many other sequences to 
make the ebtite movie. ' 

PRODUCTION costs 

Th~ originaI1l-1/2~minute film, required 10 bOuts on the Lab
otatory's cDc· 7600s; of this time, 40% was spent on software 
developrtltnt afid on developMent of visu.l concepts. In addi
tion, every sequence required several remakes to obtain ac
ceptable footage. Additional expense wasincurttd because of 
substantial overtime charges, some pri()rity USe of the 76OOs, 
the taping of the narrative, adding it musk track, and having 
the film commercially finalized. 

Approximately eleven man months were required; when all 
relevant ~harges were factored in, the ptoduction costs repre
sented $3400/min. Had animation artists developed the film, 
charges would have ranged from, $4000-$7.500/min. We esti
mate that succeeding projects of this nature would represen.t 
a 50% decrease from the initial expenditure because of the 
experience gained and 'the 'now sigtrlficantly improved soft
ware. In addition, future :Reador Safety film efforts will em
ploy the Energy-Division VAX computers, which may be 
even more cost effective for this kind of work. 

CONCLUSIONS 

Out computer-generated filth evolVed ftom a simple outline 
into a sophisticated and complex medium. It required latge 
amounts of computer resources and extension of the available 
graphics sOftware capabilities. 



Impending deadlines required the abandonment of several 
sequences and concomitant deletions from the narrative. 
Thus, the finalized version is not as originally envisioned. 
Nonetheless, the film was received favorably and we have 
subsequently had numerous requests for copies. This clearly 
reflects the impact of computer-generated animation upon 
viewing audiences. It has shown itself to be a highly effective 
means of communicating technical information to varied audi
ences. We also recognize, its potential as a technical tool for 
translating complex calculations into tangible form. 

ACKNOWLEDGMENTS 

Special thanks are due Micbelle E. Schirru arid Margaret M. 
Scott for their programming support, Vicki Hartford for her 

The Development of the Reactor Safety Film 679 

creative contributions, and Jerry V. Valdez for his work at the 
graphics table. 

We appreciate the assistance of James H. Scott, Michael G. 
Stevenson, James F. Jacksbn, and John C. Vigil who provided 
both technical reviews and managethent support. 

BIBLIOGRAPHY 

No formal document describes the ANIPLT pro~ram. It was 
developed solely to assure the user that switch commands 
were implemented correctly for our ANIMATE film. A sam
ple plot of ANIPLT is attached that shows an. input variable 
vs frame number. For information on MAPPER and ANI
MATE, see David A. Oahl, "MAPPER," Los Alamos Na
tional Laboratory report PIM-2-J5N (March 1979). 





The MODEL/IMAGES2 system: An application of 
computer graphics and three-dimensional geometric 
modeling to the jet impingement problem 

by W.R. WINFREY and S.R. RICKETTS 
Babcock & Wilcox 
Lynchburg, Virginia 

ABSTRACT 

The design of a nuclear power plant requires the consideration 
of many abnormal conditions, including the effects of a fluid 
jet emerging from a postulated break in a high-pressure pipe 
and striking other plant components. This paper describes the 
computer graphics and three-dimensional modeling system, 
MODEL/IMAGES2, which has been used successfully to 
automate the solution of the jet impingement problem. The 
MODEL program is used to construct the targets, using mod
eling techniques such as stacking of graphic primitives, set 
operations, and coordinate operations. The IMAGES2 pro
gram constructs a model of the fluid jet, determines the target 
struck, and computes the impinged areas. The MODELl 
IMAGES2 system has reduced the man-hours required for 
analysis and improved the accuracy and reliability of the re
sults. 

INTRODUCTION 

The design of a nuclear power plant requires careful consid
eration of many abnormal conditions. An important calcu
lation, the jet impingement problem, considers the effects of 
a fluid jet emerging from a postulated break in a high-pressure 
pipe and striking plant components. The portion of the analy
sis of particular interest here is the calculation of the loads 
exerted on the plant components by the jet. The analysis is 
broken down into two parts-an engineering problem and a 
geometric problem. 

• Engineering problem-Computation of break size, 
fluid properties at the break, jet expansion character
istics and dynamic pressures within the jet 

• Geometric problem-Description of target geometry 
and computation of effective cross-sectional areas 

This paper describes a computer graphics system, MODELl 
IMAGES2, which has successfully automated the solution of 
the geometric jet impingement problem. This automation has 
reduced the man-hours required for the analysis and im
proved the accuracy and reliability of the results. 

681 

PROBLEM DESCRIPTION 

The basic geometric problem of the jet impingement analysis 
will be described with the aid of Figure 1. This figure shows a 
typical reactor coolant pump, its supports and restraints, and 
two postulated breaks in the horizontal pipe connected to it. 

Consideration of the break on top of the pipe reveals two 
problems immediately: (1) The geometry of the jet, the 
pump, and the supports and restraints must be described. The 
ideal situation would be to actually construct (three-dimen
sional) mathematical models of these objects and perform the 
calculations on them. (2) The portion of the target actually 
lying within the boundary of the jet must be determined. The 
parts of the target that lie outside the jet boundary are not of 
interest, since they could not be struck by the jet. 

Consideration of the lower break reveals another problem: 
(3) The restraints just below the break are potentially shield
ing the supports on the base of the pump. The computation of 
this shielding requires that the target surfaces be projected 
along stream lines to a projection plane and the projected 
surfaces clipped against one another to account for shielding 
and thus determine the parts of the surfaces actually exposed 
to the fluid. 

Once these problems are resolved, one must compute the 
effective cross-sectional areas of the exposed surfaces, 
which-in combination with the fluid pressures-give the jet 
impingement loads on the targets. Five steps are involved in 
the jet impingement analysis: 

1. Model the targets that are nuclear steam system com
ponents, supports, and restraints. 

2. Model the jet and intersect the jet and targets to deter
mine the portion of the target lying within the jet 
boundary. 

3. Project target surface along stream lines to the projec
tion plane. 

4. Compute the shielding of one surface by another. 
5. Compute the projection plane areas of exposed sur

faces. 

Each of these steps involves a geometric analysis; and, be
cause the problem is three-dimensional, each is nontrivial. 

The major accomplishment of the MODEL/IMAGES2 sys-



682 Nat\onal Computer Conference, 1981 

Figure 1-Reactor coolant pump with postulated pipe breaks 

tern is the ability to do the difficult three-dimensional geome
try and thus perform Steps 1 through 5 straightforwardly. 

Historical Remarks 

Prior to the development of the MODEL/IMAQES2 sys
tem, computation of jet impingement target areas was done 
by hand. In the hand computational procedure, the targets 
were approximated by simple shapes, such as cylinders and 
cubes. In the simplest case, the jet would be approximated as 
a right circular cone. The analyst would derive the equations 
of the curves of intersection (of the cone and the targets), 
project these curves back to a projection plane, and compute 
their areas. 

As an analytical technique, this procedure has a number of 
drawbacks: (1) Many PQwer plant components qmnot be well 
approximated by simple shapes such as cylinders and cubes. 
However, in order to do the intersection describe<;l above, the 
analyst is restricted to geometrically simple shapes. (2) Com
put~tion of the shielding Qf one component by another is 
typically quite difficult: (3) Next-of-a-kind calculation, in
volving a change in the break location or the introduction of 

Figure 2-NucIear steam system component supports and restraints 

a new target requiring shielding, are typically as expensive as 
the original calculation. Little is gained by having done the 
original calculation. (4) The computed loads are often arti
ficially high and must often be multiplied by very conservative 
safety factors, since only very simple geometries can be used 
in the hand calculation. 

Overall, area computation by hand is a tedious, time
consuming, and inaccu.rate process. 

Cylinder 

Corner 

M Reduce. 

Figure ~Piping primitives 



Figure 4-Model for nuclear steam system constructed from piping 
primitives using MODEL 

METHOD OF SOLUTION 

The solution of the problem posed in the previous section is 
achieved by two computer programs, MODEL and IM
AGES2. The modeling of power system components, sup
ports, and restraints is performed by the MODEL program. 
The models, along with certain engineering data, form the 
input for IMAGES2, the program that actually does the area 
calculations. 

t-------flt Duct 

Figure s--.Ouctwork primitives 

The MODELlIMAGES2 System 683 

The MODEL Program I 

The scope of the modeling problem can be appreciated by 
referring to Figure 2. 

The plant components are a mixture of regular shapes (such 
as pipes) and irregular shapes (supports and restraints). Since 
each object in this figure is a potential jet impingement target, 
the modeling program must be capable of representing all 
these shapes. The overall goal then is to construct snathe
matical mod~ls of three-dimensional objects. The solution to 
this problem is ~ubject to a number of constraints. These 
constraints essen'tially guarantee the utility of the models con
structed: 

• The models must be fully three-dimensional. It is not 
sufficient simply to construct different views of an ob
ject, as is done in various computer-aided drafting sys
tems. 

• The models must be amenable to the ready com
putation of basic quantities such as interferences, areas, 
volumes, and centroids. 

• The models must be readily displayed as wire frame 
drawings, hidden line drawings, and cross-sectional 
views. 

• The models must be easy to manipulate by coordinate 
operations, such as rotation, translation, scaling, and 
reflection. 

• The models must be easily constructed from such basic 
information as positIon, orientation, and dimensions. 
That is, one should not transform a tedious manual 
calculation into tedious data preparation. 

The solution t6 the above problem that was chosen is the 
polyhedral approximation of solids. All models built by 
MODEL are combinations of polyhedra. The choice of a 
polyhedral approximation instead of an exact curvilinear sur
face representation invoives a number of-considerations: 

• Polyhedra are among the simplest three-dimensional 
solids to work with. 

• Surface area, volume, and centroid of a polyhedron are 
straightforward to compute. 

Figure 6--Model of heating system ductwork constructed from ductwork 
primitives using IMAGES2 



684 National Computer Conference, 1981 

Object B 

Object A 

AnB 

AUB A-B 

B-A 

Figure 7-IIlustration of set operations involving simple cylinders 

• Computation of the intersection (interference) of two 
polyhedra is straightforward. The intersection of two 
polyhedral surfaces reduces to the intersection of 
planes, a computationally simple process. Intersection 
of two curvilinear surfaces requires the solution of sys
tems of nonlinear equations, a computationally more 
complex process. 

• Polyhedra are easily displayed as wire frame drawings. 
Computation of hidden surface and cross-sectional 
views is straightforward and can be automated. 

• Polyhedra can be easily rotated, translated, scaled, and 
reflected. 

• The ov~rall modeling process using polyhedra is 
straightforward. 

In short, tradeoff of polyhedra versus curvilinear surfaces is 
one of ease of construction and computational power versus 
exact representation. 

The modeling process 

Three basic modeling techniques are implemented in 
MODEL: 

• Graphic primitives 
• Set operations 
• Coordinate operations 

Graphics primitives 

Two basic classes of primitives are supported in the MOD
EL program: the piping primitives and the duct primitives. 
The piping primitives are illustrated in Figure 3 and a model 
of the primary components of a nuclear steam system, built 
with these primitives, is shown in Figure 4. The duct primitives 
are illustrated in Figure 5; and a model of heating system 
ductwork, built with these primitives, is shown in Figure 6. 

For both classes of primitives the basic modeling technique 
is one of stacking. The user specifies a starting point, starting 
direction, and starting dimensions, such as radius for the pipe 
and width and height for the duct. Then the particular prim
itive is specified, along with any additional parameters, such 

Figure 8-Model of concrete shielding built using set operations in MODEL 



Simple Cone 

Complex Cone 

Figure 9-Models of conical jets 

as length for a cylinder and radius of curvature for an elbow. 
The program automatically constructs the data structure for 
the primitive and moves the user to the other end, where the 
user specifies the next primitive and its associated parameters, 
such as a cylinder and its length. The program then constructs 
that primitive and puts it in place. 

Set operations 

The set operations used in modeling are union, inter
section, and difference, as illustrated in Figure 7. These oper
ations may be thought of, respectively, as welding two objects 
together, computing the overlap or interference of two ob
jects, and cutting one object with another. These operations 
supplement the graphic primitives by permitting the user to 
construct odd-shaped objects by welding and cutting prim
itives. 

An example of the application of the set operations is 
shown in Figure 8. The model was made by first unioning a 
block to a large cylinder, then subtracting a number of smaller 
cylinders to make the cuts shown. 

Coordinate operations 

The coordinate operations-rotation, translation, scaling, 
and reflection-are used to change the location and shape of 

The MODE-L/IMAGES2 Symm 68S 

Simple Disc 

Complex Disc 
Figure lO-Models of disc jets 

a model and to build models by exploitation of symmetry. For 
example, the model in Figure 4 was constructed by building 
essentially one-fourth of it directly from piping primitives and 
generating the remainder by reflection. 

The IMAGES2 Program 2 

The actual computation of jet impingement areas is per
formed by the IMAGES2 program. It receives input from the 
user in the form of models constructed by the MODEL pro
gram and data files describing the break and. the jet charac
teristics. The output of the program is a set of effective cross
sectional areas and related geometrical information about the 
targets. 

Two basic types of jets are analyzed: the conical jet (Figure 
9) emerging from a split/guillotine break and disc jet (Figure 



686 National Computer Conferen~, 1981 

Figure ll-Models of pressurizer and support structures 

10) emerging from a limited displacement rupture (circum
ferential pipe break). The axis of the disc jet lie in a plane 
perpendicular to the pipe axis at the break. The axis of the 
conical jet is perpendicular to the plane of the break. The 
cross-section of the conical jet is assumed to be circular. The 
jet models are constructed by IMAGES2 from information 
about the break location, size, and jet expansion angle. 

Sample Jet Impingement Calculation 

Figures 11 through 13 show a sample jet impingement case. 
The targets, a pressurizer, and its support framing are shown 
in Figure 11. The targets were built by the techniques outlined 
in the previous section. Figure 12 shows the targets again, 
viewed from the back side, with the jet Sllp~rimposed. The jet 
is a simple conical jet emerging from a postul;;lted break in the 
upper cold leg of the reactor coolant system. Final,ly, figure 
13 shows the pictorial output of the analysis. The picture 

Figure 12-Models of pressurizer and support structures with fluid jet model 
superimposed (different viewing point from that of Figure 11) 

shows the portions of the targets actually struck by the fluid. 
To understand this picture, one should think of the stream 
lines radiating from the apex of the cone as lines of sight for 
an eye located at the apex. Then this fluid cone is equivalent 

Figure 13-Pictorial output from jet impingement analysis showing 
impinged surfaces 



to a cone of vision, and the visible surfaces are in fact those 
struck by the flQid. Finally, the projected areas are computed 
for the IMAGES2 output. 

SUMMARY 

The MODEL/IMAGES2 system transforms a costly and time
consuming manual calculation into an efficient and inexpen
sive computer calculation. The human error and approxi
mations associated with manual calculations have been elimi
nated. Next-of-kind-analyses are inexpensive, since models 
and data files can be retrieved from backup and used for later 
calculations. 

Extensions 

An active effort is under way to create additional en
gineering applications programs that will lI:se the models cre
ated by MODEL. Two particular areas of interest are piping 
system layout and design and automatic interference deter
mination. The goal in both cases is to automate these calcu
lations in the same fashion that jet impingement has been 
automated. 

The MODELlIMAGES2 System 687 

ACKNOWLEDGMENTS 

Parts of the MODEL/IMAGES2 system are based on an ear
lier system, IMAGES, developed in a joint project involving 
the authors and H.l. Borkin and l.A. Turner of the Architec,;. 
tural Research Laboratory of the University of Michigan. 
That system relied heavily on the A~CH software packages 
developed at the laboratory. 3,4 

REFERENCES 

L Ricketts, S.R., and W.R. Winfrey. "MODEL-An Interactive Computer 
Graphics System for Three-Dimensional Geometric Modeling and Com
putation." NPGD-TM-550, Babcock & Wilcox, Lynchburg, Virginia, May 
1980. 

2. Winfrey, W.R., and S.R. Ricketts. "IMAGES2-Computer Graphics Sys
tem for Three-Dimensional Geometric let Impingement Analysis." N PG D
TM-552, Babcock & Wilcox, Lynchburg, Virginia, June 1980. 

