
AFIPS
CONFERENCE
PROCEEDI NGS

VOLUME 49

1980
NATIONAL
COMPUTER

CONFERENCE

AFIPS ..
CONFERENCE
PROCEEDINGS

1980
NATIONAL
COMPUTER

CONFERENCE

May 19-22, 1980

Anaheim, California

The ideas and opinions expressed herein are solely those of the authors and are
not necessarily representative of or endorsed by the 1980 National Computer
Conference or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 80-66206
AFIPS PRESS

1815 North Lynn Street
Arlington, Va. 22209

© 1980 by AFIPS Press. Copying is permitted without payment of royalty pro
vided that (1) each reproduction is done without alteration and (2) reference to
the AFIPS Proceedings and notice of copyright are included on the first page.
The title and abstract may be used without further permission in computer-based
and other information-service systems. Permission to republisij. other excerpts

should be obtained from AFIPS Press.

Printed in the United States of America

ii

Preface

The Proceedings of the 1980 National Computer Confer
ence is the most comprehensive review of the current de
velopments in the computing industry. This record of the
1980 NCC Program now becomes a part of the industry's
history, and stands as a tribute to Program Chairman Dr.
Donald Medley and his committee. With the usability of the
computer as an underlying theme of the program, Dr. Med
ley's committee, the authors whose papers are included in
this volume, and many others devoted considerable time and
energy during the past year to assure that this program would

iii

HERBERT B. SAFFORD
1980 NCC Chairman

be useful and informative to all attendees. They are to be
commended for their efforts. Special recognition should be
given, also, to the many panelists and speakers who partic
ipated in the 1980 NCC Program in a manner that went be
yond the formal paper presentations included in these Pro
ceedings. It is my sincere hope that you were able to attend
some portion of the program at the 1980 NCC, and that this
volume of the Proceedings will be a useful source of infor
mation for you for many years to come.

DONALD B. MEDLEY
1980 NCC Program Chairman

A group of very bright and dedicated computing profes
sionals have labored long and hard to develop a high quality
technical program for the 1980 National Computer Confer
ence that demonstrates the dynamics of the computing in
dustry. These Proceedings represent the printed record of
the result of over a year's efforts of many, many individuals.

With the usability of the computing tool as the base, the
1980 NCC Program has been oriented to three audiences:
the user, the technician and management. Program sessions
have been developed for each of these communities within
specific· topic areas including: the architecture of software
and hardware, communications, social impacts, data base

. management, management support, simulation modeling and
, image processing, applications considerations and general
interest topics. In each of these areas the Program Com
mittee has developed sessions that are educational in nature,
sessions that are oriented to the technical details of the topic,
se~sions that address the management aspects of the topic
and sessions for the user of that phase of technology.

A special feature of the 1980 NCC is a group of sessions
dealing with the use of the computing tool in the entertain
ment industry. These sessions describe areas from the gen
eration of music or art to the control of television and movie
production. Additionally, in response to the ever growing
interest in the use of computers by the non-professional, a

iv

Introduction

special group of sessions will be presented under the banner
of the 1980 NCC Personal Computing Festival, which will
cover areas of interest in personal computing. A separate
publication will include papers presented in this section of
the program. '

These Proceedings contain a printed record of the papers
presented in the technical program. Summary statements for
the many panel sessions were not included due to volume
limitations; however, summary statements for each session
are published in the conference attendance. brochure. The
individual area directors have prepared a general summary
statement concerning selected groups of sessions and those
summaries are in the Proceedings.

The planning and organization of the 1980 NCCProgram
required the dedicated efforts of many individuals: area di
rectors, session organizers and leaders, panelists and pre
senters of technical papers, and referees who helped us se
lect the papers to be presented in this volume. I wish to
extend my sincere appreciation to all these individuals and,
most especially, to the Program Committee. Without their
efforts the 1980 NCC Program and these Proceedings would
not have been a reality. It is our sincere hope that the pro
gram itself proves useful and enjoyable to all those who are
able to attend the 1980 NCC and that the Proceedings pro
vide a useful reference source for many years to come.

CONTENTS

Preface .. .
Herbert Safford

Introduction , .. "
Donald B. Medley

APPLICATIONS

A conversational decision support system for resource allocation without explicit objective function
Fumihiko Mori, Hiroshi Tsuji and Takashi Sato

Decision support systems: a practical application-Branch office structure .. .
John R. Wetmiller

On development tools for small systems: the challenge of economically automating a filing cabinet
David D. Raber

A structured information system design for a newspaper organization: a case study
Mohan R. Tanniru

SID: a system for interactive design
Tosiyasu L. Kunii and Minoru Harada

An overview of a network design system
W. E. Bracker and B. R. Konsynski

COMPUTERS AND ENTERTAINMENT

Area Director Summary .. ,
Suzanne Landa

A minicomputer system for audio-animatronics show data generation
Philip C. Stover and R. David Snyder

Computers and sports: a natural marriage .. .
Thomas A. Eifler

Computers helping dance notation help the dance: a vision
Stephen W. Smoliar

Automatic Camera Effects System (ACES) .. .
Steven N. Crane and R. David Snyder

Automated computer controlled editing sound system (access) .. .
William R. Deitrick

The use of computer technology in Magicam slave camera systems
Dan Slater, Rob King and John Gale

COMMUNICATIONS

Area Director Summary
Kenneth J. Thurber

iii

iv

7

13

23

33

41

49

51

55

67

73

83

87

91

Distributed network and mUltiprocessing minicomputer state-of-the-art capabilities 93
Douglas J. Theis

ARQ performance in SNA networks .. 105
Martin A. Reed and Terence D. Smetanka

v

vi Contents

Computer communication in NTT remote computing services .. 113
Masatoshi Iwayama and Atsumu Fujiwara

Local area data distribution 121
Thomas G. Albright and Robert J. Wallace

COMPUTER ARCHITECTURE

Area Director Summary ,... 127
Wesley Chu

The control data loosely coupled network lower level protocols .. 129
William C. Hohn

LCN-A loosely coupled network system .. 135
Lowell H. Schiebe

Derivation and use of a survivability criterion for DDP systems .. 139
Richard E. Merwin and Mohammed Mirhakak

An operating system kernel mechanism for the poly-processor system PPS-R ... 147
Makoto Amamiya, Naohisa Takahashi, Yutaka Ogawa and Kenji Koyama

Measures for distributed processing network survivability ... 157
Gene Hilborn

Architectures for supersystems of the '80s ... ;...... 165
Svetlana P. Kartashev and Steven I. Kartashev

The highly-parallel supercomputers: definitions, applications and predictions .. 181
Hubert H. Love, Jr.

Database machines and some issues on DBMS standard .. 191
Stanley Y. W. Su, Hsu Chang, George Copeland, Paul Fisher, Eugene Lowenthal and Stewart Schuster

CONLAN-A formal construction method for hardware description languages: basic principles 209
Robert Piloty, Mario Barbacci, Dominique Borrione, Donald Dietmeyer, Fredrick Hill and Patrick Skelly

CONLAN-A formal construction method for hardware description languages: language derivation 219
Robert Piloty, Mario Barbacci, Dominique Borrione, Donald Dietmeyer, Fredrick Hill and Patrick Skelly

CONLAN-A formal construction method for hardware description languages: language application 229
Robert Piloty, Mario Barbacci, Dominique Borrione, Donald Dietmeyer, Fredrick Hill, Patrick Skelly

Design decisions for the intelligent database machine .. 237
Robert Epstein and Paula Hawthorn

DIALOG-A distributed processor organization of database machine .. 243
Benjamin W. Wah and S. Bing- Yao

DATA BASE MANAGEMENT

Area Director Summary .. 255
Alyce Jackson

System deadlocks resolution ... '" " 257
Koji Nezu

Database semantic integrity for a network data manager .. 261
Elizabeth Fong and Stephen R. Kimbleton

Concurrency coordination in a locally distributed database system .. 269
Gruia-Catalin Roman

An introduction to computed chaining .. 275
Kuo-Chung Tai and Alan L. Tharp

Contents vii

A federated architecture for database systems ... 283
Dennis McLeod and Dennis Heimbigner

Area Director Summary 291
Linda Taylor

Definition of database transactions by the casual user ... 293
Fred J. Maryanski and C. Steven Roush

Programming with data frames for everyday data items ~.............. 301
. David W. Embley

Implementing data management
Daniel S. Appleton

307

Area Dir~ctor Summary 3.1 7
Vincent Lum

Properties of relationships and their representation .. ~ 319
Ramez EI-Masri and Gio Wiederhold

EARTH RESOURCES

Area Director Summary
Leigh Rosenberg

327

BALDR-l: a solar thermal system simulation ... ~...................................... 329
Joseph G. Finegold and F. Ann Herlevich

Overview of the alternative power system economic analysis model .. 335
Richard B. Davis and Jerome V. V. Kasper

Computer simulation of the operations of utility grid connected photovoltaic power plants 341
Chester S. Borden

Computer simulation of solar electric generating plants in a utility grid ... ~ 347
S. Young, O. Merrill, R. Knowles and Y. Gupta

Area pirector Summary 355
Roger Firestone

Numeric~ algorithms for parallel computers .. 357
David K. Stevenson

Design of an interactive matrix calculator ... 363
Cleve Moler

IMAGE PROCESSING

Area Director Summary
Andrew Tescher

369

Derivation of invariant scene characteristics from images .. 371
Berthold K. P. Hom

Image understanding architectures .. r......................... 377
Graham R. Nudd

Map-guided interpretation of remotely-sensed imagery .. 391
J. M. Tenenbaum, H. G. Barrow, R. C. Bolles, M. A. Fischler and H. C. Wolf

CCITT standardization for digital facsimile ~ 409
T. L. McCullough

The application of optical character recognition techniques to bandwidth compression of facsimile data 415
Patrice J. Capitant and Robert H. Wallis

viii Contents

Facsimile image coding
Joan L. Mitchell

MEDICAL IMAGING AND EDUCATION

Description and evaluation of a system for high-speed, three-dimensional computed tomography of the body:

423

the dynamic spatial reconstructor ... 427
Richard A. Robb and Barry K. Gilbert

3-D viewer for interpretation of multiple scan sections .. 437
Brent Baxter '

Absolute limits on image processing .. 441
David G. Brown, Robert F. Wagner and Mary Pastel Anderson

Generalized methodology for the comparison of diagnostic imaging instrumentation 445
Leon Kaufman and Dale Shosa

MANAGEMENT

Balancing processor shares of scheduling classes through controlled allocation of memory 453
K. V. Sastry

Area Director Summary " " " " 457
John C. Biddle

Applications of exemplary programming ... 459
William S. Faught

Multiprocessor software engineering training: a case study .. 465
Christine L. Braun

Development of a microprocessor support facility for large organizations ... 473
Bruce E. Stock and Miguel A. Ulloa

Future management concerns regarding office automation ;... 479
Gary D. Beamer

OFFICE AUTOMATION

Area Director Summary 483
Walter E. Ulrich

Introduction to electronic mail .. 485
Walter E. Ulrich

Implementation considerations in electronic mail ;... 489
Walter E. Ulrich

Experiences of an electronic mail vendor .. 1 • " ••••••• , " •••••••••••••••••••••••• " •••••••• " • • 493
Jeffrey B. Holden

Electronic message system as a function in the integrated electronic office ... 499
Harold E. O'Kelley

The growing use of electronic mail by airlines ... 503
James C. Goodlett

Metamorphosis: facsimile communications, electronic mail and office productivity................ 509
John E. Cochran

Texas Instruments computer communication network and its support for the automated office 515
John W. White

Implementing electronic mail in a telephone system: more than just talk .. 527
Gerald Tomanek '

Contents ix

An office form flow model ... 533
Ivor Ladd and D. C. Tsichritzis

Design principles of an office specification language•... 541
Michael Hammer and Jay S. Kunin

Automated workflow control: a key to office productivity ... 549
L. S. Baumann and R. D. Coop

Streamlining office procedures-An analysis using the information control net model................... 555
Carolyn L. Cook

Area Director Summary , 567
James Carlisle

Provisions for flexibility in the Linkoping office information system (LOIS) 569
Erik Sandewall, Goran Hektor, Anders Strom, Claes Stromberg, Ola Stromfors, Henrik Sorensen and Jaak

Urmi

SECURITY AND PRIVACY

Area Director Summary ... , ... , 579
Rein Turn

Privacy protection and trans border data flows ... 581
R~Thrn .

Transborder data flow: legal persons in privacy protection legislation .. 587
Susan H. Nycum and Susan Courtney-Saunders

SIMULATION

Area Director Summary
Lance A. Leventhal

595

U sing preliminary Ada in a process control application ... 597
M. E. Gordon and W. B. Robinson

Computer aided heat penetration tests for the food canning industry ... 607
Paul Sagues

A cross-impact simulation forecast of the data processing industry.... 613
Paul Herbert Rosenthal

Organization of the TRAC processor-memory subsystem ... 623
R. N. Kapur, U. V. Premkumar and G. J. Lipovski

An overview of the Texas Reconfigurable Array Computer .. 631
Matthew C. Sejnowski, Edwin T. Upchurch, Rajan N. Kapur, Daniel P. S. Chariu, and G. Jack Lipovski

Design and implementation of the banyan interconnection network in TRAC .. 643
U. V. Premkumar, R. Kapur, M. Malek, G. J. Lipovski and P. Horne

SOCIAL IMPACT

The advent of trusted computer operating systems ... 655
Stephen T. Walker

SOFTWARE MANAGEMENT

Area Director Summary
Donald Reifer

667

x Contents

SOFTWARE ENGINEERING TECHNOLOGY TRANSFER

Area Director Summary 669
Lorraine Duvall

An integrated support software network using NSW technology... 671
Richard A. Robinson and Emily A. Krzysiak

The role of an information analysis center in software engineering technology transfer 677
Jon Martens and Lorraine Duvall

Considerations in the transfer of software engineering technology ... 683
Michael J. McGill

SOFTWARE TOOLS AND TECHNIQUES

A technique for comparative assessment of software development management policies 687
Brendan D. L. Mulhall and Steven M. Jacobs

SOFTW ARE RELIABILITY

Area Director Summary 695
Herbert Hecht

Standard error classification to support software reliability assessment .. 697
John B. Bowen

What makes a reliable program-few bugs, or a small failure rate? ... 707
B. Littlewood

Software reliability and advanced avionics .. 715
Gerard E. MigneaUlt

SOFTWARE LANGUAGES

Area Director Summary .. " '" 721
Russell J. Abbott

A linguistic comparison of MUMPS and COBOL ... 723
Thomas Munnecke

The design of PLAIN-Support for systematic programming ... 731
Anthony I. Wasserman

Some practical experiences with the Pascal language .. 741
G. G. Gustafson, T. A. Johnson and G. S. Key

UCSD Pascal™: a portable software environment for small computers .. 747
Mark Overgaard

SOFTWARE QUALITY ASSURANCE

Area Director Summary ... ,.. 755
Kurt F. Fischer

Measuring program complexity in a COBOL environment ... 757
Jean Zolnowski and Dick B. Simmons

The complexity of an individual program ;................. 767
John L. McTap

An information theory based complexity measure !...... 773
Eli Berlinger .

SOFTWARE ENGINEERING EDUCATION

Area Director Summary
Barry Boehm

SPECIAL TOPICS

Area Director Summary
Gene Smith

Contents xi

781

783

Technology development, severed ventures, and other aspects of corporate venture capital......................... 785
Jean E. de Valpine

Recommendations for increasing the availability of capital... 791
Richard C. Pflager

Corporate venture capital in the computer industry .. ;..................................... 795
Kenneth W. Rind and Gene I. Miller

Structured procedure for comparison and selection of computer system designs .. 801
Antonio Vallone

PAPER FAIRE

Extracting unique rows of a bounded degree array using tries .. 807
Douglas Comer

A look at making the ADP procurement process more efficient-Temporary regulation 46 811
Roger J. Gorg, George N. Baird and Judith A. Parks

An, information base for procedure independent design of information systems .. 817
Levent Ormancioglu

Comparing load & go and link/load compiler organizations .. 823
William L. Wilder

A link between polygoll: and grid representations of land resource information systems 827
Devon Nickerson

Risk analysis in the 1980's 831
Jerome Lobel

A mathematical model of character string manipUlation ... 837
Sakti Pramanik

Policy, values and EFT research: anatomy of a research agenda ... 841
Kenneth L. Kraemer and Kent W: Colton

A linear programming model for optimal computer network protocol design .. 855
John F. Heafner and Frances H. Nielsen

Extracting service features from protocol documents .. 863
John F. Heafner, Frances H. Nielsen and M. Wayne Shiveley

Verification of information in a file 871
Jainendra K. Navlakha

Translating non-standard extensions to standard Pascal ... 877
Viswanathan Santhanam

The flexible console-FLEXICON .. 883
David L. Steinberg

The INTEL® 8087 numeric data processor .. 887
John F. Palmer

xii Contents

Home computing-A vision in search of a marketplace: areas of needed research :..................... 895
John E. Ruchinskas, Charles W. Steinfield and Lynne L. Svenning

1980 National Computer Conference Committees ... 903

NCC '80 Area Directors .. 905

NCC '80 Session Chairmen .. 906

NCC '80 Referees .. 909 .

NCC '80 Speakers and Panelists ... 911

American Federation of Information Processing Societies .. 914

Author Index ... 918

A conversational decision support system for resource
allocation without explicit objective function

by FUMIHIKO MORI, HIROSHI TSUJI and TAKASHI SATO
Hitachi, Ltd.
Ohzenji, Kawasaki, Japan

INTRODUCTION

Triis paper presents a conversational multiobjective decision
support system. The system is called RAINBOW: Resource
Allocation in Business Operation under Uncertain Worth.
Our focus in the design and development of RAINBOW is
placed on the loosely structured decision situation where the
objective functions are given only implicitly and, as such,
should be approximated by the decision maker as the de
cision making process proceeds.

In the following, we first describe the specific decision
problem treated here. This is the loans budgeting decision
in a bank in Japan. Next we will see that the budget allocation
procedure which had been employed in the bank prior to the
design and implementation of RAINBOW can be repre
sented by a set of simple linear equations. Basically RAIN
BOW supports the process of convergence to a preferred
alternative budget plan by giving the decision maker helpful
information for him to form consistent evaluations of the
utility function, the objective functions and the solution for
the budget allocation plan. Description of the functions of
RAINBOW will be the main part of this paper. Lastly we
will comment on RAINBOW in the framework of the mul
tiple objective programming.

AN ILLUSTRATIVE DECISION PROBLEM

Direct motivation for the development of RAINBOW
came from the problem of allocating the loans budget to
branch offices of a bank, although RAINBOW is applicable
to general resource allocation problems.

This section describes the specific problem of loan budg
eting as a rationale for the functional design of RAINBOW.

Executives in the loan department of a bank annually or
biannually allocate loan budget to each of its branch offices.
The planning is a routine decision making task, but it is a
difficult and time consuming problem. In many cases the
total amount of the budget is determined by the total deposit
in the bank and financial policy of the government at the
time. Therefore the total budget is usually not a decision
variable but a constraint on the upper bound of the sum of
the allocatable resources.

If we are to formulate the problem a~ an optimization prob
lem, we will have a mathematical programming problem of
the following form:

maximize u=f(u l ,u 2 , ••• ,u N)

Ui~O, for i= 1, .. ,N

where

N = number of branch offices,
S=upper bound on the sum of budgets,

U i = budget allocated to the ith branch,

(1)

(2)

(3)

u = expected utility as a function of budget plan,
(u 1,U 2, ••• ,UN)'

At first we considered an approach by some mathematical
programming model such as above. But, through extensive
interviews with the mangers in the loan department of the
bank, it became clear that explicit identification of a suitable
objective function was a difficult and thankless task.

The fact that, for instance, one dollar allocated to branch
i and j, respectively, will yield the same return on invest
ment, provided that such factors as average interest rate,
average operation cost per transaction and risk are the same
in both branches, would illustrate the difficulties in the model
formulation in the form of equation (1). Although these fac
tors do differ among the branches, corporate-strategic con
siderations other than these quantifiable factors playa larger
part in budget allocation. For example, a branch with high
operation cost ratio may be a newly opened one and the
policy of the bank may be to expand its territory, in spite
of its relatively high cost at present, by aggressive operation
in the financial market of the particular locality. A branch
in a densely inhabited district may not need a big budget in
spite of its large amount of deposits, since its expected role
is collection of deposits from the households in its territory.
The necessity to take account of these strategic considera
tions is the rule rather than the exception.

The budgeting procedure, then, depends on a number of
factors which are difficult to quantify. The factors involved
include, among others, the geographical and strategic 10-

2 National Computer Conference, 1980

cation of the branch and its position and expected role in the
overall corporate strategy of the bank.

The kind of decision situation described above occurs
quite often in daily operations of any business and other
organizations. It requires many subjective and intuitivejudg
ments as to the utility gained from each of the alternative
actions. Evaluations of other factors relevant to the problem
are also bound to be subjective to a certain degree.

An approach we can take in these decisi6n situations is
to try to help the thinking process of the decision maker.

An important function of the budget planning is to express
the policy of the organization and to get the consensus of
the people involved in order to assure well-coordinated or
ganizational activity. Then, an important requirement in the
development of a decision support system is to help the de
cision maker to express his views, judgments and evalua
tions, albeit subjective or intuitive, and to make them some
thing objective in that they have been expressed and now
are the objects of discussion, criticism and modification. It
will be our concern in this loosely structured decision sit
uation to facilitate this dialectical process of subjectivity and
objectivity.

Many researchers in the field of multiobjective decision
making have been working on this standpoint. The Surrogate
Worth Tradeoff (SWT) method by Haimes and Halll.2 is ef
fective when the decision makers can evaluate the marginal
tradeoffs among objective functions. Multiattribute Utility
Theory (MA UT) by Keeney and Raiffa3 gives a method of
constructing a utility function based on preference structure
and indifferent curves of each pair of objectives. These meth
ods have been applied to large-scale regional development
planning.4

.
5 Geoffrion et a1. 6 proposed a method of conver

sational decision support system based on the Frank-Wolfe
algorithm.

Many of those multiobjective decision making systems,
of which only very few are mentioned above, depend heavily
on the tradeoff concept. Decision makers who want to use
either the SWT method or MA UT method must be ready to
evaluate the tradeoffs among conflicting objectives explicitly
and quantitatively. It is a task of system designer to make
it easy for the decision maker to articulate the tradeoff eval
uations.

ANALYSIS OF BUDGET DECISION MAKING
PROCESS

As mentioned in the previous section, it became clear that
formulation of the allocation problem in a mathematical pro
gramming problem with scalar objective function as in equa
tions (1)-(3) was not suited to this case. The problem is mul
tiobjective. Generating noninferior solutions was not pos
sible since managers in the loan department felt they had
trouble in identification and quantification of the objectives.
Then, as the first step of the system design, efforts were
made to model the actual budget allocation procedure.

Interviews with the managers revealed that the budget
allocation procedure actually taken in the bank could be
summarized as follows.

Step 1

Managers select "evaluation elements" or "allocation
elements." These are items for the evaluation of the branch
offices. Typical examples of the element are "basic evalu
ation," "branch characteristics," "growth potential" and
"strategic consideration."

Step 2

The total budget S is allocated to the elements at first. If
the managers have selected m elements E I,E 2, ••• ,E m in Step
1 above, and give weight e j to the element E j , then E j re
ceives e jS out of the total S. The weights should satisfy

e 1 +e2+ ... +e m = 1.0

ej>O, for j= I, ... ,m.

Step 3

(4)

(5)

Managers evaluate branches with respect to each of the
evaluation elements. Let B I,B 2, ••• ,B N denote N branches,
and let a ij denote the numerical evaluation of the branch B i
with respect to the element E~. According to these evalua
tions branch B i receives a ije jS out of the amount e jS allo
cated to the evaluation element Ej in Step 2. Since negative
value of a ij can result in negative allocation to B i when e j
is quite large, a ijs are assumed to satisfy the nonnegativity
condition:

aij~O, for i= I, .. ,N andj= I, .. ,m. (6)

Also

(7)

Step 4

The budget allocated to branch B i is just the sum of a ije jS
over j = 1, ... ,m. Let U i denote the budget for B i, then

(8)

for i= I, ... ,N.
In matrix notation, equation (8) is

y"=A{S (9)

where

with t denoting the transpose. The procedure represented in
equation (9) is illustrated in Figure 1.

Conversational Decision Support System for Resource Allocation 3

Budget for Bl

u l

s

Element E2

Figure I-Linear allocation model.

Element

RAINBOW: A CONVERSATIONAL DECISION
SUPPORT SYSTEM

Basically speaking, when he uses the allocation method
of equation (9), the decision maker has only to select a set
of evaluation elements {E I ,E 2, •• ; ,E m} and determine the val
ues of the weight vector f and the evaluation matrix A. But
the problems of (1) selection of the evaluation elements, (2)
determination of suitable weights for the elements, and (3)
evaluation of the branch offices with respect to each of the
evaluation elements, all required considerable time and ef
forts.

Managers felt that they might not have identified all of the
significant evaluation elements. They wanted to try various
alternative sets of evaluation elements, but the number of
branches, in this case more than 100, prohibited them from
trying more than a few sets of elements. The weights, even
for the same-set of elements, should change according to the
changes in social and business environment; but again they
were in need of tools for finding adequate values for the
weights. Evaluation of the branches was also a tedious and
difficult task.

Discussion with the managers revealed the general view
that these problems were not to be solved uniquely by some
set of fixed criteria, but to be solved through an iteration of
trial-and-error simulation, out of which an admissible solu
tion was expected to emerge. Then, the support system
should help the decision maker to observe the change in the
allocation plan corresponding to the changes in the set of
evaluation elements, modifications of the element weights
and re-evaluations of the branches.

Another need which the results of the requirement analysis
(the SADT: Structural Analysis and Design Technique7 was

used) revealed was the inverse computation of the element
weight vector f. and the branch evaluation matrix A. In many
cases the mangers have, or they think they have, an a priori
solution to the question, "What is the best allocation plan?"
Similarly the decision maker has his idea as to the most ap
propriate values of f and A. But, without any reference val
ues, i.e., tentative values of f and A, it is often difficult for
him to express it quantitatively. If a trial value is given to
him, it is relatively easy for him to specify how it should be
modified.

Let these' 'intuitive solutions" be denoted as fl, g and Adt.
It can be said that a necessary condition for the decision
making process of budget allocation to come to an end is
that these intuitive solutions, after undergoing the articula
tion-modification process, have become consistent in the
sense that they satisfy:

(14)

This consistency, or agreement, among the intuitive val
ues of Y.., f. and A is hard to attain. One reason for this is
that, as already mentioned, the number of branches is quite
large. Another reason is that the managers did not have a
means of finding values of f and/or A corresponding to the
allocation plan 'iI which they could specify.

In order to check the consistency condition of equation
(14) and to facilitate the convergence to the set of values
fl.,1 and A which satisfy equation (14), the decision support
system should have the capability of inverse computation
of f. and A corresponding to the allocation plan 'il given by
the decision maker. On these grounds RAINBOW was de
signed as an on-line conversational system based on the three
basic algorithms described below.

Algorithm 1

This is the direct application of equation (9), i.e., com
putation of the allocation vector Y.. when values of the branch
evaluation matrix A and the element weight vector f. are
specified by the decision maker. Schematically this is

f, A and S~Y...

Decision maker can use Algorithm 1 to analyze sensitivity
of the allocation plan to changes in the values of f and A.

Algorithm 2

This algorithm computes weight vector f corresponding
to the specified values of Y.., A and S. Schematically this is

y",A and S~~.

That is, the decision maker can use the Algorithm 2 to obtain
answer to the question, "If I allocate the budget to branches
like this value of Y.. vector, what value does it mean I am
assigning to the weight vector f? If that value of f does not
deviate much from the value I can accept, I might be able
to say that my evaluations of the three decision variables.

4 National Computer Conference, 1980

Y.., ~ and A, are in agreement with each other and I am in
business. If it does not, I have something further to think
about. "

The least-squares solution for f is given by

where (,) denotes the inner product and A is the Lagrange
multiplier for the constraint (4). Here we note that, in gen
eral, N>Pm, and the use of the least-squares estimation is
justified in the statistical sense.

The weight vector f obtained from equation (15) does not
necessarily satisfy the positivity condition (5). If the esti
mated weight e j for some element E j is nonpositive, it in
dicates strong inconsistency between the specified values
of Y.. and A. Also the inverse matrix in the equation (15) does
not exist when vectors fLi in matrix A are linearly dependent.
This means that the set of elements {E I, •• ,E",} has redun
dancy in the sense that evaluation vector fLi of certain ele-

. ment E j can be represented as a combination of evaluation
vectors for other elements. RAINBOW gives warning mes
sages when the nonpositivity or the redundancy phenomena
occurs.

There can be a case where a decision maker does not want
to eliminate the redundancy in the evaluation elements; or
the least-squares method gets ill-posed and cannot find pos
itive solution for f vector when only a slight change in
Y.., ~ or A would be sufficient to give positive e. Then the
decision maker can obtain estimation of f which satisfies
both conditions (4) and (5) by solving the following nonlinear
programming problem:

minimize IIY.. - A~SII

s.t.

ej>O, forj= 1, ... ,m,

(16)

(17)

(18)

where II II denotes Euclidean norm of vectors. A random
search method, called the hyperconical random search,8 is
used to avoid the numerical difficulty which may be caused
by the linear dependency.

Algorithm 3

Since it is not possible to estimate all elements of the
matrix A at one time, this algorithm performs the task of
inverse computation in a limited way, schematically shown
as

where A (j) denotes the sub matrix of A formed by deleting
fLi from A. That is, we assume that only the evaluation vector
fLi with respect to evaluation element E j is unknown and

compute fLi uniquely using the following equation:

(19)

for i = 1, ... ,N. Here the summation is taken for k = 1, ... ,m
except for k = j. That is, the decision maker can obtain an
answer to the question, "If I allocate the budget like in this
vector Y.., and evaluate the elements like in this vector f, and
if I am uncertain as to the appropriateness of my present
evaluation of branches with respect to this particular eval
uation element E i , then what is the fLi corresponding to my
Y.. and f, provided that, of course, my evaluations for the
other elements are tentatively considered appropriate? If I
can accept the value for fLi' I am in a good shape; if not I
must think further."

Again, when there is strong inconsistency among the spec
ifie.d values of A (j), f and Y.., a ijs of equation (19) do not nec
essarily satisfy the nonnegativity condition (6). A warning
message is given in this case also.

The following is a scenario of the decision making process
in which RAINBOW is used to select a budget plan.

Step 1

Decision maker selects evaluation elements tentatively,
evaluates them by assigning weights he considers suitable
and evaluates branch offices with respect to each of the ele
ments.

Step 2

Decision maker allocates the total budget to branches
using the Algorithm 1.

Step 3

Decision maker checks the tentative budget plan displayed
on the terminal. If he feels that it is appropriate and he can
accept it, he terminates the session. If he feels that it should
be modified, or that he should try other values of f. and/or
A, he goes to Step 4.

Step 4

Decision maker determines what should be-modified: (1)
if the decision maker feels that the evaluation elements
{E1, ... ,E",} should be changed, he goes to Step 1; (2) if he
feels that the element weights should be re-evaluated, he
goes to Step 5; (3) if he feels that the branches should be re
evaluated, he goes to Step 6; (4) if he feels that both the
elements and the branch offices should be re-evaluated, he
goes to Step 1.

Conversational Decision Support System for Resource Allocation 5

Step 5

Decision maker selects one of the following alternatives:
(1) if he wants to modify the element evaluation, he specifies
new f:.. and goes to Step 2, or (2) if he wants to modify the
budget!&.. and observe the corresponding element weight f:..,
he gives new!&.., compute f:.. using the Algorithm 2, and goes
to Step 7.

Step 6

Decision maker selects one of the following alternatives:
(1) if he wants to modify the branch evaluation matrix A, he
specifies new A and goes to Step 2, or (2) if he wants to
modify the budget!&.. and observe the corresponding branch
evaluation, he first selects !Ij which should be computed,
computes !Ij using the Algorithm 3, and goes to Step 8.

Step 7

If the decision maker feels that the element weight vector
f:.. computed by the Algorithm 2 is appropriate, he goes to
Step 2, otherwise he goes to Step 5.

Step 8

If the decision maker feels that the branch evaluation vec
tor computed by the Algorithm 3 is appropriate, he goes to
Step 3, otherwise he goes to Step 6.

The above scenario is only an example of a session with
RAINBOW. Users of RAINBOW can use any of the three
algorithms at any stage of the session.

DISCUSSION AND CONCLUDING REMARKS

In this final section we review the decision support system
RAINBOW in the general framework of multiple objective
programming.

A general form of multiobjective programming problem
based on the utility concept is:

maximize U[g 1(f),g2C!), ... ,g m(,r)] (20)
J;EX

where f = (x b'" ,x NY and X is a subset of R N. Functions g j
are objective functions and U gives the utility as a function
of Gjs.

Ifboth U and gjS are explicitly known, the gradient vector
of U with respect to f is:

(21)

Geoffrion et al. 6 presented a conversational decision support

method for the case where gjS are explicitly given but U is
known only implicitly. Their method is called IFW (Inter
active Frank-Wolfe) method and employs the Frank-Wolfe
algorithm to solve the direction problem which is specified
when the underlying utility function U is locally approxi
mated by the decision maker.

As indicated in this paper, there are cases in the real-world
decision situation in which not only the underlying utility
function U but the objective functions gj are not given ex
plicitly and must be locally approximated as the decision
making process proceeds. The Multiattribute Utility Theory
is an attempt to cope with such situations.

Since linear approximation is one of the most elementary
methods of function approximation, let us assume that the
decision maker can supply a local linear approximation

for each of the' 'true" gjS in the neighborhood of any nominal
solution f in X. Here the coefficients a u depend on the in
cumbent solution f and therefore they should be locally re
estimated in the iterative process of decision making.

When the objective functions gj are given in their linearly
approximated form of equation (22), equation (21) is written
in the form of matrix-vector multiplication as

(23)

(24)

Also, Vxg is just the A matrix given in equation (12).
It is not difficult to notice the correspondence between

the evaluation elements in the allocation procedure and the
"attributes," or objective functions, in the theory of multiple
objective decision making. Then the correspondence be
tween equation (9) and (23) is also clear. Since V gU repre
sents sensitivities of U to the changes in the objective func
tions g h it corresponds to the element weight vector f:... The
correspondence between the branch evaluation matrix A and
the gradient matrix V J;g is apparent when we consider f as
the allocation vector !&...

From these observations we know that equation (9) is ac
tually the gradient V xU when objective functions g j are given
in linearly approximated form. Equation (9) means that,
under the constraint of (2), the total fund S should be allo
cated exactly proportionately to the ratio of the elements of
the gradient vector. I I

Then, RAINBOW is a decision support system for the
case where not only the underlying utility function U but the
objective functions gj cannot be given except in the local
approximations. RAINBOW helps the decision maker to
estimate the two gradients VJg and V (IU in a trial-and-error
manner.

6 National Computer Conference, 1980

Since we assumed that gis are only implicitly known we
have lost the assurance of local optimality we can expect
when we locally fix an evaluation of the utility function. This
is the price to be paid for loosening the assumptions as to
the type of decision situations to be covered. In place of the
algorithm for solving the local optimization problem, RAIN
BOW is equipped with the three algorithms to help the de
cision maker to form the consistency among his answers to
the question, "What are the most appropriate values for
g, !L and A?"

Clearly this is not the only means of decision support in
these loosely structured situations. Other approaches must
be experimented.

As our concluding remark we want to point out that the
development of RAINBOW was not initiated by the theo
retical considerations discussed above; it was based on the
analysis of the actual behavior, or procedure, of the decision
makers in the bank. It seems that the importance of the be
havioral analysis of the actual decision procedure increases
when we are to design a decision support system under the
loosely structured situation.

REFERENCES
1. Haimes, Y. Y. and Hall, W. A., "Multiobjectives in Water Resource Sys

tems Analysis: The Surrogate Worth Trade-off Method, .. Water Resources
Research, vol. 10 no. 4, 1974, pp. 615-624.

2. Hall, W. A. and Haimes, Y. Y., "The Surrogate Worth Trade-off Method
with Multiple Decision Makers," in Multiple Criteria Decision-Making:
Kyoto 1975, M. Zelney (ed.), Springer-Verlag, New York, 1976, pp. 207-
233.

3. Keeney, R. L. and Raiffa, H., Decisions with Multiple Objectives: Pref
erences and Value Tradeoffs, J. Wiley, New York, 1976.

4. Haimes, Y. Y., Das, P., and Sung, K., "Multiobjective Analysis and Re
lated Land Resources Planning," in Water Resources and Land Use Plan
ninR, P. Laconte and Y. Y. Haimes (eds.). 1979.

5. de Neufville, R. and Keeney, R. L., "Use of Decision Analysis in Airport
Development for Mexico City," in Analysis of Public Systems, A. w..
Drake, R. L. Keeney and P. M. Morse (eds.), M.I.T. Press, 1972.

6. Geoffrion, A. M., Dyer, J. S., and Feinberg, A., "An Interactive Approac.h
for Multi-criterion Optimization, with an Application to the Operation of
an Academic Department," Management Science, 19(4), 1972, pp. 357-
368.

7. Dickover. M. E., McGowan. C. L.. and Ross. D. T., "Software Design
using SADT." in ProceedinRs of the ACM Natioflal Conference, Seattle,
Washington, October 1977.

8. Wozny, M. J. and Heydt, G. T., "Hyperconical Random Search," Journal
of Dynamic Systems, Measurement and Control, March 1972, pp. 71-77.

Decision support systems: a practical application-Branch
office structure

by JOHN R. WETMILLER
Digital Equipment Corporation
Maynard, Massachusetts

INTRODUCTION

As the decade of the 1980s approaches, it is generally agreed
that computer companies will stress not technology, but
rather customer service functions as a means to differentiate
themselves from one another. Consequently, the need to
understand the customer's service requirements and to plan
for them is tantamount.

Simply stated, the purpose of a computer service orga
nization is to provide maintenance services to customers
with computer equipment. The primary objective of the or
ganization is to minimize the down-time of that customer
equipment and thereby minimize customer inconvenience.
At the same time the service organization seeks to operate
as cost effectively as possible which, of course, minimizes
the service cost to the customer. To provide the maintenance
services required, computer service organizations will gen
erally establish a branch office. to supply the needs of cus
tomers within a certain geographical region. In order to ef
fectively structure that office three fundamental questions
need to be answered:

1.) What types of service engineers should the office have
(i.e., should the engineers be generalists, specialists,
or some combination);

2.) How large should the branch office be (i.e., how many
service engineers are required); and

3.) How should service requests or calls of different types
be scheduled and which engineer types should be as
signed (e.g., first-come-first-served, shortest-ex
pected-service-time; generalist, specialist).

For our company the task of addressing these questions
was given by our upper level management to our internal
management science consulting group. In the discussions
that follow in this paper, I will indicate our findings specif
ically with regard to question 1. Although some of the nu
merical results of our studies must remain proprietary, I will
indicate the overall conclusions reached and note the pilot
test plans that have resulted from our work. I will comment
briefly about questions 2 and 3 throughout my discourse on
question 1. The complete answers to those questions are still

I

7

being determined; perhaps, in the future, they can be in
corporated into papers similar to this one.

SUMMARY RESULTS

At the outset it was generally felt amongst the members
of the analysis team that the proper use of engineer spe
cialization could generate significant branch savings over an
all engineer generalist environment. To define terms, an en
gineer specialist is an individual who can perform certain
repair tasks in less time than the average engineer generalist
who is able to perform any repair task. Our findings con
firmed that, indeed, engineer specialization can result in con
siderable savings to a branch office. These savings may be
expressed as lower response time or increased call handling
(or call rate) capability, with no increase in personnel nor
in cost. If the proper conditions are present at the branch,
specialization can even possibly result in reduced personnel
and lower costs.

Figure 1 shows two plots of response time versus call rate.
The one to the left is for an all generalist office (no spe
cialization) while the one to the right is for an office with
some specialization. Note that the response time/call rate
curve for the specialist office lies below and to the right of
the non-specialist office. '

The implications of this shift are summarized in Table I
and discussed below.

Response
Time

Call Rate
Figure I

8 National Computer Conference, 1980

Response Time

Mean-Time-To-Repair

Call Rate Capacity

Engineer Idle Time

Engineer Salary

Engineer Training

Table I

From Point I
to Point 2

Decrease

Decrease

Constant

Increase

Decrease

Decrease

From Point I
to Point 3

Constant

Decrease

Increase

Decrease

Decrease

Decrease

Switching from an all generalist office at Point 1 on the
generalist curve to an office with specialists at Point 2 on
the specialist curve reduces response time without affecting
the call arrival rate and without increasing the total number
of engineers. Since specialists are used, overall mean-time
to-repair (MTTR) decreases and hence idle time increases.
This last point could be considered as a loss to the office in
that there are engineers available to take calls but there are
no calls to take. However, this idle time increase over offices
without specialization may be minimal and therefore insig
nificant when compared to the other benefits of specialized
offices. Note also that engineer salaries are generally lower
for specialist engineers and training requirements are also
reduced.

Moving from an all generalist office at Point 1 on the gen
eralist curve to an office with specialists at Point 3 on the
specialist curve increases call rate capacity without increas
ing response time and without increasing the number of en
gineers in the branch office. Again, overall office MTTR
decreases but since more calls are being taken engineer idle
time decreases. Also, as was said for Point 2, total salary
and training requirements are reduced over the all generalist,
office with its operating characteristics described by Point 1.

METHODOLOGY

The results of the study summarized above were deter
mined from a computer simulation model written in GPSS
(General Purpose Simulation System) to represent a typical
branch environment. As stated earlier, minimizing customer
system downtime becomes the goal of each and every branch
office. In the simulation model system, downtime is divided
into its three component parts: (1) waiting time, (2) travel
time, and (3) repair time. Waiting time is that period oftime

Engineer Group

(MTTR in Hours) 2 3

1 2 3 4

Call Type 2 3 2 3

3 4 4 2

Figure 2

(Engineer Priorities) Engineer Group

2 3

2 3

Call Type 2 3

3 2 3

Figure 3

from when the service request is received by the service
organization until an engineer is dispatched to the call.
Travel time is, of course, the time it takes the engineer as
signed to reach the customer site. Taken together waiting
time plus travel time is referred to as response time. Repair
time is the time the engineer requires to correct the mal
function once on site. Waiting time is a function of engineer
availability (which is, of course, dependent on many factors).
Travel time is dependent on the geographical distribution of
customers, and repair time is a function of component tech
nology and engineer skill levels. The simulation model con
siders travel times and repair times as distributed system
inputs and evaluates the variation in waiting time (also dis
tributed) as a function of all system input variables.

The easiest way to describe the nature of the other system
inputs is to consider Figures 2 and 3 below (Note: the repair
time and priority rankings used in the Figures are strictly
arbitrary).

Figure 2 depicts how MTTRs for the various engineer
groups can be specified to the model for varying types of
arriving calls. This allows the user to create specialist groups
if desired and to differentiate repair times for different types
of calls (e.g., corrective maintenance, preventive mainte
nance, and installation calls).

Figure 3 details how the priorities with which engineers
are assigned to certain types of calls are inputed into the
simulation model. This allows the user to determine the im
pact on the office operating characteristics of varying the
engineer/call type priority assignments.

It is important to note at this point that fundamental text
book queuing theory analysis will not readily permit the use
of such an extensive collection of input parameters. Basic
queuing theory will consider only the total number of en
gineers, an average call rate, and an average service time as
input parameters. The ability to specify engineer types, to
use distributed call rate and service times, and to prioritize
engineer assignments by call type is not available in the
standard queuing equations.

Table II

Generalist Specialist

True Limited Senior

Specialty MTTR N/A 2 2 2

Non-Specialty MTTR 5 CX) 7 5

From the GPSS simulation model it was possible to obtain
the following output data:

1. Average waiting times and waiting time distributions
by call type,

2. Average repair times and repair time distributions by
engineer group,

3. Idle time by engineer group, and
4. The number of calls of each type taken by each engineer

group.

Basic textbook queuing theory would only have allowed the
determination of a composite waiting time and a composite
engineer idle time.

In the process of performing the study three different types
of specialists were considered-true, limited, and senior
specialists. Typical MTTRs in hours (arbitrarily chosen here)
for a generalist and for each of these specialist types are
noted in Table II.

As noted a true specialist could repair his/her speciality
more quickly than a generalist, but the true specialist could
only repair a very small subset of devices. A true specialist
would be paid considerably less than a generalist and would
receive less training as well. A limited specialist could repair
his/her specialty devices more rapidly than a generalist, but
the MTTR on the non-specialty devices would be greater.
Salary and training levels would be between the true spe
cialist and the generalist. The senior specialist essentially
resembles a generalist in repair times except that his/her re
pair time on specialty devices would be lower. The salary
of a senior specialist would exceed that of a generalist, but
training requirements would be equivalent.

ANALYSIS

When investigating the impact of specialization on offices
of a given size (i.e., offices with a fixed number of engineers),
a number of interesting results with respect to response time
and engineer idle time were noted when the number and type
of specialists in the office was varied while the percentage
of specialist type calls remained the same. For example,

Idle Time

Response Time

Number of True Specialists

Figure 4

Decision Support Systems: A Practical Application 9

Response Time

Idle Time

Nu.ber of Limited Specialists

Figure 5

Idle Time

Response Time

Number of Senior Specialists

Response

Time

Figure 6

G-S, S

Call Rate

Figure 7

G,O G-l,l

10 National Computer Conference, 1980

Response

Time

Limited True

Generalist

Response Time

A

Percent of Specialist Type Calls

Figure 8

Figure 4 expresses the general response time and idle time
phenome~a for an office with an increasing number of true
specialists. As the percentage of specialists in the office~ap
proaches the percentage of specialist type calls, response
time decreases since all the specialists are busy. However,
when the percentage of specialists exceeds the percentage
of specialist type calls, some specialists must remain idle
since they cannot take calls of other types. Hence, the office
actually has fewer effective engineers, and both the response
time and engineer idle time increase.

Figure 5 is a similar representation for limited specialists.
Note that the response time curve is similar to that of true
specialists. This is true because, when there are more spe
cialists than specialist calls for them to handle, they accept
non-specialist calls which require an MTTR greater than that
for a generalist. Idle time consequently decreases under
these circumstances.

Finally, Figure 6 represents the response time and idle
time characteristics for an office utilizing varying numbers
of senior specialists. As was true for both the true and limited
specialist cases, response time initially decreases and idle
time increases as the percentage of specialists approaches
the percentage of specialist type calls. However, after that
equality point, response time and idle time remain the same
since there is no degradation of MTTR below the all gen
eralist MTTR level when a senior specialist is working on
non-specialty type calls.

The impact of these idle time and response time phenom
ena on the response time/call rate characteristic operating
curve for a branch office is significant. This can be readily
seen in Figure 7 which can be considered representative of
a branch with a given total number of engineers, a variable
number of true or limited specialists, and a fixed percentage
of specialist type calls.

The operating curve for an all generalist office (0 gener
alists and 0 specialists) initially moves to the right as the
number of generalists is decreased by one (0-1) and the num
ber of true or limited specialists is increased by one (1). That
movement to the right will continue as long as the percentage
of specialists in the office is less than the percentage of spe
cialist type calls. Once it becomes greater the characteristic

curve will move to the left approaching and eventually pass
ing the all generalist curve (note the O-S,S curve to the left
of the all generalist curve in Figure 7). It should be noted
here that for the senior specialist case the characteristic
curve will continue to move to the right regardless of the
number of generalists replaced by senior specialists since
any senior specialist MTTR is never higher than that of a
generalist.

At this juncture it would appear that several rules-of
thumb can be stated regarding the proper use of the various
specialist types so that the branch office can operate more
effectively.

Rule 1. True specialist

In an office with true specialists, the percentage of spe
cialists must not exceed the percentage of specialist type
calls.

Rule 2. Limited specialists

In an office with limited specialists, the percentage of spe
cialists should not exceed the percentage of specialist type
calls.

For an office with senior specialists no rule can be stated
explicitly because, although the operating curve will always
be superior to the all generalist office, senior specialists are
more costly in terms of salary and training. Hence, some
type of performance versus cost tradeoff must be made in
this case.

In the preceding analyses the percentage of specialist type
calls has been held constant while the percentage of spe
cialists has been varying. It is interesting to note the impact
on response time of varying the percentage of specialist type
calls while holding the percentage of specialists fixed. Figure
8 is a graphical representation of these phenomena for the
three different types of specialists.

It clearly shows that the lower the percentage of specialist
type calls the more sophisticated the specialist type must be

Table III

Device % Reduction

A S3

B S5

C 27

0 22

E 50

F 40

in order to keep response time within reasonable bounds.
Point A represents the equality of the percentage of specialist
type calls and the percentage of specialists in the office.
Clearly, when the latter exceeds the former (i.e., to the left
of Point A) the use of true specialists becomes inferior to
the all generalist case. To the right of point A, however, the
three curves converge since all specialists are kept busy on
their specialty.

IMPLEMENTATION

Before committing to the implementation of an engineer
specialization program it was first necessary to determine
the amounts by which specialization could actually reduce
MTTR. Although I am not at liberty to discuss the complete
nature and extent of the tests that were conducted to make
these determinations, I have noted in Table III some sample
percentage reductions in repair times for specialists over
generalists for six individual (but unnamed) devices.

Decision Support Systems: A Practical Application 11

With this and other supporting data at hand our company
has decided to implement a field service (i.e., hardware) spe
cialization program. Our management science consulting
organization is presently helping individual branch offices
determine when and if and what kinds of specialization
should be utilized. By modifying the simulation model.de
scribed in this paper to reflect individual branch office op
erating parameters various alternative specialization schemes
can be evaluated for a given office. In essence, a decision
support system is being utilized jointly by our consulting
group and by our branch management personnel to deter
mine the office structures that will both maximize customer
satisfaction and be cost effective. Given our belief that cus
tomer service issues will be the driving force in our industry
in the 1980s, our dedication to the task at hand must be
complete. Whereas, our emphasis is on the field service or
ganization today, it will most certainly be on the software
services business tomorrow. Modification of the simulation
model (or the decision support system, if you will) to that
end is a certainty.

On development tools for small systems: the challenge of
economically automating a filing cabinet

by DAVID D. RABER
MegaWest Systems, Incorporated
Salt Lake City, Utah

THE SMALL SYSTEM CHALLENGE

One measure of how effective a DP shop is, or how efficient
a set of development tools are, is the minimum size project
that can effectively be handled. Granted, this is not the only
measure of effectiveness, nor is it necessarily the best. On
the other hand, a data processing department which can ef
fectively produce small business systems may find a rich
potential for service and success within the corporate struc
ture. Realizing this potential depends, to a large degree, on
the amount of specialized small system expertise in the areas
of development methodology, hardware capability, and de
velopment tools.

Perhaps some constructed examples will provide a useful
introduction to the challenges which are related to small sys
tem development:

The employee's cafeteria wants to automate their com
missary inventory. They looked at a manufacturing parts
inventory package and rejected it as being entirely too
complicated.

The graphics studio wants a system to keep track of
form layout requests. They briefly considered a shop floor
management package with bill of material and human re
source allocation features, but concluded it was too com
plex for their three person operation.

The Systems Development Department wants a system
to keep track of maintenance requests from user depart
ments. Someone "between projects" has already spent
five weeks on this one.

The savings and loan down the street has a turnkey loan
application system. They want to add a little program to
keep track of the' 'pots and pans" gift premium inventory.

A recent front page article in the Wall Street Journal was
headlined" Executives Discover Computers Can Help Them
in Daily Routines" [6]. The article describes an increasing
acceptance among business professionals of automating rou
tine office functions. Examples given in the article include
text processing, appointment scheduling, and memo distri
bution. Small functions which are also being automated in
clude electronic doodle pads and tickler files. While a com
plete automated office of the future is definitely in the realm

13

of large system development, it reflects an unmistakable
trend toward automating simple business tasks.

SMALL SYSTEM DEVELOPMENT METHODOLOGY

A successful small project strategy must begin with ap
propriate development methodology and project manage
ment. While an eleven phase development methodology
complete with project schedules, technical reviews, and
sign-offs may be appropriate and necessary for traditional
projects, these procedures would smother all but the heart
iest of small projects.

One method of handling small projects efficiently would
be the creation of a special small systems section, perhaps
consisting of only one or two analysts. The manager of this
section would have authority to review, approve, schedule,
and implement projects which were consistent with the
firm's DP goals and with the small project section's special
mission. A project would be disqualified if it required too
many development or production resources, if it was logi
cally part of a larger system which was at least in the initial
survey phase, or if it required a complex interface to other
systems. If the project qualified as being small enough, one
of the "small project" analysts (or the manager himself)
would implement and document it.

Small system expertise can be useful to both the user de
partments and the DP department itself. It can provide an
excellent method for the DP department to "meet" other
departments on a functional level. While the DP department
may be ready to automate the entire company, the entire
company may not be ready to be automated. If there is some
reluctance on the part of users to automate, then start small.
This will give the DP department exposure to the users as
well as giving the users some hands-on experience with what
computers can do and with the role they need to play in
specifying and implementing systems.

DP departments have a great internal need for small sys
tem expertise as well. Some examples of small systems use
ful in the system development process are data dictionaries,
logical and physical file documentation, development task
scheduling, hardware or software evaluations, system mod
ule indexing, and test file creation.

14 National Computer Conference, 1980

To summarize, small systems must be as flexible as they
are simple. Remember, small systems are frequently going
to be designed for the naive-to-unsophisticated user. In ad
dition, the low overhead environment in which small system
development must operate does not permit an in-depth anal
ysis by the DP department. The successful small systems
specialist will give an application his "best guess" the first
time through. If he misses, the analyst and the users will be
able to take advantage of the flexibility built into the system
and make whatever modifications are necessary with mini
mal effort.

HARDWARE FOR SMALL SYSTEMS

In an environment where the availability of efficient de
velopment tools is critical, hardware selection criteria can
hardly be confined to system architecture and memory cycle
time. The development tools under discussion here are no
exception to the rule that hardware is the major factor in
determining what is efficient, effective, and practical in the
software realm. While the particular tools discussed here are
designed for Microdata's Reality line of minicomputers, it
is not the intent of this paper to concentrate on the virtures
or vices of any particular hardware. Rather, several features
of the hardware and operating system which significantly
impact the software development process will be high
lighted. Attention will be given to the portability of these
concepts to other hardware environments.

A particularly useful feature provided by Microdata's
Reality operating system is dynamic arrays. Dynamic arrays
allow variable length records, each record with variable
length fields, each field with variable dimensions, each di
mension with a variable number of subvalues. Dynamic ar
rays eliminate the constraints of fixed columns and field
widths.

In Reality (no pun intended this time) each file is com
prised of any number of "items" which may be thought of
as records. Each item in the file is a dynamic array. Within
each dynamic array there are any number of "attributes"
which can be thought of as data fields. The attributes within
a dynamic array are delimited by a special character referred
to as an attribute mark. Similarly, each attribute on the rec
ord can have any number of "values," which can be
thought of as values within a one dimension array. Values
within the attribute are delimited by a special character re
ferred to as a value mark. These values can be broken down
into subvalues, apd subvalues can be broken into any num
ber of subfields. Rather than defining data as occupying pre
defined columns on a record, the data is defined as occupying
a relative position on the record as determined by the special
delimiter characters.

This feature allows designers to free themselves of con
siderations such as length of fields, maximum number of
occurrences per variable, or the number of columns perrec
ord. This method is somewhat of a compromise between
elemental data storage and a full data base management sys
tem. While proviqing. some genuine relief from the burden

of elemental data storage, the processing required is straight
forward enough to implement in microcode [4].

The second feature is an optional dictionary section avail
able for each file in the system. This feature is closely related
to the first in that dictionaries provide an opportunity to
name fields of a dynamic data array based on the field's
relative position. The dictionary can also be used to specify
format and data .conversions to be perlormed on the data as
it is input or displayed. Part of the development tools dis
cussed in the next section provides a simple, automated
method of creating dictionary entries. As shall be shown,
dictionaries play a vit~l role in data input and retrieval fqnc
tions.

While Reality m~kes specific provisions for data diction
aries, this concept could be (~nd is) implemented on other
systems. Rather than defining data as being located in a given
attribute, as in Reality, data could be defined as occupying
a range of columns, The conversions, format, and print
lengths could easily be s~ored alongside the location refer
ence.

The third feature is a very powerlul report generator called
English [2]. English makes extensive use of the data dic
tionary described above. English ~an be used to list or sort
files or subsets of the file based ·on optional s~lection criteria.
English also features control-break functions with various
totaling and subtotaling .options.

English is completely dictionary driven in that all param
eters required to retrieve and display data are stored in a
system-provided dictionary and are accessed automati~ally
by English. Users of English only concern themselves with
the names of variables they w~nt displayed, sorted, or to
taled.

The following examples are typical English statements:

LIST ACCOUNT I)ESCRIPTION BALANCE
LAST,POST

SORT ACCOUNT BY TYPE BREAK-ON TYPE TOTAL
BALANCE HEADING "ACCOUNT SUMMARY AS
OF 'D'"

COUNT INVENTORY WITH PRICE = '.30'
SORT-LABEL CUST BY ZIP NAME ADDRESS

In the first example the account file's dictionary is presumed
to contain entries which define the location, conversion, jus-:
tification, and print length of the variables named descrip ..
tion, balance, and lasLpost.

The real power of English lies in the conversion specifi
cations stored in the data dictionaries. One of the more com
plex conversions allows the use of other files as translate ta
bles. Another powerlulconversion supports a full set of
algebraic and logical operations which have at their disposal
any data element ill the entire system. English can, for ex
ample, produce bar charts by a fairly simple one-line con
version stored in the dat~ dictionary. In addition to complex
conversions, simple editing of date and decimal fields are
also provided for. Any number of conversions may be spec
ified for each item in a dictionary.

The value of a programming tool such as English should
not be based solely on how it performs as an ad hoc report
generator. Although an ad hoc report generator is necessary
for the sUccess of small systems, it is not sufficient. Some
convenient method must also be provided to specify, design,
and program standard production reports. As shall be dis
cussed shortly, English plays a major role in productivity on
Microdata systems by providing an efficient method of dis
playing data on both an ad hoc and on a regular basis.

The fourth feature is direct file access. It should be ob
vious that small systems which are intended to replace man
ual filing systems cannot be successfully implemented with
only sequential access. One drawback to Reality's file struc
ture is that multiple keys or indexed sequential access is not
provided for directly by the operating system.

The fifth feature is a virtual memory management system.
In Reality all external on-line storage is logically in execut
able memory. This has several implications. First, "loading"
programs and "opening" files is transparent since all pro
grams and files are logically in memory at all times. Second,
the length of program and data fields is not constrained by
storage partitions. Obviously several32K programs running
concurrently on the smallest Reality configuration (16K) are
going to experience considerable frame faulting. While there
is substantial memory management overhead, this scheme
does achieve a worthy goal of insulating users from memory
management.

The sixth feature is a powerful proc language referred to
simply as Proc [3]. Any command or character string which
can be entered at the terminal can be stored in a proc and
called up for submission as if it were terminal input. In ad
dition, Proc has sufficient logical, algebraic, 10 and branch
ing capabilities so that m:any programming functions can be
done directly in Proc. Since procs are interpreted at exe
cution time, their use is limited in practice to pre or post
processing routines for standard system utilities or appli
cation programs.

One simple example of a Proc application is as a pre-pro
cessor for English. To reduce the number of keystrokes re
quired to produce an English report, it is often desirable to
store long English commands in a file. A proc can be written
to examine an English Istatement for references to the pre
stored com:m:and file. If a reference is found, the pre-stored
text is merged with the rest of the terminal input. As this
example demonstrates, a powerful proc processor can
greatly enhance the friendliness of a system by eliminating
unnecessary terminal input.

Notice that most of these hardware and operating system
features are valuahle to the production of small systems due
to their ability to incorporate flexibility into the system de
sign. If a field needs to be longer or more variables are
needed, they can be added without affecting existing data
or programs. If new values need to be computed or trans
lated, it can be done as the variables are called up for display
through the use of dictionary-specified conversions. If report
formats need to be changed or special sort criteria need to
be. added, simple changes to report generating procs can be
made.

Development Tools for Small Systems 15

SOFTWARE TOOLS FOR SMALL SYSTEMS

The filing cabinet system

While hardware often comes with useful development
tools such as Microdata's English and Proc, these tools fre
quently provide only the foundation of what is needed for
small system development. In the case of Reality, a simple
dictionary driven data input process was lacking. A rather
satisfactory solution has been based on a set of file main
tenance programs originally designed by Mr. Paul Hyer
while he was the director at Brigham Young University Ha
waii Campus Computer Center [1].

Rather than composing a pretentious name for the tools,
they will be referred to as simply the "filing cabinet" system.
As the name implies, filing cabinet systems consist of an
automated but simple method of filing and retrieving infor
mation. Each item (record) in the automated system repre
sents a filing card from the manual system. Each attribute
(data field) represents a field on a preprinted form. Each
value (dimension) can be thought of as mUltiple occurrences
of a field. In the case of both the manual and the automated
system, records are arranged according to a unique but rel
evant key.

There are two major processes in a filing cabinet system,
data input and data retrieval. Data input includes creating
new records, updating existing records, and deleting records

FILING CABINET SYSTEM

RAW

DATA

DICTIONARY

Figure I

16 National Computer Conference, 1980

no longer needed. Adding or updating may include editing
for valid data and converting values into an internal storage
format. Data retrieval includes displaying data in external
format as well as performing sorting and selection task.

Two ancillary tasks which may be performed in filing cab
inet systems are maintaining inverted list and transforming
data into new attributes. Maintaining inverted list is some
times necessary and desirable if the file is large and access
is frequently required through secondary keys. Reality's
English processor does provide a facility for maintaining and
using inverted list. As indicated previously, transformations
required on. the attributes are incorporated in the data re
trieval or data input processes whenever possible so as to
take advantage of the flexibility English provides.

The major functions of a filing cabinet system are repre
sented in Figure 1. While English should be a familiar concept
by now, File Companion has not previously been mentioned

FILE

SPECS

CREATION

since it is an in-house development and thus not part of the
Reality package. File Companion is a generalized data input
program which, like English, makes use of the dictionary
section of data files. Since all parameters necessary for the
operation of File Companion are stored in the dictionary of
each data file, this program provides a readily available data
input' capability for any Reality file that has a current dic
tionary.

Overview of file companion

File Companion (FC for short) operates on a concept basic
to many other editors. The fundamental difference is that
FC functions one level below record oriented editors. The
user of a record oriented editor operates on records within
files. FC takes advantage of Reality's file structure by editing

FILING CABINET SYSTEM

RAW
DATA

RAW

DATA

CABINET SYSTEM

Figure 2-Attribute definitions are stored in the attribute index file (repre
sented on the left). BUILD-DIeT is used to build dictionaries for all user files

in the system (represented on the right).

=fc at
NUMBER OF ATTRIBUTES IS 15

ENTER ITEM-ID::J.
---NEW ADDITION---

t FILE. NAME
2 ATTRIBUTE
:3 NAME (:::;)
4 TYPE
5 DESCRIPTION
/::.. FORMAT.CLASS
7 CONVERSION
:::: CORRELAT I VE
9 ,JU:::TIFICATION

10 PRINT.L.ENGTH
l:l. ENGL. HEADING
12 ENGL. DFL T • ::::EG!
1. :?: I "'PUT. LENGTH
14 INPUT. CONVERSION
15 PATTERN

ENTER ITEM-ID:2
---NEW ADDITION---

l. FILE. NAME
2 ATTRIBUTE
.":; NAME(S)
4 TYPE
5 DE::;:C:R I PT I ON
(,-:. FORMAT. CLAS!::;
7 CONVERSION
.=.
'-' CORRELATIVE
'::' ,-'UST I FICA T I ON

10 PRINT. LENGTH
:1. t ENGL. HEADING
1'-' ..::. ENGL. DFL T • SEG!
j .-::'
.0_1 INPUT. LENGTH
14 INPUT. CONVER:::: I ON
:1.5 PATTERN

Development Tools for Small Systems 17

: for'm
:0
: for·m. i d
: k
:internallv assigned form number

: 1
:6

: 2nla:3n

: for'm
: 1
:on.hand
: r'
:quantitv on hand

: r'
:5

: 1·

: nlJm

Figure 3-Example of File Companion being used on an attribute index file
to create new dictionary entries. Refer to left-hand side of Figure 2.

individual attributes (data fields) within an item (record),
each item being a subdivision of a file. One obvious advan
tage to this editor is that it prompts with descriptive attribute
mimes obtained from the dictionary rather than simple line
numbers as in the case of many other editors. Another ad-

FILE. DOC.:3

vantage is that FC screens input data based on editing pa
rameters stored in the system provided data dictionary.

Implementing FC as a line-at-a-time editor rather than as
a full screen editor was made for three reasons. First, there
are several medium speed hardcopy terminals in our systems

001 :;:;t]RT AT BY FILE.NAME BY ATTRIBUTE BY TYPE BREAK-ON T.FILE ' PB···*II
002 LISTING ATTRIBUTE NAME DESCRIPTION T.TYPE CONVERSION PRINT. LENGTH T.JUST PA

TTERN
003 ID-SUPP DBL-SPC
004 HEADING II FILE SPECIFICATION FOR: "'B'" FILE

Figure 4-English statement used to produce file documentation as displayed
in Figure 5.

PAGE .. ' PLL .. ' "

18 I National Computer Conference, 1980

FILE SPECIFICATION FOR: FORM <FORM INVENTORY> FILE PAGE 1

4T# NA~E(S) •••••••• n~SCRIPTION ••••••••••••••••••• TyPE ••••• CONV •••• LFN JSTF. PATTERN.

LO\'J

? RF.'V.DATE

4 RE.OATES

r:; RE.(.HJA~'T

~ PROCfSS

7 Loe

A nFPT

9 DES~RIPTIOf\J

10 ST:Z~

*

INTERNALLV ASSIGNED F~RM

(\.lUMBER

nUANTITV ON HAND

KEY

RFt3IJIRED

LOW:1 TF ~N.HANn < 10~ OF
nMT • RE(HWER

SYNONYM A:NrON.H
ANI:')*"10
"<N(ONT.
LOT)

nATE OF LAST REVISION REQIIIRED 0;>

U~IIAL REORDER QUANTITY

RFnRnER DATES (VALUE MARK
~FTwFF.N DATES)

OPTIONAL

OPTIONAL I:'i?

REORf')ER QlIANTITF~ OPTIONAL

PRnr.FSS USED TO PROOUCE FORMS RF-qIJIREf'I
O=OFFSET
NCR=~CR MULTIPLE PART FORM
X=XER('IX
E' : E r.! G R A V E' n

~UlK INVENTORY LOCATlnN OPTIONAL
R:AA~E~F.:NT

8=ATH FLOOR STnRF. ROOM
n=nF.PAqT~F.NT'~ STOREROOM

[) EPA R T M E t\1 T T HAT I NT T I ATE f') THE R E ~ ! JI R E n
FORM REQUEST

OEsrRTPTI(')N OF FORM REOIJTREn

Figure S-File documentation produced by English from the attribute index
file. Refer to left-hand side of Figure 2.

Data entry

6 LEFT 2N1A3N

5 Ryt;HT NUM

1 RIGHT

q RIGHT

5 JUGHT NliM

q RI(;HT

5 Rlr;HT

5 LEFT

3 LFFT

4 LEFT

15 TEXT

& LEFT

which do not support cursor positioning. Second, there are
several different video terminals ih use, each using different
cursor control protocol. Third, using one or more lines for
each attribute enables FC to handle attributes of any size
as well as an unlimited number of attributes for each item.

A) An item-id is prompted for. If an existing id is entered
(i.e. the id of an item already on file), the entire item is

FC is invoked by typing "FC" followed by a space and
the name of a file to be operated on. FC performs the fol
lowing task:

Initialization

A) Open the dictionary section of the file specified. Select
all attribute definitions which are not identified as synonyms.
This eliminates from the input process data which is con
structed rather than physically on file.

B) For each item selected, obtain from the dictionary a
prompt (i.e. the attribute name), a pattern match, and a con
version specification.

: fc fClrm
NUMBER OF ATTRIBUTES IS 10

ENTER ITEM-ID:22f834
---NEW ADDITION---

1 ON. HAND
2 REV. DATE
:3 I~NT.LOT
4 RE.DATES
5 RE.I~UANT
6 PROCESS
7 LOC
8 DEPT
9 DESCRIPTION

10 SIZE

:1200
: 20apr"7':;o
:5000
: 22apr"79
:5000
:rocr-

:fin
: .:a.sh reciept

Figure 6-Example of File Companion being used on a production file. Refer
to right-hand side of Figure 2.

Development Tools for Small Systems 19

FORM.INV
001 SORT FORM
002 LISTING ON.HAND REV. DATE QNT.LOT RE.DATES RE.QUANT PROCESS LOC DEPT
003 DESCRIPTION SIZE LOW
004 DBL-SPC
005 HEADING "FORMS INVENTORY REPORT ,"[I'" PAGE ,"PLL,"II

FORM. LOW
001 SORT FORM BY DEPT WITH LOW = If 111 L I S1" I NO DEPT DE:::;CR I PT I ON PROCE:::;S
002 ON. HAND QNT.LOT
00:3 HEADING If lOY. CRITICAL INVENTORY LIST "'D'" PAGE ,"PLL ,,'II

Figure 7-ExampJes of English statements used for production reports
dispJayed in Figure 8,

displayed in compact format. If a new id is entered a message
is displayed indicating it is a new item. In addition, new ids
are compared against the pattern match specified for a key,
if any.

B) The user is prompted, attribute at a time, for input
data. The prompt consist of the .attribute number, the at
tribute name, and the first 20 characters of existing data (if
any). The user has several options. First, the existing data
can be replaced by entering new data. Second, the attribute
can be skipped by entering a null (Le. just a carriage return).
Third, special functions such as branching directly to another
attribute, replacing characters in the current attribute, dis
playing the entire attribute, or exiting can be performed by

FORMS I~VENTnpy PFPORT O~ JAN ,Q$\O

entering special control characters. Complete details are
given in [Ref. 5].

C) After the attribute list is exhausted another item-id is
prompted for. Either another item-id can be entered, or a
special command can be entered to perform task such as
selecting a new file or selecting a subset of attributes to op
erate on.

Creating new applications

As should be evident from the dictionary driven nature
of both English and File Companion, designing and installing

PAGE 1

FORM •• ON.HAPI" p~v.nAT~. ~NT.LnT RE.nATE~. RE.QUA~T PRor~s~ LOC ~FPT DESC~TPTJnN •••• ~IZe •• LOW

2?FR!ll 3('10 01 .JII~.I 77

750 07 .JUL 11'.

Q(IO 01 APR 76

l?OO ?O 7q

~7P100 7ao 17 .JUL 7Po

37 P 101 1 (10 ;>:> JIJL 1.rJ,

"ono 01, ,,1)(\1 77 soot) ')

15 Aur; 7~ 5000
01 MAq 7q 5000

700 15 JilL 7flo

10000 07 APR 7"
?1 JtlL 7"
01 c\lIl; 71
07 JUN 7q

5000 ?2 7q

2000 17 JIJL 78

1200 ?; JIJL 7~

lOX C~tTICAL JNV!;~ITOQy LTST

700 0

7 (H)

sooo n
10000
10000
1nOOl)

,000

FORIA •• OEPT DESCRIPTInN •••• PROCESS ON A'IID QNT .LOT

?<'FII31 FH! TRAVEL AnVANCI; 0 300 'iOOO
VOIJC ... FQ

<'2F~33 FIN JOURNAL VOllr:IoIER n '100 10001)
37Pl01 PER TERMINATtn'll NC~ 100 1;>00

NOTICF

n FTN TRAVEL ADVANCE
Vnl!C~iE"R

f\ FIt\] SPECIAL TRAVEL
R f(:'IIJI SIT I n 1\1

n FIN Jnt'R~AL V!'ltlCI-fF.R

p PfR EMPLnyr"H:NT
APPLH~ATJa"'l

PEP TERMINAT{ON
NOTICE

Figure 8-Examples of production reports produced by English. Refer to
right-hand side of Figure 2.

R.II:j){ 11

A. c:;)(' 1 0

~ • C;)(1 1

o

20 National Computer Conference, 1980

filing cabinet systems can be reduced to the task of con
structing an appropriate dictionary. Once a dictionary is con
structed, FC can be used for data input and English can be
used for data retrieval. The critical task is clearly dictionary
construction, which is itself one of the most straightforward
applications of the filing cabinet system.

As illustrated in Figure 2, the filing cabinet system that
creates dictionaries is functionally identical to user filing
cabinet systems. User file dictionaries are created from a
master attribute index file by the program BUILD-DICT.
Although conceptually the task performed by BUILD-DICT
would be a simple application of English, Microdata users
are still awaiting enhancements which will allow English to
produce files rather than just reports and displays.

The following steps can be used to create and document
new applications:

File specification

For each data element in the file, assign an appropriate
description, print length, justification, and variable type.
Specify an input pattern match and conversion if they are
necessary. These terms are further defined in the attribute
index file documentation [5 and Appendix A].

File design

Use FC to record file specifications on the attribute index
file. FC will not allow the file, attribute number, or attribute
name to be entered as null. Default values for other fields
are given in the attribute index file documentation.

=FC FORM
NUMBER OF ATTRIBUTES IS 10

ENTER ITEM-ID:.S

----ATTRIBUTE SUBSET SELECTION---
ENTER ATTRIBUTE NAME OR NUMBER
ATTRIBUTE 1 :ON.HAND
ATTRIBtITE: :2

Fiie implementation

After all on the data elements for a file have been entered,
run BUILD-DICT to move specifications from the attribute
index file to the user file dictionary. BUILD-DICT is a proc
that performs the following subfunctions:

A) the user is prompted for the name of the data file for
which a dictionary is to be built.

B) if the data file does not already exist, a file is created
using default hashing parameters.

C) the English SELECT verb is used to select all items
in the attribute file which defines attributes for the
dictionary to be built.

D) attribute definitions are copied from the attribute index
file to the dictionary of the data file.

File documentation

Run FILE-DOC to produce file documentation based on
information in the attribute index file. FILE-DOC is simply
a proc that calls English to list attribute specifications for
a given file.

Several options are available if the required processing
cannot be handled by a simple application of File Compan
ion and English. First, File Companion may optionally call
a Basic subroutine as items are retrieved or stored. This
provides the flexibility required to handle task such as main
taining inverted list or inserting default values. Second, a

NOTE--TYF'E ". S" WHEN YOU ARE READY TO CANCEL ATTRIBUTE!::;U8!::;l:::f !::;ELECTION

ENTER ITEM-ID:22F832
50-3841-700-3849-700}700~O-B-FIN~SF'ECIAL TRAVEL REQUISITION-8.5Xl1

1. ON. HAND

ENTER ITEM-ID:22F831

50 : • +700
750

600-3440-5000-3445} 3880} 4078-5000} 5000} 5000-0-D-FIN-TR AVEL ADVANCE VOUCHER-8.5Xl1

1 ON. HAND

ENTER ITEM-ID:.X

600 : • -::::00
::::00

Figure 9-Example of File Companion being used to update a subset of
variables on a production file.

Basic program may be written to perform ancillary pro
cessing, as in the case of BUILD-DICT mentioned earlier.
There are, of course, some complex applications which are
beyond the capacity of a generalized data input function such
as File Companion. In this case, development of customized
screens and data input processing would be justified.

An example of creating and using a filing cabinet system
will give a better idea of how these systems. are built and
used. For lack of a better example we will assume that the
graphics studio is so well pleased with the form request
tracking system we put together that they want a little in
ventory system to keep track of the more than 2,000 forms
they produce and stock (including the form to request new
forms). While variety of the inventory is great, they tell us
that turnover is quite low. After spending a few hours with
the users, File Companion, and English we might come up
with a system such as the one illustrated in Figures 3 through
9. And sample reports.

APPENDIX A

Development Tools for Small Systems 21

ACKNOWLEDGMENTS

The author wishes to express appreciation to Michael J.
Archuleta of MegaWest Systems for the opportunity to ex
plore many of the numerous challenges small system de
velopment presents and to Paul Hyer of Management Sys
tems Corporation for his helpful introduction to some of the
solutions which are expressed here.

REFERENCES

1. Hyer, Paul, "File Maintenance Procedures." Unpublished program doc-
umentation available from author.

2. Microdata Corporation, English Reference Manual. Irvine: 1977.
3. Microdata Corporation, Proc and Batch Manual. Irvine: 1977.
4. Microdata Corporation, Programmer's Reference Manual. Irvine: 1977.
5. Raber, David D., "Users Guide to File Companion." Unpublished pro

gram documentation available from author.
6. Wyscocki, Benard Jr., "Automated Offices: Executives Discover Com

puters Can Help Them In Daily Routines." Wall Street Journal. July 6,
1979.

FILE SPECIFICATION FOR: AT (ATTRIBUTE INDEX) FILE

AT# NAME(S) DESCRIPTION .. TYPE LEN JSTF.
0 KEY SEQUENTIAL KEY TO ATTRIBUTE KEY 3 RIGHT

FILE
FILE.NAME FILE NAME REQUIRED 5 TEXT
FILN

2 ATTRIBUTE ATTRIBUTE NUMBER REQUIRED 2 RIGHT
AT

3 NAME(S) NAME OF ATTRIBUTE REQUIRED 15 LEFT
NAME (V ALUE MARKS BETWEEN NAMES)

4 TYPE V ARIABLE TYPE REQUIRED TEXT
R=REQUIRED
0= OPTIONAL
1= INTERNALLY COMPUTED
K=KEY

5 DESCRIPTION DESCRIPTION FOR ATTRIBUTE OPTIONAL 30 TEXT
6 FORMAT. CLASS . FORMAT CLASS OPTIONAL 4 TEXT

FRMT
7 CONVERSION ENGLISH CONVERSION OPTIONAL 6 TEXT

CONV (CONVERSIONS ARE DONE AFTER
SELECTS AND SORTS)

8 CORRELATIVE ENGLISH CORRELATIVE OPTIONAL 10 TEXT
CORR (CORRELATIVES ARE DONE BEFORE

SELECTS AND SORTS)
USUALLY, ALL CONVERSIONS
EXCEPT DATE AND DECIMAL WILL
GO HERE

9 JUSTIFICATION PRINT JUSTIFICATION FOR OPTIONAL I TEXT
ENGLISH

J R=RIGHT
L=LEFT
T=TEXT (LEFT, LONG TEXT TO

NEW LINE)
to PRINT. LENGTH PRINT LENGTH OPTIONAL 3 RIGHT

LN

22 National Computer Conference, 1980

11 ENGL. HEADING COLUMN HEADING TO BE USED FOR OPTIONAL 10 TEXT
ENGL ENGLISH. ITEM NAME IS THE

DEFAULT
HEADING.

12 ENGL.DFLT.SEQ SEQUENCE NUMBER FOR ENGLISH OPTIONAL 2 RIGHT
REPORTS

SEQ WITH NO OUTPUT SPECIFICATION
AT# NAME(S) DESCRIPTION .. TYPE LEN JSTF.

(SEE SECTION 2.9 IN ENGLISH
MANUAL)

13 INPUT .LENGTH MAXIMUM LENGTH (USED BY OPTIONAL 3 RIGHT
SCREENPRO AND FC)

ILEN
14 INPUT.CONV INPUT CONVERSION OPTIONAL 6 TEXT

ICONV
15 PATTERN INPUT PATTERN MATCH OPTIONAL 8 TEXT

EXAMPLES:
2N9A=2 NUMERIC, 9 ALPHA
3XIA=3 ALPHANUMERIC, 1 ALPHA
3N'A'=3 NUMERIC, LITERAL 'A'

A structured information system design for a
newspaper organization: a case study

by MOHAN R. TANNIRU
University of Wisconsin-Madison
Madison, Wisconsin

INTRODUCTION

Designing an information system, whether it is one of de
cision making or decision supporting, often starts with the
identification of the objectives of the system. Information
is then generated and processed to meet these objectives.
In many transaction processing systems (also known as life
stream systems or programmed systems) the objectives are
expressed in terms of reports, both scheduled and ad hoc
(output design). The content portion of this output design
is used to determine the information needs. Some of this
information may be computed internally (process design) or
input directly from an external source (input design).

This seemingly simple structure to the design ofinformation
systems, however~ becomes more complex as the problem
becomes unstructured. The absence of a structure is often
due to lone's inability to identify, a priori, the demands that
will be imposed on the system (objectives of the system),
or to ascertain the appropriateness of various mechanisms
used in achieving these objectives, or both. One's inability
to identify the demands on the system makes the input design
difficult and the lack of an acceptable procedure for achiev
ing these demands makes the process design dynamic. An
example of this is a planning system. Here the objectives are
numerous, conflicting and changing constantly, and the
methodologies used to achieve those objectives vary signif
icantly in their scope, precision and complexity. This is one
of the reasons for the design of support systems for planning.
The design of these support systems is often complex and
no standard methodology exists, as of today, for the design
of these systems.

Significant research has been done in the top-down design
oflarge complex programs [1], and in the automation of sys
tem design from a set of user specifications [2,3,4]. The use
of top-down approach to program and system design pro
vides a modular approach and, thus, reduces the consistency
and maintenance problems. It was shown [5,6] that similar
benefits can be drived by relating the top-management's
goals/objectives, expressed as functions of the chart of ac
counts, to various decisions made in the firm usin~ standard
financial flows of the firm. The objective of this study is to
develop a framework that can be used to accept a planner's
requirem.ents in terms of planning and operational activities

23

along with their interdependencies, and provide a logical
specification of his/her requirements. This specification may
then be used as input to an automatic program generator for
detailed system design or it can be treated as a sub-schema
in a data base environment.

The discussion here is organized into four sections. Fol
lowing this introduction, section one briefly describes the
case under consideration (newspaper industry) and its rep
resentation as a hierarchical data model. We will also discuss
here some of the basic terminology and notation that will be
followed in later discussion. Section two develops a meth
odology for the system design under two activity classifi-

. cation schemes. Section three suggests the approach that
will be used to the actual system implementation. Section
four illustrates some of the expected benefits of using this
approach along with some issues that need further study.

A HIERARCHICAL DATA REPRESENTATION

The major objective of a newspaper is to disseminate news
to various subscribers at a relatively low cost and the extent
of coverage that can be provided, to a large extent, depends
on the financial strength of the organization. Much of this
financial strength is derived from the advertising dollar that
it can generate as a major source of its revenues, and this
in turn depends on the amount of circulation. Four major
decision centers in an organization of this type are: Circu
lation (subscription, paper distribution, and handling starts/
stops); Production; Editing; and Advertising (display and
classified advertiser selection and billing).

The financial strength is evaluated by creditors and/or
investors in a manner similar to one chosen for any money
making organization, i.e., by observing various financial ra
tios. Since loyalty of subscribers often plays a greater role
in this business, the circulation department's functions play
a critical part in ensuring accurate billing and reliable dis
tribution. This becomes rather important when there are
competing newspapers catering their service to same market.
Problems related to this activity were the ones that initiated
this study. However, top management's recognition that a
comprehensive system has to be designed ultimately for
proper integration encouraged us to view the system in its

24 National Computer Conference, 1980

entirety for the purposes of design. The actual implemen
tation will be done one module at a time with the first module
being the one associated with circulation decisions.

nization. The state of this system at time ((b l
) correspond

to the vector of values of each of the states (nodes) in the
system at time (. The state of the system changes from time
(to (+ 1 due to system flows (arcs) that correspond to various
monetary activities within the firm. To be consistent with
the accounting conventions, a flow is said to affect two states
at the same time. The convention adopted here is that the

The financial state of this organization is represented by
a hierarchical structure shown in Figure 1. The nodes of this
tree structure correspond to various stock and flow (Balance
Sheet and Income Statement) accounts used by the orga-

c c C
M
C

V
E
X

E
R

C
D
A
C

T
v
t

~
S

E

k
p
c
r

P
H
S

i~ s
R

~

b
p,

p

~
p

~
~--UNIT 1 ----oJ '--- 2 ~ - 3 ----' '--------- 5

A - ASSET
LE - LIABILITIES AND EQUITIES
L - LIABILITIES
E - EQUITIES
CA - CURRENT ASSETS
OA - OTHER ASSETS
FA - FIXED ASSETS
CL - CURRENT LIABILITIES
LL - LONG-TERM LIABILITIES
RE - RETAINED EARNINGS
CE - COMMON EQUITY
C - CASH
AR - ACCOUNTS RECEIVABLE
PPI- PRE-PAID INSURANCE
NR - NOTES RECEIVABLE
SR - SUBSCRIPTIONS RECEIVABLE
D - DONATIONS
SL - SUBSCRIPTION LIST
VSL- VALUE OF SUBSCRIPTION LIST
CAS- CUM. AMORTIZATION OF SUB. LIST
INV- INVENTORY
ME - MACHINERY AND EQUIPMENT
FF - FURNITURE AND FIXTURES
AT - AUTOMOBILES AND TRUCKS
AP - ACCOUNTS PAYABLE
NP - NOTES PAYABLE
STL- SHORT-TERM LOANS
PWH- PAYROLL WITHHOLDING
AEX- ACCRUED EXPENSE
USR- UNEARNED SUBSCRIPTION REVENUES
CNI- CURRENT YEAR NET INCOME
DIV- DIVIDENDS PAID
CS - COMMON STOCK

PS - PREFERRED STOCK
APC- ADDITIONAL PAID-IN CAPITAL'
BVM- BOOK VALUE 'OF MACHINERY
CDM- CUM. DEP. ON MACHINERY
BVF- BOOK VALUE OF FURN. & FIXTURE
CDF- CUM. DEP. ON FURN. & FIXTURE
BVA- BOOK VALUE OF AUTOS & TRUCKS
CDA- CUM. DEP. ON AUTOS & TRUC~S
S - SALES
OPE- OPERATING EXPENSE
SS - SUBSCRIPTION SALES
DS - DEALER AND STREET SALES
DA - DISPLAY ADVERTISING
CA - CLASSIFIED ADVERTISING
II - INTEREST INCOME
MS - MISCELLANEOUS SALES
DR - DONATIONS REVENUE
SW - SALARIES AND WAGES
PT - PAYROLL TAXES
UT - U.C. TAXES
R - RENT
PH - PHONE
OS - OPERATING SUPPLfES
MI - MILEAGE
TE - TRAVEL AND ENTERTAINMENT
PE - POSTAGE EXPENSE
SP - STATIONERY AND PRINTING
ME - MISCELLANEOUS EXPENSE
CLE- CONTRACT LABOR EXPENSE
E-CIR - EXPENSES FROM CIRCULATION
E-PR - EXPENSES FROM EDITORIAL
E-ADV - EXPENSES FROM ADVERTISING

E-ADM - EXPENSES FROM ADMINISTRATION
CC - CARRIER COMMISSIONS
CMC- LND CLASS MAILING CHARGES
VEX- VEHICLE EXPENSE
ER - EQUIPMENT RENTAL
LS - LABEL SUPPLIES
CADC- CIRCULAT~ON ADVERTISING COMMISSIONS
TYC- TYPESETTING AND COMPOSITION
CTS- CAMERA AND TYPESETTING SUPPLIES
ELE- EQUIPMENT LEASE SPACE
PCP- PRODUCTION PRESS CHARGES
PHS- PHOTOGRAPHIC SUPPLIES
WSR- WIRE-SERVICE RENTAL AND SUPPLIES
SCE- SYNDICATE CONTRACT EXPENSE
JEX- JANITORIAL EXPENSE
CLE- CLEARING
SDE- SUBSCRIPTIONS AND DUES-EDITORIAL ,
ADA- ADVERTISING COMMISSION TO ADVERTISERS
SDA- SUBSCRIPTION AND DUES BY ADVERTISING
PAT- PAYROLL TAXES
UCT- U.C. TAXES
UTE- UTILITIES EXPENSE
LAE- LEGAL AND ACCOUNTING EXPENSE
PAD- PROMOTION AND ADVERTISING EXPENSE
INE- INSURANCE EXPENSE
DPE- DATA PROCESSING EXPENSE
BCH- BANK CHARGES
RME- REPAIRS AND MAINTENANCE EXPENSE
DEX- DEPRECIATION EXPENSE
INTE-INTEREST EXPENSE
AMS- AMORTIZATION OF SUBSCRIPTION LIST
PPT- PROPERTY TAX

Figure I-A hierarchical structure representing the financial state.

starting node of the flow was affected negatively by the flow
amount (credit entry in accounting) and the sinking node of
the flow was affected positively by the same amount (debit
entry). This means that all the asset and expense accounts
in b vector have a positive balance, and liability, equity and
revenue accounts have a negative balance with the total al
ways adding to zero. This representation thus treats debit
entries which correspond to increases in asset accounts or
decreases in liability/equity accounts as positive and vice
versa.

This network representation yields an algebraic equation
(1) that relates the state at t + 1 to state t.

(1)

The flow vector f corresponds to various monetary flows
(Table I) and the effect of any single flow on the states is
shown via a systems matrix S. Each column of this matrix
shows a flow's positive, negative or zero effect on respective
states. As an example, the flow-corresponding to 'acquisition
of equipment for cash' has a column in S-matrix as shown
below.

[0 0 .. -1 .. + 1 .. + 1 .. + 1 0 -1. ..]'
ALE .. CA .. FA .. ME .. BVM ... C

Note here that the cash and current asset nodes have a neg-

700

702

704

706

708

710

712

714

716

718

720

722

724

726

728

730

732

734

736

738

750

752

754

756

TABLE I.-A Non-Exhaustive List of System Flows

Directi')n of Flow
Description of the Flow from/to (Cr/Db)

Subscription Sales - Cash SS/C

Subscription Sales - Credit SS/SR

Advertising Commission C/CADC

Cancellation C/SS

Carrier Commission C/CC

Dealer Subscription - Credit DS/SR

Postage Charges for Distribution by Mail C/CMC

Mileage Charges for Distribution C/VFX

Label Supplies - Mail Distribution C/LS

Rental Charges on Equipment AP/ER

Salaries and Wages - Circulation AP/SW

Phone Expense - Circulation AP/PR

Operating Supplies - Circulation AP/OS

Mileage - Other - Circulation c/m

Travel and Entertainment - Circulation

Postage - General - Circulation

Stationery and Printing - Circulation

Miscellaneous Expense - Circulation

Contract Labor Expense - Circulation

Rent Expense - Circulation

Photographic Supplies

Wire Service Rental & Supplies

Syndicate Contract Expense

Janitorial Expense

C/TE

C/PE

C/SP

C/ME

AP/CLE

C/R

C/PHS

AP/WSR

AP/SCE

AP/JE

A Structured Information System Design 25

ative entry (credit entry) and book value of equipment, ma
chinery & equipment and fixed assets have a positive entry
(debit entry). All other nodes are not affected and, thus, have
a zero entry. It is also important to note that the identifi
cation of a set of widely used system flows in the organi
zation predefines the interface between states and flows
through the definition of'S'. The matrix E is simply an iden
tity matrix with the diagonal elements corresponding to
states that do not accumulate between t and t + 1 set to zero.
If the increments in t correspond to the reporting period (one
year), then all the entries in E corresponding to income state
ment items are set to zero. This completes'the description
of the graphical and algebraic representation of the financial
state of the system.

Decisions made at various levels in the organization affect
the states of the system through a set offlows. By identifying
these 'decisions centers,' one can partition the flow vector,
f. This, in turn, will modularize the state vector and provide
a structure for the design. The methodology used for this
partitioning is discussed in [7] and will only be applied to the
case discussed here. The following conventions and termi
nology are used for clarity in the presentation.

A decision block (D.-block) is associated with a set of de
cisions that are considered as a unit because these are either
made at a location georgraphically or functionally separated
from others, or considered inseparable in accomplishing a
specific objective that is clearly defined. We will look at each
case in the next section. AD-block, D i

, may need either Xbi

and/or Xj for generating an optimal decision. Here X b i and
X j correspond to exogenous state and flow values needed
by D i. This is mainly determined by the decision maker in
cooperation with the recording (accounting) subsystem.
Identifying the flowsf associated with D i

, one can generate
sets Wi, Vi and Ui. Here the sets Ui and Vi represent the
states that are affected and exclusively affected by decision
i, while Wi={Ui- Vi}.

A level block (L-block) is defined as one that contains all
the decisions with same level number. The level number is
determined by observing the input/output interdependency
among various decisions. X b i and X j will automatically gen
erate these level numbers using a simple algorithm [see (7)].
Conceptually the L-block identifies all the decisions that are
either independent and needed together for the next level
decisions, or mutually interdependent (each need inputs
from the other). The structure developed in the next section
will illustrate these two cases.

THE DESIGN ALTERNATIVES

In the last section we have seen the typical financial state
and the type of system flows applicable to the firm under
consideration. Some aggregation of the states was intro
duced for clarity of the presentation and this in no way will
affect the design. An example of such an aggregation is
CASH which appears in many reporting documents in a more
detailed form such as 'cash in bank,' 'cash in bank-payroll'
and 'petty cash.' This amount of detail serves no additional
purpose but to depict the realism needed for certain reporting

26 National Computer Conference, 1980

functions-a sub-objective of the total system. Let us now
proceed with the identification of the design structure under
two specific cases. These should illustrate not only the pro
cedure used in the development of the structure but also the
critical issues that played a role in the selection strategy for
implementation. The implementation will be discussed in the
next section.

Case 1

The first case that is considered involves the identification
of decision centers as they currently exist. Even though
these are not explicitly stated, the responsibility accounting
adopted by the company leads us to the identification of five
major decision centers-circulation, advertising, produc
tion, editorial, and administration. These centers are also
geographically separated. An analysis of each center's ex
penditures, independent as well as overlapping, provides a
clustering of nodes in the financial state as shown in Figure
1. The procedure used to generate this clustering is discussed
in [8] and follows the the natural sequence: activity~flow
(monetary)~nodes affected.

The second step in the structuring process is the deter
mination of the activity interdependence. For the case here
there is an observable dependency between circulation and
production-production requiring information on subscriber
data for scheduling and for evaluating specific charges. Ed
itorial and Advertising centers seem to operate independ
ently of each other as do Production and Circulation except
for the transfer of technical data such as where to display
advertisements and how to organize the news. All the four
centers feed expenditure data to the administrative center'
for allocating fixed charges and for determining financial
charges such as interest, tax and depreciation. Using this
simple flow sequence a structure is generated and is shown
in Figure 2(a). Table II summarizes these observations. Note
here that centers 2, 3, and 4 are flow-independent but the
flows associated with these are all necessary for center 5's
computations.

Conceptually the structure derived from the data in Table
II is a rearrangement of the nodes in the financial state such
that the activities of each decision center are mapped con-
,..! 4- _4-1 ... 4-4-L.- C!_ _ ! 1 ,....4- 4- _C +L, 4- __ L~l..... +t..._
~l~tt;Ully tV lUt; I.IUc:lU~l(:U ~lc:lt~ VI. tUt; ~y ~tt;Ul vv Ull~, at lJl~

same time, reducing the need to maintain large data matrices
at each center. This feature has an appeal since its capability
to reduce the information transfer among units and yet pro
vide needed interface can go a long way in decentralizing
the data base. Another important feature is the flexibility it
provides for testing various organization structures with re
gard to their usefulness for a specific purpose such as re
sponsibility reporting, planning and managerial reporting.

Under a broader framework each structure may be treated
as a sub-schema (user's view of data) that can be managed
by a data base. One may look at this as a situation where
a user instead of developing a sub-schema with all the set
relationships among records, which is typically the case in
many DBMS systems, develops activity interdependence
among decision centers. The system then generates a sub-

LEVEL

4

5

2

1 1

(a)

LEVEL

4

2

1

(b)

Figure 2-A decision oriented hierarchy for cases 1 and 2.

A Structured Information System Design 27

TABLE n.-Partitioning by Decision Center in Case I

Decision
No. Center f v

1 Circulation 700-738 SS,DS
nodes in
Unit 1

2 Production 800-830 MS,DR
nodes in
Unit 2

3 Editorial 750-780 Nodes in
Unit 3

4 Advertising 850-878 DA,CA,II
nodes in
Unit 4

5 Administra- 900-954 Nodes in
tive Unit 5

schema automatically for DBMS interface. This can be very
useful for personnel in management who are traditionally
comfortable in dealing with financial activities and their in
terdependence rather than record relationships. Issues re
lated to this will not be elaborated here but will appear in
future work by the author.

Case 2

Another design strategy is to classify activities not using
the organization structure currently in place (case 1) but by
reclassifying them for better control. Some of the problems
identified in the preliminary and the detailed study of the
systems were mainly due to an overlapping of activities or
improper procedures used for controlling these activities. An
illustration of this is when the circulation center is made
responsible for distribution expenditures while production
is involved significantly in the distribution activity. A greater
logistic problem arises when a central data file is organized
by circulation not in an order (by clllstomer name) that best
meets its objectives such as customer billing and subscrip
tion updates but in an order (by zip code) that is needed for
distribution. In order to reduce the overlapping of activities

Level
W ~ Xf No.

C,SR,AP 1
nodes in
Unit 6

C,AP, INV 700, 2
nodes in 702,
Unit 6 706

C,AP, 2
nodes in
Unit 6

C,AR 2
nodes in
Unit 6

Nodes in E-CIR 3
Unit 6, E-PR
all leaf E-ED
nodes of E-ADV
Balance E-ADM
Sheet

and to distribute data based on local need, a reclassification
shown in Figure 3 will be used.

For this decision center classification, the activities are
identified, associated monetary flows determined and a new

ORDER
ROCESSIN

EDITORIAL

ADVER
TIS I NG

INVENTORY
SUPPLIES

DISTRI
BUTION

Figure 3-A decision center classification in case 2.

28 National Computer Conference, 1980

TABLE ilL-Partitioning by Decision Center in Case 2

Decisi.on Level
No. Center f v W ~ X

f
No.

1 Order 700, 702, SS,DS, C,S,R I
Processing 704, 706, CADC,

710 BSL

2 Distribution 712, 714, CMC,VEX, C,AP 700, 702, 2
716, 718 LS,ER 706, 710

3 Production 800-810 MS,DR, C,AP,INV 700, 702, 2
and nodes 706, 710
in Unit 2

4 Editorial 750-760 Nodes in C,AP 1
Unit 3

-_. __ ._-
DA,CA,II

5 Advertising 850-858 Nodes in C 1
Unit 4

6 Payroll 708, 720, CC,SW,CLE, C,AP,PWH 700, 702 2
736, 762, PAT 706
778, 812,
828, 860,
876, 900,
936, 952

7 Administrative 722, 726 PR,MI, TE, C,AP 2
Operations 728, 734, ME,PAD,RME

914, 920
and others
correspond-
ing to
similar
charges
from each
unit.

8 Inventory 724, 732, OS,PE,SP, AP,C 2
Supplies 730 and INV,BME,

similnr RFF~BAT

costs from
each other
unit.

9 Administrative- 738, 780, R, all Leaf nodes 724, 730 3
Financial 830, 878, nodes in of Bls 732, ...

954, 902 Unit 5 items • and all
••• (except except others
914, 920) PAT, PAD
•••• 1000 and RME,

and all
other
leaf nodes.

10 Planning- 1001- CS,PS,APC, CA CA,OA, 4
Financial 1050 DIV,LL,CA FA,CNI

structure is developed. This structure is illustrated in Figure
2(b) and the relevant data is presented in Table III. Note
that the level numbers for centers 4 and 5 can be one instead
of two as assigned here. The selection here is based on com
putational convenience.

The objective of the study was to implement this structure
and to evaluate the benefits derived using this approach.
Note that the selection of this strategy is primarily based on
the relative importance of the data for cost accountability
and reporting needs. Other structures can be evaluated based
on the overall objectives of the firm and, as mentioned ear
lier, this methodology for structure design facilitates quick
testing of each structure. The next section will discuss some
of the procedures that will be followed in the implementa
tion.

THE IMPLEMENTATION

The decision center classification and the associated par
titioning of the flow vector led us to a structure illustrated
in Figure 2(b). This structure consists of four L-blocks and
ten D-blocks. This section will show how this information
can be used to create a data base that can then be effectively
managed either by the use of DBMS system or by a file
management system. Let us first identify all the information
that needs to be maintained thus far about the structure.

The decision block i at levelj is related to the sub-schema
at that level according to equation (2).

bj=A2jbL-VJ+ ~ A1ib u
i

iElj
(2)

Here, b x is the vector of values associated with set x, L is
the set of leaf nodes of the schema (Figure I), A I and A 2 are
the appropriate aggregation matrices, and I j corresponds to
the number of decision centers in level j. For example, the
L-block two contains five D-blocks: 2,3,6,7, and 8. See [7]
for more details on this mapping procedure.

To properly relate the set of D-blocks in one level with
another through a set of sub-aggregation points, a top-down
design is used. The L-block with the largest level number
is designed first and then mapping is done with the D-blocks
of the next level. Equation (3) shows the mapping between
levels i and i-I. The

(3)

identity matrix E has zero entries on the diagonal elements
associated with those states (sub-aggregation points) that do
not transfer any valuable information from level i-I to i.
These states are shown in parentheses in Table IV along with
the breakdown of nodes at each level.

Due to certain resource limitations, only a simple file man
agement system will be designed for implementing this struc
ture. At the end, however, it will be shown how a network
structure can be created from this information for possible
DBMS use. It is apparent at this stage that one needs to
maintain an output file for each level, a file for eachD-block,
a process for each level to do the necessary algebraic map
ping and a process for each decision. (See Figure 4.)

A Structured Information System Design 29

Each L-block i, say, is associated with an output file that
contains information on b i at that level which is used by the
higher level (i + 1) process to compute b L- V.i+ I using Equa
tion 3. It also contains either f and v, or leads to f and v that
are generated by the D-blocks of that level. Here L3 output
file will then contain either the values of the system flows
and non-monetary variables determined by the decision cen
ter 9 (j9,v 9

) or the name of file(s) that contains them. The
process block associated with level i also performs the map
ping of flows in level i to b i using b L - V,i and b J according
to Equation 2. Note that b J = SiJj where Sj, a partition of
S, is induced by the partitioning off.

Ll
PROCESS

D5

D4

Dl

Figure 4-A mapping structure for the implementation of case 2.

30 National Computer Conference, 1980

TABLE IV.-Inter-Level Mapping in Case 2

Level
Decision
Center u* L-V b

4 10 CA, OA, FA, CL. CNI CA, OA, FA, CL, LL,
CNI, DIV, CS, PS,
APC, A, L, LE, E,
RE, CE

3 9 C, AR. PPI, NR,
SR, .!!. ASL. DME.
OFF, OAT, AP. NP,
STL, PWD, AEX,-
USR, !. LL, all
nodes in Unit 5
except PAT, PAD,
and RME

BSL, INV, BME, BFF,
BAT, PAT, PAD, RME,
notes in Unit 6
except R, leaf nodes
of S, E-CIR, E-PR.
E-ED, E-ADV.

CA, OA, FA, CL, CNI,
(OPE, SL, ME, FF,
AT, all leaf nodes
of Figure 1)

2 2, 3, 6
7, & 8.

MS, DR, PAT, PAD,
~, INV, C. AP,
PWH, BME, BFF,
BAT, modes in
unit 1, 2, and 6
(Except R)

SS, J)S, DA, CA, I I ,
BSL, C, SR, AP,
nodes in units 3

(E-CIR, ER-PR,S)

and I~

1 1, 4,
& 5.

SS, ns, CADC, BSL,
DA, CA, !I, no~es
in units 3 and 4,
C, SR, AR

(E-ADV, E-ED)

*Underlined node set in U corresponds to set V.

The output fiie associated with each D-biock has aii the
output information of that decision center, both monetary
and non-monetary. The process associated with a decision
center contains model(s) used to compute f. The exogenous
input they need (X b, X j, X J will come either from or through
the output file of the next lower level. Certain procedures
to structure the modelling activity, if linear models are used
to computef(this is feasible in the case of many accounting
functions such as cost allocations, interest and depreciation
computations, and payment and collection procedures), are
illustrated in [9] and will be used appropriately during the
implementation.

The identification of the mappings and the associated file
management can be automated once the system designer
identifies the flow partitioning, the exogenous flow or var
iable data needed for making each decision, and flow com-

putation (model definition) at each decision center. If a
DBMS environment is used, the relationships can be iden
tified as shown in Figure 5.

One can define this using a network data base. Note here
that all the set relationships and the instances of each record
type associated with a strategy can be automatically derived
simply from a users definition of activity/flow interdepend
ence. This should facilitate a user to define the data instances

. in a language that is familiar to him/her.
At this stage, the actual implementation is not complete

and, hence, the benefits of, or difficulties ih, the design of
systems in this manner cannot be . evaluated objectively. It
is hoped that the modularity provided in this approach will
facilitate a step-by-step approach to the integrated system
design and some of the observations in this regard will be
made in another paper.

STRATEGY

1 ~
N

PRECEDENT LEVEL

I' N ! ~
DECISION

1 ~
MODEL

INSTANCES

CASE 1
CASE 2

LEVEL 1
LEVEL 2 OF CASE 1
LEVEL 3

DECISION 1
DECISION 4 OF LEVEL 1
DECISION 5

SEVERAL MODELS
USED TO COMPUTE FLOWS
ASSOCIATED WITH
DECISION 1

Figure 5-A data base schema for storing the planning data.

CONCLUSIONS

In this paper, we have seen how a financial state of an
organization, expressed in terms of chart of accounts and
flows affecting these accounts, can be partitioned into man
ageable modules (levels and decisions) by using the concept
of decision center identification. With this modularized
structure a consistent mapping among modules both among
levels and within levels can be automatically generated.
Each module can then be designed independently so as to
meet the specific objectives of that module along with the
overall objectives of the organization that are expressed in
terms of the flows originating from this decision center. It
is shown that this structured approach to designing a system
not only facilitates a step-by-step design but also makes the
decentralization of the total data base feasible.

"Integrate Now" approach often comes under criticism
since the identification of a large data bank (data and rela
tions) that serves various users is difficult, and the imple
mentation of such a data base to meet the uncertain and
dynamic processing requirements of these users is expen
sive. By using this top-down structured approach, the dif
ficulty of data bank identification is reduced since the in
tegration is first limited to the financial flows that are well
defined and crucial to the success of an organization. By
designing each module independently with the knowledge
of the extent of its interface to the total system, one should

A Structured Information System Design 31

be able to decentralize the data base to meet the specific
needs of the decision center associated with each module.
This decentralization becomes important as the trend con
tinues toward the use of mini-computers and micro-pro
cessors to meet the specific needs (ex: advanced modelling
capabilities) of some decision centers. Since most of the fi
nancial reporting and planning activities of an organization
are centralized and controlled by top-management, the ap
proach discussed here can transfer only the needed infor
mation for modules to the center and still provide for a con
sistent, modular, and possibly an inexpensive integrated
system.

SUMMARY

The paper illustrates a top-down design of an information
system for newspaper industry. The basic goals of the or
ganization are used to structure the design process such that
a comprehensive system can be designed to support both
planning and operational activities. The modularity provided
by this structure facilitates not only a step-by-step approach
to the actual imp~ementation of the system but also facilitates
distributed data management that is found to be convenient
for the case under consideration. The integration of the ac
tivities is provided by the use of various accounting trans
action types that appear in the normal reporting process.
Some other benefits of representing and designing the system
in this manner are also discussed.

REFERENCES

1. Donaldson, James R., "Structured Programming," Datamation. Decem
ber 1973.

2. Langefors, B., "Some Approaches to the Theory of Information Sys
tems," BIT 3, 1963, p. 229-254.

3. Teichroew, D., "Problem Statement Languages in MIS," Proceedings.
International Symposium of BIFOA, Cologne, July, 1970, pp. 253-270.

4. Nunamaker, Jr., J. F., Konsynski, Jr., B. R., Ho, Thomas, and Singer,
Carl, "Computer-Aided Analysis and Design of Information Systems,"
Comm. of ACM, Vol. 19, No. 12, 1976, pp. 674-687.

5. Tanniru, M., "A Decision Support System for Planning," Ph.D. Disser
tation, Northwestern University, 1978.

6. Blim, J. M., Stohr, E. A., and Tanniru, M., "Design of a Corporate In
formation System," Proceedings of IEEE Conference. Chicago, Novem
ber, 1977.

7. Tanniru, M., "A Structured Information System for Planning," presented
at the First International Symposium on Policy Analysis an.d Information
Systems, and will appear in its proceedings (1979). .

8. Stohr, E. A. and Tanniru, M., "The Design ofa Corporate Planning System
Simulator," presented at the ACM Winter Simulation Conference-78,
Miami and appeared in the Conference Proceedings.

9. Blin, J., Stohr, E. A., and Tanniru, M., "A Structure for Computer Aided
Corporate Planning," Policy Analysis and Information Systems. Vol. 2,
No.2, December 1978.

SID: a system for interactive design

by TOSIY ASU L. KUNII and MINORU HARADA
The University of Tokyo
Hongo, Tokyo, Japan

INTRODUCTION

A System for Interactive Design (SID) is a computer-aided
visual facility for hierarchical (or recursive) design of com
plex systems. SID is built as a provision to make the potential
of our graph theoretical design tool RGF (the recursive graph
formalism) actually available to system designers. RGF",2,3
as we initially proposed in 1978, aimed at providing a logical
basis for interactive design evolution from global to detailed,
and/or from simple to complex.4

,5 RGF was actually applied
to designs of hospital information systems 1 and petrochem
ical plants,3 and was proven useful for logically detecting
and preventing human design errors and for computer-aided
design evolution. SID includes the capabilities of SARA of
UCLA6 and SADT of SofTech4 which are known as the sys
tem specification methodologies based on hierarchically
structured graphs. Related works using similar graphs in
other areas are H-graphs7 in language and automata theory,
and DRLH8 in artificial intelligence.

Basically, SID consists of an interactive computer graph
ics to display design specifications for designer's visual in
spection, a database system to verify, store, update, retrieve
and control the design specifications in a shared file, and a
design processor to execute design operations. In the da
tabases, both design specifications and design operators are
stored to allow sharing of frequently used designs,,3 and de
sign processes2 as well. Another major task of the current
version of SID is to provide system developers with design
evaluation facilities. The motivation for this is to cut down
the system development cost by precluding the chances of
implementing "poor" (i.e., would be marked "poor" if·
evaluated) designs.

DESIGN OF SYSTEM STRUCTURES AND
PROPERTIES

Any system design usually consists of the specifications
of the structures and properties of a system. The structure
describes the system organization representing its subsys
tems (also called components, parts, or elements), environ
ments, interfaces (also called ports, gates or terminals) and
their relationships. The properties describe various infor
mation, associated with the system and its structure. A
graphical representation of the design specification is called

33

a design schema. The system components, environments
and interfaces can have their own structures and properties,
and hence, for the sake of generality, can be recursively
viewed as systems again.

As a matter of fact, designer's recursive view can go two
ways-from general to special and from special to general.
More precisely stated, when the structure of the system is
designed, any other systems related with it are classified into
three system categories depending on their relationship
types: (1) system category "environment," when the rela
tionships are associations-that is, the systems are outside
a given system; (2) system category "subsystem," when the
relationships are inclusions-that is, the systems are inside
a given system; (3) system category "port," when the re
lationships are interfaces-that is, the systems are on the
boundary of a given system.

Once the designing of the structure of the system is done,
the structure can be related with various records of infor
mation in a database as its properties. As usual in ~my da
tabase, each record consists of several fields. Depending on
whether a record is related with a system or a relationship,
it is called a system record or a relationship record. There
fore, the design of the system properties is a simple matter
of relating the system structure with the database records.

RECURSIVE GRAPH FORMALISM (RGF)

The recursive graph formalism (RGF) is devised to com
bine the following two major potentials of widely used in
teractive design tools into one: (1) design visuality by dis
playing graphs for easy human understanding and inspection
of hierarchical design evolution as typical in hierarchical
structure diagrams and system charts6,7,9; (2) design auto
mation by machine processing, analysis and evolution of
formally specified design as typical in various hardware de
signlO and program flow analysis methods. II

RGF consists of recursive graphs (R-graphs) to represent
design specifications, and recursive graph operators (R-op
erators) to manipulate them.

R-graphs

Traditionally, the most popular way of representing struc
tures is by, a graph, because it is both visual and formal. A

34 National Computer Conference, 1980

Designers

[
Interactive J
Graphics

Command Analyzer

R-Graph Processor

R-Operators

\

.---__ D_es..;;.ign-,Schem..-a_B_as_e_--.

Structure-Semantic
Mapping

Figure I-SID architecture.

Graphic Database

graph G is simply a triple which consists of nodes N, arcs
A, and im arc function af specifying the ordered node pairs
to which arcs are incident. Then,

G=(N,A,af),
where afA~NxN.

Usually systems are represented by nodes, and their rela
tionships by arcs. To utilize all the powers of mathematics,
formalism and algorithms of graph theory, we extend graph
theory to incorporate designer's recursive view ofthe system
structures and of the associated system records. First, an
arc funciion af is extended tu IIlap ail arc to a pair of node
subsets such that af:A~2N x 2N. This extension is useful for
a designer to relate groups of nodes by an arc. Next, a sub
node function (sn:N-:2N), a port function (Pt:N~2N), and
a subarc function (sa:A~2A) are annexed to incorporate in
clusion relationships among systems, interface relationships
among systems, and inclusion relationships among associ
ations, respectively. These extensions increase the structure
representation capabilities of graphs. Further extension is .
done to give the property representation capabilities to
graphs. That is, a node semantic function (ns:N~NR) and
an arc semantic function (as:A~AR) are annexed to link
nodes and arcs to node records NR and arc records AR,
respectively. Thus, an R-graph is given by:

R = (N,A,af,sn,pt,sa,ns,as).

The domains of the functions af, sn, pt, sa, ns and as are
extended to incorporate the value "undefined (or under de
fined)" and the value "overdefined (or redundant). "12 The
value "undefined" indicates that "the value is not available
now but will come." It is different from the "null" value
which means "the fact that no value exists is made sure."

Given a design schema, repeated applications of sn and
pt to the nodes and of sa to the arcs produce a hierarchy of
the nodes and that of the arcs, respectively. We call them
a node hierarchy and an arc hierarchy. Given a node or an
arc of any hierarchy, the nodes or arcs produced earlier are
called its ancestor nodes or arcs. It is reasonable to assume
that in actual system design, any system cannot be subsys
tems (or ports) of two different other systems at the same
time. Hence, in the rest of this paper, we only consider the
case where the node hierarchies and the arc hierarchies form
DAG (directed acyclic graphs). This actually increases the
logical clarity of our formalism.

Design schema base

Two groups· of records, one representing the structures
and the other representing the properties of a system, are
stored in a design schema base separately and as flat tables,
so that both can be freely combined and utilized depending
on application views. 5

,13 As a matter of fact, to substantiate
this flexibility oftable forms, we applied apointer array tech
nique to implement a database mapping. Figure 2 illustrates
how a given R-graph is stored in a design schema base. In
the structure base, node identifiers NID and arc identifiers
AID are used as the primary keys of the tables which define
functions af, sn, pt and sa. In the semantic base, tuple iden
tifiers TID are the primary keys of node record NR and arc
record AR. We now can define the structure-semantic map
pings, ns and sa, as pointer arrays using only these identi
fiers. Hence the structure base and the semantic base can
be updated as independently as possible. Please note that
the meaning of symbols in Figure 2 are found in Figures 3
and 4.

R-operators

All the elementary operations to a node or an arc of a
design schema are performed by recursive graph operators
(R-operators). Such most primitive operations are collec
tively called an R-graph processor. Since design schemas
are represented as flat tables, actually a table handler can
be used as an R-graph processor. Throughout this paper,
whenever necessary, R-operators are defined each time and
used rather intuitively to increase the readability.

DESIGN PROCESS FORMALIZATION FOR DESIGN
PROCESS SHARING

Design processes often contain similar and/or common
basic processes, for example, to produce, integrate, reduce,

af
AID ORG

a 4

b 9

c 7

DEST

5
6

8

R = (N ,A,af,sn,pt,sa,ns,as)
sn pt sa NR

TID NAME TYPE

#1 'obuffe machine

#2 receive routine

#3 send routine

#4 rsyn c-box

#5 ssyn c-box

#6 c-port

#7 c-port

'----------~--~vr--------------~/ ~--------~v~-------J

R:

STRUCTURE BASE SEMANTIC BASE

" /
STRUCTURE-SEMANTIC MAPPING

ns as
NID J~~R

#1

#2

#3

#4

#5

#6
#7

#6
#7

AID T~~R

INTERACTIVE GRAPHICS

#a
#b

#b

DESIGNER

Figure 2-Recursive graph components.

analyze and verify a design schema. In SID, a design course
of a system interactively specifies a shareable design process
as a sequence of R-operators. We call such a shareable de
sign process also a design operator. Actually, these pro
cesses are stored in a design process base for a designer's
later use and/or for sharing them among designers. They are
driven through an interactive design command, issued by a
designer. Combined with the design schema base, this design
process base provides a flexible and powerful graphics-ori
ented tool for designers.

In the rest of this paper, we show examples of design pro
cesses to be shared. We also show that these design pro
cesses are actually representable in a common formalism of
R-operators. For illustration, a well-known case of designing
a type of concurrent system, a pipeline system, is examined-.

A pipeline system is a system which inputs a text from a
card reader, formats it, and outputs it to a line printer. 14 The
text is formatted so that each text begins and ends with a
blank page, each page begins and ends with a blank line, and
each line is surrounded by blank margins. There, inputting,
formatting and outputting a text are processed concurrently.
The global architectural design of the system is represented
in Figure 5. The symbols used in this figure are explained
in Figures 3 and 4. "Type Name" lists the reserved types
of systems or of associations, "Graphic Symbol" is for dis
play, and "Meaning" is for annotation.

A System for Interactive Design

Type Name Graphic Symbol

e
!

Machine

~ Routine
~ D
~ Communication
~ box CJ

Routinecall D
Assignment D

5 1\ ! Case ~

Meaning

A machine represents a system which performs multiple
functions and consists of routines performing those
functions and data for communication among those
routines.

A routine represents a system which performs a single
function.

A communication box represents a structured interface for
communication among routines.

A routinecall represents an invoking of a routine.

An assignment represents a sequence of expression
evaluations and data transfers.

A case represents a multi way control branch by a selector
expression evaluation.

35

~ ~------~----------~--------------------------------;

~ Token holder D
.~ ~------~----------~--------------------------------;

A token holder represents a place in Petri net model.

.~ 0 ;t Control port
A control port is a.port for control entry and exit of a
macro active system.

Fork, Join 00
Data storage

A fork and a join represent a transition having only one
incoming and one outgoing c-flow, respectively, in Petri net
model.

A data storage represents a system holding some data.

~ r--7 A parameter represents a parameter of a machine or a
- Parameter L----.! routine.

£. 1-------+---+--------1
~ r---....
~ Access channel ~

An access channel represents a place through which a data
is transferred between the inside and the outside of a macro
active system.

Figure 3-Reserved system types for concurrent system design.

Graphic Symbol

Type Name Combination of systems connected by
each association in the followings does

Meaning

not exhaust all possibilities.

Data-flow

~
Primitive active system P reads data 01

(abbr. d-flow) and writes data 02.

02
c:

.9

'1 Control-flow

~-~
Activation of primitive active system PI

precedes that of primitive active system
.~ (abbr. c-flow) P2.
'2
;t

0-----: Routinecall-flow Routine R defined at the destination of

[f] a routinecall-flow is invoked at the origin

(abbr. r-flow) of the flow.

Lj--------iJ
A control-link indicates existence of

Control-link control-flows from ports of communication

(abbr. c-Iink) box CI to those of communication box
C2.

c: 0--------1
.9 A use-link indicates existence of

'1
Use-link routinecall-flows from the inside of

0 (abbr. u-Iink) ctJ
routine R I to routine R2, and represents

j that routine R I uses routine R2.

~~
A hierarchy-link indicates existence of

Hierarchy-link use-links from routine R or the inside
of machine MI to the inside of machine

(abbr. h-Iink) M2. and represents that MI and Rare

0 implemented by using routines of M2.

Figure 4-Reserved association types for concurrent system design.

36 National Computer Conference, 1980

Rl:
~----------------

,...-----t B---- r__---t B 1---__.

filemaker

pagemaker

line maker

II cardreader II
/I

inbuffer II II outbuffer " lineprinter

Figure 5-A design schema of the global architecture of a pipeline system.

Design integration/reduction operators

Here, very often used design processes for hierarchical
design evolution, such as design integration, design abstrac
tion and design reduction, are considered. We show that they
actually can be defined in a form, applicable to general design
schemas, and hence shareable among the designers.

Suppose a designer designs an input/output buffer "io
buffer. " It is intended to be used as a common design schema
of both the "inbuffer" and the "outbuffer" subsystems of
3. pipeline system which is shown in Figure 5, Figllre n con
tains design schemas R2-R6 used in the following discus
sions. They are all specified in a shareable design form of
R-graphs and stored in a design schema base. The designer
starts to identify, as the subsystems of "iobuffer," the
shared data storage "contents" and two routines "receive"
and "send" which operate in parallel, communicating
through the c-link "synchronize" as shown in design schema
R2. Next, the designer refines "receive," by specifying its
data flow as shown in R3 and also its control flow as shown
in R4. Thus, the phase of designing the "iobuffer" subsys
tems is completed.

N ow the design gets into the phase of subsystems inte
gration. First, the designer produces the fully specified de
sign schema of "receive" as R5. Actually, this design pro
cess is defined as an operation of integrating R3 and R4 by

merging their common parts. In this case, the parts to be
merged are two node pairs. One pair is ("receive" in R3,
"receive" in R4). The other pair is ("text: = contents" in
R3, "text: = contents" in R4). We specify the integrating
process as a JOIN operation:

R5 = JOIN(R3,R4), {("receive" in R3, "receive" in R4),
("text: = contents" in R3, "text: = contents" in R4)},
4»,

where <!> denotes an empty set (in this case, of arc pairs).
This is just an instance of a general form

r1 = JOIN(r2,r3,SN,SA),

where r2 and r3 are design schemas to be joined, rl is the
resulting design schema, and SN and SA are lists of node
pairs (including ports pairs) and arc pairs, respectively, to
be merged. Since general forms are obvious from their in
stances, only instances ar~ shown in the following discus
sions.

Next, the designer inserts schema R5 into the "receive"
node of R2 by matching port pairs (' 'rsyn" in R2, "rsyn"
in R5) and ("contents" in R2, "contents" in R5), and pro
duces R6. This process is also defined as a ZIN (zoom-in

R2: iobutTer
r--~-...,

R4: R5:

R6:

Figure 6-Design schemas appearing during the iobuffer design process.

node) operation as follows:

R6=ZIN(R2,RS, "receive" in R2, {("rsyn" in R2, "rsyn"
in RS), ("contents" in R2, "contents" in RS)}).

This completes the subsystems integration phase. So far, we
have identified two general integration operators, JOIN and
ZIN.

We now consider a case where the designer likes to see
an abstract (i.e., global) structure of a given schema. For
example, in schema R6, the designer wishes to hide the un
interested details of "receive." This is done by applying
ZON (zoom-out node) operation to R6 to obtain more global
schema R2:

R2 = ZON(R6, "receive");

conversely, the designer can extract the interested inside
detail of "receive" by EXN (extract node) operation:

RS = EXN(R6, "receive").

Furthermore, if the designer wishes to analyze RS from
the view point of data flows, he or she uses SEL (select)
operation for gathering the related nodes {"receive", "text",
"text: = contents" , "contents"} and arcs {"I", "m"}, and

A System for Interactive Design 37

gets R3:

R3 = SEL(R5, {"receive", "text", "text: = contents",
"contents"}, {"I", "m"}),

or uses DEL (delete) operation for removing some nodes
and arcs as the unnecessary details of RS:

R3 = DEL(R5,{"B" ,"E" ,"rsyn" , "i" , "0" ,"j" ,"r" ," J" ,
"F"},{"a", "b", "c", "d", "e", "r", "g", "h"}).

Design survey operators

A survey operator is a typical example to see how a design
operator can be implemented by using R-operators and other
design operators. For the detailed definition of the survey
operator as a sequence of R-operators, please refer to Ap
pendix 2.

A survey operator produces a design subschema by
surveying a given design schema from a specific point
of view. We now define a general survey operator
SURV(R,NC,AC,SC) to search any given design schema R
so that a designer can find such portions of R that satisfy
his or her point of view. A general way of specifying a point
of view is as a set of search conditions. In this case, they
are NC, AC and SC. We give here a little bit of terminological
preparations to explain search conditions. A set variable is
a variable which takes a subset of values. A variable to rep
resent a field of a database record is an example of it. A field
name variable is a variable which takes a field name as its
value. We are now ready for explaining search conditions.
The first search condition NC, called a node search condi
tion, is in a form NC /\ ... /\NC m where NC j= (NKEY j of
NFIELD J. NKEY j is a set variable, and NFIELD i is a field
name variable. NC i indicates to select nodes if and only if
their record contains one of the search key NKEY j in the
field NFIELD i • The second search condition AC, called an
arc search condition, is defined in the same way with NC,
by using field name,variables {AFIELD I , .•• ,AFIELD n } and
set variables {AKEY 1 , ... ,AKEYn }. The third search condi
tion SC, called a structure search condition, is in a form
(struct by SKEY), such that a set variable SKEYC
{"NODE", "ARC"}. "NODE" and "ARC" are literal con
stants, which, if appear in a given SKEY, indicate to select
all the ancestor nodes of nodes satisfying the search con
dition NC in the node hierarchy, and to select all the ancestor
arcs in the same way for AC, respectively.

Examples of quite commonly taken viewpoints are a' 'flow
of control" and a ''flow of data." As search conditions, we
need to use only arc search conditions with "c-flow" for a
control flow, and "d-flow" for a data flow. Thus, the data
flow R3 and the control flow R4 of a given design schema
RS in Figure 6 are generated by simply applying SURV to
RS as follows:

R3 = SURV(RS,,({d-flow"} of "TYPE"),(struct by
{"NODE"})),

R4 = SURV(RS,,({"c-flow"} of "TYPE"),(struct by
{"NODE"})),

where node conditions are null.

38 National Computer Conference, 1980

Design analysis and evaluation operators

Design analysis and evaluation operators are key tools
which designers need to use in management of system de
velopment. In principle, application of them directly to a
given design schema gives us the results of design analysis
and evaluation. Experiences of systems development tell us
that modularity is one of the most important common factors
when evaluating various designs. The better the modularity
of a design, the smaller the range of ripple effects that the
modification of the design causes. Therefore, when main
taining or adapting the design to application changes, good
modularity certainly localizes the ripple effects of design
modification, thus decreasing the maintenance cost. Early
analysis and evaluation of a design by modularity or any
other measures have another significant managemental
meaning. As mentioned before, it also certainly decreases
the life cycle cost of the system being developed. This is
because system developers can avoid implementing designs
which are evaluated as "poor." As a case study, we
illustrate in the following the use of SID, especially RGF,
for defining a modularity analysis and evaluation operator.

Modularity

Modularity of a set of systems defined by Myers15 is
known as an effective measure of ripple effects when one
of the systems is modified. We show here that his definition
can be formulated based on RGF and then can be evaluated
automatically. As an example, we apply the results to eval
uate the modularity ofR7 in Figure 7. R7 is the design schema
of the formatting subsystem of a pipeline system.

Suppose systems are connected only through shared data.
Such data sharing is classified into three types specified by
the following three predicates. Note that in the rest of this
paper' 'the system represented by node x' 'is simply called
"system x", and "A is defined by B" is denoted as
"A ~B"; (1) share (x,y) ~ system x and systemy have access .
to'common data d; (2) consist (x,y) ~ system y has access
to data d which is a component of system x; (3) pass (x,y)
~ system x invokes system y passing at least one parameter.
The above predicates are formulated in Appendix 1 based
on RGF.

Modularity operator MDL(R) for design schema R first
identifies all these relationships among systems {x i } such that
x iEN and (stype(x J = "machine" or "routine"), and rep
resents them in n x n square connectivity matrix C = (C ij),
where ith column and ith row represent system Xi' and n is
the number of systems {x i}' Each matrix entry C ij is defined
such that

A
Cij=tij+sijS+cijC+pul'

where tij~if i=j then 1 else 0;
sij~if share(xi,xj) then 1 else 0;
cij~if consist(xi,Xj) or consist(xj,xi) then 1 else 0;
pij~ifpass(xi,xJ orpass(xj,xJ then 1 else O.

In the above, S, C and P are the probabilities that the mod-

R7:

I
I , , ,

I ,
I
I
I
I
I
I ,
I
I
I
I
I
I , ,
I
I
I ,
I
I
I
I ,
I
I ,
I
I
I

copyprocess

Figure 7-A design schema representing Hansen's design of the formatting
subsystem of a pipeline system.

ification of system x causes the modification of system y
which is connected to system x through data sharing spec
ified by share, consist and pass predicates, respectively.
Myers' estimated values of these probabilities are as follows:
S=0.7, C=0.6 and P=0.2.

For example, the connectivity matrix of R7 is presented
in Figure 8. Using such a connectivity matrix, modularity
MDL(R) is defined such that

MDL(R) = (~ie[l,n]~ je[1,n]C ij)/n.

MDL(R) means the expectation ofthe number of the systems
which must be modified when one of the systems {x i} is
modified. Now, MDL(R7) is evaluated by using Myers' val
ues as follows:

MDL(R7) = (17 + lOS + 12C + 14P)/
17= 1 +0.59S+0.71C+0.82P=2.0

CONCLUSION

The capabilities of a System for Interactive Design, SID,
currently tested at the University of Tokyo, were demon
strated. Their features are summarized in two points: "log
ical exactness" -' 'flexibility" combination, and "design"-

i .~
.l;! ::, .l;! !! ~

·s E .~ :§ a 11 .~ ~ 2 .! ;,:
~

~ ~ ! ~ ci. ci. ci. ~ 0 0

Lreceive 1

Lsend

copyprocess P

filemaker c c
f.write C I

f.ini C S

pagemaker c c

p.write C 1

p.skip

p.im

newpage C

Iinemaker C C

I.write C

.t.ini C S

o.receive

o.send

Figure 8-Connectivity matrix of Hansen's design of the formatting subsys
tem of a pipeline system.

"design process" sharing. Shared design processes, called
design operators, included design integration, abstraction,
analysis and evaluation operators. It was a realization of our
recursive design methodology RGF based on an extended
graph theory. For illustration, some results of its applications
to concurrent system design were also given.

ACKNOWLEDGMENT

The support of the JIPDEC, under Grant "5th Generation
Computers," is gratefully acknowledged. Further support
was provided by the MESC Software Engineering Project.
Authors also wish to thank Miss M. Onoda, Dr. N. Ohbo,
Messers. H. Kitagawa and A. Urabe for help in preparing
this paper.

REFERENCES

I. Harada, M., Kunii, T. L., and Saito, M., "RGT: The Recursive Graph
Theory as a Theoretical Basis of a System Design Tool DESIO N -TOO L
With an Application to Medical Information System Design-," Pro
ceedings of the International Symposium on Medical Information System.
Osaka, Japan, October 1978, pp. 503-507.

2. Harada, M. and Kunii, T. L., "A Design Process Formalization," Pro
ceedings of the IEEE Computer Society's Third International Computer
Software and Applications Conference, Chicago, November 1979, pp.
367-373.

3. Buchmann, A. P. and Kunii, T. L., "Evolutionary Drawing Formalization
in an Engineering Database Environment," Proceedings of the IEEE
Computer Society's Third International Computer Software and Appli
cations Conference, Chicago, November 1979, pp. 732-737.

4. Ross, D. T., "Structured Analysis (SA): A Language for Communicating
Ideas," IEEE Transactions on Software Engineering, Vol. SE-3, No.1,
1977, pp. 16-34.

A System for Interactive Design 39

5. Kunii, T. L., Weyl, S., and Tenenbaum, J. M., "A Relational Data Base
Schema for Describing Complex Pictures with Color and Texture," Pro
ceedings of the Second International Joint Conference on Pattern Rec
ognition, Lyngby-Copenhagen, August 1974, pp. 310-316.

6. Campos, I. M. and Estrin, G., "Concurrent Software System Design
Supported by SARA at the Age of One," Proceedings of the 3rd Inter
national Conference on Software Engineering, Atlanta, May 1978, pp.
230-242.

7. Pratt, T. W., "Pair Grammars, Graph Languages, and String-to-Graph
Translations," Journal of Computer and System Sciences, No.5, 1971,
pp. 560-595.

8. Boley, H., "Directed Recursive Labelnode Hypergraph: A New Rep
resentation-Language," Artificial Intelligence, Vol. 9, 1977, pp. 49-85.

9. Stay, J. F., "HIPO and Integrated Program Design," IBM System Jour
nal, Vol. 15, No.2, 1976, pp. 143-154.

10. Hartenstein, R. W., Fundamentals of Structured Hardware Design.
North-Holland Publishing, Amsterdam, 1977.

II. Peterson, J. L. and Bredt, T. H., "A Comparison of Models of Parallel
Computation," Information Processing 74, 1974, pp. 466-470.

12. Scott, D., "Lattice Theory, Data Types and Semantics," in Formal Se
mantics of Programming Languages, edited by R. Rustin, Prentice-Hall,
New Jersey, 1972.

13. Kunii, T. L. and Kunii, H. S., "Architecture of a Virtual Graphic Da
tabase System for Interactive CAD," Computer-Aided Design, Vol. II,
1979, pp. 132-135.

14. Hansen, P. B., The Architecture of Concurrent Programs, Prentice-Hall,
Englewood Cliffs, N.J., 1977.

15. Myers, G. J., "Reliable Software Through Composite Design," Petrocelli
Charter, N.Y., 1975.

APPENDIX 1

The predicates share(x,y), consist(x,y) and pass(x,y) can
be formulated based on RGF as follows:

x = y/\(3deN)(brother(x,d)/\ !
TRUE ... if

share(x,y) ~ channelacceSS(x.,d)/\brother(Y,d)/\
channelaccess(y ,d»

FALSE ... otherwise.

. t() ~ YEsn(x)/\(3deN)(dechn(X)/\channel-!TRUE ... if

conSlS x,y - access(y,d»

FALSE ... otherwise.

l
TRUE ... if (3aEA)(afla) = ({x},{y})

t1 : /\atype(a) = "u-link")
ass x, = p (y) /\(3pept(x»(stype(p) = "parameter")

FALSE ... otherwise.

There,

chnd) ~. ;n(x)upt(X),

{

Y ... if (3yeN)(xEchn(y»
parn(x) ~ NIL ... otherwise (NIL stands for an

undefined value),

b h ()
~ { TRUE ... if parn(x) = parn(y)

rot er x,y - FALSE· h ot erWlse,

stype(x) ~
a value of the type field of system record

ns(x) ,

40 National Computer Conference, 1980

atype(a) g, a value of the type field of association record
as(a),

channelaccess(s,d) g,

APPENDIX 2

TRUE ... if stype(s)e
{"machine", "routine"}
!\stype(d)E{' 'data
storage", "parameter", "access
channel"}

!\(3pept(s),3aeA)(stype(p) = "ac
cess channel"!\(af(a) = ({P},{d})
Vaf(a) = ({d},{P})
!\atype(a) = "d-flow")

FALSE ... otherwise.

Survey operator SURV(R,NC,AC,SC) is defined as a se
quence of R-operators in the following.

procedure SURV(R,NC,AC,SC)
/*comment

NCg,(NKEY1 of NFIELDI)!\ ... !\(NKEYm of
NFIELDm),

ACg,(AKEY1 of AFIELDd!\ ... !\(AKEYn of
AFIELDn),

SC g, (struct by SKEY),
XO,X 1 , ... ,Xm,SX g, a node set variable,

Ao,A1, ... ,An,SA g, an arc set variable,
comment end*/

begin SURV
STEP1: Find all arcs {a} of design schema R, and set

Ao: = {a} and i: =0.
STEP2: Repeat [select from Ai all arcs {a} such that the

arc record of arc aeA i has a value in a given search
key AKEYi + 1 at the field AFIELDi+I' set A i + l : ={a}
and increment i by 1] until i = n.

STEP3: If "ARC" e SKEY then find all ance'stor arcs
{a} of arcs An in the arc hierarchy and set SA: = {a}
else SA: =S!i.

STEP4: Find all nodes {x} connected by arcs AnUSA,
set Xo: = {x} and i: =0.

STEP5: Repeat [select from Xi all nodes {x} such that
the node record of node xeX i has a value in a given
search key NKEYi + 1 at field NFIELDi+t. set X i + l : =
{x} and increment i by 1] until i = m.

STEP6: If "NODE" eSKEY then find all ancestor nodes
{x} of the nodes X m in the node hierarchy and SX: =
{x} else SX: = S!i.

STEP7: Execute SEL(R,X mUSX,A nUSA).
end SURV

Note that for a given set S, if variable v is set variable
ve2s, while veS if v is a (usual) variable.

An overview of a network design system

by W. E. BRACKER and B. R. KONSYNSKI
University of Arizona
Tucson, Arizona

INTRODUCTION

During the past few years there has been an increasing trend
toward the development of on-line computer systems. By
1980 it is estimated that 70-80 percent of all larger computer
installations will support some networking capability. I This
trend has resulted in an increasing network user population
and varying applications for computer-communication net
works. Furthermore, due to economics, the prevalence of
single-application networks is giving way to increasing num
bers of multi-application networks.

This increase in the interconnection of computers has
brought into focus the complexity of network design. While
this is due partly to the size and diversity of computer net
works, it is also due to the proliferation of available network
hardware and facilities. As an example, there are over fifty
different vendors (sales greater than one million/year) of data
communication oriented hardware, and over twenty sup
pliers of data transmission facilities. 2

NETWORK DESIGN

As with any system, computer communications networks
are made up of various interrelated components, all of which
are critical to the network design process. Some of these
components (i.e. multiplexors, modems, terminals, etc.) are
physical in nature, that is, they specify a piece of hardware
or software with certain performance properties. Some net
work components, however, are not physical in nature but
rather are considered to be logical components of network
design. These include such design inputs as response time,
security levels, and specification of user interactions. The
logical design components are as critical to the design pro
cess as the various physical elements. Figure 1 presents a
partial list of the physical and logical design components.

The main objective function in designing a computer com
munications network is the production of a minimum cost
network which satisfies user performance requirements and
design criteria. It is usually the case that an exact quanti
fication of these parameters and constraints is not always
possible. This is due to the unavailability of exact data re
garding various network components. Estimation of the de
sign parameters and constraints is accomplished by a study
of user needs, by various statistical methods or by adopting

41

industry standards. These approximations introduce errors
in the design models employed· during network design and
analysis. The network planner also faces problems in decid
ing which network parameters are important to the design
problem at hand; for example, some problems may require
that modem turnaround time be specified exactly, while oth
ers may accept a rough approximation to this parameter.

Network design life cycle

The network design life cycle shown in Figure 2 reflects
the general system design life cycle which has been pre
sented by various authors. 3 It should be stressed that the
difficult phases of the evaluation of user needs and design
parameter determination in the design life cycle are often
slighted by network designers.

Organizational impact

This design component is common to all systems design
problems. We must completely analyze the impact of the
proposed network or modifications to an existing network
on the overall organizational structure. This impact analysis
includes consideration of how much support upper manage
ment will give to the network during planning/design stages
and eventual use of the system. In addition to analysis of
the network impact on the current organizational structure,
it is also necessary to measure the impact of the proposed
system on future expansion and organizational goals.

Time-value of data

Data sent to or requested from the network must be pro
cessed within a given time period; therefore, it is necessary
to eval~ate network requirements based on response or other
time performance criteria. This function is difficult to meas
ure because it requires estimates by users who often have
little or no idea about what they really want. Time-value of
data also refers to the fact that some data may be made
available almost instantaneously over a network but may not
be used immediately. An example case is where a monthly
status report is generated within five minutes of a request
but is not used for a week after production.

42 National Computer Conference, 1980

TOPOLOGY/NETWORK ARCHITECTURES
MULTIPLEXING/CONCENTRATION
LINE TYPES
T~~SMISS ION TYPE A.~D METHODS
MODEM TYPES
ERROR DETECTION A.~D CORRECTION
MESSAGE FORMATS AND ROUTING
MESSAGE SWITCHING TECHNIQUES
TERMINAL TYPES
PROTOCOLS
BACKUP CONF IGURA TIONS
INTERFACE STA~ARDS
USER INTERACTIONS
CARRIER SELECTION

Figure I-Design components and parameters.

Traffic profiles

The definition of the information traffic profile is another
area where quantification may not be possible; estimates of
the type and arrival statistics of the incoming and outgoing
data streams at a particular network node must be made.
The network design process must provide some analysis and
insight into the sensitivity of network performance due to
variances of message structural estimates and assumptions.

Reliability analysis

Reliability normally is analyzed based on equipment fail
ure rates (MTBF,MTTR) and data transmission error rates.
Equipment failure can be measured on a statistical basis or
on past experience while message error rates are a function
of the error detection and correction features of the network
and the line transmission error properties.

DETE&~INE ORGANIL~TIONAL IMPACT

AND

USER NEEDS

TIME VALUE OF DATA

!
TRAFFIC PROFILES

~
RELIABILITY ANALYSIS

OPTIMIZATION

~
COST/PERFORMA~CE TRADEOFFS -----...;)10::;;. PROPOSED

NETWORK

Figure 2-Network design life cycle.

Design optimization

There are two major steps in the design optimization pro
cess: (1) performance evaluation based on a given set ofpa- .
rameters and (2) determination of cost/performance trade
offs. In the first step, a set of design parameters is specified
and resultant performance is determined. The second step
requires that a cost be determined for a given set of param
eters and that cost/performance curves be established.

NETWORK DESIGN SYSTEM (NDS)

The Network Design System developed at the University
of Arizona is an attempt to formalize the network design life
cycle into a computer-aided design process (see Figure 3).
NDS uses a Decision Support Philosophy4 which provides
the network planner/designer with maximum flexibility in
the creation of an optimized data communication network
that meets previously discussed design criteria and con
straints. Using this methodology, the network planner/de
signer is concerned about what NDS can do in terms of net
work design and not the details about how it goes about its
processing tasks. In particular, interfaces to the various de
sign models are made as user transparent as possible.

Network planner/designer

The human interface to NDS is the network planner/de
signer; in most cases this consists of a group of individuals
making up the planning/design team. These individuals state
the network parameters and constraints to NDS using the

PLb...lIlNER/DES IGNER

QUERY INPUTS

NETWORK PLANNER/DESIGNER 4E--------

SODA/N
MODEL ANALYSIS

1

NETWORK
DATABASE

PROPOSED NETWORK CONFIGUR<\TION ------~

Figure 3-NDS Flow.

Network Specification Language (NSL) and the Network
Statement Analyzer (NSA) query system.

Network statement language (NSL)

NSL is similar in form and structure to PSL5 which is
designed to provide a user with methodology for the state
ment of requirements of an information processing system.
NSL, in a form compatible with PSL, allows a user to state
design requirements for computer communication networks.
The language provides an interface with a set of design
models and is the main user contact with NDS. The current
implementation ofNSL has fourteen sections and thirty-five
connector words or individual statements acting as "adjec
tives" in describing their particular sections. NSL allows the
description of the physical and logical network constructs
discussed previously. NSL section types, individual state
ments, and connector words are shown in Table I.

NSL is specified using the META/Generalized Analyzer6

methodology of the ISDOS project based at the University
of Michigan. Both META and the Generalized Analyzer are
in a significant prototype stage and are not currently avail
able to the general public.

META analyzes the description of NSL and produces a
database containing the language structure. After NSL has
been specified and processed by META, the META Gen
eralized Analyzer (GA) processes user-supplied NSL prob
lem statements, analyzes the syntax and portions of the se
mantic relations and iteratively builds the Network Database.
NSA uses the constructed database for its processing re
quirements.

Basic flow between NSL, META and the Generalized

TABLE I.-NSL Reserved Words
NSL SECTION TYPES

NODE
TOPOLOGY
TRAFFIC
INFORMATION-USER
TERMINAL-USER
APPLICATION
REPORT

NSL STATEMENT TYPES

TERMINAL
MULTIPLEXOR
TOPOLOGY
HOST
LINK
FAN-IN
FAN-OUT
PROTOCOL
TYPE
MODE
ERROR
KEYWORDS

NSL CONNECTOR WORDS

TO BY
FOR VIA
IS ARE

HOST
DATABASE
MULTIPLEXOR
TERMINAL
INFOill{ATION-CENTER
LINE
DATA-SET

INTELLIGENCE
INFORMATION-USER
TERMINAL-USER
SEE-MEMO
TRAFFIC
FLOW
KEYING
PRIORITY
GENERATES
RECE[VES
SYNONYMS
APPLICATION

HOST
RESPONSE
SIZE
DATABASE
SEE-MEMO
HAPPENS
LOCATION
RELIABILITY
COST
SECURITY
DESCRIPTION

Overview of a Network Design System 43

TARGET LANGUAGE ~ META Language ---;;. META ~ Diagnostics and
lNER SYSTEM DoctDDentation

DEF Statem~

META Target
DATABASE Language

~
TARGET LANGUAGE ~ Target Language----:;;' GENERALlZED..;;.Diagnostics and

USER ""'-'" 1"'" D~m"UM

Analyzer
Database

Figure 4-META system and generalized analyzer.

Analyzer is shown in Figure 4. The target language (NSL)
is defined using META constructs; META then analyzes the
target language and creates a database containing all target
language objects types and their language inter-relationships.
At this stage, META produces error diagnostics and various
reports for further analysis and documentation.

After the target language has been successfully processed
by META, sets of tables for the Generalized Analyzer are
produced. The Generalized Analyzer enters the NSL net
work description into the network database and produces
a series of reports which can be used by the network designer
for documentation and/or analysis purposes.

Network statement analyzer

The Network Statement Analyzer is the NDS processor
designed to accept network specifications produced by NSL
and also obtain and process design inputs and report requests
obtained by the query system. The NSA query processor
produces a menu which allows the NDS user to select the
supported NSA statement types as shown in Table II.

Consistency checks on the database produced by MET A/
GA are performed by NSA. An NDS user can select checks
based on various hardware connections: among these,
whether all nodes in a proposed network can be reached by
all other nodes, making sure that line and terminal speeds
match, and verification of proper multiplexor/concentrator
connections.

SODA/N

The Network System Optimization and Design Algorithms
provide a set of models used to evaluate various design al-

TABLE II.-NSA Supported Statements

NDS/NSA STATEMENT TYPE

QUERY
MODEL
CONSISTENCY

MACRO
INVENTORY

PURPOSE

Activate NSA query processor
Activate NDS supported models
Perform consistency checks on the

network database
Activate the NSL macro pre-processor
Various network reports

44 National Computer Conference, 1980

ternatives. In the current implementation of NDS, five de
sign models are available; overall model implementation and
integration philosophy is to create a design interface which
requires minimum user interaction. Outputs from the models
are also processed by NDS so that minimum user interpre
tation is needed; the user is only concerned about what in
formation the models provide and not details on how they
provide that inf()rmation.

The models derive their inputs from two sources: NSL
design specifications and NSA user interactions. The NSL
design specifications produce a set of initial network con
ditions and assumptions to the design problem, while user
interaction with NSA produces various design constraints
and performance criteria. As an example, Table III shows
the interaction between NSL, NSA and a capacity assign
ment model.

EXAMPLE

To illustrate the various components, the NSL section
types NODE, TOPOLOGY, and TRAFFIC are implemented
using the META methodology. The syntax description of
these sections and associated statements are shown in Ap
pendix A.

After the NSL syntax for the three sections and associated
statements has been defined, the META representation for
the abbreviated NSL is produced (Appendix B); this rep
resentation requires that all keywords, noise words and ob
ject types be defined. In addition, the relationship between
objects must be specified along with template forms of the
statements themselves. As was discussed previously, the
result of this process is a database containing all the NSL
language relationships and interface tables for the General
ized Analyzer. The system also produces a set of reports
showing language structure and interrelations; a sample of
this report type is shown in Appendix C.

NSL statements describing the proposed network design
are input to the Generalized Analyzer. The Analyzer checks
the incoming NSL syntax and places the NSL constructs

TABLE I11.-Capacity Model Parameters

NSL-SUPPLIED PARAMETERS

Parameter
Messages/sec between
two network nodes j,k

Connection matrix showing
direct connections between
nodej and node k

NSA-QUERY PARAMETERS

C

R

Average length of messa~es
over communication link i

Overall network capacity

Message Routing

Obtained From
TRAFFIC-SECTION

TOPOLOGY-SECTION

into the META database. After all NSL descriptions have
been processed, the Network Database is ready for access
by NSA and its associated reports and models.

In order to show this process in greater detail, consider
the small network shown in Figure S consisting of four
NODEs (NODEI-NODE4) and five communication links
(LINEI-LINES). Traffic rates between any two node pairs
are assumed to be symmetric and statistically independent
of traffic between other node pairs. The NSL description of
the simple example is shown in Appendix D.

Network topology showing direct connections between
nodes is described in the TOPOLOGY -SECTION, while
description of the individual nodes are shown in the NODE
SECTIONs. It is assumed that each node has two terminals,
one multiplexor, and a host. Notice that the NODE-SEC
TIONs describe the hardware available at each node along
with that node's location using a V /H coordinate scheme
(LOCATION Statement).

Once the NSL description has been processed by the Gen
eralized Analyzer and input to the Network Database, NSA
is activated to produce database reports or activate various
design/analysis models. In the example, we consider acti
vation of a capacity assignment model. 7 This model estab
lishes optimal link capacities based on network topology,
message routing (assumed to be shortest path) and message
traffic profiles. In the current implementation, Poisson Mes
sage arrival rates, exponential node service with infinite buff
ering are assumed. NSA accesses the Network Database and
queries the user in order to establish the model input param
eters. An example run of this model is shown in Appendix
E assuming the Appendix D NSL description.

SUMMARY

The Network Design 'System provides an easy to use net
work planning and design tool; in addition, it allows a meth
odology of describing and evaluating existing networks.
NSL statements are analyzed by the Network Statement
Analyzer which, in turn, provides a Network Database, con
sistency checking, report generation, and model interfaces.
U sing the NDS approach, both existing and proposed sys
tems are thoroughly analyzed. In addition, the top-down
approach which is used with NDS allows the system plan
ners/designers to maintain a perspective ofthe overall design

NODE-! LINE! NODE-3

LINE2 LINE3~ Lr4
NODE-2 LINES NODE-4

Figure 5-Sample network.

goals while at the same time allowing access to desired levels
of detail in the design process. '

REFERENCES

1. McLaughlin, R. A., "Piecing Together The Datacom Industry," Data
mation, July, 1979, pps. 1l0-137.

2. Bracker, W. E., "On the Automated Design of Data Communication Net
works," Working Paper, Univ. of Arizona, Dept. of MIS, 1979, unpub
lished.

3. Cougar, D., "Evolution of Business System Analysis Techniques," Com
puting Sur.veys, September 1973, reprinted in Cougar and Knapp, System
Analysis Techniques, Wiley, 1974.

4. Konsynski, B. and Bracker, W., Computer-Aided System Design Tools
Integration," MIS Technical Report, University of Arizona, 1979.

5. ISDOS Project, "Problem Statement Language (PSL): Introduction and
User's Manual," ISDOS Project Report, University of Michigan, 1979.

6. Yamamoto, Y., "ISDOS META System Memorandum META-l,2,"
ISDOS Project, Dept. of Industrial and Operations Engineering, The
University of Michigan, 1978.

7. Schwartz, M., Computer-Communication Network Design and Analysis,
Ch. 4, Prentice Hall, Englewood Cliffs, N.J., 1977.

8. Konsynski, B., "A Model of Computer-Aided Definition and Analysis of
Information System Requirements," Ph.D. Dissertation, Purdue Univer
sity, 1976.

APPENDIX A: SAMPLE NSL SYNTAX

########### NODE-SECTION ##########

NODE-SECTION name(s);

SYNONYMS ARE synonym-name(s);

DESCRIPTION;
comment-entry;

KEYWORDS ARE keyword-name(s);

SEE-MEMO memo-name(s);

TERMINALS ARE terminal-name(s);

MULTIPLEXORS ARE multiplexor-name(s);

HOSTS ARE host-name(s);

LOCATION IS system-parameter, system-parameter;

#########TOPOLOGY -SECTION #########

TOPOLOGY-SECTION name(s);

SYNONYMS ARE synonym-name(s);

DESCRIPTION;
comment-entry;

KEYWORDS ARE keyword-name(s);

SEE-MEMO memo-name(s);

Overview of a Network Design System 45

LINK {node-name! terminal-name! multiplexor-name}
TO
{node-name! terminal-name! multiplexor-name}
VIA line-name;

##########TRAFFIC-SECTION ##########

TRAFFIC-SECTION name(s);

SYNONYMS ARE synonym-name(s);

DESCRIPTION;
comment-entry;

KEYWORDS ARE keyword-name(s);

SEE-MEMO memo-name(s);

TRAFFIC node-name TO node-name FLOW system
parameter;

APPENDIX B: SAMPLE NSL META
REPRESENTATION

KEYWORD LOCATION;
SYNONYMS LOC;

KEYWORD TRAFFIC;
SYNONYMS TRAF;

KEYWORD FLOW;
SYNONYMS FL;

KEYWORD LINK;
SYNONYMS LI;

NOISE-WORD ARE;
NOISE-WORD IS;
NOISE-WORD PER;
NOISE-WORD TO;
NOISE-WORD VIA;

OBJECT NODE-SECTION;
SYNONYMS N-S, NS;
NMCODE NMNODE 1;

OBJECT TRAFFIC-SECTION;
SYNONYMS T-S, TS;
NMCODE NMTRAF 2;

OBJECT TOPOLOGY -SECTION;
SYNONYMS TOP-S, TOPS;
NMCODE NMTOPO 3;

PROPERTY INTEGER-VALUE;
APPLIES ALL;
VALUES INTEGER;

46 National Computer Conference, 1980

PROPERTY STRING-VALUE;
APPLIES ALL;
VALUES ANY-VALUE;

PROPERTY NUMBER-VALUE;
APPLIES ALL;
VALUES ANY-VALUE;

RELATION LOCATION-RELATION;
PARTS LOCATION-OBJECT-PART, LOCATION
PART-I, LOCATION-PART-2;

COMBINATION LOCATION-OBJECT-PART NODE
SECTION WITH LOCATION-PART-I VALUE-FOR
INTEGER-VALUE WITH LOCATION-PART-2
VALUE-FOR INTEGER-VALUE;

CONNECTIVITY MANY LOCATION-OBJECT-PART
ONE LOCATION-PART-l, LOCATION-PART-2;

CONNECTION-TYPE T5;
RTCODE RTLOCA 50;
STORED LOCATION-OBJECT-PART 3, LOCATION
PART-II, LOCATION-PART-2, 2;

STATEMENT LOCATION-STATEMENT;
USED LOCATION-OBJECT-PART LOCATION
RELATION;
FORM LOCATION IS LOCATION-PART-I,
LOCATION -PART -2;

RELATION TRAFFIC-RELATION;
PARTS TRAFFIC-OBJECT-PART, TRAFFIC-PART-I,
TRAFFIC-PART-2, TRAFFIC-PART-3;
COMBINATION TRAFFIC-OBJECT-PART TRAFFIC
SECTION WITH TRAFFIC-PART-I NODE-SECTION
WITH TRAFFIC-PART-2 NODE-SECTION WITH
TRAFFIC-PART-3 VALUE-FOR NUMBER-VALUE;

CONNECTIVITY ONE TRAFFIC-OBJECT-PART
MANY TRAFFIC-PART-I, TRAFFIC-PART-2,
TRAFFIC-PART-3;

CONNECTION-TYPE F4;
RTCODE RTTRAA 55;
STORED TRAFFIC-OBJECT-PART I, TRAFFIC-PART-
1 2, TRAFFIC-PART-2 3, TRAFFIC-PART-3 4;

STATEMENT TRAFFIC-STATEMENT;
USED TRAFFIC-OBJECT-PART TRAFFIC
RELATION;
FORM TRAFFIC TRAFFIC-PART-I TO TRAFFIC
PART-2 IS TRAFFIC-PART-3;

RELATION TOPOLOGY-RELATION;
PARTS TOPOLOGY-OBJECT-PART, TOPOLOGY
PART-I, TOPOLOGY-PART-2, TOPOLOGY-PART
COMBINATION TOPOLOGY-OBJECT-PART
TOPOLOGY-SECTION WITH TOPOLOGY-PART-I

TOPOLOGY-SECTION WITH TOPOLOGY-PART-2
TOPOLOGY-SECTION WITH TOPOLOGY-PART-3
VALUE-FOR STRING-VALUE;

CONNECTIVITY ONE TOPOLOGY-OBJECT-PART
MANY TOPOLOGY-PART-I, TOPOLOGY-PART-2,
TOPOLOGY-PART-3;

CONNECTION-TYPE F4;
RTCODE RTTOPA 60;
STORED TOPOLOGY-OBJECT-PART 1, TOPOLOGY
PART-I 2, TOPOLOGY-PART-2 3, TOPOLOGY-PART-
3 4;

STATEMENT TOPOLOGY-STATEMENT;
USED TOPOLOGY-OBJECT-PART TOPOLOGY
RELATION;
FORM LINK TOPOLOGY-PART-I TO TOPOLOGY
PART-2 VIA TOPOLOGY-PART-3;

APPENDIX C: META SAMPLE REPORT-OBJECT
SUMMARIES

Object name = NODE-SECTION Synonym(s) = N-S, NS

Relation name = LOCATION-RELATION
Part name = LOCATION-OBJECT-PART

Statement name = LOCATION-STATEMENT
Form = 1: LOCATION ISLOCATION-PART-I,
LOCATION-PART-2 ;

Relation name = TRAFFIC-RELATION
Part name = TRAFFIC-PART-2

*** No usages

Relation name = TRAFFIC-RELATION
Part name = TRAFFIC-PART-I

*** No usages

Object name = TOPOLOGY -SECTION
Synonym(s) = TOP-S, TOPS

Relation name = TOPOLOGY -RELATION
Part name = TOPOLOGY -OBJECT -PART

Statement name = TOPOLOGY -STATEMENT
Form = I: LINK TOPOLOGY-PART-I TO
TOPOLOGY-PART-2 VIA TOPOLOGY-PART-3 ;

Relation name = TOPOLOGY-RELATION
Part name = TOPOLOGY-PART-2

*** No usages

Relation name = TOPOLOGY -RELATION
Part name = TOPOLOGY-PART-I

*** No usages

Object name = TRAFFIC-SECTION Synonym(s)=T-S, TS

Relation name = TRAFFIC-RELATION
Part name = TRAFFIC-OBJECT -PART

Statement name = TRAFFIC-STATEMENT
Form = 1: TRAFFIC TRAFFIC-PART-l TO
TRAFFIC-PART-2 IS TRAFFIC-PART-3 ;

APPENDIX D: NSL OF EXAMPLE NETWORK

TOPOLOGY-SECTION TOP 1;

LINK NODE-l TO NODE-3 VIA LINEl;
LINK NODE-l TO NODE-2 VIA LINE2;
LINK NODE-l TO NODE-4 VIA LINE3;
LINK NODE-2 TO NODE-3 VIA LINE4;
LINK NODE-2 TO NODE-4 VIA LINE5;

TRAFFIC-SECTION TRAFFIC 1 ;

LINK NODE-l TO NODE-2 FLOW 9.05;
LINK NODE-l TO NODE-3 FLOW 6.12;
LINK NODE-l TO NODE-4 FLOW 3.00;
LINK NODE-2 TO NODE-3 FLOW 4.50;
LINK NODE-2 TO NODE-4 FLOW 1.00;
LINK NODE-3 TO NODE-4 FLOW 10.8;

NODE-SECTION NODE-I;
TERMINALS ARE Tl-l, T2-1;
MULTIPLEXOR IS MUX-l;
HOST IS CPUl;
LOCATION IS 10,25;

(REPEAT FOR NODE-2 ... NODE-4)

APPENDIX E: NDS EXAMPLE

NDS-UNIVERSITY OF ARIZONA VERSION 1.08/3/
79 10:20

~NSL=TEST. NSL (File created in Appendix D)
~LISTING~TEST.LST (Source/Diagnostics File)

Overview of a Network Design System 47

~DATABASE~TEST.DB (META Produced Database)
** NO DIAGNOSTICS **

SECTIONS PROCESSED:6
STATEMENTS PROCESSED:55
OUTPUT FILE AND DATABASE FILE WRITTEN

** NDS/NSL COMPLETE 8/3/79 **

** NDS/NSA VERSION 1.0 8/3/79 **
OPTIONS:
1. EXIT
2. MODELS
3. REPORTS
OPTION~2

** NSA MODEL ANALYSIS **
ACTIVE MODELS:
1. CONCENTRATOR LOCATOR
2. CAPACITY ASSIGNMENT
3. TERMINAL LOCATOR
4. SPANNING TREE
MODEL~2

** CAPACITy ASSIGNMENT **
REQUIRED SECTIONS:
TOPOLOGY-SECTION
TRAFFIC-SECTION
** ALL REQUIRED SECTIONS CONSISTENT **
ROUTING~SHORT

CAPACITY~1000

** MODEL COMPLETE:CAPACITY **
RESULT FILE~ TTY
MODEL:CAPACITY
ROUTING:SHORT
CAPACITY: 1000
LINK CAPACITY(BPS)

LINEI 200
LINE2 450
LINE3 110
LINE4 100
LINES 120
** ALL CONSTRAINTS MET

** NDS/NSA VERSION 1.0 TERMINATED 8/3/79 **

Computers and Entertainment

In response to a paper I wrote last year
on computer technology and the movie
industry!, Dick Thompson, a special ef
fects professional, commented, "There is
much more involvement in computer tech
nology in "show business" than anyone
suspects. You are just beginning to turn
over the rock-or is it a can of worms?"
Dick's question remains to be answered
because the relationship between the en
tertainment industry and the computer in
dustry is yet in its infancy. I think enter
tainment is truly the last (earthly) frontier
for automation and over the next decade
we will see exciting results of this union.
Indications of the importance of com
puters in entertainment are already sur
facing: The Society of Motion Picture and

Suzanne Landa
Area Director

Television Engineers devoted an entire day to computer applications at its 1979 Confer
ence; several computer-based systems have been nominated for Technical Achievement
Academy Awards in 1980. The entertainment industry is thus beginning to achknowledge
the significant role of the computer. Appropriately, the computer industry also recognizes
its current and potential contributions to entertainment through six technical paper and
panel sessions at the 1980 NCC. The sessions will provide an overview of computer usage
in movies and television, the performing arts, amusements, and home entertainment/serv
ices.

Three of the sessions focus on computer applications in movie and television production.
The first explores computer usage for special audio and visual effects. Deitrick describes
an automated computer-controlled editing sound system (ACCESS) that provides the ed
itor with the capability to digitally create, modify and store sound instantaneously. AC
CESS, an Academy nominee this year, has been used in the production of numerous
movies and television shows, increasing output fivefold. Another Academy contender is
the Automatic Camera Effects System (ACES) described by Crane and Snyder. By con
trolling camera and model movements, ACES achieves a level of accuracy, repeatability,
and originality for 3-dimensional special effects not possible with manual methods. In
King's paper on the Emmy award winning system MAGICAM, the use of a computer to
maintain precise perspective in matting scenes of normal and miniature sized objects is
illustrated.

A panel session on computer applications in film animation will cover computer systems
allowing an animator to enter key sketches at a terminal with the computer extrapolating
the frames between these sketches. Color, shadow and shading are then added through
software options. Finally, the images are automatically filmed off a high-resolution CRT.
Another approach to be demonstrated is to totally synthesize images within the computer.

The third movie and television session will focus on computer support behind the scenes.
A panel will review such applications areas as casting, budgeting, and on-location cost
control and will also address employment opportunities in the movies for the data pro
cessing professional. A working model of an automated sound stage will be demonstrated.

Along with movies and television, the performing arts are beginning to utilize computer
technology. In Smoliar's paper on dance, computer graphic aids in choreography are ex
plored. For drama, a guest speaker will survey data processing applications in theatrical
administration and operations. Another speaker will focus on computer music.

Computer technology is already an integral part of most amusements today. Parks,
casinos, planetariums, and sporting events are capitalizing on mini- and micro-computer
technology. Stover and Snyder's paper describes a mini-computer system used in designing
audio-animatronic shows at Disneyland. Eifler's paper surveys the already pervasive use
of computers in scoring sports events.

I Landa, Suzanne, "Computer Technology and the Movie Industry," Proceedings of the 1979 National Computer
Conference, AFIPS Press, June 1979, p.l +.

49

A minicomputer system for audio-animatronics
show data generation

by PHILIP c. STOVER and R. DAVID SNYDER
Walt Disney Productions
Burbank, California

INTRODUCTION

Audio-Animatronics® shows have been produced by Disney
since the introduction of several attractions at the 1964 New
York World's Fair. * Since then a variety of shows have been
permanently installed at both Disneyland and Walt Disney
World. They typically consist of a stage, or some enclosed
show area, and a variety of special lighting effects, mech
anized characters and other movable stage equipment. Some
of the shows include: "Great Moments with Mr. Lincoln,"
"The Country Bear Jamboree," and "Pirates of the Carib
bean."

The technology used to produce these shows has been
constantly evolving and improving toward a more complex
and versatile medium for the animator's use. A significant
advance in this technology was the move to all digital show
data that occurred in 1968-1969. Since then a minicomputer
has been an integral part of the show development system.
It allows the animator to easily generate, review and edit
this digital database to produce the animated show. The
name given to this system was DACS (Digital Animation
Control System).

In 1971, the minicomputer used for DACS was a Honey-'
well 516. It has served this purpose at both Disneyland and
Walt Disney World for every Audi-Animatronics show that
has been produced since then. In 1979, however, with the
upcoming expansion at Walt Disney World and the Tokyo
Disneyland project, it became necessary to upgrade DACS
to a more modern computer system. This second generation
DACS is the subject of this paper.

THE DIGITAL AUDIO-ANIMATRONICS SHOW

All components of the digital Audio-Animatronics shows
are controlled by a single, .unified channel-addressing scheme.
This design allows a single show to include up to 1000 sep
arate channels. Each channel can be an eight-bit analog value
or eight separate digital subchannels. Analog channels are

* Finch, Christopher, The Art of Walt Disney, (New York, Harry N. Abrams,
Inc., 1975), p. 152.

51

used for the bulk of the show to provide signals for most of
the figure movements, the light dimming functions, and other
smooth linear motions. The digital subchannels are used for
on/off functions such as eye blinks, platform lifts, and other
special effects.

Figure 1 shows the show data transmission system. All of
the show data are de-multiplexed from a cabinet called an
RTU (Remote Terminal Unit). From this point, signals are
routed through servo control cabinets (in the case of the air
and oil-actuated figure movements) or directly to other con
trol points. The RTU cabinet is located immediately adjacent
to the show area and receives data over twisted pair con~
ductors from a remote central control area. All data are
transmitted by serial synchronous communication over these
cables. The show data reside on a fixed head disk and are
played back by a hardwired controller. This combination is
called a Show Control Unit.

The Show Control Unit in turn is synchronized using a
telemetry encoding scheme to a multi-track audio tape ma
chine which provides all of the show's audio. In this way
the show actionS, including mouth moVements, are always
in complete sync with the audio soundtrack, regardless of
tape speed variations. The data update rate is the same as
the movie industry's 24 frames per second. Data that are not
changing are updated less frequently to save disk space.

Future Show Control Units will likely incorporate another
medium for show data storage such as bubble memory. The
show data generation process, however, will continue to be
identical regardless of the playback medium used.

Show data generation

During show data generation, a minicomputer is substi
tuted for the Show Control Unit to provide data transmission
to the show being animated. In addition, a special purpose
control panel called an Animator's Console is connected to
the minicomputer to provide the input device for the ani
mator to use to generate show data. Figure 2 illustrates this .
connection, and shows the Animator's Console located in
front of the stage area to provide a clear view of the show
for the animator.

By manipulating knobs and switches on the Animator's

52 National Computer Conference, 1980

\'----_STAGE ----J7
c1~~ ..-- RPJ

CABINET

SYNCHm
LINE

T~R

~ c~5.rR
SOOrI r L

WlCHlNE

FlXill

~

Figure I-Normal animated show playback configuration

Console, a show database is gradually built up, a few chan
nels at a time. The DACS minicomputer provides immediate
visual feedback via the RTU and includes various editing
and playback features. During animation sessions, data are
stored on the minicomputer's disk drives. After animation
is complete, show data are transferred to the Show Control
Unit disks.

The computer system

A Data General Eclipse S250 forms the basis of the second
generation DACS. The show data transmission and channel
addressing design was left identical to the original DACS so
that the new system could be used to reanimate existing

interface board for the S250 were mated to standard Data
General components. The Eclipse system includes three 50
megabyte disk drives. One is used for system support and
the remaining two provide redundant database storage dur
ing show data generation.

The Animator's Console was redesigned to incorporate
more functions in a much smaller package. It includes a large
number of switches, knobs and displays to provide a variety
of data manipulation functions for the animator. The micro
processor located in the Animator's Console scans the
switches and knobs and drives the console indicators. Mes
sage blocks are sent continuously at 30 hertz to the Eclipse
incorporating the current analog pot positions as well as the
switch scanning information. The microprocessor receives
message blocks from the Eclipse with indicator and display

information. Error checking is incorporated at both ends of
the communication link. The Eclipse is responsible for in
terpreting all of the console requests and sending back the
proper console response along with show data to the RTU.
With the console the animator may position himself any
where within the entire show and restrict his area of oper
ation by use of scene limits. He may further restrict the
working space to a subset of all the channels used for the
show to focus his attention on a single figure or group of
actions. With the console he may play back the existing show
data forward or reverse at rates between one and 24 frames
per second. He may, in addition, repeat the current scene
continuously for critical viewing. New data may be depos
ited on the disk and viewed immediately by using any or all
of the 32 pots and 16 switches on the console. The pots may
be dynamically assigned to any of the analog show channels
and the switches likewise may be assigned to any of the
digital subchannels. Following this assignment new data may
be entered or old data changed one frame at a time or con
tinuously at rates between one and 24 frames per second.

The second generation DACS system incorporates many
features not available at the time the first generation system
was designed. An extremely straightforward hardware and
software interface to the custom components of this system
has been chosen. Standard RDOS operating system features
were used wherever possible, and 95 percent of the code for
this system has been generated in the FORTRAN V lan
guage. The Honeywell 516 DACS was coded entirely in as
sembly language without benefit of a true operating system.

'\

AUDIO
TAPE

WlCHINE

SYSTEM
DISK

c1~~

ANIWlTOR'S
CONSOLE

STAGE

f4-- cJTIh

ECLIPSE
S250

7
ASOCH.

SERIAL
C'I/MrUOnM(lIlC'

.... "1V'"\VIUNE

TRAN~TTER -

ALM

OCU 200

~-DISK

Figure 2-Animation data generation configuration

The communication link to the Animator's Console was
accomplished with a standard Asynchronous Line Multi
plexor operating at 19.2K baud. This full duplex line uses
two twisted pairs with outboard line drivers and receivers
to operate at distances up to one mile. Character interrupts
are buffered at the Eclipse by a DCU 200 programmable
I/O processor. The DCU 200 incorporates message checking
and shields the S250 processor from the character interrupt
processing overhead. Data are transferred via DMA channel
directly from main processor memory to DCU 200 processor
memory and vice versa. A single custom I/O board is inserted
in the S250 chassis. It includes a DMA interface for show
data transmission, a 24 hertz clock for show timing, and a
Time Code Translator interface for audio sync. This board
is the only non-standard connection needed to the S250 for
this application.

The software design relies heavily on the RDOS multi
tasking operating system features. Separate tasks are used
to partition necessary functions into multiple asynchronous
processes, leaving a minimum of interrupt driven code. This
partitioning results in an extremely flexible and easy system
to maintain and enhance. The FORTRAN V language was
found to be fast enough to perform all real-time data manip
ulation and computations required to keep up with the 24
frames per second rate. Disk data access is accomplished
using standard direct block I/O and contiguous files. Real-

Minicomputer System for Audio-Animatronics Show 53

time data response is insured by multiple block read and
write buffers. The buffer size was chosen to overcome worst
case disk rotational latency and still provide up to 24 frames
per second throughput. All console button and indicator lamp
assignments are implemented in software, making changes
in console function and button sequences easy.

The DACS minicomputer also provides all of the data
manipulation and housekeeping functions performed off-line
before and after animation sessions. One of the most im
portant of these functions is data compression. In this op
eration up to four 33 megabyte files are compressed from
tape to a single 2 megabyte disk file. This compressed file
is then transferred to the Show Control Unit for repetitive
playback. Compression is achieved by eliminating redundant
data entries for successive frames, providing only occasional
updates to correct any possible noise errors.

CONCLUSION

A second generation system for Audio-Animatronics show
data generation has been developed taking advantage of
standard hardware and software products available today.
This new system enhances the capability of the animator to
produce more complex shows with higher quality in a shorter
time frame.

Computers and sports: a natural marriage

by THOMAS A. EIFLER
Honeywell
Waltham, Massachusetts

INTRODUCTION

The use of computers to score and time the outcome of var
ious athletic events is almost as fast-growing as several of
the sports themselves. From Austria to Atlanta, from Switz
erland to Cleveland, in bowling alleys, on basketball courts,
and at the finish lines of long distance foot races, computers
are rapidly becoming as much a part of the world of athletic
competition as the joy of victory and the agony of defeat.
Whether serving as surrogate officials, omniscient score
keepers, or stationary superscouts, these perfectly objective
machines are adding to the enjoyment of both spectator and
participant alike.

In this age of instant replay and on-the-spot analysis by
TV commentators, there is no margin for error. Final results
are expected-or in some cases, required-immediately
upon conclusion of a particular event. The human mind is
simply unable to tell who finishes 6,142nd in a race of 7,000,
let alone how far ahead of the next runner this individual is.
A computer can. The shrewdest mathematician cannot in
stantaneously calculate the average score of several judges
at a gymnastics competition. A computer can.

Here, then, is a brief look at some of the fascinating ways
in which computers are being used to monitor results of ath
letic competition:

Long distance running

For the past five years, computers have been used to score
and time the Boston Mar&thon. The system is fairly sophis
ticated, but in layman's terms "it works this way: before the
runners start crossing the finish line in droves (i.e., for about
the first 1,000 finishers in a 7,000 field race), a button is
pushed each time a participant completes the race. This act
notifies the computer that "a body" has crossed the line.
At this point, the system doesn't know (or care) whether
this body is male or female, young or old, official or unof
ficial; all it knows is that a runner has completed the race
at a specific time.

The runners then line up in as many as eight chutes, each
of which can be 100 or more yards long and each of which
can hold 300-400 runners. At the end of the chutes, officials
record each runner's number, in order. If an unofficial en
trant appears at the end of the line, this fact is noted and the
runner's name and order of finish do not appear in the final

55

listing that shows each participant's statistics. In other
words, if the printout generated at the end of the race in
dicates that a runner finished 1,009th, this means that he or
she completed the race after 1,008 other official entrants.

Meanwhile, back at the finish line, runners eventually
begin to cross the line in bunches-30, 40, 50 at a time. Since
the button just cannot be pushed fast enough, a different
system is then put into effect. A particular runner is "spot
ted" on his way to the finish line and, as he crosses, his time
and number are recorded. Fifteen seconds later, another run
ner is spotted in the same way. The system then knows that
all runners who cross the line between runner A and runner
B do so in the 15-second interval between runner A's time
and runner B's.

If 600 runners cross in that 15 seconds, the system dis
tributes this information over the allotted time. Thus, a run
ner's time could be off by a second or two, but once 1,000
runners have already crossed the line, this is not really all
that important. What counts most and what the runners are
interested in is how they do against their peers. This the
system tells them very quickly and very accurately.

Once all the runners' numbers and times have been· en
tered, the computer matches them up and creates a printout.
Thus, within minutes after the 2,000th runner crosses the
line, he'll know his exact time and order of finish. The same
is true for the 4,000th, 5,000th-even the 7,000th runner.

At last year's Bonne Bell Championship for Women
(5,035 runners), Honeywell computers were used in con
junction with bar code readers for the first time. This elim
inated the time-consuming recording of numbers at the end
of the chutes. Instead, the runners merely tore off their bar
codes, which were read instantly, thereby enabling Honey
well to produce printouts in seconds rather than in minutes.

Computers have been scoring and timing races around the
country for the past few years, including the Gasparilla Long
Distance Classic in Tampa, Fla; the Chicago Long Distance
Classic; the Cleveland Heart Run; and the Purity Supreme
Heartbreak Hill Road Race in Boston.

Track and field

In the spring of 1979, the editors of Runner's World mag
azine approached members of Honeywell's Public Relations
department and asked if the company would be interested
in scoring and timing the publication's second annual Cor-

56 National Computer Conference, 1980

porate Cup competition. This series of events consists of
"track meets" at which numerous U.S. companies are pitted
against each other in eight different races. Some are open
to all employees, some to women only, some to runners over
40, etc. Last year, meets were held in eight different cities
on seven consecutive week-ends, with the finals staged in
San Francisco.

Less than 10 days after the editors made their request, a
software program capable of processing individual runner
times, team performance, and overall standings was up and
running. Honeywell employees, portable terminals in hand,
attended each of the eight meets and entered the appropriate
data after each race, usually from a press box overlooking
the track. The information was transmitted via telephone
hook-up to a Level 66 computer in Billerica, Mass. that di
gested the raw statistics and instructed the terminal to gen
erate a printout of the results.

Scoring was somewhat complicated, especially in the 10-
kilometer race. This event often attracted 300 or more run
ners, of whom the last one to cross the finish line could
conceivably determine the winning team. Standings changed
after each race, so a prompt, accurate way of providing up
to-the-minute information had to be found. A computer was
the answer.

Yacht racing

For the first time in the history of sailing competitions,
computers and telecommunications were linked in 1979 to
follow "live" -almost in real time-the progress of the dif
ferent competitors in the first two-way transatlantic yacht
race, TRANSAT. The race covers some 6,000 nautical miles
(11,000 kilometers) from Lorient (France) to Bermuda and
back again to Lorient.

The computer and telecommunications resources were
provided by the ARGOS system of France's national space
research center (Centre National d'Etudes Spatiales-CNES).
ARGOS, a system for the collection of data by satellite, cov
ers the entire globe. It is based on portable beacons (to col
lect and broadcast data), a TIROS-N satellite,and the data
processing center of the CNES at Toulouse (France). In this
center, a large-scale Cii Honeywell Bull IRIS 80 computer
C" ... " o.,t ~_....l ___ ",......,.C"'\(""O.o.rl ~_ .. ______ n ... ; __ · "',..,,_+0.,...1 ~"" +'1'1n. TT ~)"
~lVl'-'U a,l1U l-'IV'-''-'~~\'';U IIJJ.vlll1a lvl1 "'pLUJ.\",,;U. I.II lVVV '-' .u • .lV-

cations as well as in Lannion (Britanny), France. The data
was re-transmitted to Toulouse by private land links.

Since the satellite's rotation around the earth allowed the
positions of the competitors (to an accuracy of one nautical
mile) to be transmitted to the IRIS 80 every two hours, it
was possible to interrogate the computer at any instant for
up-to-date information. Throughout the race, Cii Honeywell
Bull, Honeywell's French computer associate, provided
radio and TV representatives with special information ser
vices, including an automatic display of the paths of the
yachts on a color graphic terminal. The display was gener
ated by a Cii Honeywell Bull 66/60 computer in Paris from
information supplied by the IRIS 80. It was then re-trans
mitted to the TV channel Antenne 2, which made regular
use of it in its broadcasts on TRANSAT.

The major function of the 66/60 was to enable the TRAN
SA T control room to keep the state of the competition and
the relative positions of the participants under continuous
surveillance by furnishing information on the competitors'
positions, distances covered, and standings in the various
classes.

Gymnastics

Nadia Comaneci never had it so good.
When 81 of this country's finest female gymnasts recently

competed against each other at the U.S. Gymnastic Fed
eration's 1979 Junior Women's Championships in Allen
town, Pa., a Honeywell Level 6 minicomputer was on hand
to help both the participants and their coaches keep track
of the scoring. Since the meet's winners were considered
front-runners in the race for inclusion on the 1984 U.S.
Olympic team, all the competitors-aged 10 to 14-were
extremely anxious to learn where they stood in the overall
scoring before and after each event.

There were two rounds of events-compulsory and op
tional-with four events in each round: balance beam, vault,
uneven parallel bars, and floor exercises. Each event was
evaluated by a panel of four judges, who had been former
high-ranking amateur and/or professional gymnasts. The av
erage of the judges' scores was first displayed to the audience
and then entered into the Honeywell Level 6 Model 47 min
icomputer by two terminal operators.

The system tabulated the scores and provided printouts
of the results for the coaches. Reports detailing the standings
of each event and the overall standings of each round were
generated continuously during the three-day competition, so
each competitor and her coach knew where she stood at all
times. The top 10 competitors in each individual event qual
ified for the finals.

Nor is the computer's involvement with gymnastics lim
ited to the U.S. At the 19th World Gymnastics Champion
ships at Strasbourg, France in October of 1978, the data
processing service that handled the thousands of scores
awarded to some 400 athletes from 40 different countries was
provided by Cii Honeywell Bull, Honeywell's French com
puter associate.

The role of the computer results service was to provide
the 400 ne\vspaper, TV and other journalists, as weI! as tel
evision viewers worldwide, with the unofficial intermediate
placings as soon as each competitor finished his or her per
formance.

The data processing system, built around a Level 6 min
icomputer, provided television producers with a continually
up-to-date results table that was 'superimposed, as desired,
on the competition images being broadcast. The calculated

. results were supplied in video signal form from a character
generator connected to the computer.

The Level 6, operating in a real-time, multiprogramming
mode, handled several competitions occurring at the same
time in different locations. The placings were printed out
every half-day on a 300 line-per-minute printer, reproduced
and distributed; in total, some 150,000 documents were pro
duced.

Bowling

Small computer systems are freeing hundreds of bowling
league secretaries of the drudgery of record keeping, hand
icapping, recapping, calculating, posting and other chores.

The Brunswick Division, a leading supplier of bowling
center equipment, configured its Integrated Retail Bowling
Information System for bowling centers around Honeywell
Level 6 computers. IRBIS is a functionally modular system
that provides automation for tasks usually associated with
the operation of a bowling center. The first module to be
installed was for league record service. It administers awards
programs, identifies absentees, maintains files of bowlers'
names, addresses, and telephone numbers, and updates fi
nancial data. Each week, the system prints out a standings
sheet that provides pertinent information on performances,
individual player team standings, and lane assignments for
each team.

Figure skating

Two Cii Honeywell Bull computers played a key role at
the 1979 World Figure Skating Championships, held in Vi
enna from March 13 to March 18.

Involving 350 participants from 26 countries, the cham
pionships were covered by some 500 journalists and tele
vision commentators. They were also broadcast by Euro
vision, intervision (covering Eastern Europe), ABC-TV of
the United States, C.T.V. of Canada, and the television net
works of Japan, Korea, the Philippines, and Mexico. A major
feature of the official data processing results service was an
information system for TV commentators provided by Hon
eywell Bull A.E., the Austrian member of Ciii Honeywell
Bull's international network.

Two Cii Honeywell Bull 61160 computer systems at the
company's Vienna data processing center collected, via
input terminals in the Vienna Stadthalle, the marks awarded
competitors by the judges. The systems operated in parallel
and, when necessary, each was switched to the other in sec
onds without any interruption to the results service. Pro
visional and final results, together with other information
such as complete details of each competitor's performance,
were printed on output terminals.

Other terminals were part of the TV commentator infor
mation system. A video screen displayed the first ten plac
ings in the current competition, and optionally the second
ten. These lists were instantaneously updated at the end of
each competitor's performance. A closed-circuit TV instal
lation conveyed the information to the control consoles of
the TV units where it was selected for broadcast over Eu
rovision and other networks.

The programs for this computerized results service were
essentially the same as those written by Cii Honeywell Bull
for the 1976 Innsbruck Winter Olympic Games where the
results service was also provided by Honeywell Bull A.G.
They were modified to take into account competition rule
changes, and a new program was added to provide additional
information that facilitated the work of jUdges.

Computers and Sports: A Natural Marriage 57

Air races

For the dozens of pilots who flew their planes in the air
race that started at Burke Lakefront Airport in Cleveland
over Labor Day weekend last year, the real excitement
started just a few seconds after the competition ended. By
that time, thanks to Honeywell's DATANETWORK and a
software program specifically designed to score air races,
a Level 66 large-scale computer system located more than
500 air miles away in Minneapolis generated a cockpit-full
of statistics, including a complete list of all entrants' times,
speeds and order of finish.

Contestants in the Lake Erie Air Derby chose their own
speed handicap in miles-per-hour and their own fuel hand
icap in gallons-per-hour. The purpose of the event was to
measure the pilots' ability to fly a cross-country course ac
cording to their chosen speed and fuel handicaps. Final
scores were determined by matching each contestant's ac
tual speed and actual fuel consumption against the fuel
handicap, with each category accounting for half the total.

If a pilot estimated that he would fly at 118 mph, for in
stance, but actually averaged 118.3, his proficiency rating
would have been 99.97 percent. If he also predicted that his
plane would consume 25.1 gallons during the race, but it
actually used 24.8, his proficiency rating would have been
98.8 percent. By combining the two ratings and dividing the
total by two, the system would award an overall score of
99.39 percent. Thus an individual who accurately predicted
his exact speed but who consumed a lot less fuel than he
anticipated would stand little chance of winning.

The winner in 1976, for example, was 12th in predicting
her miles-per-hour, but second in estimating her fuel con
sumption. Her combined proficiency rating was the highest
of any participant.

As soon as the last plane was "topped off" (refueled) at
the end of last year's race, terminals sent the actual starting
time, finish time and fuel consumption for all aircraft to the
Level 66 computer in Minneapolis. The system already had
on file the names of the pilot and co-pilot, the plane man
ufacturer or type, the plane number, the contestant number
and the speed and fuel handicaps. Within minutes, the sys
tem digested the numbers and provided both proficiency rat
ings and final scores.

Basketball

At 1979's National Basketball Association All-Star Game,
hosted by the Detroit Pistons in the Silverdome in Pontiac,
Mich., a Honeywell Level 6 Model 33 computer system en
abled sportswriters to wait until the final minute of play be
fore casting their ballots for the game's Most Valuable
Player. The system sorted, tabulated, and simultaneously
projected the results on two 24-inch CRT display stations,
both of which were in full view of hand-held CBS cameras.
Thus, the players, spectators and millions of television view
ers knew the MVP within one minute after the game had
ended.

The technique was even simpler than the method that
worked so flawlessly at 1978's game in Atlanta, where a com-

58 National Computer Conference, 1980

puter was used for the first time to monitor the voting. During
that game, a total of 20 Honeywell terminals were placed,
in clusters of five, at various areas strategically located near
the voting writers and sportscasters. With one minute .left
in the game and also at the final buzzer, volunteers collected
the ballots and rushed them to the nearest terminal cluster
where the votes were entered. Each cluster was connected
via dial-up phones to a Level 66 large-scale computer in
downtown Atlanta. The results were then projected on a
CRT for the CBS camera.

The procedure in 1979 was considerably more glamorous
in two respects. First, the collectors were members of the
Detroit Pistons' Classy Chassis. Secondly, the voters did not
have to enter a player's name on their ballot. Instead, they
simply selected from either of two distinctly-colored packets
in front of them-one for the East team and one for the West
team-the card bearing the preprinted name of the player
of their choice. A tabulating program operating within the
Level 6 computer system read and totalled the results while
"entertaining" the viewing audience with variou~screen im
ages.

Baseball

In this age of free agents, arbitration, non-negotiable con
tract demands, suits and counter-suits, one fact of baseball
life remains constant: winning teams are those with the best
25-man rosters. To fill those rosters, major league owners
and general managers use a variety of techniques, including
trading for other players, outbidding the competition for the
services of specific free agents, and, of course, scouting the
minors for future Tom Seavers and Dave, Parkers.