3. Borkin, H.J., J.F. Mcintosh, and J.A. Turner. "The Development of Three
Dimensional Spatial Modeling Techniques for the Construction Planning of 
Nuclear Power Plants." SIGGRAPH Quarterly, 12 (1978). 

4. Turner, J.A. "An Efficient Algorithm for Doing Set-Operations on Two
and Three-Dimensional Spatial Objects." Architectural Research Labora
tory, The University of Mkhigan-o--AnnArbor.o-Michigan, 192&. 





The applications of artificial intelligence to law: A survey 
of six current projects 

by SANDRA COOK 
London School of Economics 
London, England 

CAROLE D. HAFNER 
University of Michigan 
Ann Arbor, Michigan 

L. THORNE McCARTY 
State University of New York at Buffalo 
Buffalo, New York 

JEFFREY A. MELDMAN 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

MARK PETERSON 
The Rand Corporation 
Los Angeles, California 

JAMES A. SPROWL 
American Bar Foundation 
Chicago, Illinois 

N. S. SRIDHARAN 
Rutgers University 
New Brunswick, New Jersey 

D. A. WATERMAN 
The Rand Corporation 
Los Angeles, California 

INTRODUCTION 

The literature on computer-based consultation systems has 
often suggested the possibility of building an expert system in 
the field of law, but it is only recently that several researchers 
have begun to explore this possibility seriously. For this ses
sion, we have assembled summaries of six major projects on 
the applications of artificial intelligence to legal problem do
mains, and we have invited representatives of these six 
projects to participate in a panel discussion of their work. 

The work is quite diverse. Two of the projects are con
cerned primarily with practical applications: Hafner, repre
sented in Section I below, has explored the use of a conceptual 
knowledge-base in an enhanced legal retrieval system, and 
Sprowl, in Section II, has developed and tested a system which 
assists an attorney in the drafting of routine legal documents. 
Several of the projects have considered the general problem 

689 

of designing a language in which legal rules and legal concepts 
might be easily expressed: the LEGOL project (Section IV) 
and the TAXMAN project (Section V) fit within this catego
ry, as does the work of Meldman (Section III) on the design 
of a system for computer-aided legal analysis. Finally, two of 
the projects are exploring some general theoretical issues 
about the legal process: McCarty and Sridharan (Section V) 
are attempting to understand the patterns of argument that 
appearin a contested corporate tax case, and Waterman and 
Peterson (Section VI) are attempting to understand the deci
sionmaking procedures of attorneys and claims adjusters in 
product liability cases. 

Despite these diverse objectives, there appears to be a basic 
paradigm underlying all of the attempts to apply artificial 
intelligence techniques to legal problem domains. In one way 
or another, a legal consultation system must represent the 
"facts" of a case at a comfortable level of abstraction, and it 



690 National Computer Conference, 1981 

must represent the "law" in the chosen area of application, 
where the "law" consists of a system of "niles" and "con
cepts" which specify the rights and obligations of the parties 
in the case. Legal analysis, in its simplest form, is then a 
process otapptyillg the "law" to the "facts." However, this 
formulation is deceptively simple, since it masks the real diffi
culties of the representation problem. The facts of a legal case 
typically involve all the complexities of daily life: human ac
tions, beliefs, intentions, motivations, etc., in a world of ordi
nary objects like houses and automobiles, and complex insti
tutions like businesses and courts. And even if the facts of a 
particular case could be represented in a computer systeJ11, the 
legal rules themselves would often be problematical. Faced 
with these difficulties, the designer of an artificial intelligence 
system in a legal problem domain must make several strategic 
choices, and several compromises, as illustrated in the project 
summaries printed below. 

One strategic choice is the decision to provide either a 
shallow coverage of a broad area of hiw, or a deeper coverage 
of a narroW area of law. Another strategic choice, but one 
clearly related to the first, is the decision to work with either 
a syntactiCally simple, or a semantically rich, representation 
language. In general, the projects which are most clearly di
rected-towards a practical application have tended to follow 
the first option: broad but shallow coverage, using a simple 
and uniform l;mguage. Thus Hafner4 develops a very sketchy 
model of neg<>tiable instruments law, but demonstrates that a 
shallow conceptual model of this sort is adequate for the pur
poses of document retrieval. Sprowl's approachl?, 18 is even 
simpler: his system provides some limited syntactic pro
cessing, but leaves the semantics of the legal document entire
ly in the hands of the user. The rule-based system of Water
man and Peterson24 takes an intermediate position on this 
issue: the "antecedent-consequent" rules are themselves 
quite simple in structure, but they can be assembled into "rule 
sets" in order to model a more complicated legal concept. On 
the other nand, there are several projects in this collection 
which build semantic structures of varying degrees of com
plexity directly into the representation language itself: for 
example, the representation of "time" in LEGOL; or the 
representation of "situations" in Meldman's prototype sys
tem; 15 or the representation of "rights" and "obligations" in 
McCarty and Sridharan's TAXMAN project. 13 It remains to 
be seen which ill these approaches will tum out to be t~ most 
satisfactory . 

The knowledge representation problem is relate.d to anoth
er problem which faces the designer of an artificial intel
ligence system in a legal problem domain: how can We build 
upa realistic legal data base? Even assuming that the legal 

-eonceptualmodelhas been adequately defined, there remains 
the task of acquiring a large number of case deSCriptions and 
classificatory rules. Although Hafner was able to code her 
collection of 200 cases and 200 statutory provisions by hand, 
an automated knowledge-acquisition system would clearly be 
necessary to extend this data base into the thousands, or, 
realistically, the tens of thousands. More difficult still is the 
task of modifying the legal conceptual model itself, when the 
legal rules change and an entirely new factor is deemed rele
valU to the analysis of a class of cases. One approach here is 
to insist on the clarity and the semantic integrity of the repre-

sentation language: thus the LEGOL project has sought to 
develop a high-level legally oriented language which is inde
pendent of its lower-level implementations; and Waterman 
and Peterson have emphasized the modularity, and hence the 
modifiability, of their antecedent-consequent rule's, Another 
approach, exemplified by the work of McCarty and Sridharan 
on the TAXMAN project, is to study how legal rules and legal 
concepts have actually been modified, over time, in the course 
of deciding contested cases. The expectation here is that the 
mechanisms which provide an adequate historical account of 
the structure and dynamics of legal coricepts will also turn out 
to be useful in building' and modifying a contemporary legal 
data base. 

As this survey suggests, the application of artificial intel
ligepce techniques to legal problem domains raises a host of 
difficult issues. But these issues need not all be addressed at 
once. By selecting a particular area of the law, or a particular 
kind of application, we can simplify some of these issues tem
porarily and focus our attention on others. In this way, too, we 
might hope to provide some useful tools for the practicing 
attorney, long before the more difficult theoretical issues are 
fully resolved. The diversity of strategic choices in this field 
helps to explain sOme of the diversity of the projects which are 
described below. 

I. A Knowledge-Based Approach to Legal Document Re
trieval, by Carole D. Hafner, University of Michigan, 
Ann Arbor, Michigan. Current address: General Mo
tors Research Laboratories, Warren, Michigan. 

The Legal Research System (LRS) is a knowledge-based in
formation retrieval systt:(m, intended to be used by lawyers 
and legal assistants to retrieve documents based on their rele
vance to specific legal problems. The subject of the system's 
knowledge is Negotiable Instruments Law, an area of Com
mercial Law that deals with checks and promissory notes. The 
current implementation, described in Hafner,4 has a database 
of about 200 statutes from the Uniform Commercial Code26 

and 200 related cases. 
In LRS, a semantic network is used to represent knowledge 

about legal concepts and relationships, enabling the system to 
interpret and compare descriptions of complex situations. 
(For other examples of semantic networks, see Findler).3 The 
legal knowledge encoded in the semantic network is accessed 
by general-purpose rules for "descriptive inference," which 
determine whether a document in the database "satisfies" a 
description entered by the user. Thus, dOCUlllents are re
trieved which are semantically implied by the user's query, 
even if none of the terms in the query appear in the document. 

The semantic network model corisists of six types of links, 
correspOnding to genetal knOWledge-structuring functions. 
The descriptive inferel1ce rules operate on these network 
structures regardless of the subject-ate,a concepts that are 
enCOded; thus, the system could be adapted to other legal or 
non-legal databases. The link types are described below: 

1. Set/member links represent individual concepts be
longing to a class; for instarice, a set/member,Iink en
codes the fact that U.S.A. is a member of the class 



GOVERNMENT. If a user query asks for cases where 
the plaintiff is a government, those cases where the 
plaintiff was "U.S.A." will be retrieved by the system. 

2. Constituent links represent the fact that one object is a 
constituent of another object; for example, a legal in
strument such as a check has two kinds of constituents: 
signatures and terms. 

3. Property links represent attributes of objects, e.g., a 
signature can have the property "forged." 

4. Subclass/superclass links encode the hierarchical rela
tionships among types of objects. For example, a 
"check" is a subclass of "draft"; thus, if a user query 
asks for cases involving a draft, the system will retrieve 
cases dealing with checks also. 

5. Role links are used to describe concepts that are re
lational in nature, such as "payee," "signer," and "pur
chaser." These concepts are an important part of the 
legal vocabulary. A "signer," for example, is described 
as a role whose role filler is a person, and whose role 
object is a legal instrument. 

6. Event-condition links are used to describe the things that 
can happen to an object, e.g., "ratified" is an event
condition of an unauthorized signature, which changes 
its legal meaning. 

In LRS, knowledge about properties, roles, and event
conditions is combined with knowledge about superclass/sub
class relationships to interpret and compare descriptions of 
complex situations. For example, the description "an un
authorized signature on a draft" is satisfied by the description 
"a forged endorsement on a check" since forged is a subclass 
of unauthorized, an endorsement is a role whose filler is a 
signature, and a check is a subclass of draft. 

Keyword retrieval systems such as LEXIS25 are already 
providing valuable aid to lawyers in searching the large and 
rapidly expanding database of legal rules and precedents. 
However, a user of LEXIS must generate many different com
binations of words to describe the concepts he is interested in, 
in order to retrieve the relevant documents. Techniques for 
representing conceptual knowledge, which are being devel
oped by workers in artificial intelligence, offer great promise 
for transferring some of this burden to the computer. 

II. Automating the Delivery of Instruction And the Pl'€para, 
tion of Legal Documents, by James A. Sprowl, Ameri
can Bar Foundation, ChiCago, Illinois. 

Attorneys are quite used to working with books of legal forms 
and with published compilations of statutes. We have con
structed a prototype computer system that is "programmed" 
by feeding into it document descriptions that resemble pub
lished legal forms and computational procedures that resem
ble statutes. Using these elements as a guide, the prototype 
system can teach, ask questions, accept answers, draw conclu
sions, and .assemble client-customized versions of the docu
ments ready for court filing!7, 18 

The language used in drafting the document· descriptions 
and procedures is an ALGOL-68-like language in which the 
operators are special symbols (" +", "-", etc.) and capital-

Applications of Artificial Intelligence to Law 691 

ized words ("IF," "REPEAT," etc.). The variables are long, 
meaningful strings of lower-case letters, commas, apostro
phes, quotation marks, periods, and spaces ("the name of the 
client," "the client's gross income," etc.). No declarations or 
data structure specifications are required since space for data 
storage is allocated dynamically at run time. 

To allow document descriptions to resemble legal forms, 
"stand-alone" variables and expressions are permitted that 
would have no meaning in a conventional programming lan
guage. Textual comments enclosed by outward-facing brack
ets ("] ... TEXT ... [") are also permitted. The run-time pro
cessor evaluates the stand-alone variables and expressions and 
returns them, along with the intervening textual comments, as 
output. Undefined variables are parsed into questions. Ac
cordingly, the following form legal document: 

CONTRACT 

The contractor, [the contractor's name], and the contrac
tee, [the contractee's name], do hereby agree as follows: 

The contractor agrees to buy [the number of items] [the 
type of items] costing $ [the cost of each item] for a total price 
of $ [the cost of each item * the number of items]. 

[IF implied warranties ARE to be waived INSERT] 
All warranties of merchantability and suitability for a par

tiCular purpose are hereby expressly waived, and the above 
items are sold AS IS. 

[ENDIF] 
causes the computer to conduct the following interview, 
where the questions are automatically derived from the names 
of any variables that are in an "undefined" state: 

What is the contractor's name? 
>John Jackson 
What is the contractee's name? 
> Adams Supply Company 
What is the number of items? 
>27 
What is the type of items? 
>Octagonal Outlet Boxes (Catalog No. 33,274) 
What is the cost of each item? 
>$1.50 
Are implied warranties to be waived? 
>No 

Following this interview, the computer assembles and returns 
the following "client-customized" version of the above form 
contract: 

Contract 
The contractor, John Jackson, and the c{)ntractee,Adams 

Supply Company, do hereby agree as follows: 
The contractor agrees to buy 27 Octagonal Outlet Boxes 

(Catalog No. 33,274) costing $1.50 for a total price of $40.50. 

Computational procedures may be supplied to compute the 
value of any variable. For example, the procedure 

IF the salesman IS on commission 



692 National Computer Conference, 1981 

THEN the cost of each item = 1.3 * the catalog price of 
each item 

OTHERWISE the cost of each item = the catalog price of 
each item 

when stored in the same "library" with the above contract 
suppresses the question asking for "the cost of each item" and 
substitutes the following two questions: 

Is the salesman on commission? 
>No 
What is the catalog price of each item? 
>$1.50 

If a question is poorly formulated, a "new question" docu
ment may be added to a library to serve as a replacement. For 
example, the questions asking for the number and price of the 
items may be replaced with the following "new question" 
documents: 

How many [the type of items] are being purchased? 
How much does each [the type of items] cost? 

The computer can then ask: 

What is the type of items? 
>Octagonal Outlet Boxes (Catalog No. 33,274) 
How many Octagonal Outlet Boxes (Catalog No. 33,274) 

are being purchased? 
>27 
How much does each Octagonal Outlet Boxes (Catalog No. 

33,274) cost? 
>$1.50 

A "library" may contain any number of documents, pro
cedures, and new questions. The documents within a library 
may also incorporate one another by reference. A document 
may contain a variable defined by a first procedure; the first 
procedure may contain a variable defined by a second pro
cedure; and the second procedure may contain a variable that 
corresponds to a new-question document that itself contains 
variables defined by yet other procedures. Undefined vari
ables thus implicitly produce calls for the execution of pro
cedures, the assembly and display of new questions, or the 
formulation of a question from the name of a variable. The 
documents, procedures, and new-question documents stored 
together in a library thus implicitly define a tree-structured 
algorithm that the computer can follow by "branching" down 
each time an undefined variable is encountered. 

This system differs from conventional systems in permitting 
"stand-alone" expressions, variables, and comments to be 
assembled into output and in providing a "multiple-valued" 
calculus that permits any variable to occupy either of two 
undefined states. A variable may be "not yet defined," in 
which case the computer must search for a procedure or new 
question document or must convert the variable's name into 
a question; and if the user refuses to supply an answer to such 
a question, the variable enters a "never-to-be-defined" state. 
Logical (true~false) variables may thus enter anyone of four 
states (not yet defined, true, false, or never to be defined), 

and logical operators such as "AND" and "OR" which must 
operate upon these four-state variables can produce anyone 
of sixteen possible results. 

In field tests, the prototype system has proved to be an 
excellent vehicle for automating the assembly of wills, trusts, 
real estate closing agreements; divorce petitions and decrees, 
and other similar form legal documents. 

It generates a client data file which may be used to control 
the assembly of other forms without a further interview, and 
a revised client file may control the automated assembly of a 
revised set of forms. The ABF language also shows consid
erable promise as a tool for use in creating computer-aided
instructional lessons. Using the ABF system, an attorney spe
cialist can construct a combined document-assembly and in
structional system that can then be shared by large numbers 
of non-specialist attorneys in their individual practices. 

III. A Preliminary Study in Computer-Aided Legal Analysis, 
by Jeffrey A. Meldman, Sloan School of Management, 
Massachusetts Institute of Technology, Cambridge, Mas
sachusetts. 

This project has designed a prototype for a computer system 
that can perform a simple kind of legal analysis. 15.16 The sys
tem user, who is presumed to be a lawyer, describes to the 
system a hypothetical set of facts. The system determines the 
extent to which these facts fall within certain legal doctrines 
(by syllogism), or near to these doctrines (by analogy). Dur
ing this process, the system may ask the user for additional 
facts. The system then tells the user of its determinations and 
of the logic behind its conclusions, supporting these conclu
sions with reference to judicial decisions and other legal au
thority. The prototype system communicates with the user in 
a computer language (called Preliminary Study Language) 
designed to be translatable into and out of English by natural
language processing techniques, based on case gr~mmar, that 
are currently being developed in other research. 

As the basis for this analysis, structural machine models are 
built to represent legally-relevant human activity and doc
trines of law. The primitive components in these structures 
represent simple things and relations (like persons, firearms, 
hitting, near, etc.) in the everyday world of human affairs. 
These things and relations are classified hierarchically into 
categories. They are assembled into facts comprising two 
things and the relation between them. Facts, in turn, are as
sembled into more complicated structures called situations, 
which are represented in terms of component elements, or in 
terms of alternative types, or both. These situational struc
tures are used to represent the hypothetical facts being ana
lyzed as well as the factual content of legal doctrines. The 
factual situations of specific cases provide examples and 
counter-examples that behave as alternative types of the situ
ational components of more general legal doctrine. The pro
totype system contains representations for doctrine involving 
civil battery and assault. 

Analysis is performed by decomposing the situations that 
represent legal doctrines according to their elements and their 
types. When this decomposition reaches the level of -things 
and relations, these things and relations, together with their 



situational structure, are matched against the things and re
lations contained in the hypothetical facts. The matching of 
individual things and relations is accomplished by reference to 
their hierarchical categorization. 

IV. The LEGOL Project: An Abstract, by Sandra Cook, 
London School of Economics, London, England. Cur
rent address: SRI International, Menlo Park, California. 

The LEGaL (legally oriented language) Project is devel
oping a language, computer system, and technique of analysis 
to enable legislation to be expressed in a form which may be 
interpreted by computer. Described as such, the work can be 
viewed as research in legal informatics, or computers and law. 
But this was not its original motivation. The LEGaL Project 
was launched to develop improved tools for systems specifica
tion. One of the prime requisites of a very high level systems 
specification language is that it provides a means of stating 
what actions must be performed under what circumstances, 
without going immediately into detailed questions of imple
mentation methods. That is, it must make it possible to say 
what has to be done without going into details of how to do it. 
As this is exactly the feature of legislation, say, statute law, 
the designers of LEGaL have used legislation as their experi
mental material. Legislation states general principles to be 
applied in a precise, formal and yet general way. It also pro
vides the basis for many actual financial and administrative 
systems, where the provisions of the law must be translated in 
terms of information processing tasks to be performed by 
persons and/or machines. 

If a computer system for administering a tax is taken as an 
example, then one sees that the data processing rules em
bodied in the programs are a logical consequence of the legis
lative rules which, in effect, specify what the resulting or
ganization should achieve. Legislation for a new tax will 
embody, in all its essentials, the work of a department (orga
nization) to collect the tax. The legislation will not say how the 
tax is to be collected, but it will specify the real world circum
stances in which tax will be liable. Later, the executive branch 
of the government will create a department for this work, and 
translate the legislation into a set of procedures which can be 
performed by clerks and/or computers. Thus, implicit in the 
legislation is an information system. A formalism which is 
capable of expressing complex rules with the richness and 
precision seen in well-drafted legislation could easily cope 
with other application areas where information systems must 
be defined.2 This is the characteristic of the LEGaL langu
age, and helps to explain why we have entered the field of 
computers and law. 

The tangible outputs of the research are specific versions of 
the LEGaL language (a specification language with time 
handling capabilities) and a computer system to interpret it. 
Given a blueprint for an information system specified in LEG
aL, the accompanying interpreter enables a working model 
of the system to be generated automatically. That is, the 
translation from the legal prescriptions or high level rules 
(expressed in the LEGaL formalism) into computational al
gorithms is performed automatically, using the LEGaL sys-

Applications of Artificial Intelligence to Law 693 

tem. Thus, rules written in LEGaL are interpreted auto
matically and can be tested to discover whether they will have 
the desired effect. As a consequence, draft legislation may be 
tested by computer before it is put on the statute book. Anal
ogously, the systems analyst can specify a data processing 
system in LEGaL, such as one to give effect to tax legislation. 
A model of this system can be run directly from this proposed 
specification without the intervention of programming in a 
conventional language. Using the simulator which the LEG
aL system provides, the analyst can explore the functioning 
of the proposed system. Reducing the gap between definition 
of the system and a working prototype shortens the devel
opment life cycle dramatically. 8 

One very necessary feature of a legally oriented language is 
the ability to deal consistently and automatically with time, 
and this is a unique feature of LEGaL. The correct applica
tion of a law may require access to facts about events taking 
place over a long time span; past history can never be defi
nitively deemed irrelevant. This perspective differs from that 
adopted in many conventional data processing applications 
where decisions to destroy quite recent information are com
monplace, and where items such as dates· are recorded and 
manipulated in the same way as any other pieces of data. 
LEGaL is based on the philosophy that information about 
time provides a framework which defines the validity of all 
other information stored in a database, and that it must be 
handled in a special way. Only then will a very high level 
systems specification have the necessary degree of generality, 
and decisions to "forget" the past information be seen as what 
they are-part of the lower level process of system design and 
implementation.6 

LEGaL entity representations are based on the relational 
model, l but with additional structuring and constraints. 7 

These constraints have a basis in an "epistemological semantic 
model. ,,20 These built-in constraints ensure a sensible corre
spondence between data structures and what they represent, 
and make it very difficult to write expressions in the language 
which are not meaningful in a strict sense. This contributes 
toward drawing up a correct and complete specification. 

The current version of the LEGaL language is capable of 
handling routine administrative legislation, and has been ap
plied to a large number of legislative problems, among them, 
intes~ate succession. 5 The Project is now looking at legislation 
of increased complexity and at an extension to the language 
(LEGaL-X) which would enable it to handle notions such as 
purpose, right, duty, judgment, privilege, liability, etc. 21 This 
would greatly increase the scope of legislation amenable to a 
LEGaL analysis. 

The interpreter for the current version of the language 
(LEGOL-2.1) is programmed in POP-2and runs on a DEC
system 10 at the Edinburgh Regional Computing Centre. In 
the next phase, an interpreter for LEGOL-X will be devel
oped on a 380Z microcomputer. 

The LEGaL Project is supported by the British Science 
Research Council, with additional support from IBM and the 
British Social Science Research Council, during earlier 
phases. The Principal Investigator is Ronald K. Stamper. 
More information may be obtained by writing to the Secretary 
of the LEGaL Project, S11o-, London School of Economics~ 
Houghton Street,London WC2A 2AE, England. 



694 National Computer Conference, 1981 

V. The TAXMAN Project: A Summary, by L. Thorne Mc
Carty, Faculty of Law and Jurisprudence, State University 
of New York at Buffalo; and N. S. Sridharan, Department 
of Computer Science, Rutgers University, New Bruns
wick, New Jersey. 

The TAXMAN project is an experiment in the application of 
artificial intelligence techniques to the study of legal reasoning 
and legal argumentation, using corporate tax law as an experi
mental problem domain. In our earlier work,9 in a system 
called TAXMAN I, we were able to construct computer mod
els of the facts of corporate tax cases and the concepts of the 
United States Internal Revenue Code, so that the system 
could produce an "analysis" of the tax consequences of a 
given corporate transaction. Our current research is con
cerned with some theoretical questions which were left open 
in the earlier study. It is clear that the TAXMAN I system is 
inadequate as a model of legal reasoning and legal argu
mentation, since it provides no facilities for representing the 
"open-texture" of most legal concepts, and no facilities for 
modeling the "construction" and "modification" of legal con
cepts that occurs during the analysis of a difficult case. 14 In the 
system we are now developing, called TAXMAN II, we are 
attempting to remedy these deficiencies, and attempting at 
the same time to develop a cognitive theory of the patterns of 
argument adopted by lawyers and judges in the early years of 
the corporate tax code.10 We are currently testing the TAX
MAN II model on several stock dividend and corporate reor
ganization cases decided by the Supreme Court in the 1920's 
and 1930's, and the results so far are encouraging, although 
still quite incomplete. 

The TAXMAN system is implemented at present in the 
AIMDS representation language, 19 which is one of a family of 
frame-based languages now under development in several 
centers of artificial intelligence research. To set up a domain 
of discourse in AIMDS, we first construct a system of tem
plates to describe the classes of objects in the domain, and a 
system of relations to express the possible relationships be
tween these objects. To describe the facts of a particular case, 
we generate instances of the templates and their associated 
relations in a particular context. To represent the concepts 
and rules which are potentially applicable to a set of facts, we 
use either a semantic description, which is basically a network 
of instantiated relations in which the instance names have 
been replaced by variable names, or a production, which is a 
linked pair of descriptions. The descriptions and productions 
are then arranged into a hierarchy of abstractions and expan
sions, and a recursive pattern-matching procedure is used to 
generate the expansions when given the abstractions, and to 
recognize the abstractions when given the expansions. For a 
detailed exposition, see McCarty and Sridharan. 13 

Given these representational mechanisms, the TAXMAN 
system is constructed by encoding the various concepts of 
corporate tax law into the framework of the abstraction
expansion hierarchy. The basic "facts" of a corporate tax case 
can be represented in a relatively straightforward manner: 
corporations issue securities, transfer property, distribute div
idends, etc. Below this level there is an expanded represent
ation of the meaning of a security interest in t~rms of its 
component rights and obligations: the owners of the shares of 

a common stock, for example, have certain rights to the 
"earnings," the "assets," and the "control" of the cor
poration. Above this level there is the "law": the statutory 
rules which classify transactions as taxable or nontaxable, 
ordinary income or capital gains, dividend distributions or 
stock redemptions, etc. We have demonstrated that the TAX
MAN I system is capable of representing the full set of facts 
of an actual corporate tax case, such as United States v. Phel
lis, 257 U.S. 156 (1921), and capable also of representing the 
statutory rules and concepts which classify such cases as tax
free reorganizations under Sections 368(a){l)(B), (C) and (D) 
of the Internal Revenue Code. (See, for example, McCarty9 
and McCarty and Sridharan. 13

) Furthermore, as long as we 
confine our efforts to the general areas of corporate and com
mercial law, we believe that there are numerous practical 
applications for a system of this sort. We have discussed these 
possibilities in an earlier paper. 11 

However, the main goal of our present research is to move 
beyond the limitations of the original TAXMAN paradigm, 
and to develop a more realistic model of the structure and 
dynamics of legal concepts. In the TAXMAN II system, as in 
the TAXMAN I system, the precise statutory rules are repre
sented as logical templates, a term intended to suggest the way 
in which a "logical" pattern is "matched" to a lower-level 
factual network during the analysis of a corporate tax case. 
But the more amorphous concepts of corporate tax law, the 
concepts typically constructed and reconstructed in the pro
cess of a judicial decision, are represented in the TAXMAN 
II system by a prototype and a sequence of deformations of 
the prototype.10,12 The prototype is a relatively concrete de
scription selected from the lower-level factual network itself, 
and the deformations are selected from among the possible 
mappings of one concrete description into another. We have 
argued that these "prototype-plus-deformation" structures 
playa crucial role in the process of legal argument, and that 
they contribute a degree of stability and flexibility to an 
emerging system of concepts that would not exist with the 
template structure alone. We have illustrated these ideas with 
a detailed analysis of Eisner v. Macomber, 252 U.S. 189 
(1920), the early stock dividend case, and our analysis is now 
undergoing a full-scale implementation.12 

The TAXMAN project has been supported by the National 
Science Foundation under Grant SOC-78-11408 and Grant 
MCS-79-21471. 

VI. Rule-Based Models of Legal Expertise, by D. A. Water
man and Mark Peterson, The Rand Corporation, Santa 
Monica, California. 

We are currently engaged in designing and building models of 
legal expertise. Some progress has already been made in de
veloping computer systems to perform legal analysis, as de
scribed in the previous sections of this paper. Our system 
differs from these efforts in that it is a rule-based model of 
expertise, i.e., a computer program organized as a collection 
of antecedent-consequent rules22 that embodies the skills and 
knowledge of an.expert in some domain. The primary goal of 
our work is to develop rule-based models of the deci
sionmaking processes of attorneys and claims adjustors in
volved in product liability litigation. We will use these models 



to study the effect of changes in legal doctrine on settlement 
strategies and practices. 

Our legal decisionmaking system (LDS) is being imple
mented in ROSIE, a rule-oriented language designed to facil
itate the development of large expert systems. 23 The models 
created in ROSIE are rule-based, have an English-like syntax, 
and use special language primitives and pattern matching rou
tines that facilitate interaction with external computer sys
tems. The ROSIE design also supports hierarchical data struc
tures and rule sets that can be called as subroutines, functions 
or predicates. The typical Rosie rule has the form IF 
<situation> THEN <action>, where the situation is a de
scription of a possible data base configuration and the action 
describes how the data base is to be modified when that con
figuration is detected. The syntax of ROSIE is more English
like than that of any other programming language to date. It 
is intended to facilitate model creation, modification and ex
planation. In Section A our approach to modeling legal ex
pertise is discussed and the operation of our prototype version 
of LDS is described. The conclusions are presented in Section 
B. 

A. Legal Model. The model of legal decisionmaking we 
are building will contain five basic types of rules: those based 
on formal doctrine, informal principles, strategies, subjective 
considerations and secondary effects. These terms are defined 
below. 

• FORMAL DOCTRINE: rules used as the basis for legal 
judgements such as legislation and common law. 

• INFORMAL PRINCIPLES: rules that don't carry the 
weight of formal law but are generally agreed upon by 
legal practicioners. This includes ambiguous concepts 
(e.g., reasonable and proper) and generally accepted 
practices (e.g., pain and suffering = 3 * medical ex
penses). 

• STRATEGIES: methods used by legal practioners to 
accomplish a goal, e.g., proving a product defective. 

• SUBJECTIVE CONSIDERATIONS: rules that antici
pate the subjective responses of people involved in legal 
interactions, e.g., the effect of plaintiff attractiveness on 
the amount of money awarded, or the effects of extreme 
injuries on liability decisions. 

• SECONDARY EFFECTS: rules that describe the inter
actions between rules, e.g., a change in the law from 
contributory negligence to comparative negligence may 
change other rules such as strategies for settlement or 
anticipated behavior of juries. 

The formal doctrine evolves from court decisions and statutes, 
while the informal principles, strategies, etc. are shaped by 
example and experience. Sources for these rules include legal 
literature, case histories and interviews with experts. By sepa
rating the rules as described we can study both the relevant 
inference mechanisms and the influence of each type of know
ledge on the decisionmaking process. 

We are using our model of legal decision making to system
atically describe how legal practitioners reach settlement deci
sions and to test the effect of changes in the legal system on 
these decisions. Individual cases are analyzed by comparing 
the chains of reasoning (the chains of rules) that lead to the 

Applications of Artificial Intelligence to Law 695 

outcomes to similar chains in prototypical cases. This helps 
clarify the relationships existing between the formal doctrine, 
informal practices and strategies used in the decisionmaking. 
We are examining the effects of changes in legal doctrine, 
procedures and strategies on the processing of cases by mod
ifying appropriate-rules in the model and noting the effect on 
the operation of the model when applied to a body of selected 
test cases. This can provide insights that will suggest useful 
changes in legal doctrine and practices. 

Our curre-nt implementation of LDS is a small prototype 
model of legal decisionmaking containing rules representing 
negligence and liability laws. This prototype contains rules 
describing formal doctrine and informal principles in product 
liability. Future versions of the system will incorporate the 
other rule types discussed earlier. Given a description of a 
product liability case the model attempts to determine what 
theory of liability applies, whether or not the defendant is 
liable, how much the case is worth, and what an equitable 
value for settlement would be. Once a decision is reached the 
user may ask for an explanation in terms of the rules used to 
reach the decision. 