But scouting isn't what it used to be. Today, information
on a prospect's hitting, throwing, running, and fielding abil
ities is just as likely to emanate from a computer as from the
pen of a retired player working as a scout for his old club.
In fact, 17 of the 26 major league teams-besieged by sky
rocketing players' salaries, extremely expensive stadium
maintenance costs, and assorted other rising expenses
have abandoned the old, costly system whereby each club
maintain~d its own nationwide scouting organization. In
stead, these clubs subscribe to the computerized scouting
services otIered by the Major League Scouiing Bureau in
Newport Beach, Calif.

The MLSB employs 60 professional scouts who watch
baseball games across the country in behalf of their clients
in both the National and American Leagues. The information
they gather is stored in Honeywell's Computer Service,
DATANETWORK. The large data base containing the
player performance information is updated daily from the
Major League Scouting Bureau's offices in Newport Beach.
The client teams, using either video display or teletype ter
minals, simply dial into Honeywell's large-scale computer
systems in Minneapolis and request the profiles of players
by name, position, location or ranking.

During the season, scouts in five regions cover games
played by high school, college and minor league teams. They
rate promising players by height, weight, ability to play their
position and batting skill. The qualifiable parameters are

combined with subjective comments on the players and sub
sequently sent to the MLSB main office where they are
loaded offline onto a cassette, and then dumped online daily
into the computers. DATANETWORK's dial-in access and
simplified procedures allow non-technical users to process
all this information.

Twice a year, reports are produced for each team on the
500 most promising high school and college players and
mailed to the scouting director before the free agent draft
in January and June. A similar report-much larger and more
comprehensive-on all players in the minor league pro sys
tem is produced just after the draft in June and sent to each
subscribing team, then updated throughout the minor league
season.

Client teams and Scouting Bureau personnel, using inter
active or batch terminals, have easy access to DA T.ANET
WORK in over 250 time-sharing cities located in the United
States and Canada. When a team dials in and asks for up
dates, it receives all scouting opinions including second or
third visit impressions by the same scout.

A printout on a particular player will include the latest
preferential order relative to other players contained within
the data base. The preferential order is based on all infor
mation available from scouts, who use a 2-to-8 rating scale
for each category of performance.

Preferential lists for the free agent drafts contain all the
players by position, scout, and state where they played. To
make this list, players must have a total of 20 points mini
mum, with 80 points the maximum.

The reports for the pro system are large and more com
plicated. They assess 23 different aspects of a player's per
formance in such areas as running, throwing, hitting, field
ing, accuracy, range and aggressiveness. An overall evaluation
from all scouting reports is produced by the computers and
added to the composite comments.

The reports are printed and arranged according to the farm
system in which the players play. Only those players in a
particular farm system are profiled for the parent major
league club. Password and other identifiers are used to limit
access to specific teams for information on individual pro
system players.

To the Major League Scouting Bureau, DATANET
WORK is ind~ed a Most Valuable Player.

Cricket

Experience in the commentary box convinced ex-England
cricket captain and BBC commentator Ted Dexter that the
introduction of the computer as a statistical tool could be
of importance both to the game and to the huge audience
that follows it on television. His ideas were welcomed by
one of cricket's most respected statisticians, Irving Rosen
water who, together with BBC-TV producers David Kenning
and Nick Hunter, began working with Honeywell Informa
tion Systems Ltd. to enlist modern computer technology for
the benefit of cricket and its followers.

The outcome was a Level 6 Model 33 computer system,
with 64K words of memory, cartridge disk and two visual
display units, together with a special 'black box' designed

by Honeywell's Hemel development group to interface the
Level 6 to the TV camera, thereby enabling the contents of
the VD U screens to be duplicated on viewers' screens at
home.

Under the control of Honeywell's MOD 200 operating sys
tem, the Level 6 stores score-cards and a wide range of crick
eting statistical data. One of the VDUs is located in the com
mentary box, allowing an operator to request the display of
relevant information, such as score displays, analyses, sta
tistics, etc. This data is then simultaneously displayed in the
commentary box and, if required, transmitted in the same
format.

The screen Iformat has been refined to provide two sep
arate viewing sectors, one of which displays data duplicated
on viewers' screens while the other-not available for trans
mission-contains additional information for the commen
tary box.

83RD ANNUAL BOSTON MARATHON

APRIL 16, 1979

DISTRIBUTION OF RUNNERS BY AGE GROUPS

NUMBER NUMBER NUMBER AVERAGE PERCENT
AGE ENTERED STARTED FINISHED TIME FINISHED

UNDER 20 125 125 96 02:54:08 76.8

20-24 893 890 715 02:51:07 80.3

25-29 1489 1484 1162 02:52:10 78.3

30-34 1476 1470 1171 02:55:25 79.6

35-39 934 932 728 02:58:41 78.1

40-44 1671 1671 1216 03:12:46 72.7

45-49 869 869 600 03:15:15 69.0

50-54 338 337 209 03:19:01 62.0

. 55-59 93 93 49 03:17:38 52.6

60 & OVER 39 39 12 03:22:30 30.7

TOTALS 7927 7910 5958 03:01:15 75.3

THE AVERAGE RUNNER WAS 34.5 YEARS OLD

Computers and Sports: A Natural Marriage 59

On-air trials were conducted during TV coverage of the
Prudential World Cup, and the BBC and Honeywell have
agreed to go ahead with computerized statistics for televised
coverage of cricket.

CONCLUSION

This concludes my list of the existing examples of sports
related computer applications, but I think you'll agree that
their diversity and quantity are quite impressive. A similar
discussion of the same topic a few years hence could-at
least theoretically-touch on virtually any aspect of every
sport currently pursued by man. If the trend continues at its
current pace, we may be nearer than we think to the day
that shouts of "Kill the umpire" will be replaced with
"Debug that Model 2310."

MALE: AVERAGE TIME BY WEIGHT GROUPS

NO. OF AVERAGE
WEIGHT RUNNERS TIME

UNDER 100 02:56:48

100-109 02:55:02

110-119 42 02:50:08

120-129 259 02:52:28

130-139 930 02:55:20

140-149 1532 02:57:59

150-159 1452 03:02:43

OVER 159 1441 03:05:54

TOTAL 5662 03:00:28

THE AVERAGE RUNNER WEIGHED 149.3 POUNDS

60 National Computer Conference, 1980

MALE: DISTRIBUTION OF FINISHERS BY HEIGHT AND WEIGHT

UNDER OVER
WEIGHT 5'0" 5'0"-5'2." 5'3"-5'5" 5'6"-5'8" 5'9"-6'0" 6'0" TOTALS·

UNDER 100 0 1 1 1 0 0 3

100-109 1 0 2. 0 0 0 3

110-119 2. 0 13 2.7 0 0 42.

12.0-12.9 17 2. 57 148 33 2. 2.59

130-139 60 3 47 466 348 6 930

140-149 73 15 11 404 974 55 1532.

150-159 52. 2.5 7 147 1073 148 1452.

OVER 159 14 61 15 33 804 514 1441

TOTALS 2.19 107 153 12.2.6 32.32. 72.5 5662.

FEMALE: AVERAGE TIME BY HEIGHT GROUPS

MALE: DISTRIBUTION OF RUNNERS BY AGE GROUPS

NO. NO. NO. AVERAGE PERCENT
NUMBER OF AVERAGE

AGJi: ENTERJi:D STARTED FINI~HED TIME FINISHED HEIGHT RUNNERS TIME

UNDER ZO 106 106 83 OZ:51:05 78.3
UNDER 5'0" 54 03:18:44

ZO-Z4 807 804 658 OZ:49:09 81.8

Z5-Z9 1341 1336 1081 OZ:50:3Z 80.9 5'0"-5'2" 37 03:14:40

30-34 1346 1340 1097 OZ:53:58 81.8
03:17:13 5'3-5'5" 105

35-39 851 849 685 OZ:57:31 80.6

40-44 1636 1636 1197 03:1Z:33 73.1 5'6"-5'8" 84 03:15:30

45-49 853 853 59Z 03:15:09 69.4 5'9"-6'0" 14 03: 11:23
50-54 335 334 Z08 03:18:58 6Z.Z

55-59 93 5Z.6
OVER 6'0" 2 03:21:16

93 49 03:17:38

60 & OVER 38 38 1Z 03:ZZ:30 31.5

TOTALS 296 03: 16:26
TOTALS 7406 7389 566Z 03:00:Z8 76.6

THE AVERAGE RUNNER WAS 34.8 YEARS OLD THE AVERAGE RUNNER'S HEIGHTWAS5'3"

Computers and Sports: A Natural Marriage 61

FEMALE: AVERAGE TIME BY WEIGHT GROUPS

NO. OF AVERAGE
WEIGHT RUNNERS TIME

UNDER 100 14 03:16:33

100-109 70 03:14:27

110-119 113 03:17:36

120-129 61 03:16:40

130-139 28 03:15:59

140-149 10 03:17:09

TOTALS 296 03:16:26

THE AVERAGE RUNNER WEIGHED 115.2 POUNDS

FEMALE: DISTRIBUTION OF FINISHERS BY HEIGHT AND WEIGHT

UNDER OVER
WEIGHT 5'0" 5'0"-5'2" 5'3"-5'5" 5'6"-5'8" 5'9"-6'0" 6'oft TOTALS

UNDER 100 4 8 2 0 0 0 14

100-109 9 19 33 9 0 0 70

110-119 19 10 55 28 0 1 113

120-129 11 0 12 36 1 1 61

130-13~ 9 0 3 11 5 0 28

140-149 2 0 0 0 8 0 10

150-159 0 0 0 0 0 0 0

OVER 159 0 0 0 0 0 0 0

TOTALS 54 37 105 84 14 2 296

62 National Computer Conference, 1980

FEMALE: DISTRIBUTION OF RUNNERS BY AGE GROUPS AVERAGE TIME BY HEIGHT GROUPS

NUMBER NUMBER NUMBER AVERAGE PERCENT
AGE ENTERED STARTED FINISHED TIME FINISHED NUMBER OF AVERAGE

HEIGHT RUNNERS TIME
UNDER 20 19 19 13 03:18:35 68.4

20-24 86 86 57 03:13:40 66.2
UNDER 5'0" 273 03:04:13

25-29 148 148 81 03:13:55 54.7

30-34 130 130 74 03:16:57 56.9 5'0"-5'2" 144 03:04:31

35-39 83 83 43 03:17:17 51.8
5'3"-5'5" 258 03:07:24

40-44 35 35 19 03:26:40 54.2

45-49 16 16 03:23:01 50.0 5'6"-5'8" 1310 02:59:58

50-54 03:29:21 33.3 5'9"-6'0" 3246 03:01:01
60 & OVER 0 00:00:00 0.0

OVER 6'0" 727 03:00:44
TOTALS 521 521 296 03:16:26 56.8

THE AVERAGE RUNNER WAS 29.8 YEARS OLD TOTALS 5958 03:01:15

THE A ~TERAGE RUNNER'S HEIGHT WAS 5'9"

AVERAGE TIME BY WEIGHT GROUPS

NUMBER OF AVERAGE
WEIGHT RUNNERS TIME

UNDER 100 17 03: 13:04

100-109 73 03:13:39

110-119 155 03:10:09

120-129 320 02:57:05

130-139 958 02:55:56

140-149 1542 02:58:06

150-159 1452 03:02:43

OVER 159 1441 03:05:54

TOTALS 5958 03:01:15

THE AVERAGE RUNNER WEIGHED 147.6 POUNDS

Computers and Sports: A Natural Marriage 63

DISTRIBUTION OF FINISHERS BY HEIGHT AND WEIGHT

UNDER OVER
WEIGHT 5'0" 5'0"-5'2" 5'3"-5'5" 5'6"-5'8" 5'9"-6'0" 6'0" TOTALS

UNDER 100 4 9 3 1 0 0 17

100-109 10 19 35 9 0 0 73

110-119 21 10 68 55 0 1 155

120-129 28 2 69 184 34 3 320

130-139 69 3 50 477 353 6 958

140-149 75 15 11 404 982 55 1542

150-159 52 25 7 147 1073 148 1452

OVER 159 14 61 15 33 804 514 1441

TOTALS 273 144 258 1310 3246 727 5958

MALE: AVERAGE TIME BY HEIGHT GROUPS

NU1.1BER OF AVERAGE
HEIGHT RUNNERS TIME

UNDER 5'0" 219 03:00:39

5'0"-5'2" 107 03:01:01

5'3"-5'5" 153 03:00:39

5'6"-5'8" 1226 02:58:54

5'9"-6'0" 3232 03:00:58

OVER 6'0" 725 03:00:40

TOTALS 5662 03:00:28

THE AVERAGE RUNNER'S HEIGHT WAS 5'9"

64 National Computer Conference, 1980

NO. NO. PCT. NO. PCT.
STATE/COUNTRY ENTERED ENTERED STARTED FINISHED FINISHED

Australia 6 5 83.3 3 60.0
Belgium 2 2 100.0 1 50.0
Bermuda 17 17 100.0 16 94.1
Brazil 1 1 100.0 0 0.0
Canada 310 310 100.0 235 75.8
Columbia 4 3 75.0 3 100.0
Costa Rica 4 4 100.0 3 75.0
Denmark 2 2 100.0 1 50.0
England 36 36 100.0 24 66.6
Egypt 1 1 100.0 0 0.0
Finland 6 6 100.0 5 83.3
France 3 3 100.0 0 0.0
Germany 13 13 100.0 6 46.1
Greece 1 1 100.0 1 100.0
Guam 1 1 100.0 1 100.0
Haiti 1 1 100.0 1 100.0
Holland 1 1 100.0 1 100.0
Ireland 19 18 94.7 9 50.0
Israel 1 1 100.0 0 0.0
Japa:n 46 46 100.0 31 67.3
Kenya 2 1 100.0 1 50.0
Korea 1 1 100.0 1 100.0
New Mexico 1 1 100.0 1 100.0
New Zealand 12 12 100.0 9 75.5
Norway 1 1 100.0 1 100.0
Philippines 2 2 100.0 2 100.0
Portugal 1 1 100.0 0 0.0
Puerto Rico 18 18 100.0 12 66.6
Saudi Arabia 2 2 100.0 0 0.0
Scotland 1 1 100.0 1 100.0
Sweden 36 36 100.0 23 63.8
Switzerland 1 1 100.0 0 0.0
Turkey 1 . 0 0.0 0 0.0
U.S.A. 1 1 100.0 1 100.0
United Kingdom 1 1 100.0 1 100.0
Wales 1 0 0.0 0 0.0
West Germany 1 1 100.0 0 0.0
none 1 1 100.0 1 100.0

Computers and Sports: A Natural Marriage 65

NO. NO. PCT. NO. PCT.
STATE/COUNTRY ENTERED ENTERED STARTED FINISHED FINISHED

Alaska 14 14 100.0 9 64.2
Alabama 40 40 100.0 31 77.5
Arkansas 11 11 100.0 9 81.8
Arizona 96 96 100.0 66 68.7
California 848 847 99.8 566 66.8
Colorado 112 112 100.0 85 75.8
Connecticut 278 278 100.0 222 79.8
Dist: of Columbia 64 64 100.0 46 71.8
Delaware 31 31 100.0 23 74.1
Florida 192 190 98.9 140 73.6
Georgia 122 122 100.0 95 77.8
Hawaii 28 28 100.0 17 60.7
Iowa 50 50 100.0 37 74.0
Idaho 9 9 100.0 6 66.6
Illinois 213 213 100.0 142 66.6
Indiana 110 110 100.0 76 69.0
Kansas 19 19 100.0 14 73.6
Kentucky 45 45 100.0 38 84.4
Louisiana 49 49 100.0 36 73.4
Massachusetts 994 990 99.5 764 77.1
Maryland 215 215 100.0 172 80.0
Maine 70 70 100.0 57 81.4
Michigan 236 236 100.0 178 75.4
Minnesota 134 134 100.0 94 70.1
Missouri 59 59 100.0 42 71.1
Mississippi 18 18 100.0 15 83.3
Montana 8 8 100.0 6 75.0
North Carolina 119 119 100.0 99 83.1
North Dakota 11 11 100.0 10 90.9
New Hampshire 90 90 100.0 68 75.5
New Jersey 319 318 99.6 251 78.9
New Mexico 42 42 100.0 30 71.4
New York 904 903 99.8 695 76.9
Nebraska 14 14 100.0 13 92.8
Nevada 9 9 100.0 9 100.0
Ohio 249 249 100.0 205 82.3
Oklahoma 10 10 100.0 9 90.0
Oregon 78 78 100.0 53 67.9

NO. NO. PCT. NO. PCT.
STATE/COUNTRY ENTERED ENTERED STARTED FINISHED FINISHED

Pennsylvania 426 424 99.5 332 78.3
Rhode Island 105 105 100.0 84 80.0
South Carolina 49 49 100.0 38 77.5
South Dakota 12 12 100.0 8 66.6
Tennessee 75 75 100.0 60 80.0
Texas 203 203 100.0 155 76.3
Utah 27 27 100.0 24 88.8
Virginia 237 237 100.0 179 75.~
Vermont 58 58 100.0 46 79.3
West Virginia 37 37 100.0 31 83.7
Washington 84 84 100.0 57 67.8
Wisconsin 140 140 100.0 117 83.5
Wyoming 5 5 100.0 4 80.0

Computers helping dance notation help the dance: a vision

by STEPHEN W. SMOLIAR
General Research Corporation
Santa Barbara, California

1. DANCE NOTATION: WHAT AND WHY?

The production of a ballet is one of the most frustrating en
deavors in the performing arts today. The frustration stems
from the fact that a substantial amount of information must
be shared among a large number of individuals, and the only'
manifestation of this information is in a few human memo
ries. Often the information is evolving: a choreographer will
work from day to day with a company of dancers, saving
only a fraction of material from one day to the next, until,
eventually, the "vision" of a complete piece of choreog
raphy has been formed. Alternatively, in the case of recon
structing a piece of choreography, disagreements inevitably
arise as to whose memory of the original is most accurate.
In the absence of any "hard" information, such disagree
ments can only be resolved by the strength ot authority.

These problems do not arise when a symphony orchestra
prepares a concert. In fact, such problems are quite unthink
able in the world of music. This is because the "vision" of
the composer has been set down in a notation which has
been second nature to the vast majority of performing mu
sicians for well over a thousand years. However many years
he may have been lying in his grave, the composer has man
aged to communicate his authority to the performers oftoday
through the score and part books of his music.

The predominance of music notation has led many "fans"
to assume that notation plays a similar role in the dance.
Unfortunately, this is only a half-truth. In fact, the origins
of dance notation go back practically to the origins of clas
sical ballet ([Hutchinson]); but, as we shall see, notation has
never "caught on" among dancers as it did among musi
cians. In the following section we shall attempt to analyze
why this is the case, af~er which we shall consider how the
computer might be able to remedy this situation.

2. CURRENT PROBLEMS IN DANCE NOTATION

Any idea which is unpopular always has a bastion of myths
to support its unpopularity. The primary myth about dance
notation is that it can't possibly work (not that it doesn't
work, mind you-one may ~imply deny the possibility of
contradicting evidence). The reason behind this myth inev
itably stems from an argument to the effect that the human
body has so much more subtlety and so many more degrees

67

of freedom than any musical instrument that no notation
could ever come close to capturing such an overwhelming
amount of information. Leaving the dance community aside
for a moment, such an argument would be regarded as patent
nonsense by any performing musician. He knows that his
notation does not embody the full range of subtlety of expres
sion on an instrument; indeed, that is what makes performing
so interesting. He understands that the score is but an ab
straction of a musical performance and that performance is
unthinkable unless he first contributes a substantial amount
of his own information to that score. Are we to assume, then,
that no such level of abstraction exists for choreography?
Au contraire! History has provided us with an abundance
of abstractions, and this turns out to be one of the more
substantive problems surrounding dance notation.

2.1 Lack of universality

In the early years of ballet, dance notation was not a par
ticularly burning issue because it was a rather simple matter.
All dances were made out of a relatively small number of
archetypal patterns, and "recording" a dance was simply
a matter of indicating which patterns were selected, in what
order they were executed, and what path the dancer followed
while executing these patterns. (An analogy with the neu
matic notation of chant may be appropriate.)

As the vocabulary pf ballet became freer, such "neu
matic" notations became less useful. The issue of "com
monly accepted patterns" also dissolved as dance styles
began to cross international boundaries. There followed a
wide variety of attempts to record movement iconographi
cally. (The number of variations on the stick figure in the
name of dance notation is almost mind-boggling.) Unfortu
nately, such "icons" could never represent movement; they
could only represent selected positions assumed in the
course of movement. How one progressed from position to
position tended to be described in an ad hoc manner, gen
erally fully understood only by the inventor of the notation.

In spite of these many unsuccessful attempts, this century
has seen two genuine abstractions of human movement in
corporated into notations-one developed by Noa [Eshkol]
and Abraham Wachmann, the other by Rudolph Laban
([Hutchinson]). Both of these abstractions are based on the
skeletal system-a view of the body as a system of bones

68 National Computer Conference, 1980

connected at joints. Both also incorporate systematic rep
resentation of the passage of time. Thus,_ one is presented
with a continuous representation of positions assumed by
the skeleton throughout the flow of time, as opposed to the
"selected snapshots" of an iconographic notation.

Unfortunately, while these two notations share a common
abstraction, their syntaxes differ radically. Neither can be
readily embraced by one who is familiar with the other. This,
then, is the key "political" problem with dance notation.
Each notation has its own strongly devoted band of follow
ers, organized as an international society and firmly con
vinced that theirs is "the true way." At a time when it is
hard enough to get the majority of the dance community to
accept notation of any sort, such factionalism is of little ben
efit. (Incidentally, several ofthe iconographic notations have
also managed to gather their own factions. A dancer who
is seriously interested in notation is bound to have about as
much trouble as a Republican who is seriously interested in
a presidential candidate.)

In a sense, one may say that the presence of two viable
notations is worse than having none at all. Excessive quib
bling over syntax tends to cause one to forget that at the
foundation of both is an excellent semantic model for de- .
scribing choreography. While it would not be particularly
difficult to train a dancer to read both notations, there being
no differences in the basic principles, the antagonism offac
tionalism will continue to discourage any dancer from learn
ing either.

2.2 Difficulties in. recording

Once a notation is selected, one must still face the fact
that preparing a dance notation score is not an easy process.
The main difficulty is that while a composer may be able to
get all his ideas set down in score working strictly on his
own, a choreographer tends to grow his ideas out of inter
actions with his dancers. Under such circumstances, a cho
reographer is not really in a position to spend his time writing
scores; so this role is assumed by a third party, a "dance
notator" who acts somewhat like a court stenographer while
rehearsals are in progress.

A professional notator described the difficulties in pre
paring a danCe notation score as follows ([Brown)):

"First of all, before the notator's preparation of the final pencil
draft, there is the process of writing and rewriting rough drafts.
As the dancers learn, the notator jots down symbols. If there
are many dancers quickly learning difficult movements, it be
comes impossible for the notator to write everything while the
dancers are learning. The dancer learns a total movement with
all parts of the body operating "in parallel," while the notator
must record each change in a body part-being limited by the
speed at which he can write. Because of this limitation, the
notator learns to write essential key symbols which cue hi~
memory. When viewing his notes after the rehearsal is over,
the notator will fill in the details and check these at the next
day's rehearsals.

A problem with this way of working arises when a notator
works with a large ballet company staging a new work. Because

of the company's organization, many hours a day must be de
voted to teaching the work. In some situations, the choreog
rapher may be working with different groups of dancers through
out a ten to twelve hour period. This makes the process offilling
in details "after hours" difficult. As a rule, the filling-in process
generally requires one to two hours for each hour spent in re
hearsal. Even if we overlook the fatigue of a day which involves
twelve hours of rehearsal time, simple arithmetic shows that
there just aren't enough hours in the day to keep up with the
work outsIde rehearsal. The notator must be tremendously or
ganized and must have sufficient stamina to stay abreast of what
every dancer in the company is learning-committing most of
this information to memory. Frustration sets in when the cho
reographer decides to add and drop parts of the dance or to
revise steps and sections. Battling constantly with the organi
zation of notes, the notator tries to "get everything down,"
filling in missing spots during "clean-up" rehearsals, which are
conducted after all the dancers have learned their parts. Finally,
when the dance is ready for production, the notator collects all
the information regarding props, scenery, lighting and cos
tumes. These are included in the score, since the score serves
as a historical document to be used for reconstruction purposes.

Under such working conditions the nptator is in no position
to work on the final pencil draft as the rough notes are accu
mulated. The notator will not have such time until after the
dance is in performance. The job then becomes a matter of many
hours of solitary work copying the rough notes, laying out pages
of graph paper, and refining the actual notation used.

Autography, in itself, is also a very time-consuming process.
The autographer must know enough Labanotation to be familiar
with the symbols to be copied and the basic rules of layout (in
case the layout of the final pencil draft has to be modified).
When the autography is done by hand, the autographer must
also be skilled in working with special pens, indelible ink, tem
plates, and reproducing paper. The symbols are arranged on the
page as specified in the notator's pencil draft and layout booklet.
Calculations for margins and aesthetic spacing are made before
proceeding with the inking, where each line is separately drawn
and connected."

It should be noted that the problems of autography are
more serious for Labanotation than they are for the notation
of Eshkol and Wachmann. However, the basic problem of
collecting the actual data remains the same. Furthermore,
the astute reader will have noted in the above scenario that
one must still rely heavily on the powers of human memory.
Once a score is prepared, it can bear the weight of authority;
but the problem of establishing that a score is an accurate
recording of the choreography is not a minor one. In general,
the choreographer will not understand the notation well
enough to pass judgment on it. This brings us to our third
major problem.

2.3 Difficulties in reading

Unfortunately, the only individuals who are capable of
reading dance notation scores are those same individuals
who serve as dance notators. Neither choreographers nor
dancers, in general, can, on their own, extract all the infor
mation which these scores contain. Not only does this mean
that the choreographer is in no position to pass judgment on

the accuracy of the score, but also it implies that for purposes
of reconstruction, a dance notator must again be brought to
rehearsals. However, the role of this notator has now shifted
from "court stenographer" to "ballet master." Using the
score, the notator can demonstrate all the movements as
they have been recorded. Thus, the notator will work with
the dancers the same way that the choreographer does. The
difference is that all authority of information resides in the
score; the notator is simply the medium by which the dancers
may gain access to the score.

3. COMPUTER ASSISTANCE

3.1 Data entry

The above description of the plight of a dance notator in
preparing a score might, in another context, be construed
as an advertisement for a word processing system. In fact,
the technology of word processing is precisely the sort of
remedy which will alleviate all the time-consuming frustra
tions of score preparation. The only potential obstacle arises
from the fact that the basic data structure for word pro
cessing is one-dimensional, the character string, while dance
notation scores are inherently two-dimensional.

Fortunately, the technology of computer graphics allows
us to manipulate two-dimensional structures as easily as one
dimensional ones. The real issue is whether or not the no
tation is well enough structured that it can be conveniently
manipulated in a syntax-directed fashion. The notation of
Eshkol and Wachmann poses no problem in this respect,
since it consists of elementary configurations of numbers
placed within the boxes of standard graph paper. Labano
tation, on the other hand, has a much broader vocabulary
of graphic symbols; but it has been demonstrated that these
symbols are highly organized according to a structure which
may be reflected in the internal structures of a text pro
cessing system ([Smoliar]).

Given such a "notation processing system," one may en
visage the notator of the future working with a portable
graphics terminal which may be easily installed in a ballet
studio. All initial notes may be entered during rehearsal into
some common file structure which will become the data re
pository for the particular ballet. As the steps are taught in
greater detail, the notator will be capable of using the time
to update the score as it has been recorded thus far. Then,
as rehearsal enters the final stages, the notator will be able
to follow along in the score, confirming the accuracy of the
recorded material. Much of the routine efforts of "filling in"
and "cleaning up" may be relegated to system functions
performed by the notation processor, leaving the notator free
to worry primarily about the semantic content of the nota
tion. Finally, given a suitable device for hard-copy output,
the need for a separate autography stage will be eliminated.
All information necessary for graphic formatting will already
be present in the file structure of the score, so that the prep
aration of a "final" draft will simply be a system output
function.

Computers Helping the Dance: A Vision 69

How realistic is this vision? For Labanotation the basic
theoretical problems have been solved, and a prototype sys
tem has been implemented ([Smoliar]). However, the tech
nology of the implementation is not at all appropriate to the
ballet studio, utilizing large and expensive processing and
graphics equipment. The major problem is to take the results
of research conducted to date and pass them through a de
velopment phase which would result in a usable product.
Unfortunately, such a development project would entail a
substantial expense for a product which would never be par
ticularly widely used. (Even assuming an overwhelming in
terest in dance notation, the number of notators will never
approach the number of secretaries.) Thus, the development
of the product itself could never be cost-effective; and, as
a result, for sheerly economic reasons, the feasibility of this
vision is pathetically low.

3.2 Notation interpretation

From a point of view of data processing, the problem of
"notation illiteracy" is far more substantial than the data
entry problem. The latter is only concerned with formatting
a well-defined system of symbols; the former must address
the semantics behind these symbols. Of course, the real issue
behind these semantics is the issue of human movement it
self. What is required, at the data processing level, is the
ability to construct a simulator of human movement. Given
the existence of such a simulator, one may then regard a
notation score as a set of commands to that simulator.

How might such a simulator be structured? Clearly, the
basic underlying model of the human skeleton must be pres
ent, since this model is incorporated in the abstractions of
the systems of both Laban and Eshkol and Wachmann.
When one addresses more detailed specifics, however, one
discovers that much of the basic structure of Labanotation
may be interpreted as a rather powerful plan for a highly
general simulator ([Weber]). Under this model every joint
of the skeleton may be regarded as being endowed with the
"processing power" to orient itself with respect to some
well-defined system of reference. Furthermore, both the
origin and the axis-orientation of this system of reference
may vary during the course of the simulation, according to
specific commands incorporated into the notation. Further
more, every moment is classified as either a gesture, which
simply changes the orientation of the skeleton, or a support,
which entails a major movement of the center of gravity.
(Gestures will, necessarily, entail minor movements of the
center of gravity.) A simulator based upon these principles
has, in fact, been designed ([Badler)).

Clearly, no dancer or choreographer will be interested in
the specific mechanisms of a computer simulation of human
movement. However, given an implementation of such a
simulator, one could monitor its behavior through a graphic
display of human figures. These figures need not necessarily
resemble "ideal" dancers. (Remember, the notation itself
is still only an abstraction of the movement it represents.)
However, the display should be capable of capturing all in
formation which the notation has recorded. Furthermore.

70 National Computer Conference, 1980

given the essentially invariant behavior of the simulator, the
display may be highly flexible. One may "observe" the sim
ulator from alternative points of view, perhaps changing the
point of view while the display is in progress. Given many
figures, one may wish to ignore displays of all but one or
two. These are facilities by which a dancer would be able
to observe the steps and learn a part in a manner similar to
the protocols of the rehearsal studio. (These facilities are
also far beyond the capabilities of any conventional video
recording techniques.) Finally, the output as prepared by
such a simulation system would be a playback of the score
which the choreographer could observe as a means of ap
proving the accuracy of the contents of that score. Working
in conjunction with the notator, the choreographer could
have a direct hand in establishing the score's validity.

Once again, there is the question of feasibility of such a
vision. If the prospects of a notation processing system are
slim, there seems to be little hope for the development which
would be necessary to produce such a display system which
could become a convenient installation in a ballet studio.
One can only hope that the need for the simulator itself may
attract the interests of better-endowed institutions. It would
not be the first time the arts would benefit from a "spin-off"
of a product of high technology.

4. OTHER VISIONS

4.1 An information management system for recorded
dance

4.1.1 A network of data bases

Given that the two visions proposed in the preceding sec
tion appear to be rather remote, it may be somewhat unwise
to fantasize further. Nevertheless, these visions have some
implications which are worth dwelling upon in their capacity
to foster further visions. The mere fact that we have pro
posed a variety of digital representations of human move
ment, for example, leads us to consider possible applications
involving data bases.

One of the greatest problems facing the dance world, as
we have seen, is the reliable dissemination of information.
In general, a company learns its choreography from a cho
reographer who' 'resides" there. If another company wishes
to perform the same ballet, they must make arrangements
for the choreographer, or some other reliable authority, to
"visit" for the purpose of teaching the choreography. While
the choreographer may be the only reliable authority in the
matter of teaching all the subtleties of performance, teaching
the basic steps to a new company is generally a rather tedious
and tiresome undertaking. The problem, once again, is one
of the information imprisoned in an individual's memory.

A network of data bases of dance notation scores would
go a long way toward alleviating this difficulty. The result
would be one of a nationwide (if not worldwide) library of
the ballet repertoire. Local sites would be responsible for
recording and maintaining their share of this repertoire.

Given the ability for computer interpretation of dance no-

tation, this library would be accessible even to those "illit
erate" in the notation. One could draw upon the computer
not only to provide the score but also to provide the sort of
performance of the score described in the previous section.
Under these circumstances, a chqreographer could rely upon
the services of the computer to handle teaching the basic
steps, leaving him free to concentrate upon the final details
of performance. (A similar situation, without the use of a
computer but with dancers "literate" in Labanotation, cur
rently exists in the Syracuse Ballet [UbellJ.)

4.1.2 Copyright issues

A critical component of any information management sys
tem is a mechanism which protects the information managed
by the system. Such a mechanism should secure responsi
bility for the creation of a score, as well as protecting the
choreographer's rights to determine who may read that
score. These ideas deserve a bit of further elaboration.

First of all, what is the nature of the information to be
subject to protection? In the system proposed in the pre
ceding section, this information is divided into two cate
gories: (1) notation scores, and (2) animated interpretations
of notation scores. Four levels of protection may be applied
to both of these categories:

1. No access-a user is denied any access to a particular
score or animation.

2. Read only-the user may use the system to view a
particular score or animation, but access is limited to
what may be observed while seated at a display ter
minal.

3. Copy-the user may request a physical copy of a score
or a film or videotape of an animation.

4. Update-the user is allowed to modify the information
in a notation score or animation or access the program
which translates notation into animation.

The information management system may then maintain
records regarding which levels of protection apply for which
notation scores and animations to which users of the system.
Authority to update will incorporate authority to change a

. particular protection level. Thus, initially, the notator will
maintain a protection level of 4 and use it to limit access to
preliminary versions of the score. (The choreographer and
dancers, for example, may be allowed read only access,
while the rest of the users are forbidden all access.) Ulti
mately, by assigning a protection level of 4 to a choreog
rapher for a completed score and animation, the system au
tomatically allows that choreographer to be the ultimate
arbiter of protection status for his "personal" information
or to delegate this authority to any user of his choice. Re
quests from users for permission to see protected informa
tion may also be handled by the system through a "mailbox"
facility.

Under such a system it is likely that information will be
better protected from copyright abuse than printed scores
or films. A page of dance notation displayed at a terminal

cannot be taken over to a Xerox machine to be copied with
out authorization. Also, it should not be difficult to guard
against users photographing or filming images displayed at
a terminal. There remains the problem of a user copying out
a notation score by hand, but this problem is comparable to
that of an individual preparing a notation score strictly from
attending performances of a ballet. While this system would
not prevent all forms of copyright abuse, it would only allow
those which are extremely difficult or inconvenient to im
plement.

4.2 Choreography

While many choreographers derive their inspirations from
spontaneous interactions with their dancers, not all cho
reographers enjoy the luxury of a company of dancers ex
isting purely to satisfy their creative urges. Even in the best
of companies, rehearsal time is limited; and a choreographer
cannot always explore his creative urges at his personal con
venience. Here, again, the composer is at an advantage. In
the absence of an instrumental ensemble, he may still turn
to a keyboard to experiment with his ideas.

The sort of facility we have been discussing could ulti
mately serve as an analog to the keyboard for a choreog
rapher. Of course, it would require the choreographer to
learn the notation; but is that asking more than requiring that
a composer possess certain keyboard skills? The intent is
not to use the computer to produce an artistic object, but
rather to assist in those mental processes which are invoked
during the act of creation. It will be little more than a device
with which the choreographer may better plan his rehearsal
time.

Considering what has happened in music, one must envis
age the posibility of attempts to automate choreography it
self. The results in music, to date; have been rather unim
pressive. There have already been some analogous attempts
in choreography. Unfortunately, in both cases these tend to
be diversions of individuals who are rather casual practi
tioners of the art. Lacking the patience to negotiate the ex
cruciating details of creation, they turn to technology for a

Computers Helping the Dance: A Vision 71

crutch. Unfortunately, human audiences tend to respond to
acts of human creation; and unless the performers manage
to contribute some element which transcends the meagre
bookkeeping of the alleged choreographer, the resulting
product tends to have little to offer even the most dedicated
audience of human beings.

4.3 Scholarship

If the production of dance appears to be in the Dark Ages
when compared with the world of music, the issue of dance
scholarship is practically pre-historic. Once again, the prob
lem is one of recording information. It is very difficult to
analyze a ballet when all one has are verbal accounts of that

. ballet. (One might just as well pass legal judgment strictly
on the basis of hearsay evidence.) The accumulation of a
repertoire in scores would open the doors to possibilities for
comparative analysis. Even in music, the theory of com
position, as we know it, did not come into its own until
notation was a common practice. The study of dance history
can, eventually, become more than an accumulation of in
direct accounts, but only if we see to it that the dancers them
selves are allowed the benefit of objective recording.

REFERENCES

[Badler] Badler, N. I. and Smoliar, S. W., "Digital Representations of
Human Movement," Computing Surveys, Vol. 11, pp. 19-38 (1979).

[Brown] Brown, M. D., Smoliar, S. W., and Weber, L., "Preparing Dance
Notation Scores with a Computer," Computers and Graphics, Vol. 3,
pp. 1-7 (1978).

[Eshkol] Eshkol, N. and Wachmann, A., Movement Notation, Weidenfeld
and Nicolson, 1958.

[Hutchinson] Hutchinson, A., Labanotation, Theatre Arts Books, 1970.
[Smoliar] Smoliar, S. W. and Tracton, W., "A Lexical Analysis of Laba

notation with an Associated Data Structure," Proceedings 1978 Annual
Conference: Association for Computing Machinery, Vol. 2, pp. 727-730.

[Ubell] Ubell, E., "Dance Notation Steps into a New Era," The New York
Times," Sec. 2, pp. 12, 19, October 24, 1976.

[Weber] Weber, L., Smoliar, S. W., and Badler, N. I., "An Architecture
for the Simulation of Human Movement," Proceedings 1978 Annual
Conference: Association for Computing Machinery, Vol. 2, pp. 737-745.

Automatic Camera Effects System (ACES)

by STEVEN N. CRANE and R. DAVID SNYDER
Walt Disney Productions
Burbank, California

INTRODUCTION

The need to achieve realism in theatrical motion pictures
with miniature models requires precise positioning, close
tolerances, and a high degree of repeatability. A particular
movement of the camera and the subject(s) may be repeated
several times to create mattes or other special effects in
volving mUltiple exposures. Traditionally, miniatures pho
tography has been performed' 'by hand. " Each frame would
be set up and shot individually, a tedious and time consuming
procedure. Effects work of this sort was very expensive and
required special skills and lots of patience; consequently,
very little of this type of filming was done. The introduction
of electronic, and recently computerized, motion control has
tremendously advanced the state ofthe art. It is now possible
to create effects relatively easily and inexpensively that a
few years ago would not have been feasible. Electronic mo
tion control enables the film maker to control the orientation
of the camera and subject to a high degree of precision and
move the system through several degrees of freedom.

Computerized motion control places the electronic motion
control system under the control of a computer. The com
puter is programmed to provide the variety of specific types
of control that the film maker will want to use. He may call
up those controls, specify whatever parameters tailor the
control mode to the particular instance, and the computer
operates the motion control system to achieve the desired
effect. The computer can also aid the film maker in other
ways such as scene planning and storage and retrieval.

EARL Y WORK AT DISNEY

The first automated camera system at Disney was con
structed in late 1970 by Ub Iwerks. It was designed specif
ically fDr filming passes over held art wDrk fDr the "Hall of
the Presidents" ShDW atWalt Disney WDrld. It cDnsisted .Of

a·30 fDDt long .Overhead track upDn which the camera was
mDunted (the "truck axis"). A large square plate at .One end
.Of the track held the art wDrk tD be phDtDgraphed. The plate
could be mDved vertically (nDrth/sDuth) and hDrizontally
(east/west). AutDfDcusing was achieved with a cam driven
.Off the truck axis. The system thus cDntrDlled a tDtal .Of three
axes.

73

The system was nDt cDmputer .Operated. It wDuld scan a
strip .Of white paper. When a black line was detected on a
particular "track" the axis controlled by that track wDuld
begin tD mDve until anDther line was detected. When all axes
halted, the shutter wDuld be tripped autDmatically and the
system wDuld mDve .On tD the next frame. It .Operated in stDP
motiDn mDde .Only. Unfortunately, the project gDt a late start,
there were problems with sensitivity and cDnsistency and
with the deadline IDDming ever closer it was decided tD resort
tD traditiDnal methDds tD finish the jDb. Ub planned to CDn
vert from the white paper tape cDntrol methDd tD punched
paper tape when time became available. He alsD fDrmulated
plans tD build an autDmated cartDDn crane. Unfortunately,
Ub died befDre he cDuld implement any of his plans. With
Ub gDne there was nD .One left in a pDsitiDn .Of authDrity tD

push fDr innDvative methods.
Several years later (1976) the studiD faced the prospect .Of

producing a science fictiDn mDvie (eventuahy,dubbed "The
Black HDle") invDlving hundreds .Of matte paintings and a
tremendDus wDrklDad of special effects processing. With .Out

an equally tremendDus increase in prDductivity the film cDuld
nDt be made. The idea .Of shoDting held art (such as a matte
painting) autDmatically was reexamined by Dave Snyder,
Manager .Of Scientific Programming, DDn Iwerks, machine
ShDP manager, and matte arti~t, HarrisDn Ellenshaw. They
.Obtained approval fDr cDnstructing the "Matte-SCAN" sys
tem.

The Matte-SCAN system is a high precisiDn numerically
contrDlled stDp-mDtiDn camera crane. The system mDves
along a 71 inch truck axis, with 50 inches east/west, and 26
inches nDrth/sDuth. PDsitiDning accuracy is a thousandth .Of

an inch in each axis. The camera is capable .Of expDsure times
from infinity tD shutter speeds .Of .Over 24 frames per second.
The system alsD prDvides autDmatic fDcusing. It is used tD

photDgraph a matte painting Dr a prDjected image. The pro
jectDr frame advance is cDntrolled autDmatically. There is
alsD an auxiliary output channel which can be used fDr spe
cial effects devices tD be synchronized with the .Operation
.Of the rest .Of the system. The entire system is .Operated au
tDmatically by a prDgrammable contrDller designed tD CDn
vert nDn-n/c machine tDDls tD numeric cDntroi.

Early tests revealed the Matte-SCAN system tD be an
unqualified success. This lent new credibility tD the cDncept
.Of cDmputer-aided film making. PropDsals first made by

74 National Computer Conference, 1980

Dave Snyder in late 1971 to build an automated motion pic
ture camera were reexamined. Also, other motion control
'systems then in existence at other studios were considered.
However, none of these provided exactly what was needed.
It was realized that such a facility would become a perma
nent tool as basic as the Mitchell camera and Chapman crane
to future film-making at Disney. Therefore, it was decided
no reasonable expense would be spared in doing a thorough
and complete job.

DEVELOPMENT OF ACES

The go-ahead to build the Automatic Camera Effects Sys
tem was received in early February 1978. The system was
designed between January and May 1978. An "Operator's
Manual" was issued in April 1978. This served as both a
functional specification for the software design, and as a
device for studio personnel (who would operating the sys
tem) to tailor the device to their needs. Software coding
began on the operator interface that same month. As changes
were made to the manual they were implemented in a dem
onstration program. The software was coded initially on a
NOV A 2 system since the ACES computer was not ordered
until May 1978, and not delivered until October. At this time
production on "The Black Hole" was scheduled to begin
August 1. Meeting that date would be impossible but every
effort was made to keep the pace of development at a high
level.

The software installed on the NOV A 2 included provisions
for responding to commands as though the hardware were
present. This enabled all functions but the interface to the
hardware to be debugged before the hardware even existed.
The servo equipment was ordered from an outside vendor
in May 1978 and was delivered in October. The computer
was interfaced to the servo controllers by Walt Disney World
personnel. The first test shots were filmed on November 6,
1978, and the first production shots were filmed on Novem
ber 24, 1978. After some light leakage problems in the camera
were fixed, production began in earnest on December 13,
1978. Production of "The Black Hole" by the second unit
was wrapped on October 12, 1979. In the interim the soft
ware had gone through several phases of enhancements and
additions. The hardware was also continually being updated
and improved.

CONFIGURATION OF ACES

The Automatic Camera Effects System is permanently in
stalled on Sound Stage 3 at Walt Disney Studios in Burbank,
California. It consists of a camera stand mounted on a 68 '
foot long fixed two-rail track (Figures 1 and 2), a model stand
riding a portable 30 foot track (Figures 3 and 4), and a min
icomputer and servomotor controllers located in an air-con
ditioned computer room within the stage. Other devices are
also used in conjunction with ACES including a process
projector, a video camera, two video monitors and a video
tape recorder, a 16 foot by 25 foot high frequency blue

screen, a 38 foot by 72 foot DC blue screen, and other effects
devices that may be wired up to ACES to achieve some
special purpose.

The computer is a Data General NOV A 3/12 with hardware
multiply/divide, hardware floating point, 64K words ofmem
ory, a 2.5 megabyte cartridge disk, dual floppy disks, a
Dasher video display terminal, and a Dasher printer terminal
(see the block diagram in Figure 5). The ACES software
operates under the Mapped Real Time Disk Operating Sys
tem and is coded about 90 percent in FORTRAN V and 10
percent 'in NOVA assembly language.

The system operates in the foreground on the CRT ter
minal. The software consists of several concurrent tasks.
The main task processes all user input and operates the hard
ware during filming. Other tasks display the current camera
and model stand positions, monitor the digital inputs, and
handle the jogging controls.

The camera stand has six degrees of freedom. The axes
are identified as follows: truck (parallel to the track), east/
west (horizontal, perpendicular to the track), north/south
(vertical), pan (yaw), tilt (pitch), and roll plus focus. These
axes are illustrated in Figure 1. The shutter and film transport
are also computer controlled as to position and speed of
advance/rewind. There is also an electronic shutter which
is used for capping. The model stand has four degrees of
freedom: truck (parallel to the portable model stand track),
yaw, pitch, and roll. These axes are illustrated in Figure 3.

The resolvers which measure position are designed to pro
vide a control tolerance of 0.01 inch for linear axes and 0.01
degree for rotational axes. The camera and model stand axes
can be moved into a position which is within these tolerances
of the desired position. Since the mechanical tolerance of
the equipment is finer that the resolution of the resolvers,
the hardware achieves even greater accuracy in repeating
a movement through a sequence of positions.

OPERATION OF ACES

ACES is designed to be operated by studio personnel,
experts in film making but completely unfamiliar with op
erating a computer. A set of approximately 40 commands
is entered via the keyboard. A row of special function keys
ahove the keyboard is used to jog the camera stand or model
stand into a desired positon. The operator specifies a set of
between two and twenty positions in order to create a take.

A take is the building block of a motion picture. It is a
continuous strip of film which presents one unbroken se
quence of action from one viewpoint. Each attempt to film
such a sequence is a separate take, and several attempts are
usually required to obtain a satisfactory result.

The positions specified by the operator are called key po
sitions or station points. The camera stand and model stand
are required to be at a particular key position at a specific
frame number. A listing of key positions for one particular
take is shown in Figure 6. The position of the camera and
model axes for the frames between station points is obtained
by a piece-wise cubic polynomial interpolation algorithm
(the "inbetweener"). The interpolation is done automati-

Automatic Camera Effects System 75

AUTOMATIC CAMERA / EFFECTS SYSTEM (ACES)
Camera Crane Assembly With Axis Identification

Figure I-ACES camera stand.

cally by the computer whenever a take is to be filmed or
rehearsed. The inbetweener creates a file on the cartridge
disk containing the desired camera positions at each frame
in the take. A take may consist of up to about 2000 frames.

A pseudo-axis called the point of interest (POI) has been
defined for special use. The value of the POI axis is· the
distance from the camera to the object being photographed.
It is usually equal to the focus distance, but can be different
if special soft focus effects are desired. The POI is defined
in order to establish in 3-space the point at which to aim the
camera. The location of this point is "inbetweened" in the
same way as the other axes so that it will move smoothly
through space. If this point does not move through space,
then the camera will remain trained on this point (moving
camera pan and tilt) even though the camera stand and model
stand may be moving through a complicated sequence.

The ACES camera will film or rehearse a take in two
modes: continuous motion or stop motion. Under continuous
motion the film transport and mechanical shutter move con-

tinuously while the camera stand and model stand also move.
This is the way live action motion picture filming is done.
Any objects in motion will create a blur on the film which
is usually a desirable effect since it looks realistic and com
municates motion to the viewer. Effects filming, however,
is often done with stop motion. Because the objects being
filmed have traditionally been put into position painstakingly
by hand and moved by hand from frame to frame, it was
necessary to shoot each frame individually with all objects
at rest. It was not possible to have the objects being pho
tographed and the camera in continuous motion during film
ing.

With a motion control system (using servomotors-not
stepper motors) it is now possible for all elements of a scene
to be in continuous smooth motion relative to one another.
This is most important for scenes involving fast action. Sharp
images of an object in rapid motion across the field of view
causes a "strobing" effect that is distracting and undesira
ble.

76 National Computer Conferenc.e, 1980

Figure 2-ACES camera stand.

MODEL
PITCH

Automatic Camera Effects System 77

AUTOMATIC CAMERA/EFFECTS SYSTEM (ACES
Model Stand Assembly With Axis Identification

Figure 3-ACES model stand.

Another special type of continuous photography is slit
scanning. In slit-scan mode the ACES camera can create
effective shutter openings of greater than 180 degrees. This
increases the degree of blur and can be used to create streak
ing effects. Shutter openings approaching 360 degrees can
be achieved by holding the shutter open for close to the
entire duration of the frame and then quickly advancing from
full open to full open to advance the film to the next frame.
As currently implemented, the film is advanced in about 340
milliseconds. If the exposure time is 15 seconds (a typical
value for miniatures photography which requires a small
aperture to achieve depth of field) then the effective shutter
opening is 356 degrees.

The key positions or station points are usually established
by jogging the camera and model into position and viewing
the scene through a bore sight or video camera fixed in place
of the motion picture camera. The entire movement may
then be rehearsed and viewed (and recorded if desired) in
black and white video. The take may then be modified if
necessary by inserting new key positions or deleting or

changing old ones. Once a take has been filmed the system
prevents it from being modified further. However, a take
that has been filmed can be copied and the new, duplicate
take can be edited.

The take data is stored permanently on floppy disks, and
up to 99 takes may be put onto a single floppy. The take
data consists mostly of position data but also includes such
"slate" information as the type of lens used, the date and
time the take was last shot, the name of the scene and pro
duction and so on.

The sequence of events that occurs in stop motion shoot
ing begins when ACES moves all camera stand and model
stand axes into position for the next frame. The computer
then checks to see if a pause in shooting has been requested.
The request is done either in advance via the keyboard entry
or during shooting by pressing a pause button at the control
console. The programmed pauses may be used, for example,
to adjust set pieces through which the camera is supposed
to be moving as they pass in and out of camera range or to
maneuver a blue screen backing as the camera pans around.

78 National Computer Conference, 1980

Figure 4-ACES model stand.

Automatic Camera Effects System 79

ACES BLOCK DIAGRAM

HARDCOPy
TERMINAL

EFFECTS
CONTROL

- -- -- -- ---

COMPUTER

NOVA 3/12

(64 K WORDS
MEMORY)

(ANALOG)

INPUT/

OUTPUT

(DIGITAL)

---I

PROCESS I
PROJECTOR 1

I

DUAL

DISKETTES

SERVO
CONTROL

INTERFACE

CARTR!DGE
DISK

00
CAMERA
STAND

MODEL STAND SERVOS

- ---- --- --I I I
I E-STOP I CAMERA STATUS I

AND AND WARNING I PAUSE I SENSORS
BUTTONS

_J _J ---- ---
Figure 5-ACES block diagram.

The pause function is also useful for handling unanticipated
events so that filming need not be aborted. If there are no
pauses requested, ACES will proceed to produce any re
quested digital outputs. These may be used for example to
advance the process projector or control other special pur-

pose devices. The system then waits for mechanical jitter
to settle down. The settling time is an input variable, since
the amount of jitter in the system can vary widely depending
on how models and other devices are mounted on the equip
ment. After the settling time has passed, the transport/shut-

80 Nati<mal Computer Conference, 1980

1 11 F'OS I T I ON DI~ iH FOP THKE 13 (" NK 13 ON FLOPP'/ 23

LAST SH0T 0N 1/21 '86 AT 1652 EXPOBUPE = 4. L1!.1!.1 BETTLING TINE =
t1 DISSOLVE ;:",1;:01'1 1;1 TO !:I E-STOP Hi 1;1

iJ 0 ti 1;1 !;i

PHN TIL T l?OLL FOCUS POI N. TPUCK N. YHJ.i N. PITCH 1'1. F.'OLL

47.00 54 5ti .!:I!.1 . !:It I 270. tlI;i Ij7.0tl 137. tll;i 4.26 2.48 -5. 84 2. 31

3.61 21ft. Oft 47. tiD 54.50 .00 .00 630.tItI 137. tItI 137.tlB 4.26 2.48 -5. 04 2. 31

Figure 6-Key positions for a sample take.

ter is operated to expose the film for the requested exposure
time.

The execution of a continuous shot is very simple. The
axes are moved smoothly and continuously through the en
tire take. While shooting in continuous mode, position up
dates are transmitted to the servo controllers every 40 mil
liseconds. Since position data are computed only for every
frame and a frame will usually require several seconds to
execute, it is necessary to compute on-the-fly position up
dates 25 times per second. ACES performs linear interpo
lation between even frame increments.

If at any time something happens to ruin the take or if the
equipment malfunctions anyone of several emergency stop
buttons may be depressed to disable the servo controllers
and let the equipment coast to a halt. The ACES software
detects the E-stop condition and reverts to the command
mode after displaying a warning notice. To test for correct
program operation a watchdog timer is built into the servo
control circuitry. If the timer is not reset by the ACES soft
ware at least every second, the E-stop comes on automati
cally.

The E-stop buttons are enabled at all times and may be
used during stop-motion or continuous shooting or when the
equipment is being moved via the jogging controls. Other
sensors detect the occurrence of a break in the film, check
the status of the mechanical and electronic shutters (open
or closed), receive the ready signal from the process pro
jector, and perform other similar functions.

CONCLUSION

TJ.."o I"'I'rot:ltaClt rornl~rot"r"tont fflr ":l C"'t.TctAfYII tn h~ nf "t;ll11P tn
.... .L.l,.., 6.1. """ ... "'~a. ""''1 U.l.1. "'.1.1.1.""'.&..1'" LV'" " >.:I J ...,"''''&. t,.. .. J <IV_ 'V'.... ., _. __ ~....,

the motion picture industry is flexibility. ACES is designed
for flexibility. The boom may be reoriented in anyone of
four directions. The yoke mounting to the boom may also
be rotated so that the yoke can be extended below to either
side of or above the boom. The yoke may even be completely
detached and located away from the camera stand, and in
this configuration the camera stand can be used as another
model stand. All of these things' not only can be done but
were done at some time or other during the shooting of "The
Black Hole. "

The same flexibility is required of the software. It was
occasionally necessary to introduce a temporary patch into
the software in order to achieve some particular effect. The
pause provision, a. variable settling time, and the slit-scan
shutter, among others were first introduced in this way.

Later, they were incorporated as available options. As more
options were built in, the need for programmer intervention
declined, but it never ceased entirely nor is it likely to. There
will probably always be an occasional requirement for some
new twist.

Electronic motion control systems can most efficiently
and effectively be used in conjunction with a computer. The
computer interface enables the operator to think and com
municate in the terms with which he is most familiar, and
at the same time the availability of built-in modes of oper
ation insures that the motion control system is correctly op
erated each time to produce the desired effect.

Electronic motion control is the first major innovation in
the motion picture industry in a long time. The effectiveness
and desirability of computer-aided techniques in film making
is now firmly established, but there remains much yet to be
done. Most of the tools used in the motion picture industry
date back to the 1930's or earlier. They do the job, but at
the expense of a large expenditure of time and specially,
skilled labor. The industry is fertile ground for computeri
zation to increase productivity, lower costs, and increase
both the quantity and quality of the product. At Walt Disney
Productions consideration is now being given to introducing,
computer control or computer assistance to the cartoon
cranes, the Multiplane cartoon camera, and the process lab.
Given spiraling production costs and intense competition for
box office receipts, the spread of computerized techniques
in film making is inevitable.

GLOSSARY

the movie or vid~o camera. It provides a check of the
camera's point of view.

Blue screen-serves as a background for shots where the
background is to be replaced with an image supplied from
another source. For example, there may be live actors in
the foreground superimposed on a background shot of a
volcanic eruption, or there may be spaceship miniatures
in the foreground with an image of stars and planets in the
background.

Capping-preventing light from entering the camera box to
keep the film from being exposed, especially while the film
is being advanced or rewound.

Held art-still photograph, painting, or projected image
which is given apparent motion by photographing it with
a moving camera.

Inbetweening-in animation the process of filling in the ac
tion by creating intermediate drawings for the frames be
tween key drawings. In ACES, interpolating positions for
the frames between key positions.

Jogging controls-push button controls that move a selected
axis a certain increment each time the button is depressed.
Holding the repeat key down causes a continuous move
ment. There is a fast jog rate and a slow jog rate for each
axis.

Key postion-a particular location and orientation of the
ACES camera stand that is required to occur at a specified
frame number during a take. There may be up to 20 of
them for a take of up to 2000 frames long.

Matte-an opaque silhouette intended to mask out a cor
responding area on a film frame. The masked out area will
then be replaced with an image from another source (such
as a matte painting). The matte must correspond exactly
to the image to be superimposed.

Process projector-projects an image into the scene being
photographed. The ACES process projector was used, for
example, to project an image of people's shadows onto
the side of a spaceship model.

Scene planning-preparing a movement of objects and/or
camera in advance by computing the desired positions at
each frame based on some criterion. The criterion may be,
for example, to achieve a "ratioed move" where the rate
of the camera toward the object decreases with decreasing
distance so that the object seems to grow in size at a
constant (rather than accelerating) rate.

Second unit-the film crew responsible for photographing
special effects and stunts. The first unit films the principal
actors and standard live action.

Shutter and film transport control-the ACES transport
mechanism holds the film in place (with pins inserted into
the sprocket holes) while the film is being exposed. After
it is exposed the transport pulls the film down to the next

Automatic Camera Effects System 81

frame, which is in turn held in place to be exposed. The
(mechanical) shutter is a thin half-disk which rotates be
fore the film plane so as to block light transmission. The
film is held during the other half of the shutter's rotation.
The shutter opening is usually 180 degrees but it can be
adjusted manually to any value between 0 and 180 degrees.
The time it takes to rotate the mechanical shutter once
(and the time it takes to expose one frame and advance
to the next) is called the turnover time or frame time. The
exposure time is one-half the turnover time for a 180 de
gree shutter, one-quarter the turnover time for a 90 degree
shutter, .and so on. The shutter can also be operated at
variable speeds. The shutter can be opened, held open for
a given exposure time and then rapidly closed again. The
shutter is operated in this way during stop motion shoot
ing.

Slate information-the take number, scene number, direc
tor's name, cameraman's name, and other such informa
tion that appears on the slate board photographed before
each take, and which uniquely identifies the take.

Slit-scanning-photographing with a moving camera or mov
ing objects with the shutter held open. The effect is to
create a streak across the frame for moving objects im
parting an impression of great speed.

Station point-a key position.
Stop motion-photographing still objects which move be

tween frames only while the shutter is closed. At relatively
slow speeds stop motion is indistinguishable from contin
uous motion. At high speeds the objects create a strobing
effect.

Strobing-when an object moving in relatively large incre
ments between frames seems to jump rather than make
a smooth move between frames.

Take-a continuous strip of film representing an uninter
rupted sequence of action from one viewpoint.

Automated computer controlled editing
sound system (access)

by WILLIAM R. DEITRICK
Mini-Micro Systems, Inc.
Anaheim, California

HARDWARE

General system description

The ACCESS hardware is comprised of eight 200 megabyte
moving head, removable disk pack disk drives. There are
two microcomputers, a disk drive controller, two auxiliary
memory banks, three sound data channels and a two channel
independent high speed memory bus (DMA) which inter
connects all of the preceding devices. There are various pe
ripheral controllers for interfacing and controlling external
equipment such as video tape record/playback units, mag
netic tape recorder/players, sound amplifiers, level moni
tors, and SMPTE code conversion units. The CRT terminal
(with keyboard), a 300 line per minute printer, video mon
itor, speakers, and the operations console which contains,
switches, indicators, and sound modification controls are all
located in the operations room which is about 60 feet from
the computer room where all the other equipment is located.
The computer electronics hardware is mechanized on two
sided printed circuit cards (PCB) approximately 5 x 8 inches,
with wire-wrapped integrated circuit sockets, and interface,
connectors on both ends. The PCBs plug into standard 7
inch high, 19 inch wide card cages with combination wire
wrapped and printed circuit backplanes. Ribbon cables on
the back edge of the PCBs interface between card cages and
to external peripheral equipment. The card cages, disk drive
controller, and power supplies are mounted in a standard
cabinet 84 in H x 19 in W x 24 in D.

Major component description

The master computer (MACPU) contain a microproces
sor, CRT terminal interface, 36 kilobytes (KB) of memory,
disk controller (DCU) interface, arithmetic/logic unit, inter
rupt logic, printer interface, a direct control interface to the
monitor computer (MOCPU), and the master DMA control
logic. The MACPU performs most of the data processing
load, handles interrupts, issues control tables and checks
status of the DCU and DMA. As the name implies the
MACPU is the master of the system and essentially controls

83

the entire system. The CRT terminal and the printer interface
directly to the MACPU. The DMA consists of two inde
pendent 8 bit data channels that allow simultaneous data
transfers between any two pairs of devices on the DMA.
Data transfer rates vary with the fastest rate being memory
to memory transfers, 2 megabytes (MB) per second, and the
slowest when the DCU is one of the devices, 806 KB/sec.
There are six major devices interconnected on the DMA
MACPU, MOCPU, DCU, two auxiliary memory banks
(AUX1, AUX2), and the sound channel DMA controller
(SCHDMA) which coordinates data transfers to two sound
data output channels (SCHl, SCH2) and one sound data
input channel (SCH3). The MOCPU is almost identical to
the MACPU except for the resident peripheral controllers.
It handles all SMPTE code operations for synchronization
purposes and has a floppy disk controller interface. It in
terfaces to all three sound channels via an independent 8 bit
bidirectional data bus which is used to send/receive sound
modification data, issue mode controls, monitor sound data
memory balance counts, and is also used to control and
monitor status of the external video tape ~quipment and
audio tape equipment. The AUXl, AUX2 memory banks
contain 28 KB each and are used primarily as butler storage
areas. The DCU is the most sophisticated device in the sys
tem. It can control up to 8 disk drives, each capable of storing
200 MB on a removable disk pack. Each pack can hold 40
minutes of digitized sound data so 4 hours and 40 minutes
of sound effects (7 packs) can be on line and instantlyavail
able to the system. One drive is used as the system software
drive and is also used to hold sound modification data, mas
ter library index, system maintenance and test routines, etc ..
Normally only a few seconds of a sound effect are required
to be stored in the library. That basic piece of sound can be
modified in an infinite number of ways and then only the
mod data need be saved which requires virtually no storage
space by comparison. The DCU requires a minimum of in
tervention from the MACPU which initiates operations and
monitors status. The DCU accesses its command tables and
transfers data under DMA control to/from any device on the
DMA except the SCHDMA. Command tables can be linked
or chained which allows a series of operations to be per
formed automatically. The DCU will select a drive, move

84 National Computer Conference, 1980

its heads to a specified cylinder, search for a selected record
or key, and when located perform a read or write data block
operation, and then signal the MACPU that it is finished.
The DCU can execute 25 commands and can provide full
track buffering to ease timing constraints. The sound chan
nels each contain 36 KB of memory configured as first in
first out (FIFO) memory. SCH 1,2 accept digital sound data
and the analog sections read the data out and convert it into
an analog voltage, send it to the output multiplexer which
routes the sound voltage to external equipment such as audio
amplifiers, level monitors, and tape recorders. The nominal
output sample rate is 50 KHZ and the digital sound sample
size is 12 bits. SCH3 is identical to SCHl,2 except for the
analog section which accepts, scales, and conditions a sound
voltage input from any external source or from the outputs
of SCHI and/or SCH2 through the input multiplexer. The
input sound is digitized at a 50 KHZ rate into a 12 bit word
and written into the FIFO where it is read out to the DMA.
The operations console contains the modification controls
and indicators for two sound channels (effectively an au
tomated mixer with added capabilities). Each channel has
a volume (level) control, frequency (pitch) control, six equal
ization controls that provide a range cut and boost from
-15db to + 15db over three frequency bands (each
adjustable). There are also bandpass shape selection switches
for each band. There are enable switches and indicators for
each of the controls, system status and mode displays, and
a SMPTE time code display. There are remote controls for
both video tape and audio equipment.

SOFTWARE

A detailed description of the software is beyond the scope
ofthis paper and it is difficult to describe in a general manner
and still be meaningful. In order to realize maximum effi
ciency and flexibility from the system the hardware was de
signed as general purpose as possible to permit continuing
software development to expand the capabilities of the sys
tem. A very good balance has been achieved whereby hard
ware handles real-time system requirements such as sound
data transfers, time code processing, interrupt generation,
high speed 16 bit arithmetic and logical operations, etc. The
neD performs many operations while requiring very little
intervention from the MACPU which allows'maximum pro
cessing time. Programs are generally modular and self con
tained which permit modification and upgrading without im
pacting the entire system. The power of the DCU enables
the computer to use virtual memory techniques which allow
the system disk to look like program storage. Program data
blocks can be moved between DCU and MACPU very rap
idly, 36 KB in less than one tenth of a second and MACPU
processing is suspended for less than one third of that. The
variable record format capability of the DCU penuits opti
mum program and data block size. Indexed sequential access
methods (ISAM) techniques are used allowing the DCU to
locate and fetch a sound (begin transfer) in less than one
tenth of a second. The editor seldom has to wait on the sys
tem because of programming delays. The menu concept is

used where the editor is presented a list offunctions, sounds,
etc., which are displayed on the CRT. He then responds by
choosing the desired item by entering a letter or number
corresponding to that item. Direct questions are displayed
requiring only a single entry to respond. Keyboard entries
are kept to a minimum as much as possible. Entries are error
checked and error messages displayed if the editor makes
a mistake such as an invalid time code, specifying overlap
ping sounds on the same track, attempting illegal operations,
etc. If auxiliary information is allowed such as descriptions
of sounds or modified sounds the entry format is free form,
i.e., the editor can enter anything he wants. There are no
"computerese" type entries required. All information en
tered or generated during operation is saved by the system
to eliminate redundant entering of data which permits many
tasks to be performed virtually automatically. Complete re
call and re-creation of previous work done at any level is
kept available so changes can be made quickly no matter
how long ago the original work was done. Reports are gen
erated in various formats and printed for use by editors,
sound technicians, and mixers. System software utilities
consist of a modified INTEL assembler and editor for pro
gram generation, DCU format, test routines, disk pack eval
uation, memory test programs for fault detection and iso
lation, and system diagnostics.

OPERATION

A brief description of the major programs and their func
tions available to the editor will be covered although it should
be noted that approximately one hour is required for a live
demonstration of the general capabilities of the system.

Editor

This program is used to fetch and edit a sound(s). The
desired sound is selected by entering its key ID (up to 15
alpha/numeric characters) or the list program will display a
screen full of sounds with their ID and description for se
lection. The display can be started at any point in the library
and will be continually displayed until the end or until the
editor selects· one by entering a number associated \X/ith the
sound. Previously modified sounds can be called by entering
the mod sequence number and they also can be displayed
on the CRT. The selected sounds can be played for listening
only or for modification using the operations console. The
sounds will be played upon command from the editor or if
the VTR is being used for picture display when SMPTE time
code agreement is found. (All picture material is recorded on
3/4 inch video tape cassette with SMPTE time code super
imposed on the picture and also recorded on one of the audio
tracks. If production sound was available it is recorded on
the other audio track.) The editor can choose one of the
following functions-play the sound as it exists in the li
brary, playa previously modified sound, create background
(continuously repeats the sound) or edit the sound. The edit
function permits modifying the length of the sound by pro-

Automated Computer Controlled Editing Sound System 85

gressively delaying the beginning or shortening the end of
the sound or will enable the editor to select any portion of
the sound. After the sound is played he can again select one
of the functions or if mods were made he can reset them or
save them. If the mods are saved the system assigns a mod
sequence number and after the editor enters a description
it is entered into the library. Mods made using the operations
console are retained and replayed so mods can be made to
mods on successive passes without losing the previous mods
(automated mix feature).

Prescript .

This program is used to create up to 19 sound tracks (10
min. each) for up to 23 picture reels (10 min. each). For
example, a 1 hour show will typically consist of six 10 min.
reels, each requiri'ng seven sound tracks for a total of 42
tracks. The editor will assign the reel number, track number,
start/stop time code, and the sound ID or mod number and
the program will assign a chronological sequence number
within the track and error check the entries. The accumu
lated track data is always available for display or printing.
Once entered the entries can be modified, deleted, or moved
to any tracks or reels very simply. This program also con- -
solidates all data pertaining to the show being worked on
sounds, mods, timing data and stores it on one (or more)
disk packs called the "show" pack. This permits an entire
show to be played or laid off without the need for all the
library packs (where the sounds originated from) to be on
line. It can also be used as a library pack and allows an entire
show to be saved in the physical space required for about
five 35mm 1000 foot reels instead of the typical 42 reels re
quired for a one hour show. Changes can be made and laid
off almost instantaneously using the show pack. There is
also a "show history" pack which contains all the data nec
essary to re-create a show pack except the basic sounds. A
show pack is not normally retained after a show has com
pleted final production. When a show pack is to be re-created
the program will tell the editor which library packs need to
be on line. Up to 80 show pack histories can be accommo
dated by one show history pack.

Play tracks

This program permits the editor to play back one or two
tracks (of the same reel). The editor enters the reel number,
track(s) number, and if the track playback is to begin at a
point other than the beginning of the track the sound se
quence number is entered. Playback commences upon com
mand from the editor (the SMPTE time code is simulated
by the program) or when SMPTE time code agreement is
found with the external equipment (usually the VTR). As
with all programs the operation can be terminated at any
time by the editor.

Record

This program is similar to the Play Track program and it
is used to layoff or record sound tracks to an external device
(usually a single or multi-stripe magnetic tape recorder). An
output multiplexer allows the tracks to be assigned to any
of six output lines. The editor enters the reel number,
track(s) number, the stripe assignment number, and if re
cording is to start at a point other than the beginning the
sound sequence number is entered. Recording begins when
the external equipment is interlocked (up to speed and in
sync) and SMPTE time code agreement is reached.

Update library

This program is used to load new sounds into the sound
library. A sound can be input from any source (synchronized
or not) and after being digitized it is saved temporarily on
the system pack. It can then be played back and checked
for quality, level, and then edited for length (usually several
seconds is sufficient for most sounds). When satisfied with
the sound the editor enters the key ID and description and
specifies the library pack the sound will be stored on. The
program checks the sound key ID for duplication and verifies
that there is enough space on the specified library pack. The
sound data is then. transferred to that pack and the master
library index is updated and the key entered into the ISAM
table.

List

This program enables the editor to display and/or print out
numerous lists of information in a variety of formats (alpha
betic or numeric order, time code sequence, etc.). Some of
these are the contents of the sOlJnd library, modified sound
library, showpack, show history pack, and track contents.
Cue sheets with time ordered entries and 35mm feet/frames
references for mixers and lay-off sheets for sound techni
cians are also provided.

SUMMARY

ACCESS was installed at Neiman-Tillar Associates, 8304
Beverly Blvd., Los Angeles, in January 1977 and has been
used to create sound effects tracks for many feature films
and TV shows. ACCESS has enabled the editor to expand
and utilize his creative abilities as well as increase production
output fivefold. The instantaneous availability of sounds and
the,electronic editing capability results in a tremendous time
savings. Software development continues to enable dialog
clean-up and music editing to be performed on ACCESS.
The second system is almost completed (pre-production
model). ACCESS has become the biggest technical advance
in the Post-Production sound editing field over the past 50
years.

The use of computer technology in Magicam slave camera
systems

by DAN SLATER, ROB KING and JOHN GALE
Magicam, Inc.
Hollywood, California

INTRODUCTION

With both the complexity of motion picture scenery and
costs increasing, the motion picture industry is looking for
cost effective methods to produce the desired film images.
One approach is to inset actors into miniature sets. Main
taining correct perspective relationships between the scene
components is critical to the illusion. Magicam has devel
oped a unique system which automatically maintains a real
time perspective match between scene components under
dynamic conditions. This unit in essence simulates a 6 degree
of freedom pantograph coupling 2 cameras at different scene
scale factors.

DIGITAL REPEAT PASS CAMERA

Several groups have developed digital repeat pass camera
systems for miniature photography. These systems generally
consist of a gimbaled camera on a boom arm which can
maneuver near a miniature set or artwork cell. The camera
is usually controlled by pulse motor drives under minicom
puter control. Most importantly the camera motion may be
repeated several times to form a composite image from scene
components.

As an example a simple spacecraft scene could be built
up from the following scene components: (1) star field back
ground, (2) spacecraft body, (3) spacecraft lighting, and (4)
spacecraft window detail.

Each component would be filmed separately because of
differences in component scale or lighting. A fleet of space
craft could be simulated by repeat pass filming of a single
spacecraft.

Digital repeat pass camera moti<?n is usually controlled by
a disk, tape or memory playback of a predefined move. The
move is normally produced by recording joystick motion or
using curve fitting techniques. Several systems operate in
synthetic coordinate spaces allowing the user to program
motion in a more convenient reference frame.

87

VIEWPOINT TRANSFORMATION BETWEEN SCENE
COMPONENTS

The successful combination of scenes at different scale
factors requires that a transformation of scene and lens char
acteristics be made. This is most easily visualized by ex
amining what will happen if a camera-lens-scene system is
magically shrunk. By invoking the law of similar triangles
it can be proven that linear dimensions will change by the
scale factor ratio while angles remain invariant.

1. The following linear dimensions will change by the
scale factor ratio: (a) film size, (b) lens diameter, (c)
lens focal length, (d) lens pupil aberrations, (e) wave
length of light, (0 translational motion of the lens en
trance pupil.

2. The following angular measurements and dimension
less ratios are independent of the scale factor ratio:
(a) angle of view, . (b) lens F number (focal length/di
ameter), (c) the optical angular resolution, (d) rotation
of the lens entrance pupil.

The viewpoint scaling transformation as described above
is impractical to implement in the real world, particularly if
the scale factor is dynamic. To be useful the scaling trans
formation must be modified to support an un scaled image
plane. Since the property of rotational invariance requires
that the angle of view shall remain equivalent between scene
components, both the foreground and background lenses
must have identical effective focal lengths. As a normal lens
is focused the effective focal length will vary. By using a
taking lens with telecentric properties (i.e., the chief rays
exit parallel to the optical axis) the angle of view will remain
constant during focus.

Since the focal length was forced to a constant value the
lens diameter scaling must be by iris adjustment. Several
problems arise. Image resolution in a diffraction limited lens
varies as the ratio of the wavelength of light to the lens en
trance pupil diameter. Since it is not practical to scale the
wavelength of light, image resolution will suffer due to dif
fraction limiting. Special optical techniques beyond the
scope of this paper are required to solve this problem.

88 National Computer Conference, 1980

SLA VE CAMERA PHOTOGRAPHY

Magicam currently is using an analog based slaved camera
system (ASC) operating under the constraints of the view
point scaling transformation. The ASC consists of a fore
ground camera unit, control unit and a background camera
gantry.

The foreground camera photographs the full scale scene
component, usually actors, against a choma-key blue screen.
The foreground hardware consists of a standard broadcast
color TV camera mounted on an instrumented dolly provid
ing 5 degrees of freedom. The position of the camera view
point is determined by a small analog computer reading the
various dolly sensors.

The dolly steers in the crab mode which corresponds to
all 4 wheels pointing in the same direction simultaneously.
This results in the dolly heading remaining constant inde
pendent of the direction of travel. As a first order approx
imation the wheel rotation rate and steering angle correspond
to the magnitude and direction of the horizontal velocity
vector. The velocity is sensed by a wheel tachometer and
resolved into cartesian coordinates by a sin-cos pot meas
uring the steering angle. The foreground lens viewpoint off
set is computed and added to the position data prior to the
scaling operation.

The background unit consists of a probe lens camera sys
tem mounted on a 6 degree of freedom gantry.· The probe
lens is similar to a submarine periscope. This allows maxi
mum maneuverability in the miniature scene since in theory
the background camera physical dimensions and height
should be reduced by the scale factor ratio. The probe lens
viewpoint height can under certain conditions approach the
miniature floor level.

The system uses DC servos to position the various axes.
Generally all servos must be fast, smooth and have low dy
namic errors. The rotational axes typically have noise levels
below 10 arc seconds and a velocity lag error constant (K v)
greater than 500.
• The horizontal axes are driven by velocity servos which

integrate the foreground velocity command signals. To main
tain an acceptable integration error tolerance it is necessary
to use both a high loop gain and servo nonlinearity modeling.
Since the servos are operating as integrators the constant of
integration must be defined. This is most easily established
by measuring the distance in both the foreground and back
ground to targets at equivalent scaled distances.

The vertical axis uses a leadscrew drive to physically raise
and lower the complete camera and probe lens assembly.
Even though this axis operates as a positional servo it is
necessary to initialize it by adding in an arbitrary offset. This
is necessary to set the correct height ratio between the fore
ground and background scenes •. Note that the background
floor height is at an arbitrary level relative to the foreground.

The lens yaw is accomplished by rotating the complete
camera and probe assembly with a direct drive DC torquer.
The lens optical path goes through the center of the torque
motor. Lens tilt is accomplished by servoing a . mirror
mounted at the probe tip.

ASC DEFICIENCIES

The ASC, while successfully in use today in television
productions, is not adequate for feature film production. The
ASC lacks the level of precision required for large screen
work and does not have move playback capabilities.

The precision of the perspective match is limited primarily
by three error sources.

Lens aberrations

The ASC optics have an excessive mismatch between en
trance pupil aberrations of the foreground and background
lenses. The entrance pupil aberrations do not degrade the
image but instead cause an angle dependent scene misregis
tration. The entrance pupil aberrations correspond to an an
gular distortion of the camera viewpoint.

Attitude determination errors

The ASC foreground attitude is referenced to the floor
which generally is not flat.

Roll errors

Camera roll is not sensed and therefore is not reproduced
in the background unit.

MAGIC AM MCS

The Magicam modular camera system (MCS) is a highly
modularized digitally based camera system. The MCS is es
sentially an integration of several concepts including a Mag
icam analog slave camera system and digital repeat pass cam
era technology. As a combination of several techniques it
provides more than the sum of the respective capabilities .

The MCS uses 35MM motion picture cameras to photo
graph the scene components, requiring significantly higher
accuracies than the ASC.

The MCS consists of the following modules: (1) fore
ground position measuring system (FPMS), (2) foreground
camera (FCAM), (3) digital computational system (DCS),
(4) background gantry assembly (BGA), (5) background cam
era (BCAM), and (6) background abort sensing and imple
mentation system (BASIS).

FOREGROUND POSITION MEASURING SYSTEM
(FPMS)

Because of problems related to a floor based attitude ref
erence used in a previous unit, the MCS attitude data is
derived from inertial sensors referenced to the g vector and
artificial stars in the stage area. The foreground position is
determined by an inertially smoothed microwave transpon
der. A CCD startracker bore sighted through the camera op-

Computer Technology in Magicam Slave Camera Systems 89

tical system provides a primary alignment referenced to the
camera viewpoint.

The strapdown inertial measurement unit (IMU) provides
body relative yaw, pitch and roll rate signals which are in
tegrated to form an earth relative viewpoint attitude. The
attitude matrix is used to resolve the IMU accelerometer
outputs into the earth reference frame. The acceleration
components are integrated twice to form a viewpoint posi
tion.

To maintain adequate long term accuracy it is necessary
to estimate the hardware errors. This is accomplished by
combining the IMU outputs with ranging data derived from
a microwave transponder in an extended Kalman filter.

The Kalman filter is configured as a partial feedback filter
operating in the error state space. The error state vector
includes 3 gyro bias, 3 accelerometer bias, 3 velocity error
and 3 position error state elements. To maintain acceptable
performance, approximately 1 filter update per second is
required.

As compared to conventional navigation systems, the
FPMS operates in a significantly smaller area, with a higher
sample rate and a higher translational axes measurement
accuracy.

FPMS performance design requirements:

Angular Translational

Range limit Continuous 50. meters
Rate limit 540. deg/sec 100. cm/sec
Acceleration 5400. deg/s/s 50. cm/s/s
Resolution 10. arcsec 2. mm
Accuracy............... 60. arcsec
Sample rate 96. Hz

CCD STAR TRACKER

3. mm
96. Hz

(1 sigma)
(1 sigma)

The FPMS star tracker provides two separate functions.
As a startracker the foreground CCD sensor detects artificial
stars in the stage area. Alternately the CCD video output
may be combined with the video from a similar background
CCD sensor to form a preview composite image.

The FPMS must be aligned relative to the camera view
point. The camera viewpoint corresponds to the camera lens
entrance pupil. By placing a series of artificial stars in the
stage area, the lens pupil location can be determined by star
tracking. A CCD imaging device is coupled to the film cam
era optical system by a beam splitter and a format conversion
relay lens. The relay is required because a full frame image
is needed for the composite scene preview function.

The CCD sensor samples the field of view as a discrete
512 x 320 pixel array, corresponding to approximately .1 de
gree per pixel in the object space. By computer processing
it is possible to resolve star positions to a small fraction of
a pixel. Tests with the RCA CCD sensor indicate star po
sitions can be resolved to 20 arcseconds. The pixel inter
polation is accomplished by first suppressing images other
than stars and then determining the energy centroid of a
defocused star. Spurious images are suppressed by subtract
ing a star off image from a star on image.

DIGITAL COMPUTATIONAL SYSTEM

The digital computational system consists of two general
purpose mini-computers with disk and 9 track tape storage,
an interactive graphics terminal and the associated software
required to operate the system. One computer handles the
FPMS while the other handles system control and the back
ground hardware.

MCS CONTROL PROGRAM STRUCTURE

The MCS control program is heavily based on state space
techniques as developed in modern control theory. The sys
tem state is defined as a minimum set of variables called a
state vector. The state variables are those variables which
determine the future behavior of a system when the present
state of the system and the excitation signals are known.

The dynamic behavior of the system is determined by the
state transition process where the new system state is formed
as a function of the current state and any deterministic forc
ing functions. In the MCS the state transition,is formulated
in a discrete time manner.

By formulating a state vector at a basic level, program
modularity is enhanced since intertask communications are
handled naturally by the state vector.

The core of the MCS program consists of the following
program modules.

State vector compiler

The state vector compiler allocates and produces named
references to an area in core where the state vector resides.

State initialization

The state initialization program copies the state vector to
and from disk in core image form. This routine is used both
to initialize the system and for graphics oriented nested con
trol structures.

State vector editor

The state vector editor provides a human interface to the
values in the state vector. Values may be both displayed and
modified.

Synthetic servo handler

The synthetic servo handler transforms the synthetic axes
motion state to real axes motion, provides predictive (lead)
motion estimation to compensate for servo desampler lag,
and provides error checking.

90 National Computer Conference, 1980

Foreground interface

This routine is an interlace to the foreground viewpoint
position estimate computer.

State transition program

The state transition program transforms the current sys
tem state to a new system state 1 sample interval into the
future. The new state is a non-linear function of the current
state and deterministic control functions.

State transition program editor/compiler

This routine is a special purpose editor which allows the
user to display and modify the state transition program using
a film oriented language. Provisions are included to partially
invert the state transition program for reverse time motion.

The MCS program is coded in the FORTH . language.
FORTH is a unique and powerlul programming technique
providing the required speed and language extensibility
necessary for this application. In essence FORTH simulates
a set of extensible virtual stack oriented processors which
are programmed in a virtual macro assembly language.

BACKGROUND GANTRY

The MCS uses the same background gantry as the ASC.
The gantry has been modified to accept a new probe lens
and motion picture camera. In addition a CCD camera has
been bore sighted on the optical axis to allow veritication of
scene component registration.

The gantry is under the control of a digital closed loop
servo system which was specifically designed to operate in
a sampled data environment. The servo system utilizes a
phase coherent desampler with a wide band feedforward
error estimator to reduce scene component tracking errors

to an acceptable level. For repeat pass motion playback the
desampler time scale factor may be varied under computer
control.

BACKGROUND ABORT SENSING AND
IMPLEMENTATION SYSTEM (BASIS)

Because of the relatively high cost and fragile structure
ofthe MCS probe lens and miniature sets, positive protection
is required. The Magicam MCS incorporates both back
ground fault sensing and abort implementation hardware to
protect both the probe lens and miniature. The BASIS op
erates in an autonomous manner determining the fault status
or risk present. When the risk exceeds a threshold the com
puter is interrupted for an orderly system abort. If the risk
level exceeds a higher threshold the BASIS will assume that
the computer has lost control of the MCS and will therefore
execute a priority abort independently of the computq-. For
diagnostic purposes the BASIS maintains a fault event
queue.

CONCLUSIONS

The basic design of the Magicam MCS slave camera has
been described with particular emphasis on the computa
tional requirements. The system software uses a state space
problem description to enhance the program modularity,
structure, and adaptability.

REFERENCES

1. Dykstra, J., "Minature and Mechanical Effects for Star Wars," American
Cinematographer, pg. 702, July 1977.

2. Kingslake, R., Lenses in Photography, Garden City Books, Garden City,
New York, 1951.

3. Slater, D., et aI., "Image Synthesis with Servoed Cameras," Simulators
& Simulation SPIE, Vol. 59, 1975.

4. Dorf, R. c., Modern Control Systems, Addison-Wesley, Reading, Mass.,
1967.

5. Forth Inc. "Using FORTH," Forth Inc., Manhattan Beach, Calif., 1979.

Telecommunications

The telecommunications area contains
three varied sessions. These sessions cover
the entire spectrum of telecommunica
tions from terminal interfaces to data man
agement in a distributed environment.

The session chaired by Dave Peters will
provide an overview of modems, multi
plexors, and system interconnection de
sign considerations. The session will con
centrate on interface and communication
network design fundamentals.

The session chaired by Doug Theis will
describe the state-of-the-art in minicom
puter networks. It will cover the history,
motivation, structure, capabilities, and fu
ture trends associated with network ar
chitectures built around minicomputers.

The last session is chaired by Dr. Robert

Kenneth~. Thurber
Area Director

Hall and will discuss data management in networks. It will consider the problem, analytic
techniques, implementation approaches, and potential of data base machines in network
structures.

91

Distributed network and multiprocessing minicomputer
state-of-the-art capabilities

by DOUGLAS J. THEIS
The Aerospace Corporation
EI Segundo, California

Today's minicomputer and midicomputer state-of-the-art
provides two basic types of capabilities for users to evaluate
for their applications. The two categories are:

• Distributed Networking Systems

• MUltiprocessing Architectures with High Speed Bus
ses, Shared Main Memory and Shared Disk Systems

A distributed network system (e.g., Digital Equipment
Corporation's DECNET, Hewlett Packard's DSN, Mod
comp's MAXNET) offers standard data communications in
terfaces with line protocols over both telephone lines and
hardwired cables. On the other hand, multiprocessor ap
proaches offer several interconnection schemes. An inter
processor bus (e.g., Data General's Multiprocessor Com
munication Adapter and Digital Equipment's Parallel
Communic:;ttion Link) can provide high data transfer rates
among processors, with either custom user-developed soft
ware or a vendor developed real-time operating system. This
bus interconnect approach is also evolving into configuration
implementations with a significant amount of fail-soft or
graceful degradation capability (e.g., Tandem's minicom
puter and BTl's midicomputer system) and a turn key op
erating system that fully supports multiprocessing.

Practical multiprocessing is also achieved by sharing mem
ory of some sort so that many CPU s can access one common
memory. Shared main memory provides the necessary mul
tiported capability so that two or more CPU s can access one
common memory. This means that special instructions and
software are required for a well disciplined method of re
solving contention and simultaneous memory request con
flicts. The shared memory multiprocessing can also be
achieved with a shared disk unit, where two or more com
puters have access to one common disk. Shared disk pro
vides more memory capacity, but the time to read or write
data is longer. Most major minicomputer and midicomputer
manufacturers offer shared disk hardware capability. Table
I gives a status on minicomputer and midicomputer vendors
which support both distributed networking and mUltipro
cessing capabilities.

93

DISTRIBUTED NETWORKING MINI!
MIDICOMPUTER SYSTEMS

Distributed network processing is definitely upon us and
being used in many applications, but the availability of off
the-shelf, turn key distributed networking systems has been
limited. Although the necessary hardware, such as data com
munication controllers and interfaces, has been available,
the constraining force has been the development of the soft
ware. The total objective is to make the hardware links and
message/communication protocols transparent to the user;
as a result each vendor has had to make many design de
cisions about the network control methods and access meth
ods. All this is needed in order for the user to have higher
order level language statements for network operation using
just logical references, which in turn do the remote opera
tions with other nodes in the distributed network. Even now
only some of the major vendors offer substantial support,
but just about all the others are developing this capability
to catch up with the obvious trend.

Each manufacturer has started out offering partial capa
bilities because it is really not practical to develop everything
one could think of as desirable. For example, Hewlett Pack
ard's first network system, which interconnected distributed
minicomputers throughout their own factory, was designed
to provide peripheral sharing and central programming de
velopment services. So far each vendor has gone about pro
viding distributed network capabilities in a somewhat dif
ferent manner, yet providing means to accomplish similar
types of end objectives. It is difficult to compare vendors'
offerings of distributed network capabilities for the very rea
son that there are so many different ways to accomplish sim
ilar top-level operations.

There are at least two dimensions to a distributed network
mini/midicomputer system: one dimension is the network
configuration (i.e., topology of nodes) and the other is the
layers within each node, from the bottom layer of the elec
trical interface to the top layer consisting of the network
access method, which allows the user complete transparency
of the network characteristics. The major topics discussed

94 National Computer Conference, 1980

TABLE I-Mini/midicomputer vendor support for four configuration types

Br~t~luted 1I.eti Type 3 ~
Manufacturer / Multiple CPUs ~ Sha1:'ed

Model Nos. Network Interconnected Main Disk
With Bus Hardware Memory

BTl Computer
Systems, Inc. X X
BTl 800

Computer Autom-
ation Inc. X X
LSI 4/10,4/30,4/90

Control Data Corp.
Cyber 18 Series, X X
MP60

Data General Corp.
Nova and Eclipse X X X
Series

· Digital Equipment
PDP 11 Series X X X X
VAX 11/780 X X

General Automation
440, 460, 440DS, X X
460NDS, 550

Harris Computer
Systems Slash 4, 6, X X
and 7 Series

Hewlett Packard
1000 and 3000 Series X

IBM 8100 Series X

Modular Computer
Modcomp II, IV, and X X X
Classic Series

Perkin-Elmer
(formerly Interdata) X X
7/32,8/32,3220,3240

Prime Computer
P350, 450, 550, 650, X X
and 750 Series

System Engineering
Laboratories, Inc. X X
32/35, 3i/55, 32/75

Tandem Computers X X X T16 Series

Texas Instruments
X 960,980,990

Univac (formerly
Varian) X X X
77 -400,77 -600,
7-800

within this distributed network section are as follows:

• Topology

• Line Protocols

• Hardware Interfaces

• Network Protocol

• User Software

• Network Software

The user learning about distributed network capabilities
quickly finds many new acronyms and terminology related
to this industry. Some of the more common ones, are pre
sented in Table II.

Topology

Network configuration, or topology, refers to the inter
connection pattern of nodes and links to form the network.
The most commonly used configuration of networks is point
to-point, where each node has its own links Ito other nodes.
Multidrop is the other type of configuration (sometimes

called multipoint); it is different in that two or more nodes
time share a link to save on the communication link costs.
Point-to-point capabilities are supported by all the Type 1
vendors presented in Table I. Multidrop was available from
some vendors in 1979 and will be supported by others some
time in 1980. Many point-to-point configurations are often
found in hierarchical networks where the top level is the host
or central node (as in a star network) with the second or
bottom level being satellite nodes collecting and processing
data in a distributed fashion. Differing topologies are ex
emplified by Digital Equipment Corporation's DECNET
which supports any point-to-point network combination, and
by IBM's 8100 which emphasizes a loop or ring structure
topology locally. Any distributed network topology has the
usual address field or software table limits as to the maximum
number of nodes, links, device status, number of paths, etc.
which is part of any finite system, but these can be extended
when necessary both in size and (or more complex appli
cations.

Line protocols

The communication line protocols (Le. link level control
procedures) used over these circuits are some of the most
confusing and difficult aspects in distributed network com
puter systems. During the 1960's remote batch applications

TABLE II-Distributed network related terminology/definitions

BASIC TERMS

Node can be a terminal or computer termiriation point which
has the capability to transmit and receive over communication line
facilities; usually an addressable entity.

Lirik - the external circuit connection to provide a means of exchanging
crata via telephorie, hardwired cable, or private communication facilities.

10POlO~y - the interconnection of nodes and liriks into a network con
iguratlOn for overall operations of one kind or another.

Protocol - a formal set of rules for specifying the format and relation
~message exchanges among communicating nodes.