We will now describe the use of LDS to test the effect of a 
legislative change on a case outcome. The case is briefly sum
marized as follows: 

The plaintiff was cleaning a bathtub drain with a liquid 
cleaner when the cleaner exploded out of, the drain causing 
severe burns and permanent scarring to his left arm. Medical 
expenses for the plaintiff were $6000, and he was unable to 
work for 200 working days, during which time his rate of pay 
was $47 per day. The cleaner was manufactured and sold by 
the defendant, and experts judged it not to be defective. The 
product's label did not give a satisfactory description of means 
to avoid chemical reactions. The plaintiff was familiar with the 
product but did not flush out the drain before using the clean
er. The amount of the claim was $40,000. 

The system was first applied using a definition of strict 
liability that did not involve the product being unreasonably 
dangerous. (See Waterman andPererson,24 a longer version 
of this paper that describes this definition.) It was determined 
that the defendant was partially liable for damages under the 
theory of comparative negligence, with the amount of liability 
lying somewhere between $21,000 and $29,000. The case was 
valued between $35,000 and $41,000. After the definition of 
strict liability was modified to state that the product must be 
unreasonably dangerous for strict liability to apply, the de- -
fendant was found to be not liable, since the product had been 
judged not unreasonably dangerous (see Figure 1). 

B. Conclusions. Our preliminary work with LDS has dem
onstrated the feasibility of applying rule-based modeling tech
niques to the product liability area. In spite of the inherent 
complexity of product liability law, the number of basic COIl

cepts manipulated by the rules is easily handled (in the hun
dreds), while the number of rules required to adequately rep
resent legal doctrine and strategies is manageable (in the 
thousands) . 

The rules that represent legal doctrine in this area are basic
ally declarative in nature. Most of them are easily represented 
as definitions with complex antecedents and simple con
sequents that name the concept being defined. Rules of this 
sort can be organized as relatively unordered sets that are 



696 National Computer Conference, 1981 

EFFECT OF LAW CHANGE 

reasonable and proper 
r. d&fendant 

product was defective ------~:i':~i,":"-- 9 ~ liable defendant 

defendant manufactured __ .",. ••• __ --Ji., .. ,,~ liability ~ r20liability is $~ 

victim's responsibility = .4 

victim was not a minor 

----- .. d'd' victim knew of hazard ---.. r 5 VIC!~r;;in~'; !~r~e 

victimwascareless~ ~ 
location not dangerous ------

medical expenses were $6136 ---.. r 16 

lost 228 working days __ 

base pay of $47 per day .-- '17 

total amount of 
loss is between 

$35,000 and $41,000 

Figure I-Inference process for drain cleaner case (crosshatched area shows 
inference before law change) 

processed with a simple control scheme. Most of the action 
takes place in calls to other rule sets representing definitions 
of terms used by the initial set. This simple control structure 
facilitates rule modification and explanation. 

REFERENCES 

1. Codd, E.F., "A Relational Model of Data for Large Shared Data Banks," 
13' Communications of the ACM, No.6 (June, 1970). 

2. Cook, S., and Stamper, R., "LEGOL as a Tool for the Study of Bureau
cracy," in H. Lucas, ed., The Information Systems Environment (North 
Holland, Amsterdam, 1980). . 

3. Findler, N.V., ed., Associative Networks: The Representation and Use of 
Knowledge in Computers (Academic Press, New York, 1978). 

4. Hafner, C. D., An Information Retrieval System Based on a Computer 
Model of Legal Knowledge, Ph.D. Thesis, The University of Michigan, 
Ann Arbor (1978). 

5. Jones, S., "Control Structures in Legislation," in B. Niblett, ed., Computer 
Science and Law: An Advanced Course 157-69 (Cambridge University 
Press, Cambridge, 1980). 

6. Jones, S., and Mason, P., "Handling Time in a Data Base," in Proceedings 
of the International Conference on Data Bases, Aberdeen, Scotland (July, 
1980). 

7. Jones, S., Mason, P., and Stamper, R., "LEGOL-2.0: A Relational Spec
ification Language for Complex Rules," Information Systems, Vol. 4, No. 
4 (1979). 

8. Mason, P., "A Systems Analysis Workbench," Computer Bul/etin, Vol. 2, 
No. 23 (March, 1980). 

9. McCarty, L.T., "Reflections on TAXMAN: An Experiment in Artificial 
Intelligence and Legal Reasoning," 90 Harvard Law Review 837-93 (1977). 

10. McCarty, L.T., "The TAXMAN Project: Towards a Cognitive Theory of 
Legal Argument," in B. Niblett, ed., Computer Science and Law: An 
Advanced Course 23-43 (Cambridge University Press, 1980a). 

11. McCarty, L. T., "Some Requirements for a Computer-Based Legal Consul
tant," in Proceedings of the First Annual National Conference on Artificial 
Intelligence 298-300 (Stanford University, 1980b). 

12. McCarty, L.T., "A Computational Theory of Eisner v. Macomber," in 
Proceedings of the International Study Congress on Logic, Informatics, Law 
(Florence, Italy, forthcoming 1981). 

13. McCarty, L.T., and Sridharan, N.S., "The Representation of an Evolving 
System of Legal Concepts: I. Logical Templates," in Proceedings of the 
Third Biennial Conference of the Canadian Society for Computational Stud
ies of Intelligence 304-311 (Victoria, British Columbia, 1980). 

14. McCarty, L.T., Sridharan, N.S., and Sangster, B.c., "The Implementation 
of TAXMAN II: An Experiment in Artificial Intelligence and Legal Rea
soning," Report LRP-TR-2,. Laboratory for Computer Science Research, 
Rutgers University (1979). 

15. Meldman, J.A., "A Preliminary Study in Computer-Aided Legal Anal
ysis, " Ph. D. Dissertation, Massachusetts Institute of Technology, Technical 
Report No. MAC-TR-157 (November, 1975). 

16. Meldman, J.A., "A Structural Model for Computer-Aided Legal Anal
ysis," 6 Rutgers Journal of Computers and Law 27-71 (1977). 

17. Sprowl, J.A., "Automating the Legal Reasoning Process: A Computer that 
Uses Regulations and Statues to Draft Legal Documents," 1979 American 
Bar Foundation Research Journal 1-81. 

18. Sprowl, J.A., and Staudt, R., "Computerizing the Law School Teaching 
Clinic: An Experiment in Law Office Automation" (forthcoming, 1981). 

19. Sridharan, N.S., ed., "AIMDS User Manual, Version 2, " Report CBM
TR-89, Department of Computer Science, Rutgers University (1978). 

20. Stamper, R., "Towards a Semantic Normal Form," in G. Bracchi and G.M. 
Nijssen, eds., Data Base Architecture (North Holland, Amsterdam, 1979). 

21. Stamper, R., "LEGOL: Modelling Legal Rules by Computer," in B. Nib
lett, ed., Computer Science and Law: An Advanced Course 45-71 (Cam
bridge University Press, Cambridge, 1980). 

22. Waterman, D.A., "User-Oriented Systems for Capturing Expertise: A 
Rule-Based Approach," in D. Michie, ed., Expert Systems in the Micro 
Electronic Age (Edinburgh University Press, 1979). 

23. Waterman, D. A., Anderson, R. H., Hayes-Roth, F., Klahr, P., Martins, 
G., and Rosenschein, S. J., "Design of a Rule-Oriented System for Imple
menting Expertise," Report N-1158-ARPA, The Rand Corporation (Santa 
Monica, California, 1979). 

24. Waterman, D. A., and Peterson, M., "Rule-Based Models of Legal Ex
pertise," in Proceedings of the First Annual National Conference on Arti
ficial Intelligence 272-75 (Stanford University, 1980). 

25. LEXIS: A Primer, Mead Data Central, Inc. (New York, 1975). 
26. Uniform Commercial Code, American Law Institute and National Confer

ence of Commissioners on Uniform State Laws (Philadelphia, 1972). 



'. 
An automated reasoning system 

by L. WOS and S. K. WINKER 
Argonne National Laboratory 
Argonne, Illinois 

and 

E.L. LUSK 
Northern Illinois University 
DeKalb, Illinois 

ABSTRACT 

This paper is an introduction to an automated reasoning pro
gram developed at Northern Illinois University and Argonne 
National Laboratory over the past nine years. Recently the 
program has reached the stage where it can be considered a 
useful research tool in a variety of disciplines. It has solved 
open problems in mathematics and participated in the design 
of new electronic circuits. Here we describe the general types 
of capabilities provided to the user by the program and give 
examples of how they are currently being used in diverse areas 
of investigation. 

INTRODUCTION 

In this paper we survey various uses of an existing automated 
reasoning system. Rather than describe its internal orga
nization or theoretical foundation, which has been presented 
elsewhere, we concentrate here on how it appears to a user 
who has no need to understand the internals of the system. 

The program, developed over the past nine years at North
ern Illinois University and Argonne National Laboratory, has 
gradually grown from a tool for studying the automated rea
soning process itself into a program which is being used as an 
intelligent colleague on research projects in several areas. 

We begin by giving in the next two sections an overview of 
the system and those features of the control language by which 
the user tailors the program to the problem he wishes to study. 
Then we give some examples of problems successfully solved 
using the system. These are presented not so much for their 
content, which has in some cases been published elsewhere, as 
to demonstrate what kinds of reasoning tasks the program is 
capable of, so that the reader may determine whether or not 
he faces tasks that are similar enough that a program such as 
this one may be of genuine use. 

We present examples of how the program has been used to 
approach problems in circuit design, program verification and 

697 

debugging, formal logic, and abstract algebra. These are in
tended to illustrate conerete instances of general reasoning 
tasks, such as conjecture formulation and testing, automatic 
generation of counterexamples, formula classification, case 
analysis, and finding alternate solutions to problems. 

Finally we speculate on how the system and its relatives and 
descendants might be used in the future. 

OVERVIEW OF THE SYSTEM 

In this section we present an informal summary of some of the 
system's salient features as they appear to the user. 

History 

The syst~m being described here was originally developed 
for the purpose of investigating algorithms for automated de
duction. The classical test problems for such programs are 
known mathematical theorems, and programs like ours are 
often called automated theorem provers. It is the contention 
of this paper that such a label is far too narrow. 

Known mathematical theorems provided a good starting 
point for development of the program. Their proofs were well 
understood and could be used to pinpoint methods of reason
ing to be incorporated into the system. The techniques so 
developed, however, have become powerful enough to be of 
real use in attacking a wide variety of problems, bothrn and 
out of mathematics, a number of whose solutions were not 
known ahead of time. For example, some open problems in 
mathematics have been solved, and some original research in 
circuit design has been completed using the system. It has thus 
become a genuine reasoning tool for research in several areas, 
some of which are described in detail below. 

A user community is just beginning to develop, consisting 
of people who use the program in research investigations, 
without knowledge of or even interest in the internal workings 



698 National Computer Conference, 1981 

of the program. The developers hope that this community will 
continue to expand to include an even greater number of 
researchers. 

Representation of Information 

Like most computer programs, this system has a rather 
formal input language. Preprocessors exist for converting a 
variety of other forms into the format suitable for input to the 
system. A logician would say that the input language has the 
expressive power of the first-order predicate calculus with 
equality. What this means to the user is that most problems 
can be readily represented. 

Rules of Inference 

There are a number of ways in which the program can be 
instructed to reason. They can be specified by the user either 
singly or in various combinations to suit the problem at hand. 
We give some examples. 

One rule concentrates on "if-then" statements. It derives 
the conclusion of such a statement once all of the conditions 
are established. 

Two other rules involve a preference for simple facts. For 
example, the statement that A is a larger number than B 
would be treated by the system as a siinple item of informa
tion, whereas the statement that if A is odd and B is even then 
their product is even is a complex one. The first of these 
inference rules reasons from simple facts, in the sense that at 
each step at least one of the facts used in the derivation must 
be simple. The other rule reasons toward simple facts, in the 
sense that the conclusion of each inference must be simple, no 
matter how complex the antecedents might be. 

Another inference rule, which is useful in the presence of 
many facts that assert the equality of certain expressions, 
either conditionally or unconditionally, is a generalized form 
of equality substitution. • 

Finally, the program can solve a problem by case analysis, 
which means that the problem can be broken into subprob
lems, each of which is attacked with a possibly different com
bination of inference rules. 

Strategies of Attack 

One can think of the inference rules as small-scale strate
gies. There are also a variety of mechanisms for specifying 
large-scale strategies. These guide the overall attack on the 
problem by specifying such things as the order in which certain 
facts are examined for consequences, which inference rules 
will be applied to which combinations of facts, and what de
rived information will be retained for further use or discarded 
as useless. 

For example, most problems consist of general background 
information about the field being studied, together with some 
specific statements that describe the particular problem or 
situation being investigated. Sometimes it is worthwhile to 
reason from the background information to derive still more 

general information; at other times it is best to focus entirely 
on the problem at hand. The user can specify that new infor
mation is to be derived only when it is at least in part based 
on a selected subset of the input statements. 

There is much flexibility in information Q1anagement. In 
particular, the user may define various pools of facts which 
can be used as he specifies. For example, facts from one pool 
can be selected to see if they generate any new information 
when used with facts from another pool, and the results placed 
into a third pool. The input language is used to control the use 
of each of these pools during the course of the run. 

A third component of an attack strategy is the determina
tion of what sorts of information to keep and what sorts to 
discard. The number of facts that can be deduced in a given 
situation is potentially quite large and can contain many ir
relevant and redundant facts. Therefore some filtering mech
anism is essential, both as a criterion for forgetting a fact 
altogether, and for remembering it but using it only as a last 
resort. The mechanism used in our system provides consider
able flexibility in this regard. For example, one can penalize 
or prefer a class of objects or even statements having a very 
particular form. This mechanism will be discussed in detail in 
the next section. 

EVALUATION AND 
TRANSFORMATION OF INFORMATION 

In this section we discuss two of the main subsystems of the 
reasoning system. The first is a technique for specifying the 
value of various items of information. The second is a mech
anism for transforming derived facts in various ways prior to 
measuring their value. These two features used together are 
surprisingly flexible and powerful, and have been used in 
many ways that were unforeseen at the time of their imple
mentation. Some of these specific applications will be given in 
detail below. 

Assigning Values to Terms 

The language used for both input to and output from the 
program consists entirely of user-defined expressions that 
contain function and predicate symbols, variables, and con
stants. A flexible format exists for assigning values to various 
patterns of expressions. Thus each term has an integer associ
ated with it, called its weight. 

The simplest valuation scheme gives each symbol the same 
value. This makes complex expressions "heavier" than simple 
ones. In several different ways (discussed below), the pro
gram prefers lighter terms and facts about them to heavier 
ones. Thus the scheme of assigning to each symbol the same 
value causes the program to prefer facts about simple expres
sions to facts about complex ones. This is often a useful way 
to begin, since it corresponds to our intuition that we are on 
the right track in working on a problem when it seems to be 
getting simpler instead of more complicated. 

However, the valuation scheme chosen can be used to pre
fer or penalize expressions according to far different measures 



than symbolic complexity. For example, one could prefer 
facts about multiplication over those about addition, causing 
the product of four operands to be "lighter" than the sum of 
three operands. In circuit design, specific gates or combina
tions of gates can be preferred. In algebra problems, a stan
dard direction of association can be specified. The weighting 
mechanism can arbitrarily recognize complex patterns of sym
bols. For example, logical expressions whose rightmost major 
sUbexpression contains no repeated variables can be preferred 
over those not having this property. 

There are three major ways in which the program prefers 
light terms to heavy ones. First, expressions and facts about 
them that are deemed too heavy are simply discarded. One 
must be careful, of course, not to set the weight limit for 
retained facts too low, or valuable information will be lost. 
Second, the program uses weight to select at each step which 
facts to derive further information from, using light ones be
fore heavy ones. This has the effect of causing the program to 
press forward along lines of inquiry that it can measure as 
valuable, ignoring at least temporarily facts that it considers 
less valuable. Thus selection of a weighting scheme supplies 
the program with a type of intuition about promising lines of 
reasoning. Third, when two expressions carry the same infor
mation, their weights are used to determine which representa
tion of the information they contain should be used, as we 
describe in the next section. Thus the simplest weighting 
scheme causes the program to simplify formulas, while more 
elaborate weighting schemes trigger more subtle transforma
tions of information. 

Transforming Information 

Whenever a fact of the form that one expression is equal to 
another is either input or derived during the run, the two 
expressions are weighed according to the user's weighting 
scheme. If one term is preferable to the other by a wide 
enough margin (where "wide enough" is user-supplied), then 
this fact assumes a special status, that of demodulator. What 
this means is that all instances of the less preferred form of the 
expression are immediately replaced by the more preferred 
form, and from that point on only the preferred version of 
derived facts is kept. 

This dynamic rewriting process, called demodulation, has a 
surprising variety of uses. Perhaps its most common use is in 
simplifying expressions, but it can also be used to analyze and 
classify formulas, to rewrite terms in a canonical form, to 
transform information from one notation to another, and to 
cause information that has served its purpose to be deleted. 
Some illustrations of its use are given in the next few sections. 

EXAMPLES OF CURRENT USE OF THE SYSTEM 

In this section we describe some of the specific ways in which 
the system is currently being used. It is hoped that these cases 
will illustrate the general usefulness of the program and sug
gest to the reader how it might be applicable to his own 
current problems, whatever they may be. 

An Automated Reasoning System 699 

Circuit Design 

Multi-valued logics present an interesting class of circuit 
design problems. A particular group of researchers was re
cently interested in designing circuits for a four-valued logic 
(inputs and outputs of circuits could take on four different 
values) and wanted to utilize T -gates in the construction of 
these circuits. AT-gate in four-valued logic is a five-input, 
one-output gate in which one of the inputs is used to select 
which of the other four inputs will be used as the output value. 
It was known how to design such circuits, but more efficient 
circuits than those then known were being sought. 

Our system was used to investigate this problem. It must be 
emphasized that no new programming was done to obtain the 
solution. Rather, the researchers involved learned how to 
describe the design process as a set of reasoning tasks ex
pressed in the input language of the system. 

First, the table of input-output conditions of the desired 
circuit had to be described. This was relatively straightfor
ward. Next, this table had to be decomposed to produce the 
various tables that result from choosing each of the target 
circuit's inputs as selector input for T-gates. This task was 
carried out by describing the decomposition rules to the sys
tem as "if-then" statements, so that it would "infer" the de
composition tables from the original specification. The system 
was directed to generate and examine alternate decomposi
tions through its mechanism for case analysis. Elementary 
subcircuits (such as constant or identity functions) were recog
nized through the use of demodulation. Finally, a weighting 
scheme was specified which directed the system to prefer 
T-gate circuits meeting certain efficiency criteria. 

This project originated as an experiment in using a general
purpose reasoning system rather than a special-purpose pro
gram for carrying out real circuit design tasks. The experiment 
was a success in that new circuits were discovered that utilized 
T -gates and had efficiency properties superior to those ap
pearing at that time in the literature. 

Program Verification 

Program verification is the process of proving that a pro
gram is correct by a logical argument instead of by exhaustive 
testing. There is currently much research in this area, and a 
number of experimental systems are in operation. We de
scribe here some of the applications of our system to this area. 

Our experiments have been with programs written in FOR
TRAN, accompanied by statements (expressed in first-order 
logic) about the program. We have available to us a program 
transformation system that converts the FORTRAN code, 
together with assertions bearing on how the program is ex
pected to behave, into a collection of statements that says in 
our system's input language that the FORTRAN code does 
what the assertions say it does. The system is then asked to 
prove that this collection of statements is true. Alternatively, 
the system can find a counterexample, that is, can pinpoint the 
case in which the program fails to meet its specifications. 

The application of our system to program verification is still 
in experimental stages in the sense that the complexity level 
of the programs that can be verified directly from the FOR-



700 National Computer Conference, 1981 

TRAN code, without hints from the user, is very low. For 
example, the system can verify a FORTRAN program to find 
the maximum element of a vector. The conditional and un
conditional transitions within the program are represented as 
statements of the form "If one is at statement N in the pro
gram and such and such a condition holds, then this action is 
taken on the program variables and control is passed to state
ment M." A case analysis mechanism explores the various 
paths through the program. 

A related application of the same reasoning system is sym
bolic execution of programs. The system can be made to 
generate a collection of test data for the program of whatever 
kind desired and automatically step through the program with 
each set of data. The results can be automatically compared 
with the expected results supplied by the user, and exceptions 
noted. This too is in the early development stage. The follow
ing is a very simple example that is quite easy for both the 
system and for a human, but which illustrates the kind of 
activity which can be carried out using the system. 

Consider the following algorithm for sorting the integers 
from 1 to N. Suppose A is the array of integers to be sorted. 
Then for I from 1 to N, if A(J) is not equal to J, exchange A(J) 
and A(A(J». If one tries this algorithm on the vector 
(2,4,1,3), one might get the mistaken impression that it is 
correct. The reasoning system examined the algorithm, coded 
in FORTRAN, and correctly discovered that it does not cor
rectly sort the vector (3,4,2,1). 

Formal Logic 

A logician introduced us to the field of equivalential calcu
lus, a logical system in which the "truth" of formulas can be 
determined syntactically, and for which there is a single infer
ence rule, called condensed detachment, for deriving one for
mula from two others. A family of interesting questions arises 
in considering which of the true formulas are "single axioms" 
in the sense that all other true formulas are derivable from 
them by the rule of condensed detachment. 

The first task we undertook was to shorten a known proof 
that a particular formula implied a known single axiom and 
thus was itself a single axiom. Our reasoning system was used 
to do a number of subtasks associated with trying to find a 
shorter proof. First, condensed detachment had to be simu
lated. Since it is a special form of one of the system's built-in 
inference rules, this was easy. Next we studied the structure 
of the existing proof. One could see that terms with a specific 
structure were used predominantly but not exclusively in the 
proof. The demodulation and weighting mechanisms de
scribed above allowed the system to classify formulas and 
prefer those of certain classes. The control we had over vari
ous pools of facts allowed us to bring other terms into the 
proof search periodically. The result was a proof of twenty
one steps as opposed to the forty-four step proof appearing in 
the literature. 

Since the system had proved so useful in approaching this 
problem, we were inspired to try some of the open questions 
in the area. There were seven formulas about which it was 
unknown whether or not they were single axioms. These for
mulas were relatively complex, and applying the rule of con-

densed detachment to them by hand was extremely difficult. 
(We were not at all familiar with equivalential calculus and so 
had to make the system into a substitute for intuition.) We 
selected one of the seven formulas and attempted to prove or 
disprove that it was a single axiom for the equivalential calcu
lus. 

What made this endeavor significant as an application of 
our automated reasoning system was the irregular, changing 
set of uses we found for it. We made various conjectures along 
the way and used the system to prove or disprove them. The 
conjectures themselves were suggested to us by the output of 
the system. 

Examination of the formulas derived from another single 
axiom candidate led us first to conjecture that the formulas 
derivable from it would all follow a certain pattern. The sys
tem quickly proved this conjecture false. 

Several iterations of this type were performed. As the pat
terns being investigated became more complex, demodulators 
were introduced to have the system itself examine its own 
output for these patterns. Eventually, a new notation was 
introduced for expressing derived formulas, and the demod
ulation feature of the system was used to write the formulas 
in this notation. More than once, a disproof of a conjecture by 
the system was accompanied by the exact information needed 
to make the next, better, conjecture. This activity eventually 
led to a proof that all formulas derivable from the single axiom 
candidate contain a certain subtle pattern. Since there are 
"true" formulas in the equivalential calculus that do not con
tain this pattern, the given formula cannot be a single axiom. 
Several more open problems of this nature were done, each in 
a slightly different way but in all cases relying heavily on the 
automated reasoning system for generating and testing con
jectures. 

Mathematics 

The system has been used to solve several open problems in 
mathematics. We give here an example from abstract algebra. 
We were asked whether our system might be of use in an
swering the following question: Does there exist a finite semi
group which supports an antiautomorphism but no involu
tion? This question was answered positively by the system, 
which exhibited a semi group of order eighty-three with the 
desired property. An exhaustive search through all semi
groups, starting with those of small order, would have been 
inordinately expensive, and the system did not do this. Rath
er, it examined the consequences of adding relations to a 
given semigroup, testing whether a given antiautomorphism 
remained well defined and whether any involutions could be 
found. There was thus substantial interaction between the 
researchers, who proposed the relations, and the system, 
which checked the effects of adding them to the semigroup 
being constructed. With much interaction of this kind with the 
system, it was eventually proved that the smallest semigroup 
with this property had order seven, and that there were exact
ly four semigroups of order seven with this property. Thus the 
system behaved like a mathematical colleague in eventually 
helping the researchers arrive at a complete answer to the 
question. 



The model generation facility of the system was also used to 
solve an open question in the theory of ternary Boolean alge
bra. Since this capability can be used to find counterexamples 
to conjectures, it forms a valuable complement to the system's 
ability to prove theorems. 

FUTURE USES OF AN 
AUTOMATED REASONING SYSTEM 

Here we consider some of the areas in which we expect that 
continued research and development in automated reasoning 
will have a significant impact. 

Program Verification 

Perhaps the most significant area, and the one currently 
attracting the most research effort, is program verification. 
An ultimate goal would be to have significant programs certi
fied correct without human intervention (except in supplying 
the statements that assert-the purpose of the program). This 
is a very difficult problem, and several more modest goals are 
being pursued. One is to allow a user to guide thereasGlling 
system through a proof of correctness, decomposing the task 
and having the system verify a series of small steps of the 
program. Another is to verify properties of the program that 
are easier to prove than its overall correctness. An example of 
such a property might be: "The variable I only takes on values 
between 1 and 100." Yet another goal short of the ultimate 
one is to have the system verify an abstract form of the pro
gram or a form written- in some special-purpose language-that 
is easier to work with than a production language. 

On the other hand, the model generation facility of the 
system described here can be used to find a bug in a program 
when a correctness proof is eluding the user. Often a counter
example is just what is needed to pinpoint the error. 

Automated Expression Generalization 

One of the traditional components of the theorem-proving 
system is a mechanism for finding the most general common 
instance of two expressions. By varying the input language we 
have directed our system on occasion to do the opposite; that 
is, to find the least general expression of which two given 
expressions are instances. This ability to generalize could be 
used in the case where the expressions represented programs 
to find an algorithm that generalizes specific known cases. 
Results of such a technique could be used in code optimization 
and modularization. 

Mathematics 

The system we describe here has the potential of becoming 
a genuine mathematical calculator. Numerical calculators are 
of course now familiar, but many problems in mathematics 
involve extensive calculations with non-numerical objects. 
This is particularly true in abstract algebra and topology. A 

An Automated Reasoning System 701 

mathematician may describe as a "calculation" any sequence 
of inferences that can be defined by an algorithm. Of course 
a special purpose program can be written to carry out such a 
computation, but this is time-consuming. By contrast, the 
allowable inferences and their sequencing can be described to 
a general reasoning system, and the desired calculations car
ried out without any new programming. It was in this way that 
the semi groups described above were discovered. 

More generally, the system provides a way to easily exam
ine the consequences of adding or removing facts to those 
defining a situation being studied. Examination of such conse
quences by the researcher may be of use in forming conjec
tures to be tested by further use of the system. 

Circuit Design 

Circuit design promises to be a fertile field for application 
of automated reasoning systems, using techniques originally 
developed for applications in abstract algebra. It is possible to 
weight various alternative constructions and thus cause the 
system to evaluate circuits according to very flexible user
supplied criteria as it generates a family of designs that meets 
a certain specification. 

Process Control 

One potential area in which very little has been done is the 
application of general reasoning systems to the control of 
complex physical processes. Again, the key step is to abstract 
the control logic to an inference system~ that is,- physical con
sequences of situations are specified by modeling them as 
logical consequences. Programming these systems from 
scratch can be very difficult, since a very complex system with 
many interacting components can hide the interdependencies 
among certain actions and results. An automated reasoning 
system can be used to define very clearly the actions to be 
taken when certain conditions arise and to apply those rules 
in unforeseen situations, all without any new programming. 

CONCLUSION 

We have tried to convey, principally by example,the usefuh 
ness of a system such as ours, in which reasoning tasks, rather 
than numerical computations, are automated. In order to use 
the system for these tasks one need not understand the inter
nals of the system, only learn the input language. By means of 
this language, our general-purpose program can be tailored to 
a specific problem area so that it behaves mu_c~a special 
purpose program. It is this ability to tune the system that has 
made possible the success of the program as a tool in such 
diverse areas. 

REFERENCES 

1. McCharen, J. D., R. A. Overbeek, and L. Wos. "Problems and Experi
ments for and with Automated Theorem-Proving Programs." IEEE Trans
actions on Computers, Vol. C-25, No.8, August 1976, pp. 773-782. 



702 National Computer Conference, 1981 

2. McCharen, J. D., R. A. Overbeek, and L. Wos. "Complexity and Related 
Enhancements for Automated Theorem-Proving Programs." Computers 
and Mathematics with Applications 2 (1976), pp. 1-16. 

3. Overbeek, Ross A. "Ail Implementation of Hyper-Resolution." Comput
ers and Mathematics with Applications, Vol. 1 (1975), Pergamon Press, pp. 
201-214. 

4. Overbeek, R. A., and E. L. Lusk. "Data Structures and Control Architec
ture for Implementation of Theorem-Proving Programs." In W. Bibel and 
R. Kowalski (Ed.) 5th Conference on Automilted Deduction, Berlin: 
Springer-Verlag, 1980, pp. 232-249. 

5. Winker, S. K., and L. Wos. "Automated Generation of Models and Coun
terexamples and its Application of Open Questions in Ternary Boolean 
Algebra." Proc~dings of the Eighth International Symposium on Multiple
Valued Logics,_ Rosemont, Illinois, pp. 251-256. 

6. Winker, S. K. "Generation and Verification of Finite Models and Counter
examples Using an Automated Theorem Prover Answering Two Open 

Questions." Proceedings of the Fourth Annual Workshop on Automated 
Deduction, Austin, Texas, pp. 7-13. 

7. Winker, S. K., and J. Berman. "Finite Basis and Related Results for !!n 
Upper Bound Algebra" (Abstract), Notices of the American Mathematical 
Society, vol. 26 (August 1979), p. A-427. 

8. Winker, S. K., L. Wos, and E. L. Lusk. "Semigroups, Antiautomorphisms, 
and Involutions: A Computer Solution to an Open Problem, I." (to appear) 

9. Wojciechowski, W., and A. S. Wojcik. "Multiple Valued Logic Design by 
Theorem Proving." Proceedings of the Ninth International Symposium on 
Multiple-Valued Logic, Bath, England, 1979. 

10. Boyle, J. "Program Adaptation and Program Transformation." In R. Eb
ert, J. Lugger, L. Goedcke (Ed.) Practice in Software Adaptation and 
Maintenance. Amsterdam: North Holland Publishing Company, 1980. 

11. Manna, Z. Mathematical Theory of Computation. New York: McGraw
HiII,1974. 



1980 NATIONAL COMPUTER CONFERENCE 
COMMITTEES 

Chairman 
Alex Orden 
University of Chicago, Graduate 

School of Business 
Chicago,IL 

General Advisor for Program and 
Proceedings 

Don Medley 
US Depart11lent of Agriculture, 

Science and Education 
Administration 

Beltsville, MD 

Computers and Productivity 
Robert Benson 
Washington University, Center for the 

Study of Data Processing 
St. Louis, MO 

Programming Languages 
Peter Buneman 
University of Pennsylvania, The 

Moore School 
Philadelphia, P A 

Database Management Software 
Robert Carlson 
Bell Telephone Laboratories 
Warrenville, IL 

Software Quality Assurance 
Ned Chapin 
Info Sci, Inc. 
Menlo Park, CA 

Software Engineering 
Eric K. Clemons 
University of Pennsylvania, The 

Wharton School 
Philadelphia, P A 

PROGRAM COMMITTEE 

Vice Chairman, Information 
Processing Management 

Raymond Dash 
Benefit Trust Life Insurance Company 
Chicago,IL 

Computers and Productivity 
Ali Dogramaci 
Rutgers University, Graduate School 

of Management 
Newark, NJ 

Health Information Systems 
Karen Duncan 
Health Information Systems 
Palo Alto, CA 

Computational Linguistics, 
Martha Evens 
Illinois Institute of Technology 
Chicago,IL 

Vice Chairman, Applications 
Roger Firestone 
Sperry Univac 
Blue Bell, PA 

Legal Applications 
Haley Fromholz 
Morrison & Forester 
Los Angeles, CA 

Computers and Productivity 
John Fulkerson 
Chicago Bridge & Iron Co. 
Oak Brook, IL 

Senses Technology Software 
Adele Goldberg 
Xerox Corporatio,n, Palo Alto 

Research Center 
Palo Alto, CA 

703 

Vice Chairman, Applications 
Michael Grigoriadis 
Rutgers University 
New Brunswick, NJ 

Computer Science Theory 
S. Louis Hakimi 
Northwestern University 
Evanston,IL 

Information Systems 
Management 

Gerald Hoffman 
Standard Oil Company (Indiana) 
Chicago, IL . 