NETWORKING CONFIGURATIONS

Point-to-point - a network configuration or topology between two nodes
Wlth a direct lirik (i. e. two nodes are connected without any intermediate
nodes in between).

Multidrop - a communication lirik on which two or more nodcs (computer
or terminal) can share access. This type of lirik typically requires both
p~Ui!'!g {~~ 2.. !"ese!'''/2.ti~!'l scheme co!." .o::0~te~ti0!'!.) 2.!"!.0. .=!0.(I.!"~'3=-i!!g t~~hryi'11H";:
to facilitate shared lirik operation.

Loop or Ring - a ring like network configuration where each comput('r
node is connected to two adj;l.cent nodes forming a closed loop.

NETWORK SWITCHING

Circuit switching - an electrical connection between two nodes (i. e.
over a communication lirik) is established on demand for dedicated band
width of that circuit (i. e. link) until it is dropped.

Message switching - is a capability for messages to be moved over many
intermediate links and nodes because the destination address is integral to
the message to allow variabl,' paths (0 be taken as availability permits.

Packet SWitchin~ - is a subset of message switching where messages are
broken into pac ets including their own necessary address and control as to their
destination, Packet switching allows efficient use of network resources
because it breaks up data into a rela,tively small size (e. g. X. 25 allows up to
256 bytes) and no long term storage is required at the various routing nodes.

Virtual Circuits - is a logical circuit connection between two nodes in a
network which can be realized with different circuits during the transmission
of a message. This service is guaranteed, sequential related operations in
cluding end-to-end flow control.

Datagram. - is a capability which provides lirik communication on non
related (mayor may not be guaranteed), non-sequential operations basis
primarily toward transaction oriented users where the users provide end
to-end integrity.

and terminals used character oriented protocols such as
IBM's well-known BISYNC (Le. BSC) and others. During
the 1970's, the trend toward transaction-oriented systems
drove the industry into the era of new protocols such as
IBM's SDLC. Also DEC has its DDCMP byte protocol
which is designed using a count field instead of a unique flag
character as is done in the SDLC bit protocoU Thus bit stuff
ing protocols (e.g., IBM's SDLC) versus DEC's imbedded
character protocol is a controversial subject in that there are
trade-offs associated with each. Table III shows a compar
ison of the communication line protocol presently supported
by mini/midicomputer manufactureres as well as BISYNC
which is still used for reasons of compatibility with the older
remote batch terminal and display terminal equipments. In
Table III there is a breakdown of some specific capabilities
each of the five protocols supports. There are many other
factors beside these to consider in the area of link protocols,
but it is beyond the scope or overview we are trying to pre
sent in this article.

One new trend that is certain to be offered by more ven
dors 'is the use of an integral microcomputer to do the line
protocol functions and thus decrease the amount of code and
overhead in the node distributed network software subsys
tem. In particular Digital Equipment Corporation offers two

State-of-the-art Capabilities 95

types of microprocessors: (1) DMC-ll with a ROM memory
implementing their DDCMP protocol and (2) KMC-ll with
a RAM memory so any other protocol (e.g. IBM's) can be
implemented. Note that the Signetic's protocol chip adver
tised for doing the DDCMP protocol does the framing func
tion which comprises only a part of the operations for the
DDCMP protocol. In the case of Hewlett Packard, their line
protocol software is implemented in the node minicomputer
microcode/control store memory. This off-loads part of the
Hewlett Packard Distributed System Network software res
ident in main memory. Hewlett Packard plans to use an' in
tegral microcomputer in their next DSN upgrade. These
types of approaches should improve throughput perform
ance.

Hardware interfaces

Distributed network computer system products are new
systems and as such high "effective user" data rate through
puts are difficult· to achieve until after functional software
design and operational experience has matured. The
throughput inefficiencies are primarily in the software over
head features developed to make system network details

TABLE III-Line protocol features and characteristics

FEATURE BISYNC DDCMP ADCCP HDLC SDLC

Pr,otocol Type (i. e. Data Character Count Bit Bit Bit
Transparency) Stuffing Stuffing Stuffing Stuffing

Full Duplex No (HD) Yes Yes Yes Yes

Serial Yes Yes Yes Yes Yes

Parallel No Yes No No No

Multi-Acknowledge by No Yes Yes Yes Yes
one ACK

Asynchronous No Yes No No No
Operation

Point-to-Point Yes Yes Yes Yes Yes

Multipoint Yes Yes Yes Yes Yes

Ftrror Detection (CRC) CRC-l6 CRC-16 CRC- CRC- CRC-
CCITT CCITT CCITT

..

Retransmit Err,or Recovery Yes Yes Yes Yes Yes

Count Field Required No Yes No No No

Protocol Overhead 80 bits 80 bits 48 bits 48 bits 48 bits
(single data message) and DLE fixed and fixed and fixed and

additions O's for bit O's for bit O"s for bit
stuffing stuffing stuffing

96 National Computer Conference, 1980

transparent to users. Then the more network support soft
ware that is provided to do all th~se nice features drives up
the complexities which need to be refined, tuned and opti
mized to maximize throughput performance. This is easy to
say but obviously requires the appropriate software/hard
ware trade-offs of how much complexity is really necessary
and some smart design implementations to achieve the high
est throughput performance possible.

The physical links between nodes are either data com
munication lines, with modems and adapters attached to the
computer channels, or hardwired cables. At the device level,
the EIA (Electronics Industries Association) RS-232-C stand
ard is provided by all the vendors. Other standard circuit
connections that are either supported or planned to be sup
ported include the following: Electronics Industries Asso
ciation EIA RS-422 and RS-423, Western Electric 3011303,
MIL-STD-188C and the new Opto-Isolated fiber optics in
terfaces. RS-232-C provides operation up to 19,200 bits per
second. Higher data rates and better performance can be
accommodated by the newer EIA RS-422 (up to 10M bps)
and the EIA RS-423 (up to lOOK bps) circuit standards. The
Western Electric 3011303, supported by several vendors such
as Modcomp, permits data rates from 19,200 bits per second
up to 230,400 bits per second over special leased circuits.
MIL-STD-188C is very similar to RS-232-C and vendors can
support it in special situations as needed for the government
and the military. So far standards for opto-isolated interface
have not been developed to the same level as the above
electrical interface standards.

The vendors in Table I support many but not all of the
commercially available data link services from voice grade
telephone lines up to 9,600 bits per second, leased (private)
lines up to 230.4K bits per second, DDS (Dataphone Digital
Service) up to 56,000 bits per second, Bell's T1 Carrier and
Satellite Carriers (e.g. Western Union's Weststar) both up
to 1. 544M bits per second. Presently Digital Equipment Cor-

i poration's DECNET II using their DDCMP protocol has
hardware interface and software drivers to accommodate
9,600, 19.2K, 250K, and 1M bits per second for point-to
point hook-ups using the appropriate modems or special
cable interfaces. For multidrop arrangements, Digital Equip
ment Corporation provides both the low speed 9600/4800
(outbound/inbound) bits per second with modems and a high
speed, 512K bits per second, synchronous, full duplex ca
pability oyer cables. Hewlett Packard's DSN in point-to
point networks accommodates up to 56,000 bits per second
with modems and up to 480,000 bits per second over cables.
DSN supports both the low speed 9600/4800 (outbound/in
bound) multidrop configuration as well as a 19,200 bits per
second multidrop capability. Modcomp' s MAXNET sup
ports point-to-point configurations up to 19,200 bits per sec
ond with RS232-C compatible modems, 40.8K with WE 301
modems, and 19.2K, 50K, 230.4K with WE 303 modems.
Without modems in a point-to-point configuration, MAX
NET supports either 19,530 bits per second or 1.25M bits
per second using cables and internal clock. MAXNET sup
ports multidrop using RS232-C modems capable of multidrop
up to a maximum of 9,600 bits per second outbound and
4,800 bits per second inbound. Modcomp also supports 250K

and 500K bits per second multidrop for up to 5,000 feet with
a limit of 8 drops (distance is dependent on speed and number
of drops).

Network protocol

There is a network standard and that is the CCITT (In
ternational Consultative Committee for Telegraphy and Te
lephony) X.25 network access protocol. It is a framework
within which to build a system that allows vendors to im
plement their own efficient software designs as well as in
clusion of many additional or optional features. Several ven
dors have already begun to implement a compatible version
for their own distributed network systems to provide the
necessary control functions, message formats and other ca
pabilities necessary to implement the compatible node to
node operations so that the user can do normal network ac
cess operations with other X.25 networks. The X.25 Net
work Access Protocol was developed by CCITT Study
Group VII in July 1976 (revised April 1977) and is supported
by Telenet, Datapac (Canada), Euronet (Europe), and oth
ers. The X.25 protocol consists of three access levels:

1. Level 1 defines the physical and line interfaces used
(i.e., RS-232-C).

2. Level 2 defines the link level procedures in terms of
message formats and sequencing (i.e., HDLC).

3. Level 3 defines the packet format used to establish and
exchange data (i.e., virtual circuit).

For example, Digital Equipment has under development
an X.25 compatible interface for its own DECNET so user
tasks and DECNET utilities can communicate with a remote
computer node over any public packet switching network
using X.25 protocol. Two program interfaces are needed to
provide a common basis for call, set-up, call disconnect and
exchange of data between DECNET machines and other
types over a X.25 network. Hewlett Packard plans to inter
face to these public X.25 networks and Modcomp also plans
to have X.25 software interface compatibility in the not too
distant future. Table IV provides information on each ven
dor's network access protocol/layers of software to show the
overall framework and its related terminolcg)'.

At least one manufacturer has announced a chip (i.e.,
Western Digital's 2501) that is specifically designed to re
place the software required for the first two levels (physical
and link access) of the X.25 packet switching protocol. The
VSLI chip has approximately 30,000 gates. Maximum data
rates of up to 1.3M bits per second are planned to be ac
commodated by this chip. When level three (network con
trol) is firmly specified, then it will also be put on a chip.
In addition, this chip design provides link and loop back
testing and has a programmable address field to allow ter
minal intercommunications. Prior to the X.25 being on one
or a few chips, it was too expensive to make intelligent ter
minals as nodes in a public network and now that trend is
changing. Note, however, that terminal networks is not the
subject of this article.

.

TABLE IV-Manufacturer's network software layer/protocol structure

Network Mini/Midi

Manufaoturer Architecture Computer
Acronym/ Models
Designation Supported

Computer SyFA LSI4/10,
Automation (System 4/30,4/9
Inc. For Access)

VN (Virtual
Network)

ControlDat NAM-18 Cyber 18
Corporation (Network Series

Access
Method)

Data General None, not Nova's
Corp. developed and

Eclipses

Digital DNA PDP 11
Equipment (Digital Series
Corporation Network VAXll/

Architecture) 780

General AUTONET Models
Autom- 220.440,
ation Inc.- 460DS,

460NDS,
and 550

Hewlett DSN 1000
Packard (Distributed Series
Inc. System 3000

Network) Series

IBM SNA 8100
(System Series
Network
Architecture)

Modcomp MAXNET Modcomp
Inc. II,IVand

Classic
Series

Prime COIn- PRIMENET 350,400.
puter Inc. 450,500.

550,650,
and 750

"landem 'LUAlWIAN/ anaern
Computers EXPAND 16 Series

Univac DCA 7-400.
(formerly (Distributed 7-600
Varian) Communic- 7-800

ations
Architecure)

User Network
Program Link
Interface Level

Not Sup- Emu-
ported lates

IBM
3270,
3780.
others

Under X.25
develop- Com-
ment patible

under
develop-
ment

Not Sup- X.25
ported Supported

Vendor Vendor
offers calls
several: Network
DAP,ATS, Service
User Protocol

(NSP)

Under X.25
Develop- ComO.
ment patible

under
Develop-
ment

Vendor Vendor
calls calls
Network Network
Access Manager
Method DS/lOOO

DS/3000

Function ransmis ..

Manage- !sionCon-

ment rol & Path

~~~t:~1(2 
Vendor Vendor 
calls unique 
REX 

Inter Packet 
Program Network 
Commun- Interface 
ications (PNI) 
Facility X.25 
(IPCF), Corn-
File Ac- patible 
cess Man-
ager 
(FAM) 

"endor X.25 
Unique Com-

patible 
under 
develop-
ment 

fcli;;'br:l ,,~YIi'1piam. 
Resource port Net-
Access ~orkSys~ 

Module) tern 

Message 
Protocol 
(e.g. 
SDLC) 

Bisync 

Mode 4. 
CDCCP 

(ADCCP. 
HDLC. 
and 
SDLC) 

HDLC 

DDCMP 

ADCCP. 
SDLC 

ADCCP, 
HDLC 

SDLC 

ADCCP, 

~tg· 

HDLC 

filJLG 

",lJLv 
handle 

fIDLC 
ndSDLC 

as sub-
sets) 

Link 
Hardware 
Interface 
(e.g. RS232-C) 

RS 232-C 

RS 232-c' 

RS 232-C 

RS 232-C 
WE301/303 
CCITT V. 35 

RS 232-C 

RS 232-C 
WE 301/303 
CCITT V.35 

RS 232-C 

RS 232-C 
WE 301/303 
CCITT V. 35 

RS 232-C 

RS 23Z-C 

IKb-Z5Z-v 

The network control software module layer (typically level 
3) below the user's level takes their requests and decodes 
them as such into link and node assignments. These assign
ments are allocated at system generation time so the nec~ 
essary reformatting and control is already established to 
carry out the desired operation. There is no standard because 
each vendor defines and implements it to suit himself. Some 
vendors have more layers in their software network struc
tures than others. This software does the routing, sets the 
control fields according to prescribed methods, and performs 
any other functions which are necessary to provide desired 
operations at another node. The network control software 
can be designed to provide alternate routing as well as other 
items related to network transfers. When there are more than 
two levels of nodes (i.e. intermediate nodes between sending 
and receiving nodes), some degree of routing capability is 
needed. There are many and varying degrees of capability 
one can implement for network routing. One basic capability 

State-of-the-art Capabilities 97 

is to provide automatic rerouting when a node fails, but it 
may require the user to reinitiate the job. The objective is 
to make rerouting or changing link paths transparent to the 
user. Dual path capability between nodes with some degree 
of line load sharing to maximize link utilization is an addi
tional complexity to provide in network routing. Vendors 
start out offering some basic routing capabilities and then 
evolve into more complex routing capabilities as time goes 
on. It is well to remember that routing capabilities can vary 
from some basic features all the way up to some very so
phisticated ones. 

User software 

At the user or application level there are four types of 
general purpose higher order level language/command ca
pabilities needed for basic network operations. Here are 
some typical capabilities of distributed network services 
available from Type 1 vendors in Table I: 

1. Remote file access and transfer-gives user full access 
to data files at any remote node in the network. 

2. Downline loading-provides a host node the capability 
to downline load code to any satellite node for later 
use. 

3. Remote command processing-allows user at any node 
to commence task execution on any other node in the 
network with similar set of operating _ system com
mands. 

4. Program to program communication-the capability 
allows user application programs at one node to ex
change data and control information with any program 
at another node. Each vendor has variations and sup
plementary provisions to use this capability in different 
ways such as equal partners which are dynamically 
variable or in master/slave arrangements. 

There are many different ways to do these network functions 
between nodes but basically they consist of either file trans
fer or program-to-program operations. The particular way 
network operations are done depends on the application and/ 
or user discretion. In the typical data reduction network 
scenario the user usually has the computer nearest the data 
storage (not necessarily the data acquisition computer) ex
ecute the program for data reduction. For example if a large 
data base needs to be searched on the host node to do some 
satellite node processing, then the program-to-program com
munication approach would logically minimize link traffic 
in having the host do the processing and later pass over the 
results to the satellite node. The reverse is also true; when 
large numbers of files (stored at the host node) are needed 
for local (or satellite) node processing, one would typically 
use remote file access and transfer files for use. 

Remote command processing provides the much adver
tised advantage of distributed processing, namely, peripheral 
resource sharing. Each vendor implements his network soft
ware to provide the user with some degree of peripheral 
device transparency and/or device independent operations. 



98 National Computer Conference, 1980 

User transparency for tape and disk storage operations is 
fully supported but for other devices such as printers and 
displays, this mayor may not be practical or desirable de
pending on the application. 

Downline loading from a host node to a satellite node is 
the other obviously needed capability for any distributed 
network software. The two advantages for this are related 
to minimizing the number of development resources and 
minimizing equipment at the satellite node. For instance, 
only the code required resides in the satellite node but it can 
be changed and reloaded as often as necessary. There are 
several types or degrees of capability one might like in down
line loading control and execution of jobs on remote nodes. 
Basically then, downline loading can move the system and 
user jobs to the satellite and start execution of same. An 
additional capability offered by DECNET, for instance, is 
to transmit an additional job to the satellite node while the 
previous jobs are running and have that new job start in its 
execution also on· the satellite. So far no vendor supports 
overlay programs on the satellite from the host. 

Network software 

Distributed network node software is designed and imple
mented in a modular and layered fashion to facilitate added 
capabilities (i.e. growth and flexibility), and thus minimize 
impacts on modules or layers not directly changed. In a real 
sense it's a structured programming methodology. For ob
vious product considerations, the distributed network soft
ware functions are a separate yet compatible extension of 
the vendor's proven operating systems. Thus a user loads 
this distributed network software subsystem (usually des
ignated by some clever acronym) in addition to or in con
junction with the operating system. From this point, each 
vendor develops his own implementation details for the dis
tributed network software package. 

Each Type 1 vendor in Table I offers special or unique 
features related to his equipment capabilities and those 
things found to be useful or necessary in many applications. 
An example of this is that Digital Equipment Corp. sells 
machines of 12, 16, 32 and 36 bit words and in order to net
work any combination of these they offer standard supported 
interface hardware and software to make these differences 
transparent to the user under DECNET. Hewlett Packard's 
Distributed Systems Network provides "store and forward" 
storage capability at each node. This facilitates routing and 
rerouting through the links if any link or node goes down. 
Modcomp has developed their networking system to im
prove performance by providing input-output operations 
concurrent with system operations using special (i.e. Mod
comp calls "symbiont") software, and by implementing a 
"core device" option for direct CPU-CPU transfers which 
provides a much faster method than normal. Note that none 
of the first three vendors (DEC, HP, and Modcomp) built 
its network software for X.25 compatibility, but all three 
plan to develop compatible interfaces to their software for 
X.25 operations. 

MULTIPROCESSING ARCHITECTURES 

Several minicomputer and midicomputer vendors provide 
several different kinds of capability for interconnecting mul
tiple computers into multiprocessing systems. There are four 
Type 2 manufacturers offering bus interconnected hardware 
between CPU s. For Data General and Digital Equipment 
Corporation minicomputers, the user tailors the vendor's 
realtime operating system to his application using this hard
ware. The other two vendors supply turn key systems. 
Shared main memory products are offered by six vendors 
as presented in Table I. Table I, Type 4 presents the vendors 
offering shared disk hardware which just about includes all 
the vendors with this type of product. The user is responsible 
for operating system software changes to accommodate their 
application when using either shared memory or shared disks 
configurations. 

Multiple computer bus interconnected hardware 

Four manufacturers provide the computer hardware bus 
interconnected capability, and the features of these systems 
are discussed below. Using these hardware capabilities, as 
is, allows the user to achieve high performance utilization 
because the system can be tailored to their application. It 
also provides a means to tie together many computers in 
multiprocessor configurations with no special hardware de
velopment. 

Data General was the first major minicomputer manufac
turer to offer standard bus hardware for interconnecting up 
to fifteen machines for multiprocessing operations. Their 
standard interconnection hardware is designated as the Mul
tiprocessor Communication Adapter (MCA) and was first 
introduced as a standard product back in 1970. It accom
modates any of the Data General Nova or Eclipse line of 
minicomputers. The MCA in effect connects the direct mem
ory access channels into a ring or daisy chain structure so 
data transfers can be made from anyone CPU's memory to 
any other designated memory at very fast transfer rates. 

Data General recently (1978) announced an additional type 
of bus interconnection capability called the Multiprocessor 
Communications System (MCS) which connects up to fifteen 
of their Novas and Eclipses into a star or radial bus network. 
It has the same data transfer rating of 1M bytes per second 
through direct memory channel interfaces. Buffering in pro
vided internal to the MCS and special instructions control 
data transfers with variable sized block transfer capability. 
Also computers can be added or removed from the network 
without affecting overall operation. 

Data general 

One user implemented a 4 millisecond closed loop missile 
simulation using three Data General minicomputers in a 
MCA ring with their Model M600 modeling the missile, their 
Model S-230 simulating the target, and their Model S-130 
being the signal generator control as shown in Figure 1. In 



Floating 
M 600 Point 

256 KW 
System Inc. 
120 AB 

I MCA 1 

I I 
MCA3 I lMCA2 

S 130 S 230 

128 KW 128 KW 

Figure I-Computer simulator configuration using Data General's MCA bus 

order to minimize software overhead on the bus and thus 
'maximize throughput, this user coded his own MCA soft
ware drivers and attained an effective transfer rate of lOOK 
to 150K words per second. This is the useful data rate range 
after overhead, contention, etc., on the MCA bus. All the 
software development and simulations are run under AOS 
2.1, Data General's Operating System. As long as there is 
sufficient main memory capacity, the MCA bus seems more 
than adequate to maximize overall throughput. 

Digital equipment 

Digital Equipment Corporation offers a Parallel Commu
nication Link (PCLlI-B) hardware option for ganging to
gether up to 16 PDP 11 minicomputers with a common time 
shared bus. The PCLlI-B hardware attaches to Digital's 
PDP 11 Series Unibus and if any PDP-II does down, the 
others are not affected. User programs logically reference 
other CPU s on the PCL bus in a fashion similar to desig
nating any peripheral device and PCL is supported under 
DECNET. Contention for the link is resolved by assigning 
a time slice to each PCLll slot. A recent example utili~ing 
this equipment is the Defense Communications Agency's 
Autodin II, a general purpose data communications network 
system. Autodin II operates in a packet-switching manner 
very similar to ARPANET. This multiple computer config
uration (i.e., 11170s) provides high availability by a special 
configuration which allows graceful degradation. The Au
todin II network has eight nodes, each of which consists of 
3 to 5 PDP 11170s tied together with the PCL-l1. 

Two new multiple CPU, bus interconnected architectures 

A more recent trend in multiple CPU, bus interconnected 
hardware, is offered by two relatively new manufacturers 
(BTl Computer System and Tandem) which provide com
plete off-the-shelf user supported software with significant 
fail-soft capabilities. The manufacturer has to build into the 
operating system many features to accommodate the many 
different hardware malfunctions and resulting reassignment 
of resources. This makes it difficult for each user of such a 

State-of-the-art Capabilities 99 

system to customize his operating system and still maintain 
the software integrity to support fail-soft operations. In other 
words, the user is encouraged to do everything in higher 
order level languages such as FORTRAN, COBOL, BASIC, 
PASCAL, others, and leave the manufacturer's operating 
system as is except for well-defined improvements that don't 
impact the faU-soft operation. These are new architecture 
implementations, each different, but offering capabilities 
every user should know. 

BTl 8000 

The multiprocessing architecture approach taken by BTl 
Computer Systems Inc. in their new 32 bit machine, Model 
8000, centers around their very high speed 32 bit bus (pat
ented) which supports a 60M bytes per second bandwidth. 
Almost any combination of Central (i.e., computational) 
Processing Units, Memory Control Units, and Peripheral 
Processing Units (PPU) can be used in the fifteen available 
chassis slots (16th slot is required for the System Service 
Unit). For instance, if the user application is processor 
bound, then up to thirteen Central Processing Units could 
possibly be used. In input-output bound cases more Periph
eral Processing Units could be installed. Some combination 
to match the user's loading can easily be accommodated 
using this highly flexible multiprocessing operation. The key 
point is that the 60M bytes per second bus should never be 
the bottleneck or the limiting part of this multiprocessor 
design. In a time sharing system, one PPU can support up 
to 256 user terminals each operating at speeds of up to 19.2K 
bits per second. The other significant aspect of interest in 
this architecture is that it supports true homogeneous mul
tiprocessing operation where all resources (i.e., CPUs) are 
equal partners with no master-slave internal to the design. 
The designers of this system used PASCAL as the basis for 
much of the computer hardware design so the influence of 
PASCAL· operations has driven much of the internal hard
ware design features as was originally done in the case of 
ALGOL for the Burroughs 5500. 

The System Service Unit is strictly for the customer en
gineer to facilitate troubleshooting and repair of the entire 
BTl Model 8000. It has a small microcomputer (as do the 
MCU and PPU) which runs the diagnostics to determine 
faults and isolate them to the chip level. The SSU has its 
own telephone port for remote troubleshooting from the fac
tory. After any major module goes down it is taken off-line; 
the user simply does a SYSGEN automatically by just press
ing a button. 

Tandem T16 series 

Tandem Computers Inc. installed its first multiprocessor 
system back in 1976, and last year the sales of this product 
were over $25M with projections as high as $40M this year. 
This noteworthy success of the Tandem T16 Series com
puters shows that up to sixteen tightly coupled minicom
puters can replace a large scale computer with the equivalent 



100 National Computer Conference, 1980 

performance and offer additional advantages such as higher 
availability and more efficient accommodation of large num
bers of disks and terminals. The Tandem Computer archi
tecture consists of a high bandwidth (i.e., 26M bytes/sec) bus 
called Dynabus which provides interprocessor transfers sep
arate from all the peripheral (Le., disks, tape, terminals, etc.) 
transfers. These are done over their own direct memory ac
cess channel at speeds up to 4M bytes/sec. Interprocessor 
communication is provided with Dynabus; therefore, no 
shared main memory is required. The other key multipro
cessing architecture success is their operating system (130K 
bytes per minicomputer processor) that provides complete 
user transparency to resource control and allocation, load 
balancing, fail-over, and many other functions. ' 

For example, one Tandem Five processor system is used 
as a back-end file manager in Columbus, Ohio by the Ohio 
College Library Corp. It does library catalog processing in 
conjunction with forty 240 MB disk drives supporting several 
large host computers (Le., Sigma 9s). Another Tandem dual 
processor front-end system is used to interface and operate 
the 2000 CRT alphanumeric terminals (each with a maximum 
2 second response time limit) where each processor has 512K 
bytes of its own memory. Typically, if the system has a large 
number of page faults, the processors need more memory 
and 2M bytes is the maximum per processor. The mUltipro
gramming environment is facilitated with stack oriented CPU 
design. 

The Tandem non-stop or fault-tolerant capability consists 
of a wide variety of special hardware and software tech
niques. A basic system has two or more processors, two 
cable Dynabus peripherals with dual port controllers, and 
disk drives with dual access control' as well as redundant 
disk drives. Tandem's'specially de'signed disk controller has 
a 4K byte buffer to support recording to one or more disk 
drives without having'to retransmit on the input-output bus. 
It also provides the capability for one disk unit to be copied 
to another without involving the input-output bus. Of course, 
there is a 10-30 percent throughput performance overhead 
to provide checkpointing and the necessary updating of file 
generation in pairs. Any operational module can be replaced 
on line without, stopping operation of the Tandem System. 
There is also a dual power distribution in Tandem so if one 
power supply fails, the backup is ~utomatically switched in. 

Shared main memory operations 

Shared main memory provides capability for mUltiple 
CPU s to be connected to one shared memory. The advantage 
is that each CPU has access to the data in shared memory 
and typically users do not store executable code in shared 
memory. Shared memory addresses are established at SyS
GEN time typically as Global Common areas in the Fortran 
sense although it should be true for any language. The linking 
loader is used to connect logical names to physical addresses 
so user applications can use data in shared memory for those 
processing programs which are executed in local (i.e., not 
shared) memory. The beauty is that all the CPU s with a port 
on the shared memory module can access that data at very 

fast main memory access speeds in a well regulated or dis
ciplined method so as to minimize impact on overall pro
cessing throughput and also eliminate any need for mUltiple 
copies of data residing in each memory of every CPU needing 
the data for processing. With the cost of memory signifi
cantly decreasing all the time, the major benefit is definitely 
in achieving higher throughput with parallel processing. It 
does this by minimizing data transfers amongst mUltiple 
CPUs because all the CPUs have the necessary common 
data access. 

Perkin-Elmer 

As an example, let's go through a typical application as 
to how a user really benefits from shared main memory ca
pability. Assume the processing algorithms in each CPU take 
much longer to execute than the time for the buffer shared 
memory to fill from the source via' the DMA channel. In 
order for the processing to keep up, multiple CPUs must 
have access to the data buffer (as shown in Figure 2). With
out shared memory copies of the same data have to be stored 
in several memories so processing can be done in parallel 
with the resulting overall throughput being slower. Figure 
2 shows data coming from some source in short bursts at 
very high speed data rates over a programmably switched 
direct memory access (DMA) channel to allow for multiple 
data sources. Figure 2 shows CPU A and CPU B sharing 
one memory module. For instance, with the Interdata 8/32 
fourteen ported memory module, one could have fourteen 
(in any combination of CPU s and external devices) accessing 
one shared memory module. Some manufacturers can hook
up only CPU s to shared memory and not special external 
devices. 

Perkin-Elmer uses the same hardware option (Le., Local 
Memory Interface) to provide a parallel direct memory ac
cess path from disk to local memory for simultaneous trans~ 
fer operations while data is transferred to the shared memory. 

64 KB 
Local 64 KB 64 KB 
Memory Shared Memory Local 

Memory 

LMI LMl 

Up to 12 

DISK CPU A More CPUs CPU B DISK 
or External 
Sources 
(any Com-
bination) 

Figure 2-Perkin-Elmer's shared memory expansion capability 

*Abbreviations used: DMA-direct memory access: LMI-Iocal memory in
terface 



In addition, Perkin-Elmer has multiple memory banking 
where each memory bank operates independently of the 
other banks and multiple CPU s have simultaneous access 
to the different banks in the system thus increasing the 
overall throughput. A shared memory module can be very 
large (e.g. Perkin-Elmer 16M Bytes) where the memory port
ing is to/from the memory controller, not the memory module 
itself. Perkin-Elmer 16M Bytes shared memory is to/from 
four memory controllers capable of looking like one fourteen 
ported shared memory. 

Any manufacturer offering multi port (L e., shared) memory 
operations has to have a "test and set" instruction or the 
equivalent to facilitate accessing memory locations in a well 
disciplined manner and to preclude contention or conflicts 
with other CPUs accessing the same memory locations. In 
other words, the "test and set" instruction provides the 
necessary mechanism for software (Le., program accessing 
memory) synchronization. For instance, the Perkin-Elmer's 
Test and Set (TS) instruction executes in only one instruction 
cycle and the built in hardware priority ensures that the other 
CPU s cannot interfere during the execution of the TS in
struction. The TS instruction which executes within one in
struction cycle first reads the first memory location in the 
buffer and writes a one in the significant bit position of the 
word to set a busy flag. If the busy flag has previously been 
set, then the condition code reflects this, and the CPU tries 
again later. 

The other even more important aspect is how should con
tention amongst fourteen CPU s be handled in a well disci
plined manner? There are several approaches to signal buffer 
ready or buffer available between CPUs. The simplest is by 
polling (Le., testing if the flag is set or reset) the first buffer 
memory location with a test and set instruction periodically 
to determine if the buffer data is available for that CPU and 
then to proceed to read the buffer out. When only a few 
CPU s are on a shared memory, the controller allocates mem
ory cycles in a round robin manner to access words. Another 
way supported by manufacturers is to use hardware inter
rupts. In this case, one CPU triggers an interrupt to another 
CPU when it has finished reading (Le., relinquishing) the 
data buffer so the other CPU knows it can access the data 
buffer at that time. With a large number of CPUs such as 
fourteen, a priority scheme is used and the lowest priority 
job encounters some waits or delays. For instance Perkin
Elmer built into their memory controller both sequential ac
cess (i.e., round robin) and fixed priority with strapping to 
select one or the other. The third and most complicated way 
is to use some sort of data communication line which in
volves software message processing in effect from the CPU 
relinquishing the data buffer to the next CPU available to 
read the data buffer. 

Shared disk configurations 

Shared disk configurations are utilized to achieve signif
icantly different benefits from those for which shared main 
memory configurations are implemented. One major appli-

State-of-the-art Capabilities 101 

cation of shared disk configurations is to provide large file' 
storage for long term sequential processing steps where data 

. is collected and updated on demand. An obvious example 
of this is online airline reservation systems. Data is really 
not reduced as in shared main memory applications but in 
fact is a data base which requires continuous up-dates for 
24-hour-a-day operations. If one briefly considers what ca
pabilities and support are necessary to safely have more than 
one CPU accessing data base files, it turns out you probably 
need to modify the existing operating system to achieve this. 
For example, in a standard operating system, a program may 
open a file, allocate 1000 blocks and begin writing records. 
Typical operating systems only write an EOF (end-of-file) 
when a file is closed. To conserve disk I/O during "append" 
operations, the number of blocks used, and indicated in the 
header, will be updated only at "file closed" time. So there 
is a problem that when the disk is suddenly switched to a 
new computer it sees 1000 blocks allocated and 0 blocks 
used. The EOF is in the first computer and not the on-disk. 
Thus a significant amount of overhead occurs in shared disk 
systems since EOFs must be written each time. In addition, 
many file systems block records to conserve disk I/O. Thus 
a program may write a half dozen records and the operating 
system will buffer it in main memory until a seventh is writ
ten and then write the block to disk. If the disk is switched 
or the computer accessing disk changes prior to the block 
being written to disk, the records blocked in main memory 
are lost. Also any records crossing block boundaries would 
be written to the shared files in an uncontrolled order so for 
these reasons block buffering cannot be allowed. 

The benefit of shareable disk in the above case is to have 
reasonably fast response (Le., high throughput) in accessing 
the data base, with power outages not causing data base to 
be lost. Even more popular, however, is higher availability 
because one computer going down does not bring the system 
down. Manufacturers now offer support with appropriate 
hardware (Le., time-out logic) and operating systems to pro
vide the necessary capability to accommodate switchover 
between CPUs in case one fails. This latter attribute is by 
far the most predominant capability now being sought by the 
user. Thus achievement of high reliability and graceful deg
radation involves some sort of shared or switchable disk 
capabilities. The distinction here is that shared disks are used 
in on-line transaction oriented systems whereas switchable 
disks are utilized in redundant or fail-over operations to fa
cilitate graceful degradation of operations. Switchover can 
be done by manual operator control or under software con
trol. These kinds of applications have typically used dual
ported and even tri-ported disk drives, which means separate 
disk controller paths exist to the disk drive electronics. In 
a fully redundant configuration, a failure in the CPU, chan
nel, controller, or disk drive unit will not affect the proper 
operation of the other path. Note that dual port disk con
trollers (which accept data from either two different CPU s 
or from two channels of the same computer) can be a subset 
capability of shared disks but having dual ported disk con
trollers does not necessarily mean shared disk operations. 
The different types are show~ in Figure 3. 



102 National Computer Conference, 1980 

CPUA 

CPUB 

CPUA 

CPUB 

(a) Shared (Dual Access) Disk Drive 

(b) Dual/Multi-Ported Disk Controllers and dual access drives 

CPUA 

CPUB 

t--___ ~I 
f 
I 
I 
f 

I 

(c) Switched (Bus Switch or Peripheral Switch) Disk System 

Figure 3-Shared/switched disk configurations 

RELATIVE COMPARISON OF NETWORK AND 
MULTIPROCESSING ARCHITECTURE TYPES 

The network and multiprocessor implementation ap
proaches are given in Table V. This is qualitative and not 
quantitative, although numbers or a range could be given for' 
relevant user characteristics, such as average response time 
and average transfer rate. Each. user has a different mix of 
criteria and weighting of each criterion, so it would be dif
ficult to establish an overall rating system. What is useful, 
hopefully, is to identify the key performance advantage of 
each type and the inherent limitations or disadvantages of 
each type. 

The distributed/network (Type 1) approach is available 
from several manufacturers where the user uses the off-the
shelf hardware/software support with no development re
quired except to define the network configuration and re
sources and install the application software modules to do 
the user data processing functions. This approach gives the 
user off-the-shelf networking capability but at the expense 
of considerable general purpose capability that a user may 

only partially need. In addition, special applications do not 
use all the software support to handle their kinds of network 
structures. However, this capability minimizes required 
user's knowledge of the details at the expense of the over
head to provide all these conveniences. Users can now rap
idly implement (at lower cost) distributed/network applica
tions, but at the price of slower data transfer rates and longer 
response times than with their own network architectures. 
Also, it is usually difficult to change or modify generalized 
distributed/network software when required. 

Multiple CPU s interconnected with some form of high 
speed bus structure is a logical way to achieve fast data trans
fer rates for multiprocessing system. These vary as to design 
implementation specifics and hardware component technol
ogies that are employed to maximize throughput. Multipro
cessing in turn provides the user with faster response times 
for processing tasks or jobs. The disadvantage is that in order 
to achieve this high throughput performance, the manufac
turer or user must develop specialized software to tailor his 
application and to maximally utilize these capabilities. Only 
that manufacturer supports the hardware and software, and 
it has no systems compatibility with other manufacturers. 
All the multiprocessing systems are restricted to one location 
but can support terminals remotely over communication 
lines. 

The major advantage of shared main memory via multi
ports is the almost instant accessibility by many CPU s to 
data where the processing time is much longer than the data 
collection time. Shared memory can thus be used to achieve 
extremely fast throughputs. It drastically reduces overhead 
in both timing and storage requirements by providing com
mon access to many CPU s concurrently at semiconductor 
cycle times and by not having to duplicate copies of data in 
many memory banks. There is also a hardware cost savings 
in that shared memory architecture requires no channel hard
ware which is typically in short supply to support all the 
peripheral devices . 

. The last type of approach to linking together computers 
is a loosely coupled arrangement via the shared disk. This 
allows each computer to process jobs with no special timing 
or synchronization between machines. In other words, 
shared disk operations are asynchronous. For this reason 
the operating system has to be modified and the file manager 
system is impacted depending on the appiication and the fiie 
security and protection required. Shared disks typically use 
high speed direct memory access channels for reading and 
writing files, but, of course, this is slow compared to shared 
main memory access times. The disk, however, provides 
much larger storage capacities for two orders of magnitude 
lower cost per byte. Also disk data is nonvolatile when the 
power goes off which is a disadvantage of semiconductor 
shared main memory without batteries. Shared main mem
ory supports as many CPU s as there are ports on the memory 
module, whereas dual and triported disks are about the prac
tical limit as a shared resource. And last, but not least, just 
about every manufacturer in the business offers shared disk 
hardware capability. 



State-of-the-art Capabilities 103 

TABLE V -Comparison of four computer configuration types 

Type 1 Type 2 

Dis tributed/ Network 
Multiple GPUs Interconnected 

With Bus 
Hardware Configurations 

Several rmmufacturers offer Very fast transfer rates 
A complete off-the-shelf oper-

D ating system support Number of CPUs limited 
only by adapter hardware 

V Distributed/network system design 

A easy to implement with no 
systems development just Processing response time 

N application software is inherently faster than 

T other type's of configur-
Some manufacturers ations 

A support any network con-

G figuration (e. g. , star, ring, 
n-Ievel hierarchy) with both 

E hardware and data com-

S 
J;l;lunication links 

D 

1 
Higher operating system Usually not compatible 
overhead for generalized with data communication 

S design link protocols 

A Slower transfer rates and Very specialized oper-
D longer response times ating system software 

V 
typically support 

'A Difficult to change gener- Application flexibility is 
alized design hardware and limited by software and 

N software hardware design system 
T peculiar to the manufac-

A 
turer offering this capa-
bility 

G Uses hardware cables to 
E interconnect and there are 

cable distance limitations 
S 

FUTURE TRENDS 

We have every expectation that distributed network and 
multiprocessing types of architectural approaches will con
tinue to increase in terms of the manufacturers offering this 
support and their use in application implementations. The 
reasons vary for why each type will evolve with more and 
more uses, and the trend seems clearly established already 
(we have only begun to see the tip of the iceberg). Distrib
uted/network systems are clearly evident in all kinds of busi
ness operations with remote nodes feeding a hierarchy or a' 
centralized node to process data orders, update inventory 
and provide all the many functions described in so many 
other articles. Their future looks boundless and unlimited. 

As more users being to realize that mUltiprocessing ca
pabilities exist and that one has only to take a sound, prac-

Type 3 Type 4 
Shared Main Memory Shared Disk 

Very fast and convenient Minimizes impact on com-
access to data for many puter operations especially 
CPUs timing 

Number of CPUs lim- Timing/ synchronization 
ited only by the number requirements relatively 
of memory ports easy to establish 

Saves by eliminating Shared disk uses direct 
storage of common data memory access channels 

for high transfer rates 
Minimize input-output 
operations (i. e. no Requires standard data 
channels required) base file/ record formats 

between CPUs 

Most manufacturers offer 
this hardware capapility 

Large capacity, non-volatile 

Special instructions and Response time to access file 
software support has to is much slower 100 milli-
be used seconds versus 10 micro-

seconds for shared main 
All ins tall a tions have memory 
differences so manu-
facturer has only par- Disk storage overhead is 
tial software support high 
package 

Common data capacity 
Limited to three CPU 
accessibibility per shared limited to capacity of disk the main memory ad-

dress structure Special software development 

Only a few manufac-
expense 

turers offer this _cap-
ability as yet 

tical approach to implementing an architecture to map those 
resources to their application, the risk of multiprocessing will 
remain a memory to only the old timers in the business. 

The high speed bus type of mUltiprocessing architecture 
which provides automatic fail-soft or fail-over capability will 
emerge into its own type and have its own marketplace for 
products to compete with large scale, single computer ma
chines. Many users will want this because it offers significant 
cost advantages with low acquisition cost and no staff of 
systems programmers needed to support operation. The last 
type is shared disk system which will be used less for purely 
multiprocessing purposes because shared main memory 
costs are decreasing all the time and more for large data base 
applications. But use of shared or switchable disks will stead
ily increase to accommodate fail-soft or fail-over capability 
to provide users the high availability and reliability business 
demands. 





ARQ performance in SNA networks 

by MARTIN A. REED 
IBM Corporation 
Gaithersburg, Maryland 

and 

TERENCE D. SMETANKA 
IBM Corporation 
Research Triangle Park, North Carolina 

THE SNA NETWORK 

In order to examine various data link control (DLC) pro
cedures, one must first have a basic understanding of the 
overall network. The network depicted will be one imple
menting the IBM Systems Network Architecture (SNA). 1.2.3.4,5 
The fundamental communication system within SNA is re
ferred to as the Transmission Subsystem. The Transmission 
Subsystem includes three types of elements. The first ele
ment, Data Link Control (DLC), transfers packets (or SNA 
Basic Transmission Units) across noisy transmission medi
ums. The protocol used here is that of SDLC (Synchronous 
Data Link Control). The second element, referred to as Path 
Control (PC), routes packets either to an end user in the 
node or to the proper DLC element for transmission back 
through the network. Path Control also blocks incoming 
messages and deblocks outgoing messages (i.e., SNA seg
menting). Transmission Control (TC) helps manage SNA 
session (i.e., connection) initiation and termination, pro
vides sequence number manipulation, controls pacing, and 
performs many other functions on behalf of the end user. 
Pacing is a means of controlling the rate at which TC sends 
and receives normal data flow requests. 

The SNA Function Management Services provide for the 
control of data flow and for transformation of data presented 
to the network. One element of FM Services is that of Data 
Flow Control (DFC). DFC is used to handle chains of related 
requests, the modes of data requests and responses, and 
other flow control procedures. A chain represents an end 
user's breakdown ofa basic work unit. Another FM Services 
element is Presentation Services (PS) which provides sup
port for communications between end users engaged in ses
sions. PS is a type of mapping service which can adapt var
ious end users' (terminal operator or application) interfaces 
to the SNA network. 

The various SNA layers described allow the attachment 
of Network Addressable Units (NAU's) to the network. 
Three NAU's are defined. The Logical Unit (LU) provides 
a means for end users to interface to the network. The Phys
ical Unit (PU) is a component of each communications re-

105 

source (e.g., host, communications controller, cluster con
troller, or terminal). The third NAU, System Services 
Control Point (SSCP), is the brain of the network. The SSCP 
is responsible for the general management of the network. 
The Physical Unit containing the System Services Control 
Point (e.g., 370, 3033, etc.) is referred to as a PU Type 5 
(PU.T5). The communication controllers (e.g., 3705) are re
ferred to as being PU.T4. Cluster controllers (e.g., 3274, 
3276, etc.) are referred to as PU.T2's and terminals as PU.Tl 
(e.g., 3767).1 

With the various SNA layers and NAU's described,2.3 it 
is now possible to describe session initiation and termina
tion. A session between LU's is simply the connection 
whereby packets flow between the LU's as part of a related 
series of transactions. Figure 1 depicts session initiation 
among two LU's in the same domain (i.e., controlled by the 
same SSCP). Either the Primary L U (PL U) or the Secondary 
LU (SLU) sends an INITIATE command to the SSCP with 
the network name of the requested L U. The SSCP resol Yes 
the LU name and initiating origin into network addresses 
and places the BIND image as well as network addresses 
into the CINIT which is sent to the PLU. The BIND image 
contains information pertaining to various protocols which 
are to be used for the duration of the session. Such infor
mation includes chaining protocols as well as modes of re
quests and responses. The PLU then sends the BIND to the 
SLU and awaits SLU acknowledgment. On positive ac
knowledgment, the PLU sends SESSST to the SSCP in order 
to notify the SSCP of session activation. Session termination 
for LU's in the same domain is similar in flow to that of 
session initiation (see Figure 2 for SLU termination). The 
SLU sends TERMINATE to the SSCP. This command con
tains the name of the PLU with which the terminating SLU 
wishes to terminate this session. The SSCP then sends 
CTERM to the PL U requesting that the PL U attempt to 
deactivate the session with the specified SLU. This leads 
the PL U, upon acceptance of the CTERM, to send UNBIND 
to the SLU. Upon receipt of the UNBIND positive response, 
the PLU notifies the SSCP of session deactivation via 
SESS/END. For PLU termination, the PLU need only send 



lO6 National Computer Conference, 1980 

11NIT 

3 BIND 

Figure I-Session initiation. 

I
Z 
U 
N 

I
CJ) 
CJ) 
CJ) 
w 
CJ) 

""" 

UNBIND to the SLU. Upon receipt of the UNBIND pos
itive response, the PLU sends SESSEND to the SSCP. It 
is also possible to have multiple SSCP's in the network, each 
managing its own domain. The initiation and termination of 
sessions among LU's in different domains is slightly more 
complex and is a superset of the single domain case. 4

•
5 

1 TERM 

3 UNBIND 

Figure 2-Session termination. 

~ 
ex: 
w 
t; 
N 

Cl 
Z 
w 
CJ) 
CJ) 
w 
CJ) 

""" 

With the SNA session initiated, it is now possible to trace 
a transaction through the network as seen in Figure 3. One 
configuration is where two PU. T4 's are between the two end 
users (e.g., terminal operator and host application). Here, 
the terminal operator's message traverses PS, DFC, TC, PC, 
DLC, and is thus transmitted over a common carrier link 
(or possibly an in-plant line if the communication controller 
and terminal are local to each other) to the communication 
controller. The message is routed through this PU.T4's DLC 
to its PC where it is determined that the message need be 
routed to the next node which is another PU.T4. Thus, the 
message is again passed through DLC and the common car
rier link to the second PU.T4. The message is again sent to 
PC from this PU.T4's DLC where the routing tables deter
mine that the message is to be routed to the locally attached 
host. Therefore, the second communication controller routes 
the message through its channel DLC to the host (PU. T5) 
channel DLC. The host PC determines that the message is 
for a host application and thus routes the message through 
TC, DFC, PS, and finally to the end user application. It is 
also possible to have only one PU.T4 in the path between 
the terminal and host as depicted in Figure 3. In fact, any 
number of PU.T4's may be between the terminal operator 
and the host. The common carrier as described above can 
be terrestrial links (e.g., telephone cables, undersea cables, 
microwave links, etc.) as well as satellite links. The DLC 
pairs between any two nodes manage the retransmission 

Channel CJu.T5 
••••••• 

Host 

Figure 3-Data flow through network. 



schemes necessary to assure that the message is sent cor
rectly over the noisy data links.2,3 

THE DATA LINK CONTROL FRAME 

Performance of the network is critical to the interactive 
end user. As seen in Figure 3, tuning the network to achieve 
optimal performance should be done with consideration of 
each of the SNA layers. For example, the choice of definite 
response or exception response in Data Flow Control may 
be crucial to the overall response time or system utilization. 
Also, the length of chain elements is correlated to perform
ance results; The previously mentioned pacing parameters 
in Transmission Control as well as the segmenting parameter 
in Path Control may become crucial to performance as well. 
Possibly the most difficult layer of SNA to tune for per
formance is that of Data Link Control. Data Link Control 
performance is not only dependent on such factors as trans- . 
mission speed, propagation delays, and frame size, but also 
on the random variable of bit-error-rate (BER). The error 
rate of the link is a function of weather conditions, noise 
characteristics of power amplifiers, and other random fac
tors, as well as deterministic influences such as line condi
tioning, which lead to the receiver obtaining a garbled mes
sage. Knowing how DLC fits into the overall network, it is 
now possible to examine this element in more detail to help 
the user achieve better response time. 

SNA incorporates the use of Synchronous Data Link Con
trol (SDLC) for line control.6

,7 SDLC is a subset of the In
ternational Standards Organization's High-Level Data Link 
Control (HDLC)8.9 and the American National Standards 
Institute's Advanced Data Communications Control Pro
cedure (ADCCP). 10 Any message may consist of one or more 
SDLC frames which each contain up to six fields (see Figure 
4). All the fields are fixed in size excluding the information 
field which is a variable number of eight bit bytes. The two 
flags (01111110) enclose the SDLC frame. In order to assure 
data transparency, SDLC procedures require that a ,binary 
zero be inserted by the transmitter after any succession of 
five contiguous ones in the frame. The receiver removes 
these inserted zero's upon frame receipt. This zero insertion 
assures that only the two flags may have six contiguous one 
bits. The analysis conducted pertains to a data link running 
in unbalanced (i.e., containing both fixed primary and sec
ondary stations) and normal response mode (i.e., polling is 
used rather than contention). The address field distinguishes 
the secondary station from which or to which the message 
is being sent. The control field contains polling information, 
sequence numbers, and commands and responses required 
to control the data link. Two subfields of the control field 
contain the sending N(s) and receiving N(r) sequence num
bers which are necessary in double-numbering. In double
numbering, the sending station transmitting information 
frames inserts the sequence number of each frame in the 
N(s) subfield. In conjunction, the receiving station maintains 
the receiving count in the N(r) subfield. N(r) is incremented 
upon the receipt of each error-free frame, as long as the 
received N(s) matches the N(r) count. The N(r) count is 

ARQ Performance in SNA Networks 107 

Bit Number 

Opening Flag 

Address 

N(s) 

Control 

N(r) 

Data Variable Size 

Frame Check 

Sequence 

Closing Flag 

Figure 4-SDLC frame structure. 

therefore the number of the next expected frame to be re
ceived. The N(s) and N(r) subfields are used by various re
transmission schemes. The information field contains the 
user data. The 16 bit frame check sequence field is used in 
a cyclic redundancy check to determine if the frame was 
received correctly. 

ARQ TECHNIQUES 

The choice of ARQ (automatic request for repeat) tech
niques may be an important consideration in regards to sys
tem performance. With the onset of satellite data commu
nications, the choice will become even more crucial. Four 
DLC retransmission techniques will be analyzed. REJ (re
ject) and SREJ (selective reject) are architected ARQ tech
niques in SDLC7 while SACK (selective acknowledgment) 
is an alternative technique which is not architected in SDLC. 
The fourth technique to be analyzed is that of BSC (Binary 
Synchronous Communications) which is a non-SNA DLC 
approach. Only one "frame" is allowed to be outstanding 
in BSC. 

The first technique, REJ, can lead to the retransmission 
of non-error frames as well as those frames in error (as de
tected by the frame check sequence). The supervisory for
mat of an SDLC frame is used to transmit an error control 
frame from the station detecting a sequence error in the re
ceived N(s) count. Retransmission is required beginning with 
the information frame where the N(s) count matches that of 
the N(r) count received in this supervisory frame. Frames 
N(r) - 1 are acknowledged. All frames pending transmission 



108 National Computer Conference, 1980 

following the frame in error may be transmitted. Only one 
reject exception condition may be outstanding at any given 
time between the two SDLC stations. The modulo count-l 
is the number of unacknowledged frames allowed to be out
standing. In SDLC, the modulo count can be a maximum of 
8 while in HDLC a modulo count as great as 128 is possible. 
Therefore, seven frames may be sent under SDLC before 
acknowledgment is required. Figure 5 exemplifies REJ. 

The second alternative, SREJ, only requests retransmis
sion of the SDLC frame in error. Again, the supervisory 
format of an SDLC frame is used in order to notify the send
ing station of a sequence error in the received N(s) count 
at the receiving station. The single information frame to be 
re-sent is specified with the N(s) count specified in the N(r) 
count of the SREJ acknowledgment. The sending station can 
then retransmit the frame in error as well as any frames 
which have not been previously sent. The number offrames 
outstanding must be less than the SDLC modulo count. If 
more than one information frame is received in error, only 
one error frame can be re-sent on the following transmission 
(see Figure 5). 

The third scheme is not architected in SDLC or HDLC 
at the present time. SACK is similar to SREJ in that only 
frames in error need be retransmitted. Unlike SREJ, all in
formation frames received in error can be retransmitted on 
the following retransmission. Also, the receiving station 
must realize how many frames were received in error on the 
previous transmission in order to properly resequence the 
frames. Here, each frame re-sent is issued a new N(s) count 
in order to allow more frames to be sent on each transmis
sion. SACK then has the capability of transmitting the entire 
sequence of frames in fewer transmissions (see Figure 5). 

Levels/Frames 

- = Frame received error-free 

7 = Frame receipt is immaterial 

Levels/Frame. 1 

Levels/Frames· 1 

Modulo Count = 6 Frames 
Message Size = 10 Frames 

SDLC REJ (GO-BACK-N ARO) 
4 5 6 7 B 

X .7 

SDLC SREJ (SELECTIVE REJECT) 
4 5 6 7 8 

X 

10 

10 

SACK (SELECTIVE ACKNOWLEDGEMENT) 
3 4 5 6 7 8- 9 10 

X 

X 

-ACK1,2 

-ACK3,4 

-ACKNONE 

- ACK 5, 6, 7, 8, 9 

-ACK10 

-ACK1,2 

-ACK3,4 

-ACKNONE 

-ACK5,6,7,8,9 

-ACK10 

-ACK1,2,4 

- ACK 3, 6, 7, 8 

-ACK5,9,10 

Figure 5-Examples ofREJ, SREJ, and SACK. 

PERFORMANCE RESULTS 

It is assumed that the network component under study 
consists of a half-duplex (HDX), point-to-point transmission 
link, operating either in BSC or in HDLC unbalanced normal 
response mode. This general description was chosen to allow 
consideration of both SNA and non-SNA networks. The 
analysis is equally valid for an SDLC environment; however, 
HDLC was chosen to allow the modulo count to range up 
to 128, rather than restricting it to 8 as is implemented under 
SDLC. 

Interactive applications, rather than batch, are assumed 
to be the primary job types utilizing the transmission facility. 
Consequently, link response time is the key performance 
parameter. Previous studies 11,12,)3.14.15 have described the 
analyses of the REJ and SACK modes of error recovery. 
BSC is conveniently handled by considering it as a subset 
of ARQ. SREJ has not been previously analyzed; its results 
appear herein for the first time. 

The mathematical model of mean data link response time 
(MLRT) for BSC, REJ, SREJ, and SACK is summarized in 
the Appendix. Note that the input variable s (data frame size) 
includes both information bits as well as framing characters. 
The other input parameters are self-explanatory, except for 
the factor t, which accounts for network delays not asso
ciated with the actual transmission of user data. Consider 
a satellite link with terrestrial tails as a sample environment. 
A sequence of frames (from one to the modulo count-l) 
being sent from the secondary to primary station first incurs 
a delay to physically pass through the modem at the source 
ofthe data (modem transit time). Next, there is a propagation 
delay along the terrestrial tail from the secondary to its as
sociated earth station, and a propagation delay along the 
satellite uplink. Any necessary satellite processing then 
takes place, followed by another set of delays on the com
pletion of the trip to the primary station. Here, an acknowl
edgment frame (containing no information field) is con
structed and transmitted back to the secondary station, 
incurring each of the described overhead delays on the way. 
The next transmission of data frames from the secondary 
station can then be initiated. Thus, the response time for one 
round-trip consists of the actual transmission time for the 
data frames plus the c'lerhead time, '~lhich, in this ease, 
equals four modem transit delays plus four terrestrial prop
agation delays plus four satellite propagation delays plus the 
transmission time for the acknowledgment plus any satellite 
processing time, as well as any configuration dependent de
lays such as waiting for a poll. The link response time for 
an entire message is the sum of these round-trip times for 
all transmissions. 

Figure 6 illustrates the two components of MLRT for BSC, 
REJ, SREJ, and SACK. The satellite/terrestrial scenario has 
been maintained here, as can be seen in the large overhead 
delay, in order to highlight the differences among the tech
niques. Notice that BSC is independent of the modulo count, 
as is clear from its definition. SREJ and SACK both have 
constant transmission time components, since only errored 
frames are retransmitted, but have monotonically decreasing 



10 

9 

8 

7 

6 
Ii) 
"'0 
C 
0 
C) 
Q) 

~ 
Q) 

E 
i= 

5 

4 

3 

2 

2 3 4 5 6 

Overhead Time (BSC) 

16 Frames/Message 
1024 Data Bits/Frame 
9600 BPS 
.552 Sec. Overhead Time/ 

T ransm ission 
10-4 BER 

Transmission Time (BSC, SREJ, SACK) 

Overhead Time (REJ, SREJ) -----
Overhead Time (SACK) 

7 8 9 10 11 12 13 14 15 16 17 

Modulo Count 
Figure 6-Components of MLRT vs. modulo count. 

109 



110 National Computer Conference; 1980 

overhead time components, since fewer transmissions are 
required as the number of frames sent per transmission is 
permitted to increase. REJ exhibits this same behavior in 
regards to overhead time. However, the transmission time 
component of REJ increases with the modulo count, since 
more non-errored frames must be retransmitted for each i 

erroted frame received. 
Figure 7 shows the resulting MLRT for the same bench

mark. The error-free case is presented for comparison pur
poses. Observe that an optimization of MLRT for REJ as 
a function of modulo count can be realized. In contrast, the 
response times for both SREJ and SACK exhibit monoton
ically decreasing behavior as modulo count increases. A 
graph such as this can be used not only for performance 
specifications, but for systems design. For example, since 
buffering requirements at both the primary and secondary 
stations are a direct function of the modulo count, a tradeoff 
of response time vs. necessary buffering capacity can be 
made. 

There are many design parameters which require study in 
the planning stages of a system. Hardware features such as 
data transmission rate of the link and bit-error-rate can easily 
be tuned from a performance standpoint by use of the model 
described here. In addition, software decisions can be 
reached. As an illustration, Figure 8 describes the effects on 
MLRT when the system from Figure 7 is varied by blocking 
the same 16,384 bit message into 8 frames rather than 16 

"1 
'i 

\ 
16 Frame,/Message 
1024 Data Bits/Frame 
9600 BPS 
.552 Sec. Overhead Time/ 

Transmission 
10-4 BER 

BSC 

8 9 10 11 12 13 14 15 16 17 

Modulo Count 

Figure 7-MLRT VS. modulo count at 16 frames/message. 

8 Frames/Message 
2048 Data Bits/Frame 
9600 BPS 

BSC 

.552 Sec. Overhead Time/ 
Transmission 

10-4 BER 

REJ 

Error·Free 

Modulo Count 

Figure 8-MLRT vs. modulo count at 8 frames/message. 

frames. A different modulo count, buffering requirement, or 
retransmission technique may now become optimal. 

CONCLUSIONS 

The analysis of the DLC layer of a network is an intricate 
process. This paper has described an important subset of 
that effort, namely the study of data link response time for 
interactive applications using a noisy telecommunications 
link. All the presently architected ARQ techniques, as well 
as one proposed retransmission scheme, have been consid
ered in the formulation of a mathematical model of the net
work. By use of this model, one may investigate the influ
ences of many hardware and software parameters, thereby 
aiding in the planning, design, and cost/performance analysis 
of a system. 

REFERENCES 

I. Ahuja, V., "Routing and Flow Control in Systems Network Architec
ture," IBM Systems Journal, Vol. 18, No.2, pp. 298-314 (1979). 

2. Green, P. E., "An Introduction to Network Architectures and Proto
cols," IBM Systems Journal, Vol. 18, No.2, pp. 202-222 (1979). 

3. "Systems Network Architecture," General Information, IBM Publication 
GA27-3102-0, Mechanicsburg, Pa. (1975). 

4. "Systems Network Architecture Reference Summary," IBM Publication 
GA27-3136-2, Mechanicsburg, Pa. (1978). 

5. Gray, J. P. and McNeill, T. B., "SNA Multi-System Networking," IBM 
Systems Journal, Vol. 18, No.2, pp. 279-282 (1979). 

6. Kearsey, J. R., "Synchronous Data Link Control," Data Communica
tions, pp. 49-60, May/June (1974). 

7. "IBM Synchronous Data Link Control," General Information, IBM Pub
lication GA27-3093-0, Mechanicsburg, Pa. (1974). 

8. "Data Communications-High Level Data Link Control Procedures
Frame Structure," International Organization for Standardization (ISO) 



Document No. ISO 3309, American National Standards Institute, New 
York (1976). 

9. "Data Communications-High Level Data Link Control Procedures (in
dependent numbering)," International Organization for Standardization 
(ISO) Document No. ISOIDIS 4335, American National Standards Insti
tute, New York (1976). 

to. Carlson, D. E., "ADCCP-,-A Computer-Oriented Data Link Control," 
COMPCON, pp. 110-113, Sept. 9-11 (1975). 

11. Reed, M. A. and Smetanka, T. D., "How to Determine Message Re
sponse Time for Satellites," Data Communications, pp. 42-47, June 
(1977). 

APPENDIX 

The mathematical model for data link response time 

ARQ Performance in SNA Networks 111 

12. Smetanka, T. D. and Reed, M. A., "Error Considerations in Determining 
Satellite Data Link Response Time," NTC 77, IEEE No. 77CHI292-2 
CSCB, 3B.3.1-3B.3.5 (1977). 

13. Smetanka, T. D., "Coping with Data Transmission Errors," Mini-Micro 
Systems, pp. 74-75, July (1978). 

14. Reed, M:. A. an~ Smetanka, T. D., "Implications of a Selective Ac
knowledgment Scheme on Satellite Performance," IBM 1. Res. Devel., 
Vol. 23, No.2, pp. 189-196, March (1979). 

15. Reed, M. A. and Smetanka, T. D., "A Mathematical Model of a Data 
Link Error Control Scheme for Response Time Distributions," ICC 79, 
IEEE No. 79CH1435-7 CSCB, 41.3.1-41.3.5 (1979). 

The mean data link response time MLRT is computed as follows: 

Define the parameters: 

~ 

p = 1 - (1 - BER)S 

~ 

q=l-p 

C(x,y)! (;) 

~ 

I x"l = Least integer greater than or equal to x 

~ 

Lx.J = Greatest integer less than or equal to x 

where the network and configuration parameters used to generate MLRT are: 

s = Data frame size, in bits 
BPS = Data transmission rate of the link, in bits per second 
BER = Overall bit error rate of the link (randomly distributed) 

n = Number of data frames per message 
M = Modulo count - 1 

t = Overhead time incurred in each round-trip transmission of frames from the primary station.to the secondary, and 
back to the primary. This parameter includes such factors as modem transit delays, terrestrial and/or satellite 
propagation delays, delay for receipt of each acknowledgment, queueing delays, etc. 

Then for each retransmission protocol: 

BSC (binary synchronous mode) 

MLRT = «s/BPS) + t)(n/q) 

REJ (reject mode) 

n(s/BPS)(l + (p/2q)(n + 1) + t(1 + np/q) for M?::n 

(
L<n-I)/M -.J ) 

(s/BPS) I~cf> qlM. MIN(M,n -1M) + t«(1- qMo +L<n-I)/M -.J})/(1- qM» 

00 MIN(n,IM) [x/Mj-I rxIMi-(j+1) 

MLRT= +}: }: }: C(lJ)pl-jqX-I}: (_1)k 
/=1 x=1 j = MIN(I,MAX(O,x -I(M - I) - I)) k = 0 

xC(l-j,k)C(I-j+x-M(j+k)-2,I-j-1) 

. «s/BPS)MIN(M,n - x + 1) + t) for M<n 



112 National Computer Conference, 1980 

SREJ (selective reject mode) 

(s/BPS)(n/q) + t(1 + np/q) for M"2:.n 

(s/BPS)(n/q) + t«(1- qM(l +Un-I)IM .J»)/(1- qM)) 

00 MIN(n,lM) ixIMI-I ixIMI-(j+l) 
MLRT= +t ~ ~ ~ C(l,j)p,-jqx-I ~ (_1)k 

1= I x= I j=MIN(l,MAX(O,x-I(M-l)-I» k=O 

x C(l- j,k)C(l- j+x- M(j+ k) - 2,1-j-I) for M<n 

SACK (selective acknowledgment mode) 

n 

(s/BPS)(n/q) + t ~ (_1)i+ IC(n,i)(1-pi)-I for M"2:.n 
i=1 

00 I-I M x+M 
MLRT = (s/BPS)(n/q) + t ~ ~ ~ ~ IpzM-(n-x)qn-x 

l=inlMI z=inIMI-I x=MAX(l,n-zM) y=M+ I 

x C«z -I)M,n - y)C(M,y - x)·«(1- p'-zy - (1-p'-z-IY) for M<n 



Computer communication in NTT remote computing 
services 

by MASATOSHI IWAYAMA and ATSUMU FUJIWARA 
Nippon Tel & Tel Public Corp. 
Tokyo, Japan 

INTRODUCTION 

Today, NTT's RCS has higher-level and more varied func
tions than when it started. It occupies a more and more im
portant position in computerization in Japan. 

In this situation, in order to construct a rational service 
system according to user needs and to achieve an effective 
functions distribution between NTT's RCS and other Hosts 
(computers used by other service vendors or private com
pany computers), computer communication techniques have 
become indispensable in NTT's services. 

This paper first indicates requirements for computer com
munications in NTT's services. Second, it indicates the basic 
computer communications functions, needed to respond to 
those requirements and how far they have been realized by 
now. Furthermore, an overview of the protocols realized so 
far is reported and some of their technical aspects are dis
cussed. 

Last of all, the NTT schedule from now on is presented. 

NTT REMOTE COMPUTING SERVICES FEATURE 

Since the utilization of computers began in Japan, the NTT 
concept has been that various computer systems and net
works should be organically combined in the future to be
come a communication and data-processing utility (called a 
Network Utility) as a kind of infrastructure. 

NTT believed that, in order to construct a rational and 
sound Network Utility in Japan, it was desirable for NTT, 
the common carrier, to enter upon the data-processing field. 
On the basis of this concept, NTT has been developing and 
offering a number of data-processing services since 1968. 

These services are classified roughly into the two cate
gories. One is the sole use data-processing service for spe
cific users. The other is remote computing service (RCS) for 
unspecified users. RCS is divided into the two service cat
egories, DRESS, and DEMOS. Both services have expanded 
gradually since they started in 1971. They have become the 
largest RCS in Japan with their 6,000 terminals. 

DEMOS (Demenkosha Multiaccess Online System) is a 
general purpose TSS (Time Sharing System) service with a 
multitude of commands, languages, library programs and 

113 

large processing capacity. DRESS (Dendenkosha REaltime 
Sales management System) is a service for a fixed transac
tion processing, in which master-files are renewed-a typical 
example is sales and inventory management system. DRESS 
is not as flexible as DEMOS in building an application system 
for end-users, while it has an effective file-accessing ability 
and a complete security for transaction data and user files. 
Computers of the same kind-DIPS (Dendenkosha Infor
mation Processing System)-are used in both systems. How
ever, different kinds of operating systems are used, accord
ing to differences in the systems' features. 

For a long time, putting large-scale computers into com
mon use, both have worked a lot in providing cheap and 
easily available information processing tools for users who 
couldn't afford to have their own computers. Recently, how
ever, the role of both systems in that sense is rapidly be
coming less than before, because of the drastic improvement 
in local processors (especially mini-computers and office 
computers) in regard to the efficiency and price. 

From now on, NTT intends to provide various service 
menus for DRESS and DEMOS which cannot be sufficiently 
realized on a local-processing basis and will be fulfilled with 
on a remote processing basis. The service menus NTT has 
in mind are as follows: (a) hardware resources which local 
processors cannot be economically equipped with, such as: 

• High-speed processing machine 
• Mass storage system 
• High-speed kanji-printer 
• Large scale X-Y plotter; 

(b) network linkage functions, such as: 

• Network interface for various kinds of terminals 
• Relay node for different kinds of computer systems 
• Constructing efficient network for nation-wide data-pro

cessing systems; 

(c) data distribution functions for database producers; (d) 
software package circulation functions for software authors; 
and (e) software production and debugging tools for various· 



114 National Computer Conference, 1980 

kinds of computers and micro·processors, such as: 

• Cross software library 
• Software conversion tools 
• Program generators 
• Support tools for designing and documentation. 

COMPUTER COMMUNICATION REQUIREMENT IN 
NTT'S RCS 

The NTT's RCS center facilities are decentralized into 
several districts (the NTT's RCS centers placement is shown 
in Figure 2) for the following reasons: (a) to match existing 
maintenance-and-operational organization for telecommu
nications networks; (b) to avoid expensive charges for the 
circuit use, normally determined according to the distances 
involved in the transmission; and (c) to safeguard against 
disasters, such as earthquake, fire and typhoon. 

Lately, computer communications among these distrib
uted centers or between them and other host computers have 
been required for the following reasons. 

1. End-user systems geographical range extension 

There is a tendency for unifying the date-processings, 
which have previously been accomplished individually at 

head offices and at branch offices or among different cor
porations so far. There is a requirement for constructing sys
tems for sales management and inventory control, point of 
sales management, order entry, reservations etc. on a nation
wide scale from the beginning. 

There is a requirement to use the NTT's ReS network 
which already has many customers and sufficiently varied 
functions to afford a new opportunity for software-houses 
and database producers, for software circulation and date 
circulation. 

2. Functions distribution among centers within the same 
service 

This is a means for sharing facilities at a center, which has 
specialized functions-the so called functional center
among general centers. NTT has already established in 
DEMOS the Extended Remote Batch Center equipped with 
high speeded CPU which is connected to all of the other 
centers by c()mputer communications with high speed trans
mission line and high level protocols. 

NTT intends to construct a large scale database center, 
a video information storage center etc. as a function center, 
believing that a total system can be developed economically 
and rationally using this approach. 

Banking systems 

Govermental systems 

TSS Vender's systems 

Data telefon terminals 

Basic terminals 

* 
In telligen t 
communication net~orks 

AUTOMATEb METEOROLOGICAL DATA ACQUISITION SYSTEM 
AGRICULTURAL INFORMATION DISTRIBUTING SYSTEM 

EMERGENCY MEDICAL INFORMATION SYSTEM etc. 

Figure I-The network utility image. 

Laboratory systems 

Database service systems 

TV receivers 

data proces~ing 
services 

* 

Private company computers 

Intelligent terminals 

o : Data processing node 



Computer Communication in NTT Remote Computing Services 115 

Nagoya (under constructing) 

Tokyo 

Sapporo 

Fukuoka (DRESS) 

Figure 2-DRESS and DEMOS centers placement. , 

3. Customer needfor DRESS and DEMOS unification 

Lately, the requirement to realize a total system, by com· 
bining the merits of both DEMOS and DRESS, have been 
accelerated. A typical example is in regard to analyzing data 
in DEMOS which have been collected through the daily pro
cessing in DRESS. Though a method was considered by 
which to unify DRESS and DEMOS operating systems and 
to share the files in the same center in order to respond to 
these requirements, it was concluded that, for the time being, 
it is more favorable to regard DRESS and DEMOS as in
dividual independent functional centers and to connect these 
centers by computer communications techniques. 

4. Customer requirement for a distributed system 
connecting NTT RCS centers and non-NTT centers 

A typical example of these requirements, which has 
emerged very clearly by now, is the connection with the 
database service vendor's center. Connection with the bank
ing data-processing systems, governmental data-processing 
systems, non-NTT TSS centers, etc. will be seen in the 
near future. The following requirements for connecting 
with private company computer systems are appearing: (a) 
batch-ptocessing the data in private computers which are 

collected through the RCS network; (b) processing the data 
in private computers, making use ofRCS program resources; 
(c) dealing with,the overflow from private computers in the 
RCS; (d) employing either private computers or the RCS 
depending on the kind of work involved. 

Items 1. and 2. concern only the same service. Item 3. 
concerns two services in different categories. Item 4. con
cerns different computer categories. 

The NTT concept about basic computer communications 
fUnctions, which should be realized to respond to these re
quirements and ways to implement them, are presented in 
the following. 

BASIC COMPUTER COMMUNICATIONS 
FUNCTIONS REQUIRED 

Basic computer communications functions include file 
transfer, file record access, job transfer and message trans
fer. 

Table I shows the functions needed in NTT's services 
within the same services, among different services and 
among different computers. At the same time, it shows how 
far these functions have been realized as of now. 

Some considerations about these fundamental functions 
are presented in the following. 



116 National Computer Conference, 1980 

TABLE I.-Functions Required in NTT's ReS 

Between Same category computers 
Among different category 

Within the same services computers 

Between DEMOS 

Within DEMOS Within DRESS and DRESS Between DEMOS lBetween DRESS Function Figure 
services services and other host land other host 

host file 
File 

aG () ® @ @ @ 0 0 transfer 

terminal 

File flSS () U 0 0 record 
access 

\ 

Job Procedure 
transfer 

@ 0 0 (includes 9:::J job-step 
transfer) 

Message data 

transfer ~ @ 

Already in service @: Specifications already determined, ~ 
being manufactured 

to be developed in the near 
future 

1. Both file transfer and file record access have their own 
application areas, depending on the volume of the data to 
be accessed. Of the two functions, file transfer was realized 
first, since its realization was technologically easiest. How
ever, when retrieving database data from the remote host, 
etc., file record access is necessary anyway. Therefore, it 
is inevitable to support this function at the next stage. The 
cost (including processing charge, file charge and circuit 
charge) accounting result, depending on the data files place
ment and file record access method for an actual point of 
sales management system model, are shown in Figure 3. 

In this model, distributed placement data files provide 
more efficiency, compared with centralized placement data 
files. If distributed placement is adopted, file record access 
is more efficient than the file transfer method. 

2. When sharing program resources, job step transfer pro
vides more efficiency than program file transfer does, when 
the program volume is sufficiently large. This is why the job 
step transfer method was developed in DEMOS. 

3. Accessing the remote file records using the message 
transfer methods, the file access function can be easily sub
stituted for without. worries about locking and unlocking 
files, file backup etc. In this context, message transfer was 
realized in place of file record access in DEMOS. 

4. Fundamentally, it is desirable that connection with the 

remote resources should be transparent for users of the local 
host in distributed data-processing. For example, this trans
parency was realized in the following cases. 

• The command 'ULIBRARY' (user library) sets the cir
culation software package into motion. In using this com
mand, the users don't need to take into consideration at 
all in which host the program files exist. This is because 
the program files required are automatically transferred 
in the process within the ULIBRARY command, even 
if they exist in some other host. 

• The NTT database management system-DORIS-2 (Den
denkosha's Online system for Retrieval of Information 
and Storage) has realized data retrieval from a remote 
host by applying the process-to-process data transfer 
method. Retrieval can be achieved without any consid
erations about the computer communications, by setting 
up in advance information about the files to be retrieved 
and the host in which they exist. 

5. The full-scale distributed DBMS (Data Base Manage
ment System) is now under research. 

In order to realize this DBMS, it would be necessary to 
prepare a basic function for distributed DBMS other than 
those discussed above. 



Computer Communication in NTT Remote Computing Services 117 

PROTOCOL IMPLEMENTATION 

Protocols within DEMOS 

These protocols include file transfer, job transfer and mes
sage transfer. Protocol layer hierarchy is shown in Figure 
4. 

These protocols have been developed only to apply to 
DEMOS. These protocols were attained not only in order 
to meet customer needs, but also to study the technology 
required for developing the most generalized computer net
work architecture applicable to different computer cate
gories-DeNA (Data Communications Network Architec
ture). 

1. It has been possible to achieve very high level effi
ciency in these protocols, because the code systems, file 
structures, file identification methods and so on are the same 
within the same service. 

However, the following points prevented the protocols 
from having the general applicability required to be extended 
for application to the communication field among the dif
ferent computer categories: (a) separation of protocol layer 
hierachy is not sufficient; (b) resources virtualization is not 
sufficient. 

2. At the Host/Host protocol designing stage, every effort 

Cost 

Centralized placement data files, 
file record access 

~ 

was made to detach the fundamental functions from each 
protocol, so that those functions could be shared by each 
protocol in the form of protocol-commands. 

As shown in Table II, 60 percent of the protocol com
mands used in a certain protocol are shared by other pro
tocols. 

Similarly, from the viewpoint of the number of program 
steps, the common use ratio is as high as 60 percent. 

3. There would be two controlling methods for the pro
cess-to-process data transfer. One is the method in which only 
local process can control data transfer. The other is the 
method in which both local process and remote process have 
the right to control, on an equal basis. 

However, for now, it is not necessary to realize this 
method at the risk of an increase in over-head time and at 
the risk of deadlock occurrence resulting from a right of con
trol exchange. 

4. A method has been adopted wherein the acknowledge 
response from the remote process cannot be acquired until 
the data transfer has entirely ended, even when a large vol
ume of data is to be transferred. This is because it was con
cluded better to lay stress on transfer efficiency as a result 
of trading-off between recovery from difficulties and data 
transfer efficiency. 

Difficulties in the center at the opposite end are almost 
the only ones to be recovered at the host/host level. 

Distributed placement data 
files, file transfer 

I 
I I Distributed placement data files, 

file record access 
I 
I 
I re--- Ordinary access volume in this model 

I 
I 
I 

File accessing volume 
Figure 3-Cost accounting result for actual point of sales model. 



l1S National Computer Conference, 19S0 

User level protocols 

User process 

Communication control 
software package 

Host/host protocols 

User process 

Communication control 
software package 

CCP/CCP protocols 
r-------~~----------, r------------~--------~ 

CCP CCP 

Transmission Control procedure 

CCP: Communication Control Processor - -

Figure 4-Protocollayer hierarchy. 

TABLE II.-Protocol Commands Common Use Ratio 

Commands Steps 

* Protocol commands and their steps 27.0 33.6 

Total protocol commands 100.0 * 
and their steps 

72.0 

* Average values per protocol 5.5 7.7 

Average commands used in 
* common by other protocols and 3.4 5.1 

their total steps per protoc;ol 

Common use ratiQ 62.0 % 66.0 % 
[ (4) / (3) x 100% 1 

Number of protocols: 13 

* The number of steps is not a real one. It is shown in the 
form of the ratio when compared with the number of steps in 
the total proto.col commands (=100.0). 

However, the difficulties probability in NTT centers is 
very small and, once difficulties arise, the connection must 
be cut off in most cases where troubles are not recovered 
within a permissible time lapse. 

Protocols within DRESS and protocols between DEMOS 
and DRESS (file transfer protocols) 

These protocols are the first protocols implemented based 
upon DCN A on a full scale. 

DeN A has strong generality and is applicable to various 
computer categories. 

NTT has been developing this architecture as a common 
carrier's duty, in cooperation with several computer makers. 
DCNA protocol layer heirarchy is shown in Figure 5. 

The implementation characteristics for these protocols are 
as follows: 

1. As the internal forms of the user management and the 
file management etc. were different between DRESS and 
DEMOS, the mapping method between these forms was the 
most important subject. 

2. As these protocols are tentatively implemented by 
using the existing communication control software package 
in the first place in order to meet increasing user demands, 
these protocols are not entirely based upon DCNA. The 
protocols which are fully based upon DCNA will be created 



Information Information 
processing level processing level 

Undifined (User free) 
~==~=~-~~==========~=~===~~ 

Protocol layer 

Transport 

level 

Data link 

level 

Physical 

level 

Function control 
level protocol 

Transport 
level protocol 

Link 

Network node A 

,------, 
I I 
I 

Transport 

level 

Data link 

level 

Physical 

level 

Network node B 

Link 

Function 
control 
level 

Transport 
level 

Data link 
level 

Physical 
level 

Network node C 

Figure 5-DCNA protocol layer hierarchy. 

Function 

Control 

Level 

t 
Application Function 

t--
System Function 

+---1 ____ F_u_n_:_~_~~~~f~-~-:-:-:-:-:-:-: 
Transport Unit Contro 

-

---

C-C 

-

1 

: .~ ,. DTSpl 1-- .... 
RMP 

I $-I~ I -I.J OJ 
c: I 4-l 

- ~ - _L~ ___ 
OJ I (Ij 
0.0 I ~ (Ij ..-l 
c: 0 I ..-l 

MP ~ u OJ 0 
0 I 0.0 U 
-I.J (Ij 0 

,..!<l 0 I rJJ -I.J 
$-I $-I rJJ 0 
0 Il.o I ~ $-I 

~ 
\ 

Il.o 

OJ 
Z 

Data ~ 
compressi,:.n __ 

"'" 
I 

~ 
I ~ 

~L 
\1) Q) ~ 0 

~ $-I U -I.J OJ 
-1"1 OJ 0 4-l..-l U 

J-~--
4-l -I.J rJJ 0 U ..-l 
rJJ 0 c: u « 0 c: $-I (Ij 0 u 

--iII~- -"""-1=1-- I-- ~-o----
0 $-I H 0 rJJ -I.J 

r-i U H rJJ $-I (Ij 0 
ro 0 rJJ ..c j:l..., ..0 $-I ::s -I.J OJ OJ 0 (Ij Po.. 
.j.J 0 ..-l U ..., -I.J 
1-1 $-I -r-! U (Ij 

~~ 
~ « ~ 

FMP-2 RJP FMP-3 

-
k 
I 
I Code Convert Encryption 

! 

H-CMP 

Transport 
Level 

----------------------------
Ruting Control 

C-CMP 
Data Link Level 

Physical Level 

~~~ __ .. ____ ~I DCNA Software Products 
TSP Time Sharing Package

C-CMP CCP-Communication Management Program CWPS Communication Word Processing System

H-CMP Host-Communication Management Program FMP File Management Program

RMP Remote Maintenance Program RJP Remote Job Entry Package

Figure 6-DCNA installation image.

119

120 National Computer Conference, 1980

only after the new communication software package has
been produced.

It is true that the shift from the old protocols to the new
ones can't be accomplished at the same time in all centers.
Therefore, the old protocols and new ones will be forced to
co-exist with each other temporarily.

In order to solve this problem, a converter is being de
veloped which would act as the gate-way between these
protocols. .

3. It has been decided that the control-management of the
whole network should be accomplished independently by
each center. The reason is to match the existing maintenance
and operation method in the centers and to avoid the risk
of cutting off the computer communications among all cen
ters when the network control management center fails.

CONCLUSION

The most important subject to solve now is how to com
municate among different kinds of computers.

The present NTT schedule for this is as follows:
1979: Communications between NTT computers and other

computers have been realized on the host-to-basic terminal
connection basis (communications at the data link level or
the transportation level).

1981: File transfer protocols implemented in DRESS and
DEMOS will be opened to the public.

1983: Communications' between NTT computers and the
products of the computer makers who co-operate with NTT
will be established on a full DCNA basis. A DCNA instal
lation outline is shown in Figure 6.

After 1983: The converter which realizes the communi
cations between NTT computers and other computers, on
the basis of architecture other than DCNA, will be provided.
At this stage, the NTT RCS will act as a relay node among
computers as well as a general purpose processing node.

While the communication among different kinds of com
puters will greatly contribute to the computerization, it is
sure that there will be some unforeseen problems. For ex
ample, possible problems include data and message security,
privacy protection and increase of influence upon society
produced by the difficulties of a certain node because of the
increase of the bilateral dependence among computerized
systems.

As discussed above, NTT's RCS will play the most im
portant part as an infrastructure in Japan.

Therefore, sufficient assessment of these problems must
be attained when developing the computer communication
techniques.

REFERENCES

I. Yutaka Ohshima and Yutaka Nakagawa, etc., "Function and Mechanism
of Host/Host High-Level Protocol," Review of the Electrical Communi
cation Laboratories, Vol. 28, No.3, 4, 1980.

2. Seiichi Kawazu and Kohhei Ohnuma, etc" "Distributed Database Appli
cation to Decision Support Systems for Chain Stores," NTT Yokosuka
Telecommunications Laboratory, May 1979.

3. Kaoru Kubo, "DEMOS-E Network," Information Processing, Vol. 20,
No.4, 1979.

4. Akira Takai, Ikuo Ohsawa, and Hiroshi Saya, "General Purpose Time
Sharing Service Improved by New OS," Japan Telecommunications Re
view, Vol. 20, No.2, April 1978.

Local area data distribution

by THOMAS G. ALBRIGHT and ROBERT J. WALLACE
Printer Terminal Communications Corporation
Ramona, California

LOCAL AREA DATA DISTRIBUTION

The Information Processing Industry now has available a
new link-technology between information and the informa
tion user. The new technology is the local radio frequency
(RF) voice-grade data broadcast channel.

Radio frequency communications have been commonly
used in data communications networks in the past. However,
their use has been predominantly restricted to wideband
channels, specifically, with point-to-point surface data com
munications utilizing microwave transmission, and with
point-to-point satellite data communications.

For the purpose of discussion, we will refer to this new
link-technology as LADD (Local Area Data Distribution).
LADD, like microwave and satellite RF communications,
is not a data communications network in itself, but a system
element. As a system element, it is available for use by all
data communications network operators who find it useful.

One of the beneficial qualities of LADD is that it is not
a leading edge technology which needs refining to be reliable,
predictable, and cost effective. Rather, it is simply the union
of existing broadcast radio techniques with digital modula
tion-demodulation (Modem) techniques to achieve digital
broadcasting. However, one of the difficulties in comparing
LADD to other data communication technologies on a de
tailed technological level is the lack of extensive research
experience in the LADD service frequency range and band
width. A summary of the most relevant data communications
research experience in the LADD service frequency range,
the ALOHA project, may be found in Binder et al.* Yet,
even the ALOHA project provides a poor reference point
due to its broad bandwidth and half duplex service mode.
These two differences have led ALOHA-related studies to
ward optimizing scheduling protocols rather than expanding

. the basic knowledge of the RF medium as a simplex data
channel, particularly using voice grade service frequencies.
Although it shares RF communications methods with sat
ellite and microwave communications, LADD is much dif
ferent in capabilities. Table I illustrates some of these dif
ferences.

* Binder, R., N. Abramson, F. F. Kuo, A. Okinaka and D. Wax, 'ALOHA
packet broadcasting-a retrospect', Proceedings, National Computer Con
ference (1975), page 203.

121

Because of these differences and LADD's capabilities,
LADD has specific and limited applications capabilities. The
LADD system's configuration includes several components:

The physical link connects the controlling site processor
which interfaces the user's host computer or network to the
LADD Broadcast System. Normally this link is a condi
tioned leased line utilizing BSC protocol. More sophisticated
means of implementing error detection and corrrection on
this link are possible and compatible with LADD configu
ration. The capability of a dial back-up of this physical link
is built in to the LADD system to improve systems availa
bility.

The controlling site processor is the gateway from the
user's network for data messages from the network that are
to be distributed; It regulates the flow of addressed data
messages, received from the user's host computer or net
work, according to pre-defined. user priorities, to the LADD
Broadcast System. The net bandwidth capabilities of the
controlling site processor over the physical link are tuned
to the maximum net bandwidth of the LADD Broadcast Sys
tem in order to simplify control. The controlling site system,
therefore, acts as an arbitration and store-and-forward de
vice. In addition to these duties, it can: (1) selectively invoke
special data message handling requirements on a message
by-message basis, (2) cause the transmission of a predeter
mined test message for systems checkout and maintenance;
and (3) record user accounting information for later analysis.

The LADD Broadcast System exists at the FCC licensed
Broadcast Service Operator's facility. It is linked to the data
communications network controlling site processor via the
physical link. The LADD Broadcast System provides a reg
ulated signal to the Broadcast Service Operator to be injected
into the RF broadcast transmission stream.

The functions of the Broadcast System are:

-Maintain the physical link protocol to the controlling
site processor.

- Provide the broadcast signal of data messages which
includes encapsulation of data messages according to
LADD protocol (see Appendix A-LADD Transmitted
Data Organization); multiplexing messages for optimum
use of the broadcast channel, and modulation of mes
sages to comply with RF Broadcast Service require
ments.

122 National Computer Conference, 1980

TABLE I.-Comparison of RF Communications Methods

TECHNOLOGY: LADD SATELLITE MICROWAVE

FACTOR:

Transmission Hode broadcast or point-to- point-to-

point-to-point point point

Reception voice-grade to wide band wideband

Channel Bandwidth wideband

Cost of user-site low high high

receiver/modem

Range (physical short long short

or regulated)

Practical one-way two-way two-way

Transmission outbound

Direction

-Provide selective data message special handling capa
bilities. Data messages from the controlling site may be
"tagged" to indicate such special handling as encryp
tion, forward error correction (FEC), and time and date
stamping.

-Collect accounting data on the utilization of LADD.
- Provide feedback to the controlling site on the status

of the LADD Broadcast System and the FCC licensed
Broadcast Service.

The FCC licensed Broadcast Service Operator simply ac
cepts the signal from the LADD Broadcast System, injects
the signal into the transmission stream, and transmits the
signal as part of his normal operations.

The LADD Antenna-Receiver-Terminal is the final com
ponent handling the flow of data messages within LADD.
The Antenna receives the RF signal and delivers it by cable
to the Receiver. The Antenna is usually mounted outdoors.
When the multiple Terminals are used within a single facility,
only a single Antenna is required. The Receiver, upon re
ceiving the RP signal from the Anten~a, demodulates the RF
signal to a digital and demultiplexes the signal, preserving
only the data message sent to its related Terminal. In ad
dition, the Receiver performs necessary receiving-end func
tions required by selective special data message handling.
The Terminal disposes of the digital signal in accordance
with the wishes of the user.

The broadcast capabilities of the FCC licensed Broadcast
Service Operator are key elements in the physical organi
zation of LADD with respect to determining applications
capabilities. Appendix B, FCC Licensed Services Approved
for Data, summarizes the major restraints and capabilities
of transmission services capable of supporting LADD tech
nology. The three major applications-related factors are:

The channel bandwidth authorized for data. This is the
maximum allowable bandwidth according to FCC regulation.

It is important to note that the user will be sold considerably
less bandwidth by the FCC licensed Broadcast Service Op
erator. The Broadcast Service Operator, in order to protect
his operation from violating FCC regulations (or affecting
his main channel, where one exists), will provide his own
guardbands. While these guardbands protect the Broadcast
Service Operator, they reduce the user's bandwidth as ac
tually delivered.

The transmission mode authorized by the FCC for that
particular transmission service. The two available modes are
broadcast and point-to-point. The difference between broad
cast and point-to-point mode is contrasted in Davies et al**
when introducing Packet Broadcast Systems. The LADD RF
data channel inherently has broadcast mode capabilities as
a result of the FCC licensed Broadcast Services medium.
Point-to-point mode communications are a result of the chan
nel protocol's ability to selectively address individual ter
minals. Even when broadcast mode is inherent and point-to
point mode is enabled by channel protocol, the ability to use
one mode or the other, within the law, is regulated by the
FCC. If a transmission service is not authorized for both
modes of transmission, it is implicit that it can only be used
for one. The extreme flexibility of addressing provided by
RF communications makes it difficult (and undesirable) to
police occasional deviations by the Broadcast Service Op
erator with regard to adhering to the authorized transmission
mode.

The de facto means utilized by the FCC in policing trans
mission mode violations is the intent of the user. Therefore,
if an application under consideration is point-to-point in na
ture, a transmission service should be selected which is au
thorized for point-to-point. Similarly, a primarily broadcast
application should select a broadcast mode authorized trans
mission service. To be safe, if the primary mode of appli
cations traffic is uncertain, a transmission service should be
selected which is authorized for both broadcast and point
to-point mode transmissions.

The normal reception range of the transmission service.
A LADD message is transmitted in all directions simulta
neously. All Antenna-Receiver-Terminals within reception
range which are tuned to its frequency receive the message
virtually at once. The normal reception range is therefore
the key to the geographic coverage achievable with a single
transmission system.

Local geographic and man-made features can affect the
actual reception range as can the height and direction of the
Antenna. Because of these factors, actual reception range
is more properly measured in signal strength (intensity) at
the Receiver. Signal strength must be measured at all An
tenna-Receiver-Terminal sites as part of a site survey prior
to implementing LADD. If the signal strength is not great
enough, the reliability of the Receiver output will be suspect
(yes, Garbage-In, Garbage-Out applies to RF Systems too!).
The maximum Effective Radiated Power (ERP) of the Broad
cast Service Operator's equipment is regulated by the FCC
and will affect the normal reception range.

** Davies, D. W., D. L. A. Barber, W. L. Price, and C. M. Solomonides,
Computer Networks and Their Protocols (1979), page 155.

It is well.at this point to summarize what LADD is, and
what it is not:

LADD is not leading edge technology but is a practical
union of RF communication and Data Modem techniques.
It is a data communications systems element but is not a
data communications network. It requires no FCC license
for the user because transmission capability can be pur
chased from Broadcast Service Operators. It requires a con
trolling site processor in order to interface with a data com
munications network. It can transmit in broadcast mode as
well as point-to-point mode. It is one-way in operation with
outbound transmissions. It has a useful range of up to 100
miles from the transmitter. It has primarily voice-grade (300-
9600 baud) net transfer rate capabilities.

With the LADD system described, one has only to review
a few trends and events of the 1970's in the areas of Infor
mation Processing in order to appreciate how such a capa
bility could fit into data communications network designs.