Microprogramming 
Samir Husson 
IBM Corporation 
White Plains, NY 

Personnel; Planning and Managing 
Transition 

Mary Karon 
835 Ridge Avenue 
Evanston,IL 

Vice-Chairman, Social and Economic 
Implications 

Robert Korfhage 
Southern Methodist University 
Dallas, TX 

Networks and Communication 
George D. Kraft 
Illinois Institute of Technology 
Chicago,IL 

Auditability and Controls 
J ames Krause 
Pullman, Inc. 
Chicago,IL 



Simulation 
Lance Leventhal 
Emulative Systems Company 
San Diego, CA 

Networks and Communication 
William Lidinsky 
International Harvester Co. 
Burr Ridge, IL 

Fault-Tolerant Computing 
Gerald Masson 
Johns Hopkins University 
Baltimore, MD 

Data Processing Production Process 
Russell Melton 
Inland Steel Company 
East Chicago, IN 

Systems Development Process 
Clifton Merry 
Harris Trust and Savings Bank 
Chicago,IL 

Vice-Chairman, Software 
Howard Morgan 
University of Pennsylvania, 

The Wharton School 
Philadelphia, PA 

Capacity Planning 
Arnold Ockene 
IBM World Trade Europe/Mid 

East/Africa Corp. 
White Plains, NY 

Computer Literacy; Coordinator of 
Sessions Dealing with Education 

David Rine 
Western Illinois University 
Macomb,IL 

Personnel 
David Risku 
Inland Steel Company 
East Chicago, IN 

Energy Applications 
Patsy Rivera 
Los Alamos National Laboratory 
Los Alamos, NM 

Office Automation 
Janette Rose 
NBI, Inc. 
San Francisco, CA 

Database Software Applications 
Susan Rosenbaum 
AT&T 
New Brunswick, NJ 

704 

Personnel 
Robert Rouse 
Washington University, Center For 

The Study of Data Processing 
St. Louis, MO 

Information Systems for IS 
Management, Planning, and 
Managing Transition 

Robert Scheer 
International Harvester Co. 
Chicago,IL 

Applications of Artificial Intelligence 
N. S. Sridharan 
Rutgers University 
New Brunswick, NJ 

Strategy and Structure; Production 
Process 

George Tutt 
Urban Investment and Development 

Company 
Chicago,IL 

Vice-Chairman, Computer Architecture 
and Hardware 

Anthony S. Wojcik 
Illinois Institute of Technology 
Chicago,IL 



Conference Chaimum
Albert K. Hawkes 
Sargent & Lundy Engineers 
Chicago,IL 

Program Chairman 
Alex Orden 
University of Chicago, Graduate 

School of Business 
Chicago,IL 

Vice-Chairmen, Program Committee, 
Chicago Area 

Raymond Dash 
Benefit Trust Life Insurance Co. 
Chicago,IL 

Anthony S. Wojcik 
Illinois Institute of Technology 
Chicago,IL 

Director of Operations 
Richard B. Wise 
UOP, Inc. 
Des Plaines, IL 
(formerly ITT Research Institute, 

Chicago, IL) 

Pioneer Day Chairman 
Carl Hammer 
Sperry Univac 
Washington, DC 

Chairman 
M. Mildred Wyatt 
Wyatt Communications 
Chicago,IL 

Vice-Chairman 
Perry J. Eli 
IBM Corporation 
Chicago,IL 

Members 
Doug Blackwood 
Hewlett-Packard 
Ft. Collins, CO 

Carl L. Blesch 
Bell Telephone Laboratories, Inc. 
Naperville, IL 

Victor J. Danilov 
Museum of Science & Industry 
Chicago,IL 

CONFERENCE STEERING COMMITTEE 

Steering Committee Secretary/Special 
Projects Manager 

Marvin W. Ehlers 
Square D Company 
Palatine, IL 

Professional Development Chairman 
George R. Eggert 
U.S. Dept. of Defense 
Chicago,IL 

Personal Computing Chairman 
Sam Papa 
Data Forms, Inc. 
Chicago,IL 

Special Activities Chairman 
Fred H. Harris 
University of Chicago 
Chicago,IL 

Communications and Promotion 
Chairman 

M. Mildred Wyatt 
Wyatt Communications 
Chicago,IL 

Fiscal Officer 
Charles W. Schmidt 
LIFT, Inc. 
Northbrook, IL 

COMMUNICATIONS COMMITTEE 

Donald G. Dowd 
A.B. Dick Company 
Niles,IL 

Richard Hunter 
NCR Corporation 
Dayton,OH 

Jerry Kalman 
Informatics, Inc. 
Woodland Hills, CA 

Martin Kantor 
Northwestern University 
Evanston,IL 

Nancy Moss 
Illinois Institute of Technology 
Chicago,IL 

Gordon Smith 
Memorex Corporation 
Santa Clara, CA 

705 

VIP VisitaIs Chairman 
Stephen S. Yau 
Northwestern University Technological 

Institute 
Evanston, IL 

NCCC Liaison 
Robert C. Spieker 
AT&T 
New Brunswick, NJ 

AFIPS Representative 
James A. Kroell 
AFIPS 
Arlington, VA 

AFIPS Liaison 
Sam Lippman 
AFIPS 
Arlington, VA 

Regional Promotions 
Evelyn M. Bonney 
Pacific Northwest Bell 
Seattle, WA 

E. Z. Million, 
Consultant 

Norman, OK 

Kent Nichols 
Control Data Corporation 
Minneapolis, MN 

Ex-Officio 
Albert K. Hawkes, Conference 

Chairman 
Sargent & Lundy Engineers 
Chicago,IL 

Ted E. Lorber 
C. Itoh Electronics, Inc. 
Los Angeles, CA 



Arnold P. Smith 
IBM Corporation 
White Plains, NY 

Chairman 
Richard B. Wise 
UOP, Inc. 
Des Plaines, IL 
(formerly lIT Research Institute, 

Chicago,IL) 

Members 

Guest Room Assignments, Buses, and 
Catering 

Jack Biddison 
Capitol Construction Division of 

Capitol Companies, Inc. 
Arlington Heights, IL 

Registration Chairman 
Joe Leubitz 
Checkers, Simon, and Rosner 
Chicago,IL 

Betty Lou Cooke 
AFIPS 
Arlington , VA 

OPERATIONS COMMITIEE 

Manager, Conference Operations 
Sam Lippman 
AFIPS 
Arlington, VA 

Room Setup, Facilities, and Supplies 
Forest Mayberry 
TAB Products 
Chicago,IL 

Signs 
Marjorie McCarthy 
FMC Corporate MIS 
Chicago,IL 

Personnel and Human Resources 
Mary W. Owen 
Leo Burnett Company 
Chicago,IL 

Operations 
Mary Rich 
ICS Group, Inc. 
Touance-,-CA 

Information Booth and Message Center 
Earl Calkins 
Sargent & Lundy Engineers 
Chicago,IL 

Exhibits Coordinator 
Roger Trenkle 
ExceIIent Software Inc. 
Chicago,IL 

PERSONAL COMPUTING STEERING COMMITTEE 

Chairman 
Sam Papa 
Data Forms, Inc. 
Chicago,IL 

Vice Chairman and Program 
J ames Gerdes 
Argonne National Laboratory 
Argonne,IL 

Demonstrations 
Rex Burton 
Thermark-Avery International 
Schererville, IN 

Joel Zygmunt 
U.S. Steel Supply 
Chicago,IL 

Chairman 
Carl Hammer 
Sperry Univac 
Washington, DC 

Members 
Donald G. Dowd 
A.B. Dick Company 
Chicago,IL 

Publicity 
Victor Humphrey 
Victor Accounting Service 
Homewood,IL 

Operations 
Edward Staros 
Software Design Corporation 
Lansing,IL 

Digest 
Joseph S. J erbich 
Humphreys Leather Goods, Inc. 
Chicago,IL 

Advisors 
Portia Isaacson 
Richard Kuzmack 

PIONEER DAY COMMITTEE 

Nancy Stern 
Hofstra University 
Hempstead, NY 

Henry P. Stevenson 
AT&T 
New Brunswick, NJ 

706 

PC Digest Track Captains 
Robert Judd 
Governors State University 
Park Forest South, IL 

Art Lindeman 
Indiana University 
Bloomington, IN 

Frank Dougherty 
Blackhawk Bit Burners 
Belvidere, IL 

Henry S. Tropp 
135 Red Rock Way 
San Francisco, CA 



PROFESSIONAL DEVELOPMENT COMMITIEE 

Chairman 
George R. Eggert 
DCASR, Chicago, U.S. Department 

of Defense 
Chicago,IL 

Members 
Shirley Baird 
Milestone Systems Development 
Downers Grove, IL 

Chairman 
Fred H. Harris 
University of Chicago Computation 

Center 
Chicago,IL 

Film Forum 
Jeff Benchley 
First National Bank of Lake Forest 
Lake Forest, IL 

Art Beck 
Northwestern University 
Evanston, IL 

Rus Becker 
NMOS 
Des Plaines, IL 

Willett Pierce 
University of Illinois 
Chicago,IL 

Diane Ptasienski 
First National Bank of Lake Forest 
Lake Forest, IL 

Cecil Suarez 
First-National Bank of Lake Forest 
Lake Forest, IL 

Chairman 
Stephen S. Yau 
Northwestern University 

Technological Institute 
Evanston,IL 

Rudolph E. Hirsch 
Center for Continuing Education 
Chicago,IL 

Dr. Barbara A. Pletcher 
Creative Sales Careers, Inc. 
Sacramento, CA 

SPECIAL ACTIVITIES COMMITTEE 

International Visitors Center 
Milton D. Shulman 
DePaul University 
Chicago,IL 

Joseph G. Arnold 
Urban Investment and Development 

Company 
Chicago,IL 

John A. Driscoll 
United Equitable Insurance Company 
Skokie,IL 

David A. Roitman 
MAS Consultants, Inc. 
Chicago,IL 

Handicapped Services 
Marjorie M. Benson 
University of Chicago Computation 

Center 
Chicago,IL 

Barbara Herbster 
Computer Corporation of America 
Chicago,IL 

VIP VISITORS COMMITIEE 

Members 
H. Lee 
Northwestern University 
Evanston,IL 

707 

Warren J. Simpson 
U.S. Office of Personnel Management 
Chicago,IL 

Kathy Srednicki 
U.S. Department of Defense 
Chicago,IL 

Carole Herbster 
2748 Linneman 
Glenview, IL 

Receptions 
Joe McGrath 
Pryor Corporation 
Addison,IL 

Eugene Karczewski 
Sexton Data 
Chicago,IL 

John Eide 
Market Facts 
Chicago,IL 

Fred Hoffman 
Signod Corporation 
Glenview, IL 

Public EVents 
Roz Silverman 
200 E. Delaware, Suite llA 
Chicago,IL 

C. V. Ramamoorthy 
University of California 
Berkeley, CA 



NCC'81SESSION LEADERS 

Gene Altshuler 
Pete, Marwick, Mitchell & Co. 
New York, NY 

Paul Armer 
University of Minnesota 
Minneapolis, MN 

Marion Ball 
Temple University 
Philadelphia, PA 

Bharat Bhargava 
University of Pittsburgh 
Pittsburgh, PA 

Meera M. Blattner 
University of California, DavislLivermore 
Livermore, California 

Jeffrey A. Bloom 
Network Analysis Corporation 
Vienna, VA 

Louis J. Brocato 
U.S. Department of Agriculture 
Beltsville, MD 

Thomas A. Browdy 
Washington University 
St. Louis, MO 

A. Winsor Brown 
Point 4 Data Corporation 
Irvine, CA 

James H. Carlisle 
Office of the Future, Inc. 

. Guttenberg, N.J. 

C. R. Carlson 
Bell Laboratories 
Naperville, IL 

William C. Carter 
IBM Research Laboratory 
Yorktown Heights, NY 

Ned Chapin 
InfoSci Inc. 
Menlo Park, CA 

David Clapp 
U.S. Dept. of Transportation 
Cambridge, MA 

Danny Cohen 
USC/Information Sciences Institute 
Marina del Rey, CA 

James C. Cooper 
IBM Corporation 
Gaithersburg, MD 

Ira W. Cotton 
Booz, Allen & Hamilton, Inc. 
Bethesda, MD 

J. Daniel Couger 
University of Colorado 
Colorado Spring, CO 

Cory Devor 
Honeywell 
Bloomington, MN 

John Donovan 
Aetna Life and Casualty Co. 
Hartford, CT 

Karen Duncan 
670 Antonio Rd., #2 
Menlo Park, CA 

Robert J. Elliott 
Arthur Andersen & Co. 
San Francisco, CA 

Gerald Estrin 
University of California at Los Angeles 
Los Angeles, CA 

Martha Evens 
Illinoi~ Institute of Technology 
Chicago,IL 

William E. Farley 
U. S. Department of Agriculture 
Beltsville, MD 

Richard Federico 
Occidental Petroleum-Hooker 
Chemical Company 
Niagara Falls, NY 