New service competitors of Bell System services have
emerged and are focusing on the data communications mar
ket.

- Leased Line Services face lower priced competition in
all grades: sub-voices, voice, and wideband.

-Hybrid Services competitors have eme.rged, providing
improved services at lower prices.

-Switched Services have no significant new competition.

The Bell System changed from a uniform rate structure
(pre-1974) to a Hi-Lo density rate structure (mid-1974 to mid-
1976), and then to MPL rate structure, resulting in sharp
decreases in long haul rates and sharp increases in short haul
rates.

Decreasing computer prices have stimulated growth in the
number of computer sites, especially for mini-computers.

The microprocessor has become a standard element in
most terminal equipment, giving terminals computational
capability.

The demand for data communications, hardware, staff,
and services continues to grow at a high rate.

In summary, more installed computing capability, increas
ingly dispersed computing capability, and improved Leased

TABLE I1.-Remote Terminals Attributes

Application Application Application

Attribute t-bre Desirable Less Desirable

A. Number many few

B. Dispersion most wi thin the range sane wi thin the range

of a single broadcast of a single broadcast

transmission system transmission system

c. Throughput high low

D. t-bvements and changes frequent infrequent

E. Installation delay must be within a few can sustain 6 weeks,

tolerance days 8 weeks or longer

Local Area Data Distribution 123

TABLE IlL-Message Traffic Attributes

Application

Attribute

A. Volume

B. Prop:>rtion ccmron to

multiple rarote

tenninals

C. Patterns of flow

D. Maximum instantaneous

bandwidth required

E. priority levels

F. Irrrnediate delivery

Application

t-bre Desirable

high

high (broadcast roode)

low (p:>int-to-p:>int

roode needed)

erratic

2400 baud

many

required for sane of

the volume

Application

Less Desirable

low '

predictable

2400 baud

few

not required

G. Delivery within 24 hours required (or tolerable) not required (or

for sane of the volume tolerable)

H. Security (encryption) required on a selective not required

message basis

1. Transmission error required not required

detection

J. Transmission error required on a selective not required

detection and correction message basis

(FEe)

Line long haul pricing rates have created a need for local
(short haul) data distribution. While LADD cannot satisfy
all of this need because of its specific capabilities, it can help
satisfy some of it.

Analysis of the LADD capabilities measured against the
general attributes of remote terminals and message traffic
within a data communications network yields a means of
measuring applicability. Attributes which, when analyzed,
measure the applicability of LADD as a systems element of
data communications networks, are shown in Tables II and
III.

Another way to estimate the applicability of LADD is to
analyze it relative to data communications network design
constraints. A point by point review produces a general view
of LADD specific enough to determine if the technology can
be beneficially added to an existing data communications
network. The following paragraphs are just such a review
based on the design constraints identified by Dixon R. Dollt
regarding network design preliminary information:

Number and Locations of Processing Sites: A key factor
in implementing Local Area Data Distribution (LADD) is
that there be a single controlling site regulating the flow of
data traffic to be distributed from the processing sites. There
fore, the number and locations of processing sites in a data
communications network is inconsequential to the ability to
implement LADD. Both centralized and distributed data

t Doll, Dixon R., Data Communications-Facilities, Networks, and Systems
Design, 1978, p. 4.

124 National Computer Conference, 1980

communications networks will find LADD applicable to
their operations.

Number and Locations of Remote Terminals: The loca
tions of remote terminals is a key design parameter for im
plementing LADD. All remote terminals located within the
range of the Broadcast Service will have essentially equal
ability to receive data messages. The number of remote ter
minals within the broadcast range is not a parameter affecting
the physical implementation of LADD.

Information Flow Patterns Between Terminals and Pro
cessing Sites: Information flow using LADD is, by defini
tion, outbound only from the processing sites through the
controlling site to the remote terminals. Erratic patterns of
information flow which would make it impossible to eco
nomically install a leased line network to distribute data have
no effect on LADD's ability to distribute data.

LADD can function as the outbound channel in two-way
communications, wherein the inbound and outbound data
each have dedicated channels. In this way, for example, high
volume printing on multidrop networks can be sent via
LADD, thereby maintaining low response times for termi
nals.

Types of Transactions to be Processed: Transactions of
any type can be distributed using LADD. One ofthe benefits
of LADD's being able to operate in broadcast mode as well
as point-to-point mode is the additional transaction types
which can be handled. An example of such additional trans
action types is outbound policy information such as price
changes. This kind of information is usually composed cen
trally, voluminous in nature, and delivered by mail. Virtually
instantaneous broadcast of such critical and detailed infor
mation to all receiving sites concurrently cannot be achieved
with any other commonly available data link technology.

Traffic Volumes for Transaction Types: Traffic cannot
achieve a net transfer rate in excess of the net transfer rate
of the broadcast channel. This value is dependent on the
Broadcast Service. Traffic volume is a factor in judging the
economy of employing LADD technology. The greater the
volume of traffic addressing multiple remote terminals, the
lower the cost per message delivered. Increasing the volume
of traffic addressing individual remote terminals increases
the cost per message delivered.

Urgency of Information to be Transmitted: Transmission
of data to remote terminals is practicaiiy instant, up to the
maximum net transfer rate of the broadcast channel. When
the volume of data to be transmitted at any instant exceeds
the maximum transfer rate of the broadcast channel, the
controlling site is called upon to arbitrate the message se
quence priority for transmission. A mix of data messages of
several degrees of priority produces the best economical
performance of a LADD system by spreading the load
evenly.

Capacity Reserved For Traffic Growth: The nature and
volume of excess capacity is measured in terms of the max
imum transfer rate of the broadcast channel and the patterns
and priority of message traffic. A LADD system will have
24 hours a day availability for use under normal conditions.
Generally, a LADD application will have capacity in reserve
of twice the prime time capacity.

Acceptable Undetected Information Error Rat.es: The in- ,
formation bit error rate of a properly tuned LADD is less
than 10- 7

• This rate can be improved by utilizing link forward
error correction (FE C) routines. Error checking and correc
tion routines compromise throughput for improved accuracy
by reducing the maximum transfer rate of the broadcast
channel by their overhead. In many LADD implementations,
error checking and correction may not be necessary because
the technology is intrinsically superior to common carrier
links whose bit error rates, according to Dollt, range be
tween 5 x 10-5 and 5 x 10-6 •

Reliability and Availability: The reliability of a LADD
system will be directly related to the reliability of the con
trolling site system, the physical link, the LADD Broadcast
System, the FCC licensed Broadcast Service, and the remote
Antenna-Receiver-Terminals. The Broadcast Service is not
only exceptionally reliable by information processing stand
ards, but also usually has a full time on-site engineering staff
to correct failures. Certain components of the system such
as the physical link and the LADD Broadcast System can
be implemented redundantly where improved reliability is
required. The availability ofthe system is generally 24 hours
per day less down time due to equipment and power failures.

Availability of Financial Resources: Most data commu
nications networks with the need for LADD capabilities al
ready have a controlling site system in place. With this en
vironment, adding Local Area Data Distribution capability
to the network would include the costs for the LADD Broad
cast System and Antenna-Receiver-Terminals hardware pur
chase and their installation, plus a monthly service charge
for the physical link and for the FCC licensed Broadcast
Service, and maintenance charges. The most exciting aspect
of LADD for the financial decision-maker is that when uti
lized effectively it has the ability to make the cost of dis
tributing information less than the, cost of the paper it's
printed on.

Because LADD is new, and specific and limited in the
applications in which it is useful, it will not be a commonly
used link-technology for several years. Most probably, the
initial demand will continue to come from large corporate
users whose needs are a perfect fit to LADD's capabilities.
Additional growth in LADD's usage will come as a surge
when the value-added common carriers integrate LADD's
capabiiities into their hybrid networks.

Ultimately, LADD link technology will be just another
data communications network building tool and in common
use just as satellite and microwave RF communications are
now becoming.

APPENDIX A

LADD TRANSMITTED DATA ORGANIZATION

I. Transmission Mode
Asynchronous

* Doll, Dixon R., Data Communications-Facilities, Networks, and Systems
Design, 1978, p. 4.