Lawrence Feidelman 
Management Information Corporation 
Cherry Hill, NJ 

Roger M. Firestone 
Sperry Univac 
Blue Bell, PA 

708 

Mark Fox 
Carnegie-Mellon University 
Pittsburgh, PA 

Haley J. Fromholz 
Morrison & Foerster 
Los Angeles, CA 

Harvey A. Freeman 
Sperry Univac 
St. Paul, MN 

K. S. Fu 
Purdue University 
West Lafayette, IN 

R. Stockton Gaines 
Sierra Information Machines 
Marina del Ray, CA 

Leonard B. Gardner 
Consultant 
Spring Valley, CA 

Frederick L. Goodman 
University of Michigan 
Ann Arbor, MI 

Harvey J. Greenberg 
Energy Information Administration 
Washington, DC 

Carl Hammer 
Sperry Univac 
Washington, DC 

Thomas I.M. Ho 
Purdue University 
West Lafayette, IN 

A. A .. J. lIoffman 
Consultant 
Fort Worth, TX 

John T. Hogan 
Oak Ridge National Laboratory 
Oak Ridge, TN 

Gregory T. Hopkins 
The MITRE Corporation 
Bedford, MA 

Ray Houghton 
National Bureau of Standards 
Washington, DC 



Pei Hsia 
University of Alabama in Huntsville 
Huntsville, AL 

S. S. Husson 
IBM Corporation 
White Plains, NY 

Tadao Ichikawa 
Hiroshima University 
Hiroshima, Japan 

Daniel Ingalls 
Xerox Corporation 
Palo Alto, CA 

Suresh K. Jain 
Chesebrough-Pond's, Inc. 
Clinton, CT 

Svetlana P. Kartashev 
University of Nebraska-Lincoln 
Lincoln, Nebraska 

Steven I. Kartashev 
Dynamic Computer Architecture, Inc. 
Lincoln, Nebraska 

Walter J. Karplus 
University of California, Los Angeles 
Los Angeles, CA 

Krishna M. Kavi 
University of Southwestern Louisiana 
Lafayette, LA 

Benn Konsynski 
University of Arizona 
Tuscon, AZ 

Eugene Kozik 
Pennsylvania State University 
Radnor, PA 

George Kraft 
Illinois Institute of Technology 
Chicago,IL 

James Krause 
MCC Powers 
Skokie,IL 

Samuel C. Lee 
University of Oklahoma 
Norman, OK 

Ellen M. Leonard 
Los Alamos National Laboratory 
Lost Alamos, NM 

Belkis Leong-Hong 
National Bureau of Standards 
Washington, DC 

Joseph Y-T. Leung 
Northwestern University 
Evanston, IL 

Leon S. Lev:y 
Bell Laboratories 
Whippany, NJ 

William P. Lidinsky 
International Harvester 
Burr Ridge, IL 

Leonard D. Lipner 
BGS Systems, Inc. 
Waltham, MA 

Peter Lykos 
Illinois Institute of Technology 
Chicago,IL 

Gerald M. Masson 
Johns Hopkins University 
Baltimore, MD 

L. Thorne McCarty 
State University of New York at Buffalo 
Buffalo, NY 

Carma L. McClure 
Northwestern University 
Evanston,IL 

Robert J. McGlinn 
Southern Illinois University 
Carbondale,IL 

Arthur Melmed 
U. S. Department of Education 
Washington, DC 

W. Russell Melton 
Inland Steel Company 
Chicago,IL 

Clifton Merry 
Harris Trust & Savings Bank 
Chicago,IL 

Diana Merry 
Xerox Corporation 
Palo Alto, CA 

Leslie Jill Miller 
Xerox Corporation 
Rochester, NY 

709 

Thomas Mitchell 
Rutgers University 
New Brunswick, NJ 

David J. Mishelevich 
University of Texas 
Dallas, TX 

Howard Lee Morgan 
The Wharton School 
Philadelphia, PA 

Abbe Mowshowitz 
Croton Research Group, Inc. 
Croton-on-Hudson, NY 

Susan H. Nycum 
Gaston Snow & Ely Bartlett 
Palo Alto, CA 

K. S. Padda 
Texas Instruments 
Houston, TX 

Lee Papayanopoulos 
Rutgers University 
Newark, NJ 

Fred E. Petry 
Tulane University 
New Orleans, LA 

Susan Rosenbaum 
AT&T 
New Brunswick, NJ 

Steven J. Ross 
The Plagman Group 
New York, NY 

Robert A. Rouse 
Washington University 
St. Louis, MO 

John Van Savage 
Army Armament R&D Command 
Edison, NJ 

Robert H. Scheer ' 
International Harvester Company 
Chicago,IL 

Norman S. Schneidewind 
Naval Postgraduate School 
Monterey, CA 

Brad Schultz 
Computerworld 
Framingham, MA 



Robert Seidel 
Human Resources Research Organization 
Alexandria, VA 

Bruce D. Shri'ver 
University of Southwestern Louisiana 
Lafayette, LA 

Thomas Sinopoli 
Algorithmics, Inc. 
Wellesley, MA 

Norman K. Sondheimer 
Sperry Univac 
Blue Bell, PA 

N. S. Sridharan 
Rutgers University 
New Brunswick, NJ 

James R. Swager 
Honeywell Information Systems 
McLean, VA 

Keith A. Taggart 
Los Alamos National Laboratory 
Los Alamos, NM 

Linda Taylor 
System Development Corporation 
Santa Monica, CA 

Michael Tempel ' 
New York Academy of Sciences 
New York, NY 

Satish K. Tripathi 
University of Maryland 
College Park, MD 

George L. Tutt 
Urban Investment and Development Company 
Chicago,IL 

Harold S. Uhrbach 
DBD Systems, Inc. 
Rockville Centre, NY 

Walter Ulrich 
Walter E. Ulrich Consulting 
Houston, TX 

K. Vairavan 
University of Wisconsin-Milwaukee 
Milwaukee, WI 

710 

Denny O. Wallace 
Illinois Tool Works, Inc. 
Chicago,IL 

Conrad H. Weisert 
Information Disciplines, Inc. 
Chicago,IL 

Stephen S. Yau 
Northwestern University 
Evanston,IL 

Raymond T. Yeh 
University of Maryland 
College Park, MD 

Dan Zatyko 
Zatyko Associates 
Santa Ana, CA 

Ken Zoline 
Continental Bank 
Chicago,IL 

Mitch L. Zolliker 
IBM Corporation 
San Jose, CA 



Adams, R. E. 
Agrawal, Dharma 
Ahuja, Pratap 
Ahuja, Sanjiv 
AI-Fedaghi, Sabah S. 
Amenta, Joyce 
Ames, Stanley R., Jr. 
Andrisan, John V. 
Antal, J. R. 
Archibald, J. A., Jr. 
Aylor, James H. 

Baer, Jean-Loup 
Bail, William 
Baird, George N. 
Baker, F. Terry 
Barnes, Bruce H. 
Bartlett, Frederick 
Bateman, Barry 
Bauer, M. A. 
Baxter, Brent 
Belford, Geneva 
Bering, Doug 
Bhargava, Bharat 
Bise, Robert G. 
Blomgren, George H. 
Bork, Alfred 
Borko, Harold 
Bracey, Randolph D. 
Brocato, Louis J. 
Brown, Nander 
Brown, Russell K. 
Burton, William D., Jr. 

Campbell, R. H. 
Cannon, George R., Jr. 
Capraro, Gerard T. 
Carey, Bernard J. 
Carroll, B. D. 
Carter, William J. 
Chapin, Ned 
Charney, R. B. 
Charp, S. 
Chiang, Paul 
Chow, Yuan-Chieh 
Christopher, Thomas 
Cieslowski, Richard J. 
Clema, J. K. 
Clemons, Eric K. 
Cobb, Gary W. 
Cooprider, Lee W. 
Cowan, George 
Crenshaw, Edsel G. 

Daniels, Walter E. 
Danner, Lee 
Davis, Alan 

NCC '81 REFEREES 

Day, William H. E. 
De Jong, Kenneth 
DeKock, Arlan R. 
D~enberg~ Stewart A. 
Dixon, Louis F. 
Donato, Nola 
Dutton, Ron 
Dwyer, Samuel J., III 

Eastman, Caroline M. 
Eccles, William J. 
Eger, John 
Ein-Gal, Moshe 
Ernst, Ronald L. 
Evens, Martha 

Feldman, Michael B. 
Finfer, Marcia 
Fishbeck, Ronald 
Flinchbaugh, B. E. 
Flynn, Robert J. 
Fong, Elizabeth 
Friedman, Lee A. 
Fu, K. S. 

Galkowski, J. T. 
Gannon, T. F. 
Gehani, N arain 
Gips, James 
Goel, Amrit L. 
Goldman, Neil 
Gonzalez, Mario J., Jr. 
Gottlieb, Allan 
Granlund, Goesta 
Green, Teresa O. 
Grosch, Audrey N. 
Gross, Arthur G. 
Gupta, Ram K. 

Hakozaki, Katsuya 
Hall, Ernest L. 
Hamblen, John W. 
Hanna, William E., Jr. 
Hart, Peter E. 
Hecht, H. 
Hopper, Grace M. 
Hua, Cecil T. 
Hurley, Paul 

Ichikawa, Tadao 

Jensen, E. Douglas 
Jette, Christina L. 
Johnson, L. Arnold 
Johnson, Mark Scott 
Jordan, Harry F. 

711 

Kahn, Kevin C. 
Kaufman, Arie E. 
Koory, Jerry L. 
Kornfield, N. R. 
Kronman, J. A. 
Krulee, Gilbert 
Kubitz, W. J. 
Kulaga, Joseph 

Landis, Carolyn P. 
Lee, Mary Jane 
Lee, Theodore M. P. 
Lennon, William 
Lien, David A. 
Lint, B. T. 
Little, Joyce Currie 
Lockett, JoAnn 
Long, Harvey S. 

Machover, Carl 
Madrigal, Orlando S. 
Maekawa, Mamoru 
Magel, Kenneth 
Magnuson, Waldo G. 
Maher, Austin J. 
Mallett, Patrick 
Mander, K.C. 
Maniotes, John 
Matshushita, Yutaka 
McAllister, David F. 
McCrea, Donald R. 
McDonald, Nancy H. 
McMahon, Edith M. 
Metzner, John R. 
Miller, Charles E. 
Miller, Mark Leslie 
Modesitt, Kenneth L. 
Mounce, John 
Muka, Stephen 
Murphy, Robert E. 

Naqvi, S. A. 
Navlakha, Jairiendra 
Nelson, Victor P. 
Nestman, Chadwick H. 
Nielsen, Norman R. 
Nilsson, Arne A. 
Nutt, Gary J. 

O'Kane, Kevin C. 
O'Neal, Beverly 

Peralta, L. A. 
Perry, J. M. 
Pfaltz, John 
Pottinger, Hardy J. 



Powell, John E. 
Prewitt, Judith 

Reho, Andy 
Riddle, William E. 
Rocchetti, Robert 
Rosenbaum, Susan L. 
Rosin, Bob 
Roth, R.Waldo 
RuHfson, J. F. 
Ruschitzka, Manfred 

Sankar, P. V. 
Savas, E. S. 
Scheuermann, Peter 
Schneider, G. Michael 
Schultz, David J. 
Segal, Ronald 
Shapiro, Michael D. 
Shelter, Toni 

Simmons, Dick B. 
Sitkin, Irwin J. 
Smith, Eugene B. 
Smith, Raoul 
Smoot, Oliver R. 
Sondheimer, Norman K. 
Spaniol, Roland 
Stavely, Allan M. 
Stevens, D. F. 
Stevens, W. Richard 
Stuck, B. W. 
Sunshine, Carl 
Svigals, J. 
Szolovits, Peter 

Tai, K. C. 
Tausner, Miriam R. 
Taylor, Linda T. 
Taylor, Robert W. 
Teng, Albert 

712 . 

Thurber, Ken 
Tinaztepe, Cihan 
Tomaru, Keisuke 
Tucker, Edwin K. 
Turn, Rein 

Van Name, Mark L. 

Waterman, David J. 
Weiss, Stephen F. 
Wesselkamper, T. C. 
Whiting-O'Keefe, Patricia M. 
Wolfson, Seymour J. 
Worrest, Ralph W. 
Wynne, A. James 

Yamamoto, Masahiro 
Yasnoff, William A. 
Yen, W. C. 



NCC '81 SPEAKERS AND PANELISTS 

Adam, Robert Cichelli, Richard Graham, Robert L. 
Agrawala, A. K. Cobb, Thomas Greenberg, Harvey J. 
Aiken, Robert M. Clary, J-ames Groves, Stan 
Alexander, Roger Clauss, Karl 
Alguire, Robert Clement, Andrew Hadcock, Walter J. 
Aiso, Hideo Cohen, Danny Hafner, Carole D. 
Anastasi, Larry Cohen, Leo Hancock, Jack 
Anderson, Ronald Colestock, H. Handy, Jim 
Andrews, Dorothy M. Collins, Alan Hanson, Robert C. 
Arora, Adarsh K. Cook, Sandra Haralick, R. M. 
Aspray, William F. Couger, J. Daniel Harris, Daniel K. 
Athey, Thomas H. Cragon, Harvey G. Harris, Fred H. 
Avizienis, Algirdas Crowley, Charles Harris, Larry R. 
Atkins, Cal Curtiss, Philip F. Harris, Richard 
Aylor, J. H. Hart, Peter E. 

Dasgupta, Subrata Harvey, Samuel B. 

Ballard, Stony Daverio, Paul Hayn, John 

Barrett, Ernie Davis, Randy Held, Gerald 

Bass, Charlie Day, John Heller, Andrew R. 

Bates, Madeline De Jong, Peter Hellprin, Lawrence B. 

Bebel, Don DeLine, James R. Herman, Alvin J. 

Belady, Les A. Denning, Peter J. Hess, Matt 

Belknap, John H. Dowdy, L. W. Hicks, H. Richard 

Benenati, J. David Dreifus, Henry Higgins, Ruth 

Berger, Carl Duke, Chris Holland, L. Donald 

Berry, R. Hollingsworth, Marion 

Bickel, Rudolf G. Earnest, E. Dean Hopkins, Albert 

Bigelow, Robert Edwards, Paul L. Hopkins, Gregory T. 

Blackman, Jim Eichberger, Joe Howe, Robert 

Blazie, Deane Hua, Cecil 

Bolek, Raymond W. Fisher, David Huckaby, Don 

Brackett, C. A. Fuire, Robert Hughes, Charles E. 

Bright, Herbert S. Fletcher, John G. Hughes, Herman D. 

Bronner, Lee Roy Fox, Mark S. Hunter, Beverly 

Browdy, T. A. Franta, William R. 
Brown, Harold Frase, Lawrence T. Ingalls, Daniel 
Brown, John Seely Freiwald, Joyce 
Brown, Mary Lou Friend, David Jackson, Annette 
Brown, Tom Froese, Robert Jain, Suresh K. 
Bucy, _Richard Fronk, William Johnson, Anthony W. 
Bulen, Robert A. Fu, K. S. 
Bush, James Wilson Fulmer, Ken Kaehler, Ted 
Buzen, J. P. Kahn, Robert E. 

Gajnak, George Kehler, Tom 
Campbell-Kelly, Martin Galitz, W. O. Kim, K. H. 
Carlson, Eric Gehani, Narain Kirkley, John L. 
Carlucci, Carl P. Gemignani, Michael Klassen, Daniel 
Carmony, Lowell A. Gewirtz, Bill Kling, Rob 
Carter, William C. Giammo, Tom Kolstad, Charles 
Cerf, Vinton G. Giannini, Margaret Krasner, Glenn 
Ceruzzi, Paul Gilmer, George H. Kurator, William 
Chandy, K. M. Gnanamgari, Sakunthala 
Chang, N. S. Gold, Charles L. LaRue, Richard 
Chang, S. K. Goldberg, Jack Lashof, Joyce 
Chereb, David Goodman, Frederick L. Lee, J. A. N. 
Chien, Y. T. Graham, James W. Lefkovits, Henry C. 

713 



Leneway, Robert J. Prewitt, J. M. S. Standjev, Robert 
Leonard, Carl A. Price, Camille Steels, Luc L. 
Leonard, Ellen Prince, Warren Stefink, Mark 
Leliotis, Ted Printis, Robert Steiner, Carl R. 
Lenat, Douglas Probst, Jerry Stodolsky, David 
Leopold, Harry Provan, Scott Sussman, Gerald 
Levinthal, Cyrus Sutherland, Duke 
Levy, Leon S. Rabenhorst, James F. 
Linebarger, Robert Rahimi, M. A. Teichroew, Daniel 
Lipner, L. Ramamoorthy, C. V. Tempel, Michael 
Lynch, Mary J 0 Ramellini, Joseph Tesler, Larry 

Rather, Elizabeth Thomsen, Carl 
Major, Joseph B. Rattner, Justine Thompson, Claudia R. 
Marcus, Aaron Ravenel, Bruce Thurber, Kenneth J. 
Matthews, Gordon Reenskaug, Trygve Tillinghast, James 
MacDonald, Nina Reggio, Patrick Toellner,John 
McClure, Carma L. Roberts, Stephen Toyama, Masaharu 
Mallie, Tony Rolland, Ron Tripathi, S. K. 
Mathews, Gordon Robson, David Tunis, James A. 
Meldman, Jeffrey A. Robinson, Lee 
Merwin, Richard E. Rose, Alan Van Slyke, Richard 
Miller, Mark Rosenbaum, Richard Van Tilborg, Andre M. 
Millman, Ann Miller Rosenfeld, A. Veazie, Stephen M. 
Mills, Harlan Rosenthal, Gerald Vick, Charles R. 
Mishelevich, David J. Rotolo, Elio 
Misra, J. Ryburg, Jon 

Walker, Donald E. Munson, Jack 
Montgomery, Christine A. Saal, Harry J. Wardle, Caroline 

Musselman, Francis H. Sayani, Hasan Waterman, D. A. 

Schneyman, A. H. Watteeuw, Caroline 

Nakamoto, Robert Schultz, Brad Weber, Larry 

Neighborgall, Roger Seidel, Robert Wecksung, Mona 

Newkirk, M. Glenn Seigle, Dave Wensley, John 

Nierstrasz, Oscar M. Selinger, Patricia Wetherbe, James C. 

Nolte, Sid Shaffer, Hy Whitten, Jeffrey L. 

Nunamaker, Jay F., Jr. Shapiro, Linda Wigington, Ronald 

Nycum, Susan H. Sharpe, Richard Wilk, Evelyn S. 

N ye, J. Michael Sheil, B. A. Williams, A. C. 

Sheppard, Sallie Williams, Martha 

Ogorchock, James Shoch,John Winkler, Connie 

Orr, Joel N. Shriver, Bruce D. Wittie, Larry D. 

Owens, Donald P. Shumway, Dick Wohl, Amy 

Slavitz, Jeffrey M. Wong, Harry 

Parikh, Girish Sleeman, Derek Wood, David C. 

Parr; M. R. Smith, John Wu, Chialin 

Pavlidis, T. Smith, Robert Ellis 
Peercy, David E. Smith, Wayne Yara, Ron 

Perry, Seymour Snow, Andrew P. Young, Charles R. 

Peterson, Mark Solowa, Elliot Young, Robert F. 

Pollock, Kenneth G. Sorenson, Paul 
Potter, David Spaniol, Roland Ziegler, R. W., Jr. 
Post, Douglas E. Sprowl, James A. Zikas, Algirdas J. 
Poston, Bob Sridharan, N. S. Zilles, Stephen 

714 



Alagar, Vangalur S., 443 
Anderson, Roy E., 401 
Avizienis, Algirdas, 27 

Baird, George N., 361 
Balzer, Robert, 393 
Barrett, Eamon, 453 
Batchelor, William L., 389 
Benson, Robert J., 593 
Berg, Helmut K., 75 
Bernstein, Philip A., 487 
Bhargava, Bharat, 297, 543 
Blanchard, Bernard, 443 
Blankenship, P. E., 183 
Blattner, Meera, 453 
Boss, Richard W., 609 
Briggs, Faye A., 191 
Brooks, Ruven, 453, 469 

Campbell, R., 209 
Campbell, R. H., 231 
Center, John W., 323 
Chapin, Ned, 349 
Cheng, W. Y., 209 
Chow, Yuan-Chieh, 163 
Chu, Wesley W., 137 
Clemons, Eric K., 249 
Cohen, Danny, 169 
Constantinides, J., 203 
Cook, Sandra, 689 
Cordy, James R., 259 
Costello, S. H., 217 
Crickman, Robin, 613 
Crocker, Stephen D., 19 
Crowe, David R., 257 
Crowley, Charles, 265 

Danielson, Ronald L., 375 
Davidson, Scott, 81 
Dayal, Umeshwar, 487 
Decitre, Paul, 473 
Dees, W. A., 11 
De Figueiredo, A. C. D., 141 
Doi, Norihisa, 407 
Donato, Nola, 665 

Endicott, Lucian J., Jr., 389 

Feldman, J. A., 183 
Fisher, Joseph A., 95 
Fishman, P., 459 

Gallaher, L. E., 41 
Gammill, Robert C., 415 
Giloi, Wolfgang K., 49 
Glaser, David, 443 
Goldman, Neil, 393 

AUTHOR INDEX 
Goodell, Ross, 103 
Goodman, Frederick L., 601 
Goodman, Nathan, 487 
Goyal, A., 11 
Greene, Richard J., 481 
Griggs, Ian H., 257 
Gueth, Reinhold, 49 

Hafner, Carole D., 689 
Hanna, W. L., 431 
Hasegawa, Kiyoshi, 507 
Heidorn, George E., 649 
Heller, Andrew, 69 
Hellerstein, Joseph, 137 
Hendler, James, 643 
Hewitt, Jay, 663 
Hikita, Sadayuki, 507 
Hirata, Masahiro, 407 
Hirose, Ken, 407 
Hobson, Richard F., 3 
Hodson, Patrick, 677 
Holt, Richard C., 257 
Holthouse, M. A., 353 
Howden, William E., 367 
Hwang, Kai, 191 

Ingargiola, Giorgio, 383 

Jensen, Karen, 649 
Johnson, David W., 235 
Johnson, L. Arnold, 361 

Kambayashi, Yahiko, 555 
Kartashev, Steven I., 111 
Kartashev, Svetlana P., 111 
Kearney, Joe, 317 
Kehler, Thomas P., 643 
Kerr, Edwin F., 597 
Kini, Vittal, 19 
Kolstad, R., 209 
Koubias, S., 203 

Landers, Terry, 487 
Landskov, David, 95 
Lawson, Harold W., Jr., 57 
Leavenworth, Burt, 537 
Leventis, S., 203 
Levinson, E., 241 
Levy, L. S., 241 
Lilien, Leszek, 543 
Lin, Ken W. T., 487 
Liu, J. W.-S., 209 
Luhukay, J., 209 
Lusk, E. L., 697 
Lybrook, C. W., 353 
Lyons, Michael J., 337 

715 

Ma, Perng-Yi, 87 
Ma, Y. W., 149 
Maekawa, Mamoru, 515 
Markel, J. D., 177 
Matsushita, Yutaka, 507 
McCarty, L. Thome, 689 
Meldman, Jeffrey A., 689 
Meyer, Michael E., 225 
Michaelis, Paul Roller, 643 
Miller, Lance A., 649 
Mishelevich, David J., 631 
Miyamoto, Isao, 571 
Mooney, James D., 145 
Morse, Jane G., 565 

Nakatsu, Narao, 555 
Nicolas, Georges S., 529 

O'Leary, G. C., 183 
Oliver, Dennis M., 593 
Osterweil, Leon J., 367 
Othmer, E., 459 
Othmer, S., 459 
Overman, William T., 19 

Papadopoulos, G., 203 
Papayanopoulos, L., 623 
Parker, Alice C., 63 
Parmar, K. M.~ 11 
Patterson, Dave, 103 
Pawlak, Zdzislaw, 453 
Peterson, Mark, 689 
Phillips, Brian, 643 
Poe, Michael D., 103 
Pramanik, Sakti, 521 
Price, Camille C., 291 
Protopapas, Dimitris A., 423 

Quatember, Bernhard, 125 

Rao, J. R., 431 
Rathi, B. D., 11 
Ray, S., 209 
RelIes, Nathan, 383 
Reutter, John, III, 343 
Richards, P. G., 231 
Ricketts, S. R., 681 
Rocchetti, Robert, 671 
Roistacher, Richard C., 617 
Rolland, Colette, 583 
Ross, Kenneth M., 643 
Rouse, Robert A., 593 

Saito, Nobuo, 407 
Salisbury, J. B., 241 
Scallan, P. Gerard, 249 
Schneider, G. Michael, 317 



Schwartz, Helen J., 605 
Sedlmeyer, Robert L., 317 
Segawa, Kiyoshi, 407 
Shanthikumar, J. G., 311 
Sheheen, Nancy, 677 
Shriver, Bruce D., 49, 81, 95 
Sibley, Edgar H., 249 
Simmons, Dick B., 329 
Smith, John Miles, 487 
Smith, Mark K., 367 
Smith, R. J., II, 11 
Sondheimer, Norman K., 383 
Sprowl, James A., 689 
Sridharan, N. S., 689 
Steely, Simon C., Jr., 103 
Swager, James R., 501 

Takata, Masayuki, 407 
Taylor, Richard N., 367 

Tennant, Harry R., 643 
Thompson, Bozena Henisz, 657 
Thompson, Fred, 657 
Tierney, J., 183 
Toy, W.N., 41 
Tripp, Leonard-L., 367 
Tsui, R. Y., 11 
Thrba, T. N., 217 

Van Dam, Andries, 69 
Vannier, M. W., 459 
Van Tilborg, Andre, 283 

Wah, Benjamin W., 149, 191 
Ward, Darrell L., 463 
Waterman, D. A., 689 
Whitney, V. Kevin, 565 
Wilner, Wayne T., 63 
Winfrey, W. R.,681 

716 

Winker, S. K., 697 
Winslow, Leon E., 163 
Wittie, Larry D., 283 
Wong, Eugene, 487 
Wortman, David B., 257 
Wos, L., 697 

Yajima, Shuzo, 555 
Yamasaki, Toshiharu, 407 
Yamazaki, Haruaki, 507 
Yeh, Raymond T., 571 
Young, Charles R., 273 

Zolnowski, Jean Cochrane, 329 



AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES, INC. (AFIPS) 

President 

J. Ralph Leatherman 
Hughes Tool Company 
Houston, TX 

Vice President 

Sylvia Charp 
The School District of Philadelphia 
Philadelphia, PA 

Association for Educational Data 
Systems (AEDS) 

Judith B. Edwards 
Northwest Regional Educational Lab 
Portland, OR 

AFIPS Immediate Past President 

Albert S. Hoagland 
IBM Corporation 
San Jose, CA 

American Society for Information 
Science (ASIS) 

James M. Cretsos 
MereU National Labs 
Cincinnati,OH 

American Statistical Association (ASA) 

George Minich 
World Bank 
Washington, DC 

Association for Computational 
Linguistics (ACL) 

Donald E. Walker 
SRI International 
Menlo Park, CA 

Association for Computing Machinery 
(ACM) 

Aaron Finerman 
University of Michigan 
Ann Arbor, MI 

OFFICERS 

Treasurer 

M. Stuart Lynn 
University of California 
Berkeley, CA 

Secretary 

Arthur C. Lumb 
Procter & Gamble Co. 
Cincinnati,OH 

BOARD OF DIRECTORS 

Raymond E. Miller 
Georgia Institute of Technology 
Atlanta, GA 

Peter J. Denning 
Purdue University 
West Lafayette, IN 

Data Processing Management 
Association (DPMA) 

Robert Marrigan 
Mail Communications, Inc. 
Everett, MA 

George Eggert 
Chicago DCASR 
Department of Defense 
Chicago,IL 

Robert A. Finke 
Cummins Engine Co. 
Columbus, IN 

IEEE-Computer Society 

Richard Merwin 
The George Washington University 
Washington, DC 

Steven S. Yau 
Northwestern University 
Evanston,IL 

Roland B. Arndt 
Sperry Univac 
St. Paul, MN 

717 

Executive Director 

Paul J. Raisig 
AFIPS 
Arlington , VA 

Instrument Society of America (ISA) 

Chun H. Cho 
Fisher Controls Co. 
West Marshalltown, IA 

Society for Computer Simulation (SCS) 

Per Holst 
The Foxboro Company 
Foxboro, MA 

Society for Industrial and Applied 
Mathematics (SIAM) 

Donald L. Thomsen, Jr. 
SIAM Institute for Mathematics and 

Society 
New Canaan, CT 

Society for Information Display (SID) 

Carlo P. Crocetti 
Rome Air Development Center/XP 
New York, NY 



J. Ralph Leatherman 
Hughes Tool Company 
Houston, TX 

Sylvia Charp 
The School District of Philadelphia 
Philadelphia, PA 

M. Stuart Lynn 
University of California 
Berkeley, CA 

AFIPS EXECUTIVE COMMITTEE 

Arthur C. Lumb 
Procter & Gamble Co. 
Cincinnati,OH 

Aaron Finerman 
University of Michigan 
Ann Arbor, MI 

Steven S. Yau 
Northwestern University 
Evanston,IL 

Per Holst 
The Foxboro Company 
Foxboro, MA 

Robert Marrigan 
Mail Communications, Inc. 
Everett, MA 

NATIONAL COMPUTER CONFERENCE BOARD MEMBERS 

Chairman and AFIPS Representative 

Sylvia Charp 
The School District of Philadelphia 
Philadelphia, PA 

Vice Chairman and SCS Representative 

Carl Malstrom 
North Carolina State University 
Raleigh, NC 

Secretary and AFIPS Representative 

George Minich 
World Bank 
Washington, DC 

Treasurer and AFIPS Representative 

M. Stuart Lynn 
University of California 
Berkeley, CA 

AFIPS President 

J. Ralph Leatherman 
Hughes Tool Company 
Houston, TX 

Chairman of the NCC Committee-
Ex Officio 

Irwin Sitkin 
Aetna Life and Casualty 
Hartford, CT 

IEEE-Computer Society President-
Ex Officio 

Richard Merwin 
The George Washington University 
Washington, DC 

ACM President-Ex Officio 

Peter J. Denning 
Purdue University 
West Lafayette, IN 

Chairman of the Industry Advisory 
Panel-Ex Officio 

Dallas Talley 
Qantel Corporation 
Hayward, CA 

D P MA Representative 

Ge-orge Eggert 
DCASR-Chicago, U.S. Department 

of Defense 
Chicago,IL 

IEEE-Computer Society 
Representative 

Dick B. Simmons 
Texas A & M University 
College Station, TX 

ACM Representative 

Seymour Wolfson 
Wayne State University 
Detroit, MI 

SCS President-Ex Officio 

Stewart I. Schlesinger 
The Aerospace Corporation 
Los Angeles, CA 

DPMA President-Ex Officio 

Roger Fenwick 
New York Telephone Company 
New York, NY 

NATIONAL COMPUTER CONFERENCE COMMITTEE OF THE NCC BOARD 

Chairman 

Irwin J. Sit kin 
Aetna Life & Casualty 
Hartford, CT 

Secretary 

Floyd Harris 
Life of Georgia 
Atlanta, GA 

718 

NCC '81 Chairman 

Al Hawkes 
Sargent & Lundy Engineers 
Chicago,IL 



NCC '82 Chairman Harvey L. Garner Arnold P. Smith 
Moore School of Electrical IBM Corporation 

Russell K. Brown Engineering White Plains, NY 
Moore Paper CO. University of Pennsylvania 
Houston, TX Philadelphia, PA Robert C. Spieker 

AT&T 
Morton M. Astrahan Jerry Koory New Brunswick, NJ 
IBM Research Laboratory Rand Corporation 

OAC '82 Chairman San Jose, CA Santa Monica, CA 

Smith Dorsey William Sitter Hans Pueshe 

1018 N. Greenhaven Ave. Tenneco, Inc. Fireman's Fund Insurance Co. 

Fullerton, . CA Houston, TX San Rafael, CA 

NATIONAL COMPUTER CONFERENCE BOARD INDUSTRY ADVISORY PANEL 

Chairman 
Dallas Talley 
Qantel Corp. 
Hayward, CA 

Members 
Frederick M. Hoar 
Apple Corporation 
Cupertino, CA 

S.A. (Sandy) Lanzarotta 
Xerox Corporation 
EI Segundo, CA 

William Lonergan 
Xerox Development Corporation 
Beverly Hills, CA 

Richard Mau 
Sperry Rand Corporation 
New York, NY 

Herbert Richman 
Data General Corporation 
Westboro, MA 

Gordon Smith 
Memorex Corporation 
Santa Clara, CA 

AFIPS HEADQUARTERS AND CONFERENCE SUPPORT STAFF 

Executive Director 
Paul J. Raisig 

Executive Assistant 
Jane Smith 

Secretary/Receptionist 
Terry DiMurro 

Controller 
Janis Miller 

Accountant 
Melinda Yost 

Bookkeeper 
William Hargrave 

Administrative Coordinator 
Ken Fields 

Public Information 
Coordinator 

Nancy- LeFebvre 

Secretary 
Cathy Chaney 

AFIPS Press Manager 
Christopher N. Hoelzel 

Fulfillment Administrator 
Olive Shilland 

Secretary 
Sharon Lee Conway 

NCC Copy Editor/Proofreader 
George Jansen, Jr. 

Director, Washington Office 
Alexander D. Roth 

Research Associate 
Ellen Law 

Administrative Assistant 
Lorraine Cummings 

Secretary 
Patricia Mayo 

Conferences Director 
James H. Kroell 

Administrative Assistant 
Betty Foley 

719 

Manager, Conference Operations 
Sam Lippman 

Operations Coordinator 
Lisa Welke 

Secretary, Conference Operations 
Pantipa Dhanagom 

Manager, Exhibit Operations & Sales 
Larry Jennings 

Exhibit Sales Coordinator 
Luellen Hoffman 

Secretary, ExhibitSales 
Jill Newman 

Marketing Manager 
Betty Lou Cooke 

Marketing Coordinator 
Diana Snow 

Secretary, Marketing 
Joyce Paige Davis 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719