II. Character Format

I ~JJtd::rrr:l:rrrlIIl:1::::tt]t::::fJmj:l:l?1 U
A. Start Bitj ~ I ~j i

B. 7 Data Bits--__ -l. I
c. P~rity Hit -----

D. Stop Bit------

III. Message Block Organization

~~~ll~~~~ l:ttttttttlIltlII:::l:::[:[~t[l[I:~0~::::~.tt~~::-1 
ABC 

Figure 1 

A. Message Header-
1. SOH-Start of header USASCII control char

acter 
2. Header control characters: 

a. Primary addresses-4 printable USASCII 
characters 

b. Secondary addresses (optional)-up to 7 ad
ditional addresses of 4 printable USASCII 
characters undelimited by other characters 

c. Daily message sequence number (optional) 
d. Time and date stamp request (optional) 
e. Selective Forward Error Correction enable 

(optional) 
f. Selective encryption enable (optional) 

B. Message Text-
Message Text may include any ASCII character 
with the exception of ETX. 
Messages may be of any length; however, invoca
tion of certain selective message special handling 
features may require that messages not exceed some 
specific length. 

C. Message Trailer-
ETX-End of text USASCII character 

Local Area Data Distribution 125 

IV. Protocol Overhead 
A. Characters contain 70 percent data bits yielding 30 

percent of the bits transmitted per character as pro
tocol overhead. 

B. Message blocks contain a minimum of 7 characters 
of protocol overhead if no optional header control 
features contribute to protocol overhead on an elec
tive basis and their overhead factors are to be con
sidered as part of the cost of utilizing the respective 
features, not as part of the general protocolover
head. Basic message block overhead therefore be
comes a function of message text length as illus
trated by the following chart: 

Message 
Block 
Protocol 

50% 

33% 

Overhead 20% 

10% 

7 It! 28 56 

Figure 2-Message text length (characters) 

At a message text length of 1000 characters the mes
sage block overhead is approximately 1 percent. 

C. Net protocol overhead is the total of character pro
tocol overhead plus message block protocol over
head as follows: 

Character protocol overhead = 30% 
Message block protocol overhead* = 3.5% 
(remaining 70% x 5%) 
Total Protocol Overhead - 33.5% 

* Note-for the PlJrpose of quoting a definitive overhead value message text 
length was assumed to be 56 characters. 



126 National Computer Conference, 1980 

APPENDIX B 

FCC LICENSED SERVICES APPROVED FOR DATA 

Defining FCC 
Transmission Mode Regulations 

Service Bandwidth Normal 
Name of Service Frequency Range Authorized for Data Reception Range 

Subsidiary 
Communications 
Authorization (SCA) 

Broadcast 

Radio Common Carrier Point-to-Point 
(RCC) 

Domestic Public Land Broadcast and 
Mobile Radio Service Point-to-Point 
(DPLMRS) 

MUltipoint Distribution Broadcast and 
Service (MDS) Point-to-Point 

NOTES 

73.310 88-108 MHZ 22 KHZ (assumes 
stereo main 
channel) 

11.509 (3), (1) & 158 & 454 MHZ 3 KHZ 
(2) 

90.207 470-512 MHZ 3 KHZ 

21.903 (a) & (b) 2150-2162 MHZ 6 MHZ 

I. The means used by the FCC in determining the nature of a communications application is the user's intent: 
A. Broadcast alone implies not point-to-point and usually implies public service. 
B. Point-to-point alone implies not broadcast. 

II. The user is not required to obtain FCC licensing because the transmission service operator has already done so. 
III. Pricing on some of the transmission services is subject to Federal and State tariffs. 

100 miles (class 
C station) 

Up to 60 miles 

Up to 80 miles 

Line of Sight 



Overview of the Computer 
Architecture Area 

In the architecture area, the following 
six important topics are included: super
computer systems, data base machine and 
issues on database management systems 
(DBMS) standards, intelligent memory, 
architecture for local area networks, net
work data access support technology, and 
survivability criterion for the distributed 
data processing (DPP) networks. 

A number of problems in the science 
and technology field require enormous 
computational power. The systems that 
are capable of solving these problems are 
called supersystems. Dynamic architec
ture is an effective way to provide a source 
of computer throughput. They can be 
classified into two areas: (1) adaptation of 

Wesley Chu 
Area Director 

hardware resources on instruction and data parallelism, and (2) reconfiguration of hardware 
resources into different types of architecture-array, pipeline, multicomputer, multipro
cessor. Two papers are presented on this subject. 

Unlike the supersystem, the data base machine is a new and an important computer 
architecture. It has different characteristics as compared to the conventional number 
crunching systems and the supersystem. In the data base machine and standard issue 
session, a single joint paper will be presented by the authors and will be followed by an 
in-depth discussion on the issues of DBMS standards. The session will assess the progress 
made in the data base machines area, determine the functional capabilities and limitations 
of the present data base machines, and examine the issues on DBMS architecture, data 
models, and data languages from the point of view of present and future data base machines. 

Memory systems play an important role in computer system performance. With the 
advent of LSI and VLSI technologies, it becomes technically and economically feasible 
to integrate logic and memory together-intelligent memory. Such memory systems will 
have high impact in future computer architectures. Application of intelligent memory to 
radar tracking applications, context addressible memory, and conflict free memory are 
discussed in that session. 

With the advent of computer communication technology, interest is growing in loosely 
coupled computer system architectures in which the computing and mass storage com
ponents are connected via a high speed local network. In such a system, the computers 
can operate autonomously, as in a "distributed processing" approach, yet can share files 
and communicate among themselves at extremely high data rates. That session explores 
in detail one design for such a loosely coupled network system. This will permit the various 
tradefoffs involved in the design to be discussed in depth. A discussant will contrast the 
approach described and the decisions made with other alternatives. 

Data access of a distributed data base system is one of the important areas that has been 
of interest to many researchers as well as practitioners. The problem is complicated by 
the fact that the data model, the host processor, the view of the data, etc. may be different 
from one site to another. Issues which will be discussed are data transfer vs. data distri
bution and cost/performance of different data translation models. 

A distributed data processing (DDP) system is made up of telecommunication links 
between computers installed at network nodes. Interacting factors which affect DDP sur
vivability include: data set and program distribution across nodes, network architecture, 
link and node redundancy, and the number of nodes and links in the network. The criterion 
for DDP survivability will be examined in terms of these factors and their interactions. 

Because of the diversified nature and widespread interest of computer architecture, there 
are other sessions in the conference that are related to computer architecture. The par
ticipants interested in this subject area should also consult other sessions in this conference. 

127 





The Control Data loosely coupled network lower level 
protocols 

by WILLIAM C. HOHN 
Control Data Corporation 

Arden Hills, Minnesota 

INTRODUCTION 

The Control Data Loosely Coupled Network (LCN) pro
vides a form of two-party cooperative communications, sim
ilar to that described by Enslow (1). Put another way, LCN 
acts as an agent for Multi-Mainframing and distributed pro
cessing by providing a means for interconnection of, and 
information exchange amongst, a <;ollection of mainframes 
or mainframes and peripherals (all referred to as "hosts" in 
the remainder of this paper). 

LCN appears in a host as that software which provides 
network services to applications. These services include 
permanent file transfer, queued file transfer, application to 
(remote) application chit-chat, and shared rotating mass stor
age. 

An equipment called a Network Access Device (NAD), 
attached to a host using the channel protocol native to that 
host, is the hardware entry point to the network. NADs in 
turn are interconnected by bit-serial trunks. Up to 32 NADs 
can be attached to a trunk; up to four trunks may be attached 
to a NAD. The combination of NADs and trunks provide 
the interconnections between hosts, and thus the hardware 
path for information exchange amongst hosts. 

A set of protocols define and control LCN activities. They 
are shown, in Figure 1, as they relate to the ISO Open System 
Interconnection Reference model (2). Levels read down the 
page from the highest (application) to the lowest (physical). 
The remainder of this paper is limited to the protocols of the 
lower four levels. 

VIRTUAL CHANNEL 

Conventionally two hosts have been coupled in one of 
three ways, 

a) common memory storage 
b) channel-to-channel (a variation is shared disk) 
c) communication lines 

in order of descending performance. In addition, operating 
systems tend to be cognizant of these variations since data 
rates and response times vary dramatically with the form of 
coupling. What differentiates LCN from the traditional in-

129 

terconnect schemes are the characteristics of the intercon
nect. 

A host NAD, which interfaces a host to the remainder of 
LCN, is designed to the channel specification native to the 
host-including the maximum data rate of the channel. 

NADs in turn are interconnected by shared trunks. The 
amount of trunk bandwidth available to a given NAD to 
NAD transfer is dependent on the loading of the trunk, vary
ing from a maximum of 50 megabits (minus overhead) down 
to some minimum but nonzero value as trunk loading in
creases. Loading refers to how many NADs are attempting 
to use the trunk simultaneously. 

From an operating systems point of view, a NAD to NAD 
transfer can occur at maximum channel rate, or at some 
lesser rate down into the realm of communication lines. This 
effect is analogous to virtual memory in that as the number 
of jobs mapped onto real memory exceeds the size of real 
memory, the execution time for each job increases. 

A second parallel to virtual memory is that N AD to N AD 
transfers replace what is otherwise a system bottleneck with 
a slow transition. For example, coupling synchronous trans
fer rates of different value. The analogy in virtual memory 
is the mapping of a 10 million word program onto a half 
million word real memory without reprogramming for over
lays or special I/O techniques. 

In summary, LeN appears as neither a channel extension 
nor as a communications scheme, but rather as a virtual 
channel. 

PROTOCOL DESIGN CONSIDERATIONS 

A design decision was made that the N AD should incor
porate the lower protocol levels up to and including the trans
port level, primarily because of the problems associated with 

ISO 
(Open Systems Architecture) 

Model 

Application 
Presentation 
Session 
Transport 
Network 
Data Link 
Physical 

LCN 

Application 
Network Block PROTOCOL 
CYBER/NAD PROTOCOL 
Transport 
Network 
Data Link 
Physical 

Figure I-Protocol levels. 



130 National Computer Conference, 1980 

resource contention. Other factors influenced by and there
fore favoring this decision included error recovery, perform
ance of the network, simplicity of design, commonality 
throughout the network, and integration with existing hard
ware. Inspection of these factors with greater resolution re
vealed that the implementation had to: 

a) meet design goals at low cost 
• connectivity # units, distance, data 

rates 

• 
• 
• 

accessibility 

performance 
dependability 

• maintainability 
b) Which translate into givens 

controlled access, 
multi-path 
overhead 
detect errors, graceful 
degradation 
fault trace 

• serial trunk low cost 
• buffering data rate matching 
• communication like messages vs readyl 

protocol resume 
• intelligence to manage it all 

c) and avoiding these self-inflicted pains 
• single point of failure centralized network 

• dead box deadlock 

• throttling 

• missing message 
• spoofing 
• global autoload 
• the "bully" 

• daisy chain 

management 
also called "united we 
fall" 
slow host throttles fast 
host 
lost data 
security breach 
load one-load all 
fixed trunk access 
priority 
NAD to trunk 
connection 

• resource deadlock no closure 
• error prone transmission requires higher level 

protocol 
d) and recognizing the inherent problems 

• error retrys how many 
• resource allocation single path or multi

path 
• host/trunk (real/virtual. performance matching 

channel) 
• the "missing ACK" resynchronization in the 

face of errors 

Although the detailed analysis ofthese attributes is beyond 
the scope of this paper, they are shown to indicate consid
erations made in arriving at a working implementation. 

LCN SITE PROTOCOL 

Strictly speaking, Site Protocol is not one of the layers 
given in the ISO Open System Interconnection document. 
But it is presented to show that connectivity and accessi
bility are not the same thing. The configuration of trunkl 

NAD interconnects, together with assignment of physical 
addresses and access codes, constitute the site protocol. 

Connectivity 

An example of LCN hardware is shown in Figure 2, where 
MF = mainframe and P = peripheral. The NAD can interface 
with one to four trunks, some examples of which are shown 
in Figure 1. The NAD connects its attached device to the 
network, but the interconnect pattern of the NADs/trunks 
defines the connectivity between devices. Note that attach
ing a device to the network does not imply connectivity with 
all other devices attached to the network. For example, MFI 
B cannot connect with PIC, P/D, or MF/E. Another example 
is MFIF, which can connect to all other devices except PIC. 

Addressing 

The hardware which interfaces a N AD to a trunk is called 
a Trunk Control Unit (TCU). 

Each TCU is identified by an 8-bit physical address. The 
destination field of a message must match the physical ad
dress in order for the message to be accepted by the NAD. 

The site protocol requires that all TCU s on a given NAD 
must have the same physical address. 

Set identifier 

Each NAD/trunk interface includes a 16-bit set identifier 
(the access code). The access code field of a message must 
match the switch selectable access code of the TCU in order 
for the message to be accepted by the N AD. The access code 
allows sets of NADs to share the same trunk yet be inde
pendent. All NADs of a set may access all other NADs 
within the set, but no others. Messages directed to a NAD 
outside of the set are not accepted by that NAD. Note that 
a NAD may be a member of more than one set. Access code 
transmission and matching are hardware functions. 

Accessibility 

These three characteristics (network connection, physical 
address, and set identifier or access code) constitute the 
accessibility of a NAD (and hence its attached host) to all 
other network NADs. 

TRANSPORT CONTROL PROTOCOL 

The Transport Control Protocol provides the method by 
which mutually accessible hosts exchange information. This 
protocol is defined independently of, yet with consideration 
for, the broad range of hosts considered likely LCN candi
dates. 



Loosely Coupled Network Protocols 131 

-----0----------0-------------------------------------------0------
-----:0---------:---------------------------------------~---:o-----

-----::0--------:---------------------0----------0----------::0----
-----:::o-------:----------o----------:-o--------:o~--------:::----.... . . . . 

: NAD: 

: MF 

A 

:NAD: :NAD: 

: MF p 

B c 

:NAD: 

p 

D 

.. . . 
:NAD: 

: MF 

E 

. . . . .. 
:NAD: 

: MF 

F 
Figure 2-LCN connectivity. 

Data path 

The primary means for information exchange is the data 
path. A data path is a logical, bi-directional "channel" ter
minating at each end in a host. Data path creation and dele
tion is performed by the NAD as directed by its host. A path 
normally is created between two different hosts, but the 
protocol allows a host to create a path to itself. Furthermore, 
some NADs are designed to have multiple attached hosts. 
When generating a path between hosts on the same NAD, 
or when a host creates a path to.jtself, the path is~contained 
solely within the associated NAD since that NAD is attached 
to both path-end hosts. 

More than one data path may exist between a pair of 
NADs. 

A NAD can support up to 128 paths. However, since each 
path requires a small dedicated area in memory for path con
trol (not including data buffers), the maximum number of 
paths supported by a N AD varies with its hardware config
uration. 

Information is passed on a path in the form of data, marks, 
or as a code. 

Data path-connect 

Path creation is initiated by a host. A successful connect 
requires acceptance by the local and remote NADs (path 
control resource allocation), and by the destination host. 
That means the three intelligent entities-NADs and desti
nation host-all have the opportunity to deny the request. 
Put another way, the three must cooperate in order to com
plete the connect. Once connected, a path exists until ex
plicitly disconnected by either of the hosts, or until an un
recoverable error, such as a broken trunk, occurs. 

At connect time the host presents the routing parameters 
to its NAD, or receives them from its NAD, depending on 
path-end. Both hosts also are given a path ID by their re- '; 
spective NADs. Thence forward, the hosts refer to the path 
by ID, and the necessary routing is automatically performed 
by the NAD. 

Data path-data exchange 

By definition, data transfers are bi-directional on a data 
path. Host transfers are "blocked" by the NAD before 
transmission on the trunk in order to (a) decouple the host 
channel rate from the trunk rate and thereby allow unused 
tru~k time to be used by other NADs, (b) to provide a mech
anism whereby the data buffer area of NAD memory can be 
allocated dynamically across several paths, (c) to provide 
concurrent bi-directional transfer, and (d) to segment a long 
transfer for lower probability of induced errors. 

The amount of data transferred is unlimited, but the ef
fective rate of transfer is limited by buffer availability (real 
and path threshold) in the associated NADs, as well as by 
trunk loading (the "virtual channel" characteristic). A spe
cial data transfer mode is provided in which the trunk is not 
released between data blocks. In this mode only the two 
NADs involved can use the trunk, all other NADs being 
locked out~ In this mode trunk loading is removed as a factor, 
and the network appears as a dedicated point-to-point con
nection. Transfer rates are then limited by the host channel 
and trunk rates and overhead. 

Data path-mark 

A mark is a special form of data, analogous to an end of 
record mark. A mark may be sent at any time. The data and 
interspersed marks are delivered in the same order as sent. 

Data path-code 

In addition to data and marks, a very short (32 bit) message 
may also be transmitted down a path. This message (CODE) 
is different from data and marks in two ways. First, the data 
path CODE buffers at each end are permanently allocated 
and, hence, always available (unlike data buffers which are 
dynamically allocated). Second, CODE messages are not 
queued at the receiving end; rather each CODE message 
"overwrites" the previously received one. 



132 National Computer Conference, 1980 

Data path-disconnect 

A path may be disconnected by either path end host. The 
NAD performing the disconnect first transmits all of its out
standing output data, marks and code; then sends a discon
nect message to the other NAD. Residual input is discarded 
in the N AD initiating the disconnect. 

The disconnect is queued at the receiving NAD and is 
presented to the attached host after all data (and marks) in 
front of it have been presented. 

Control message 

The control message (DATAGRAM) is an alternate means 
for information exchange. Control Messages are self-con
tained, meaning they have fixed length, they contain routing 
information, and they are not associated with data paths. 
The host supplies the Control Message to the NAD, and the 
NAD simply sends it to the destination NAD. A Control 
Message, which for any reason cannot be delivered to the 
destination NAD, is returned to the host. 

The control message format is shown in Figure 3. 

SUMMARY 

Transport Control Protocol uses data paths and Control 
Messages for information exchange between mutually ac
cessible hosts. Since data paths exist as logical "channels," 
a host and its attached NAD may have many paths assigned 
and serviceable concurrently (but not simultaneously). At 
the same time the Control Message, independent of data 
paths, is available for flow control, status, functional re
quests of a higher level, or just general chit-chat. 

NETWORK CONTROL PROTOCOL 

This protocol level defines information flow control be
tween NADs. 

In order for a host with a dedicated NAD to exchange 

ROUTING 

ACCESS CODE : 

NAME 

RESOURCES 
--------------: 

BODY 

Figure 3-Control message. 

information with any other host, the transfer obviously re
quires traversing a trunk from NAD to NAD. Hosts sharing 
a NAD, however, communicate with each other through 
their shared NAD, but with other hosts across a trunk (and 
another NAD). 

A primary task for the Network Control Protocol is rec
ognizing and processing these routing variations. 

Command/response message modes 

Three modes are defined for communications between 
NADs. Each mode is tailored to a specific work function, 
to effectively use the trunk and NAD resources. 

In the following three sections, the graphic conventions 
listed below are used. 

The Command Message and Response Message, which 
always occur in pairs, are illustrated as a pair of boxes con
nected by a line. 

: COMMAND 
: MESSAGE 

:-----------: RESPONSE 
MESSAGE 

The left hand box is always a command message, and the 
right hand box is always a response message. The intercon
necting line represents the interval during which the receiv
ing N AD processor examines the command message and 
determines the appropriate response message to return. The 
trunk remains captured until the processor signals the trunk 
interface to transmit the response message. 

Mode l-control 

CONTROL :---------: RESPONSE : 

Mode 1 consists of one command/response message pair. 
CONTROL is directed to the host, and has meaning defined 
by a higher level protocol, or is a flow control message di
rected to and processed by the NAD processor. 

Mode 1 command messages 

** Control Message 
** Connect 

Pathcode 
Path Mark 
Disconnect 
Double Purge 
Connect Accept 
Connect Reject 
Status Change 

** There are the only messages (of all three modes) 
which are generated by the host. 



Mode 1 response messages 

ACK 
WAITNAK 
Sequence Error 
Illegal Command Message 
Illegal Path 

Mode 2-data transfer 

PATH 
REQUEST 

:-----: ACK : PATH :-----: ACK : 
: DATA : 

Mode 2 is a two command/response message set used for 
transmission of data. The first command, Path Request, 
identifies the path and the buffer size. The receiving NAD 
returns an ACK if the data transfer is permissible. The send
ing NAD then immediately transmits the data, a closing ACK 
is returned, and the trunk is released. 

If the receiving NAD cannot accept the data, it will return 
a NAK, following which the trunk is released. 

Mode 2 command messages 

Path Request 
Path Data 

Mode 2 response messages 

ACK 
Queue Full N AK 
WAITNAK 
Illegal Command Message 
Illegal Path 
Sequence Error 

Mode 3-captured trunk (streaming mode) data transfer 

: PATH :--:ACK: :DATA:--:ACK: 0 0 o:DATA:--:ACK:--:DISAIILE:--:ACK: 
:I/.EQUEST: :STREAK : 

Mode 3 is a special form of data transfer in which trunk 
multiplexing is temporarily halted by capturing the trunk 
(streaming) for the duration of a multi datablock transfer. 
Consequently, total trunk bandwidth is allocated to the path 
capturing the trunk. Two useful effects result. First, the data 
path transfer rate is maximized since trunk loading has been 
eliminated and protocol overhead minimized. Second, all 
other NADs (and their hosts) on the trunk have had their 
intercommunication momentarily suspended, which implies 
an interlock capability. 

Loosely Coupled Network Protocols 133 

Mode 3 command messages 

Enable Stream Path Request 
Disable Stream 
Path Data 
Path Mark 
Path Code 
Wait 

Mode 3 response messages 

ACK 
BLOCK SEQUENCE ERROR 
Illegal command message 
Illegal Path 
Disconnect 
Ready 
Nak 

Message transmission retry 

As explained in the Link Control Protocol section, all 
transmissions consist of a command and response message 
pair. A normal transmission consists of a TCU receiving a 
command message addressed to it, and returning a response 
to the TCU originating the command. 

Transmission abnormality 

A transmission abnormality occurs when no response is 
forthcoming to the command. Listed below are the main rea
sons for no response occurring: 

1. Addressed a nonexistent NAD (actually TCU) 
2. Command message garbled on the trunk causing 

a. Destination Field to address a nonexistent NAD 
b. Check sum error at receiver (no answer if check sum 

error) 
3. Command message received correctly but the response 

message was garbled giving a similar effect as (2). 

When a transmission abnormality occurs, the command 
message is retransmitted (with the same sequence number), 
up to 256 times, until a response message is received. If no 
response message is received after 256 retries, a fatal error 
has occurred. The disposition of the unsuccessfully trans
mitted command message depends on its type. 

During retry the controlware will not attempt to send any 
command messages other than the one enduring the trans
mission abnormality. The controlware, however, will accept 
incoming command messages. 

Destination busy 

The status of the responding NAD (TCU) is included in 
a response message. One ofthe .... e status bits is the "Memory 



134 National Computer Conference, 1980 

busy" bit. The "Memory busy" status signals that, although 
the command message was received by the destination TCU 
correctly, it could not be passed on to NAD memory. Hence, 
the response returned is likewise not from memory but gen
erated by the TCU. Since the NAD processor at the desti
nation did not receive the command, it must be retransmit
ted. 

Provided the remainder of the response status is correct, 
the command message is queued for retry, and will be re
transmitted until accepted by the destination N AD memory 
(or until a fatal error occurs). 

The retry queue is serviced on a fixed interval basis. Other 
command messages may be sent during this interval. 

Destination fatal error 

Other NAD status bits in a response message include NAD 
processor not running, sequence errors, and other indicators 
of fatal errors at the destination NAD. 

If the response status indicates a fatal error, the command 
message is not retransmitted. Marked "fatal error," the 
message is disposed of according to type. 

Fatal message errors 

Fatal message errors are those which are caused by hard
ware errors during the transmission of a trunk commandl 
response. These errors can be caused by: 

• trunk interface failures at either NAD 
• trunkldata set failures 
• NAD failures. 

LINK CONTROL PROTOCOL 

The LCN Link Control Protocol defines a format and se
quence of bits impressed upon the trunk to facilitate the 
transmission of information. The vehicle for all command 
and response information on the trunk is called a message. 
Each transmission on the trunk consists of only one message 
frame. In all cases, communication between two elements 
X and Y consists of a pair of message transmissions: a com
mand message transmitted from X to Y and a response mes
sage transmitted from Y to X. 

Command message frame structure 

A valid command message is a minimum of ten 8-bit bytes 
in length following the frame synchronization sequence and . 

must conform to the following structures: P, F, T, FUN, AI, 
A2, RP, S, LI, L2, FCI, FC2, I, FC3, FC4 where, 

P = preamble of all ones preceding sync frame 
F = message frame synchronizing byte 
T = destination address byte 

FUN = function byte 
A I ,A2 = access code bytes 

RP = resync parameter byte 
S = source address byte 

L I ,L2 = length field bytes 
FCI ,FC2 = header frame check sequence bytes 

I = information field, variable length 
FC3,FC4 = information frame check sequence bytes 

Frames containing only link control sequences form a special 
case where no I field is present. ' 

Response message frame structure 

A valid response message is a minimum of ten 8-bit bytes 
in length following the frame synchronization sequence and 
must conform to the following structure: P, F, T, FUN, PI, 
P2, P3, S, LI, L2, FCI, FC2, I, FC3, FC4 where, 

PI =not used 
P2 = TCU ITCI status byte 
P3=not used 

and all other elements are identical to the command message 
elements. 

PHYSICAL LEVEL PROTOCOL 

The transmission scheme employs carrier modulation of 
self clocked data, with the NADs attaching to a coaxial trunk 
via a T-tap. The measured error rate of the combination 
(including data sets) is 10- 12 or better within the configu
ration limitations. 

Access to the trunk is governed by Trunk Reservation and 
Contention Elimination (TRACE) priority hardware. TRACE 
~ __ ___ L_L~ _______ ~ ___ .!L __ __ 1- ____ ..:~ __ .L':_L _______ 1\.T AT"\.': _ _ .: ____ .-

I:S a IUtauug PllUllty :S~1l1;;1l11;; HI WIUl,.ll I;;Vl;;lY l"l.nlJ l~ ~lVl;;ll 

access to the trunk in turn. 

REFERENCES 

I. Enslow, Jr., Philip H., "What is a Distributed Data Processing System?" 
Computer, January 1978, pp. 13-21. 

2. ISO-International Organization for Standardization, "Reference Model 
of Open Systems Interconnection," ISO/TC97/SC16 N, August, 1979. 



LCN-A loosely coupled network system 

by LOWELL H. SCHIEBE 
Control Data Corporation 
Arden Hills, Minnesota 

INTRODUCTION 

The Control Data Loosely Coupled Network (LCN) system 
is a set of hardware and software that interconnects com
puters and peripheral devices and provides them a means 
to communicate with each other over shared high-speed data 
trunks. The term Loosely Coupled is used to denote that 
there is no master/slave relationship in the LCN system. To 
effect communications between two units connected to LCN 
both units must agree to the transaction. This type of loosely 
coupled connection has been described previously! . 

The conventional method of interconnecting computers 
with a high-speed channel is via point-to-point dedicated 
links where a connection consists of two adapters and a high
speed link as shown in Figure 1. This type of interconnection 
method is only reasonable if the number of computers is kept 
very small. The number of adapters and links required to 
interconnect all computers increases dramatically as units 
are added. A system of five computers, as shown in Figure 
2, requires 20 adapters. The relationship between the num
ber of computers, links and I adapters can be described by 
the following formula. 

N=D(D-l) 

Where N = number of adapters required 
D = number of computers to be interconnected. 

Whereas the conventional method requires many adapters 
for a large system, the LCN provides a means to interconnect 
many computers or peripherals with high-speed serial data 
trunks using only one adapter per device. A typical LCN 
system is shown in Figure 3. The Network Access Device 
(NAD) is the unit that adapts the unique computer or pe
ripheral channel to the high speed serial data trunk. In the 
rest of this paper the term Device will refer to a computer 
or peripheral equipment that is attached to a NAD. 

LCN SYSTEM ARCHITECTURE 

The system architecture of the CDC Loosely Coupled 
Network is based on logical rather than physical intercon
nects. The following four attributes describe the key features 
of the LCN architecture. 

135 

Concurrent logical paths 

One of the LCN attributes is that it has concurrent logical 
path capabilities. The system software,which is called con
trolware, contained in each NAD is based on a bi-directional 
logical path concept. With this concept, devices request log
ical paths to other units and then send/receive data and sys
tem messages over these paths. The NAD controlware es
tablishes and maintains these logical path connections 
performing the logical/physical path transformations. When 
data is to be sent between devices across a logical path, the 
two NADs on each end of the path cooperate in obtaining 
use of the LCN trunk and in moving the data. The paths are 
bi-directional meaning that data can be sent in either direc
tion between devices. Multiple logical path connections are 
provided in each NAD and data transfers can be active on 
several logical paths within each NAD. 

Device independence 

A second -attribute of the LCN is that it is independent of 
the devices and/or systems attached to it. The controlware 
in each NAD allocates and controls the NAD resources. The 
NAD controlware also establishes the physical routings be
tween devices that correspond to the system logical path 
connections and moves data across these path connections. 
The LCN/NAD is independent of the data being transferred 
across these paths and does not examine or use the data 
being moved. Buffering within the NAD decouples the de
vice transfer rates from the LCN data transfer rate. 

Connectivity 

A third attribute of the LCN is that it interconnects many 
devices via a set of common high-speed serial trunks and 
NADs. Each high-speed serial trunk can interconnect 32 
units and the NAD can be connected to four of these trunks. 
U sing all of the possible connections, a device can be in
terconnected to 124 other devices using only one NAD and 
four trunks. 



136 National Computer Conference, 1980 

Figure I-Point-to-point connection-two computer system. 

Reliability 

The fourth attribute of the LCN is that it has no single 
point of control making it inherently more reliable. Control 
of the LCN is distributed among all NADs such that each 
controls only its own resources. Failure of a single NAD· 
thus has minimal affect on the LCN system. The connectiv
ity provided by LCN permits redundant systems to be easily 
configured. In each NAD the controlware performs integrity 
checks and handles error recovery. Errors detected on the 
trunk are automatically retried by the NAD before the device 
is notified. Status tables and error logs are kept in each NAD 
for tracking LCN performance. 

LCN SERIAL TRUNK HARDWARE 

The serial trunk transmission system consists of a 50 meg
abit data set, power-splitting T-Tap and coaxial cable. The 
data set uses a phase modulated carrier system to transmit 
data in a synchronous burst mode. High quality coax cable 
and connectors are used to minimize possible ground and 
EMI/RFI problems. The power-splitting T-Tap is a passive 
device that connects the data set to the trunk and provides 
substantial signal isolation between the trunk and data set. 
The isolation allows units to be powered down and removed 
from the system without affecting the integrity of the main 
trunk or disrupting the entire LCN system. The data set, 
coax cable and T -Tap system provide a 50 megabit/sec trans
mission rate and allow up to 32 data .set attachments per 

COMPUTER 

COMPUTER ~----t COMPUTER 

Figure 2-Point-to-point connection-five computer system. 

Figure 3-Typical LeN system. 

serial trunk. A maximum trunk length of 1000 feet is allowed 
with 16 attachments; however, longer lengths are possible 
with fewer attachments. 

NETWORK ACCESS DEVICE 

The Network Access Device (NAD) consists of four func
tional elements. Three elements are common to all NADs 
and one element is unique to the device or channel being 
interfaced. A block diagram of the NAD is shown in Figure 
4. 

The NAD internal bus is used for inter-element commu
nication. Bus usage is allocated equally among three ele
ments: The trunk interface, the processor, and the device 
interface. Time-slice allocation allows each of these three 
elements to access the bus, and therefore the memory, at 
a guaranteed 50 Mbps rate (16 data bits every 320 nano
seconds). 

NAD trunk interface 

The trunk interface element consists of hardware and 
micro code that matches the NAD both electrically and log
ically to the high-speed (50 megabits per second) serial trunk. 
The trunk interface function is divided into two pieces; the 
Trunk Control Unit (TCU) and Trunk Control Interface 
(TCI). 

The TCU interfaces the data set to the TCI and adds/de
letes the serial trunk protocol envelope which includes 
Cyclic Redundancy Code (CRC) generation and detection. 
The TeU also interprets serial trunk message functions and 
reacts accordingly, generating response messages to ensure 
closure for all valid incoming messages. Contention for serial 
trunk access is also provided in the TCU. 

Contention for trunk access is resolved by a rotating prior
ity mechanism2

• This mechanism prevents contention and 



LCN-A Loosely Coupled Network System 137 

HAD 
r---------------------i 
I 

T-TAP ~Ir::: DATA 
SET 

I lCU 
1 ,,";; I /" /I~/r~-----~ 

TCI 
BUS 

.,r---, 1 r----, ".'" / 
- -i DATA t- 1-_-1 TCU 1""'" // II 

TRUNK ~ - L SET...l 1 L ___ .J // / 

r---, I r---l / I 
-j DATA 1-_1_-1 TCU 1// I 

~MORY 

- SET I -, r I L __ ...J I L ___ J II 

--I DATA' J r---1V
I 

-~ SET I- 1--1 TCU L __ ..J 1 L ___ J 
I RS232 

I 

HAD 
PROC. 

MA .. TENANCE 

.. TEFFACE 

1 
I 
I 

PARALLEL 
INTEFFACE 

DEVICE 
CHANNEL------~I~------------------~ 

DEVICE 
IllTEfFACE 

I L ________________________ .J 

Figure 4-NAD block diagram. 

guarantees trunk access to all units on the trunk even during 
peak loading of message mode traffic by rotating the access 
priority between all NADs on a trunk. A special message 
transfer mode called streaming is provided for cases when 
a high transfer rate is required. 

The TCI interfaces up to four TCU s depending on the 
number of serial trunks that are connected to the NAD. The 
function· of the TCI is to control data/message transfers be
tween the active TCU and NAD memory via the NAD in
ternal bus. The TCI also resolves all transmit request/receive 
message and multiple TCU request conflicts. TCI operations 
are directed by the NAD processor via commands stored in 
NAD memory. 

NAD memory 

The N AD memory provides for storage of controlware 
programs and data buffers. It also acts to buffer data-rate 
differences between the synchronous serial trunk and asyn
chronous device. The size of the memory depends upon the 
attached device and particular system configuration. The 
maximum memory configuration is 128K 8-bit bytes. 

NAD processor 

The NAD processor is a 16 bit wide interrupt driven pro
cessor. !It is constructed of four bit microprocessor chips 

which are microcoded to yield a macro instruction set. The 
NAD processor executes controlware residing in the NAD 
memory to provide management of the NAD resources, 
management of data flow through the NAD which includes 
initiation of 110 transfers on both TCU/TCI and device in
terfaces, and execution of LCN system functions. The serial 
RS232C maintenance interface provides a maintenance con
nection into the N AD. 

NAD device interface 

The NAD device interface is unique for the particular de
vice or channel being interfaced. The device interface adapts 
the device channel electrical signals to the N AD and pro
vides data assembly/disassembly to handle different word 
sizes. Device interface operations such as transferring data 
and commands between an attached device and the NAD 
memory are directed by the NAD processor via commands 
stored in NAD memory. If the attached device is passive 
such as a disk, tape, etc., device control is also provided. 
Up to four device channel connections are available on some 
device interfaces. 

NAD CONTROLWARE 

NAD controlware is the set of software that resides in the 
NAD memory and is executed by the NAD processor. This 



138 National Computer Conference, 1980 

r---------------l 
I TRUNK I 
I I 

I 
TRUNK I 
NTEFFACEI 

SEND 
MODULE 

FLOW 

I 
I 
I 
I 
I HARDWARE I 

I 
TRUNK CONTROL ----'---... 

DEVICE 
INTERFACE 

MODULE 

DEVICE 
INTERFACE 

HARDWARE MODULE I 
I 
I 
L ___ , 

I ~M~O-N-IT-O-R-M-·~O-D-UL-E------~ I 
I COMMON CONTROLWARE I ~ ____________________ J 

Figure 5-Controlware block diagram. 

controlware implements the four lower level protocols, 
(Transport, Network, Data Link, and Physical) defined in 
the ISO Open Systems Interconnection Model. 3 The 
higher three levels (Application, Presentation and Session) 
are implemented within the attached host computer. 

N AD controlware consists of a set of common controlware 
modules and a unique device interface module. A block dia
gram of the controlware is shown in Figure 5. 

Common controlware 

The common controlware consists of four modules that 
provide control of the NAD including management of inter
nal N AD resources, control of data flow between the device 
interface and serial trunk interface, initiation of recovery 
procedures for errors, and gathering of statistics. The Trunk 
Send module controls the sending of messages and receiving 
of responses on the trunk interface which includes setting 
up the hardware interface control. The Trunk Receive mod
ule controls the receiving of messages and sending of re
sponses on the trunk interface including setup of the hard
ware interface control. Flow Control is the module that 
interfaces the Trunk Send and Trunk Receive modules to 
the Device Interface module controlling all data movement 
through the N AD. The Monitor module controls linkage of 
controlware modules, handles NAD interrupt state changes 
and contains general utility and initialization programs. 

Device interface controlware 

The unique NAD controlware module is the Device In
terface. This module controls data flow between the device 

channel and the N AD memory. Besides the interface con
trol, this module also handles the higher level protocol in
terface. If the device is a computer, the controlware inter
faces to the computer's system software. If the device is an 
liD unit or controller, the Device Interface module also per
forms the' 'typical" I/O driver function. This I/O driver func
tion involves interpreting the higher level protocol requests 
for I/O activity and converting them to unique sets of func
tion codes or commands for the I/O device. The I/O driver 
function also includes error recovery on the I/O device. 

SUMMARY 

The Control Data Loosely Coupled Network system pro
vides a mechanism to interconnect many devices (computers 
and peripherals) using Network Adapter Devices and high 
speed (50 megabit per second) serial trunks. The serial trunk 
system provides connectability between many devices and 
the NAD hardware provides independence from ihe aiiached 
device characteristics. Control of the LCN system is dis
tributed among the NADs, providing independence from a 
single point of control (failure). The logical path scheme 
provides additional independence from the attached device 
software. Concurrent data transfers on multiple logical paths 
provide enhanced performance capabilities. 

REFERENCES 

I. Enslow Jr., Philip H., "What is a Distributed Data Processing System?" 
Computer, January 1978, pp. 13-21. 

2. Burke, R. G., "Eliminating Conflicts on a Contention Channel," 4th Con
ference on Local Computer Networks, October 1979, pp. 48-55. 

3. ISO-International Organization for Standardization, "Reference Model 
of Open Systems Interconnection," ISO/TC97/SCI6 N, August 1979. 



Derivation and use of a survivability 
criterion for DDP systems* 

by RICHARD E. MERWIN and MOHAMMED MIRHAKAK 
The George Washington University 
Washington D.C. 

INTRODUCTION 

With the advent of low cost compact computing systems, 
there has been a natural tendency to bring the computer to 
the job rather than the job to the computer. The geographical 
distribution of computing also leads to a necessity to inter
connect installations so that they can share data, provide 
back up computing support, and permit rapid transfer of 
messages between sites. We are now seeing the emergence 
(1,2) of networks of computers interconnected by commu
nication facilities. There are numerous benefits to be achieved 
by this dispersal of computing facilities including more re
liable overall operational capability, better overall service 
to geographically separated sites, and the advantages of 
being able to utilize a wide range of software and hardware 
facilities available through telecommunication systems. 

Inherent in a distributed data processing (DDP) system is 
to a varying degree some interdependence of each computing 
site and the interconnecting communications system. Failure 
of a particular DDP network computer site, hereafter re
ferred to as a node, will have a negative effect on the overall 
distributed data processing system. In a similar vein, failure 
of communication links will reduce the performance of the 
system. A study was initiated to examine these failure modes 
and develop criteria to measure the performance of a DDP 
system, including its associated data distributions, in terms 
of individual equipment failure modes and associated prob
abilities. The term survivability index is used as a perform
ance parameter of a DDP system and an objective function 
has been defined to provide a measure of survivability in 
terms of the nodes and links of a network and their failure 
probabilities, data set distributions, and weighting factors 
for network nodes and computer programs. 

Having derived an objective function to measure DDP 
performance, alternative data set distributions and network 
architectures can be evaluated. Criteria can be included such 
as addition or deletion of communication links, movement 
of programs among nodes, duplication of data sets, etc. Con
straints can be introduced which limit the number and size 

* The Research described here was partially supported by the Defense Civil 
Preparedness Agency, Washington, D. C. under Contract DCP AO J-78-C-0271. 

139 

of files and programs that can be assigned to a node and the 
maximization of the objective function will be subject to 
these constraints. One of the key concerns in our derivation 
of an objective function is its computability. The present 
algorithm exhibits exponential growth with the number of 
nodes and links. Studies are in process to find more efficient 
computational algorithms to quantify the survivability index. 

This paper is organized into eight sections. The next three 
sections will provide background on communication net
work survivability, DDP survivability concepts, and a def
inition of a survivability index S. An objective function is 
derived to quantify the DDP survivability index S in the fifth 
section, followed by a sec!ion presenting an example com
putation of S for a four node network. The next section de
scribes the evaluation of S using a computer program for 
nine node networks representing seven architectures with 
three data distributions. Some comments and conclusions 
are presented in the final section. 

BACKGROUND: COMMUNICATION NETWORK 
ANALYSIS 

The study of communication network survivability (3,4,5) 
has been divided into two nearly disjoint areas: deterministic 
and probabilistic. This activity was aimed at determining 
optimal communicatiori network architectures to better with
stand either wartime attack or the impact of natural disasters. 
Since it serves as a starting point for the research activity 
described below for a DDP system, a brief review of the 
underlying concepts of these studies is presented here. 

Deterministic survivability (3,6,7,8,9) presumes a fixed 
communication network architecture. In considering surviv
ability from wartime attack, it is assumed the adversary has 
full knowledge of the network architecture. Survivability is 
measured in terms of maximal connected subnetwork com
ponents surviving after damage is inflicted on the original 
communications network. Criteria include the number of 
nodes still in communication after removal of nodes and 
links. Selection of network architectures which maximize 
the connected subnetwork components are the goal of these 
studies (3,4,5). 

The approach to defining probabilistic survivability of a 



140 National Computer Conference, 1980 

communication network can be further divided into net
works exhibiting random structure (3,10,11,12,13) or fixed 
structure (3,14,15,16,17). For networks with random struc
ture it is assumed that any two nodes are connected with a 
known probability. This probability can be a function of 
whether the network is subjected to attack or a natural dis
aster. Survivability is measured in terms of the probability 
of survival of a connected network, i.e., one in which some 
specified number of nodes are still in contact. Mathematical 
techniques of cut sets and path analysis are used to deter
mine survivability of a damaged network. 

The fixed structure approach assumes a fixed and known 
network architecture and assigns a probability of failure to 
each node and link. Again these probabilities can be raised 
or lowered as a function of being subject to wartime attack 
or natural disasters. Survivability is measured in terms of 
the probability of criteria such as "all nodes can commu
nicate with one another" or that a "percentage of nodes both 
survive the attack and remain in contact with the largest 
single group (component) of surviving nodes" (3). 

DISTRIBUTED DATA PROCESSING SYSTEMS 

DDP systems can be constructed in a number of ways. A 
very simple example occurs when a data processor serves 
as a "front end" for a larger processor and handles input
output functions. A somewhat more complex example is an 
array of interconnected processors (18,19). More complexity 
is added when geographically remote processors are inter
connected by a telecommunications network (1). It will be 
this concept of a DDP which is considered in this paper. 

Adding data processing and associated data sets at the 
nodes of a telecommunication network to create a DDP sys
tem greatly complicates the analysis of survivability. If it is 
further assumed that not all data sets are co-resident with 
the processor executing a program at a node, the quantifi
cation of DDP survivability becomes even more difficult. It 
is this latter implementation of a DDP system which is the 
basis for the research reported here. 

When an executing program at a node needs access to 
another node within the DDP, two failure modes must be 
considered. One is that at least one link or node along all 
paths interconnecting the needed data to the executing pro
gram have failed thus breaking communication between the 
executing program and its required data. The second is that 
the node at which the required data is resident has failed. 
Either of these failure modes prevents a program at some 
node in the DDP from executing. We will refer to this sit
uation as a DDP system with remote data requirements. 

A final failure mode is that the node at which a program 
is to execute fails, i.e., the data processor is inoperative. 
Any of the three failure mechanisms noted above can cause 
a program at a node to be unexecutable. Probabilities for 
failure "q" and being operational "p" can be assigned to 
each node and telecommunication link. It is assumed here 
that these probabilities are independent which is consistent 
with the assumptions for survivability analysis for telecom
munications networks. 

DDP SURVIVABILITY CRITERIA 

A simple quantitative measure of the survivability of a 
DDP is the number of programs that remain operational after 
some combination of nodes or links have failed. For a given 
network architecture there are a large number of subarchi
tectures that occur because of failures of nodes and links. 
Each of these subarchitectures has a probability of occurring 
and for each the number of operational programs can be 
determined based upon the data set requirements for pro
grams executing at operable nodes and the data set distri
bution across nodes. A survivability criterion can be gen
erated by taking the expectation of the number of programs 
operable for each subarchitecture leading to a summation of 
the proportion of programs operable for a subarchitecture 
times the probability of its occurrence. This criterion is des
ignated as S and provides a quantitative measure of DDP 
survivability as a function of initial network architecture, a 
given data set distribution, and the data set requirements for 
each program at each node. A brief mathematical derivation 
of S is presented in the next section. An example of the use 
of this criterion for a simple four node network is described 
in the following section. 

The mathematical approach to quantifying DDP surviva
bility is computationally costly. For a DDP with N nodes 
and L links, 2N + L possibilities exist for subarchitectures. The 
requirement to access data at remote nodes greatly reduces 
the number of cases that must be considered but computa
tionally we are quite limited as to the size of a DDP system 
that can be analyzed. At present we can handle DDP systems 
with nine nodes and from 10 to 12 links. Better mathematical 
approaches are being developed, but haven't been imple
mented in a computer program which calculates S for a given 
DDP and data distribution. 

Other factors that can be introduced, which will impact S, 
are the assignment of weights to programs and nodes, and 
the introduction of constraints on the data set distribution. 
Weighting factors are introduced to indicate the relative im
portance to the function of a DDP system of individual pro
grams or nodes. These weights would have to be assigned 
by the DDP designers and provision is made for incorpo
rating these weights in the computer program which com
putes S. 

The data set distribution constraints would again be design 
decisions and represent situations where only so many data 
sets could be resident at a node, or due to update frequen
cies, it would not be feasible to make duplicate copies of a 
data set which is generated at a particular node. In the DDP 
survivability analysis for various network architectures de
scribed below, both program and node weighting factors are 
held constant and equal while data set constraints are not 
considered. 

SURVIV ABILITY INDEX COMPUTATION 
ALGORITHM 

An enumerative technique has been selected to evaluate 
the survivability index S for a given DDP system architecture 



and data set distribution. The algorithm executes in four 
phases. The first phase determines the connected compo
nents, i.e., subarchitectures of the DDP network. The com
putation in this step is exponential in determining execution 
time and constitutes the limiting factor on DDP networks 
that can be analyzed for survivability. The second phase 
introduces the data set distribution and a further selection 
is made of those subarchitectures for which programs can 
execute, i.e., have access to the required data sets. A node 
is considered as surviving if at least one program executes 
at this node. The third phase assigns weighting factors to 
programs and nodes, while in the last phase the survivability 
index is computed by a procedure to be described below. 

Given a DDP network consisting of N nodes and L links, 
define stochastic variables Eij for every link (i,j) and Ei for 
every node i. These variables assume the values {O,l}. The 
value one indicates that the component is operational, while 
the value zero indicates it is non operational. The distribution 
of Eij and Ei is: 

and 

P(Eij= l)=Pij 

P(Eij=O) = I-pij=qij 

P(Ei = l)=Pi 

P(Ei=O) = I-pi=qi 

Assume that a DDP network consists of N nodes and L 
links. With N + L binary stochastic variables, 2N + L elemen
tary events have to be considered. Each event corresponds 
to a subgraph, i.e., subarchitecture, of the graph correspond
ing to the network architecture. Each event's probability, 
since it is assumed all variables are independent, is the prod
uct of probabilities of the corresponding node and link prob
abilities. For event j, assume a combination of programs 
survives at each node. Let ai(j) represent the combination 
of programs surviving at node i for event j and let b(j) rep
resent the combination of nodes that survive for this event. 
Because of the dependence of survivability on the combi
nation of programs and nodes surviving, the survivability is 
defined for event j and then expanded to find the total sur-

'vivability for the whole network. For event j, the surviva
bility index would be the weighted sum of the survivability 
of nodes as follows: 

N 

Sj =' ~ W·b(i)S/ 1""-' I I 
i=1 

(1) 

where S/ is the survivability of node i for eventj and W/(i) 

is the weight of node i for combinations of surviving nodes 
b that depends on event (subgraph) number j. S/, the sur
vivability index of node ifor eventj, is the sum of the weights 
of the surviving programs at node i, as follows: 

Sj= ~ W. ai(i) 
I ""-' I,k (2) 

k=1 

where mi represents the number of programs at node i, 
Wi,k ai(j) is the weight of program k located at node i for com-

Survivability Criterion for DDP Systems 141 

bination of surviving programs a i that depends on event num
berj. By substituting for SI from (2) into (1) we would have: 

N mi 

Sj = 2: W/(i) 2: Wi,k ai(i) (3) 
i= 1 k=1 

The total survivability is by definition 
2N +L 

S = 2: P(A)'Sj 
j=1 

where Aj represents the event j and P(Aj ) represents the 
probability that Aj happens. The example showing the cal
culation of S in the next section will further clarify the details 
of the algorithm for computing the DDP system survivability. 

COMPUTATION OF S 

An example of the computation of survivability index S 
for a simple DDP system is presented in this section. The 
DDP network shown in Figure 1 consists of 4 nodes and 4 
links. Assignment of files and programs to nodes is as shown. 
FA denotes the files available while FN denotes the files 
needed to execute the programs at a node. PM designates 
the programs to be executed at a node. For example, at node 
2 we have two programs, X 2 ,1 and X 2,2' Files 2 and 4 are 

FA: FILE AVAIU',BLE 

FN: FILE NEEDED 

Pr1: PROGRAf>1 

NODE #1 NODE #3 

~1,2--- E13 FA: 4 6 7 
~=-lL~Lf--------=~-----DM:X3.r.1X3)2~3)~ 

FN: Sl,1={1,2)} : S3,1= (L5,4) 

SLr\2,3} S3,2= l6,2J 
S - {7,L3J 

~~---- .. 

._~D.I! #4_.___ E34 
FA: 5,3,4 / 

P ::::1~2'6j 
Figure I-Four node DDP. 



142 National Computer Conference, 1980 

Item E, £1. E.'. E!! r~llEllF::!'1~3q XJL!j~0Jh2X~1~\37X:'JYIII ~\ll'vi v3bj l_i ty and comment 

1 

2 

3 
4 

5 
6 

7 
8 

9 
10 

11 

12 
13 
14 
15 
16 

17 
18 

19 
20 

21 

22 

23 
2~ 

25 
26 
21 
28 

29 

30 

31 

32 

33 
3~ 

35 
36 

37 

38 

39 
~O 

~1 

~2 

o 0 0 1 - - - - 0 0 0 0 0 0 0 0 0 None of the programs survive 

0010- 0 0 000 000 0 

o 011 1 0 0 0 0 0 000 0 

o 1 00- 0 0 000 0 0 0 0 

o 101 - - - - 0 0 0 0 0 000 0 

011 0 - - - - 0 0 0 0 0 000 0 

0111 100000000 0 

1000 00000000 0 

1001- -1,- 11000000 1/40/2+1/2)(.9)3(.1)2 XII & X'lSurvive 

1 001 - - 0 - 0 000 0 0 0 0 0 

1 0 1 0 - 1 0 0 000 000 

1 011 - 1 1 1 1 1 001 1 1 1 
101 1 - 110 1 1 0 0 1 1 1 1 

101 1 - 101 '1 1 0 0 1 111 
1 011 - 1 0 0 0 0 0 0 0 0 0 0 

1 0 1 1 - 0 1,1 1 1 0 0 1 1 1 1 

101 1 - 010 1 1 0 0 0 0 0 0 

o 
(1/4 (1/2+ 1/2) +1/ 4J 1/3+ 1/3+ 1/3) +1/4) ( . 9~ (,1) 
(1/4+1/4+1/4)(.9~ (.1)~ 

3/4(.9)(.1)2 
o 

3/4(.9)5(.1)2 

1/4(1/2+1/2)(.9)4(.1)3 

1 0 1 1 - 0 0 1 0 0 0 0 0 0 0 0 0 Tenore the case E~4' 0 
1 100 1 1 1 000 0 0 0 11/~ (.9)3(.1)2 

11000 00000000 0 

1 101 1 - 1 - 1 1 1 100 0 0 (1/4(1/2+1/2)+1/4(1/2+1/2»(.9)5(.1) 

1 101 1 - 0 - 1 1 0 0 0 0 0 0 1/~(1/2+1/2)(.9)~(.1)2 
1 101 0 - 1 - 1 1 0 0 0 000 1/4(.9)~(.1)2 
1 101 0 - 0 - 0 0 0 0 0 0 000 
1 1 1 O' 1 1 1 1 1 1 1 1 1 0 (1/4+1/4+1/4)(.9)5(.1)1 

1 110 10- - 1 1 0 0 0 0 0 0 1/4(.9)4(.1)2 
1 110 0 1 - - 0 000 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (.9)8 

1 III III 0 1 1 1 1 1 1 1 1 (.9)7(.1)1 
7 1 III 110 1 1 1 1 1 1 1 1 1 (.9) (.1) 

1 III 110 0 1 1 1 1 1 1 1 0 (3/4)(.9)6(.1)2 
7 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 (.9) (.1) 

1 III 101 0 1 1 1 1 0 0 0 0 (1/4+1/4)(.9)6(.1)2 

1 III 100 1 1 1 0 0 0 0 0 0 1/~(.9)6(.1)2 
111 1 100 0 1 100 0 0 Q Q 1/4(.Q)5(.1)3 

1 III 011 1 1 1 0 0 III 1 3/~(.~;7(.1)1 
1 III 011 0 1 1 0 0 1 1 1 1 3/~(.9)6(.1)2 
III 1 010 1 1 1 0 0 1 1 1 1 3/~(.9)6(.1)2 
1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1/~(1/3)(.9)5(.1)3 
1 111 001 1 1 1 0 0 1 1 1 1 3/~(.9)6(.1)2 
1 1 1 1 O· 0 1 0 1 1 0 0 0 0 0 0 1/~(.9)5(.1)3 
1 111 0 001 0 000 0 0 000 

There are 42 cases out of 256 (28·~56). 
Figure 2-ExampJe of computation of S. 



required to execute program XZ,l and are designated as 
SZ,l = [2,4]. 

If a program is executable at a node, then that node ex
hibits some degree of survival. In the DDP system shown 
in Figure 1, no program can execute at a node without access 
to a file resident at some other node. Thus for program XZ,I 

to execute at node 2, it must have access to file number 4 
at node 3 or 4. This implies that data link E\2 and node 1 be 
operational. In addition, either data link E13 and node 3 or 
data link E14 and node 4 must be operational. As can be seen, 
the same conditions exist for program Xz,z to be executable 
at node 2. 

For the particular DDP shown in Figure 1 there are 256 
different configurations ranging from everything having 
failed (all nodes and links) to everything being operational. 
For many of the possible configurations of operable nodes 
and links no program can execute at any node. The first 
phase of our computational algorithm selects all operable 
network subarchitectures for which it is possible for one or 
more programs to operate at a node. For Figure 1 there are 
42 such configurations as shown in Figure 2 which illustrate 
the computational steps for S. When availability of data sets 
are included as a selection criteria, then only 26 of the 42 
operable sub architectures have nodes with an executable 
program. The probability of occurrence of each of the 26 
subarchitectures times their weighting functions is shown on 
the right side of Figure 2. Survivability index S is the sum
mation of these terms. 

For purpose of illustration of this computation, the prob
ability of survival for a node or link was set at the repre
sentative values at 0.9, and for failure at 0.1. All nodes and 
programs were assumed to be of equal weight. Since the sum 
of the weights of all nodes must equal one, the weight for 
each of the four nodes is -! . Likewise, since the sum of the 
weights of the programs at each node must equal one, the 
program weights Wi are: -! at node 1, i.e., 2 programs res
ident at this node; -! at node 2; ~ at node 3; and 1 at node 
4. Using the definition of survivability S as noted above, we 
get S = 0.7658 for the DDP system shown in Figure 1. 

DDP NETWORK SURVIVABILITY COMPARISON 

A computer program has been generated which computes 
S for a given DDP network, and program and data set dis
tribution. The use of this program is restricted to DDP sys
tems where the sum N + L is less than 20. For DDP of this 
complexity the running time of this program on an IBM 370/ 
148 is several minutes. The addition of a node or link in
creases the running time by factors approaching two. No 
attempt has been made at this time to improve the efficiency 
of the program to enable computation of S for larger DDP 
networks. As noted above, other mathematical algorithms 
to reduce computation time and significantly increase the 
size of a DDP system for which the survivability index can 
be computed are being developed as part of an ongoing re
search program. 

Seven DDP network geometries were investigated as 
shown in Figure 3. Some familiar DDP architectures which 

Survivability Criterion for DDP Systems 143 

have been evaluated for survivability include the ring (31), 
star (3e), grid (3a), and linear Z (3b). A single program is 
assumed resident at each node and a set of data files required 
to run each program is specified. Three distributions of data 
files were specified. Two were selected at random while the 
third was chosen to minimize the distance in terms of links 
between a program and the data files required to execute the 
program. Table I shows the three data-file node assignments 
and indicates for each node what data must be fetched from 
a remote node. 

The corresponding value of survivability index S for each 
of the test cases (21 in all) were computed. Table II contains 
a tabulation of values of S for each test case. 

As was expected, the data file assignment can have a large 
impact on DDP system survivability, thus demonstrating the 
importance of this factor in the design of distributed com
puter networks. Individual DDP architectures varied widely 
in terms of survivability when the data set distribution was 
changed. As would be expected, architectures with the most 
links, i.e., Figure 3a-grid, had better survivability. Also as 
was expected, the star architecture has high survivability 
because the distance between a program and its data set 
never exceeds two links. The various ring architectures rank 
moderately high on survivability. The string architectures, 
i.e., linear Z and swastika, have fewer links (8) and corre
spondingly lower survivability. This reflects the greater dis
tance that can occur between data sets and programs and 
the lack of parallel or redundant communication paths be-
tween nodes. ' 

CONCLUSIONS 

The research directed toward deriving a survivability cri
teria in this paper for computer networks is still in a very 
preliminary stage. A survivability index S has been defined 
which measures survival in terms of the number of programs 
which remain executable in the DDP after some nodes or 

Figure 3a-Grid 



144 National Computer Conference, 1980 

Figure 3b-Linear Z Figure 3e-Star 

Figure 3c-Ring wltail Figure 3f-Ring 

Figure 3d-Swastika Figure 3g-Ring w/3 tails 



Survivability Criterion for DDP Systems 145 

TABLE I.-Data file distribution 

Distribution 1 Distribution 2 Distribution 3 

tteS1oen"t Needed Needed Needed 
Node Program Files Resident Non-Resident Resident Non-Resident Resident Non-Resident 

NuniJer Nuni>er Needed Files 

1 1 1,3,8 1 

2 2 1,4,6 4 

3 3 2,3,7 2,7 

4 4 1,4,6 1,6 

5 5 5,7,8 1,5 

6 6 2,3,5 3 

7 7 4,5,8 5,8 

8 8 2,3,6 2,6 

9 9 1,7,8 7 

links become inoperative. The inclusion of data distribution 
in the formulation of S is the main area of departure of this 
research from previous work on network survivability. The 
importance of including the data distribution within a DDP 
in enumerating survivability is demonstrated in the numer
ical results presented in the previous section. 

The main purpose of this preliminary activity in deriving 
a DDP survivability criteria was to establish the validity of 
the index S. Future plans call for deriving better mathe
matical representations and improving the computational 

Files Files Files Files Files 

3,8 3 1,8 1,3 8 

1,6 7 1,4,6 6 1,4 

3 2,5 3,7 7 2,3 

4 1,4,6 - 1 4,6 

7,8 1,8 5,7 4,8 5,7 

2,5 6,7 2,3,5 2,5 3 

4 5 4,8 5 4,8 

3 1 2,3,6 2,6 3 

1,8 2 1,7,8 1,7 8 

" algorithms for S. Assuming the availability of better repre-
sentations for DDP survivability, it becomes possible to 
evaluate DDP architectures, data distributions, and to de
velop algorithms to achieve optimal DDP survivability in 
terms of these parameters. 

The authors want to take this opportunity to express our 
appreciation for the generous support of this research activ
ity by Mr. Clifford McLain, and Dean Ray, Defense Civil 
Preparedness Agency; Center for Academic and Administra
tive Computing; and helpful suggestions by Professor T. 

TABLE n.-Value of survivability index S for various network structures 
and file distributions 

DDP Architure S"u"rVivability Index" S ; 

Struct,ure Distribution 'Distribution Distribution 
Figure Name I 2 3 

3a Grid 0.748 0,752 0,753 

3b Linear Z 0.393 0.520 0.557 

3c Ring with Tail 0.634 0.603 0.567 

3d Swastika 0.522 0.562 0.576 

3e Star 0.608 0.659 0.690 

3f Ring 0~611 0.625 0.611 

3g Ring with 3 0.620 0.674 0.657 
Tails 



146 National Computer Conference, 1980 

Lee, and other members of the Electrical Engineering and 
Computer Science Faculty at The George Washington Uni
versity. 

REFERENCES 

1. Roberts, L. G., et aI., "The ARPA Network," Computer Communica
tions Networks, pp. 485, Prentice Hall, 1973. 

2. Tymes, L., "TYMNET-a Terminal Oriented Communication Net
work," AFIPS Conference Proceedings, Vol. 38, pp. 211, spring, 1971. 

3. Frank, H. and Frisch, I. T., "Analysis and Design of Survivable Net
works," IEEE Trans. Comm. Tech., Vol. COM-18, pp. 501-519, October 
1970. 

4. Frank, H. and Frisch, I. T., Communication, Transmission and Trans
portation Networks, Reading, Mass.: Addison-Wesley, 1971. 

5. Leggett, J. D., "Synthesis of Reliable Networks," Ph.D. Dissertation, 
University of Pennsylvania, 1969. 

6. Ayoub, J. N. and Frisch, I. T., "Optimally Invulnerable Directed Com
munication Networks," IEEE Trans. Comm. Tech., Vol. COM-18, pp. 
484-489, October 1970. 

7. Boesch, F. T. and Feltzer, A. P., "A General Class of Invulnerable 
Graphs," Networks, Vol. 2, pp. 261-283, J. Wiley, 1972. .. 

8. Frank, H., "Vulnerability of Communication Networks," IEEE Trans. 
Comm. Tech., Vol. COM-15, pp. 778-789, Dec. 1967. 

9. Hakimi, S. L. and Amin, A. T., "On the Design of Reliable Networks," 
Networks, Vol. 3, pp. 241-260, J. Wiley, 1973. 

10. Erdas, P. and Renyi, A., "On the Evolution of Random Graphs," Publ. 
Math Inst. Hung. Acad. Sci., Vol. 4, pp. 17-61, 1960. 

11. Erdas, P. and Renyi, A., "On the Strength of Connectedness ofa Random 
Graph," Acta Math., pp. 261-267, 1961. 

12. Rapoport, A., "Nets with Distance Bias," Bull. Math. Biophys., 13, pp. 
85-91, 1951. 

13. Rapoport, A, "Contribution to the Theory of Random and Biased Nets," 
Bull. Math. Biophys. 19, pp. 257-277, 1957. 

14. Baran, P., "On Distributed Communication Networks," IEEE Trans. 
Comm. Tech., Vol. COM-12, pp. 1-9, 1964. 

15. Brown, D. B., "A Computerized Algorithm for Determining the Relia
bility of Redundant Configuration," Trans. on Reliability, R-20, pp. 121-
124, 1971. 

16. Hansler, E., McAuliffe, G. K. and Wilkov, R. S., "Exact Calculation of 
Computer Network Reliability," Networks, Vol. 4, pp. 95-112, J. Wiley, 
1974. 

17. Van Sylke, R. and Frank, H., "Network Reliability Analysis: Part I," 
Networks, Vol. 1, pp. 279-290, J. Wiley, 1972. 

18. Barnes, G. H., et aI., "The ILLIAC IV Computer," IEEE Trans. on 
Comp., C-17, pp. 746-57, 1968. 

19. Crane, B. A., et aI., "PEPE Computer Architecture," Proceedings of 
COMPCON, pp. 57-60, Sept. 1972 . 



An )operating system kernel mechanism for the poly
processor system PPS-R 

by MAKOTO AMAMIY A and NAOHISA TAKAHASHI 
Musashino Electrical Communication Laboratory, N.T.T. 
Musashino, Japan 

and 

YUTAKA OGAWA and KENJI KOYAMA 
Yokosuka Electrical Communication Laboratory, N.T.T. 
Yokosuka, Japan 

INTRODUCTION 

Conventional functionally centralized systems have several 
problems such as cost-performance ratio, reliability, avail
ability, system software productivity, and expand ability , for 
changing the system size and service grade in time sharing 
systems (TSS). 

The functionally decentralized systems, on the other hand, 
can resolve these problems and recent advances in LSI tech-. 
nology and microprogramming technology enable us to re-· 
alize such systems. The Poly-processor system (PPS), whose 
operating system is discussed in this paper, is a computer 
complex consisting of many small, tightly coupled, func
tionally dedicated processors. The research version of PPS 
(PPS-R) has been developed, and now its operating system 
aiming at TSS services is under development. 

Computer complexes such as C.mmpl, TIP2, MCS3 and 
TANDEM 164 have been developed, all of which are ho
mogeneous multiprocessor systems and have special pur
poses. 

It is a hard but very important problem to decompose the 
conventional TSS OS functions and to execute simultane
ously each decomposed OS function in order to obtain high 
cost-performance ratio, system expandability, software pro
ductivity, reliability and availability. Few such systems have 
been realiz.ed so far. 

The Hyper Operating System Complex for Poly-processor 
(HOPE-R) is an experimental OS complex whose objective 
is to resolve the problems mentioned above. HOPE-R is 
defined as a set of several subOS' s which are organized to 
co-operate to offer TSS services. 

This paper introduces the structure and characteristics of 
PPS-R and HOPE-R, and then discusses the kernel mech
anisms of HOPE-R which is the basic frame for realizing 
HOPE-R service policy and experimental environment. The 
kernel mechanisms consist of a common kernel mechanism 
which is required of all subOS's commonly, and specific 
subOS mechanism which is required of each subOS partic-

147 

ularly, such as 1/0 control, user-task control, and job-mem
ory control. 

POLY-PROCESSOR SYSTEM 

The experimental Poly-processor System (PPS-R) is a 
computer complex consisting of many small, tightly coupled, 
functionally dedicated processors, which has been devel
oped for TSS services. 5 PPS-R consists of a processor sub
system, a memory subsystem and a connection subsystem, 
as shown in Figure 1. The PPS-R hardware configuration 
and system characteristics are briefly described in the fol
lowing. 

Processor subsystem 

The processor subsystem is composed of six functionally 
dedicated processor classes, in order to increase the system 
throughput, to shorten the response time and to improve 
system reliability. The set of functions for each processor 
class, shown in Table I, is determined corresponding to the 
partitioning of conventional operating system (OS) func
tions. Each processor class has one processor. 

Memory subsystem 

The memory subsystem consists of six memory classes, 
shown in Table II, which are categorized according to the 
behavior and characteristics of stored information, in order 
to provide the function changeability of each processor. 6 

Connection subsystem 

The subsystem interconnecting individual hardware com
ponents is divided into two classes, InterProcessor Connec-



148 Nr.tional Computer Conference, 1980 

Cent ra I Con1 ro Iler 

CH LPU ~ 

I PU l;:+Jf'PL,UC::;---;=:llr-l'p~;ut=:7-:-~ltpL,ur::::-~"..J] rrr 

-M--"PL-..U- e J PU S~U F~U :~~ CH I nn --
SCM SCM SCM SCM SCM SCM V--.J \LJ 
FCM FCM FCM FCM FCM FCM ESWAP JSWAP 

~r--sx-~"'--r-~-::r--rH~PMEMl 1PMEMI -jPMEMI HPMEMI HPMEMI >-jPMEM\ 

~ r ------... ------- --------1------- ------l 
r-:1 ! . ~r 1 

q. H 2J 
~.i I,:==~ 
~', 1 3 

~: H 41 
0 ' I ~~ ~ J 

. v 1 I I 5 . LQ. I I r----, 
~---_-- ... ______ ~_ .. ___ ~ ____________ .. J L __ -E.1 

JMSX 
Figure I-PPS-R organization. 

tion (IPC) class and the Job-Memory Switch matriX (JMSX) 
class. IPC comprises the buses with the controllers (IPU's) 
which connect processors to each other. The buses con
tained in this class can transmit information between pro
cessors independently at high speed. The JMSX represents 
the switch matrices which connect each Job MEMory 
(HviEM) with sOrIle processors: 

STRUCTURE OF HOPE-R 

HOPE-R functions are classified both horizontally and 
vertically as shown in Table III. 

The six subOS functions are defined according to the fol
lowing three rules, which are also reflected in each processor 
function. 

VI: The class on which user programs run must be distinct 
from the classes on which the EXEC runs. 

V2: The components which have external interaction will 
be classified into separate classes, depending on the 
interface processing functions. 

V3: The optional system functions such as the swapping 
function, which could be selected optionally when the 
system is installed, must be divided into different 
classes. 

Each subOS function is also classified hierarchically ac
cording to the following rules. 

HI: Service dependent functions must be separated from 
service independent functions. 

H2: Functions which hide hardware peculiarity must be 
separated from other functions. 

H3: SubOS common functions must be separated from 
subOS peculiar functions. 

In the remainder ofthis paper, are described HOPE-R spe
cific kernel mechanisms, especially process control, inter
subOS communication control and processor memory 
(PMEM) control, which are common kernel mechimisms, 
the task control mechanism peculiar to the Job Processing 
Unit OS (JPU-OS), and the JMEM management mechanism 
peculiar to the Roll in/out Processing Unit OS (RPU-OS). 



A Kernel Mechanism for the Poly-processor System-R 149 

Class 

JPU 

EXEC classes 

LPU 

FPU 

SPU 

RPU 

MPU 

TABLE I.-Processor Subsystem 

Functions 

executes application programs activated 
by the user. 

perform EXEC functions. 

perfoms network control and cmmunication 
control functions. 

executes I/O operations, file access 
control and file management. 

performs system resource scheduling. 

executes swapping operations and virtual 
space management. 

performs system maintenance and system 
reconfiguration management. 

PROCESS CONTROL MECHANISM 

In the conventional OS the execution of a program can 
be categorized to non-task, system task, and user task. In 
HOPE-R, only JPU executes user tasks, and EXEC pro
cessors execute messages delivered from other processors 
(mainly JPU). Considering these execution characteristics, 
the user task is distinguished from others, and only the user 
task is defined as task, while the system task and non-task 
are defined as chore. The characteristic differences between 
the task and the chore are shown in Table IV. Though mul
tiprocessing of tasks is under th~ control of JPU -OS, its 

TABLE n.-Memory Subsystem 

Class 

Basic control 
memory (BCM) 

Firmware control 
memory (FCM) 

Processor memory 
(PMEM) 

Job memory (JMEM) 

EXEC swapping 
memory (ESWAP) 

Job swapping 
memory (JSWAP) 

Functions 

stores microprograms to perform 
basic functions common to all 
processors. 

stores microprograms to characterize 
proper hardware functions for each 
processor. 

stores control information and 
programs to characterize proper 
software functions for each processor. 

stores user's programs and utility 
programs. 

stores nonresident portions of the 
EXEC and backup information. 

stores programs and user task data 
rolled out of JMEM. 

memory allocation and scheduling of the task creation are 
controlled by other subOS's, and a terminal I/O or a file 
I/O can be executed concurrently with user programs. 

OS supervisor routines are initiated by SuperVisor routine 
Call (SVC). Some of the supervisor routines are placed in 
other processor classes; therefore their SVC's, which is 
named External Supervisor routine Call (ESC), are informed 
to each processor class through message communication, 
whose mechanism is described in the next section. 

Considering that the chore processing which corresponds 
to the instantiation of a supervisor routine is relatively small 
and fixed, its multiprocessing control mechanism is designed 

TABLE III.-HOPE-R Configuration 

OS level PU class JPU as LPU as FPU as MPU as RPU as SPU as 

Service Policy Command Terminal control Catalog System Roll in/out Job schedule 
level execution management reconfiguration schedule 

Command schedule 
File management Library 

management Load con trol 

-_._."-

SubOS .Mechanism Task dispatch Line buffer Acess control Diagnosis JMEM con trol Task generation 
level control 

Object program 
control Task termination 

.•. _'--

Common Mechanism SVC control Interrupt handling Event schedule Chore control Load observation IPG control 
level 

PMEM management Queueing/ dequeueing 

Hardware Line control I/O control Diagnosis Channel, I/O 
Virtualizer level instruction schedule 

Retrial 
.-,.-- .. 



150 National Computer Conference, 1980 

TABLE IY.-Characteristics of Task and Chore 

Task Chore 

Processing Command Message 
object from terminal users from other processors 

Program User program, Exec program 
utility program 

Memory Job memory Processor memory 

Execution Full of variety Restricted and fixed 

-::;PU occupation In danger of parmanent Sure not to occupy 
occupation 

I 

SO as to reduce the control overhead. Another important 
design point is to organize the software support for emer
gency communication facility and changing the subOSJfunc
tions when load imbalance between processors or processor 
failure occurred. 

Task control mechanism 

The HOPE-R task executes user commands as shown in 
Figure 2. Characteristic features of the HOPE-R task pro
cessing are: (a) The user program runs on JPU, which de
livers various demands to other (EXEC) processors through 
ESC's, (b) RPU manages task areas, independent ofthe JPU 
execution, (c) SPU schedules user commands to decide the 
order of task execution and memory allocation. 

(1) Task states and state transition 

Task states are defined as shown in Figure 3 according to 
the following rules; 

Tl: In what type of storage the task is placed. 
T2: Whether the task requires JPU or not, 
T3: What type of 110 the task is executing, or it has done. 

The state transition is shown in Figure 4. Schedule Pro
cessing Unit (SPU) status, JPU status, and RPU status are 
controlled by SPU-OS, JPU-OS, and RPU-OS respectively. 
The RPU status is considered as an External state in JPU
OS and the JPU status is an External state in RPU-OS. 

(2) Task dispatching 

According to the task characteristics described in Table 
IV, task dispatching has the following features compared 
with chore dispatching: (a) the task execution is pre-empted 
at the end of the time slice; (b) user-exit routines for task· 
interrupts can be set by the user; (c) JPU supervisor routines 

manage the task creation, task deletion, return from External 
state and interruption, etc. 

(3) Job memory management 

RPU -OS manages and allocates JMEM space to the three 
types of areas: (a) procedure area of user program, (b) data 
area of user program, (c) task control information area. 

RPU-OS manages five states, four of which are defined 
by rule Tl, that is, the states in which the task is placed 
outside JMEM, and the other is terminal 110 wait state in 
which the task may be rolled out from JMEM. In PPS-R 
processors, as base-registers are used for program reloca
tion, instead of paging mechanism, memory space must be 
allocated in contiguous area. The memory fragmentation 
problem which occurs in this case, however, can be re
solved, because the fragmented areas can be compactified 
by the RPU -OS specific chore which is independent of JPU
OS task control. 

Chore control mechanism 

In subOS, ESC Messages (ECM's) from other subOS are 
multiprocessed in order to utilize resources efficiently. The 
ECM processing control and the chore control flow are 
shown in Figure 5. 

(1) Chore control 

Chore characteristics in Table IV and software simulation5 

show that the chore execution is small scale and pre-defined 
fixed type. Considering this fact, chore states are designed 
as shown in Figure 6. 

The chore scheduling is designed so as to reduce the chore 
control overhead and to obtain subOS independency. The 
scheduling strategy is as follows: (a) a chore is suspended 
only when it waits for ECM's or 110 completion, i.e. no time 
slicing; (b) chores in the ready state should be dispatched 
before the new chores are created. Then the newly ,created 
chore is executed immediately; (c) the emergency ECM 
should be scheduled at the highest priority. 

are taken up in two methods, look-in method and interrupt 
method, in order to realize subOS independent chore sched
uling and efficient multiprocessing, and to enable the emer
gency ECM to interrupt the normal chore execution. The 
result event acceptance rule is shown in Table V. 

Also considering the regularity and smallness of the chore 
processing, chores are designed to wait for only one event, 
in order to simplify the chore control mechanism. 

(2) Processor memory management 

PMEM space of each processor is allocated for chores. 
The subOS memory manager allocates and deallocates 



A Kernel Mechanism for the Poly-processor System-R 151 

/ 
_------.:/::....,..I .... nput/output 

Line Control 

Command Interpretation 

Open 
Command 

Session 
ermination 

~~----... 
Session 
Schedule 

\, 
Command 
Schedule 

Task Deletion Task Creation 

File Handling 

Sub-command/Data 

Task Processing 

Command Processor 

User Program 

Figure 2-A diagram showing the command processing flow. 

LPU-OS 

SPU-OS 

RPU-OS 

JPU-OS 

FPU-OS 



152 National Computer Conference, 1980 

Task 
rule T~~ Grasping JPU ------------------------------------------------~ 

JMEM Requiring JPU -----------------------------------------------~ 

~ 
Waiting for internal events ---------------~ 

Giving-up JPU Interacting with peripherals --------------} 

RUNNING 

READY 

EVENT WAIT 

FILE I/O WAIT 

TERMINAL I/O WAIT 

ROLL OUT TRANSIENT 

rule T3 Interacting with terminals ----------------~ 

From JMEM to JSWAP ----------------------------------------~ 

--7 From JSWAP to JM=E~n~~~~~~::-~~:-~~~:~~~~~::-~:-:~::~s-~~ 
on JSW AP ..,t_.-,--------

Having completed interactions ------------~ 

ROLL IN TRANSIENT 

BLOCKED 

PENDING 

Figure 3-Definition of task states. 

PMEM areas to each chore dynamically when they are cre
ated and deleted. The chore processing requires fixed sized 
memory space which is used for chore control blocks, and 
variable sized memory space which is used for message data 
and 110 data blocks. Fixed sized memory space is acquired 
as a block of 16 words, and variable sized memory space is 
acquired as a block of2n(n=2,3, ... ,1l) words. 

(3) Function changing control 

Function changing facilities are inevitable in the function
ally distributed system, in order to resolve the load-imbal-

JPU Status 

SPU Status 

/ 
,/ 

RPU Status 

Figure 4-Task state transition diagram. 

ance and processor failure. PPS-R hardware has this function 
changing mechanism as described before. The HOPE-R 
subOS controls several logical classes of processors. Each 
subOS manages the chore of all classes one at a time, 
and the processor class switching is done by dispatching 
chores selectively in a specific class in order to execute as 
proxy for the heavy-loaded or failed processor, when an 
emergency message interruption has occurred. 

INTER-SUBOS COMMUNICATION 

Message data such as ESC's, which are small size but have 
a high frequency transfer rate, are transmitted by the inter
processor communication system (lPC) of PPS-R8. Consid
ering the hardware facilities of data transmission, the inter
subOS communication mechanism is designed to realize the 
following: (a) the OS programming should be made easy, 
especially it should be enabled to call all subOS functions 
without notices to the Poly-processor structures in order that 
the kernel mechanisms should be free from the change of 
OS policies or services; (b) errors should be detected at the 
caller side in order to prevent errors from spreading and 
avoid unessential communications; (c) it should be enabled 
to oht!lin hip'h r.onr.nrrencv hetween orocessor classes and "' ............ ------ ---0-- - ---- ---- - ." .& 

to reduce the interprocessor communication overhead, in 
order to draw out the effect of function distribution. 

SVC mechanism 

Due to the function distribution, some of the SVC's, i.e. 
ESC's, cause inter-subOS communications. 

The HOPE-R SVC mechanism facilitates system program
mers to set up kernel or policy routines only by an SVC 
name without worrying about on which processor such an 
SVC routine runs. 

Though HOPE-R offers two types of ESC linkage, Calli 



A Kernel Mechanism for the Poly-processor System-R 153 

... Flow of 

---+ Flow of 

~} Control 

message 

chore 
Monitor ~------... Termination 

and Deletion ----1 
t 
I 
I 

Message 
~ ..... scheduling .... ~~ receiving" I"'" 

Chore 
creation 

Execution 
message 

look-in 

I 
Emergency 
communication 
handling 

Emergency 
message 

Return 
message 
handling 

_ _ _ _ _ _ _ _ _ ready chore 

r---------4 :OOO~-
I event 
I 
I occurrenc 

event waiting 
chore 

- --):1:0:' -- -

Scheduling 

Suspension 

Figure 5-A diagram showing the chore processing flow. 

Return type and Transfer type, the Transfer type is preferred 
from the viewpoint of reducing the communication over
head. For example, Figure 7 shows that the Transfer type 
linkage takes only five steps in a command requirement pro
cessing, while the Call/Return type takes eight steps. 

normal ECM 

acceptance 

for 

Figure 6-Chore state transition diagram. 

ESC control mechanism 

ESC control mechanism consists of a call control mech
anism, an SVC body execution and a return control mech
anism. 

TABLE V.-Event Acceptance Rule 

Conditions of Acceptance Priority Processing on 
Event class acceptance method acceptance 

Emergency ECM Event Interrupt Emergency chore 
occurence creation 

Normal ECM No "ready" Look-in 5 Normal chore 
chore and no creation 
ERM 

ERM (ESC No "ready" Look-in 4 
return chore 
message) 

Message of Event Interrupt Sending messages 
I/O completion occurrence to chores 

Timer Dispatching Look-in 3 

Chore created Event 
message occurrence 



154 National Computer Conference, 1980 

(1) command requirement 

) 

(I) , Response 

(4) 

requirement 

Response 

(a) Call/Return type 

(5 ) 

Command 
scheduling 
requirement 

(1) Command requirement-. 

Command 
Roll-out requirement scheduling 

e reqUirement 

,'---------1 3F'U-O,s 
(4) Roll-in 

requirement 

(b) Transfer type 

Figure 7-Two types of ESC linkage in command processing. 

The call controller translates SVC name and parameters 
to a message (ECM) form referring to the SVC table in which 
the translation information is written, and then sends the 
message to the destination subOS. In this process, data er
rors are checked out. When the destination subOS receives 
the message, it sets up an execution environment ofthe ESC 
from ECM information, then calls the SVC routine. In the 
case of Call/Return type, on returning from the SVC, the 
return controller translates the return parameters to a return 
message and sends the message to the caller subOS. The 
caller subOS, when he receives the return message, recon
structs the return parameters and returns them to the caller 
routines. In the case of Transfer type, the return controller 
does nothing but the SVC body delivers an ESC with return 
parameters toward the other subOS. 

Inter-subOS communication protocol 

The protocol hierarchy is set as shown in Table VI, con
sidering the correspondence to the HOPE-R function hier
archy. 

High Level (HL) protocol transmits an ESC message, 
using Message PUT (MPUT) and Message GET (MGET) 
primitives. MPUT divides the message to several blocks and 
passes them to Remote WRITE (RWITE) primitive of Low 
Level (LL) protocol. MGET reconstructs a message from. 
blocked data passed by Remote READ (RREAD) primitive 
of LL protocol. LL protocol transmits blocked data up to 
32 words, which is called Sending Control Words (SCW). 
SCW includes control information which is used to set up 
the communication link. Basic Level (BL) protocol is the 
PPS-R hardware interface. 

The protocol processing flow is summarized in Figure 8. 

Emergency communication 

Anomalies in execution are informed by emergency com
munication (EC). Emergency messages are transmitted by 
EC primitives which are shown in Table VII. EC primitives 
are privileged to use IPC, and the emergency message in
terrupts the destination processor. 

Service Policy HL Protocol SubOS Mechanism LL Protocol 
and 

Hardware 
Virtualizer 

BL Protocol Hardware 

CommooMechanism 

MPUT 

I , 
I 

"'----;:::---,::---,::---' 
------- 0 0 0 RWRITE 

/Sending me~sage queue 

Message decomposition ! 
I 

-------------------------lI---", 
I , , 

! El 
I " " I ..... " I ,," 

MGET ---------0 0 0 RREAD -------0 0 --------,-----
I 'Received m~ssage queuj ICyclic FIFO buffer I 

Message composition 

~ Message ---------:>~ ~<~----- Block ----~~ -E<;-------- Word -----~> 

Figure 8-A diagram showing the inter-subOS communication flow. 



A Kernel Mechanism for the Poly-processor System-R 155 

Design 
objectives 

Perfonnance 

Reliability ~ 

Expandability 

OS productivity 

Characteris tic 
design factor in PPS 

Concurrency ~ 

Processor specialization ~ 

*Load imbalance ""-

* Communication 
overhead 

Multiprocessor 

Main tenance 
processor (MPU) 

Processor 
specialization 

Physical separation 
of software module 

High modularity 
realization secured 
by high perfor~ance 

Necessity for 
OS-complex 

* Increase in the size 
of program due to 
separation 

OS design policy 
in kernel mechanism 

Pip elin in g 

Finnware OS 

Sop his tica ted 
scheduling 

Reducing the 
communica tion 
frequency 

Reducing the 
communica tion 
overhead (time) 

Mutual checking 

System 
re-construction 

Periodical checking i' 
Function 
decomposition rule 

Technical issues 

Task and chore syncronization 

SubOS function linkage control 

Microprogrammed routine 
linkage con trol 

Chore scheduling 

SPU ,RPU ,JPU schedule 

Emergency message 
transfer control 

Emergency message 
processing control 

Multi-subOS chore 
processing control 

Picking-up message 
by look-in 

Decentralized task 
management 

Processor independent 
SVC mechanism 

Hierarchical ~ Hierarchical communication 
structuring rule ------ protocol 

( * represents a negative factor. ) 

Figure 9-Design objectives and kernel mechanisms. 

DISCUSSION 

HOPE-R kernel mechanism makes an offer the experi
mental environment to realize TSS service policies on Poly
processor system. The reflections of Poly-processor re-

TABLE VI.-Inter -subOS Communication Protocol 

Hierarchies Function Primitives 

Protocol level OS level 

High level Common Message transfer MPUT 
mechanism MGET 

Low level Hardware Block transfer RWRITE 
virturalizer ( block length is RREAD 

variable up to 
32 words) 

Basic level Word transfer 
( 1 word = 16 bits) 

search objectives to PPS-R and HOPE-R kernel mechanism 
features are shown in Figure 9. Among the issues, the im
portant problems are discussed in the following. 

(1) The chore concept, which is newly introduced to the 

TABLE VII.-Emergency Communication Primitives 

Item Contents 

Emergency state Declaring an emergency state and requiring to 
occurrence suppress any communications on t.he bus at once 

( via broadcast line ) 

Emergency interrupt Interrupting normal PI'Oc(~~sor's to make their state 
emergency 

Emergency saving Transferring information. !;tored in the faulty 
processor's PMEM, to a normal processor 

Emergency processor Informing normal processors that the faulty 
down processor has fallen into logical down state 

Emergency state Removing the bus use suppression 
termination ( via broadcast line ) 



156 National Computer Conference, 1980 

processing of message in HOPE-R, unites a logical 
processing frame and an actual control frame and 
makes it easy for a programmer to design SVC rou
tines. From the efficiency point of view, chore control 
mechanisms such as creation, deletion, synchroniza
tion, are much simpler than the general TSS process 
control mechansism such-as in MULTICS. 

(2) HOPE-R kernel has two types of inter-sub OS function 
control linkage, Call/Return type and Transfer type. 
Among the two, the latter is considered the necessary 
method in the functionally distributed multiprocessor 
system. The merit of this method is to shorten the 
number of communications in a processing sequence, 
and to reduce the linkage overhead. 

(3) HOPE-R chores wait for only one event. This simpli
fies the chore control. As PPS-R processors execute 
concurrently many tasks, high throughput will be ob
tained by pipelined effect even in that simplified con
trol method. 

(4) PPS-R can detect processor failure by processor self 
checking and periodical checking by Maintenance Pro
cessing Unit (MPU). In order to obtain high reliability, 
it is necessary to detach the failed processor and to 
reconfigure the system with remaining elements.8 The 
emergency communication control mechanism is im
portant to realize those facilities in HOPE-R. 

(5) The concurrency between the task execution in JPU 
and the task area management in RPU is effective to 
obtain higher throughput and to shorten- the response 
time. 

(6) The interprocessor communcation overhead is a weak 
point of distributed systems. In HOPE-R, this com
munication overhead is serious in compensation for 
the flexibility of the SVC mechanism. However as the 
communication control is the fixed processing, its rou
tines can be made by firmware or set in the IPC hard-

ware device. Furthermore the memory management 
for message data blocks, which shows a high overhead 
percentage, can be simplified by setting the exclusive 
memory pool for message data. 

HOPE-R TSS policy routines are now under development 
with the aims to evaluate the feasibility of Poly-processor 
system and the HOPE-R design philosophY described in this 
paper. 

ACKNOWLEDGMENTS 

The authors wish to thank to Dr. K. Murakami, who was 
the PPS project leader, for his helpful guidance, and PPS 
project members for fruitful discussions. They also wish to 
thank Mr. K. Yamashita, the director of their section, for 
giving them an opportunity to write this paper. 

REFERENCES 

1 Wulf, W. A. and Bell, C. G., "C.mmp A multi-mini-processor," Proc. of 
FJCC, pp. 765-777, 1972. 

2 Heart, F. E., et aI., "A New Minicomputer/Multicomputer for the ARPA 
Network," NNC, pp. 529-537, 1973. 

3 Jensen, E. D., "A Distributed Function Computer for Real Time Control," 
Proc. of 2nd Annual Symposium on Computer Architecture, pp. 176-182, 
1975. 

4 TANDEM 16 System Introduction, TANDEM Computer Inc. 
5. Murakami, K., et aI., "Poly-Processor System Analysis and Design," 

Proc. of 4th Annual Symposium on Computer Architecture, pp. 49-56, 
1977. 

6.· Sato, M., et aI., "Dynamic Function Exchanging Mechanism in Poly-Pro
cessor System," Proc. of 6th Annual Symposium on Computer Architec
ture, pp. 130-136, 1979. 

7. Nishikawa, S., et aI., "Inter-connection Unit for Poly-Processor System: 
Analysis and Design," Proc. of 5th Annual Symposium on Computer Ar
chitecture, pp. 216-222, 1978. 

8. Takahira, S., et aI., "A Reliability Aspect of Function Distribution System: 
PPS," Proc. of 3rd UJCC, pp. 70-74, 1978. 



Measures for distributed processing network survivability 

by GENE HILBORN 
Ford Aerospace and Communications Corporation 
Palo Alto, California 

INTRODUCTION 

We seek to develop a new methodology for describing and 
comparing the survival effectiveness of connected networks 
of processing subsystems (termed "distributed processing 
networks' ') which are subject to deliberate or natural failures 
or losses of processing or communication components. Ex
amples of distributed processing networks include: 

• resource-sharing computer networks 
• military force teams 
• distributed architecture computers 
• distributed sensor-processing systems 
• distributed ballistic missile defense systems 

The key idea which underlies the approach taken in this 
paper is that of a team system which depends both on the 
existence and communication connectivity of its member 
components for full performance. We then describe the at
tributes of existence and connectedness of the processing 
subsystems as the nodes and edges of a graph, and define 
a performance index axiomatically on the connectivity state 
space of the graph. To the extent that this performance cap
tures the essentials of the "team effect" it allows surviva
bility cost/performance trades of alternate network archi
tectures. 

While key results are expressed concisely as theorems, 
formal proofs are omitted. 

GRAPH THEORY AND BACKGROUND 

Definitions 

In order to present further details of the theory, it is nec
essary to introduce certain graph theory terminology. 

A graph is a set of nodes (representing processing sub
systems connected by edges (arcs, lines) (representing com
munications links). If the edges are directed with arrows 
(representing, for example, one-way message flow), the 
graph is technically called a digraph. We will be concerned 
only with undirected graphs, comprised of nodes and un-
'oriented edges. . 

A graph is connected if there is a path between every dis
tinct pair of nodes. 

157 

The edges connected to a node are said to be incident at 
the node. The number of edges incident to a node is called 
the degree of the node. 

The set of nodes with edges connected to a given node n i 
is said to be adjacent to n i' 

A graph in which all other nodes are adjacent to each node 
is called complete (or completely connected). 

Notation and vulnerability background 

Let G = (N,£) denote a graph comprised of a non-empty 
set of n nodes, N, and set of e edges E. We consider only 
distinct, non-oriented edges between distinct nodes n i and 
n j denoted [n i ,n j] or e ij' Parallel edges between a pair of 
nodes and self loop edges [ni,nj] will not be considered. The 
set of nodes adjacent to node ni is denoted by f(ni)' If 1·1 
denotes the size of a finite set, the degree d i of node n i is 
given by 

The total of node degrees counts each edge twice. Hence 

If all nodes are of equal degree, then 

d=2e/n, 

and the graph is called homogeneous or regular of degree 
d. 

Previous work on network vulnerability has concentrated 
on the difficulty of disconnecting a connected graph. * A set 
of edges whose removal disconnects a connected graph is 
called an edge disconnecting set. The size of the smallest 
edge disconnecting set is called the cohesion-A(G). A node 
disconnecting set is a set of nodes whose removal discon
nects a connected graph. The size of the smallest node dis
connecting set is called the connectivity-w(G). w(G) for a 
complete graph is defined to be n - 1. 

The basic result for the cohesion/connectivity property of 
graphs** is that the minimum number of nodes that can dis-

* A complete summary of results on vulnerability is given in a survey paper 
by Wilkor.' 
** A proof is given by Frank and Frisch.2 



158 National Computer Conference, 1980 

connect a graph is never larger than the number of edges to 
disconnect the graph: 

Also, since )...$.d min$.2e/n, a graph least vulnerable to dis
connection (for a given number of edges and nodes) which 
could exist would give 

w=)...=L 2e/n J, 

where L . J denotes truncation to integer part. Moreover, 
such graphs do always exist. 

Cohesion and connectivity are clearly of some value in 
comparing alternate distributed processing network topol
ogies for survivability under link and node failure or attack, 
respectively. However, we are interested in a more gener
alized measure which can accommodate any amount of loss 
and, more importantly, can usefully measure effectiveness 
beyond simple connectivity-disruption. 

AN AXIOMATIC SURVIVAL INDEX 

Definition 

The graph G = (N,£) of the distributed processing network 
before any element is removed (by attack or failure) is con
nected. Removal of some elements of G creates a reduced 
graph G'. The reduced graph contains e isolated subgraphs, 
where each subgraph is connected. (These subgraphs are 
also called the component subgraphs.) More precisely, if 
G' = (N' ,E') is a reduction of G, then 

e (e e) 
G'= UG/= U N/, U E/ , 

1 1 1 

where each component subgraph G I' is connected and no 
path exists between any nodes, in distinct sets N / and N/. 

We now define a connectivity state vector x on any re
duction G' of G as the n-vector with components equal to 
the size of respective component subgraphs: 

x/=IN;'I, ieln={1,2, ... ,n}. 

However, any re-indexing of the state space components 
does not reflect any change in connectivity or function-all 
such permutations being equivalent. As a convenience, this 
equivalence can be formalized by adopting the convention 
that the subgraphs are indexed such that IN1'1>INz'I, etc. 
Then 

Let the space of x thus defined be called 0 n. While the space 
Inn has nn points, On is smaller but still rapidly growing with 
n. This combinatorial reduction is illustrated in the partial 

table below: 

n nn IOnl 
1 1 1 
2 4 3 
3 27 6 
4 3.1E3 11 
5 8.2E5 18 

10 1.0EIO 142 

20 1.0E26 2.7E3 

Some special connectivity states will be useful to define: 

xc=(n,O, ... ,O) 

= xeO n for any connected G = (N,£) 

x,=(1, ... ,l) 

= XeO n for completely disconnected set of n nodes 
G'=(N,0) 

0=(0, ... ,0) 

=xeO n for empty graph G' = (O,O). 

We are now in a position to define a survival index as a 
function on 0 n onto the unit interval [0,1] satisfying the fol
lowing axioms: 

AO) a:On~[O,I] 
Al) a(O) = ° 
A2) a(xJ= 1 
A3) a(x) < I~A/a(x»O, iEl f+ 1 

A4) x{>xj~A/{J'(x»Ap(x), i,jEl f+ 1. 

The notation "Ap(x)" refers to a partial difference or in
crement: 

A la(x) = a(x + 8 I ) ~ a(x), for x ,x + 8 leO n 

where 8, is an n x 1 unit vector with 1 in the ith position. 
Axioms AO-A2 are conventions. Axioms A3 and A4 have 

the following interpretations/motivations. 
Axiom A3 means that adding a node to the graph always 

improves system performance. 
Axiom A4 further orders the connectivity state space by 

asserting that performance is improved more by adding a 
node to the larger of the different connected subgraphs. This 
also includes the empty subgraph (Xe+l =0); thus, in partic
ular, adding a node to an existing connected subgraph is 
better than adding it as an isolated note. Axiom A4 formal
izes the notion of a "team effect" or synergy effect. 

The defining of a( .) as a function on the space of the con
nectivity state is equivalent to the assumption that all team 
members are of equal importance. This homogeneity is the 
ideal in decentralized systems-no member is more vulner
able or important to the overall system than any other. 

Shaping 

If we have any function f(·) on the state space which is 
a survival index (i.e., satisfies AO-A4), we may wish to mod-



Measures for Distributed Processing Network Survivability 159 

ify or shape it to model the behavior of a class of proposed 
systems. The following theorem allows us to do this and still 
preserve the axiomatic properties of our function. 

Theorem If f(·) is a survival index function and g(.): 
[0, 1 ]~[O, 1] is monotone increasing with g(O) = 0 and g( 1) = 1, 
then the composite function gofis also a survival index. 

The inner functionf above will be called the core function, 
and the outer function g the shaping function. 

Ordering and bounds 

The axiomatic definition of the survival index has been 
constructed to produce a partial ordering of the state space 
On-without assigning values. To illustrate this ordering and 
judge its reasonableness let m = ~x;. All xeO n for each m 
are completely ordered. For example, if m =4 

0'(4»0'(3,1»0'(2,2»0'(2,1,1»0'(1,1,1,1). 

(For brevity, trailing zeros are dropped in the above nota~ 
tion.) 

The basis. for this ordering can be stated as follows: Let 
Om=Om-Om-I' That is, Om is the subset of Oin"2=m) for 
which x;= m. Let .f(X) denote the number of connected 
subgraphs of X. Thus, we have: 

Theorem Om is ordered as follows: For any distinct x, 
yeO m , with .f(x)!S.f(y), then 

(a) .f(x)<.f(y)~O'(x»O'(y) 
(b) .f(x)=.f(y)~for min i such that x;>y;, O'(x»O'(y). 

Since for every distinct x,yeO m either .f(y) = .f(x) or .f(x) =1= 

.f(y); thus the theorem completely orders Om. 
This ordering provides us with bounds on O'(x), for any 

graph G wit!). n nodes and its reduced graph G' with m nodes. 
Let x c(m) denote the connectivity state vector for a subgraph 
which is connected and of size m, and x Am) denote the con~ 
nectivity state for a subgraph consisting of m isolated nodes. 
That is, 

xc(m)=(m) and 

xlm)=(1,I, ... ,I). 

The bounding result is thus stated: 
Theorem For any connected graph G, and any reduced 

subgraph with connectivity state x with ~x;=m, 

O'(x lm»!SO'(x)!SO'(x c(m». 

These bounds follow directly from Theorem 3.3(a). Since 
.f(xAm»=m is maximal, O'(xAm» is minimal, and since 
.f(x)lm» = 1 is minimal, O'(xc(m» is maximal. 

Our choice of axioms also gives reasonable orderings be~ 
tween states of different m. For example, 

0'(5»0'(4),0'(4,1»0'(4),0'(3,2»0'(3,1). 

The spac;e is not completely ordered. For example, 0'(4) 
and 0'(3,2) are not ordered by the axioms. This ordering de~ 
pends quantitatively on the strength of the "team effect." 

For example, if we take 
e 

O'(x) = ~ X;"'/n"', q>1 

which satisfies the axioms, 

0'(4)~0'(3,2) according to a~1.5071. 

ATTACKS AND FAILURES 

If G = (N,£) is the original connected network graph, re~ 
duced graphs are generated in two ways or combinations: 

• Node removals 
• Edge removal~. 

These "removals" could be from successful attacks or 
from failures. 

Node attacks 

A node aHack of size k, denoted A k, removes k nodes 
from N (and the associated incident edges). Ak is the set of 
k nodes in N. For any node attack' A k , there is a corre~ 
sponding connectivity state vector x(A k ). Let f k denote the 
set of state vectors resulting from all possible node attack 
of size.k against G. Then an optimal node attack Ak * is de~ 
fined as any node attack of size k such that if x k * is the 
corresponding state in f k, we have 

O'(x k *)!SO'(x) for any xef k . 

A performance function under optimal node attack is 
called lthe node survival function, /J.k, 

IJ.k=O'(Xk*)= min O'(x). 

The question could be raised for whether x * is defined 
solely on the basis of the axioms for 0'. The answer is in the 
affirmative since for each xef k we have 

L x;=n-k. 

Hence, 

r kCOn-k 

which is uniquely ordered by the Ordering Theorem. More~ 
over, the BO,unding Theorem provides bounds on /J. k over 
all possible edge sets and node attacks of size k; 

o{xAn - k»!S/J.k!SO'(X c(n - k» . 

Figure 1 illustrates the general behavior of /J.k' /J.k follows 
along the upper bound (where all remaining nodes remain 
~onnected) until a value of k is reached where the remaining 
graph becomes disconnected. It then drops monotonically 
toward th~ lower bound, and reaches it when all remaining 
nodes are isolated. The value of k for which /J.k is first less 
than the upper bound is precisely the ~onnectivity w( G) or 



160 National Computer Conference, 1980 

Node Survival Function 

1 

o 
o w(G)-l n 

Nodes Removed k 

Figure I-General behavior of the node survival function. 

size of the smallest node disconnecting set which has pre
viously been used in investigations of network vulnerability. 

An alternative measure to the node survival function is 
to use random node attacks or failures of size k. By selecting 
at random any set of k nodes A, and the corresponding 
x(A k )Ef k' This may correspond more realistically to random 
attack leakage or natural failure. Thus, we define the mean 
node survival function as 

fl,k=E{cr(x)lxEfd 

= f cr(x(A k» dF(A k). 

Since f..L k is minimal over the same f k as ii k we have the 
bounds: 

Link attacks 

Analogous characterization can be made for attacks on 
communication links of the network (edges of the graph). 

A link attack of size k, denoted B k, removes k edges from 
E. For any link attack B k there is a corresponding connec
tivity state x(B k)' Let t1k denote the set of state vectors re
sulting from all possible link attacks of size k against G. An 

optimal link attack B k + of size k is defined or any link attack 
of size k such that if x k + is the corresponding state in t1 k we 
have 

cr(x k +)::;cr(x) for any XEt1 k' 

A survival function under optimal link attack is then de
fined as 

V~=cr(Xk +)= min cr(x). 

Since every link attack leaves n nodes, '2:.xi=n ort1 kCO n • 

Thus each t1k is uniquely ordered by the axioms and Xk + is 
well defined. Similarly, bounds over all possible edge sets 
and link attacks are: 

cr(x In))::;v k::;cr(X c(n» = 1. 

The upper bound can be made somewhat tighter. The num
ber of edges removed cannot exceed e, and e cannot exceed 
n(n -1)/2- where the graph is complete. For k::;(n - 2)(n -1)/ 
2 there could be enough links to make a complete graph. 
Thus, the upper bound = 1 for k::;(n - 2)(n -1)/2. Let k, de
note (n - 2)(n -1)/2 and k2 = n(n -1)/2. 

For k • <k::;k2 , we have 

cr(x)::;cr(n-k+k. ,1,1, ... ,1) 

'--y-l 
k-k, 

Note that at k= k 2 , the upper and lower bounds meet. Let 
u.b.(k) denote this tighter upper bound. Then 

cr(x /(n)::;v k::;u.b. (k). 

This general behavior of v k is illustrated in Figure 2. The 
smallest value of k for which v k is less than 1 is precisely 
the cohesion A( G) defined as the size of the smallest edge 
disconnecting set. 

A link attack performance measure under random link 
attack/failure can be defined by selecting at random any set 
of kedges B k with corresponding x(B k) in t1 k . The mean link 
survival function (under optimal link attack) is defined as 

vk=E{cr(x)lxEt1d 

= f cr(x(Bd)F(B k). 

Since v k is minimal over t1b we have 

v k::;V k::;u.b.(k). 

EXAMPLES 

A particular survival index 

To see how a survival index for a system could be derived 
independently of our axioms and then tested against the ax
ioms consider a system with distributed resources such that 
each node-i does work fraction Wi and the total work W is 

n 

w= ~Wi' , 



Measures for Distributed Processing Network Survivability 161 

1 

Link Survival Function 

v" 

A (G) -1 

Edges Removed k 

e 

Figure 2-General behavior of the link survival function. 

If resources are evenly distributed among nodes, each 
node could be modeled as able to do work 

1 mi 
w i =-;;.-;; 

where m i is the number of nodes whose resources are avail
able to node i (including its own resources). If node i is re
moved m i = 0; if it exists m i = 1 + number of other nodes con
nected to node i. Thus, if the graph G of all n nodes is 
connected, W = 1. 

Now consider any reduced graph G' with connectivity 
state x. Then 

mi=xl for i=I,2, ... ,xl 

£-1 £-1 £ 
x£ for i= ~ Xi' 1 + ~ Xi'"'' ~ xi=m 

I I 

o for i>f 

It follows that 
n 

W(X) = ~ x/ln2. 
I 

This function clearly satisfies axioms AO-A2. To test A3 
and A4, note that 

Aiw(x)=(2xi+ l)ln 2, Is;i:sf+ 1 

Thus, 

A iW(X) >0 (Axiom A3) 

and 

(Axiom A4). 

A generalization 

The preceding survival index can be generalized to the 
one-parameter class of functions 

n 

f(x) = ~ x;"ln<x 
I 

for any a> 1. Again the axioms can be shown to hold for this 
function. 

If the above function is used as a core function, a second 
generalization can be made by using the "natural" shaping 
function (.)II~ for any ~>O. Then we get a two parameter 
class of survival functions 

[ 

n ] I/~ 
<T(x)= ~x;"ln<x . 

Now consider the upper and lower bounds for this <T(') 
under node attacks: 

(
n-n k)<X/~ 

Upper: <T(x c(n - k» = 

Lower: rr(x,(n - k)) ~ (n n-.
k r' 

The behavior of the upper bound is illustrated in Figure 
3. The convex characteristic for ~>a models systems of 
"robust" performance degradation-with node loss. The 
concave characteristic for ~<a models systems displaying 
"tender" performance degradation with node loss (while 
connectivity is maintained). It is important to realize, how
ever, that the ranking of different topologies will be unaf
fected by ~. ~ only distorts the numerical scale. 

J6-node network example 

Consider the problem of comparing survivability and cost 
of alternative topologies for a 16-node network, where the 
nodes are arrayed in a regular 4 x 4 grid. We suppose that 
the cost per unit distance for edges (communication cable) 
is one unit between nodes which are vertical or horizontal 



Upper Bound 

1 
Star Tree 

String Tree 

Loop 

Grid 

X-Grid 

4-Grid 

\E 
LUJ 
C=D 

Em 
~ 

CONNECTIVITY (w) 

1 fraction of 

o nodes removed parameterexamplefunc-
. al index for the two 

Figure 3-Upper bound ort~~~v~:der node attack. 

~ 
15 

Complete Graph 16-node alternate to po 

NOde 

f) 

. 1 Function Surv~va 

1 2 3 4 

Figure 4-

5 6 7 8 9 

ck Size 
. 1 Node At ta de examples. Opt1ma . I functions for 16-no Node surVlva Figure 5-

162 

logy examples. 

11 12 13 14 

15 

15 

16 

24 

~ 33 

~40 

~ 270 

15 



Measures for Distributed Processing Network Survivability 163 

neighbors. We assume further that the basis of comparison 
is ability to function under optimal node attack. 

Figure 4 illustrates seven connection topologies in order 
of increasing cost. The connectivity parameter (w) is given 
for each topology. Figure 5 is a plot of the node survival 
function (I-Ld for these topologies using the underlying sur
vival index of 

(As previously noted, this particular choice of (J" creates a 
numerical scale, but any other choice of a survival index 
would not affect the vertical ranking of points on the graph.) 

We can make several useful qualitative observations from 
study of this example: 

a. Topologies of equal connectivity (or cost) are not oth
erwise of equal strength (string tree vs. star tree, and 
loop vs. grid). 

b. Performance is not uniformly ordered by connectivity 
or cost (X-grid \IS. 4-grid). 

c. Large cost increases may be required to get small im
provements in overall survivability performance. 

Figure 6-Degree-4 graph with single vulnerable node. 

A final example is illustrative of the relationship between 
node degree and survival performance, and shows that even 
the connectivity is not determined by the minimum degree 
of the nodes. We know 

and regular graphs can be constructed to make w = d min' But 
the inequality can exist. For example (see Figure 6), it is 
possible to make the 16-node graph regular (equal degree of 
all nodes) and of degree 4 but have w = 1 (a single vulnerable 
node). Cost for this poor design is about 52 units. 

CONCLUSIONS 

This paper has explored a new methodology for evaluating 
survival performance of distributed processing networks 
which are subject to losses of nodes and/or links due to fail
ure or attack. The axiomatic definition of "survival index" 
accommodates a wide class of actual system performance 
characteristics, yet preserves rank. The present work while 
providing a rigorous mathematical structure, is restricted to 
the homogeneous case, and ignores other realities of real 
networks such as limited link bandwidth effects and control 
problems. 

The basic advance over the prior notions of connectivity 
and cohesiveness are that performance degradation beyond 
the connected/disconnected point are measured. 

The ranking equivalence of all survival indices satisfying 
the axioms provides a convenience in computer searches for 
optimal attacks or design evaluations and allows a freedom 
from concern with the mean of exact quantitative values in 
the model. 

REFERENCES 

l. Wilkor, R. S., "Analysis and Design of Reliable Computer Networks," 
IEEE Transactions on Communications, June 1972. 

2. Frank, H. and Frisch, I. T., Communication, Transmission, and Trans
portation Networks, Reading, Maryland : Addison-Wesley, 1971. 





Architectures for supersystems of the '80s 

by SVETLANA P. KARTASHEV* 
University of Nebraska-Lincoln 

and 

STEVENI.KARTASHEV 
Dynamic Computer Architecture, Inc. 

1. INTRODUCTION 

Several areas of science and technology offer a number of 
problems which solutions require an enormous computa
tional power. For instance, partial differential equations in 
computational aerodynamics, real-time radar signal pro
cessing, control of fast and complex nuclear or chemical re
actions, accurate weather prediction, etc., necessitate 
throughputs which are several orders of magnitude higher 
than those of existing complex parallel systems. 

The systems which possess an extreme computational 
power and are capable of solving such problems will be 
called Supersystems. The problems for Supersystems may 
be non-real-time and real-time. 

A typical non-real-time problem is exemplified by com
puter simulation of fluid flow required in testing and vali
dation of aerodynamic design process. A realistic aerody
namic flow requires an extremely high resolution of grid 
points appropriately spaced throughout the flow field. Fur
ther, it is necessary to simulate not only a two but a three 
dimensional flow in order to have complete and accurate 
results of simulation. Although such a powerful system as 
Illiac-IV was proven to be effective in simulation of two 
dimensional flows, a complex three dimensional simulation 
requires a system with nearly a two order of magnitude in
crease in throughput as compared to that of Illiac-IV [1]. 

As for complex real-time problems, one can refer here to 
Ballistic Missile Defense Algorithms which are characterized 
by thousands of information streams that have to be pro
cessed in real-time during minimal time intervals [2-5]. This 
means that these algorithms require that the Supersystem 
compute its responses during limited time intervals. Namely, 
there exists a time restriction between the moment of time 
a particular set of data streams enters the Supersystem and 
the moment of time the Supersystem computes a response 
specified by this set. For instance, for a Ballistic Missile 
Defense Algorithm computing a response for a sensor (radar) 
there exists a time constraint associated with computation 
of a sequence of commands for sensor which allows an im-

* The research done by this author has been supported under Contract 
DAAG29-76-D-OlOO from Battelle Columbus Laboratories under Scientific 
Services Program. 

165 

provement in observation of an object entering the field of 
view of the radar [3]. 

Therefore, complex real-time problems impose more se
vere requirements to Supersystems. Indeed, in addition to 
the demand to handle an enormous amount of information, 
they require that this information be handled during specified 
and, as a rule, very small time intervals. Thus real-time prob
lems require Supersystems with the highest throughputs at
tainable by modern technological developments. 

However, obtaining maximal throughputs is not the only 
goal in designing such systems. Another objective of no less 
importance is to have highly reliable computations. This ac
quires special significance for many complex real-time prob
lems. Indeed, an error in computation of an algorithm which 
controls nuclear reactor may lead to catastrophic circum
stances. Likewise, Ballistic Missile Defense Algorithms also 
necessitate a very high degree of computational reliability 
due to the criticality of the mission. 

Therefore, designers of Supersystems are confronted with 
the following requirements: on one hand they are required 
to design systems of enormous complexity while, on the 
other, the systems designed must provide a specified level 
of reliability. These two requirements are contradictory be
cause the system's reliability has a tendency of going down 
as its complexity goes up [6]. 

2. TRADITIONAL SOURCES OF AUGMENTING THE 
SYSTEM THROUGHPUT 

One may increase throughput of a complex parallel system 
by drawing on the following traditional sources: 

I. faster hardware; 
II. modular expansion ofthe system with new equipment 

(adding of new computers, processors, 110 units, 
etc.); 

III. equipping the system with a dedicated architecture 
that is very effective for a given class of applications; 

IV. utilization of the maximal concurrency present in pro
grams; 

V. application of special computations: pipeline, array, 
associative; 



166 National Computer Conference, 1980 

VI. optimization in data exchanges between separate 
computers (processors). 

Consider now the effectiveness of these sources in in
creasing throughputs of Supersystems. 

I. Faster hardware means implementation of a Supersys
tem from the fastest components which are available at the 
moment the system construction begins. 

Application of this source of augmenting a system's 
throughput is delimited by the moment the system devel
opment is over. Surely certain system's units (for instance, 
I/O terminals) may be replaced with faster ones during sys
tems' exploitation. However, massive on-line replacement 
of all system units with newer and faster counterparts ap
pears to be highly unlikely. 

II. Modular expansion means integration of new resource 
units into an existing system. Presently, this source of 
throughput increase acquires a greater and greater impor
tance since the hardware resource has a tendency to become 
cheaper. 

However, since each attachment of additional hardware 
resource is accompanied by adding new interconnections, 
the modular expansion of any existing system is limited by 
one or a combination of the following factors: 

a. The significant initial complexity of the Supersystem 
coupled with the serious requirement for maintaining a given 
level of its reliability restricts the amount of new hqrdware 
which can safely be added to the system. In addition, any 
modular expansion must be accompanied by the ability of 
the system's diagnostical network to maintain the initial di
agnosability of the system. Otherwise, some faulty modules 
remain undetected and the system's reliability erodes. 
However, the initial diagnosability has a tendency to decline 
when a new equipment is added [7]. Thus preservation of 
initial reliability poses a limit on the number of hardware 
units which can be added to the system. 

b. Current technological constraints may limit the number 
of new hardware components which can be attached to an 
existing system. For instance, a modern restriction on pin 
count per LSI module may restrict the overall number of 
new modules which may be attached to a system already 
constructed. 

c. Expansion of the existing system with new resources 
may lead either to a significant increase in delays introduced 
by interconnection logic and/or to a partial or complete dis
ruption in flexibility of inter connections among system's 
modules. It then follows that for any architecture there exists 
such a limiting complexity of its hardware resource that all 
throughput increases due to integration of new equipment 
into a constructed system may be offset by the time losses 
such integration incurs. This means that the system which 
achieves this complexity no longer increases its throughput. 
Thus a system achieves a boundary on its throughput which 
cannot be exceeded by any modular expansion of the re
source. 

III. A dedicated architecture is the architecture which 
takes into account computational specificities of an algo
rithm. Such architecture is provided with special purpose 
executional and control hardware. A special purpose exe
cutional hardware is understood as a set of special purp~se 

micro-operations which facilitate execution of an algorithm~ 
A special purpose control hardware is understood as a set 
of dedicated instructions each of which implements complex 
sequences of operations encountered in an executing algo
rithm. 

The major drawback of the architectural dedication is that 
it lowers the system applicability. If a new complex problem 
appears or an old problem is modified, a Supersystem might 
be incapable of solving it during the necessary time interval. 

IV. Utilization of maximal concurrency present in pro
grams. This means finding the maximal number of instruc
tion and data streams present in the complex algorithm and 
assigning a separate computer (processor) to each such 
stream. 

The major drawback of this technique is that it may lead 
to an excessive complexity of a Supersystem and a low util
ization of the equipment it incorporates. Indeed, the number 
of independent computers in a system is specified by the 
algorithm having the maximal number of parallel information 
streams. On the other hand, the bit size of each computer 
is specified. by the maximal bit size of computed results 
which can be encountered in all algorithms computed by this 
computer. It then follows that in computation of other less 
complex algorithms requiring smaller number of instruction 
and data streams or smaller word sizes, a portion of the sys
tem resource becomes redundant. However, the amount of 
the free resource formed in the system may be insufficient 
to organize concurrent computation of other algorithms. 
Thus this resource becomes idle. 

V. Application of special computations: pipeline, array, 
associative. Complex algorithms may have portions (tasks) 
requiring different types of computations-multicomputer, 
array, pipeline. For instance, one task is characterized by 
a large number of parallel instruction streams with little in
teraction. Thus this task may be computed by a multicom
puter system having a number of computers that match 
the number of instruction streams. Suppose that the next 
task ofthe algorithm employs a great deal of data parallelism, 
i.e. each program instruction has to handle a data vector of 
large dimension. Thus this task requires an array system. 
The next task may require an increased speed in each in
struction stream, which can be accomplished through pipe
lining, etc. To compute this algorithm in minimal time, it 
must be computed by three separate subsystems employing 
different types of architecture: multicomputer, array, and 
pipeline. This leads to excessive complexity of the resource 
since each of the systems is engaged in computation of one 
task only; during execution of the remaining tasks it is idle. 

VI. Optimization in data exchanges between separate 
computers (processors). One of the ways of performance 
improvement is in reducing the time of external information 
exchanges between computers. This may be achieved if data 
transfers through I/O devices of two computers are replaced 
by direct access of one computer to the primary memory or 
the processor of another computer. Thus in order to mini
mize the number of I/O exchanges a system must be provided 
with a flexible processor-memory bus which maintains direct 
processor-memory, processor-processor, and memory
memory exchanges between different computers. 

In order to organize connections between all processors, 



all primary memories and I/O devices, one has to have a bus 
of enormous complexity. Thus it is hardly conceivable that 
all functional units of the Supersystem could be connected 
with such a bus. The c<\>mplexity of the bus can be reduced 
if the hierarchy of interconnections is introduced: namely, 
one-staged connectedness between all functional units of 
each subsystem; a one-staged connectedness between dif
ferent subsystems, etc. As a result, the time of communi
cations between a pair of functional units belonging to two 
subsystems will be significant, which will reduce throughput 
of the Supersystem. 

Most of the traditional sources of increasing a system 
throughput considered above have an essential drawback
their use leads either to excessive complexity of the hard
ware resources of the Supersystem or to a limit in its appli
cability. Therefore one must consider new sources of 
throughput increase that would be capable of augmenting a 
system throughput without a significant increase in its com
plexity or a restriction on its applicability. 

3. NEW SOURCES OF AUGMENTING THE SYSTEM 
THROUGHPUT 

Advances of LSI technology in the 70's made it possible 
to obtain LSI modules with high computational throughput. 
The use of such modules as the building blocks of a Super
system opens new options of increasing its power. Indeed, 
LSI technology has introduced modularity as basic in the 
organization of a computer's architecture. Each LSI module 
from which it is assembled may be equipped with simple 
circuits for the software-controlled activation and deacti
vation of interconnections with other modules. For instance, 
processor modules may be switched among several main 
memory modules, and this may reduce the time required for 
processor-memory communication. Or, one processor may 
reconfigure into several smaller-sized processors in an array 
parallel system, leading to an augmentation of the data vec
tor size processed by a single instruction. Finally, a modular 
architecture supports a complete dynamic redistribution of 
available hardware by reconfiguring hardware resources into 
different numbers of variably sized computers. This allows 
a computer architecture to adjust to the changeable number 
of information streams encountered in complex algorithms. 

It then follows that a computer architecture assembled 
from LSI modules may exhibit a much higher adaptation to 
executing algorithms than was ever achieved in traditional 
systems. Let us consider these new sources of adaptation 
and the way they are applicable to Supersystems. 

3.1. Adapataion of hardware resources on instruction and 
data parallelism 

During the past few years there appeared a number of 
publications [3,8-12] describing so called dynamic architec
tures of parallel computer systems. These architectures are 
capable of dynamically partitioning their hardware resources 
into a variable number of computers (processors). This al
lows a system accommodation to a current number of in-

Architectures for Supersystems of the 80's 167 

struction and data streams it needs to handle. Accordingly, 
if the system has to process an increased number of infor
mation streams, it may partition its resources into a larger 
number of computers with smaller word sizes. Conse
quently, for a complex real-time algorithm, a maximal num
ber of its information streams can be handled in real time, 
although precision of computations may reduce. In case a 
particular information stream requires a more precise com
putation, a larger size computer (processor) may be formed 
for its handling so the accuracy of computations will be en
hanced. 

Note: the capability of dynamic architectures to perform 
dynamic partitioning of the resource allows computation of 
each information stream in a computer with the minimal 
word size. This leads to maximization in the number of in
formation streams computed by the available resources. 
Therefore established is a new source of throughput increase 
through dynamic adaptation to the current instruction and 
data parallelism present in a complex algorithm. This source 
was absent in traditional systems. Its advantage is that it is 
not accompanied by significant increases in system com~ 
plexity, since it is accomplished through redistribution of the 
available resources. 

Example 1. Let a Supersystem include one hundred 64-bit 
computers, eighty 48-bit computers and fifty 32-bit com
puters, i.e., the system resource, SR= [toO x 64 bits, 80 x 48 
bits, 50 x 32 bits]. Suppose that this Supersystem has to com
pute three complex algorithms with the following resource 
requirements: The resource needs for Algorithm 
I,RAI = [150 x 48 bits, 25 x 32 bits], i.e., it needs one hundred 
fifty 48-bit computers and twenty-five 32-bit computers; the 
resource needs for Algorithm II, RAil = [200 x 32 bits], and 
for Algorithm III, RAm = [40 x 64 bits, 25 x 32 bits]. If the 
Supersystem is equipped with a conventional architecture, 
i.e., it is incapable of redistributing its resources, the re
dundant resources, RR, it has in execution of Algorithms I, 
II, III, respectively, are shown in Table I. 

The Supersystem may execute Algorithm I in 80 48-bit 
computers, 70 64-bit computers and 25 32-bit computers. Its 
redundant resources that can be used for other computations 
are 30 x 64 bits, 25 x 32 bits. In addition, in each 64-bit com
puter that computes Algorithm I its 16-bit portion is redun
dant. However, the resulting resource (70 x 16 bits) cannot 
be released for other computations. In computation of Al
gorithm II, the following system resource is engaged in com
putations: 50 x 32 bits, 80 x 48 bits, 70 x 64 bits. Thus, the 
system redundant resource that can be freed for other com-

, putations is 30 x 64 bits. The redundant resource that cannot 
be freed is 80 x 16 bits, 70 x 32 bits. Similarly, one can find 
that for Algorithm III, the system has free redundant re

, source 60 x 64 bits, 80 x 48 bits, 25 x 32 bits and no non-free 
redundant resource. 

It follows, that if the Supersystem employs a conventional 
architecture, it does not have enough resources to compute 
two algorithms concurrently. 

Let us show that if the same Supersystem is equipped with 
dynamic architecture then it has enough resources to com
pute concurrently two algorithms (Table II). Indeed, a dy
namic architecture may switch its resource into a set of ar
chitectural states distinguished from each other by the 



168 National Computer Conference, 1980 

TABLE I.-Supersystem with Conventional Architecture 

Computational Resource Requirements of Algorithms Redundant Resource (RR) 

Modes Algorithm· I Algorithm II 
(RAI) (RAil) 

Computation 150 x 48 bits ---
of Algorithm I 25 x 32 bits 

Computation --- 200 x 32 bits 
of Algorithm II 

Computation --- ---
of Algorithm III 

numbers and sizes of concurrently operating computers. Any 
computer is assembled from k computer elements, CE, hav
ing the same word size h. Thus it handles k·h-bit words where 
k= 1,2, ... , n.[IO] If one assumes that h= 16 bits, then 32-
bit computer is assembled from two CE, a 48-bit computer 
is assembled from three CE and a 64-bit computer is assem
bled from four CEo Then the entire Supersystem resource 
is equivalent to 740 CE, because 100 x 64 bits = 400 CE, 
80 x 48 bits = 240 CE, 50 x 32 bits = 100 CE and SR = 
400+240+ 100=740 CEo Find the number of CE's required 
for each algorithm. Algorithm I requires 500 CE (150 x 48 
bits = 450 CE, 25 x 32 bits = 50 CE). Algorithm II requires 
400 CE (200 x 32 bits = 400 CE). Algorithm III requires 210 
CE (40 x 64 bits = 160 CE, 25 x 32 bits = 50 CE). Therefore, 
the Supersystem has enough resources to compute con
currently Algorithms I and III (500 + 210 = 710<740) and 
Algorithms II and III (400 + 210 = 610<740). Concurrent ex
ecution of Algorithms I and II is impossible since their re-

Algorithm III Free Non-Free 
(RAIII ) Resource Resource 

--- 3D x 64 bits 70 x 16 bits 
25 x 32 bits 

--- 3D x 64 bits 70 x 32 bits 
80 x 16 bits 

40 x 64 bits 60 x 64 bits 
25 x 32 bits 80 x 48 bits 

25 x 32 bits 

source needs are 500 CE + 400 CE = 900 CE and Super
system has only 740 CEo 

In execution of Algorithms I, III, the Supersystem as
sumes the architectural state [150 x 48 bits, 50 x 32 bits, 
40 x 64 bits]. The redundant resource equivalent to- 30 x 16 
bits can be freed to other computations. In execution of 
Algorithms II and III, it assumes the architectural state 
[225 x 32 bits, 40 x 64 bits]. Its redundant resource equivalent 
to 130 x 16 bits can also be used for other computations. 
Therefore the Supersystem with dynamic architecture allows 
an additional throughput increase using the same complexity 
of the resources .• 

3.2. Reconfiguration of hardware resources into different 
types of architecture 

Let us consider one more source of increasing throughput 
in a Supersystem via reconfiguring available hardware re-

TABLE n.-Supersystem with Dynamic Architecture 

System Resource = [100 x 64 bits, 80 x 48 bits, 50 x 32 bits] 

Computational Resource Requirements of Algorithms Redundant 

Modes Algorithm I Algorithm II Algorithm III Resource (RR) 
(RAI) (RAil) (RAIII ) 

Concurrent 
Computation of 150 x 48 bits --- 40 x 64 bits 30 x 16 bits 
Algorithms I 25 x 32 bits 25 x 32 bits 
and III 

Concurrent 
Computation 200 x 32 bits 40 x 64 bits 130 x 16 bits 
of Algorithms 25 x 32 bits 
II and III 



sources into different types of architecture: multicomputer, 
multiprocessor, array, pipeline. 

Many complex real-time algorithms may be partitioned 
into portions (tasks) requiring different types of computa
tions. To speed up execution, they are now executed by 
dedicated subsystems: array, pipeline, etc. This adds ex
cessive complexity to the system and lowers its throughput 
since each of the dedicated subsystems is engaged in exe
cution of only one task with matching dedication. During 
execution of the remaining tasks, as a rule, it is idle. 

To increase throughput of the Supersystem, it is necessary 
that all its resources be continuously involved in computa
tions. This implies that the system must be capable of switch
ing its resources into different types of architecture: array, 
pipeline, multicomputer, mUltiprocessor. Or it must have co
residence of any combination of these architectures, namely, 
a portion of the resource functions as a multiprocessor. 
Another one behaves as an array and/or pipeline, etc. 

Let us consider how such reconfiguration of the architec
ture may speed up computations in Supersystem. 

Multicomputer computations 

A Supersystem should assume a multicomputer mode of 
operation in executing those complex real-time algorithms 
that are characterized by a large number of concurrent in-

PE2 

~~ 

" 
~~ ...... 

" ~ ~ 

ME2 

• A • 

Architectures for Supersystems of the 80's 169 

struction streams with little interaction. To perform this ad
aptation, the system should reconfigure into a state of the 
mUlticomputer architecture specified by a required number 
of concurrent computers. This will allow one to implement 
all instruction parallelism present in algorithms because the 
system will follow all changes in instruction streams by 
switching into states characterized by matching number of 
computers. 

As for precision of computations, this will depend on the 
priority of programs requesting a high precision computa
tion. If the priority of this program is high, then the Super
system should redistribute the resource assigned for other 
programs and form a computer size needed by a high priority 
program. 

Multiprocessor computations 

The Supersystem should assume a multiprocessor archi
tecture while executing complex algorithms with high inter
action among instruction streams, i.e., one program may 
require data words computed by any other program. 

Example 2. Let program P I computed in the A processor 
assembled from processor elements PEl and PE2 need a data 
array obtained by program Pz which was computed before 
by the B processor made of PE3 and PE4 and stored in its 
local memory B (Figure O. To perform this interaction the 

PE3 

~~ 
" ~ ~ 

~ 

~ ... 

ME3 

B .. 
Figure I-Multiprocessor exchange. 



170 National Computer Conference, 1980 

A processor should establish direct communication with the 
B memory. This will allow the A processor to compute in 
the mode when it fetches the first operand from its local A 
memory and the second operand from the B memory. Thus 
this mode will eliminate time overheads associated with 
transfers of blocks of data words from the memory of one 
processor to that of another, which is extremely important 
for complex real-time algorithms requiring very fast com
putations .• 

The same mode can be organized on the level of byte ex
changes, when one processor fetches a portion of the word 
from the memory of another processor. Indeed, since the 
system may compute several programs handling data with 
different word sizes, a program handling data with smaller 
word size may need an array of data which matches its size 
and which is stored in the memory of a larger size processor. 
To perform this interaction, the system assumes byte ex
change between the processor and the memory of two dif
ferent computers. 

Example 3. Let a 16-bit processor C assembled from PE4 

need 16-bit addresses computed before by 32-bit processor 
A assembled from PEl and PE2 and stored in its local mem
ory element ME2 of its primary memory assembled from MEl 
and ME2. For this case C processor establishes a direct com
munication with a 16-bit portion of the 32-bit primary mem
ory of A processor and performs a parallel byte exchange 
(Figure 2) .• 

PE2 

// 
V.L 

ME2 

.. A • 

Array computations 

In executing complex real-time algorithms requiring array 
computations, a portion or the totality of the Supersystem 
should assume array architecture. In this case it will be able 
to change the number of concurrent arrays, the dimension 
of a data vector computed in each array, and the word sizes 
of processors working in each array. For each array, its re
source should be redistributed among its processors, so that 
a data vector computed in each array may contain different 
size data items. Therefore, the architecture of the Super
system should be able to perform array computations with 
variable precision and variable dimension of data vectors. 

Pipeline computations 

Pipelining is an attractive choice for very fast computa
tions since it allows elimination of the time of memory ac
cesses from the time of program execution. The major prob
lem with modern pipelines is the time overheads introduced 
because of the disparity between the pipeline(s) and the al
gorithm being executed. As a result, pipeline systems tend 
to be dedicated to certain types of computations and usually 
have a limited applicability. 

To broaden the range of their cost-effective application, 

PE3 

// 
-"/ 

~ 
// 

ME3 

..... B ----
Figure 2-Multiprocessor byte exchange. 



pipelines offer various software controllable reconfigura
tions of the available hardware resource. The general idea 
is to reconfigure the resource via software to reduce the 
dissimilarity between an arithmetic pipeline and sequences 
of operations assigned to program instructions [13-15]. How
ever, since many complex algorithms may have different 
sequences of operations following each other, a pipeline that 
executes such an algorithm must reconfigure each time it 
switches from one sequence of operations to another. If At 
is the time required for each reconfiguration and N is the 
number of different operation sequences, then the pipeline 
loses time At'N reconfiguring its resource. If At or N is large, 
then the speed advantage of pipelined computation may be 
lost and there is no sense in computing this algorithm in a 
pipeline. To reduce N, algorithms are sometimes rearranged 
into tasks where each task may be computed by a single 
configuration of the pipeline. But this requires special pro
gramming which may again restrict the class of programs 
that can cost-effectively be pipelined. 

Therefore, a major thrust of an architectural research in 
pipelines has to be directed at broadening their applicability. 
Ideally, a pipeline system must be able to compute any pro
gram as cost-effectively as a general purpose computer. In 
[16,17] one pipeline system with dynamic architecture was 
described which performs a high degree of architectural ad
aptation toward executing algorithms. It eliminates the need 
for pipeline reconfiguration and its immediate consequences: 
time overheads and program restructuring. Programming for 
a dynamic pipeline is very simple, and practically it does not 
deviate from programming for conventional computers. This 
dynamic pipeline may be conceived as a new type of a gen
eral purpose computer that may perform pipelined compu
tations. It allows effective organization of computations 
bearing no penalty for dedication which is the price all ex
isting pipelined systems pay for the performance gains they 
achieve. 

Inasmuch as a dynamic pipeline is assembled from the 
same building blocks that are used for multicomputer, mul
tiprocessor and array systems with dynamic architecture 
[8,10,11], one may use these techniques in order to recon
figure a portion of the resources of Supersystem into one or 
several dynamic pipelines to be used for algorithms requiring 
pipeline computations. 

Mixed computations 

A Supersystem may need concurrent co-residence of sev
eral types of architecture while executing a set of complex 
real-time algorithms requiring different computations. Or 
concurrent tasks within the sarrfe algorithm may need dif
ferent architectures in order to be executed during minimal 
times. Thus the ,Supersystem should assume a mixed archi
tecture mode when portions of its resources reconfigure into 
different types of architectures. This feature will allow per
forming of concurrent multicomputer, multiprocessor, array 
and pipeline computations using the same hardware re
sources instead of implementation of separate dedicated sub
systems. 

Architectures for Supersystems of the 80's 171 

4. ARCHITECTURAL RECONFIGURATION IN 
SUPERSYSTEM 

As follows from the above, new sources of throughput 
increases in a Supersystem can be realized via reconfigur
ation of the available resources. This reconfiguration is re
quired in both cases: either to achieve necessary instruction 
or data parallelism or to adapt to a current type(s) of com
putations. Since during each reconfiguration the affected 
resources stop computation, reconfiguration introduces the 
time overheads into the time of computation. This implies 
that in order to make effective both sources of throughput 
increases the time of reconfiguration should be minimized. 
Then the Supersystem will be capable of performing very 
fast dynamic adaptations to complex algorithms it computes 
introducing minimal time losses in rearranging its resources 
into new architectures. 

Let us consider what factors affect architectural reconfi
guration in a system. As was shown in [11], to perform re
configuration the following actions have to be performed: 

First, new control codes have to be written to all modules 
of the resource requested for reconfiguration. 

Second, new transfer modes have to be established in con
necting elements of all reconfigurable buses destined to in
tegrate requested modules into new computers, arrays, pipe
lines or separate them from each other. 

4.1. Allocation of the array of control codes 

Being written to the resource modules, control codes af
fect activization of new pattern of interconnections for the 
processor signals (carry, overflows, equality), they allow 
generation of new time intervals by the control units of all 
newly formed computers, arrays and pipelines, they distin
guish different types of architecture to be assumed, etc. 

Each architecture is characterized by a set of control codes 
which must be written to the modules of requested resource. 
Since a Supersystem may assume N different architectures, 
it is specified by N different sets of control codes. Thus all 
control codes form an array which dimension depends on 
how many architectures may be assumed by the Supersys
tem. 

Example 4. Consider now how an array of control codes 
can be specified for a Supersystem with dynamic architec
ture assuming a multicomputer mode of operation, i.e., the 
entire resource may be redistributed among several pro
grams to satisfy a present instruction parallelism. As was 
shown in [11], to form a new I6·k-bit computer, one has to 
write four control codes to all its computer elements CE's: 
k (computer size code), p (processor code), b (significance 
code), and mE (data fetch code). Codes k and b participate 
in forming a new end-around carry path for a newly formed 
computer, whereas codes p and mE allow this computer to 
generate new time intervals for its processor dependent and 
memory access operations. 

Storage of all variable control codes for one CE takes one 
16-bit cell. Since a multicomputer dynamic architecture has 
n CE's, the control codes for an architectural state may be 
stored in a single 16n-bit cell composed of "n" 16-bit mem-



172 National Computer Conference, 1980 

ory bytes where each byte stores control codes for one CEo 
Because this multicomputer architecture may assume 2n 

- I 

states [10], to store the control codes for all architectural 
states requires an array of2n

-
1 16'n-bit cells. This array may 

be mapped either into 1/0 memory or primary memory. If 
it is stored in the initial cells of 1/0 memory, then the ef
fective address of one 16'n-bit cell may be made the code 
of the architectural state, Nf . Namely, Nf is the address of 
the 16'n-bit cell which stores all the necessary control codes 
which have to be written to requested CE when Nf state is 
established. This means that when Nf cell is accessed, only 
its memory bytes corresponding to requested CE's have to 
be accessed .• 

It follows from the above that, in order to minimize the 
time of reconfiguration, such storage of the array of control 
codes has to be organized, that minimizes the time of ac
cessing a set of control codes which distinguishes a given 
architectural state. In addition, being fetched, each set of 
control codes has to be written only to modules of requested 
resource. This means that if some modules are not requested 
for reconfiguration they have to receive no new control 
codes, because they are integrated into the same computer, 
array, pipeline which continues to function in both archi
tectural states. One of the techniques of storing an array of 
control codes was presented in [8]. The time to access any 
item in this array does not exceed the time of 64-bit addition. 

4.2. Switching reconfigurable buses 

Dynamic architecture may have two types of reconfigur
able buses: 

(1) Processor (110) Bus that interconnects processor mod
ules of the resource and allows formation of new paths 
for the following processor signals: carry, overflows, 
equality. The need for this bus is caused by variation 
in computer or processor sizes which is performed in 
dynamic architecture. 

(2) Memory Processor Bus that interconnects all proces
sor and memory resources and provides separation of 
instruction and data streams computed by concurrent 
computers, arrays and pipeiines. 

Appearance of the two dedicated buses is caused by the 
fact that a Processor Bus introduces a smaller reconfigura
tion delay than a Memory Processor Bus [17]. Thus it may 
be made much faster. Otherwise if both buses share inter
connections, then the time of clock period will depend on 
the time of signal propagation in the Memory Processor Bus. 
This will lead to a significant slowdown in the rate of in
formation processing. As was shown in [11] to form a new 
end-around carry path in the Processor Bus, it is sufficient 
to write only several control codes in the processor modules 
of requested resource. Thus a fast processor bus may be 
organized without connecting elements. The time of recon
figuration of such bus will be entirely dependent on the time 
of accessing new control codes. 

As for the Memory Processor Bus, this bus necessarily 
includes connecting elements which modes of transfer may 

be switched during reconfiguration. This implies that the 
time of reconfiguration for the Memory Processor Bus con
sists of the time of switching connecting elements into such 
transfer modes which are determined by a new architectural 
state. 

The Memory Processor Bus must possess several impor
tant attributes. If the resource is formed into several inde
pendent computers, pipelines or arrays, then the bus must 
separate their instruction and data streams. Within each 
computer, pipeline and array the bus must provide the in
struction fetch from the memory module which stores a cur
rently executed program segment to all other modules they 
integrate. Also it must maintain parallel information ex
change with variable size words between the primary mem
ory and the processor of each computer, pipeline and array. 

These are the two essential requirements toward Memory 
Processor Bus without which a dynamic architecture will not 
function at all. However, significant performance gains are 
achieved if the Memory Processor Bus satisfies an additional 
flexibility requirement, which provides that for any two pro
cessors in the resource the bus must implement a direct ac
cess of one processor to the entire primary memory or any 
combination of primary memory modules integrated I by an
other processor; parallel information exchanges between 
these processors or their separate modules; parallel infor
mation exchanges between primary memories or separate 
modules of these memories. In addition, the bus must allow 
the maximal number of communicating pairs (processor-pro
cessor, memory-memory, processor-memory) be involved 
in communications. 

It follows from the above that performance optimization 
for the Memory Processor Bus includes two factors: 

(1) minimizing the time of reconfiguring this bus into a 
new architectural state; and 

(2) for each architectural state, the bus has to minimize 
the time of information exchanges between any pair 
of resource modules involved in communication. 

5. UNIVERSAL DC GROUP AS A NEW BUILDING 
BLOCK OF SUPERSYSTEM 

Above it was shown that an adaptation of hardware re
sources on instruction and data parallelism and their recon
figuration into different types of architecture are new im
portant sources which may lead to a significant increase in 
a throughput of the Supersystem. Let us introduce one build-

. ing block called a Universal Dynamic Computer Group 
(UDC group) that may realize these sources of throughput 
increases. 

5.1. General description of the hardware resources 

The UDC group is assembled from n computer elements 
CE, reconfigurable .. Memory Processor Bus, and V -monitor 
equipped with the memory M(V) [18]. Each CEprocesses 
16-bit words in parallel and includes one processor element, 
PE, one memory element, ME, and one 110 element, GE, 



having the same word size (16 bits). Each GE has small 
memory M(GE) with the same word width. In Figure 3, the 
UDC group assembled from four CE is shown. The system 
will form variable size computers (processors) Cj(k) con
taining k CE where i is the position of the most significant 
CEo In Ci(k), the integer k may range from 1 to n; accord
ingly, each Ci(k) may have a word size changing from 16 to 
16n-bits in 16 bit increments. Thus a dynamic architecture 
may partition the hardware resource into the following word 
sizes (in bits) of concurrent computers: 16,32,48, ... , 16 n
bits. 

The reconfigurable Memory Processor Bus contains two 
types of connecting modules: address connecting element 
(ASE) and memory connecting element (MSE). The ASE 
elements connect each processor element (PE) with the 
memory elements (ME) and broadcast memory address and 
read and write signals from this PE to ME. The number of 
ASE elements assigned to each PE is n where n is the number 
of ME's in the resource, so that ASE i transfers address and 
two signals from PE to MEi (i = 1, ... , n). The MSE elements 
are connected to each ME and exchange h-bit bytes between 
this ME and PE's. Each ME is assigned with n MSE, where 

I EXTERNAL 

Architectures for Supersystems of the 80's 173 

n is the number of PE's in the resource so that MSE i ex
changes h-bit bytes between this ME and PEi • 

Consider how one may establish a communication path 
between a pair of PE and ME elements. To activate infor
mation broadcast between a pair of PE and ME, one has to 
establish two separate paths: an address path whereby PE 
broadcasts an address to ME, and data path whereby one 
element PE or ME sends a data byte to another element of 
the pair. 

Any processor element PE may generate address and read 
and write signals for any memory element ME in the re
source. PE outputs this address through the Address channel 
(A-channel) connected with all ASE (Figure 4). Selection 
of the ASE that broadcasts this address and read or write 
signals is specified with the Selective Activation code (SEL) 
sent through channel B. SEL is log2n bit code where n is the 
number of ASE connecting elements assigned to each PE. 
lts meaning equals binary meaning of position i of ASEi 

which has to broadcast the address (SEL = n. Each ASE 
stores its own position code i, so that ASE, stores i = 1, ASE2 
stores i = 2, etc. 

Upon receiving code SEL, each ASE compares it with its 

I I l I v M(V) I 

U U I U U - I-- - ~ 
Ml(GE) GEl M2(GE) GE2 

M3(GE) GE3 M4(GE) GE4 - I-- -- ~ 

T 

PE~ PE,ll 
I 

p~3ll 
I 

PE4~ 
i=l i=2 i=3 i=4 

''', ~ ~ ~, ASE2 ~~ 9-, ASE ,~~ 9, ASE , ~~ ~. (1,11 (1,21 (1,31 (1,41 (2,11 (2,21 (2,31 (2,41 (3,11 (3,21 (3,31 (3,41 (4,11 (4,21 (4,31 (4,41 

I I I 

T 

".11 ".~"." 
(4,11 (1,21 (2,21 (3,21 (4,21 (1,31 (2,31 (3,31 (4,31 (1,41 (2,41 (3,41 (4,41 

MSE MSE MSE
3 

MSE4 "", ? SE3 
MSE4 "", ? "", MSE4 ", '? "" . MSE 

L-- MEl "'- ME2 "'- ME3 L- ME4 

Figure 3-Hardware diagram for the ODe group. 



174 National Computer Conference, 1980 

SEL 
PE I--

B 
A 'III 'III 

'l1li 'III 

ASE, - ASE2 I-- ASEn 

+ t 
Figure 4-0rganization of the address broadcasts for the ODe group. 

own position code i. The ASE in which SEL = i is opened 
for broadcasting address to ME;. For example, let PE::! must 
send address to MEl. It sends SEL = 1 through the B channel 
which activates ASE I • Thus ASE I receives address through 
the A channel and broadcasts it to ME I. 

The 16-bit byte exchange between a pair of PE and ME 
is accomplished through the connecting element MSE. Con
sider how this MSE is selected. For each ME assigned with 
n MSE, selective activation of MS~; leads to establishing 
h-bit data path between this ME and PE; (Figure 3). Selective 
activation of MSEj is performed with the read signal (WI) if 
16-bit byte has to be read from ME or the write signal (W2) 

if 16-bit byte has to be written to ME. These two signals are 
obtained from the connecting element ASE which broad
casts address and w's to this ME. It then follows that to 
implement such selective activation one has to connect each 
connecting element ASEj (which broadcasts address for' 
ME) and each connecting element MSE; (which broadcasts 
h-bit byte between PE i and ME) with a 2-line connection 
(ij), where one line is used for WI signal and another one is 
used for W 2 signal. 

Therefore, to organize 16-bit data path between PEi and 
MEj one has to construct the (ij) connection using the fol
lowing rule: PE i broadcasts address through its ASE; (i~j), 

likewise MSE i assigned to ME; broadcasts the respective h
bit byte to or from ME; (i~j). It then follows that the (ij) 
connection is the connection for w I and W2 signals between 
ASEj (assigned to PE;) and MSE i (assigned to M~;). In each 
ASE and MSE the (ij) connection takes only 2 pins. There
fore, in order to implement the address and h-bit data paths 
described above the reconfigurable Memory Processor Bus 
has to have all (ij) connections, where i,j= I, ... , n. 

Example 5. Let processor element PE2 write 16-bit byte 
into a cell of memory element ME4 (Figure 3). This processor 
element sends the address of this cell and W2 signal through 
its A-channel (Figure 4) and code SEL = 4 through its B
channel, thus selecting ASE4. The ASE4 broadcasts address 
and W2 to ME4. Since the (2,4) connection connects ASE4 
assigned to PE2 with MSE2 assigned to ME4, ASE4 also sends 
W2 signal to MSE2 activating it into a mode of h-bit byte 
transfer to ME4. Therefore PE2 broadcasts h-bit byte to ME4 
through the MSE2 assigned to ME4 .• 

5.2. Multicomputer and multiprocessor architectures 

In the UDC group mUlticomputer and multiprocessor ar
chitectures merge. Indeed, since any functional module of 



UDC group (PE, GE and ME) may be directly connected 
with any other functional module without the use of 110 de
vices, the UDC group may use the flexibility of intercon
nections provided by reconfigurable multiprocessor archi
tecture. On the other hand, the UDC group may form 
variable size computers from the available resources, thus 
taking advantage of the multicomputer architecture. Namely, 
for a 16·k-bit computer assembled from k computer ele
ments, CE, it is shown in [17] how the reconfigurable bus 
may establish (a) the instruction path, whereby an instruc
tion stored in one CE may be transferred to all other CE' s 
of the computer, and (b) parallel data path whereby the pro
cessor and memory of 16'k-bit computer may have parallel 
exchanges with 16·k-bit words. Therefore, the UDC group 
is capable of taking advantage of both mUlticomputer and 
multiprocessor architectures. 

Let us show how the multiprocessor architecture of the 
UDC group allows a direct communication between different 
functional units of two computers which can be formed in 
a single architectural state. 

For any pair of concurrent computers, A, B, the recon
figurable Memory Processor Bus allows a parallel commu
nication between their processors, primary memories, and 
the processor of one computer and the primary memory of 
another. Consider first the communication between two pro
cessors of A and B computers. 

5.2.1. Parallel exchange between the processors of two 
computers 

To perform such an exchange each processor element, PE, 
of the A computer has to be connected in parallel with a 
matching PE of the B computer. The Memory Processor Bus 
may establish each such connection between two PE's in 
parallel through the path made of a pair of two connecting 
elements MSE (assigned to one memory element ME) which 
may pass a 16-bit byte in opposite directions (Figure 3). 

Indeed, for each memory element ME, its n connecting 
elements, MSE, connect this ME with n processor elements, 
PE. Therefore to establish the 16-bit path between PEa and 
PEd one may use two MSE connecting elements MSEa and 
MSEd assigned to one ME, that connect this ME with PEa 
and PEd respectively. In addition, it is necessary that MSEa 

be activated by the write signal W2; then it will pass the 16-
bit byte from PEa to the memory input, whereas MSEd has 
to be activated by the read signal, WI; then it will pass the 
16-bit byte from the memory input to PEd • 

Example 6. Let the resource form two computers A and 
B, which processors have to be engaged in direct commu
nications. Namely, the A processor (PE I, PE2) has to receive 
32-bit words from the B processor (PE3, PE4), since it com
putes second operands needed by the A computer. In order 
to establish a parallel connection between t4e two proces
sors, the A computer executes a special instruction [17] that 
establishes a 32-bit data path between two pairs of com
municating PE: PE), PE3 and PE2 , PE4 • PEl communicates 
with PE3 through the path made of MSE I and MSE3 be
longing to ME3 (Figure 5). MSE I is activated by the write 

Architectures for Supersystems of the 80's 175 

signal W2 and passes a 16~bit byte to the memory input; MSE3 

is activated by the read signal, w), and passes this byte from 
the memory input to PE3. A second communicating pair, 
PE2 , PE4 , establishes direct 16-bit data path through the pair 
of MSE2 and MSE4 belonging to ME4 • Therefore a direct 
path between A and B processors is established. 

The bus considered may organize parallel byte exchanges 
between computers, when A processor sends to B processor 
not the eniflre word but any portion of this word, which is 
a multiple of 16. This permits communications between dif
ferent size processors when a smaller size processor B re
ceives a byte from larger size processor A which matches 
its size .• 

5.2.2. Organization of shifts in one computer 

Within one computer of the UDC group, one can use the 
path established above between a pair of processor elements 
for organizing 16j-bit shifts, Le., those which are multiple 
of 16. Indeed, existing limitations on the number of pins in 
LSI modules make it far more difficult to organize various 
types of parallel shifts of 16·k-bit words, because any m-bit 
shift takes m pins in each PE. Therefore for 16-J-bit shifts, 
Le., those mUltiple of 16, it is expedient to use the Memory 
Processor Bus, since these shifts take no additional inter
connections between PE elements. The 16-j:bit shift of a 
word is reduced to parallel transfer of each 16-bit byte of 
this word from PE; to P~;, where j = i + f and f shows how 
many 16-bit shifts must be performed. Direction of the shift 
depends on the sign off, Le., for left shift j = i - f, for right 
shift j = i + f. 

To organize a 16-bit path from PE; to PE; one may use the 
same serial connection of two connecting elements MSE; 
and MSEj assigned to the memory element ME; which was 
used for conventional communication between different PE 
considered earlier. For shifts however, PE's have to perform 
two actions: send its own byte to a destination PE, and re
ceive a shifted byte from another PE. Since each PE is con
nected via 16-bit bus with MSE elements, it may perform 
these two actions only in two clock periods. During the first 
clock period, PE; issues 16 bits to a register of MSE; assigned 
to MEj • Activation of this MSE; is performed through ASE; 

, assigned to PE;, when PE; sends SEL = i + f = j, where i is 
its position code, f is the shifting constant stored in the shift 
instruction. At the second clock period, each PE sends SEL 
equal to its own position code. Therefore for each PE;(which 
has to receive a shifted byte from PE;) SEL = j selects local 
ASEj and then MSEj assigned to ME; for broadcasting 16-
bit word from MSE; to the PEl' 

In organization of a 16·f-bit shift, one has to consider that 
the meaning of SEL = i + f has to identify positions of those 
PE's which belong to a computer performing this shift. This 
means that for a left shift,fmost significant PE's should not 
form SEL = i - f, otherwise each of them will transfer a 16-
bit byte to a PE contained in the left neighboring computer. 
Likewise for right shift, f least significant PE's should not 
form SEL=i+f. Otherwise, each of them will transfer a \6-
bit byte to a PE contained in the right computer. For each 



176 National Computer Conference, 1980 

Figure 5-Exchanges between two processors. 

computer blocking of unwanted lefthand and righthand PE' s 
from forming SEL = i ±j is performed with special constants 
g and d. For 16f-bit shifts the test i>g shows positions i of 
PE's which may participate in the left shift, likewise the test 
i<d specifies positions of PE's which may participate in the 
right shift. U sing both constants g and d, the shift instruction 
may perform a 116'j~bit shift of a portion of word restricted 
by PEg from the left and PEd from the right. 

Example 7. Let the resource be formed into C,(6) com
puter and a 48-bit word stored in PE2 , PE3 , PE4 have to be 
shifted by 32 bits to the right. Thus j = 2, g = 1, d = 5, since 
left PEl and right PE5 , and PE6 should be blocked from shift
ing. When the shift instruction is fetched, all PE's of C I (6) 
computer perform two sequential tests: i>g= 1 and i<d=5 
where i is position code of each PE. These two tests identify 
that PE2 , PE3 , PE4 store a word to be shifted. During the 
first clock period of shifting, PE2 forms SEL = 2 + 2 = 4. This 
selects ASE4 and 16-bits from PE2 are written to MSE2 as
signed to ME4 • For PE3 , SEL = 3 + 2 = 5 sends 16-bits from 
PE3 to MSE3 assigned to ME5 • For PE4 , SEL = 4 + 2 = 6 sends 
16-bits from PE4 to MSE4 assigned to ME6 • During the sec
ond clock period of shifting each PE of the computer gen
erates SEL equal to its own position code. For PE4 , SEL = 4 
activates ASE4 and MSE4 assigned to ME4 • Therefore 16-bit 
byte stored in MSE2 of ME4 is now broadcasted through 
MSE4 to PE4 • Similar actions are performed by PE5 and PE6 • 

Since for PEl through PE3 no shifted byte was received by 
MSE's assigned to their ME's, generation of each SEL=i 
in these PE's does not lead to fetching a shifted byte .• 

5.2.3. Parallel exchange between the processor and the 
memory of two computers 

For two computers A and B, if A computer needs an array 
of data words stored in the memory of B computer, the A 
computer establishes a direct communication path between 
the A processor and B memory whereby the A processor 
fetches a second operand from the B memory. 

Two types of such exchange are possible. 

(1) Whole 16·k-bit word exchanges, when sizes of A and 
B computers match and the A processor fetches a word 
from the B memory which matches its size. For in
stance, in Figure 1, there are two 32-bit computers A 
and B involved in the processor-memory exchanges. 
Accordingly the A processor (PE" PE2) accesses first 
operands from its own primary memory (ME" ME2) 

and second operands from the memory (ME3 , ME4 ) 

of the B computer. 
(2) Byte exchanges, when the A computer may fetch from 

the primary memory of the B computer not the entire 
16·k-bit word(s) but any portion of this word which is 
a multiple of 16. Namely, the A computer may access 
16,32, ... , (k-l)'16-bit bytes of a 16'k-bit word. 

Since whole word exchanges were considered in [17], this 
paper will focus on byte exchanges. 

There exist two types of byte exchanges, processor mem-



ory, caused by specificities of parallel data broadcasts of 
variable size words: 

First, an A computer size may be smaller than that of B 
computer, and A computer fetches a byte from B computer 
which matches the size of A. Such an exchange allows a 
smaller in size computer to perform a fast access to the words 
which match its size from the primary memory of larger in 
size computer. 

Second, not all, but several processor elements, PE, of 
the A computer may access a matching number of memory 
elements of B computer. This byte exchange allows a larger 
size processor A to fetch a smaller size word from the B 
memory. Or the A computer may perform an associative 
scanning of data arrays with smaller word sizes which are 
stored in separate memory modules of B computer, etc. 

Example 8. Let the resource form 48-bit computer, C,(3), 
and 64-bit computer, C4(4) (Figure 6). Suppose that Ci4) 
computer needs that its PE5 and PE6 fetch data words from 
ME2 and ME3 contained in C,(3); Ci4) computer uses a spe
cial byte exchange instruction which stores the following 
values: displacement code z = 2 - 5 = - 3 since ME2 stores 
the word, and PE5 accesses it. Similarly, z = 3 - 6 = - 3 al
lows ME3 to send a byte to PE6 • Also stored are position 
codes, g and d, of PE's which should receive, respectively, 
most and least significant bytes of the word. (For our case 
g = 5 and d = 6, since PE5 and PE6 receive respectively most 
and least significant portions of a 32-bit word). 

When this instruction is fetched to all PE' s of the C4( 4) 
computer, each PE compares the g value received through 
the instruction with its own position code i. If i<g, this PE 
is blocked from the word fetch. If i"2g, the next test is per
formed. All processor elements which satisfied the first test 
i"2g, are then tested for i5:.d. If i5:.d, the respective PEfetche~ 
word. If i>d, this PE does not fetch the word. Thus two 
sequential tests i"2g and i5:.d allow one to identify a portion 
of consecutive PE's of the Ci4) computer which should 
fetch the word from the C,(3) computer. According to this 
rule, in the Ci4) computer, PE4 is blocked from fetch, since 
PE4 does not pass through the first test t2:g(i = 4<g = 5). The 
remaining PE5 , PE6 , PE7 continue the next test: iSod, where 
d = 6. This test is satisfied only in PE5 and PE6 , because 
i = 55:.6 and i = 65:.6. For PE7 , since i = 7>6, it is blocked from 
data fetch. Thus fetch is performed only by PE5 and PE6 • 

Each of these PE's finds code SEL=i+z, where i is the 
position code, z is displacement value. For PE5 , SEL = 5 - 3 = 2 

_____ C
4

14) ____ _ 

Figure 6-Parallel byte exchanges. 

Architectures for Supersystems of the 80's 177 

activates ASE2. For PE6 , SEL = 6 - 3 = 3 activates ASE3 • 

This establishes the data path between PE5 and ME2 and PE6 

and ME3 resulting in data fetch from ME2 and ME~h respec
tively, to PE5 and PE6 •• 

Note: the instruction of byte exchange considered above 
may perform concurrent fetch-shift-operation, i.e., a word 
fetched from primary memory of one computer may be 
shifted before being written to the processor of another com
puter. To do this one has to change the meaning of g and 
d values. Therefore, a merger of mUlticomputer and multi
processor architectures accomplished in the UDC group al
lows both formation of variable size computers and orga
nization of direct and flexible information exchanges between 
various functional units of these computers. 

5.3. Array architecture 

In the UDC group a portion or the totality of the resource 
may form one or several concurrent arrays. In each array, 
one 16·k-bit processor P* assumes the function of processor
supervisor and broadcasts instructions fetched from local 
memory to all other processors working in array. Since p* 
contains k processor elements, PE, its primary memory con
tains k ME's. For dynamic architectures to maintain the 
universality of programs, a 16-bit instruction format is ac
cepted [to, 11]. Accordingly, one instruction may be stored 
in one ME. Thus p* may store instructions in any of its k 
memory elements and broadcast them to all PE's of the array 
using the same techniques of instruction broadcast which 
were discussed in [17] for multicomputer architecture, i.e., 
all PE's of the array store the same program selection code, 
PSE = j, which shows positionj of the MEj where a currently 
executed program segment is stored. This insures that an 
instruction fetched from ME j is broadcast t~ all PE' s of the 
array and prevented from going to other neighboring arrays 
or computers. A change in PSC leads to a change in memory 
element from which a new program segment is fetched. This 
is accomplished by a special Jump ME,~MEj instruction 
which organizes fetches of a next program segment from a 
new memory element. Execution of a similar instruction for 
mUlticomputer architecture was considered in [11]. 

Example 9. The array architecture for the UDC group con
taining n = 4 computer elements, CE, is shown in Table III. 
This architecture may assume array states distinguished by 
the number of concurrent arrays, and the number and sizes 
of processors working in each array. For every array. a pro
cessor-supervisor function may be assumed by any of its 
16'k-bit processors which then begins instruction fetches 
from one of memory elements, ME, contained in its local 
primary memory. In Table III, current positions of computer 
supervisors are marked with (*). For state No, one array is 
formed. If contains four 16-bit processors, P" P2, P3 , P4 • This 
means that each instruction handles a 4-dimensional data 
vector (ai' a2, a3, a4) made of 16-bit words. If PI is a pro
cessor-supervisor then it broadcasts instructions to P2• P3 , 

P4 , i.e., PI~P2' P3 , P4 • 

For state N6 , one array is formed. It handles a two di
mensional data vector (a" a2), where al is a 48-bit word 



178 National Computer Conference, 1980 

TABLE III. 

Code of 
State 

Arch itectural 
Configuration 

I i 

gO 
I *1 .... _* _I ____ ' _____ 1 I 

(*) means instruction generator. 

Q 
Q 

processed by 48-bit processor (P., P2 , P3); a2 is a 16 bit word 
handled by 16-bit processor (P4). Current position of pro
cessor-supervisor is 48-bit processor (P., P2 , P3)*' It may 
fetch instructions either from MEl, or ME2 , or ME3 • For the 
N7 state two concurrent arrays are formed. Each of them 
handles a 2-dimensional vector (a., a2) made of two 16-bit 
operands. Current positions of processor-supervisors are P I * 
for the first array and P3 * for the second .• 

5.4. Pipeline architecture 

The UDC group resources may assume a pipeline archi
tecture called a dynamic pipeline [16,17]. Such pipeline may 
perform the following adaptations to executing algorithms: 
(a) adaptation to a sequence of operations, whereby the same 
pipeline may execute· any sequence of operations incurring 
no time losses for reconfiguring or bypassing some resources 
as it is done in existing pipelines; (b) dynamic variation of 
a pipeline's length which means that a pipeline may change 

Symbolic Notation 
of the Architecture 

dynamically the number of activated stages so that they 
match a current number of operations realized in a given 
program instruction; (c) variable time interval where each 
pipeline stage may generate minimal time intervals for all 
operations it executes; (d) on-line feeding of pipeline stages 
with temporary results they may need for future computa
tions, etc. 

Presently the authors are involved in finding techniques 
for architectural transitions from pipeline architecture to any 
other architecture(s) (array, multicomputer, multiprocessor) 
to be assumed by UDC groups. Thus this paper will not 
consider various pipeline states in which the available re
sources may be reconfigured. 

5.5. Mixed architectures 

The UDC group resources may switch into several co-res
ident architectures. Presently, array, multicomputer/multi
processor may co-exist concurrently in the same system. In 



the future, the available resources may reconfigure into co
resident pipelines, arrays, multicomputer/multiprocessors. 
This allows the same resource to be continuously involved 
into different types of computations which are presently 
performed by separate dedicated subsystems. Accordingly, 
a Supersystem may realize an additional throughput increase 
using the same complexity of the available resources. 

Example 10. Table IV shows some of the architectural 

Architectures for Supersystems of the 80's 179 

states that may be assumed by the mixed architecture for 
the UDC group containing four CE' s. Since multicomputer 
and multiprocessor architectures merge, e;(k) means one 
16'k-bit computer, A means one array. For instance, state 
N4 forms one array A and one 16-bit computer Cil). The 
A-array includes 32-bit processor, (p), P2), and 16-bit pro
cessor, P3 , i.e., A: [(Ph P2),P3]. This array handles a 2-di
mensional data vector (aha2) where a) and a2, respectively, 

TABLE IV. 

Code of Arch itectural Symbolic Notation 
State Configuration of the Architecture 

NO QJ cp gJ m A: P l' P2, P3; C4(1) 

Nl cp cp m gJ A: Pl , P2, P4;C3(1) 

N2 ~ m ~ gJ A: Pl , P3, P 4; C2(1) 

N3' m ~ cp gJ A: P2,P3,P4;Cl (1) 

N4 I A 
I I gJ m A: (P l , P2), P3; C4(1) 

NS ~ I A I m A: Pl , (P2, P3); C4(1) 
I 

N6 
, 

A I m gJ A: (P l , P2), P4;C3(1) 
I 

N7 ~ m I A I A: Pl , (P3' P 4); C2(1) 
I 

NS IT] I A I gJ A: (P2, P3), P4 ;Cl (1) 
I 

N9 IT] ~ I A I A: P2, (P3, P 4); Cl (1) 
I 

N10 cp gJ I C I A: Pl , P2; C3(2) 

Nl1 ~ I C I gJ A: Pl , P 4; C2(2) 

N12 
, 

C I ~ gJ A: P3, P 4; Cl (2) 



180 National Computer Conference, 1980 

are 32-bit and 16-bit data words. State NIO forms a one A
array, A:[P),Pz] and one 32-bit computer C3(2). The A-array 
contains two 16-bit processors, PI and Pz •• 

In a mixed architecture each array may include processors 
which are not necessarily adjacent ones. However each 16·k
bit processor which contains k PE' s and handles 16· k-bit 
words is assembled only from adjacent PE's. The reason for 
this is that in order to perform fast computations a recon
figurable processor bus must be dedicated. However, if it 
interconnects not only adjacent PE's into a 16·k-bit proces
sor, the number of possible combinations of PE which may 
be included into one 16·k-bit processor grow exponentially. 
This leads to an exponential increase in the complexity of 
the bus. On the other hand, should each 16'k-bit processor 
be assembled from adjacent PE's, one may construct very 
simple and fast processor buses which perform fast recon
figurations and take minimal complexity of the hardware 
[11,17]. 

6. CONCLUSIONS 

The appearance of LSI modules with high throughput 
makes it feasible to organize cost-effective reconfiguration 
of module interconnections. This allows obtaining of new 
types of architectures, otherwise called dynamic architec
tures. A Supersystem with dynamic architecture may realize 
additional performance gains on the same resource by taking 
advantage of the following factors: (a) by reconfiguring re
source into minimal size computers, it may maximize the 
number of programs computed by the same resource; (b) by 
switching the resources into different types of architecture
array, pipeline, mUlticomputer/multiprocessor-it may speed 
up respective computations. This allows the available re
sources to be permanently involved in even those compu
tations that require dedicated subsystems: array and pipe
lines. 

Therefore, the use of dynamic architectures in Supersys
tems leads to the realization of new sources of throughput 
increases heretofore unused in traditional parallel systems. 

REFERENCES 

1. Bailey, F. R., "Computational Aerodynamics-Illiac IV and Beyond," 
Digest of Papers, Spring CompCon '77, pp. 8-11. 

2. Vick, C. R., "Research and Development in Computer Technology, How 
Do We Follow the Last Act," Keynote Speech, Proceedin[?s Qf the In
ternational Conference on Parallel Processin[? 1978, pp.I-5. 

3. Vick, C. R., "A Dynamically Reconfigurable Distributed Computing Sys
tern," Doctoral Dissertation, The Graduate Faculty of Auburn U niver
sity, Alabama, 1979. 

4. Vick, C. R., Scalf, J. E., and McDonald, W. C., "Distributed Data Pro
cessing for Real-Time Applications," Proceedin[?s (~f the Sixth Texas 
Conference on Computing Systems, 1977. 

5. Fitzgibbon, H., Buckles, B., and Scalf, J., "Distributed Data Processing 
Design Evaluation Through Emulation," Proceedin[?s Computer SQft
ware and Applications Conference (CompSac). 1978, pp. 364-369. 

6. von Neumann, J.', "Probabilistic Logic and the Synthesis of Reliable 
Organism from Unreliable Components," Automata Studies, Eds: C. E. 
Shannon and J. McCarthy, Princeton University Press, 1956, pp. 48-98. 

7. Friedman, A. D. and Saheban, F., "A Survey and Methodology of Re
configurable Multi-Module Systems," Proceedin[?s Computer SQftl1'are 
and Applications Conference (CompSac), 1978, pp. 790-796. 

8. Kartashev, S. I. and Kartashev, S. P., "A Multicomputer System with 
Software Reconfiguration of the Architecture," Proceedin[? Qf the Ei[?hth 
International Conference on Computer Pelformance. SIGMETRICS 
CMG VIII, Washington, D.C.. 1977, pp.271-286. 

9. Lipovski, G. J. and Tripathi, A., "A Reconfigurable Varistructured Array 
Processor," Proc. International Conference on Parallel Processin[?, 1977, 
pp. 165-174. 

10. Kartashev, S. I. and Kartashev, S. Poo "Dynamic Architectures: Prob
lems and Solutions," Computer, vol. II, July 1978, pp. 26-40. 

11. Kartashev, S. I. and Kartashev, S. P., "Multicomputer System with 
Dynamic Architecture," IEEE Transactions on Computers. vol. C-28. 
no. 10, October 1979, pp. 704-721. 

12. Kartashev, S. I., Kartashev, S. P., and Ramamoorthy, C. V., "Adap
tation Properties for Dynamic Architectures," 1979 National Computer 
Conference, AFIPS Conference Proceedings, AFIPS Press, 1979, vol. 48, 
pp. 543-556. 

13. Ibbett, R. N. and Capon, P. c., "The Development of the MU5 Computer 
System," Communications of the ACM, vol. 21, no. 1, January 1978, pp. 
13-24. 

14. Watson, W. J., "The TI ASE-A Highly Modular and Flexible Super 
Computer Architecture," In AFIPS 1972 Fall Jt. Computer Conf .. AFIPS 
Press, Montvale, N.J., 1972, pp. 221-228. 

15. Russell, R. M., "The CRAY-l Computer System," Communications 
ACM, vol. 21, January 1978, pp. 63-72. 

16. Kartashev, S. P. and Kartashev, S. I., "Adaptable Pipeline System with 
Dynamic Architecture," Proceedings of the 1979 International Confer
ence on Parallel Processing, pp. 222-230. 

17. Kartashev, S. P. and Kartashev, S. I., "Performance of Reconfigurable 
Busses for Dynamic Architectures," Proceedings of the 1 st International 
Conference on Distributed Computing Systems, Huntsville, Alabama, 
1979, pp. 261-273. 



The highly-parallel supercomputers: definitions, 
applications and predictions 

by HUBERT H. LOVE, JR. 
Radar Systems Group, Hughes Aircraft Company 
Lincoln, Nebraska 

1.0 INTRODUCTION 

As computer processing power has increased over the past 
three decades, so have demands on computer performance. 
In the race of computer technology to keep abreast of these 
demands, more and more attention has been given,to parallel 
hardware organizational techniques. Instruction and data 
pipelining, instruction overlapping and distributed pro
cessing are examples of such techniques. 

More recently, a particular class of parallel architectures, 
which we shall term "supercomputers," has been receiving 
special attention. These are the very large, highly parallel 
reconfigurable array processors. In such a machine, the pro
cessing task is distributed among a large number of identical 
processors which are organized into an array configuration 
by means of a communication network. With proper algo
rithms and hardware implementation, these computers can 
achieve massive throughput rates in a number of useful ap
plications. These include radar signal processing, short-term 
weather prediction, complex query/response systems and 
high-speed text processing. 

There are several reasons for this increased interest. One, 
of course, is the importance of the aforementioned appli
cations. Another is the possibility for massive computing 
capability inherent in the emerging VLSI technologies, and 
the particular suitability of highly-parallel computer orga
nizations to these technologies. Still another is the increased 
importance of fault tolerance in computer systems designed 
for advanced, real-time applications. Many highly-parallel 
architectures have an inherent fault-tolerant capability. 

The body of the present paper describes some of the highly 
parallel computer organizations and the applications suitable 
for them. General criteria for applicability are also given. 
The implications of VLSI with respect to these supercom
puters and to fault-tolerant capability are explained. Finally, 
some predictions and suggestions are made as to the future 
course of highly parallel supercomputer development and 
the nature of the applications for which they will be intended. 

2.0 GENERAL DESIGN CHARACTERISTICS 

A reconfigurable array parallel system has several well
defined characteristics by which it can be identified. These 
are: 

181 

Multiple processors in simultaneous operation 

Most parallel array systems contain many identical pro
cessors (called "processing elements" or "PE's") capable 
of simultaneous arithmetic and logical operations. Their 
complexity varies from a few hundred gates to many thou
sands or tens of thousands. Their capability ranges from 
basic bit-serial logical and arithmetic operations on a single 
pair of given operands to full-scale bit-parallel processing on 
operands selected from large memories. The PE's them
selves may contain their own internal memories or may use 
multiple shared memories, or may have combinations of 
both. During execution, various PE's will generally process 
similar data, using a common algorithm. In most systems, 
the PE' s do not contain their own programs, but obtain their 
common control signals from external control units. 

Figure 2-1 is a simplified block diagram of a typical re
configurable array parallel system. The system shown con
tains sixteen processing elements. 

Communication channels for control and data 

All reconfigurable array parallel systems contain com
munication channels linking the processing elements. In al
most all systems the PE' s are linked to one another by these 
channels. In a few, they are simply connected to the common 
controller processor which determines their operation. 

The organization and capability of the system's commu
nication channel network is critical to the system's applica
bility and performance. These channels pass data status and 
control information from one PE to another or from one to 
m~my PE's. The channels range in complexity from bit-serial 
to bit-parallel. Each PE may have one or many channels, 
each of which may connect to one or more of the other PE' s 
or to a central control processor. 

In general, each PE exercises some internal control over 
one or more of the following: 

a) the internal source of the data to be output on the chan
nel, 

b) the particular channel to be involved, if there is more 
than one, 

c) the intended destination of the data, whether a selected 
set of PE's or a central control unit, 



182 National Computer Conference, 1980 

COL 2 

NETWORK 
SEQUENCER 

Figure 2-1-Typical reconfigurable array parallel processor. 

d) the internal destination (register, memory location, 
etc.) of the data received on a channel. 

Control of execution: central or distributed 

Control of PE and communication channel operation is 
generally shared between the individual PE' s and some cen
tral control unit (CU). The control unit consists of one or 
several serial processors with special interfaces for moni
toring PE status and outputting common data and control 
information to the PE's. In general, th~ CU contains the 
system's programs and the system instruction-decoding logic 
as well. The individual PE's determine their operating states 
by a combination of the control signals from the CU and 
their own internal states, the latter being usually dependent 
on the results of the processing of the individual PE's par
ticular data. 

In Figure 2-1, the control signal paths from the CU to the 
processing elements are shown as dotted lines. The data 
paths between the PE's are shown as solid lines, as are the 
data paths between CU and the PE's. Some communication 
of data between the CU and the array is required, but will 
be minimal in a well-designed system. 

In a few system designs, there is essentially no central 
control unit. Instead, control is distributed among the PE's 
themselves in multiple-instruction streams which execute in 
parallel. The Holland Machine [3] is an example of this. 

Input and output 

Most parallel array systems have multiple input and output 
channels, the reason being that they are expected to have 
a high data throughput in most applications. In many sys
tems, there is an input and output channel for each pro
cessing element. In the system shown in Figure 2-1, there 
are input and output channels only for the processing ele
ments on one edge of the array, with the communication 
network providing for the remainder of the input and output 
operations. 

Fault-tolerant capability 

All parallel array designs share the capability to some de
gree, even if not actually implemented, to provide graceful 
degradation of performance in case of hardware failure, and 
usually the potential capability for software assisted fault 
isolation and recovery as well. This is inherent in the par
allelism of the architecture. It is enhanced by the fact that 
the majority of the system logic is replaceable in small units, 
and thus cannot cause single-point failures, 

3.0 THE APPLICATIONS AND THEIR 
CHARACTERISTICS 

Applications suitable for reconfigurable array processors 
are not as numerous as for conventional serial processors, 
but are more common than may at first be supposed. 

Present and potential applications include: 

1. data base management and query processing, particu
larly when the data base is complex and dynamically 
varying, when the queries are very complicated, and 
when fast response time is a requirement; 

2. real-time text processing, again when the processing 
is complex and fast response is essential; 

3. applications dealing with large matrices; weather pre
diction, determination of neutron flux densities in re
actors; 

4. real-time radar data processing; track-while-scan, radar 
pulse deinterleaving; 

5. real-time data compression involving very high data 
rates; 

6. image processing, both real-time and non-real time. 

For some input and throughput requirements, many of 
these tasks are quite beyond the capability of serial proces
sors, ~nd also the fast pipeline processors, even with the 
most advanced gate technologies presently being developed. 

Determining the suitability of an application 

There are a number of reasonably well-defined criteria 
which can determine the suitability of a prospective appli
cation for implementation on a reconfigurable array parallel 
system. These are: 



Parallelism in the algorithms 

There are several ways in which parallelism in the appli
cation algorithms can be present. 

First of all, some applications have a characteristic which 
shall be termed "block oriented." Block-oriented applica
tions are those which deal with a number of similar "ob
jects" in the data base or in the outside world, generally a 
varying number, and in which the identical general process 
is performed on all of them. In such applications, a block 
of memory or a processing element in the processor will be 
assigned to each such "object," and will contain the param
eters and working space for that object. The "objects" may 
be: 

1. targets or threats being tracked by radar; 
2. blocks of raw English text being searched or modified; 
3. records in a file being searched or modified; 
4. pixels or sets of pixels in an image being processed. 

Depending on the particular architecture, separate PE's 
will be assigned to each block, a single PE will process sev
eral blocks, or a number of PE's will be assigned to each 
block. The determination of the assignment is made dy
namically during processing in some systems. 

Complexity of the process 

The existence of parallelism in the application is not suf
ficient justification for the use of parallel hardware. It is a 
requirement that the amount of processing on each piece or 
each set of data be sufficient to justify the time required to 
load the data. If this is not the case, the complicated parallel 
hardware is not being effectively used, and the processing 
could perhaps be better performed by other means. 

An example for which the use of parallel systems can be 
well justified is the inversion of a matrix. The matrix need 
be loaded only once, and the number of operations per
formed to invert the matrix is very large indeed. Another 
example is dictionary lookup using an associative memory 
(which will be defined later), when the same dictionary re
sides in the memory during a large number of lookups and 
when the dictionary entries are of variable size. 

Input considerations 

Parallel systems are most efficiently used when the 
amount of processing is high in proportion to the quantity 
of input data. The actual input data rate which can be ac
commodated varies considerably with the system design. 
Some systems, having very powerful bit-parallel processors 
as PE's, can handle correspondingly high input rates. Other 
systems, such as bit-serial associative processors, which 
may have processing capability as great as the former, may 
not be able to handle such high input rates. This capability 
is of major importance in choosing a parallel system archi
tecture. 

Highly-parallel Supercomputers 183 

Output considerations 

There is a point of considerable importance regarding out
put rates for parallel systems in real-time applications which 
deserves special mention. Parallel systems have very high 
internal processing capability and can accommodate very 
high input data rates with the reservations just mentioned. 
However, they are sometimes criticized for having relatively 
low output data rates and thus being handicapped in real
time applications. This is especially true with regard to the 
associative processors, which often are able to output no 
more than a single word slice or bit slice with each clock 
cycle. (No matter if the word be very long, the rate is still 
slow in comparison with the internal processing speed.) 

In a real sense this criticism is largely unjustified. A pur
pose of a powerful real-time data processing system should 
be to reduce the amount of data from a high input rate to 
a relatively low output rate as a result of its internal pro
cessing. But suppose that it does not reduce the rate and 
that the output rate is as high in proportion to the processing 
power as for ordinary serial systems. It is difficult to see 
what could be done with this gargantuan stream of output. 
Humans cannot absorb it in real time, even if it could be 
printed fast enough. If the system output is to be directed 
into another computer for further processing, something is 
lacking in the system engineering. That is, the justification 
for the use of a parallel system is presumably its high pro
cessing rate, yet it is not doing the entire processing task. 
It should have been designed to accomplish the entire pro
cessing task in the first place. 

If the output is to a high-speed telemetry channel, rather 
than directly to another processor, there is still little justi
fication for massive output capability in general. Reconfig
urable array parallel systems can do an effective job of com
pressing data internally, using one of a number of techniques. 
Such capability can generally be designed into the system, 
and the very high output rate (and the need for expensive 
wide-band telemetry) thus avoided. 

Other parallel attributes 

For some system designs, it is possible to organize the 
processing so that some time-consuming operations can be 
performed for several different (and even unrelated) pro
cesses in parallel by a single hardware operation. This is true 
for systems, such as most associative processors, which are 
bit-serial in operation and which depend for their high pro
cessing throughput on a high degree of parallelism,rather 
than on being able to perform individual operations rapidly. 
Multiplication, division and floating-point arithmetic are ex
amples of operations which are slow on bit-serial associative 
processors, but whose number of executions can be reduced 
by making them mUlti-purpose. 

Communication channel considerations 

For many applications, the capability to communicate 
large amounts of data is critical to system performance, and 



184 National Computer Conference, 1980 

the communication scheme must be given special attention 
in the design. The result of deficient communication capa
bility is an unbalanced system, in which the individual PE's 
can operate independently with high throughput, but are 
greatly slowed down when they must communicate with one 
another. Communication problems are the most difficult to 
handle when one is trying to determine the suitability of an 
application for implementation on parallel systems. 

A voiding serial operations 

In determining the suitability of a task for implementation 
on a parallel array system, it is not sufficient to demonstrate 
only that critical operations can be performed in parallel. It 
must also be shown that all sequences of operations can be 
performed in parallel fashion without the necessity of serial 
processing in between. If this is not possible, most of the 
advantage of the parallel-processing capability will be lost. 
It takes suprisingly few serial operations to seriously com
promise the entire processing scheme. Associative proces
sors are particularly subject to problems of this sort. In a 
typical case, after a parallel operation is performed, it may 
become necessary to reorganize the data so that the next 
operation can be performed in parallel. If the reorganization 
cannot itself be performed in parallel, the hardware and/or 
data organization must be redesigned. If this will not suffice, 
the parallel-processing approach may have to be rejected. 

4.0 THE IMPLICATIONS OF VLSI FOR HIGHLY 
PARALLEL SYSTEMS 

Array architectures are complicated and generally have 
a higher gate count in proportion to their processing through
put than serial architectures. This has hindered their accept
ance in the past. However, with the recent Very-Large
Scale-Integration (VLSI) technology, it appears that not only 
does the handicap of complexity for array systems tend to 
diminish, but that such systems are even preferable in many 
respects from the standpoint of fabrication as compared with 
conventional systems. 

Amenability to on-chip fault repair 

Well-designed array architectures consist largely of re
peated logical elements. Depending on their complexity, a 
number of these elements can be fabricated on a single LSI 
or VLSI wafer. This can mean a higher yield if discretionary 
wiring or other techniques can be used to disconnect faulty 
elements during the manufacturing process. Moreover, with 
proper circuitry, it is often possible to implement software
controlled fault-isolation and fault repair on the wafer itself. 
This is of considerable benefit in some applications and will 
be of increasing benefit in all applications as growing system 
complexity increases the probability of run-time failure. The 
advantage of repeated circuit elements from the aspect of 
fault tolerance results from the fact that single failures on 

a wafer, or even multiple failures do not render the wafer 
worthless if the wafer contains spare elements which can be 
switched into the system under software control. 

Suitability for very fast logic 

The two principal characteristics of the gate technology 
that is presently being developed are extremely high speed 
(the order of 500 psec. gate delays) and very large numbers 
of gates per wafer (several hundred thousand). This sounds 
like very good news at first glance. However, when one 
looks at the problems being faced by the engineers trying 
to fabricate this circuitry and design systems using it, a quite 
different picture emerges. 

Many of the biggest problems with such high-speed logic 
are caused by the "off-chip" delays for signals passing from 
wafer to wafer. Particularly damaging are the cases involving 
"round-trip" signals. A round-trip signal is one which passes 
one way between two chips, causing a signal to be generated 
at the receiving chip which then passes the other way be
tween the chips. Time and phase lags occur because of such 
signals, requiring that the clock rate for the system be greatly 
reduced. 

Many parallel-array system designs appear to offer ad
vantages with respect to these problems as compared with 
more conventional systems. For one thing, inputs to the in
dividual PE' s are often very orderly, consisting mostly of 
control signals originating in logically similar registers within 
the controller. Since almost all of the processing for the sys
tem takes place within the array of processors, there is very 
little communication of data from the PE' s to the controller, 
thus reducing the occurrence of round-trip delays. 

5.0 SURVEY OF PROCESSOR DESIGNS 

In this section, two types of general reconfigurable array 
parallel systems will be described and analyzed. For each 
type, a general description of the system, its operation and 
applications will be given and comparisons with other system 
approaches made. 

The system types to be covered are: 

1. parallel network processors; 
2. associative processors. 

Parallel network processors 

The term "parallel network processor" shall refer to a 
reconfigurable array parallel processor in which 

1. the processing elements themselves are full-fledged se
rial processors with sizable local memories; 

2. the communication network connects each PE to sev
eral other PE's in a regular fashion; 

3. one or several sets ofPE's each execute essentially the 
same program on different sets of data simultaneously 



COM 
CON 

under central control. Generally, there is only one set 
and one program. 

The concept of the network processor arises from the na
ture of the applications which are involved. These applica
tions deal with "objects" in the real world which interact 
in the application in some orderly fashion. The communi
cation network in the network processor interconnects the 
PE's in the same fashion, under software control, and each 
PE corresponds to one object. 

Applications well suited to parallel network processors 
include: 

1. the solution of sets of partial difference equations (by 
the relaxation technique, for example); 

2. general matrix operations; 
3. many image-processing applications; each PE corre

sponds to a pixel or a set of pixels; 
4. radar data processing; each PE corresponds to a target 

or threat being tracked. 

General organization and operation 

The processor organization to be described is essentially 
the same as that for the SOLOMON I computer, which is 
the earliest of the well-known parallel network architectures. 
The ILLIAC IV, probably the most powerful supercomputer 
yet built, is another example. 

The processor array 

Figure 5-1 shows the organization of the array of pro
cessing elements (PE's) for the system. Only 16 PE's are 

INSTRUCTION MODE 
TAOL EXECUTION REG ISTE A 
MONO 

UT LOGIC 

T 
COLUMN 

1 
ARITHMETIC 

ROUTING AND 
LOGIC BOOLEAN 

1 
LOGIC 

INTERNAL 
RANDOM -
ACCESS 
MEMORY 

Figure S-l-Parallel network processor array organization. 

Highly-parallel Supercomputers 185 

shown. The SOLOMON I design has 1024 PE's, organized 
into 32 rows and 32 columns. The array contains about 90 
percent of the logic of the entire system. Each PE is a serial 
processor in every respect except for the absence of instruc
tion-sequencing and decoding logic. The array hardware in
terconnects the PE's in a two-dimensional array configura
tion. In the original SOLOMON design, the PE's were bit
serial processors, and the communication channels were also 
bit-serial. In newer designs, because of the advances in LSI 
fabrication techniques, the PE's can be bit-parallel. There
fore, in order to maintain system balance, the communica
tion channels are made bit-parallel also. 

The operation of the communication channels during pro
gram execution is under software control. The control is 
largely central with respect to the general interconnection 
modes. These modes permit inter-element communication 
by one or more of the following schemes simultaneously: 

1. Each PE is connected to its two neighbors in the same 
row. The first PE in each row is connected end-around 
to the last PE in the row, resulting in a "horizontal" 
cylindrical configuration. 

2. Each PE is connected to its two neighbors in the same 
column, with the connection end-around as before, re
sulting in a "vertical" cylindrical configuration. Both 
this option and the first can be used together. 

3. The PE' s can all be connected in a single one-dimen
sional array, end-around if desired. 

In addition to the array interconnections, all of the PE's 
are connected to common buses through which they can re
ceive common data items simultaneously. There are com
mon buses for each row and each column of the array. With 
this scheme, many common data items can be input to the 
array simultaneously, a different one for the PE' s in each 
row or each column. 

The processing element 

Figure 5-2 shows the organization of each processing ele
ment in the array. Each PE contains a set of working reg
isters and a local random-access memory for data only. 
There is a logic module for performing arithmetic, Boolean 
and comparison operations. There is also instruction-exe
cution logic, but there the similarity to a conventional serial 
processor ends. The PE receives its instruction control from 
an external source. It has no internal instruction sequencing 
or instruction decoding logic. In addition, the PE has several 
unique devices with functions as follows: 

1. Routing logic. This controls the source or destination 
of data and control information passed between the PE 
and other PE's and common buses. During the exe
cution of an instruction, the routing logic state permits 
the PE to send or receive information from the common 
row or column bus. 

2. Mode register. This register (which is two bits long in 
the SOLOMON computer) is set from within the PE. 



186 National Computer Conference, 1980 

CONTROL 
UNIT 
(SERIAL 
PROCESSOR) 

,...---
I 
I 
I 
I 
I 
I 
I 
.... -
I 
I 

----+ 
I 
I 
+---
I 
I 
I 
I 
I 
I 
I L __ 

PAAALLE L INPUT CHANNE LS 

PARALLEL OUTPUT CHANNELS 

Figure 5-2-Processing element for parallel network processor. 

The instruction control information received by the PE 
for all instructions contains a specification as to which 
mode or modes the PE must be set in order that the PE 
execute the instruction. (All modes may be specified, 
in which the case the execution is mandatory.) Through 
this device, each PE can determine in most cases 
whether or not it will execute an instruction. Each PE 
makes this determination as the result of the processing 
of its local data, and then sets its mode register ac
cordingly. 

The system organization 

Figure 5-3 shows the general organization of a parallel 
network processor. This system consists of the parallel net
work processor array just described, plus a number of mod
ules for control of the array, for operator interface and for 
input and output. These modules and their functions are as 
follows. 

1. The Control Unit. This unit receives from the control 
memory each instruction executed by the system. It 
decodes the instruction and the addresses. For those 
instructions to be executed by the PE array, it sends 
the resulting control information and the row and col
umn addresses to the PE array. These instructions will 
be executed by those PE's in the specified row(s) and 
column(s) whose internal mode register settings cor
respond to the ~ode settings specified in the instruc
tion. 

2. The Control Memory. This memory contains the sys
tem's programs, plus common data items and common 
working storage. The Control Unit has normal serial 
processing capability, which is used occasionally to 
calculate common data values and to determine the 
flow of the instruction execution sequence. 

A .. INPUT ANO 
OUTPUT 
CONTROL 
UNIT 

CONTROL 
MEMORY 
(I.NSTRUCTIONS 
AND DATA) 

INSTRUCTIONS 

DATA (WORD 
SeQUENTIAL) 

ROW AND COLUMN 
ADDRESSES 

CONTROL 
SIGNALS 

I PARALLEL I 
BUFFER 

PROCESSOR ARRAY 

DATA (WORD -
PARALLEL) 

Y9Y ... y 
~ ... -Q . .. . . .. . 
6 6-6- ... --6 

Figure 5-3-Parallel array processor organization. 

3. The Parallel Buffer. This buffer receives and sends data 
in parallel to and from all PE' s in the array, or to and 
from all PE's in specified rows and columns. The buffer 
holds one data item for each row and one for each col
umn. Data transfer between the Parallel Buffer and the 
remainder of the system is word-serial. 

4. The Input/Output Control Unit. This device controls 
all system input and output for most applications. For 
some real-time applications, it is best to bypass such 
complex control units altogether and input data directly 
into the processor array. 

ILLIAC IV and PEPE 

The ILLIAC IV is perhaps the best known example of an 
array processor. It was designed with very demanding real
time applications in mind, such as real-time radar processing 
with a phased-array antenna system. The ILL lAC IV pro
cessing array consists of 256 large .. scale processors having 
memory cycle times and add times of 240 nsec. (64-bit op
erands) and multiply times of 400 nsec. The array is essen
tially two-dimensional, like that of the SOLOMON. 

The PEPE (Parallel Element Processing Ensemble) is a 
highly parallel organization lacking an inter-processor com
munication network. Instead, each processing element has 
the capability for independent decision, based upon its in
ternal state, as to whether to participate in a particular op
eration or sequence of operations. It is also well suited to 
radar data processing applications, since such applications 



require little interchange of information between processors 
if the program is suitably organized. 

Associative processors 

The associative processor is one of the more unusual of 
the reconfigurable array systems, because its basic operating 
principle is in a sense the reverse of that for serial processors. 
The associative processor is based on a device known var
iously as the "associative memory" or "content-addressable 
memory" which, in turn, is an outgrowth of a simpler device 
known as a "search memory." 

The search memory and its operation 

The search memory can be said to function in reverse fash
ion with respect to a random-access memory. That is, a RAM 
accepts the address' of the desired memory location as input 
and outputs the contents of that location in response. The 
search memory accepts the desired contents of the memory 
location or locations as inputs and outputs flag settings in
dicating the memory location or locations having those con
tents. To prevent the operation from being trivial, the con
tent search is field specified. 

The distinction between the search memory and a con
ventional memory is that the search is performed in the for
mer at all locations or cells in the memory simultaneously. 
This capability is the result of having compare logic at every 
cell in the memory. (The term "cell" and "word" are some
times used interchangeably in the discussion to follow, since 
the cell, which is a hardware device, contains a "word" of 
data in the usual sense.) 

Figure 5-4 illustrates the search-by-content operation as 
performed by a search memory. In the figure, the memory 
is shown containing an indefinite number of cells, each con
taining seven characters (used instead of binary bits for clar
ity in the illustration). With each cell is shown a correspond
ing "match flip-flop" which is a flag indicating the success/ 
fail status of the cell as a result of a content search. At the 

CONTENT -
ADDRESSED 
MEMORY 

A 

Q 

A 

C><J I [XJ rxc><J 
I C I I NIB I 2 I 1 I 1 I 

MASK 
REGISTER 

COMPARE 
REGISTER 

MATCH 
FLIP-FLOPS 

Figure 5-4-Basic associative memory operation: the parallel 
search-by-content. 

Highly-parallel Supercomputers 187 

bottom of the figure are shown two registers. One of these, 
called the "compare register" or "comparand register," 
contains the data item that is the object of the search. The 
other register, called the "mask register," specifies by its 
contepts the field or fields within the memory cells at which 
the content search will be made. In the figure, the 1st, 4th, 
6th, and 7th character positions are masked out. The search 
will be conducted only at the remaining character positions. 

It is seen that only the first and second cells contain the 
same characters in the unmasked character positions as the 
compare register. As a result of the content search, then, 
the match flip-flops will be set only at those two cells as 
shown. For most implementations of search memories, the 
cells' contents reside in a shift register, and bit-serial logic 
is used at each cell, rather than bit-parallel logic. The op
eration is still word-parallel, and the desired speed advantage 
will be achieved if there is enough data to be searched to 
require a large number of cells. 

The associative memory and its operation 

The associative memory is an extension of the search 
memory. Its operation is based on the same search-by-con
tent function implemented in the search memory. The as
sociative memory contains additional logic at each cell which 
permits it to perform word-parallel logical, arithmetic, input 
and output operations, generally in bit-serial fashion. The 
logical functions to be described are not common to all as
sociative memories. However, they are quite typical, and 
give a good characterization of the associative memory and 
its general capabilities. 

The parallel-write operation 

This operation is that of simultaneously modifying se
lected bit positions at all cells in the associative memory or 
at a selected subset of the cells. The bit positions to be mod
ified are determined by the contents of the mask register. 
The contents to be inserted into those bit positions are the 
settings of the corresponding bit positions in the compare 
register and are the same for all selected cells. The cells to 
be modified are selected by the settings of the match flip
flops. 

It is the parallel-write operations and their extensions and 
variants which give the associative memory its capability to 
process data internally. This capability includes word-par
allel arithmetic and logical operations as well as file searching 
and modification. 

Parallel arithmetic operations are generally implemented 
through special arithmetic logic, including a full adder, at 
every cell. Only a single adder per cell is required for a bit
serial machine employing a shift register to contain the cell's 
data. 

Other operations 

It is in the nature of associative processors to have no 
conventional hardware addressing for randomly accessing 



188 National Computer Conference, 1980 

individual cells. Such serial processing as is necessary is 
usually limited to that of assessing a selected subset of cells 
in order (say, a set of cells whose contents have matched 
to a sequence of searches) so that their contents can be out
put a word at a time. All associative memories have serial
access logic for this purpose. 

Other basic operations implemented in the typical asso
ciative memory are such auxiliary and support operations 
as setting or resetting all match flip-flops and ladder flip
flops, and the operation of outputting the contents of the 
(single) cell having its ladder flip-flop set. 

The associative processor 

Figure 5-5 shows the organization of a typical associative 
processor. An associative processor is a system which con
sists of an associative memory, together with a serial pro
cessor for controlling the operation of the associative mem
ory, for controlling input and output, and for interfacing with 
an operator. 

Reconfigurable associative processors 

It will be noticed that the associative processor as just 
defined has no reconfigurable characteristics and no 'inter
communication network (except for the sequential-access 
logic). For this reason, it is very limited in its applicability. 
For example, it is impossible in the system just described 
to transfer data from one cell to another except by means 
of the word-serial input and output operations using the se
quential-access logic or parallel-write logic. For some file
managing operations this is sufficient. However, in order 
that the associative processor have wider applicability, a 
communications network must be added so that data and 
also control states can be transferred between cells simul
taneously (that is, between many pairs of cells or from one 

ASSOCIATIVE 
MEMORY -----------., 

I 
I 

MASK AND 
COMPARE 
REGISTERS 

MATCH 
FLlP
FLOPS 

EE 
Figure 5-5-Basic associative processor organization. 

FLlP
FLOPS 

cell to many others). A number of techniques for accom
plishing this through specialized hardware operating under 
software control have been devised. Two of these schemes 
are discussed in the remainder of this subsection. 

The STARAN 

More effort has been devoted to the design, fabrication 
and application of the Goodyear ST ARAN* than to any 
other associative processor. A number of full scale ST ARAN 
systems of various designs have been built, both for general
purpose application studies and for particular designated 
applications. Some 155 different application functions have 
been studied for implementation of STARAN, and some 75 
of these actually programmed and demonstrated. These deal 
with such general applications as surveillance systems, sen
sor signal processing, general scientific applications, com
munications processing and data management. 

This extensive effort has resulted in considerable refine
ment of the original ST ARAN concept, and particularly in 
the addition of a communication network, called the "flip 
network." The flip network provides the means for per
forming any desired permutation on the contents of the cells 
in a 256-cell STARAN module. The STARAN is especially 
adept in operations in which this fast permutation capability 
can be effectively utilized, for example, in performing the 
Fast Fourier Transform (FFT). Other applications include 
the processing of image data, in which the ST ARAN, op
erating as a peripheral device, performs high-speed cor
relations for a serial processor. 

The ALAP 

The Associative Linear Array Processor (ALAP) [6] uses 
a different means for obtaining intercell communications 
from that used by ST ARAN. The ALAP has a multi-use 
communication channel, called the chaining channel. Each 
cell in the ALAP memory array is connected to the next and 
previous cells in the array by this channel, over which both 
data and status flags can be transferred. The chaining chan
nel thus organizes the cells into a linear array. Parallel pair
wise arithmetic operations can be implemented using the 
chaining channel. 

Applications for which the ALAP has been programmed 
include radar signal sorting, several radar track-while-scan 
tasks, and generalized data-retrieval from a structured data 
base. The ALAP is particularly suited to tasks which are 
block-oriented in the sense previously defined, and in tasks 
in which many diverse parallel operations take place simul
taneously within the same memory array. 

The massively parallel processor (MPP) 

A very powerful associative processor with an array of 
128 x 128 cells is a recent design of Goodyear Aerospace 

* TM, Goodyear Aerospace Corporation, Akron, Ohio. 



Corporation. The cells in the MPP are organized into a two
dimensional array by the communication network, with each 
cell communicating directly with its four nearest neighbors. 
Each cell can perform arithmetic and logical operations si
multaneously with all others, with one operand resident in 
the cell, and the other either resident in the cell or input from 
another cell or a common bus. Each cell, in addition to its 
arithmetic register and arithmetic unit, contains a 1024-bit 
local memory. All operations within the cell are performed 
bit-serially. 

In the construction of the MPP, almost all components of 
a sub-array of 2 x 2 cells are fabricated on a single VLSI 
wafer, using CMOS/SOS technology. The local memories 
for the cells are constructed from standard 4 x 1024-bit RAM 
chips. The clock rate of the array is 10 MHz. Software-con
trolled fault isolation is provided for each sub array of 
128 x 128 cells. 

The square array organization is well suited to the intended 
application of the MPP, which is the processing of satellite 
image data. From 100 to 10,000 operations per pixel are re
quired for the processing. This satisfies one of the most im
portant of the basic requirements for applicability for parallel 
processing previously discussed. The two-dimensional com
munication network will give the MPP an order-of-magni
tude increase in processing speed for matrix operations as 
compared with the ST ARAN or ALAP. The latter two ma
chines are limited to an order of n-to-l increase in speed for 
such operations as compared to serial processors, where n 
is the dimension of the (square) matrix. The MPP will have 
up to an n2-to-l increase. 

6.0 FUTURE TRENDS IN RECONFIGURABLE 
ARRA Y DESIGN 

To assess the future of very large, fast reconfigurable ar
rays as practical data-processing systems, one must exam
ine: 

1. the expected technology, its advantages, the desirable 
characteristics of the circuitry that is to be implemented 
with it, especially with regard to VLSI; 

2. the expected applications that will require very pow
erful array systems; 

3. the limitations on the performance of present array 
processors with respect to throughput, fault tolerance, 
amenability to VLSI implementation and suitability to 
the expected applications. 

The VLSI technology 

The problems caused by the use of several interconnected 
wafers in a system when the very fast, new logic technologies 
are used have been mentioned in Section 4. There is an
other set of problems which have to do with the nature of 
VLSI itself. 

With regard to VLSI, the problem of most concern to sys
tem architects is that of taking advantage of the capability 

Highly-parallel Supercomputers 189 

to put so many gates on a single wafer. Conventional serial 
processors are not altogether suitable for VLSI implemen
tation. One of the main reasons is that it is difficult to factor 
the logic so that the interfaces between wafers in the system 
are "clean." This means relatively few pins (not easy when 
the wafer contains so many gates), similarity in the signal 
paths to other wafers, and so on. When VLSI fabrication 
is combined with the very fast gates, the problems multiply. 
Even interfacing with a conventional RAM when it is on a 
different wafer from that containing the CPU can be a major 
problem with 250 MHz. clock speeds. 

Some parallel array designs have a strong appeal to the 
VLSI designers because the number of pins on the wafer is 
low, and is independent of the number of cells on the wafer, 
and because almost all of the pins are for bit-serial inputs 
from identical external registers. 

On the negative side with regard to the use of array ar
chitectures as candidates for VLSI implementation is the 
fact that these processors are not yet as general-purpose in 
their applicability as serial processors. It is evident from the 
standpoint of economics that wide applicability is a prime 
requirement for a VLSI wafer which will be very expensive 
to design. Array processors must therefore be designed with 
such versatility in mind, and an equal effort must be ex
pended on applications analysis to discover new, highly par
allel procedures for many common applications. One prom
ising aspect of some parallel array organizations is that the 
controllers for the arrays can operate at much lower clock 
rates than the very fast rates for the arrays, since they have 
much less to do. This means that serial controllers, with their 
relatively irregular logic organizations, will not have the off
chip delay problems or the other problems associated with 
the extremely fast logic needed for the arrays .. 

Future applications for array processors 
i 

The problem of versatility with regard to the applicablility 
of highly parallel array processors has been mentioned. Con
sider the application areas for which the arrays are suitable 
or superior. These include parallel file-processing tasks, such 
as radar data processing. They also include real-time text 
processing, although suitable systems will be very special
purpose designs. Advanced image-processing tasks, which 
are important as well as challenging, are high on the list. 
Very advanced file-retrieval applications, such as question
answering tasks involving deductive and inductive infer
ence, are even more promising ~asks, now that suitable al
gorithms and data structures are being developed. 

The author's favorite application field is the aforemen
tioned advanced question-answering systems. Such systems 
may open the door to such capabilities as the translation and 
interpretation of context-sensitive languages, and thus to the 
simulation of human reasoning processes. To accomplish 
even a very small step in such a direction is an objective of 
immense appeal. The context-sensitivity of the query-an
swering process seems to be a key factor. The interpretation 
of context must require, among many other things, a very 
large data base of possible contexts which can be searched 



190 National Computer Conference, 1980 

very frequently and rapidly with complex search criteria. 
The potential applicability of very powerful associative pro
cessors to such a process is evident. 

Limitations in the performance of present designs 

Throughput limitations 

The n-to-l limitation of one-dimensional processor array 
organizations on matrix operations has already been dis
cussed. The MPP, which has a two-dimensional array, over
comes this limitation for many classes of problems. When 
the structure of the application (for example, the structure 
of the real-world system being modeled by the computer) 
does not match the regular array structure, however, such 
machines suffer a great loss in efficiency of operation. 

Fault-tolerance limitations 

In most parallel processor arrays having a regular com
munication network, there is a tradeoff between the order 
of parallel operation and the level at which fault tolerance 
can be implemented. With one-dimensional arrays, fault tol
erance can be implemented at the level of the single cell. 
With the MPP, an entire column of processing elements must 
be disabled if a single cell fails. This is not appealing in con
cept as a remedy, and is a most difficult problem with regard 
to effective fault tolerance. 

Limitations with regard to VLSI 

The dimensionality of the processor array is of great im
portance with regard to amenability to VLSI fabrication. The 
PEPE, STARAN and ALAP are well suited in this regard. 
The number of pins on a wafer is independent, or nearly so, 
for such zero and one-dimensional arrays. For two-dimen
sional arrays in general, this is not the case. If many cells 
are fabricated on a wafer, the number of pins will increase 
as the square root of the number of cells if the array is two
dimensional. All of the cells on the edge of the wafer must 
have external connections, else processing throughput will 
suffer because of bottlenecks in the interwafer communi
cation. 

A possible solution to this problem is to construct three
dimensional arrays by putting a set of "two-dimensional" 

wafers together in a stack like pancakes, with vertical com
munication channels fabricated directly on pads on the waf
ers. This may actually be practical at some time in the future, 
when new technolgy can be devised, but does not appear 
to be a near-term solution. 

Recommendations, predictions and suggestions 

For a solution to many of the problems just addressed, 
one is tempted to look at the Holland machine concept. This 
machine has a two-dimensional array organization. How
ever, in this concept, the communication paths taken by the 
data in operation are data-determined, rather than location
determined. The Holland machine has serious drawbacks as 
a practical system. Nevertheless, it does not suffer from 
some of the limitations with regard to fault tolerance and pin 
count if it is properly implemented. Perhaps the user should 
not expect optimal efficiency in the utilization of the hard
ware. There can be cost/efficiency tradeoffs which can 
achieve equal results in throughput, while still retaining some 
of the advantages of the multi-dimensional array. It is these 
advantages which should be a prime objective of future ef
forts in parallel array design. 

REFERENCES 

1. Hobbs, L. C., et aI, ed., Parallel Processor Systems, Technologies and 
Applications. 1970, New York, Spartan Books. 

2. Cannell, M. H., et aI., Concepts and Applications of Computerized As
sociative Processing, Including an Associative Processing Bibliography. 
December, 1970, U. S. Department of Defense Communications, Docu
ment No. AD879281. 

3. Holland, J. H., "A Universal Computer Capable of Executing an Arbitrary 
Number of Sub-Programs Simultaneously," 1959 Proceedings of the East
ern Joint Computer Conference, pp. 108-113. 

4. Slotnick, Daniel L., et aI., "The Solomon Computer," Proceedings, 1962 
Fall Joint Computer Conference, pp. 97-107. 

5. Barnes, George H., et aI., "The ILLIAC IV Computer," IEEE Trans
actions on Computers, Vol. C-17, No.8, August 1968, pp. 746-57. 

6. Finnila, Charles A. and Love, Hubert H., Jr., "The Associative Linear 
Array Processor," IEEE Transactions on Computers, Vol. C-26, No.2, 
February, 1977, pp. 112-125. 

7. Batcher, K. E., "The Massively Parallel Processor (MPP) System," Pro
ceedings, AIAA Computers in Aerospace Conference II, 1979. To be pub
lished. 

8. Batcher, Kenneth E., "The Flip Network In STARAN," Proceedings of 
the 1976 International Conference on Parallel Processing, 1976, Long 
Beach, Calif., IEEE. 

9. Love, H., Jr., "A Modified ALAP Cell for Parallel Test Searching," Pro
ceedings of the 1977 International Conference on Parallel Processing. 
1977, Long Beach, Calif. IEEE. 



Database machines and some issues on DBMS standards* 

by STANLEY Y. W. SU, 
University of Florida 

HSU CHANG, 
IBM 
Yorktown Heights 

GEORGE COPELAND, 
Tektronix 

PA UL FISHER, 
Kansas State University 

EUGENE LOWENTHAL, 
MRI Systems 

and 

STEWART SCHUSTER, 
TANDEM 

INTRODUCTION 

There are several co-related activities in the database area 
and computer architecture that make the discussion of da
tabase machines and their implications on DBMS standards 
timely and meaningful. First, in the database area there is 
a drive toward more powerful database management systems 
which support high-level data models and languages. The 
motive for this drive is the requirement to greatly improve 
user/programmer productivity and to protect applications 
from changes in the user environment. However, supporting 
these interfaces with software means often introduces inef
ficiency in database management systems because of the 
many levels of complex software which are required to map 
the high-level data representation and languages to the low 
level storage representation and machine codes. Second, the 
need for systems which handle very large databases is in
creasing rapidly. Very large databases complicate the prob
lems of retrieval, update, data recovery, transaction pro
cessing, integrity, and security. Software solutions to these 
problems work well for both small databases supporting 
many applications and large databases supporting only a few 
applications. However, the labor-intensive cost, time delays 
and reliability problems associated with software develop
ment and maintenance will soon become prohibitive as large 
and highly shared databases emerge. The search for hard
ware solutions to these problems is a necessary and viable 
alternative for balancing functionality and price/perform
ance. Third, the progress made in hardware technology in 
the past decade is phenomenal. The cost of memories, pro-

* This work is supported by the National Bureau of Standards under contract 
#NB 79NAA B4369-1. 

191 

cessors, terminals and communication devices has dropped 
and will continue to drop at a drastic rate. It is time for a 
reevaluation of the traditional role of hardware and software 
in solving problems of today and tomorrow in database man
agement. 

Fourth, there is a vigorous drive toward DBMS standards 
led by NBS (26,27) aiming to "1) protect the federal in
vestment in existing data, programs, and personnel skills, 2) 
improve the productivity and effectiveness of database sys
tems available to federal agencies, 3) assist federal agencies 
with guidelines on the selection, procurement, use, and 
availability of database systems, 4) perform the research 
necessary to identify future federal needs and to foster the 
development of necessary database tools. " 

Research on database machines is relevant to the study 
of DBMS standards in the following ways. First, when a 
standard is to be proposed for adoption it is important to 
consider how easy the standard can be implemented and the 
cost involved in its implementation. Database machines may 
drastically change the ways database management functions 
are implemented and new technologies may alter the picture 
of cost involved in database management. A standard is not 
practical unless it can be implemented with efficiency and 
reliability. Database machines hold promise to provide more 
efficient and reliable ways to implement the database func
tions. Second, very often several alternative designs (e.g. 
data models or data languages) exist and can be the candi
dates for standards. Good evaluation and proper selection of 
these alternatives based on criteria such as • 'user/program
mer productivity," "ease of use," "natural to the user and 
DBA," etc., are extremely difficult to obtain. In this situa
tion, the selection of one of the alternatives as the standard 
can be based o~, among other variables, how well the se-



192 National Computer Conference, 1980 

lected standard is supported by the present database ma
chines and can be supported by the future machines. Third, 
the change of hardware architecture of a computing machine 
will have great effect on the design and implementation of 
a database management system. In particular, new hardware 
may change the interfaces among the components of a 
DBMS. Thus, the study of the standards for DBMS inter
faces should take into consideration the present and ex
pected progress in database machine research and devel
opment. 

This paper reports on the results of a study conducted 
under the support of the National Bureau of Standards (con
tract # NB 79N AA B4369-1) to examine some of the proposed 
DBMS standards from the point of view of database ma
chines. The emphasis is on the discussion of several issues 
related to data models and data languages and on how well 
they can be supported by database machines. The study aims 
to 1) assess the progress made in the database machine area, 
2) determine the functional capabilities and limitations of the 
present database machines, 3) examine the issues on DBMS 
architecture, data models, and data languages from the point 
of view of present and future database machines, and 4) ad
dress some technical issues on the technology, the hardware, 
and software architectures of database machines. 

II. SOME LIMITATIONS OF CONVENTIONAL 
COMPUTERS FOR DATABASE APPLICATIONS 

Several limitations found in the conventional computers 
motivate the study of database machines. They are: 

A. Mismatch of conventional computers for database 
applications 

In 1948, von Neumann designed the programmable elec
tronic digital computer for numeric applications. The design 
matched the technology of that day very closely to numeric 
applications. The semantic definition of numeric data was 
matched very closely to the storage representation: 

data semantics 
x,26 
y,-5 
z, 1.7 X 1023 

random access storage 
location 1,26 
location 2, - 5 
location 3,1.7 X 1023 

Using a random access storage, only a simple and efficient 
one-to-one mapping was necessary. Also, the semantics of 
numeric operations were matched very closely to the hard
ware instructions: 

semantics of operations 
add 
subtract 
store in memory 

hardware instructions 
ADD 
SUB 
STR 

This close match allowed a very simple and efficient map
ping. However, two significant things have happened since 

that time. First, hardware technology has changed drasti
cally. Cost and speed per function have improved by many 
orders of magnitude in the last 30 years. The rules of cost
effective packaging have changed from minimization of the 
number of logic gates and memory bits to minimization of 
the number of IC pins and packages. Secondly, the primary 
application for digital computers is shifting from numeric to 
non-numeric applications. In non-numeric applications, the 
user retrieves and manipUlates data by specifying the attri
butes and values of the data he is interested in, i.e. address
ing data by contents, rather than by addressing the memory 
locations where the interested data are stored. The basic 
operations required are Search, Retrieve, Update, Insert, 
Delete, Move-data, etc., rather than Add, Subtract, Shift, 
etc. The mismatch of the von Neumann design to non-nu
meric applications is the main cause of the complexity and 
inefficiencies of the present systems. The large and growing 
market for database systems warrants a reevaluation of the 
relationship between technology and database applications. 
If technology can be matched more closely to database ap
plications, then perhaps advanced functionality, ease-of-use, 
and data independence can be achieved cost effectively. 

In all considerations however, the most serious drawback 
is the lack of appropriateness of the sequential machine for 
the parallel process of data manipulation. One can liken this 
to the analogy of viewing a three-dimensional cube on a two
dimensional surface. Some forms are still recognizable; how
ever, many others are skewed and hence do not appear 
'normal.' So it is with processors. The software problems 
become necessarily more complex, simply because the rep
resentation is not appropriate. By providing a more appro
priate environment, perhaps the 'skewedness' of present 
problems can be reduced. 

B. Many levels of mapping 

Recent research efforts show that high-level data models 
and data languages which exhibit a high degree of data in
dependence and ease of use are requirements to improve 
human productivity as well as act as logical interfaces with 
database systems. Currently, the implementation of high
level data languages and data models requires many levels 
of complex software to be executed, causing inefficiencies 
in system utilization and response. The software complexity 
and system inefficiency are due to the requirement that high
level commands and data views be translated into the low 
level machine codes and structures. In particular, software 
implementation of high-level data representations requires 
that auxiliary data structures such as inverted files, direc
tories, and pointers, etc., be introduced to speed up data 
accesses for a particular set of applications. These auxiliary 
data structures must be properly maintained. This require
ment complicates the updating operation, one of the most 
important database management functions, and significantly 
decreases its efficiency. Also, since these auxiliary data 
structures are tailored for a particular set of applications, a 
change in application often requires a large labor-intensive 



software maintenance project. This considerably increases 
cost and time delays and decreases reliability. 

C. Performance bottlenecks 

There seem to be two major performance bottlenecks in 
the present systems: the staging bottleneck and the com
munication bottleneck. In conventional systems, data are 
not stored at the place where they are processed. To "stage" 
data into main memory for processing is very time consum
ing, and often ties up the important resources of a computing 
system, such as communication channels. Database appli
cations will continue to demand larger and more complicated 
databases, requiring more time to stage and process the data 
files. In order to support very large databases (greater than 
10**10 bytes), or databases requiring both fast update and/ 
or complex query, it is necessary to exploit specialized hard
ware to eliminate unnecessary data staging and to carry out 
database management functions efficiently. Data commu
nication over long distances is expensive and limited in 
speed. This forces many database systems to physically dis
tribute data to locations where usage is highest. Data re
dundancy is often purposefully introduced in distributed 
systems to avoid excess amounts of data transfer and to im
prove performance and reliability. However, many addi
tional problems on data updating, recovery, integrity, and 
security in distributed systems are introduced by the above 
techniques. Special purpose hardware tailored toward man
aging distributed database management and supporting data 
communication would be very useful. 

D. User's increasing demands for DBMS capabilities 

Database management system users are continuously de
manding more sophisticated DBMS capabilities. Capabilities 
such as automatic database restructuring and system tuning, 
automatic data distribution and redistribution, backup and 
recovery, integrity and security controls, etc., are generally 
handled by software in the traditional systems. Tremendous 
overhead is generated in implementing these capabilities. 
Because systems are currently pushing software complexity 
barriers, performance improvements in this area are not 
likely without dedicating hardware to unburden saturated 
systems. 

III THE OBJECTIVES AND CHARACTERISTICS OF 
THE EXISTING DATABASE MACHINES 

A database machine (DBM) can be defined as any hard
ware, software, and firmware complex dedicated and tai
lored to perform some or all of the functions of the database 
management portion of a computing system. The DBM may 
range from a small, personal query machine (intelligent ter
minal) to a large, public-utility information machine. We 
shall categorize the existing database machines into four 
categories based on their architectural distinctions and their 

Database Machines and Issues on DBMS Standards 193 

differences in objectives and characteristics. Each category 
of machine attempts to remove some or all of the limitations 
discussed in the preceding sections. In the following pre
sentation, only the recent systems designed for general pur
pose database management applications are covered. Sys
tems designed for text processing, document retrieval, 
sorting, etc., which are database machines in their own right, 
are not included. 

Category 1,' cellular-logic systems 

A cellular-logic system consists of a linear array of cells 
each of which contains a processor and memory element i 

[47]. The genearl architecture of cellular-logic systems is il- . 
lustrated in Figure 1. A database operation such as Search, 
Retrieve, Update, Delete, or Insert is broadcasted simulta
neously to all the processors which carry out the operation 
against the data residing in their associated memory ele
ments. Thus, in one rotation of the memory, the entire da
tabase is reached in lIn(th) of the time needed for a sequential 
search over n segments of data. Efficiency in data searches 
and other database operations is gained by the parallel pro
cessing elements. The memory elements of these devices can 
be disk tracks, bubble memories, CCD's, RAM's or other 
types of memories. The cells in these devices may com
municate with their adjacent neighbors. This category of 
devices, thus, refers to a more general class of machines 
than the logic-per-track concept introduced by Slotnick [46]. 

The basic idea of cellular-logic systems is to move some 
of the frequent database management functions to intelligent 
secondary storage devices so that these functions can be 
carried out by the storage devices without the attention of 
the main processor. The data stored on the rotating devices 
such as disks, drums, CCD's, or magnetic bubble memories 
are systematically and exhaustively searched by the pro
cessing elements, one for each physical or electronic track 
of the rotating memory. Thus, data are processed on the 
same device where they are stored. Irrelevant data can be 
filtered out by the secondary storage devices and only the 
relevant data are brought into the main memory for further 
processing, thus avoiding the problem of staging described 
in the preceding section. Furthermore, since the entire da
tabase is exhaustively searched in each circulation of the 
memory, data can either be searched associatively by con
tents (i.e., by specifying what data are to be searched rather 
than where the data can be found) or by contexts (i.e., by 
specifying the neighborhood where relevant data can be 
found). The content and context search techniques in the 
cellular-logic devices offer uniformity and fast response time 
for search and update operations without the need to build 
and maintain special supportive structures such as indexes, 
hash tables, pointers, etc., used in the conventional systems. 
Data can be stored in these machines in a form very similar 
to the data structure defined in the conceptual schema of a 
database. Thus, the difference between the conceptual 
schema and the internal schema of a database in these ma
chines is not as distinct as in conventional systems. The 



194 National Computer Conference, 1980 

CONTROLLER 

CIRCULAR 
MEMORY 

PROCESSORS 

Figure I-Cellular-logic configuration. 

complex mapping between the two data representations can 
often be avoided. 

Four basic architectural decisions which lead to an im
proved packaging of the technologies for the exhaustive as
sociative search are examined as follows: 

(A) The hardware consists of a regular arrangement of 
identical cells. The argument for this decision is as follows. 
First, the development and manufacturing costs of LSI and 
circuit boards are minimized, since only a single generic chip 
need be developed and manufactured and arranged uni
formly on circuit boards. Second, reliability is improved be
cause of the overall simplicity of this approach and because 
several simple schemes can be used to provide dynamic re
covery from hardware failures. Third, the system can easily 
be expanded modularly without causing disruption to the 
system organization. As the database grows, increased stor
age is accompanied by increasing processing power, so re
sponse time remains independent of database size. 

(B) Instead of using higher order arrays or tree structures, 
a one dimensional array of cells is used. The reasons are as 
follows. First, a one dimensional array minimiz~s the num
ber of LSI pins per cell, since communication is restricted 
to fewer cells. Second, the number of pins per package is in
dependent of the number of cells per package. This is very 
important, since it allows us to directly exploit the drastic, 
yet consistent, improvement in density, without increasing 
the number of pins per package. No other arrangement can 
accomplish this. Improved lithography and circuit designs 
promise to make further improvements by a factor of 100 in 
area density by 1990. Third, hardware utilization is most 
easily achieved using a one dimensional array, since fewer 
(only one) restraint must be met. For example, a two di
mensional array requires two restraints. Users of the IL
LIAC IV (Kuck [29]) have found this to be very awkward. 

Furthermore, variable-length data objects can easily be lin
earized onto a one dimensional array. 

(C) Each cell has a dedicated processor and memory. The 
reasons for taking this approach are as follows. First, ex
perience has shown that using N processors that can access 
M memories leads to severe interconnection contention, so 
that neither processors nor memories are well utilized. A 
fixed one-to-one relationship between processors and mem
ories allows an efficient utilization of both. Second, it also 
removes the complex reliability and packaging problems in
volved in a large interconnection switch. Third, the paral
lelism inherent in the exhaustive search can be directly ex
ploited. Fourth, the amount of memory per processor can 
be varied to allow a family of database machines to be built 
using the same architecture. This allows trade-offs between 
cost and response time to be matched to different user en
vironments and changing technology. 

(D) Block-organized memories that are serially accessible 
within each block can be used, such as charge-coupled de
vices (CCD's), magnetic bubbles, and discs. These memories 
are generally cheaper per bit than memories that allow ran
dom addressing at the character level. Such memories will 
generally be classified as slow access. However, they are 
slow only when used to emulate a random access memory. 
When used for the exhaustive associative search, they are 
as efficient as a truly random access memory. In addition 
to searching efficiency, these devices offer efficient storage 
management for updates. Because of their dynamic nature, 
data can be inserted in place at the maximum data rate of 
the memory. Also, supportive data structures such as in
dexes, pointer, hash tables, etc., are eliminated and the ef
fective cost per bit is further reduced. In summary, the block 
serial nature of these devices can be fully exploited to im
prove simplicity, efficiency, and data independence. 



Several systems have been designed based on the cellular
logic approach and some have gone through prototype im
plementation. A few of these systems are briefly mentioned 
here. More details can be found in the papers included in 
the special issues on database machines [9,24]. 

The CASSM project began at the University of Florida in 
1972. The aim was to invest the hardware and software char
acteristics of various associative techniques. Direct hard
ware support of relations, hierarchies, networks, and string 
processing was investigated [11,32,48]. These hardware data 
types were implemented without any restrictions on length. 
Also, storage retrieval of instructions directly from the as
sociative memory (associative programming) was studied. 
Associative programming is presently being studied at the 
University of Florida [50] under a continued NSF grant, with 
the CASSM architecture simulated in software [49]. 

The RAP project began at the University of Toronto in 
1974. RAP [41,44] was intended to provide direct hardware 
support for the normalized relational model, with restrictions 
on the length of tuples. The RAP project also contributed 
to the understanding of several systems level considerations, 
such as the use of RAP as a staging device for very large file 
systems, and system throughput under a multi-user envi
ronment. Since its initial design, RAP has gone through some 
substantial changes. The most recent version, which is de
scribed in Schuster et al. [45], reduces the restrictions on 
the length of tuples. 

The RARES project began at the University of Utah in 
1976. RARES [30] provided hardware support for normal-

MAJOR LOOP 

Database Machines and Issues on DBMS Standards 195 

I I 

ized relations with length restrictions. The RARES storage 
structure was chosen to optimize output efficiency. 

A research project called INDY began at Tektronix in 
1977. INDY [10] directly implements a kernel language that 
is based on strings and classical sets with no hardware re
strictions on length or cardinality. This kernel language acts 
as a meta-language that is generalized enough to directly 
describe various data languages and views, providing a sim
ple closed mathematics for facilitating translations between 
views. 

A recent project undertaken by Chang [7] at IBM, York
town Heights, investigates the use of magnetic bubble mem
ories for supporting relational databases. A modular, con
figurable, electronically-timed magnetic bubble storage has 
been studied. The system follows the general concept of 
logic-per-track while a track in this case is a magnetic bubble 
chip with a modified major-minor loop organization. The 
proposed bubble chip configuration is shown in Figure 2. 
The storage minor loops are grouped to correspond to do
mains in a relation. The transfer line is segmented to allow 
the selection of a minor-loop group (i.e. a domain) to be 
accessed individually. The short buffer loops between the 
major and minor loops alleviate the problems arising from 
the rigid synchronization of the major and minor loops. The 
off-chip marker loops, being one-bit wide in contrast to being 
interspersed with many-bit large data records, can be quickly 
scanned to identify previously marked tuples. Since the 
minor loops allow parallel advance of data while the major 
loops only permit serial read-out of data, the quick scan fea-

DETECTION 
I 

READ TRANSFER (N LINES) 

BUFFER (N GRClJPS) 
BUFFER TRANSFER 

I I I , I ~ 
MINOR LOOPS 

{ 

BUFFER TRANSFER 
BUFFER (N GROUPS) 

WRITE TRANSFER (N LINES) 
MAJOR LOOP 

'- ___ .... ~ ___ .J 
.... ---~ o 0 0 0 ----------- 0_0_ 

2 N 

I ------------------ OFF-CHIP 
MARKER 
LOOPS 

o DO o o 0 
F---~ 

ANNIHILATOR 
Figure 2-Modified major-minor loop organization. 



196 National Computer Conference, 1980 

ture of the marker loop can eliminate the output of unqual
ified data, thus greatly enhancing performance. The project 
clearly demonstrates that bubble memories have several de
sirable characteristics which can be utilized advantageously 
to support database management. 

In summary, the distinguishing features of the cellular
logic approach are 1) increased processing capabilities in 
secondary storage devices to reduce the need for data staging 
in the main memory, 2) search time is independent of the 
database size, 3) elimination of the need for building, up
dating, protecting auxiliary structures, 4) the use of identical 
cells to increase reliability, flexibility in adding or. reducing 
the number of cells and to reduce the cost of production, 
and 5) the potential for extremely high speeds as cell sizes 
decrease and memory density and speed increase (i.e. in
crease in the ratio of processing power to memory). Although 
most of the systems described here have gone through pro
totype implementation and testing, performance data from 
a real application environment is still lacking. The existing 
prototypes have rather limited processing capabilities. Many 
of the DBMS functions will still have to be handled by a 
conventional computer. Also, the staging problem described 
in Section II will not be totally eliminated if large databases 
are stored on archival memories and have to be moved to 
cellular-logic devices. 

Category 2: backend computers 

Backend computers in database systems are dedicated 
computers for carrying out databases processing functions 
such as the retrieval and manipUlation of databases, the ver
ification of data access, the formulation of responses, the 
enforcement of integrity and security rules and constraints, 
etc. Backends are usually general purpose computers even 
though special purpose machines can very well be used. 
Figure 3 shows one possible configuration, the operating 
system, application programs, and DBMS interface run on 
the host computer, and the actual DBMS runs on the back
end computer. 

The key concept of backends is to off-load the database 
management functions from the host computer to dedicated 
processor(s) in order to 1) release the host from tedious and 
time-consuming operations involved in database manipula
tion, maintenance and control, and 2) increase system per
formance through functional specialization of and through 
parallel processing among the host and the backend(s). The 
primary impetus for the backend approach is, of course, to 
reduce the cost of managing data. The backend approach 
can be viewed as a cost-effective alternative to upgrading 
the host or to achieve the level of functionality and per
formance that no conventional system can provide. 

The isolation of the DBMS, the mass storage devices and 
the database from the host can bring a number of additional 
advantages. First, ·several hosts, possibly dissimilar, can 
share on-line data in the configuration shown in Figure 4. 
A single backend may handle the processing of the database 
and present data in forms suitable to the dissimilar hosts. 
Second, databases and the DBMS itself can be transported 

Arplic3tion Operating 
Programs Host 

and DBMS Tnterface 
System 

t 
DBMS Operating 

(Schema, Subschemas, Backend 
DML Tasks) 

System 

1 
Database Storage 

Figure 3-A configuration of a backend computer system. 

from an old mainframe to a new one with relatively little 
conversion effort. Similarly, changes to the databases, the 
mass storage devices, and the DBMS (e.g. adopting a stand
ard DBMS) can be made without entailing changes to the 
host. Third, storage devices including special purpose cel
lular-logic devices or bubble devices can be made available 
through backends to mainframes that do not otherwise sup
port these devices because of I/O or operating system con
traints. Fourth, multiple numbers of backends (see Figure 
5) can be used to process large databases which can be stored 
either in a distributed manner across secondary memory 
devices to facilitate parallel processing or in a manner such 

HOST 
1 

---0 
DATA BASE 

Figure 4-Multiple host configuration. 



BACKEND 
1 

Database Machines and Issues on DBMS Standards 197 

BACKEND 
2 

BACKEND 
K 

DATA BASE DATA BASE DATA BASE 
Figure 5-Multiple backend configuration. 

that one database can be processed by one backend. Lastly, 
the enforcement of database integrity and security can be 
separated from that of operating system integrity and se
curity; thus the failure of one will not endanger the other. 

The first development of the backend system occurred at 
Bell Laboratories [5]. This system was called the Experi
mental Data Management System (XDMS) and was under
taken to both demonstrate the capability of the backend con
cept as well as implement the new CODASYL DBMS 
specifications. The implementation required eighteen months 
and six man years of effort. The system was implemented 
to a level of experimental usefulness and the concept was 
verified. 

The Data Computer is another example of the backend 
processor approach. It is a large-scale database management 
system running on a PDP-lO and has been implemented for 
use in ARPANET [36] by Computer Corp. of America. The 
Data Computer essentially provides facilities for data sharing 
of a single database among dissimilar host computers in a 
network environment. That is, it is implemented through a 
communication scheme involving the identification of the 
host processor type so that data to be retrieved and sent by 
the Datacomputer can appear in the format expected by the 
requesting host. Likewise data which are to be stored by the 
Datacomputer are converted upon receipt from the identified 

host and stored for use as the originator sees it. With such 
a scheme, the amount of storage can be continually ex
panded, performance can be maintained by replicating the 
systems, and the backend machines are available to all hosts 
in the network. 

Some additional developments indicate the possible di
rection in which this movement may be heading. In the past 
few months, Cullinane Corporation made available to four 
government agencies IDMS implemented on a PDP 11170 
capable of supporting an IBM or IBM-compatible host. One 
participating group (within the Navy) is just now beginning 
a very serious evaluation of the utility of such a system in 
their production environments to extend the useful life of 
their existing computing facilities. 

During the period of time Cullinane Corporation was im
plementing IDMS for use in a backend, Kansas State Uni
versity [16,17,37], under a grant from the U.S. Army Com
puter Systems Command, was developing a prototype 
network system built around a machine independent, high
speed bus system (20 mega bytes/sec transfer rate) which 
would permit heterogeneous computers to communicate in 
any topology desired. With this communications support 
software finished, a natural application was the backend 
environment. The software design documents were fur
nished to Cullinane along with the host software. Addition-



198 National Computer Conference, 1980 

ally, Cincom's DBMS system (TOTAL) was modified to run 
on an Interdata 8/32 backend from either the IBM host or 
another mini in the network acting as a host. 

A great deal of database machine activity is occurring in 
Jap"an. One project defines a database machine called ODS" 
-a generalized database subsystem-which has a suffi
ciently low-level interface to provide potential support for 
any data model [18]. One major contribution is its ability to 
interface directly to the main memory of its host so that II 
o overhead incurred by the host CPU during large data trans
fers can be avoided. 

The existing backend systems are still experimental in 
nature. The desirability of backend is yet to be proven by 
performance evaluation and measurement of "real" sys
tems. In conclusion, the idea of extending the functionality 
and performance of a mainframe by dedicated backends is 
a sound one. However, this approach does have its adverse 
problems. For example, the backend(s) introduces different 
hardware with the attendant problems of maintenance, soft
ware support, and the additional procurement effort and 
cost. Also, the balanced assignment of DBMS tasks to the 
host and the backend(s) is not a simple problem. More dis
cussions on backends can be found in [33,42]. 

Category 3: integrated database machines 

This category of systems uses a number of functionally 
specialized processors, which can be general-purpose and/ 
or special-purpose processors, to implement the processes 
of a DBMS. Systems of this type may use, for example, 
specialized associative processors for the processing of di
rectories and mapping data, intelligently controlled disks and 
mass storage devices for the storage and processing of the 
major portions of the database, a system processor for gen
eral coordination, and dedicated hardware for security con
trol. By the use of the functionally specialized hardware and 
the parallel processing capabilities of a family of machines, 
these systems aim to achieve greater efficiencies in database 
management. The highly modular family of machines gives 
users the opportunities to mix and match process and storage 

; capacity. 
Different from the cellular-Iogi~ systems in category 1, this 

category of systems are larger and more complete systems 
of which a category 1 system can be a component. The spe
cialized hardware units used in these systems are quite dif
ferent. They lack the uniformity of the cells in category 1 
systems. This category also differs from category 2 systems 
in that functionality and performance are achieved mainly 
by hardware (and thus software) specializations rather than 
software specialization alone used in the existing backends. 
It should be noted, however, that the distinction made would 
not be clear if special-purpose hardware devices were used 
in the backend systems. Nevertheless, we can say that the 
design of this category of systems involves treating hard
ware, software, DBMS, and databases as a whole rather than 
simply extending the capability of a given mainframe using 
backends. 

Some example systems of this category are the following. 
The Data Base Computer (DB C) project at Ohio State Uni-

versity proposes an architecture where every major DBMS 
function has a dedicated processor and whose overall or
ganization exploits pipe-line parallelism [1,3,20,21,22,23]. It 
contains various associative processors for logical data 
model and disk memory mapping. It also proposes several 
architectural changes to moving head disks to increase band
width an order of magnitude over today's secondary storage 
data rates. The integration of the security function into the 
DBC's architecture is also considered. 

The RAP.2 effort at the University of Toronto has ex
panded its research by formulating the RAP (a category 1 
machine by itselO associative processor's role in an inte
grated database machine. Most of the work has centered 
around data partitioning or staging strategies where database 
and schema data reside partially on disk and partially on 
associative processors [45]. 

The INFOPLEX system proposed at MIT is an example 
of integrated database machine architecture [35]. It utilizes 
new microprocessor capabilities by organizing a memory and 
processor hierarchy which takes advantage of the parallelism 
inherent in.concurrent requests to maximize performance. 

Another direction is to make use of low cost currently 
available microprocessors to form a simple network system 
for processing distributed databases using a single-instruc
tion multiple-data stream architecture (SIMD). In this case, 
segments of data files are stored across memory devices each 
of which is dedicated to a microprocessor. Software tasks 
for a database management system are simultaneously car
ried out by the processors against the contents of the local 
memory. This alleviates much of the switching time over
head found in a network systems with shared memory. A 
recent example of this approach is the MICRONET system 
being developed at the University of Florida [51] using a 
PDP 11-60 and four LSI-II computers. 

Another multiprocessor system called DIRECT [15] is 
designed for supporting relational database management sys
tems using a multiple-instruction multiple-data stream (MIMD) 
architecture. Microprocessors are dynamically assigned to 
a query depending on its priority and the type of relational 
algebraic operators it contains and the size of relations ref
erenced. The system is being implemented using LSI -11103 
microprocessors and CCD memories which have associative 
search capability. 

In summary, the main characteristics of this category of 
database machines are 1) the use of functionally specialized 
hardware to achieve efficiency, 2) the system's approach to 
the design of hardware, software, DBMS, and databases, 
and 3) the modular family of machines allows users to exploit 
parallel processing and pipelining techniques. However, the 
hardware interconnection, the data and program communi
cation, and the operating system support in a system using 
dissimilar hardwares can be rather complex. The proper 
identification of DBMS functions for implementation in 
hardware remains a challenge. 

Category 4: high-speed associative memory systems 

In this category of machines, a high-speed associative 
memory is used together with conventional memory devices 



such as core memories, rotating memories, or shift registers 
to form a hierarchy of memories for data processing. Da
tabases are stored on conventional secondary storage de
vices. Data are moved from the slower secondary storage 
to the associative memory for high-speed searches by con
tent or context. The same characteristics which make a 
cache for speeding up data reference of main memory are 
used here to improve data access to secondary storage. Fig
ure 6 shows a typical configuration of this type of system. 
The associative memories used in these systems differ from 
the cellular-logic systems in that each bit or each word rather 
than a segment of memory has a processing element. As
sociative searches can be carried out in all bits or words of 
the memory simultaneously and thus are much faster than 
the sequential scan of memory segments in rotational de
vices. The technology used for high-speed associative mem
ories is faster than the rotation devices. However, it is far 
more costly. 

A good example of the high-speed associative memory 
approach is the STARAN computer system [2,12,43]. The 
key element of the system is a set up-to-32 associative pro
cessor arrays which provide content addressing and parallel 
processing capabilities. Each processor array is a multi-di
mensional access memory matrix containing 256 words by .. 
256 bits with parallel access to a maximum of 256 bits at a 
time. The access can be in either the word or bit direction. 
Associated with each word of a processor array is a pro
cessing element which examines the content of the word and 
manipulates the word bit-by-bit serially. Control signals are 
broadcast to the processor elements in parallel by the control 
logic unit and the processor elements execute instructions 
simultaneously. Data stored in the main or secondary storage 
of a conventional computer system are paged in and out of 
the processor arrays for associative searches. 

Program instructions of the associative processor are 
stored in a control memory which consists of three fast page 
memories made of volatile, bipolar, semicoriductor elements 
and a core memory block. Program segments stored in the 
core memory block are paged to the fast memories before 
execution. The control logic unit fetches and interprets the 
instruction from the control memory and transfers control 
signals to the processing elements of the processor arrays 
to manipulate data in the arrays. 

Although the associative array processor was originally 
built for air traffic control and other real time sensor sur
veillance and control applications, the content addressability 
and parallel processing capabilities of the processor provide 
many desirable features for database management. A DBMS 
built around a four-array ST ARAN has been reported by 
Moulder [40]. Other work based on this system and a hy
pothetical associative memory for use in a database man
agement environment can be seen in DeFiore and Berra 
[13,14], Berra and Oliver [4], and Linde et al. [31]. 

Figure 6-A typical associative memory system configuration. 

Database Machines and Issues on DBMS Standards 199 

The principal benefit of this approach is improved per
formance. The use of high-speed associative memory re
duces the effective access time of the mass memory where 
databases are stored. However, due to the high cost of build
ing this type of memory and processor, the size of associative 
memory is rather small. In a database management environ
ment, considerable amounts of data will have to be paged 
in and out of the associative memory to take advantage of 
its capability. Although data can be searched in high speed 
once the data are in the memory, to stage data into the mem
ory can become a bottleneck of this type of system. For 
certain types of applications such as table look-up and di
rectory processing, the use of high-speed associative mem
ory will result in an order of magnitude improvement in per
formance at relatively low incremental cost. Where there is 
little locality of references, however, the potential cost ben
efit will not be realized. 

IV. DATABASE MACHINES AND SOME ISSUES ON 
DBMS ARCHITECTURE, DATA MODEL AND 
DATA LANGUAGE DESIGNS RELATED TO DBMS 
STANDARDS 

Having described the motivation, objectives, functional
ities, and challenges of the existing database machines, we 
shall now look into some of the issues on DBMS architec
ture, data model, and data language design from the view
point of database machines. Many issues discussed here 
have often been raised by researchers and practitioners. 
They are very relevant to the standardization of DBMS ar
chitectures, data models, and data languages. 

A. DBMS architecture issues 

DHM's support of multi-schema architectures 

The DBM technology could conceivably make those 
DBMS architectures which involve multiple numbers of 
schemas (e.g. the ANSI/SPARC architecture) very cost-ef
fective. That is, it could have performance features that re
duce the cost and complexity of the various schema map
pings. The commitment to separate user views, logical data 
structure, and physical data structure stands on its own right. 
It is not compromised by the fact that we are limited to von 
Neumann processors, disk, tapes, etc., today and it should 
not be compromised by what happens tomorrow, particu
larly since we can make the separation increasingly econom
ical through DBM technology. With respect to the stand
ardization of the DBMS architecture, it cannot be stated 
categorically that DBM technology as such is going to push 
us toward a particular conceptual data model and external 
data models. Rather the DBM will probably support what
ever is wanted as the "best" conceptual data model (by 
whatever critera) and its mappings to external models and 
the mapping to the internal data model (including the internal 
data model of the DBM itself, the distribution among various 
mass storage devices, and distribution among geographically 
separated database systems). The internal data model is 



200 National Computer Conference, 1980 

probably not "standardizable," because, first, it does not 
need to be. Programs and end users do not see it or depend 
on it. Secondly, it must adapt to changing storage technol
ogies including the DBM, storage hierarchies, geographically 
distributed databases, etc. Therefore it is important to sep
arate the internal schema from the conceptual schema and 
keep it flexible and extensible. 

Mappings between external and conceptual schemas 

The mapping be~een external and conceptual schemas 
may involve a subset mapping and a restructuring mapping.
Subset mappings are necessary to provide privacy from un
wanted queries, security from unwanted updating, and user 
convenience by removing all data that are not of concern to 
the user. Restructuring mappings are necessary to provide 
data structures that are convenient for user applications, and 
to provide support of multiple user models and languages. 

A DBM can play an important role in implementing these 
mappings with efficiency and simplicity. It is possible to 
store and manipulate these schema descriptions on database 
machines as simply another database, where mappings are 
accomplished using queries to the schema descriptions. 
However, to do this, database machines must be capable of 
a more generalized pattern matching capability for strings 
and sets. This is necessary since these schema descriptions 
usually involve searching abstract or axiomatic (e.g., set the
oretic or predicate calculus) representations, rather than 
simply searching actual data instances. Ideally, the same 
hardware would be use for actual data and for both external 
and conceptual schema descriptions. 

Mappings between conceptual and internal schemas 

Some database machines can allow the storage structure 
of a database as defined by the internal model to be very 
similar to the structure defined in the conceptual model, and 
thus simplify the mapping process. For example, a relation 
in the community view can be stored and searched in an 
associative memory without index tables, hash tables, 
pointer arrays, etc., commonly introduced in conventional 
systems. This means that any data stored on these machines 
requires only the simplest of mappings to its internal schema. 
However, this does not necessarily mean that the internal 
schema of the entire database system will be simpler. In a 
large database system, an associative memory would prob
ably be one out of a whole hierarchy of memory devices, 
each featuring its own tradeoff between cost per bit and re
sponse time. If the associative memory is used and managed 
as yet another component in a large system, it could add 
some complexity to the overall internal schema. Instead, the 
architecture of the entire database system should be reex
amined with database machines in mind. Its unique qualities 
can be exploited to simplify the overall system. The unique 
features of associative machines are fast response times and 
simple mapping between the conceptual and the internal 
schemas but with a higher cost per bit than mass storage 
devices. The following three systems functions seem appro
priate for associative machines. 

One function is the direct storage of databases whose re
quirements for speed warrant a higher cost per bit. A second 
function is to manage the mappings between the conceptual 
and internal schemas for databases stored on mass storage 
devices or for geographically distributed databases. The dis
tribution of data among various mass storage devices or 
among geographically separated systems can be described 
and stored directly in associative machines as simply another 
database. Schema mappings can be implemented using quer
ies from the internal and conceptual schema descriptions. 
Associative machines offer the potential for storage and 
querying of abstract representations. An internal schema 
that uses abstract representations, rather than involving ac
tual data instances, has the potential advantages of a more 
compact description and one that requires no updating when 
up-dates are made to the actual data. 

A third function of associative machines is to act as a 
staging device for large blocks of mass storage. Most mass 
storage devices are accessed by location. Efficient use of 
these devices usually requires clustering of data into many 
large physical blocks, which is biased to certain access paths. 
After queries to the internal schema (directories) have re
duced the number of blocks involved in a retrieval to a small 
number, associative machines can then be used to further 
search these blocks. 

B. Data model issues 

Database machines support of data models 

A DBM can be implemented to support any existing data 
model. For example, RAP, RARES, and DIRECT were de
signed specifically to support the relational model. The 
CASSM and INDY systems can support hierarchies as well 
as a subset of relational algebra operators and string pattern 
searches. The ASP system was designed to support a form 
of the network model. Although it was not compatible with 
the DBTG model, such an implementation should not pre
sent any major problems. Finally, any general purpose back
end computer can be programmed to support any or all of 
the models', simultaneously. 

The implementation in hardware of a single model does 
not preclude it being used to support other models. For ex
ample, a system that directly supports relations can be used 
to simulate hierarchical and network models. They can be 
implemented by setting aside items called "associative 
links" or "context pointers," in record occurrences (tuples) 
to store identification and structural data. 

Implementing hierarchies and networks requires the abil
ity to implement "functional associations" between occur
rences of record-types [52]. A record-type is analogous to 
a relation. A functional association can be defined as a l:N 
(i.e., a one-to-many) linkage or mapping between record 
occurrences of two relations. That is, if a I:N linkage exists 
between relations A and B, then one record occurrence of 
A can be associated or linked with zero or more unique rec
ords of B. Each B record will have at most one A record for 
a particular association. An association or link is equivalent 
to a "set" in DBTG terminology. Restrictions on the ap-



plication of functional associations between record-types 
determine if the database schema is hierarchical or network. 

One way to implement an association is to allocate an item 
called ASSOC in the relation that acts as the domain of the 
functional association. This scheme is shown in Figure 7. 
The item ASSOC acts as the associative link. Each record 
occurrence must have one item whose value uniquely iden
tifies the relation and each particular occurrence within the 
relation. This item will be called ID for identification. For 
each record of B that is associated with one record of A, the 
record ID value of A is stored in the ASSOC item of B. 
Finding records of B associated with a particular record of 
A or vice versa is simply a matter of using the associative 
cross selection or join instructions which interrelate two re
lations through comparable ID and ASSOC values. 

A second way to associate records of the same or of dif
ferent types is to create a new linking relation which contains 
two (or more) ID items-one for each record-type. This re
lation, called LINK, associates one record of A to one record 
of B by storing the associated ID' s of the two records in one 
occurrence of LINK. This scheme has the advantage of im
plementing M:N, or many to many, associations between 
record-types. An example is shown in Figure 8. 

It should be noted that only "information carrying" as
sociations need be implemented with links. All other rela
tionships which can be derived directly from the values in 

____ A ___ ---' ----> I-I _____ B ____ --I 

a) l:N association between record-types A and B. 

1 ID-A I A-items I ID-B ASSOC-A B-items I 
b) Record-types with associative link fields. 

A Records B Records 

Al 

Al 

A2 

c) Example record occurrences. 

Figure 7-Implementing associations with relations; a) l:N association be
tween record-types A and B, b) Record-types with associative link fields, c) 

Example record occurrences. 

Database Machines and Issues on DBMS Standards 201 

a) M:N association between record-types A and B. 

A LINK 

I ID-A A-items I ID-A I ID-B I ID-B B-items 

b) A and B record-types with LINK relation. 

A Records LINK Records 

c) Example record occurrence~. 

Figure 8-Implementing associations with a LINK relation; a) M:N associ
ation between record-types A and B, b) A and B record-types with LINK 
relation, c) Example record occurrences. 

the records can be handled directly through associative cross 
selection or join instructions of relational DBM's. 

Of the three data models, the relational model is the most 
general in terms of the types of associations it can represent. 
It also requires the least number of basic or primitive op
erations to implement a relationally complete data manipu
lation instruction set. Also, its simplistic record structure 
and orientation to sets-of-records operations makes it a nat
ural candidate for DBM implementation. 

From the above comments, it may appear that the rela
tional model may be the easiest to implement and result in 
the best performance. However, we must be careful about 
jumping to conclusions. Many of the additional features of 
hierarchical and network models were proposed because of 
the need to improve transaction processing performance. 
The same techniques that have served software implemen
tations will likely serve hardware as well. Also, the users 
application may better lend itself to hierarchical or network 
modeling. In such cases, hierarchical or network hardware 
will probably out-perform relation hardware using software 
and data to simulate other models' primitives. Also, many 
transaction applications do not require complex search nor 
are the sets of records to be processed large. In fact, todays 
online transaction processing applications are dominated by 
having a large number of concurrent transactions requiring 
relatively simple search and update interactions. These types 
of operations are the least likely to take advantage of the 
set-oriented associative processing capabilities of relational 
or set theoretic DBM's. Of course, a major reason why 
existing computerized database applications predominately 
require simple searches and updates is that an adequate im
plementation of more complex models is not available. 



202 National Computer Conference, 1980 

Judging from existing examples, the DBM will very likely 
make the more advanced conceptual data models (e.g. re
lational or set-theoretic) more feasible to implement, where 
as today they are frequently judged very complex to imple
ment efficiently as a general purpose system for a broad base 
of applications. Thus we should be able to choose a standard 
model based on user benefits and assume with confidence 
that the performance gap will gradually close. 

C. Data language issues 

We now turn to data languages, collectively consisting of 
all languages for directly manipulating database data on 
behalf of application programs or end-users. Thus data lan
guages include data sublanguages, which are extensions to 
conventional programming languages, and self-contained 
languages (such as query languages, report generators, 
"query by example" and other end-user interfaces). Data 
sUblanguages in particular are the target of standards efforts 
because of the need to protect the user community's in
vestment in computer programs that use these interfaces. 
Any practical standard takes into consideration user require
ments; e.g., proper functionality and ease of use, and fea
sibility-is there a reasonably efficient, economical imple
mentation of the proposed interface? The feasibility condition 
creates tension in times of rapid technological innovation, 
when ground rules for judging what is possible or economical 
are subject to radical change. This appears to be the case 
for data languages, not only because of DBM development, 
but also in view of the slow but steady trend toward hier
archies of storage and geographically distributed data pro
cessing. The following paragraphs tell this story: The bad 
news is that the ability to improve price/performance through 
technology is very sensitive to the character of the data lan
guage. The good news is that we can predict well in advance 
what features data languages must have to fully exploit 
emerging technology. Furthermore there is a strong indi
cation that these same features are desired by the user com
munity independent of technology considerations. If so, then 
the standards makers have their work cut out for them. 

High level vs. navigational data languages 

As will be seen, the underlyirig technical considerations 
generally motivate the development of very high level data 
languages, by which we mean languages in which the user/ 
programmer expresses to the database system what results 
are expected instead of, or in addition to, how the results are 
to be obtained. With regard to high level data languages it 
must be recognized that: 

-"high level" and "low level," like "procedural" and 
"non-procedural," are relative terms; 

-self-contained languages are not the only languages that 
can be high level or non-procedural. There is no intrinsic 
reason why a data sub language cannot be high level 
even if the programming language in which it is embed
ded is low level. See, for example, the use of ALPHA 
in [8]. 

Whereas everyone appears to agree that end-user oriented 
languages should be high level, there is an ongoing contro
versy concerning whether high level data sublanguages are 
desirable. On the one side are those who argue that pro
grammers should have relatively low level facilities so that 
they can fine-tune performance tradeoffs. The other side 
contends that in an era of increasing programming costs and 
decreasing hardware costs it is best to optimize programmer 
productivity through the use of high level facilities and let 
the system worry about efficient hardware utilization. Tech
nology trends and the DBM in particular strongly support 
the latter position. We will briefly examine some reasons for 
this. 

A database machine can sometimes be "tightly coupled" 
to the hardware which makes use of it. Forinstance a main
frame manufacturer could develop a backend which is en
closed within the host itself and communicates with main 
memory through a very high speed bus. Or a multifunction 
terminal might be plugged directly into a small "query ma
chine." In such cases there is no concern that communi
cation with the DBM will be a performance bottleneck. But 
suppose that the DBM is not developed by the host manu
facturer,or that is designed to serve multiple hosts. Or sup
pose that a DBM is required to communicate with remote 
hosts in a network, or even with other DBMs to support a 
disturbed data base (Figure 9). The need to do all of these 
is bound to arise, so the DBM developer must evaluate the 
response and throughput implications of loosely coupling 
the DBM to an external 110 interface or an even slower 
telecommunications channel. There is nothing in the ten-

LOCAL DATABASES HOST 
AND SEGMENTS OF 

lOCAL NETWORK 

DBM . \ HOST \ 

o 

LOCAL 
NETWORK 

IN~ INTER 

LONG DISTANCE 
COMMUNICATION NETWORK 
(RELATIVELY lJJW SPEED) 

Figure 9-DBM nodes in a distributed environment. 



year picture to suggest that the price/performance penalty' 
for loose-coupling will go away (otherwise the economic ; 
argument for distributed data processing would lose most of 
its force). 

The DBM developer is therefore motivated to minimize 
the amount of data that must go in or out of the DBM in , 
order to get a user's job done. He must also strive to min- : 
imize the number of separate messages, large or small, to 
reduce the communication burden. All of this has a direct 
bearing on the data language available to the user. In the 
extreme case, if the user can express his job in a singl~ data 
language statement, and if that statement can be directly 
interpreted by a DBM, then obviously the communication 
overhead has been reduced as much as is possible. If, in 
contrast, the job must be decomposed by the user into a 
program with several lower level sUblanguage statements, 
possibly executed in a loop, then the number of messages 
and amount of data tninsferred will increase dramatically. 
For example, suppose the user is to mark "inactive" all 
posted accounts for which there have been no debits or cred
its during the last twelve months. Given a powerful data 
language capable of dealing with entire sets of data, this 
transaction can be expressed with a single statement-a sin
gle "call" to the database system and no database records 
transferred. Given a record-at-a-time ("navigational") data .. 
language, there would be at least two calls to the system for 
each inactive account, one to retrieve the record and the 
other to store the modified version. 

There are halfway measures which preserve the naviga
tional nature of low level data languages, but would still re
duce some of the DBM interaction. For instance, high level 
intention declarations are a possibility (Lowenthal [34]). If, 
in the above example the user could state in some fashion, ' 
"I intend to update all accounts for which there have been 
no debits or credits posted during the last twelve months," 
then the system could subsequently buffer blocks of multiple 
records between the host· and' DBM, but move one record 
at a time to or from the user's program. This wouldn't reduce 
the amount of database data transferred, but it would. cut 
down the number of messages between the host and DBM 
(each message would be longer). This technique is useful 
when sequential treatment of data is ultimately unavoidable 
by any means, such as if a program is required to produce 
a list of the accounts that have been marked inactive. 

Consider another method of capturing the high level mean
ing of an operation expressed in a low level data language. 
Suppose that the results to be obtained are such that the 
programmer can write a special kind of subroutine in which 
the only data referred to are the parameters, the database 
data retrieved in the subroutine, and some constants estab
lished in the sub-routine. This subroutine does not refer to 
global (common) data, does not read or write non-database 
files, and does not call other subroutines. Given such con
straints, it is feasible to transfer the entire subroutine to the 
DBM as a single operation, either in source or object form. 
The DBM can perform internal retrievals, returning only the 
subroutine's output to the host. Using the above example, 
a subroutine X would be catalogued (in the DBM) which 
retrieves each qualifying account and stor~s it back with the, 

Database Machines and Issues on DBMS Standards 203 

"inactive" indicator set. The only interaction between the 
host and the DBM is the command to execute X and status 
returned upon completion. An additional benefit of this ap
proach is the opportunity for the DBM to optimize the ex
ecution of X since it "sees" the entire collection of database 
operations instead of individual data language statements. 
CASSM is an example of a DBM which supports catalogued 
subroutines. 

There are several data language features that could be in
cluded if the aim were to minimize communication. Most of 
these motivate or force the user to express at a high level 
what is to be ultimately accomplished. They cause the lan
guage to be less procedural, or supplement procedural se
quences with non-procedural declarations. 

We point out in passing that the cost of inter-task com
munication in a typical mainframe operating system is sur
prisingly high, so that even in a conventional software da
tabase environment there is a strong motivation to reduce 
the traffic between the application task and the database 
task. Another independent motive is fueled by the advent 
'of hierarchies of storage, which are inevitable if very large 
databases are to be addressed in the context of foreseeable 
price/performance trends for different types of secondary 
storage; no single device is expected to emerge both cheaper 
and faster than any other device (see Figure 10). It has been 
argued that storage hierarchies will be more effective if the 
data staging algorithm can anticipate in advance exactly what 
data will be required [34]. This again relies on a language 
through which the user can express with some refinement 
his data needs. High level, set-oriented statements, intention 
declarations and the like would all marry quite well with an 
intelligent data staging mechanism. Thus it is the broad di
rection of computer technology encompassing distributed 
processing, storage hierarchies, and software engineering, 
and not just the DBM which calls for a reassessment of data 
language standards efforts. 

Set oriented vs. record oriented processing 

The DBM concept most directly and vividly exposes the 
relationship between a data language and the hardware 
mechanism which ultimately does the work. In previous sec
tions it has been established that conventional computer 
architecture is not particularly well suited for database man
agement, that dramatic improvements in cost/performance 
can be achieved with fundamentally new approaches. In 
nearly every proposed architecture, be it oriented to search
ing, sorting, list merging or 'the like, there is a common 
theme: one or more sets of data are operated upon to produce 
another set. This is no accident since the basis for the 
claimed economy is parallel processing, that is, many small 
inexpensive processors working effectively together to do 
a large job quickly. The opportunity to exploit parallelism 
practically depends on the ability to define operations in 
terms of sets instead of individual points of data. This in turn 
clearly depends on the ability to deal with sets of data at the 
level of the data languages itself. 

In the world of scientific computing, scalar ori~nted lan-



204 National Computer Conference, 1980 

0:: 
LLJ 
0-_ 
WOO 
1-0:: >-« 

I,CXXJ 

/360/165 

13033-2-1 

CCD'Se 

.2305 

m..J 
BUBBLESe 2314 

«...I (!)o 
LLJo 

~30-1 :Ez 
0::- 3330-11 3350 
LLJ 8350 ...... 8800 0-

...I NEW DAS~ 3850"-« 
I-z 
LLJ .10 0:: 

101 102 103 104 105 106 107 108 109 1010 lOll 1012 

CAPACITY PER ACCESSES PER SECOND 
Figure 10-Trends in online storage-future product directions. 

guages like FORTRAN have been enhanced with high level 
array operations so that, for example, matrix inversion or 
multiplication can be expressed as a single statement. This 
enhancement is motivated not so much by software engi
neering principles as the industry's ability to build highly 
parallel machines that operate on arrays at blinding speeds. 
If matrix multiplication can only be expressed as a sequence 
of DO, IF and assignment statements, how can the under
lying system figure out what the programmer intended? How 
can the advanced architecture be exploited? Likewise if a 
database programmer cannot express a predicate as a pred
icate ("find all accounts for which no credits or debits have 
been posted during the last 12 months" paraphrased as a 
single data language statement)" but must restate it proce
durally with more primitive record oriented statements 
embedded in loops, how can set oriented DBM's like RAP, 
RARES, or CASSM be effectively exploited? 

In the past, set oriented data languages, sometimes (in
correctly) called "relational" languages, have been regarded 
as powerful but impractical-too expensive to implement 
and operate. The lower level record oriented ! languages , in
cluding the CODASYL DML, have scored high points for 
feasibility and economy. The emergence ofDBM technology 
may actually reverse this situation in the next few years. In 
view of this, language developers working with the CO
DASYL basis should work out ways of enhanbing the DML 
with set oriented operations. Not only will this result in a 
better fit with the DBM, but also with the trends in user 
requirements (people productivity), mass storage technology 
and distributed databases. 

There is an obvious counterargument. If users rarely need 
to manipulate matrices, then fancy scientific computers 

should be built for the few and FORTRAN for the masses 
shouldn't be affected. Likewise if very few users need to 
manipulate sets of data, but rely mainly on sequential access 
or simple direct access (' 'find the unique account record with 
key account number 745286"), then set oriented machines 
will not have broad appeal. We strongly believe that although 
there will always be a need for record oriented access to 
data, there is also a great demand for set oriented capabil
ities. Moreover this demand can only increase as databases 
come to be regarded as information resources for manage
ment. 

V. SOME TECHNICAL ISSUES ON DATABASE 
MACHINES 

The following is a collection of key technical issues which 
must be addressed by researchers in database machine tech
nology. The discussionis broadly grouped into three areas: 
basic technology, hardware architecture, and software ar
chitecture. 

Basic technology 

The use of the systems described in Section III will depend 
heavily on cost, performance, storage capacity, and relia
bility of such solid-state devices as LSI processors, 
RAMs, CCDs, and bubbles. DBM architects will be struc
turing systems which incorporate such large volumes of 
these devices that reliability will dominate the design of 
products. Researchers are only beginning to realize that solid 



state devices are not just "electronic" disks. Bubbles and 
CCDs provide unique opportunities for combining logic with 
storage as demonstrated in IBM's bubble query machine, 
RAP.2, etc. The main manufacturing problems for research 
and development are: 

1) High density storage media 

Texas Instruments introduced in 1976 the TIB 0101 bubble 
chips with lOS bits/chip at 108 bits/in2 density (6 /-lm bubble 
diameter), and in 1978 the TIB 0103 bubble chips with 
2.56 x 105 bits/chip at 4 x 106 bits/in2 density (3 /-lm bubble' 
diameter). A simple board of 4" x 4" in area containing 1MB 
bubble memory module as well as all semiconductor com
ponents has already appeared [25]. Research work on 1 /-lm 
and even 0.5 /-lm bubble diameter materials (potentially up 
to 106 bits/in2 density) have been reported by IBM Research. 
The manufacturers must get ready to build devices using 
such materials. Investigators will continue their search for 
materials sustaining even smaller bubbles. Alternatively, the 
engineers may invent and implement device structures ca
pable of higher densities (e.g. bubble lattices) than conven
tional structures (e.g. half disk types used in TIB 0303) at 
the same bubble diameter. 

Similar advances in design are taking place in LSI semi
conductor devices. One example is TI's three-dimensional 
MOS RAM cell design in 1978 that reduces area, power, and 
refresh requirements. Also, several new semiconductor ma
terials are being discovered, such as Galium Arsenide, that 
reduce area and power requirements. 

2) High resolution lithography 

Bubble chips entered the market using high-resolution 
photolithography (in fact, close to the limit of its capability). 
Electron beam lithography will reduce the line width by at 
least another order of magnitude. When used with small
bubble materials or various semiconductor devices, it will 
enable bit density increase by two orders of magnitude. 
Again, clever device structure (e.g. contiguous disks or three 
dimensional MOS devices) achieves higher device density 
at a given lithography capability, thus providing an alter
native to high-resolution lithography. 

3) Packaging 

Packaging considerations can have a large impact on cost, 
speed, and reliability. Cost, speed, and reliability have and 
will continue to be substantially improved by putting more 
devices on a chip. Improvements in device design, better 
yields to allow larger chips, and higher resolution lithography 
are increasing the number of devices on a chip at such a 
drastic rate that it is difficult to comprehend. However, to 
exploit this requires equally drastic architectural approaches 
to insure that the number of LSI is minimized. The simple
minded approach of integrating more of the conventional 
architectures on a chip usually increases the number of pins 

Database Machines and Issues on DBMS Standards 205 

per chip beyond cost-effective technological limits (currently 
about 40 pins per chip). Two approaches can be taken to 
improve the situation. One approach is to reduce the cost 
of more pins per chip. Another approach is to reduce the 
number of pins per chip using a different architectural ap
proach. 

Many improvements have been made or proposed to re
duce the cost of more pins per chip. Gang bonding and film 
carrier techniques allow more of the packaging of chips to 
be automated with improved reliability. Also, putting mul
tiple chips on a single substrate can reduce the cost of pack
aging. Another technique called wafer-scale integration 
(WSI) can potentially avoid much of the packing costs by 
interconnecting the chips directly on the original wafer. Bad 
chips are removed using laser trimming or using dynamic 
diagnostic algorithms to locate and electronically disconnect 
bad chips. The dynamic approach has the advantage that it 
can be applied to remove chips that have gone bad in in
stalled equipment. 

Alternatively, new architectures can cluster hardware 
onto chips in ways that reduce the number of pins per chip 
as well as simplifying the interconnection among chips. The 
cellular-logic devices described in Section III use a one
dimensional array, a tree, or a network. A one-dimensional 
array requires the fewest pins per cell because each cell need 
only communicate to its two adjacent cells. Also, the number 
of pins per chip is independent of the number of cells per 
chip. This allows the drastic increase in devices per chip to 
be directly exploited without increasing the number of pins 
per chip. For example, if one cell per chip requires 16 pins, 
then 100 cells per chip would require only 16 pins. This ad
vantage also carries over to larger packages, such as printed 
circuit boards, mUltiple chip package, and wafer-scale in
tegration. No other topology has this property. All others 
must increase the number of pins per chip as more cells are 
integrated into one chip. In order to exploit this advantage, 
however, the memory and processor of each cell must be 
compatible technologies, so that they can be packaged (or 
preferably processed) together. Various semiconductor 
memory technologies have very compatible logic technolo
gies. Also, magnetic bubble logic shows great promise for 
exploiting bubble memories. Disc and tape memories, how
ever, have no compatible logic technologies. 

The industry has already paid attention to board compat
ibility and voltage compatibility of bubble components with 
semiconductor components. Some remaining problems for 
bubbles with major improvement potentials are mUltiple-chip 
packaging, replacement of external bias magnets by on-chip 
bias, replacement or simplification of the external driving 
coils, and further development of bubble logic. 

4) System innovation 

The hardware problems are reasonably well defined and 
being pursued. The system problems are desperately in need 
of innovation, discipline, and interaction with hardware 
know-how. There have been enough scattered conceptual 
explorations of bubble device capabilities (e.g., a variety of 
device structures for Boolean logic, text editing, data man-



206 National Computer Conference, i980 

agement, sorting, associative search, etc.). Evaluation of the 
feasibility of these devices is lacking. No serious commercial 
impact is foreseen without the development of a few (indeed 
very few) basic chip types encompassing a collection of un i
versal functions. System assessments are equally lacking. 
Detailed designs to include system performance evaluation 
and software requirements are needed to demonstrate the 
advantages of the innovative hardware designs. As usual, 
a multi-disciplinary area tends to become a no-man's land. 
Only simply problems such as simulation and performance 
evaluation of bubbles and CCD's as gap fillers have been 
examined, probably over-worked. 

Tomorrow's DBM's will depend heavily on both loosely 
and tightly coupled inter-processor architectures. Commu
nication considerations will begin to dominate price and per
formance. Realization of DBM architecture will depend 
heavily on progress in this area. 

The design of special purpose LSI devices to fit DBM 
idiosyncrasies will depend heavily on cutting design and 
engineering costs for such devices. If costs continue to run 
high, the DBM implementors will have to structure their 
thinking toward utilization of more conventionally organized 
memory and microprocessor components. 

5) Technology and standardization 

Standardization usually comes after developments in 
products have been done, not before. However in the age 
of very large scale integration (VLSI), when design cost 
overshadows manufacturing cost (e.g., see Moore [39]), it 
would make great sense for the users to indicate what they 
want to see in the hardware. By adjusting their requirements 
to the manufacturing constraints of hardwares, they may 
forecast the standards before the product development, both 
for user convenience and for manufacturing cost reduction. 

Let us clarify the issues by considering a specific tech
nology-magnetic bubbles. At present, bubble memory 
modules with capacity ranging from 92kb to 1Mb are avail
able commercially. Certainly, the technology is mature 
enough to consider standardization issues. In the U. S. A. , 
bubble products are marketed by Texas Instruments, INTEL, 
Rockwell International, and National Semiconductors, and 
also produced by Western Electric and other companies for 
internal use. In Japan, Fujitsu, Hitachi, and NEC are man
ufacturing bubble modules as commercial products (see Ya
magishi [53]). Certainly, there are enough manufacturers to 
make standardization issues relevant and urgent from the 
user's viewpoint. Moreover, steady improvements of device 
density and chip capacity have been predicted, and various 
functional enhancements have been proposed. Certainly, the 
technology will undergo highly dynamic evolutionary stages 
and need standardization to prevent unbridled develop
ments. 

The maturity of manufacturing technology will encourage 
the pursuit of associative search, sorting, data management, 
simple Boolean logic, etc. (see Chang [63]). Although the 
detailed device configurations must await the gradual hard
ware evolution, the terminal characteristics of the chips of 
concern to the users could be responsive to the users, and 

early interactions between the manufacturers (or their fore
runners-the researchers and developers) and the users will 
be worthwhile. Some proposals for standardization may be 
a reasonable way to initiate the dialogues. 

Hardware architecture 

1) Clearly, the proper mix of families of device architec
tures and speeds will be a major concern of DBM technol
ogists in the '80's. Because of the expense of prototyping 
such systems, there will be a heavy reliance on modeling 

. and performance evaluation simulations. 
2) The need to define logical interfaces and protocols for 

I/O architectures will become a dominant theme in the '80's 
[38]. This will be required so that the systems can more easily 
incorporate various DBM components into integrated sys
tems to meet user application needs. One can anticipate the 
same controversies to arise in this area as have occurred in 
communication and networking standardization efforts. 

3) The success of category 1 and category 4 DBMs will 
depend heavily on being able to optimize their usage in broad 
application environments. For example, they appear to be 
most cost effective where searching requires complex rela
tionships be satisfied on secondary keys and when mUltiple 
records respond to such requests. This feature is expected 
to become more important in the future when applications 
are hypothesized to rely heavily on on-line queries. Never
theless, these devices will have greater applicability if they 
can also efficiently search for single records. The ability to 
handle many data types of varying lengths would also 
broaden their market. 

4) The protection mechanism required by databases to 
control concurrency, security, integrity, and recovery have 
barely been considered by workers in DBM technology. This 
is often passed off as a software problem. A fruitful area for 
DBM researchers will be in designing DBM architecture to 
support these functions. The inherent speed of associative 
processors indicates that enforcement of protection rules 
may become one of their primary functions. 

Software architecture 

1) Because database machines will incorporate many di
verse processors, bulk memories, and intelligent memories 
with varying price, performance, and capacity, an extensive 
amount of work will continue to be needed in studying data 
clustering, partitioning, staging, and virtual memory stra
tegies for files. Magnetic disks are not likely to disappear 
in the '80's. Also, other low price/bit large file technologies 
may come of age in the '80's, e.g., laser video disks and 
EBAM. They will be used to store the majority of on-line 
data. Accessing strategies will continue to optimize re
sources by attempting to minimize the number of disk ac
cesses required to complete an operation. Algorithms that 
use intelligent controllers and associative memories will be 
sought to improve access for these bulk memories. 

2) An important contribution that is needed to unify da
tabase machine research will be the identification of com-



monality and compromise between the individual require
ments of text, formatted files, signal, graphic, and map 
databases. 

3) An important issue raised in the past is whether or not 
database machines should be user programmable. That is, 
should software be provided to allow users to code data 
processing and systems programs or should the system limit 
itself to the execution of database management functions. 
Precluding the ability to run machine or compiled code will 
eliminate many of the mechanisms or avenues that allow 
database security and integrity breaches today. It will also 
increase the designer's degree of freedom in customizing the 
DBM for its intended function. 

4) The collection and dissemination of user statistics re
lating to query complexity, file characteristics, locality of 
database access, etc. ,are currently non-existent. Without 
this data, researchers can only hypothesize the relative im
portance of various architectural tradeoffs. We cannot de
liver good solutions until the problems are well understood 
and parameterized. On the other hand, we cannot parame
terize user statistics until we deliver good solutions. Users 
adapt to whatever system is available. Any statistics gath
ered from existing systems is only valid pastboundand may 
not have any resemblance to the future. Improvement must 
be made iteratively. Because of improvements in hardware, 
new and improved system strategies will be developed and 
used. This will, in turn, provide feedback to aid in further 
hardware improvements. 

VI. CONCLUSION 

What impact do hardware technologies and database ma
chines have on the database management area? The answer 
is: They are all making data processing less expensive and 
more accessible (to both large and small users). The low
cost, computational, logic and control capabilities have al
ready made microprocessors ubiquitous. Bubbles and CCD's 
offer modular storage coupled with data storing, arranging 
and managing capabilities. Their impact will be twofold: 
First, they will extend database management capabilities to 
smaller data collections for smaller users in smaller ma
chines. Second, they will be useful in large database systems 
as nodes in a network, as servers, and as componerits- ame
nable to parallel operations. 

Advances in database machine technology will be required 
to solve many database management system problems so 
that the promise of the database gospel can be delivered to 
users. Progress toward producing these machines will de
pend heavily on the improvements in price/performance of 
basic memory and processor technologies. A better under
standing of the partitioning of the total problem will also aid 
special device development. The trend will be toward de
fining integrated database machines. Thus, workers in this 
area will find it necessary to have a good understanding of 
database application and software issues, as well as hard
ware architecture and technology issues. 

The advances in DBM technology will not only have great 
impact on the implementation of DBMS software but also 
have profound effect on the designs of DBMS architectures, 

Database Machines and Issues on DBMS Standards 207 

data models, and data languages. Database machines can 
make it very cost-effective to support high-level data models 
and data languages which are necessary for improving user/ 
programmer productivity and to support multi-schema DBMS 
architectures which are necessary for achieving data inde
pendence. The existing database machines have demon
strated their capabilities to make data mapping between 
schemas a simpler task and to support the existing data 
models with considerable improvement in cost/performance. 
Furthermore, database machines are particularly suitable for 
supporting high level, non-procedural, and set oriented data 
languages. Thus, we should establish a standard DBMS ar
chitecture or a data model based on user benefits and assume 
with confidence that the performance gap will gradually 
close up. High level, non-procedural and set oriented op
erations which score high in both user productivity and tech
nology considerations should be incorporated in a standard 
data language. 

REF~RENCES 

1. BaneJjee, J., Hsiao, D. K., and Kannan, K., "DBC-A Database Com
puter for Very Large Databases," IEEE Transactions on Computers, Vol. 
C-28, No.6, June 1979. 

2. Batcher, K. E., "STARAN Series E," Proc. 1977 International Confer
ence on Parallel Processing, Aug. 1977, pp. 140-143. 

3. Baum, R.I., Hsiao, D. K., and Kanan, K., "The Architecture of Database 
-Part I: Concepts and Capabilities," The Ohio State University Tech
nical'Report No. OSU-CISRC-TR-76-1, (September, 1976). 

4. Berra, P. B. and Oliver, E., "The Role of Associative Array Processors 
in Data Base Machine Architecture," Computer, Vol. 12, No.3, March 
1979. 

5. Canady, R. H., Harrison, R. D., Ivie, E. L., Ryder, J. L., and Wehr, L. 
A. "A Back-End Computer for Database Management," Communica
tions of the ACM, 17, 10, (October 1974), pp. 575-582. 

6. Chang, H., Magnetic Bubble Memory Technology, Marcel Dekker, 1978. 
7. Chang, H., "On Bubble Memories and Relational Data Base," Proc. 4th 

Int'l Conf. on Very Large Data Bases, Berlin, Sept. 13-15, 1978, pp. 207-
229. 

8. Codd, E. F. and Date, C. J., "Interactive Support for Non-Programmers: 
The Relational and Network Approaches," IBM Research publication 
RJl400, San Jose, June 1974. 

9. Computer, Vol. 12, No.3, March 1979. 
10. Copeland, G. P., "String Storage and Searching for Data Base Appli

cations: Implementation on the INDY Backend Kernel," Proc. Fourth 
Workshop on Computer Architecture for Non-Numeric Processing, 
SIGARCH SIGIR SIGMOD, Aug. 1978, pp. 8-17. 

11. Copeland, G. P., Lipovski, G. J., and Su, S. Y. W., "The Architecture 
of CASSM: A Cf'!lIular System for Non-numeric Processing," Proc. 1st 
Annual Symposium on Computer Architecture, Dec. 1973, pp. 121-128. 

12. Davis, E. W., "STARAN PaFallel Processor System Software," AFIPS 
Conf. Proc., Vol. 43, 1974 NCC, pp. 16-22. 

13. DeFiore, C. and Berra, P. B., "A Data Management System Utilizing an 
Associative Memory," AFIPS Conf. ProC'. Vol. 42, 1973 NCC, pp. 181-
185. 

14. DeFiore, C. R. and Berra, P. B .• "A Quantitative Analysis of the Util
ization of Associative Memories in Data Management," IEEE Trans. 
Computers, Vol. C-23, No.2. 1974. pp. 121-132. 

15. DeWitt. D. J., "DIRECT -A Multiprocessor Organization for Supporting 
Relational Data Base Management Systems," IEEE Transactions on 
Computers, Vol. C-28, No.6, June, 1979, pp. 395-406. 

16. Fisher, P. S. and Maryanski, F. J., "Design Considerations" in Distrib
uted Data Base Management Systems, TR CS 77-08, Dept. of Computer 
Science, Kansas State University, Manhattan, Kansas 66506, April 1977. 

17. Freen, R., "A Partitioned Data Base For Use With a Rational Associative 
Processor," M. S. Thesis, Department of Computer Science, University 
of Toronto, December 1977. 



208 National Computer Conference, 1980 

18. Hakozaki, K., et aI., "A Conceptual Design of a Generalized Database 
Subsystem," Proc. of the 3rd Int'l. Conf. on Very Large Data Bases. 
Oct. 1977, pp. 246-253. 

19. Housh, R. D., "A User Transparent Distributed DBMS," Masters Re
port, Dept. of Computer Science, Kansas State University, Manhattan, 
Kansas 66506. 

20. Hsiao, D. K. and Kanna, K., "The Architecture Of A Database Computer 
-Part II: The Design of Structure Memory And Its Related Processors," 
The Ohio State University, Tech Rep. OSU-CISR-TR-76-3 (December 
1976). 

21. Hsiao, D. K. and Kannan, K., "The Architecture Of A Database Com
puter-Part III: The Design Of The Mass Memory And Its related Com
ponents," The Ohio State University, Tech. Rep. OSU-CISRC-TR-76-3 
(December 1976). 

22. Hsiao, D. K., Kannan, K., and Kerr, D. S., "Structure Memory Designs 
For A Database Computer," Proceedings of ACM 77 (October 1977). 

23. Hsiao, D. K., Kanan, K., and Kerr, D. S., "Structure Memory Designs 
for a Database Computer," Proc. ACM 1977, Dec. 1977, pp. 343-350. 

24. IEEE Transactions on Computers, Vol. C-28, No.6, June, 1979. 
25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

INTEL Corp., "INTEL Magnetics Bubble Memory Design Handbook," 
May 1979. 
Jeffery, S. and Berg, J. L., "Developing a Strategy for Federal DBMS 
Standards," Tenth Annual Conf., Society for Management Information 
Systems, Washington, D. c., Sept. 18-20, 1978. 
Jeffery, S., Fife, D., Deutsch, D., and Sockut, G., "Architectural Con
siderations for Federal Database Standards," Spring COMPCON 79, San 
Francisco, Calif., Feb. 26-March 1, 1979. 
Kannan, K., Hsiao, D. K., and Kerr, D. S., "i.. Microprogrammed Key
work Transformation Unit For A Database Computer," Proceedings of 
MICRO-lO Conference, October 1977. 
Kuck, D. J., "ILLIAC IV Software and Application Programming," 
IEEE Transactions on Computers, Vol. C-17, No.8, August 1960. 
Lin, C. S., Smith, D. C. P., and Smith, J. M., "The Design of a Rotating 
Associative Memory for Relational Data Base Applications," ACM 
Trans. Database Systems, Vol. 1, No.1, 1976, pp. 53-65. 
Linde, R., Gates, R., and Peng, T. F., "Associative Processor Appli
cations to Real-time Data Management," AFIPS Conference Proceed
ings, Vol. 42, 1973, pp. 187-195. 
Lipovski, G. J., "Architectural Features of CASSM: A Context 'Ad
dressed Segment Sequential Memory," Proc. 5th Annual Symposium on 
Computer Architecture, Palo Alto, Calif., April 1978, pp. 31-38. 
Lowenthal, E. I., "The Backend Computer, Part I and Part II," Auerbach 
(Data Management) Series, 24-01-04 and 24-01-05 1976. 
Lowenthal, E. I., "A Survey: The Application of Data Base Management 
Computers in Distributed Systems," Proceedings of the Third Interna
tional Conference on Very Large Data Bases, Tokyo, October 1977. 
Madnick, S. E., "INFOPLEX-Hierarchical Decomposition of a Large 
Information Management System Using a Microprocessor Complex," 
Proc. 1975 NCe, Vol. 44, AFIPS Press, Montvale, N. J., pp. 581-586. 
Marill, T. and Stern, D., "The Data Computer-A Network Data Util
ity," 1975 NCC, Vol. 44, June 1975. 

37. Maryanski, F. J. and Wallentine, V. E .. "A Simulation Model of a Back
end Data Base Management System," Proceedings 7th Pittsburgh Sym
posium on Modeling and Simulation, pp. 252-257, April 1976. 

38. McDonnell, K., "Trends--in Non-Software Support For Input-Output 
Functions," Proc. of the 3rd Workshop On Computer Architecture for 
Non-Numeric Processing, May 1977 40-47. 

39. Moore, G., "VLSI: Some Fundamental Challenges," Spectrum, Vol. 16, 
no. 4, April 1979. 

40. Moulder, R., "An Implementation of a Data Management System on an 
Associative Processor," AFIPS Conf. Proc. Vol. 42, 1973 NCC, pp. 171-
176. 

,41. Ozkarahan, E. A., Schuster, S. A., and Smith, K. c., "RAP-An As
sociative Processor for Data Base Management," AFIPS Conf. Proc. 1975 
NCC, pp. 370-387. 

42. Rosenthal, R. S., "An Evaluation of a Backend Data Base Management 
Machine," Proceedings of the Annual Computer Related Information 
Systems Symposium, U. S. Air Force Academy, 1977. 

43. Rudolph, J. A., "A Production Implementation of an Associative Pro
cessor: STARAN," AFIPS. Conf. Proc. 1972 FICC, Vol. 41, Part I, pp. 
229-241. 

44. Schuster, S. A., Ozkarahan, E. A., and Smith, K. C., "A Virtual Memory 
System for a Relational Associative Processor," Proc. Nat. Computer 
Conf., 1976, pp. 855-862. 

45. Schuster, S. A., Nguyen, H. B., Ozkarahan, E. A., and Smith, K. C., 
"RAP .2-An Associative Processor for Databases and Its Applications, " 
IEEE Transactions on Computers, Vol. C-28, No.6, June 1979, pp. 446-
458. 

46. Slotnick, D. L., "Logic per Track Devices," in Advances in Computers, 
Academic Press, 1970, pp. 291-296. 

47. Su, S. Y. W., "Cellular-logic Devices: Concept and Applications," Com
puter, Vol. 12, No.3, March 1979, pp. 11-25. 

48. Su, S. Y. W., Copeland, G. P., and Lipovski, G. J., "Retrieval Operations 
and Data Representations in a Context-addressed Disc System," in Pro
ceedings of ACM's SIGPLAN and SIGIR Interface Meeting, Nov. 1973, 
pp. 144-156. 

49. Su, S. Y. W., Nguyen, L. H., Emam, A., and Lipovski, G. J., "The 
Architectural Features and Implementation Techniques of the Multicell 
CASSM," IEEE Transactions on Computers, Vol. C-28, No.6, June, 
1979, pp. 430-445. 

50. Su, S. Y. W., "Associative Programming in CASSM and its Applica
tions," Proc. of the Third International Conference on Very Large Da
tabases, Oct. 6-8, 1977, pp. 213-228. 

51. Su, S. Y. W., Lupkiewicz, S., Lee, C. J., Lo, D. H., and Doty, K., 
"MICRONET: A Microcomputer Network System for Managing Dis
tributed Relational Databases," Proc. of the 4th International Conference 
on Very Large Data Bases, Berlin, Germany, Sept. 13-15, 1978. 

52. Tsichritzis, D. and Lochovsky, F., Data Base Management Systems, 
Academic Press, 1977. 

53. Yamagishi, K., "The Progress of Magnetic Bubble Development in 
Japan," Proc. 3rd U.S.A.~lapan Computer Conference, October, 1978. 



CONLAN-A formal construction method for hardware 
description languages: basic principles 

by ROBERT PILOTY 
Technische Hochschule Darmstadt, FR Germany 

MARIO BARBACCI 
Carnegie-Mellon University 

DOMINIQUE BORRIONE 
Universite de Grenoble, France 

DONALD DIETMEYER 
University of Wisconsin-Madison 

FREDRICK HILL 
University of Arizona-Tucson 

and 

PATRICK SKELLY 
Honeywell, Phoenix 

. 1. INTRODUCTION 

The development of a CONLAN(CONsensus LANguage) 
goes back to the first Symposium on Hardware Description 
Languages (HDL) at Rutgers University in 1973. It was ini
tiated by J. Lipovski, then U niv.· of Florida. After two years 
of preparatory work the CONLAN Working Group was 
formed on the occasion of the third Symposium on HDL in 
New York. These papers represent the result of four years 
of hard work of a group spread out over two continents. This 
work is by no means complete; many things have still to be 
done. Nevertheless, encouraged by the positive response to 
an informal presentation of our approach at the fourth Sym
posium on HDL in Palo Alto 1979, we feel that publication 
of what we have obtained so far is warranted. This paper 
presents the basic principles of CONLAN. Two companion 
papers [1,2] treat language derivation and language appli
cation within the framework of CONLAN. A more detailed 
report, of which a draft exists already, will be forthcoming 
soon. 

2. MOTIVATION AND OBJECTIVES 

The decision to start the CONLAN project was motivated 
by the following assessment of the situation in the area of 
HDL and of Computer Aided Design (CAD) tools based on 
them: 

Several dozen HDL's existed in 1973 [3] and every,.year 

209 

since new languages have been proposed and published, 
mostly from persons in academic institutions [4,5,6]. This 
tendency to proliferation is in sharp contrast to acceptance 
in industry. Neither have they been used to document the 
design process of digital systems nor to support tools for 
certification, synthesis, and performance evaluation to any 
appreciable extent. Most CAD tools in industry are de
signed to aid the manufacturing process (placement, routing, 
mask layout etc.). The process of systems and logic design 
is mostly carried out in the traditional way of drawing block 
and circuit diagrams at the IC package or gate level. In many 
cases these diagrams are the only true and complete docu
mentation of the system. Most other aspects or phases of 
the system design, particularly system behavior, are infor
mally and incompletely described. Simulation as a means for 
advanced certification is used, if at all, at a very low level 
(mostly gate level) and hence at enormous cost for more 
complex systems. Most of the certification is done very late 
at the level of a physical prototype causing costly changes 
in physical design. 

This situation has not changed very much in the four years 
of CONLAN development: HDL's continue to proliferate 
[7,8] but their usage in real life design has not increased in 
the same proportion. Only recently a growing interest in 
efficient tools for design support at systems and logic level 
can be observed, probably due to the advance of LSI and 
VLSI, where late changes make a system more and more 
costly, and due to increased system complexity in a competi
tive market, calling for more efficient design tools [9,10). 



210 National Computer Conference, 1980 

There are several reasons why acceptance of existing 
HDL's is so low: 

1. None of the languages alone is of sufficient scope to 
portray all aspects of a system and cover all phases of 
the design process. 

2. Languages of different scope are syntactically and se-
mantically unrelated. 

3. Few of the languages are formally defined. 
4. Only a few languages are implemented. 
5. Descriptions are represented by character strings rather 

than diagrams. 
6. There exists no comprehensive hardware and firmware 

design methodology telling how to use HDL's effec
tively. 

The main aim of the CONLAN Working Group is to rem
edy the first four deficiencies [11]. Its primary objectives 
are: 

1. to provide a common· formal syntactic and semantic 
base for all levels and aspects of hardware and firmware 
description, in particular for descriptions of system 
structure and behavior. 

2. to provide a means for the derivation of user languages 
from this common base 

-having a limited scope adjusted to a particular 
class of design tasks, 

-thus being easy to learn and simple to handle, 
-yet having a well defined semantic relation among 

each other. 
3. to support CAD tools for documentation, certification, 

design space exploration, synthesis and so on. 

CONLAN is not intended as a language standard trying 
to impose a certain style of hardware description on makers 
of design tools. It should rather be viewed as a formal system 
which allows them to construct HDL's of their choice in a 
consistent and unambiguous way within some notational 
conventions. 

Character strings using the ISO-IRV 646 character set are 
the basic means of representing CONLAN descriptions, 
since they are more general and easier to use as an input or 
output for CAD tools. !l0wever!tl~,2;!L.9~£tiy~_Qf_th~~ 
~.~~!.-t\~C:'fOUP. ataJ.::lJtf.Ls1flge.,,~lQ,,§J1R~. h~~JQ.~!:t!~< d~
~nptions in CONLA~.!YbicbJlr~,is_Qmorphic.to.space,s,tm~:"· 
turern-efworl(-desci-fptions). 9f b~~l~yior (~~quential. and .(;on~ 
'~>~tr~~t flow descril'tions)-,. alld, !2i>rgpo~~:.g~~phicarmem~~r~' 
of the CONLAN family~ 
. ··'Problems of design methodology are not treated in this 
presentation of CONLAN. Much remains to be done in this 
area although a number of significant results have been ob
tained already. 

3. BASIC APPROACH 

Language family 

CONLAN supports a self-defining, extensible family of 
languages. Its member languages are tied together by a com-

mon core syntax and a common semantic definition system. 
The CONLAN construct to define a member language is 
called a language definition segment. 

Descriptions 

The member languages are used to write descriptions of 
hardware, firmware or software modules. Description defi
nition segments are provided for this purpose as a CONLAN 
construct. 

Abstract datatypes 

The method for semantic definition is based on the concept 
of abstract data types, which has been developed for pro
gramming languages like CLU [12,13] or ALPHARD [14,15]. 
An abstract data type, henceforth called a type, is defined 
by a domain of elements and a set of operations on these 
elements. New types may be defined in terms of primitive 
types supplied with the language. 

Reference language 

Contrasting the application of types in programming lan
guages, the primitive types of a CONLAN member language 
except Primitive Set CONLAN (described later in this paper) 
are not implied. Rather, they are defined in terms of the 
types of one other member language. This language is called 
the reference language of the language being defined. This 
establishes a partial order among the member languages: A 
language Lb is derived from a language La if La is the ref
erence language of Lb or if there is a chain of reference lan
guages leading from Lb to La. 

Self-definition 

In CONLAN the same construction mechanism and the 
same notational system used to provide descriptions is also 
used to define new language members. In this sense CON
LAN is self-defining in contrast to externally defined lan
guages using a separate language to define its semantics, e.g., 
the formal description of PL/I using the Vienna Definition 
Language [16]. 

Extensibility 

The CONLAN family of languages is open ended. New 
languages may be derived from existing ones at any given 
point in time as the need arises. They in turn may be used 
later as reference languages for further languages. 

Syntax modification-core syntax 

The syntax of a new CONLAN member may be made to 
differ from the syntax of its reference language by adding 



and/or deleting productions in the reference syntax. A FOR
MAT statement is provided for this purpose. This capability 
permits the language designer to keep the syntax of a new 
language as simple as possible and yet allows the incorpo
ration of new constructs to denote specific features, e.g., 
the introduction of an infix symbol to denote soine new op
eration. There is a set of productions which may never be 
deleted, and thus is common to all CONLAN members. It 
is called the core syntax. 

CONLAN text structure 

The CONLAN text structure is shown in Figure 1. At any 
given point in time it consists of a set of language definition 
segments and a set of description segments. Each segment 
is under the scope of a REFLAN statement. In a language 
definition segment this statement points to the language from 
which the new language is directly derived. Thus language 
LLI is directly derived from Ll, and LL2 is directly derived 
from L2. In a description segment the REFLAN statement 
points to the language In which the description is written. 

Hiding of types and operations 

It is important to note the CONLAN concept of hiding 
types and operations. 

Referring to Figure 1, for the writer of a LLI only those 
types and operations which are defined in L 1 and not marked 
PRIV ATE are visible and accessible. This implies that the 
types and operations of bcl are inaccessible to LLI unless 
explicitly brought forward by Ll with a CARRY statement. 
The CARRY statement avoids the need for redefinition if 
a type is used in more than one language level. This hiding 
mechanism is the main instrument to keep derived languages 
simple and maintain a clear sel1)antic relation with their 
ancestor languages. ;;tr:> .,;'fl' 4t ft/i'~// 

Base conlan-toolmakers, users 

There is one root language called base conlan (bcl) , serving 
as the interface between the CONLAN Working Group and 
its public of toolmakers and users. Toolmakers start from 
bcl to construct languages and their associated CAD tools. 
Users write descriptions of hardware and firmware systems 
in these languages. Bcl provides a carefully chosen set of 
basic types reflecting the CONLAN concept of time and 
space, of signals and carriers, of arrays and records. It is 
described in more detail in Reference 1. 

Primitive set conlan 

To define bcl the CONLAN Working Group used a very 
low level but powerful language called primitive set conlan 
(pscl) to formally define the concepts represented by the bcl 
types. Pscl has no reference language. It owns a set of prim
itive types whose domains and operations are introduced 

Formal Construction Method: Basic Principles 211 

informally. The rest of this paper is devoted to the formal 
concepts of CONLAN and a description of pscl. 

4. FORMAL CONCEPTS 

CONLAN deals with the following categories of objects 

-Elements, Parameters, Operations, Types and Classes, 
Descriptions, and Languages 

Identifiers are used to denote CONLAN objects. Simple 
identifiers start with at least one letter followed by an ar
bitrary string ofletters, digits, and underscore C-'), of any 
length and terminating with a letter, or digit, or with the 
symbol @. Symbol @ denotes a system identifier which may 
be used only within a language definition segment. Com
pound identifiers are two or more simple identifiers sepa
rated by period C.'). They permit one to prefix a simple 
identifier with one or more enclosing segment identifiers if d.s:'r,>~/ 
the corresponding object is referenced outside the segment >",." 

providing the simple identifier. 

'- 4.1 Elements 

Elements are the operands for CONLAN operations. 
CONLAN works with a well defined universe of elements. 
Subsets of this universe serve as domains for the operations. 

4.2 Parameters 

There are formal and actual parameters. A formal param
eter is denoted by an identifier representing any element of 
a given type. Formal parameters appearing in a parameter 
list of an operation or type or a description are typed, i.e., the 
parameter is followed by the type designator separated by 
a colon (e.g., x:bool). The designator defines the domain of 
x and the operations applicable to it. 

Typing of formal parameters permits type checking: When 
a formal parameter is bound to an actual parameter, its as
sociated type designator is used to check if the type of the 
actual parameter is equivalent to the type of the formal pa
rameter. The type of the actual parameter is normally ex
plicitly stated in a declaration, or in one of the constructs 
involving predicates (e.g., parameter a in ALL a:int WITH 
pred(a,u,v) ENDALL). On the other hand, when the actual 
parameter is a constant denotation, it can also be checked 
to determine that it belongs to the domain of the prescribed 
type. 

Generic segments [17] may be specified in CONLAN, i.e., 
segments which accept an operation identifier (operator 
symbol) or a type designator as a parameter. Formal generic 
parameters must be typed using keyword FUNCTION or 
ACTIVITY or a class designator. Consider for example: 

x(,.,.f:FUNCTION(int,int):bool, .. ) or x(..,u:someclass, .. ) 

In the first case f is typed to accept any function identifier 
which is defined as a binary function with an integer domain 



212 National Computer Conference, 1980 

REFLAN bel 
Ll 

pscl 

REFLAN pscl 
bel 

~ 

REFLA~Nl REFLAN Ll 
LLl LL1' 

'-----

REFLAN LLl 
dff 

REFLAN LL1' 
Intel 8080 

REFLAN L2 
LL2 

REFLAN LL2 
sn74150 

Figure I-CONLAN text structure. 

i 
CONLAN 

Working Group 

Toolmakers 

. Users 



and a Boolean range. In the second case u accepts any type 
designator, which belongs to the class 'someclass.' 

4.3 Operations 

CONLAN operations are normally denoted by an iden
tifier prefixing a list of parameters. Operator symbols may 
be introduced for prefix and infix notation either in lieu of 
a standard functional notation or as an alternative to it via 
syntax modification. 

Two categories of operations are known in CONLAN: 
activities and functions. 

Activities 

if An activity changes the state of one or more carriers. It 
is defined by an activity definition segment of the form: 

ACTIVITY ident (typed-parameters) BODY ...... ENDident 

Formal parameters are typed. The body may contain dec
larations for local carriers and enclose a non-empty list of 
invocations of previously defined activities. ;V -

An activity may be invoked in five modes: 

-unconditional, e.g.: actl(expl,exp2, ... ) 
-IF cl THEN actl ELIF c2 THEN act2 .... ELSE actn 

ENDIF 
-ON c1 IS actl ENDON 
-CASE exp IS xl:actl, .... xn:actn, ELSE act 

ENDCASE 
-ONCASE exp IS xl:actl, .... xn:actn, ELSE act 

ENDON 

If invoked unde~~~ orc-As~~his-~~l~~t~d~;-i~~~'~~";th~ 
condition is true. If invoked under ON or ONCASE it. is i 
evaluated whenever a change in the value of the condition) 
is detected. =_.c~,<,"'_,-'"'>~'~o,~ ..• -.-.".'-~'.. "~ ... ,.".-,,,,,,.'''''~''- .' ---

Functions 

A function maps a domain of elements into a range of 
elements. It is defined by a function definition segment of 
the form: 

FUNCTION ident(typed-parameters): result-type 
BODY .... RETURN expr ENDident 

Formal parameters are typed. The body may contain dec
larations for local carriers and enclose a non-empty list of 
invocations of previously defined activities. 

Functions are normally invoked in expressions. Expres
sions returning a Boolean result may also be called predi
cates. A new expression may be formed from existing ones 
in one of the following forms. 

Formal Construction Method: Basic Principles 213 

-nesting, e.g. f1(expl,exp2, ... ) 
-IF cl THEN expl ELIF c2 THEN exp2 .... ELSE 

expn ENDIF 
- THE@ r:restype WITH@ pred(r,a,b ... ) ENDTHE 

The last form selects the element r from the result type --'~-"'''--'-'''''''''-'''''''''''''--''''8 
for which the predicate becomes true. If it becomes true for . 
none or several e~ of r~strue an error condition exists, . 

o construct new predicates fr~ existing pre<frcates'fh: 
equivalent of quantifiers known from first order predicate 
calculus is available in CONLAN. The following forms may 
be used in addition to those of the preceding paragraph: 

-FORALL@ x:atype IS@ pred(x,a,b .... ) ENDFOR 
-FORSOME@ x:atype IS@ pred(x,a,b .... ) ENDFOR 
-FORONE@ x:atype IS@ pred(x,a,b .... ) END FOR 

Assertions are predicates which denote conditions on ac
tual input, output and attribute parameters as well as on local 
objects. Assertions must be t . t.inJim.~,~.h~!l. 
the segment .contai~!~~.,t1!~l~~~§~~r!iQ.,ll~_i§~~ ... (Qll~r..i!::* 
~onSj''''orw~used 'td~~,Sr,!£!i.Q!l~},:, If an assertion is not true an 
eiTOf~coiiQiHon·~exlsts. 

4.4 Types and classes 

Types are defined in type definition segments of the fol
lowing form (simplified): 

TYPE t2(typed-parameters) BODY set-definition carry 
operation-definition ENDt2 

Parameters are optional. If present, a family of types is 
specified by the definition. 

The set definition part serves to specify the domain of the 
type. It may be specified in any of three ways: 

1. as a true subset of the domain of an existing type tl 
using the subset constructor: 

ALL x:tl WITH pred(x,a,b) ENDALL 

2. identical to the domain of an existing type by simply 
writing its designator, tl; 

3. by enumeration of constant denotations. 

In cases (1) and (2) type tl is called the defining type. In 
case (3) the defining type is the universal type univ@. 

In the operation definition part, operations may be defined 
to operate on the new type. These operations are defined 
in terms of the operations previously defined including op
erations of the defining type t 1. The operations of the de
fining type t 1 may not be applied to the domain of the defined 
type t2 outside the body of the definition of t2 (hiding of 
operations) unless explicitly listed in the carry part. The 
parameters or results of the carried operations originally 
typed with tl are then considered typed with t2 (implicit type 
conversion). 



214 National Computer Conference, 1980 

Type designators, may be used as operands in type rela
tions: 

1. Two types s, t are equal (s = t) if sand t refer to the 
same type definition segment. 

2. Let sand t designate two types. Then t is derived from 
s(t<ls) iff s = tor t is a subtype of s or s is the defining 
type of t or there exists a set of types 1m , 1m - 1> ... ,1; , ... , 

t], for m>2 such that tm=t and t1 =s and 1;<lt;-1 for 
all i=2; ... ,m. 

3. Let x represent an element of the CONLAN universe 
and t the designator of any type in CONLAN. Then 
x is an element of t(xe.t) if x is the denotation of an 
element of the domain of t. 

Classes are named sets of type designators together with 
operations defined on elements of that set. A class is defined 
by a class definition segment analogous to a type definition. 
The class whose domain consists of the type designators of 
all types defined or yet to be defined is called the universal 
class any@. The main use of class definitions is to introduce 
designators for generic parameters, e.g., TYPE array 
(u:any@). 

4.5 Descriptions 

A description definition segment is used to define the 
input/output relation of hardware, firmware, or software 
modules. Details about their definition and usage can be 
found in Reference 2. 

DESCRIPTION nand(IN x,y: btml OUT z: btml) BODY 
z. = (x-/\y)61 ENDnand 

In the above example, 6 is the decay operator, . = denotes 
terminal connection, and btml has been defined as the type 
"Boolean terminal with default value 1" in Reference 1. 

4.6 Languages 

A CONLAN member language is defined via a language 
definition segment of the form:, 

REFLAN oldlanguage CONLAN newlanguage 
BODY ... EN Dnewlanguage 

The constituents of the body are: 

-list of carried types and operations from the reference 
language (optional) 

-definition of public and private types 
-operation definitions (optional) 
-description definitions (optional) 
-format statements (optional) 

Notice that operations may be defined outside type seg
ments. A library of operations could therefore be defined as 
part of a CONLAN segment. The same applies to descrip-

tions if the language is geared to describing systems in terms 
of standard modules (e.g. TTL-modules). Syntax modifica
tions via format statements will be illustrated in Reference 
1. 

All types referenced in the formal parameter lists appear
ing in non-private type, operation, and description defini
tions must either be explicitly defined or carried from the 
reference language (closure of a language with respect to 
types). 

5. PRIMITIVE SET CONLAN (pscl) 

Pscl is the lowest language level in CONLAN. It has no 
reference language. Hence its types (domains and opera
tions) are defined informally. 

UNIV@ 

Type univ@ consist-s of all members of all types defined 
or yet to be defined in all members of the CONLAN family, 
together with operators ' =' and '*,'. It permits the present 
definition of operations on objects to be defined in the future: 

univ@={ .. , -1, 0, + 1, .. , '!' , .. ,0; (.0, 0.), .. , 'xYz' , .. } 

Type univ@ is considered as the defining type for the other 
types of pscl, namely "int," "bool," "string," "cell@," 
"tuple@" from which all other·types of CONLAN will be 
derived. 

ANY@ 

Class any@ is the universal class in CONLAN, and the 
only class known in pscl. Its domain is the set of designators 
for all types defined or yet to be defined in all members of 
the CONLAN family, together with operations ' = " '*,', 
'e.', and '<I'. 

any@={univ@, int, bool, tuple@, cell@, string, ... } 

Function 'e.' may be used to determine if an object from 
univ@ is a member of a defined type (a member of any@). 

Function '<I' may be used to determine if a member of 
any@ (a type) was derived from another member of any@. 

INT 

Type int consists of all integers, together with a substantial 
number of operators provided without formal definition, i.e., 
they are "known." An integer is denoted with a contiguous 
sequence of symbols, digits and capitals that may be parti
tioned into the sign part, magnitude part and base indicator. 
The sign part consists of symbol + (optional) or symbol 
-. The magnitude may be expressed in decimal, binary (B), 
octal (0), or hexadecimal (H). For instance, 

-'12= -1100B= -140= -CH 



BOOL 

Type bool has two members, denoted by 1 and 0 repre
senting "true" and "false" respectively, together with op
erations '=', ' =1= " ' /\', 'V', ' I " ' <', ':::::;,:, ' > " ';;::::'. The 
relational operators are based upon 0 being less than 1. 

STRING 

Type string consists of all sequences of characters, to
gether with operations' =', , =1=', '<', ':::::;,', '>', ';;::::', and 
order@. The objects of string are denoted by enclosing the 
sequence in single quotes ('). Sequences such as 'lA', 
'b + 5', are included. The character ' must be doubled if it 
is to appear in a string denotation (e.g., 'What"s his name?'). 

The relational operators are based in the order of char
acters in the ISO-IRV 646 standard. When comparing strings 
of different length, the shorter string is padded or extended 
with trailing spaces (code 20H). 

Function order@ takes a string as a parameter and returns 
an integer computed by treating the elements of the string 
(i.e., the characters) as 'digits' in a base 128 representatioQ. 
The leading character is the most significant 'digit'. For in
stance, order@('Xy2') returns (58H*128*128 + 79H*128 + 
32H), that is, 163CB2H. 

TUPLE@ 

Type tuple@ consists of all lists of members of univ@, 
together with operations ' = " ' =1= " size@, select@, re
move@, and extend@. Tuple@ includes the empty list. A 
tuple is denoted via a list of object denotations enclosed in 
'(.' and '.)', and separated by commas. 

Two tuples are equal (' = ') if they have the same size and 
identical members in identical order. Otherwise they are not 
equal (' =1= '). 

Function size@(x) returns the number of members of a 
tuple. If the tuple is empty, size@ returns O. Consecutive 
integers from 1 to size@(x) identify the positions of the mem
bers of tuple x. Only the positions of this range may be ref
erenced. Attempts to reference positions outside this range 
result in an error report. 

Function select@(x,i) returns the member of tuple x in 
position i (if integer i is in the range 1 through size@(x». 

Function remove@(x,i) returns the tuple y such that y 
holds all components of x in the same order except the ith 
one if i is in the range from 1 to size@(x) else an error con
dition exists. If size@(x) = 1 then the empty tuple is returned. 

Function extend@(x,u) returns the tuple y of size 
size@(x) + 1 with the leftmost size@(x) components being 
identical to those of x and u as the component in position 
size@(x) + 1. 

Tuples are never modified. Remove@ and extend@ sim
ply select the member of the set of all tuples with the right 
size and contents. The original tuple is not altered. 

Formal Construction Method: Basic Principles 215 

CELL@ 

Type cell@ consists of all ' containers' of members of 
univ@. Cells can contain at most one element ofa type. The 
type of the contents must be specified as a parameter in a 
type_designator, when the cell is declared. For instance, 
cell@(t:int). Cells are initially empty. . 

Function ceILtype@(x) returns a member of any@, 
namely the type of the (potential) contents of cell x. 

Function empty@(x) returns 1 ('true') if cell x is empty 
otherwise it returns 0 ('false'). 

Function get@(x) returns the contents of cell x. If the cell 
x is empty an error condition exists. 

Activity put@(x,u) replaces the contents of cell x and u. 
The type of u must be identical to the type of the contents 
of cell x. Attempts to put an element of the wrong type result 
in an error condition. If cell x is empty, put@ simply inserts 
u in the cell. 

Cells are potentially modifiable objects (via function 
put@). These are the only objects with this attribute and 
constitute the bases for the development of carriers, varia
bles, and other modifiable objects in the CONLAN family. 

6. EXAMPLES OF TYPE AND CLASS DERIVATION 

From the types of pscl new types have been derived using 
the techniques explained under type definition . For example, 

6.1 Typed tuples 

TYPE tytuple@(t: any@) BODY 
ALL x: tuple@ WITH FORALL i: bint(1,size@(x» 
IS@ x[i] E t ENDFORALL ENDALL 
CARRY =, =1=, size@, remove@ ENDCARRY 

FUNCTION select(x: tytuple@(t), i: pint): t 

RETURN THE@ z: t WITH@ z = 
select@(old@(x),i) 

ENDselect 

FUNCTION tail(x: tytuple@(t»: tytuple@(t) 
ASSERT size@(x) > 1 ENDASSERT 
RETURN remove@(x,l) 

ENDtail 

FUNCTION extend(x: tytuple@(t), a: t) : tytuple@(t) 
RETURN new@(extend@(old@(x),a» 

ENDextend 

"/Swap two elements of a typed tuple/" 
FUNCTION exchange(x: tytuple@(t), i, j: pint): 
tytuple@(t) 

ASSERT i :s; size@(x), j :::::;, size@(x) ENDASSERT 
RETURN THE@ y: tytuple@(t) WITH@ 

size@(y) = size@(x) /\ 
FORALL@ k: bint(1,size@(x») IS@ 

IF k = i THEN y[k] = x[j] 



216 National Computer Conference, 1980 

ELIF k = j THEN y[k] = xU] ELSE y[k] = x[k] 
ENDIF ENDFORALL ENDTHE 

ENDexchange 
ENDtytuple 

Type tytuple@ is a generic type. Its formal parameter t 

may be bound to the designator of any defined type. In its 
definition two auxiliary types are used which are not ex
plicitly derived here: (1) Type pint, whose domain is all 
positive integers together with all integer operations. and 
(2) Type bint (iJ :int), whose domain consists of all sets of 
consecutive integers {i, ... J}. 

The domain of type tytuple@ is the set of all tuples whose 
components are elements of the same type t. Functions 
=, =1=, size@, and remove@ are carried from tuple@ to 
tytuple@. In addition, three new functions are defined for 
elements of tytuple@: select, extend, exchange. 

Function select(x:tytuple@(t),i:pint):t on tytuple@ is de
fined to be identical to function select@(x:tuple@,i:int):univ@ 
on tuple@ restricted to the types tytuple@, pint and t. A 
special type conversion operator old@(x) is used to convert 
the element x of tytuple@ to the old type tuple@ before the 
function select@ of tuple@ is applied. . 

Function extend on tytuple@ is equivalent to extend@ on 
tuple@ but restricted in the typing of its parameters and the 
result. 

Function exchange forms a tuple y by interchanging ele
ments i and j of tuple x. 

6.2 Scalar value types 

CLASS scalar_value_type BODY 
ALL x:any@ WITH x <I int V x <I bool V x <I string 
END ALL 
CARRYALL 

END scalar_ value_type 

Class scalar_value_type is defined as the set of those 
types (i.e., members of any@) which are equal to or derived 
from one of the primitive types int~ bool, or string. The CAR
RYALL statement makes all relations defined on any@ also 
available to the types belonging to class scalar_value_type. 

As an example of the use of classes: 

TYPE scalar_cell(u:scalar_value_type) BODY 
cell@(u) 
CARRYALL 

ENDscalar_cell 

Generic type scalar_cell has a parameter u which may be 
bound only to a scalar_value_type, for example: 

scalar_cell(bool) 

specifies cells which may only contain Booleans. Thus writ
ing 

scalar_cell(tytuple(bool) 

will result in a type checking error since because tytuple(bool) 
is not an element of the class scalar_value_type. 

7. CONCLUSIONS 

In this paper the motivation, objectives, basic concepts 
of the CONLAN family and its primitive set members are 
described. 

To promote an orderly development of hardware descrip
tion languages and to enhance their acceptance in an indus
trial environment, a powerful construction mechanism for 
such languages, based on a common core syntax is pre
sented. This construction mechanism ensures that the se
mantics of the languages derived are well defined. Further, 
semantically related languages can be constructed which 
permit the description of digital systems at different levels 
of abstraction. The common core syntax facilitates learning 
a new language written in the CONLAN framework. In ad
dition, capabilities for syntax modification permit the 
suppression of unneeded constructs and the introduction of 
shorthand for frequently used objects to obtain simple yet 
useful languages. 

We feel that the primitive set language, together with the 
construction mechanism are not only valid for the devel
opment of hardware description languages but also represent 
a contribution to the available techniques for formal seman
tic specification of operative languages, including program
ming languages. 

The three papers presented in this series illustrate the basic 
principles ofthe construction mechanism, the process oflan
guage derivation, and examples of the application of a de
rived language to hardware description. 

Additional reports on the progress of the CONLAN work
ing group are in preparation. Future efforts will be directed 
toward the preparation of a complete report covering our 
method for syntax modification, the formal development of 
the CONLAN array and record constructors, and Base 
CONLAN (the constructional base for user languages), as 
well as examples of user languages. In addition, the working 
group expects to develop more comprehensive user lan
guages covering the design of systems at the gate level, reg
ister transfer level, instruction set level (macro and micro 
programming), and system level. 

8. ACKNOWLEDGMENTS 

The authors are indebted to Bell Northern Research (Ot
tawa), Sperry Univac (Philadelphia), Office of Naval Re
search, Ballistic Missile Defense Advanced Technical Cen
ter (Hul!tsville), IRIA (Paris), Busdesministerium fur 
Forschung und Technologie (Bonn), Siemens (Munich), and 
Fujitsu (Tokyo) for their interest and support, Professor 
Yaohan Chu for his early contributions, and in particular to 
Professor Jack Lipovski for his help and unwavering con
fidence in the group. 



9. REFERENCES 

"1. Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill, F. and Skelly, 
P., "CONLAN-A Formal Construction Method for Hardware Descrip
tion Languages: Language Derivation," Proceedings National Computer 
Conference, Volume 49, Anaheim, California, 1980. 

~. Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill, F. and Skelly, 
P., "CONLAN-A Formal Construction Method for Hardware Descrip
tion Languages: Language Application," Proceedings National Com
puter Conference, Volume 49, Anaheim, California, 1980. 

3. Barbacci, M. R, "A Comparison of Register Transfer Languages for 
Describing Computers and Digital Systems," IEEE Computer Society, 
Transactions on Computers, Volume C-24, Number 2, February 1975. 

4. Special issue on Hardware Description Languages, IEEE Computer Soci
ety, Computer, Vol. 7, No. 12, Dec. 1974. 

5. Proceedings of the 2nd International Symposium on Computer Hardware 
Description Languages, Darmstadt, ACM German Chapter Lectures 
W-1974. 

6. Proceedings of the 3rd International Symposium on Computer Hardware 
Description Languages and their Applications, New York, Sept. 3-5, 
1975. IEEE Cat. No. 75 CHIOIO-8C. 

7. Proceedings of the 4th International Symposium on Computer Hardware 
Description Languages, Palo Alto, Oct. 8-9, 1979 IEEE Cat. No. 79 
CHI436-~C. 

Formal Construction Method: Basic Principles 217 

8. Special issue on Hardware Description Languages, IEEE Computer Soci
ety, Computer, Vol. 10, No.6, June 1977. 

9. Collection of Proceedings of the IEEE, ACM Design Automation Con
ference. 

10. Collection of Proceedings of the Fault Tolerant Computing Symposia. 
11. Piloty, R, "Guidelines for a Computer Hardware Description Consensus 

Language" (2nd draft), Memorandum to the Conference on Digital Hard
ware Languages, June 6, 1976. 

12. Liskov, B. and Zilles, S.; "Programming with Abstract Data Types," 
SIGPLAN Notices 9, pp. 50-59, April 1974. 

13. Liskov, B., Snyder, A., Atkinson, R and Schaffert, C., "Abstraction 
Mechanism in CLU," Computation Structures Group, Memo 144-1, MIT 
January 1977. 

14. Wulf, W. A., "Alphard: Toward a Language to Support Structured Pro
gramming," Technical Report, Department of Computer Science, Car
negie-Mellon University, April 1974. 

15. Wulf, W. A., London, R. L. and Shaw, M., "Abstraction and Verification 
in ALPHARD," Technical Report, Department of Computer Science, 
Carnegie-Mellon University, March 1976. 

16. Lucas, P. and Walk, K., "On the Formal Description of PLlI," Annual 
Review of Automatic Programming, Vol. 6, part 3, 1969. 

17. Jacquet, P., "Les Types Generic: Propositions pour un Mecanisme 
d' Abstraction dans les Langages de Programmation." 





CONLAN-A formal construction method for hardware 
description languages: language derivation 

by ROBERT PILOTY 
Technische Hochschule Darmstadt 
FR Germany 

MARIO BARBACCI 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

DOMINIQUE BORRIONE 
Universite de Grenoble 
Grenoble, France 

DONALD DIETMEYER 
University of Wisconsin-Madison 
Madison, Wisconsin 

FREDRICK HILL 
University of Arizona 
Tucson, Arizona 

and 

PATRICK SKELLY 
Honeywell 
Phoenix, Arizona 

INTRODUCTION 

A CONLAN document has significance only if it is read by 
a person or machine. That reader (environment) is required 
to use available facilities to respond to and interact with the 
document. It must provide the type checking mechanism. 
It must record the names of defined and declared items and 
provide the data base they require. It must record signal 
values. From such records, it can determine facts of impor
tance to continued document evaluation. "System inter
faces" are prescribed environment responses, not formally 
defined via CONLAN syntax. 

,~--"·~·~""""~.-••. ~,_, •• ~.~,.~~.,."w~ •. ,., ... 
i 1.1 Values, signals, and carriers 

Three broad classes of objects are of primary concern in 
working members of the CONLAN family: 

"Values" are static objects; they do not change with 
time. An integer, a character, etc. are values. 

"Signals" are lists of values. A different time is asso
ciated with each value. A signal is then a history of values. , 

"Carriers" are containers for values or signals. These 

values or signals can be replaced as a result of an operation 
invocation. 

1.2 CONLAN model of time 

CONLAN provides a discrete model of continuous, real 
time. 

,/"Real time 'is broken 'into uniform duration~ called "inter
f vals" identified with integers greater than zero. Ascending, 
I successive integers are associated with contiguous intervals. 
1 No relation between the interval and the real time second 

'1; exists in general. An implementation may impose such a re
j~tion,()E~~~mit users, to specify such a relation . . . 

ACthe beginning of each interval there are an indefinite 
number of computation "steps" identified with integers 
greater than zero. Successive steps provide a before/after 

219 

, •. relati9~.9Dly . 
. ~-"Values obtained at the last step of computation are the 
values associated with the interval. 

When modeling a specific digital system, satisfactory re-
, suIts are obtained at reasonable computational cost by quan
tizing time to some fraction of the second; for purposes of 
example assume the nanosecond. Actual signals are then 
constrained by this quantization to change at the boundaries' 



220 National Computer Conference, 1980 

~ 

"of 1 ns. durations. Computing the value of a specific signal' 
, during a specific 1 ns. duration may require successive com- • 
putations: if a wire is driven by a gate network modelled by 

. aAbV cAd, then aAb and cAd must be evaluated before the 
signal value is determined. The CONLAN interval and step; 

· support this model of digital hardware and method of sim-l 
\\.l!~~!~?E_ (F~@.@J1~ ___ --,~.-.--.~"", ... -.". ,/ 

No real time is thought to elapse when evaluating a math
ematical function or executing a computer program. Yet 
many successive computational steps are usually required. 
Again the CONLAN model of time supports such compu
tation. 

2. FORMAL DERIVATION OF SIGNALS 

In order to model real hardware components, some mech
anism to describe delays in components and wires must be 
provided. The solution adopted in CONLAN is to keep the 
history of values computed at every step of every interval. 
Separate histories (called 'signals' in CONLAN) are kept for 
each component, pin, wire, etc. of the hardware system. 
Signals are abstractions and do not have a physical inter
pretation. To provide the link between the signal (i.e. a his
tory of values) and the component, a special type of object, 
called a 'signaLcarrier' is provided by the language. In this 
chapter we formally define signals as a bel type together with 
operations to manipulate signals. Signal _carriers (carriers, 
for short) are the subject of the following chapter. 

2.1 CONLAN model of computation 

Hardware descriptions record how the signal parts of some 
carriers are related to those of other carriers. These relations 
display behavior and/or organization and support compu
tation of unknown signal parts. Such computation is usually 
performed viewing past and present signal values as "known" 
and future values as "unknown." With each computational 
step, known values are used to determine a future value and 
thereby change its status to known. 

The interval and step counters are managed by the envi-

Steps 

Interval 1 Interval 2 Interval 3 

Figure I-CONLAN model of time. 

ronment. The contents of these counters are made available 
to toolmakers via t@ and s@. 

t@ is an integer whose value is the current time interval. 
Contiguous values are provided in ascending order starting 
with one. s@ is an integer whose value is the current com
putation step. Contiguous values are provided in ascending 
order, starting with one. 

When the environment determines that all signals have 
attained stable values, it increments the value provided by 
t@ and resets the s@ counter to 1. It detects computation 
step oscillation (s@ reaches a predetermined limit) and re
sponds to it with a message and optionally termination of 
document evaluation or continuation using the signal values 
available at the last step of computation. 

The algorithm used by the environment is the following: 

Stage 
1 

2 

3 

4 

5 

Action 
For each invoked activity and function of the system 
description under evaluation, determine via the def
inition of that invoked operation future step values 
from known present and past signal values. Advance 
to stage 2. 
For all carriers which have not been serviced in stage 
1, provide for them the missing step value. The de
termination of the missing value is the responsibility 
of both the environment and the toolmaker (see fin
step@, below). Advance to stage 3. 
Examine the record of present and next step values. 
If one or more signals have differing values and s@ 
is less than a predetermined limit, advance the step 
counter s@ and return to stage 1. If s@ equals the 
predetermined limit, publish an "oscillation" error 
message and (optionally) continue with stage 4; oth
erwise continue with stage 4. 
For each invoked activity and function of the system 
description under evaluation, determine the initial 
step value for the next interval. The determination 
of this step value is the responsibility of both the 
environment and the toolmaker (see finint@, below). 
Advance to stage 5. 
Reset s@ to 1, increment t@, and return to stage 1. 

To support the model of computation, the environment 
uses special operations, finint@ and finstep@ which are 
provided by the toolmaker. 

Finstep@ is an activity which describes the default signal 
growth mechanism for a computation step. Finint@ is an 
activity which describes the default signal growth mecha
nism for a time interval. 

None, one or more functions and activities may be invoked 
in a step for a specific carrier. If mUltiple invocations attempt 
to set a signal to different values, a "collision" exists and 
will be reported as an error. Operations finstep@ and finint@ 
are independent of invocations; they provide a means of 
providing default values or propagating values to future steps 
when no activities are invoked to do so. 



CONLAN-Hardware Description Languages: Language Derivation 221 

2.2 Computation step signals 

TYPE cs_signal@(x: value) BODY 

ALL a: tytuple@(x) WITH size@(a) > ° ENDALL 

CARRY =, =1=, size@ END CARRY 

FUNCTION selecLcss(y: cs_signal@(x), s: pint): x 
RETURN old@(y)[s] 
FORMAT@ 

EXTEND@ reLto_dec1ared.5 
reLto_dec1ared = expl0 :idl '{' exp7 :id2 '}' 

MEANS@ selecLcss (idl, id2) ENDFORMAT 
ENDselecLcss 

"/value is the class of all value types/" 
"/definition of the new type elements/" 

"/imported operations from the defining type!" 

"/access elements (values) in a cs_signal/" 

"/extend a computation step signal!" 
FUNCTION extencLcss(y: cs_signal@(x), s: pint, v: x): cs_signal@(x) 

RETURN IF s = size@(y) + 1 THEN extend( old@(y), v) 
ELIF s :5 size@(y) THEN IF y{s} =1= v THEN error@ ELSEy ENDIF 
ELSE error@ ENDIF 

" Icollision/" 
"/order error!" 

ENDextencLcss 
ENDcs_signal 

A Computational Step Signal (cs_signal) is the mechanism 
used to record a history of values during one real time in
terval. The definition of type cs_signal indicates that the val
ues to be recorded must all be of the same type, and the type 
must be specified when a cs_signal is declared. Thus, one 
could have cs_signals recording values of type integer, Boo
lean, etc. 

The type is constructed from a more primitive type (ty
tuple@, [1]) whose elements are tuples (ordered lists) of 
elements of the same type. Moreover, cs_signals cannot be 
empty (size@>O) although they can be of unlimited size. For 
instance, the set of cs_signals carrying Boolean values is: 

{ (. ° .), (. 1 .), "/cs_signals of length 1/" 
(. 0,0 .), (. 0,1 .), (. 1,0 .), (. 1,1 .1'Ics_signals of length 21" 
(. 0,0,0 .), (. 0,0,1 .), (. 0,1,0 .), .. :'/cs_signals of length 3/" 

In addition to carrying a few operations from the defining 
type (' =', '=1=', and size@), cs_signals provide operations 
for extracting or appending values to a signal. 

Function selecLcss takes two parameters (a cs_signal and 
a position) and returns the value occupying that position in 
the signal: 

RETURN old@(y)[s] 

The value is extracted using the primitive operation select 

(defined on elements of tytuple@, with infix notation [ .. ]). 
This operation however requires that its first parameter be 
an element of tytuple@ and not an element of cs_signal (or 
any other type). The type conversion is explicitly done by 
invoking a primitive operation, old@ which takes an element 
of a derived type and returns the same element of the defining 
type. 

The format statement describes an extension to the syn
tax. The extension is expressed in a variation of BNF in 
which we not only express the syntax but also the semantics 
of a production. 'In this case, the modification consists of 
adding one more alternatives to the definition of the non
terminal 'reLto_declared'. The new alternative (identified as 
alternative number 5) indicates that '{' .and '}' can be used 
to invoke the function selecLcss. 

Function extemLcss takes three parameters (a cs_signal, 
a position, and a value). It is used to compute cs_signals 
based on an existing cs_signal. Arbitrary computations of a 
cs_signal are not performed. The cs_signal returned may 
equal the given cs_signal, or be the cs_signal formed from 
the given cs_signal, extended with the given value on the 
right. 

Extending elements of cs_signal by exactly one position 
(s = size@(y)+ 1) models the computation of step values. 
Attempts to extend the cs_signal by more than one position 
violates the model of computation (see error@, below). A 
reference to a position already in use (S:5size@(y» models 
the simultaneous computation of values from different sig
nal sources. Attempts to change an already recorded value 
(y{s} =1= v) however, are reported as collision errors. 



222 National Computer Conference, 1980 

Error@ is provided by the environment as part of the system interface. When invoked, the processor of the document issues 
an error message. Subsequent actions are determined by the sophistication of the environment. All processing might stop; 
or if the nature of the error is determined, a default value may be returned and processing continued. 

For example, assume a cs_signal (a) carrying values of type integer, whose initial history is: 

Operation 
selecLcss(a,1) 
a{4} 
a{5} 
exten<Lcss(a, 1,0) 
extencLcss( a, 1 ,1) 
extencLcss(a,5,0) 

2.3 Real time signals 

Result 

° 5 
error@ 
(.0,-3,1,5.) 
error@ 
(. 0,3,1,5,0 .) 

TYPE signals@(x: value) BODY 
tytuple@(cs_signal@(x» 
CARRY =, =1=, size@ ENDCARRY 

(. 0, - 3, 1, 5 .) 

FUNCTION selecLrts(y: signal@(x), t: pint): cs_signal@(x) 
RETURN old@(y)[t] 

Extract the first recorded value. 
Use the syntax extension. 

The signal contains only four elements. 
no change,a{l} was already ° 

Collision error. 
Record a new value. 

FORMAT@ EXTEND@ reLto_declared.5 MEANS@ selecLrts(idl, id2) ENDFORMAT 
ENDselecLrts 

FUNCTION known(y: signal@(x), t, s: pint): bool 
RETURN size@(y) 2= t A size@(y{t}) 2= s 

ENDknown 

FUNCTION insLvalue(y: signal@(x), t, s: pint): x 
ASSERT known(y, t, s) ENDASSERT 
RETURN y{t}{s} 
FORMAT@ 

EXTEND@ reLto_declared.6 
reLto_declared = expl0 :idl '{' exp7 :id2 ',' exp7 :id3 '}' 
MEANS@ insLvalue(idl, id2, id3) 
EXTEND@ reLto_declared.7 
reLto_declared = expl0 : idl '{' exp7 : id2 ',' '}' 
MEANS@ insL value(id 1 ,id2, size@(idl{id2}» 
EXTEND@ reLto_declared.8 
reLto_declared = exp 10 : id 1 '{' '}' 
MEANS@ insLvalue(idl,size@(idl),size@(idl{size@(idl)}» 

ENDFORMAT 
ENDinsL value 

FUNCTION extendJts(y:· signal@(x), t, s: pint, v: x): signal@(x) 

"/Does a value for interval t, step s exist?I" 

"!Instantaneous Value/" 

•• IExtend a signal!" 

RETURN IF known(y, t, s) THEN IF y{t, s} =1= v THEN error@ ELSE y ENDIF •• I collision!" 
ELIF t = size@(y) THEN THE@ z: signal@(x) WITH@ 

size@(z) = size@(y) A 
FORALL@ i: bint(1,t-1) IS@ z{i} = y{i}ENDFORALL 1\ 
z{t} = extencLcss(y{t},s, v; ENDTHE 

ELIF t = size@(y)+ 1 As = 1 THEN new@(extend(old@(y), (. v.» ) 
ELSE error@ ENDIF 

ENDextencLrts 
INTERPRETER@ FUNCTION pack@(y: x): signal@(x) 

RETURN THE@ z: signal@(x) WITH@ 
size@(z) = t@ 1\ 
size@(z{t@}) = s@ A 
FORALL@ t: bint(1,t@ - 1) IS@ z{t} = (. y .) EN])FORALL A 

., lorder error!" 



CONLAN-Hardware Description Languages: Language Derivation 223 

FORALL@ s: bint(1,s@) IS@ z{t@,s} = y ENDFORALL ENDTHE 
ENDpack@ 

ENpsignal@ 

A Real Time Signal is the mechanism for recording interval values. During an interval, an unlimited number of computation 
steps may occur and these are recorded in cs_signals. A signal consists of a tuple of these cs_signals. 

Signals are derived from type tytuple@. The set of signals is given by the set of all possible tuples whose elements are 
cs_signals. For instance, 

signal@(bool) = {(. (.0.).), ... (. (. 0.) ,(. 0.).), ... (. (.0,0.), (. 0,1.).), ... } 

Function selecLrts takes two parameters (a signal and a 
position) and returns the element of the signal (a cs_signal) 
occupying that position. This operation in fact retrieves the 
entire history of values computed during one interval. The 
formal statement takes advantage of the extension to the 
syntax that appeared in the definition of function selecLcss 
(in type cs_signal@). In the current extension, no new pro
ductions are being added, but rather the semantics of an 
existing alternative are· extended by indicating that '{' and 
'}' are also used to invoke selecLrts. Since the parameter 
types are different, the type checking mechanism in the lan
guage determines which function is to be invoked. 

Function known takes three parameters (a signal, an in
terval number, and a step number) and returns true or false 
depending on whether there is a value recorded at a given 
step in a given interval or not .. Since cs_signals do not have 
gaps, all that is needed is to compare the size of tuples with 
the interval and step numbers. 

Function insL value takes three parameters (a signal, an 
interval number, and a step number) and returns the value 
recorded in that step and interval. The ASSERT statement 
monitors that the function has been properly invoked by 
asserting that the value is 'knowp'. If the assertion fails at 
any time during the invocation of the function, an error is 
reported by the interpreter. The format statements extend 
the language by generalizing once again the use of' {' 
and T: 

Syntax 
css{s} 

rts{i} 

rts{i,s} 

rts{i,} 

rts{ } 

Meaning 
Returns. the vah~e recorded during step s of a cs
_signal. 
Returns the cs_signal recorded during interval i of 
a signal. 
Returns the value recorded during step s of interval 
i. 
Returns the value recorded during the last step of 
interval i. 
Returns the value recorded during the last step of 
the last interval. 

Function exten~rts takes four parameters (a signal, an 
interval number, a step number, and a value) and computes 
a signal. As in the case of cs_signals, only restricted com
putations are performed. If a value has already been re
corded at the given step of the given interval, the previous 
value and the new value must be equal, otherwise a collision 
is reported by the interpreter. 

If the interval referred to is the last interval of the signal, 

an attempt is made to extend the cs_signal recqrded in that 
position. If the interval referr.ed to is exactly one position 
beyond the last interval of the signal, and the step number 
is 1 (i.e. first step) then the signal is extended with a new 
cs_signal, initialized to the new value. All other cases are 
excluded and reported as errors. In the expression, 

extend@(old@(y),(.v.» 

The second parameter of extend@ illustrates the constant 
denotation for tuples and derived types (tytuple, cs_signal, 
signal). ' 

Function pack@ is part of the system interface. By in
voking this function, the environment converts a value into 
a signal. As in all other system interfaces which must be 
provided by the toolmaker, the definition of pack@ is pre
ceded withthe keywordJNTERPRETER@. Function pack@ 
takes one parameter (a value of some type) and returns a 
signal capable of recording values of the same type. The 
signal records the history of a value that has remained con
stant until the current step of the current interval. This func
tion is automatically invoked by the interpreter. It is used 
to provide automatic type conversion during operation in
vocations. 

,For instance, assume a Boolean signal (s), with the fol
lowing history: 

(. (.0, 0.), (.0, 1.), (.1, 1, 0.).) 

Pictorially, this is represented as: 

Real 
Time 
Interval 

2 

3 

+--+ 
I I 

Computation 
Step 

1 
2 
1 
2 
1 
2 
3 

--+ +---

2 3 

Value 

0 
o last 
0 
I last 
I 
1 
o last 

signal s 

real time ~ 



224 National Computer Conference, 1980 

Operation 
s{l} 
s{4} 
known(s,I,2) 
known(s,I,3) 
s{l,2} 
s{I,} 
s{ } 
extend_rts(s,I,I,O) 
extencLrts(s,1 , 1 , 1) 
extencLrts(s,3 ,4, 1) 
extend_rts(s ,4,1,1) 

Result 
(.0,0.) 
,error@ 
11 

° 0-

° ° s 
error@ 
(.(.0,0.),(.0,1.),(.1,1,0,1.).) 
(.(.0,0.),(.0,1.),(.1,1,0.),(.1,.).) 

3. FORMAL DERIVATION OF CARRIERS 

TYPE signaLcarrier@(x: value, di: x) BODY 
cell@(signal@(x» 

CARRY put@, empty@ FROM cell@ ENDCARRY 
FUNCTION spart(y: carrier@(x, di»: signal@(x) 

The history of the first interval. 
A reference to a future interval. 

There is a value recorded at interval 1, step 2. 
The history of interval 1 does not have three steps. 

The value at step 2 of interval I. 
The value at the last step of interval I. 

The value at the last step of the last interval. 
The value at step 1 of interval 1 was already 0 .. 

Collision, trying to change the history. 
Extended version of the current interval. 

Initialize a new interval. 

"/Signal part/" 
RETURN IF empty@(y) THEN pack@(di) ELSE get@(old@(y» ENDIF 

ENDspart 

INTERPRETER@ FUNCTIONcontent@(y: carrier@(x, di)): x 
RETURN IF empty@(y) THEN di ELSE get@(old@(y»){t@, s@} 

ENDcontent 

FUNCTION delay(y: carrier@(x, di), d: pint): x 
RETURN IF t@ ~ d THEN di ELSE spart(y){t@-d, } ENDIF 
FORMAT@ 

EXTEND@ explO.lO 
explO = expl0 :y '~' expl0 :d 
MEANS@ delay(y, d) 

ENDFORMAT 
ENDdelay 

ENDsignaLcarrier@ 

"/Present signal value/" 

"/Real time delay/" 

Type signaLcarrier@ (carrier, for short) is derived from primitive type cell@. Each cell contains a signal. Carriers are 
declared by specifying the type of values recorded by the signal (x) and a default/initial part (di). The role of the default/initial 
value is to provide a value to be used in some operations, as described below. 

Function spart takes one parameter (a carrier) and returns the signal kept in the carrier. Notice the use of the default/initial 
value to provide a 'signal', even if no history of values h,as been recorded. 

Function content@ is part of the system interface. It takes one parameter (a carrier) and returns the value recorded at step 
s@ of interval t@ of the signal (i.e: the 'current' value). It is automatically invoked by the interpreter to provide dereferencing 
during operation invocations. 

Function delay takes two parameters (a carrier and a delay value) and returns the last value of a previous interval. Negative 
time is avoided by returning the default/initial value when that previous interval would be interval zero or less. The interval 
number is computed by subtracting the delay parameter from t@ (the current interval number). The format statement extends 
the language by providing an infix notation (~) for the delay function. 

For example, assume a carrier (x) of Boolean signals with default/initial value 1. Further, assume that the history at t@=3, 
s@ = 4 is the following: 

Operation 
spart(x) 
content@(x) 
x~5 

x~2 

(.(.1,1,1.),(.1,1,0,0.),(.0,0,0,1 .).) 

Result 
(.(.1,1,1.),(.1,1,0,0.),(.0,0,0,1 .).) 
1 
1 
1 

Signal 
Value at step s@, interval t@. 

Default value. 
Last value of interval I. 



CONLAN-Hardware Description Languages: Language Derivation 225 

3.1 Terminals 

TYPE terminal(x: value, def: x) BODY 
carrier@(x, def) 
CARRY content@, delay ENDCARRY 
ACTIVITY connect(y: terminal(x, def), a: x) BODY -

put@(old@(y), extencLrts(spart(old@(y», t@, s@ + 1, 
a) ) 
FORMAT@ 

EXTEND@ activity_invocation.3 
activity_invocation = reLto_declared :idl ' 
expression :id2 
MEANS@ connect(idl, id2) 

END FORMAT 
ENDconnect 
INTERPRETER@ ACTIVITY finstep@(y: 
terminal(x,def) BODY 

IF -,known(spart(old@(y», t@, s@+1) THEN y.= 
def ENDIF 

ENDfinstep@ 
INTERPRETER@ ACTIVITY finint@(y: 
terminal(x,def) BODY 

put@(old(y), extendJts(spart(old@(y», t@ + 1, 1, 
content@(y») 

ENDfinint 
END terminal 
SUBTYPE btml(default: bool) BODY terminal(bool, 

default) ENDbtml 
SUBTYPE btmO BODY terminal(bool, 0) ENDbtmO 
SUBTYPE btml BODY terminal(bool, 1) ENDbtml 

Activity connect has two parameters (a terminal and a 
value). This activity extends the (cs_signal of the current 
interval of the) signal associated with the terminal. 

Activity finstep@ provides a terminal with a default value 
for the present step of the present interval if none has been 
provided by an invocation of connect. 

Activity finint@ initializes the cs_signal of the next inter
val of a terminal with the last value of the current interval. 

Terminals are carriers with no retention properties. If no 
connect activity is invoked during a computation step to 
extend the signal component of a terminal, then the finstep@ 
activity invoked by the system extends that signal with the 
default value of the terminal. Activities finstep@ and finint@ 
force all terminal's signals to grow at the same rate. 

Boolean terminals model connection points. Some con
nection points float high and others float low when not driv
en. Subtypes btml, btmO, and btml are defined as shorthand 
for commonly used terminals. 

3.2 Variables 

TYPE variable(x: value, init: x) BODY 
carrier@(x, init) 
CARRY content, delay ENDCARRY 
ACTIVITY assign(y: variable(x, init), a: x) BODY 

put@(old@(y),extencLrts(spart(old@(y», t@, s@+ 1, 
a» 

FORMAT@ 
EXTEND@ activity jnvocationA 
activity_invocation = reLto_declared : id 1 ': = ' 
expression :id2 
MEANS@ assign(idl, id2) 

ENDFORMAT 
ENDassign 
INTERPRETER@ ACTIVITY finstep@(y: 
variable(x,init» BODY 

IF -,known(spart(old@(y», t@, s@ + 1) THEN y : = 
content@(y) ENDIF 

ENDfinstep@ 
INTERPRETER@ ACTIVITY finint@(y: 
variable(x,init» BODY 

put@(old@(y), extencLrts(spart(old@(y», t@ + 1, 1, 
content@(y») 

ENDfinit@ 
ENDvariable 

Variables have retention properties. They differ from ter
minals in the role played by function finstep@. If no assign 
activity is invoked during a computation step to extend the 
signal component of a variable, then the finstep@ activity 
invoked by the system extends that signal with the present 
value. Variables are then much as found in programming 
languages. Boolean variables may be thought to model ab
stract storage devices whose value may change at every com
putation step. 

3.3 Real time variables 

TYPE rtvariable(x: value, init: x) BODY 
carrier@(x, init) 
CARRY content, delay ENDCARRY 
ACTIVITY transfer(y: rtvariable(x, init), a: x) BODY 

put@(old@(y), extencLrts(spart(old@(y», t@ + 1, 1, 
a» 
FORMAT@ 

EXTEND@ activity jnvocation.5 
activity.invocation = reLto_declared :idl '< -' 
expression :id2 

MEANS@ transfer(idl, id2) 
ENDFORMAT 
ENDtransfer 
INTERPRETER@ ACTIVITY finstep@(y: 
rtvariable(x,init» BODY 

put@(old@(Y),extend_rts(spart(old@(Y»,t@s@+ 1, 
content@(y») 

ENDfinstep@ 
INTERPRETER@ ACTIVITY finint@(y: 
rtvariable(x,init» BODY 

IF -,known(spart(old@(y», t@+ 1, 1) THEN y <
content@(y) ENDIF 

ENDfinint@ 
ENDrtvariable 

Real time variables model abstract storage devices whose 
value may change only once per real time interval. When 



226 National Computer Conference, 1980 

the transfer activity is invoked, the signal part of the real 
time variable is extended by one real time interval. Within 
an interval the computation step signal is extended with the 
first value-all step values are the same. A value is carried 
from interval to interval when no transfer is invoked. 

4. OTHER TYPES IN BASE CONLAN 

Pscl makes available for further use four scalar types (int, 
bool, string, cell@) and tuple@ as the basic structured type 
[1]. Using the same extension mechanisms presented in this 
paper, a constructor for arrays has been formally defined 
and will appear in a forthcoming paper. Its development fol
lows the same pattern used in the development of signals, 
carriers, terminals, and variables: layers of abstraction are 
built by defining types, operations, and syntax extensions 
leading toward the final product. In contrast with the pre
vious developments however, the concept of time steps and 
intervals does not playa significant role as space, rather than 
time is being modeled. 

Due to space limitations, the full development cannot be 
given here. Only a sketch of the constituent types will be 
indicated in Figure 2. 

Type tuple@ consists of ordered lists of elements of any 
type. Type tytuple@(t:any@) [1], consists of tuples of ele
ments of the same type, t. A particular member of this pa
rameterized type family is type inttuple@ (defined as tytu
ple@(int». A range is defined as an inttuple of consecutive, 
ascending or descending integers. 

An array_dimension is a tytuple of ranges. The size of the 
array dimension is not limited: CONLAN supports arrays 
of any number of dimensions. An elemenLindex is an int
tuple. It describes, with respect to a particular array_ 
dimension the elements along each dimension needed to ac
cess a single element of an array. A slicejndex is a 
tytuple@(range). It describes, with respect to a particular 
array_dimension, the ranges of elements along each dimen
sion needed to access a slice of an array. 

Type arrayed: array_dimension@, t:any@) is defined as 
a tuple of two elements. The dimensions part (of type 
array_dimension@) describes the dimensions of the array; 
the value part (of type tytuple@(t» is the list of array ele
ments. 

An abbreviated list of operations defined on arrays is ·de-

tuple 

rtytuPle 

[n!tUPle -[. range 

. ... . element ~ndex 

. slice _index 

array 

Figure 2-Development of arrays. 

picted below: 

selecLelement(x:array(d,t), z: elemenLindex): t 

selects an element of an array. 
selecLslice(x:array(d,t), z: slicejndex): t 

selects a slice of an array. 
compatible(x, y: array(d,t»: bool 

tests if two arrays have compatible dimensions 
equal(x, y: array(d,t»: bool 

tests if two arrays have identical value parts. 
'eq(x, y: array(d,t»:array(d,bool) 

tests if corresponding elements of compatible arrays 
are equal. 

For many of these operations and types, special infix for
mats and constant denotation formats have been defined via 
the syntax extension mechanism. 

5. CONCLUSIONS 

In this paper we have presented the basic mechanisms 
used in CONLAN to define and extend languages. The 
mechanism is based not only on the definition of new types 
and operations but also on the extension of the syntax of a 
base language. 

The concept of the interpreter is basic to the family of 
languages. The interpreter provides the basic counters used 
to model elapsed time (t@ and s@) and the detection of error 
conditions (error@). It can also be augmented in a controlled 
manner by the toolmakers. This is achieved by the definition 
of special functions and activities which can then be invoked 
automatically by the interpreter. In this paper we have 
shown a few of these operations (pack@, content@, finint@ 
and finstep@) which are used to provide restricted derefer
encing and signal growth mechanisms. 

A full coverage of the base language is outside the size 
limitations of this paper. Enough has been presented. how
ever, to motivate the reader to appreciate the power of the 
notation and its usefulness in the development of a compre
hensive family of languages for describing the behavior and 
interconnection of hardware components. 

6. ACKNOWLEDGMENTS 

The authors are indebted to Bell Northern Research (Ot
tawa), Sperry Univac (Philadelphia), Office of ~aval Re
search, Ballistic Missile Defense Advanced Techmcal Cen
ter (Huntsville), IRIA (Paris), Busdesministerium fur 
Forschung und Technologie (Bonn), Siemens (Munich), and 
Fujitsu (Tokyo) for their interest and support, Professor 
Yaohan Chu for his early contributions, and in particular to 
Professor Jack Lipovski for his help and unwavering con
fidence in the group. 



CONLAN-Hardware Description Languages: Language Derivation 227 

7. REFERENCES 

1. Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill, F., and Skelly, 
P., "CONLAN-A Formal Construction Method for Hardware Descrip-

tion Languages: Basic Principles," Proceedings National Computer Con
ference, Volume 49, Anaheim, California, 1980. 

2. Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill, F., and Skelly, 
P., "CONLAN-A Formal Construction Method for Hardware Descrip
tion Languages: Language Application," Proceedings National Computer 
Conference, Volume 49, Anaheim, California, 1980. 





CONLAN-A formal construction method for hardware 
description languages: language application 

by ROBERT PILOTY 
Technische Hochschule Darmstadt, FR Germany 

MARIO BARBACCI 
Carnegie-Mellon University 

DOMINIQUE BORRIONE 
Universite de Grenoble, France 

DONALD DIETMEYER 
University of Wisconsin-Madison 

FREDRICK HILL 
University of Arizona-Tucson 

and 

PATRICK SKELLY 
Honeywell, Phoenix 

1. INTRODUCTION 

CONLAN is a formal semantic and syntactic base for the 
description of all phases in the design and documentation 
of digital systems. Previous papers[I,2] have presented the 
basic concepts and models underlying the whole CONLAN ' 
language family. On the example of the construction of Base 
CONLAN, the first level which can be of some operational 
interest to the hardware designer, it has been shown how 
a coherent set of special purpose application languages can 
be derived from a common mathematical base, Primitive Set 
CONLAN. 

This paper_ enmh~WUhe...lQ~m~~mJ!~.ID&.Il~X:S.~J2Pin.L 
of view. By!~i~,!_)Y~"JD~;;uLthe,J!~~!J?'Lc;L(;~QJ·:iLA:t:JJ~!!~.ll.e~ 
ratIier·-tlianthe definer of a member of the CONLAN lan
'guage'IaniiIy:-fhe;ea(i~'~ T~";~~~~ed' t~know'"ih(tavalrahle 
Ob]ect~iypes-'and operations in Base CONLAN, which will 
be, for the purpose of this paper, considered as a user lan
guage. 

The authors are convinced that the CONLAN concepts 
are general and versatile enough to be applicable to several 
design methodologies. In particular, the necessity of being 
able to decompose a system into modules is now widely rec
ognized. The first part of this paper presents the CONLAN 
basic user's segmentation mechanism, called DESCRIP
TION. Subsequent parts show how the same "hardware 
object" can be either considered to be a DESCRIPTION, 
an ACTIVITY or an object TYPE, depending upon the level 
of abstraction of its model written in CONLAN. 

229 

2. DESCRIPTION SEGMENT 

Any piece of CONLAN text which models a system or 
a subsystem is written as a DESCRIPTION segment. A 
DESCRIPTION can represent as small a piece of hardware 
as a NAND gate, or as big a system as a computer network. 
The main characteristic of a DESCRIPTION segment is that 
it is considered as a module in itself, independently of what
ever environment it may be inserted in; the best visualization 
of a DESCRIPTIQli~£!!L!~.An. i!!!.sg!1t!~~;L£i(£,YiL",_,,"" 

A DESCRIPTION segment knows only its interface ca~ 
riers, internal carriers and operators, and eventually sub- f 
systems into which it is further decomposed. It has no knowl- I 
edge of global carriers, and all communications with its} 
environmentill:e C\~!!~,!hr.Q!tgILi~~j_l}.!~!f~~~~,:..~ .. '" _ ,,~" ... '''''~.'''' .... _J" 

Several subsystems may be very similar in function and 
structure, except for some very specific parameter. For in
stance, an 8 bit and a 16 bit parallel adder perform the same 
function, and are of the same nature, except for the dimen
sions of their operands. CONLAN does not require the user 
to define two distinct DESCRIPTION segments in such a 
case, but provides a facility to indicate ATTribute parame
ters. A DESCRIPTION segment...definitiQll,~~ttiJ;>lJl~~.~ 
tQ~r~~~§~JiQ,~§"JtJi!mily,pfJ!1.Q,9!lJ~~~. From that family, 
instances with specific attribute values will be used in a par-
ticular context. 

The reference language for all segments in this paper is 
taken to be Base CONLAN (bcl), as illustrated in the first 
example. 



230 National Computer Conference, 1980 

2.1 Structure of a DESCRIPTION segment 

minimum amount of information a DESCRIPTION 
segment should contain is: 

I. the name of the segment 
2. the list of its interface carriers, specifying their type 

and direction (IN for input, OUT for output, INOUT 
for bidirectional) , 

3. operati,.o .. n invoc.,ations showing how the sig,nals of the,' 
OUT and INOUT carriers are related to the signals of 
the IN, INOUT, and internal carriers. ' 

-----, ..... ' -,~~,.r~Jm"~~~~'!..l:>:,"I;\;"""'4;;':t".w."'~.~;<;;~Z>':':~_'!-J;;'··':"'-"",,".j,~'>;"" ........ ",I\; •• '::.:t:"'fA'''''",.I'tW"., .. ~:V$'!!';,,..'''! 

A very simple example is a 2 input, I output unit delay 
nand gate: 

REFLAN bcl 
DESCRIPTION nandgatel(lN x,y: btml, OUT z: btml) 
BODY ,~ 
z . = (x -,/\ y) t::, I 
ENDnandgate 1 

where t::, is the delay operator, . = denotes terminal con
nection, and btml has been defined as the type "Boolean 
terminal with default value 1" [2]. 

One could wish to make the value of the delay an attribute 
of the DESCRIPTION, so as to write once and for all the 
model of a 2 input - 1 output nand gate with any propa
gation delay. In this case, the interface list is augmented with 
an ATTribute section containing the delay parameter d, 
which must be fixed at compile time. 

DESCRIPTION nandgate(ATT d: pint, IN x, y: btml, 
OUT z: btml)BODY 
Z • = (x .., /\ y) t::, d 
ENDnandgate 

More complex descriptions can be written, in terms of an 
interconnection of instances of nand gates. This is shown 
on the following model of the 3 input, 1 output mUltiplexer 
displayed in Figure I. 
f 

DESCRIPTION mUltiplex (IN a, b, c: btml, OUT d: 
lbtml)BODY 

1, 
I, 

DESCRIPTION nandgatel (IN x, y: btml, OUT z: 
btml) 
BODY Z • = (x ..,/\ y) t:,. 1 ENDnandgatel 

DECLARE i, j, k: btml ENDDECLARE 
USE gl, g2, g3, g4: nandgatel ENDUSE 

gl.x. = a, g1.y. = a, i . = g1.z, 
g2.x. = b, g2.y. = a, j . = g2.z, 
g3.x~ = i, g3.y. = c, k.= g3.z, 
g4.x. = j, g4.y. = k, d . = g4.z 
END multiplex 

Four distinct, explicitly named gates are specified, in the 
USE statement, as instances of nandgatel. Local terminals' 

i, j, k are declared. The interface terminals of the individual 
gates are referenced through dot notation, and individually 
connected to interface and local carriers of mUltiplex in the 
operation invocation part of that description. 

We now have illustrated the general constituents of a DE- , 
SCRIPTION segment, which is divided into 5 parts, of which 
only the first one must not be empty. 

I. Description header, consisting of 
DESCRIPTION 
description name 
(list of attributes and interface carriers) 
BODY 

2. Assertions part, consisting of 
ASSERT list of predicates ENDASSERT 

The predicates may be static conditions on attribute 
parameters, to ensure that the model is meaningful. 
They may also express dynamic constraints (functional 
and time dependencies) on interface and/or internal 
signals. All predicates must be true at every point in 
time during the simulation of an instance of a DE
SCRIPTION segment. 

3. Definition part, defining operation and description seg
ments to be used for portraying the behavior and struc
ture of the description being defined. These definitions 
may be locally written; or they may be brought from 
an existing library of segments, in which case they are 
said to be EXTERNAL, and only their name and pa
rameter/interface are written. 

b~ ______________ ~~ 

a z 
~--td 

c$---_______ --+~ 

Figure l(a)-Interconnection as operation invocation. 

b 

a 

d 

c 

Figure l(b)-Permanent interconnection. 



CONLAN-Formal COQstruction Method: Language Application 231 

4. Internal objects, where local carriers are named and 
typed in a DECLARE statement. If the description is 
constructed from smaller descriptions (which must then 
be defined in part 3), instances of those descriptions 
are named in a USE statement. 

5. Operation invocation part, describing the input/output 
behavior of the hardware unit. It terminates with the 
usual END keyword, possibly followed by the descrip
tion name. 

3. INSTANTIATION AND INTERCOMMUNICATION 

Descriptions may be instantiated and interconnected in an 
enclosing description in either of two different ways. 

3.1 Intercommunication in the operation invocation part 

The first method was shown on the multiplex description 
above. Instance names are brought to existence in the USE 
statement, and actual attributes (if any) are given at that 
point. 

This implicitly declares all the interface carriers of the in
stances, which will be referred to, in the enclosing descrip
tion, by compounding the instance name with the formal 
interface carrier names. 

Intercommunications between enclosed instances of de
scriptions, and communications between instances and the 
enclosing description, are stated in the operation invocation 
part of the enclosing description. 

If all interface carriers of enclosed instances are terminals, 
and all these terminals are interconnected, then an explicit 
wiring list is being written, as in multiplex. In that case, 
intermediate carriers ij ,k are not necessary. The nandgate 
description, previously defined and assumed in the library, 
is used to show the EXTERNAL and instantiations with 
actual attributes in the· equivalent multiplex2 description 
below: 

DESCRIPTION multiplex2 (IN a, b, c: btml, OUT d: 
btml) BODY 
EXTERNAL DESCRIPTION nandgate 
END EXTERNAL 
USE gl, g2, g3, g4: nandgate (ATT 1) ENDUSE 
gl.x . = a, gl.y. = a, d . = g4.z, 
g2.x . = b, g2.y. = a, 
g3.x . = gl.z, g3.y. = c, 
g4.x . = g2.z, g4.y. = g3.z 
ENDmultiplex2 

At some more abstract level of a design decomposition of 
a description might be more conceptual than physical. Then, 
interface carriers may be of types other than terminal, like 

, registers and variables for instance. And communications to 
enclosed instances of descriptions would be done through 
other operations: register transfers, variable assignments 
and the like. In a more abstract model, communications 
could even be under the scope of conditions, with some hard-

ware implied, rather than actually defined. For instance, in 
the structure of Figure 2, one could wish to consider registers 
a and b to be interface carriers of the alu, and. to portray the 
behavior rather than the structure of the local memory and 
control part. 

A very simplified· model is shown below: 

DESCRIPTION structure BODY 
DESCRIPTION alunit (IN a[0:7], b[0:7]: brtv(O), 
ctl[O:3]: btmO, OUT r[0:7], cnd[O: 1]: btmO), 

ENDalunit 

DECLARE 10caLmemory [0:7,0:15]: brtv(O), 
ad: tml(int,O), 
ca, cb, cm: btmO, 

ENDDECLARE 

USE alu: alunit ENDUSE 

IF ca THEN alu.a < - locaLmemory [,ad] ENDIF, 
IF cb THEN alu.b < - locaLmemory [,ad] ENDIF, 
IF cm THEN locaLmemory [,ad] < - alu.r ENDIF, 

END structure 

where < - denotes rtvariable transfer, btmO has been de
fined as the type "Boolean terminal with default value 0," 
and brtv has been defined as the type "Boolean real time 
variable" [2]. The rtvariable transfer is accomplished in one 
unit of real time. 

3.2 Permanent intercommunication 

The second method by which an instance of a description 
can communicate with its environment is by considering that 
its interface carriers permanently drive or are driven from 
carriers of the enclosing description or interface carriers of 
other instances. This is indicated in the USE statement: the 
instance name is followed by the list of the environment 
carriers which the implicitly declared interface carriers drive 
or are driven from. 

I 
I 
I 
I 

ctl : 
I 

I 

: alu 
I -------------

Figure 2 

~
cm 

ad 

'--~.,r----' 

local 

cna 



232 National Computer Conference, 1980 

DESCRIPTION multiplex3 (IN a, b, c: btml, OUT d: 
btml) BODY 
EXTERNAL DESCRIPTION nandgate 
END EXTERNAL 
USE gl (IN a, a, OUT g3.x), 

g2 (IN b, a, OUT g4.x), 
g3 (IN gl.z, c, OUT g4.y), 
g4 (IN g2.z, g3.z, OUT d): nandgate (ATT 1) 

ENDUSE 
ENDmuitiplex3 

The above example is equivalent to multiplex2, previously 
studied. 

4. ABSTRACTION LEVELS IN CONLAN MODELS 

DESCRIPTION segments provide the user with a struc
turing means to describe how a digital system is constructed 
from a set of components (network description). ACTIVITY 
and FUNCTION segments on hand, give him the way to 
express what signal state changes occur in the carriers of the 
digital system at every given point in time (behavior de
scription). CONLAN does not go down to the electronic 
component level of a description; the most detailed descrip
tion the user can write is therefore a logic gate network. The 
hardware designer however is not necessarily interested in 
gate-level details. He might not even know, at some stage 
of a design, neither how many components he will be actually 
using, nor which specific ones, in some part of his system. 

CONLAN provides maximum flexibility for stepwise re
finement of a design. Instances of purely behavioral descrip
tions can be interconnected with instances of detailed net
work descriptions. Moreover, inside the same DESCRIPTION 
segment, some parts may be expressed in terms of clearly 
identified hardware elements, while other parts might be 
abstract. 

Our purpose in this section is to show how the same phys
ical object may be more or less precisely specified, depend,. 
ing upon the CONLAN construct for which it stands. 

4.1 Duality between TYPE and DESCRIPTION 

Internal objects which are n'amed in a description, and 
which therefore can be inspected for state changes, are of 
two categories: (a) carriers, which are elements of types and, 
(b) instances of description. 

Although the user will probably not often define new 
types, he may select (or ask for) a language where some 
types are primitive, or decide to construct an object as a ' 
description in terms of more elementary objects. 

Flip-flops as description segments 

For instance, Base CONLAN has neither primitive flip
flop nor register types. But these can be constructed as DE
SCRIPTION segments. Assuming unit delay gates, the net
work description of a rising edge triggered D-flip-flop would 

read: 

DESCRIPTION dffl (IN c,d: btml OUT q,nq: btmO) 
BODY 

DESCRIPTION nand2 (IN x,y: btml OUT z: btmO) 
BODY 
z . = x [). 1 ,/\ y [). 1 
ENDnand2 
DESCRIPTION nand3 (IN w,x,y: btml OUT z: btmO) 
BODY 
z . = ,(w [). 1 /\ x [). 1 /\ y [). 1) 
ENDnand3 

USE gl, g2, g4, gS, g6: nand2, g3: nand3 ENDUSE 
gl.x . = g4.z, g1.y. = g2.z, 
g2.x . = gl.z, g2.y. = c 
g3.w . = g2.z, g3.x. = c, g3.y . = g4.z, 
g4.x . = g3.z, g4.y . = d, 
gS.x . = g2.z, gS~y . = g6.z, 
g6.x . = gS.z, g6.y . =' g3.z, 
q.=gS.z, nq.~g6.z 
ENDdffl 

The wiring of the NAND gates is clear enough. Since all 
gate delays and initial values are identical, real time oscil
lation can be expected initially. 

While the following description may be thought to provide 
the same internal organization as the description above, it 
essentially provides a signal computation model of the D
flip-flop. 

DESCRIPTION dff2 (IN c,d: btml OUT q,nq: btmO) 
BODY 
DECLARE e, f, g, h: btml ENDDECLARE 
e.=h[)'I-/\f[)'l, 
f. = e [). 1 -/\ c [). 1, 
g . = ,(f [). 1 /\ c [). 1 /\ h [). 1), 
h.= g[)'I--,/\d[)'l, 
q . = f [). 1 --, /\ nq [). 1, 
nq . = q [). 1 --, /\ g [). 1 
ENDdff2 

At some more abstract level, we want to think of a flip
flop as a 2 state device. Then, correct initial values are as
sumed inside the module. Oscillations due to default in ini
tialization or wrong setting of data and clock inputs, can no 
longer be displayed on such a simplified model. However, 
it is possible to ASSERT properties on input signals to en
sure that the description is reacting correctly when the en
vironment produces acceptable waveforms. The following 
description provides a behavioral 3 units of time delay model 
of the d-flip-flop: 

DESCRIPTION dff3 (IN c,d: btml, OUT q: brtv(O), nq: 
brtv(1» BODY 
ASSERT, c V d = d [). 1) ENDASSERT 

"/we assert stability of d when c is 1/" 
IF , c [). 4 /\ c [). 3 THEN q < - d [). 3, nq < - , d 
[). 3 END IF 
ENDdff3 



CONLAN-Formal Construction Method: Language Application 233 

The IF condition detects the rising edge of the c input. 
The transfers introduce a 3 unit propagation delay, to rep
resent 3 layers of unit delay nand gates. The two values of 
q provide the two states we desired. nq has been kept only 
for interface equivalence with previous descriptions. Other 
varieties of flip-flops may be modeled similarly to the above 
3 models. Just one last behavioral example is provided, for 
a master- slave flip-flop. In the ASSERT statement, we insist 
that j and k do not change value when the clock is high. A 
4 unit propagation delay stands for the 4 layers of nand gates. 

DESCRIPTION jkff3(1N c,j,k: btmO,OUT q: brtv(O), 
nq: brtv(1)) BODY 
ASSERT , c V (j = j ~ 1 /\ k = k ~ 1) 

ENDASSERT 
IF -, c ~ 5 /\ c ~ 4 THEN 

IF j ~ 4 *' k ~ 4 THEN q < - j ~ 4, nq < - k ~ 4 
ELIF j ~ 4 THEN q <- nq, nq <- q ENDIF 
ENDIF 

ENDjkff3 
Instances of such descriptions may now be used to rep

resent the existence of flip-flops and registers in a circuit as 
shown in Figure 3, where a register is depicted as an array 
of flip-flops. 

DECLARE fa, tb: btmO ENDDECLARE 
USE a[O: 15], b[O: 15], r[O: 15]: dff2 ENDUSE 
OVER i FROM 0 TO 15 REPEAT 

r[i].c . = fa V tb, 
r[i].d . = a[i].q /\ fa V b[i].q /\ tb 

ENDOVER 

Here, the OVER statement has been used to compactly 
write repetitive connections. A macro-generation into 16 
pairs of connections is expected from the software. 

A 8 

fa , 
~I 0 I ---- -- - 115 1 

~ 
10 I ------- 115 1 

R 
Figure 3(a)-Global structure. 

Figure 3(b)-Detail of routing. 

Flip-Oops as carrier types 

In register transfer level hardware modeling, emphasis is 
no longer on data paths between memory elements, but 
rather on state changes. Taking this point of view, the hard
ware designer sees flip-flops and registers as carriers rather 
than' descriptions, and portrays state transitions by explicit 
operations rather than by signal changes on interfaces. The 
following type segment illustrates the definition of a jk-flip
flop as it would appear in a language definition [1]. The three 
activities provide for the three combinations of jk input val
ues which change the flip-flop state. Unit delay is assumed 
for convenience. 

TYPE jkff BODY brtv(O) 
CARRY content@, delay brtv(O) ENDCARRY 
ACTIVITY set (c: btmO, x: jkff) BODY 

"I j = 1, k = 0 I" 
IF -, c ~ 1 /\ c THEN old@(x) < - 1 ENDIF 
END set 

ACTIVITY reset (c: btmO, x: jkff) BODY 
"I j = 0, k = 1 I" 

IF -, c ~ 1 /\ c THEN old@(x) < - 0 ENDIF 
ENDreset 

ACTIVITY toggle (c: btmO, x: jkff) BODY 
"I j = k = 1 I" 

IF -.c ~ 1/\ c THEN old@(x) < - -, x ENDIF 
ENDtoggle 
ENDjkff 

At this point, a one to one correspondence is still present 
between the carrier type jkff and the hardware component. 
A conditional transfer such as Figure 3. b could be embedded 
in a description by: 

DECLARE a, b, r: jkff c, fa, tb: btmO ENDDECLARE 
c . = fa -, tb, 
IF fa THEN IF a = 1 THEN set(c,r) ELSE reset(c,r) 
ENDIF ENDIF, 
IF tb THEN IF b = 1 THEN set(c,r) ELSE reset(c,r) 
ENDIF ENDIF 

More abstraction is obtained in the following ff type def
inition segment, where only one activity load, with an ad
ditional parameter, replaces set, reset, and toggle. The ff 
carrier type represents both, and allows more compact de
scriptions, with a loss in precision with respect to the actual 
component it is supposed to model: 

TYPE ff BODY brtv(O) 
CARRY content@, delay ENDCARRY 
ACTIVITY load (c: btmO, d: bool, x: ff) BODY 
IF -, c ~ 1 /\ c THEN old@(x) < - d ENDIF 
ENDload 
ENDff 

If TYPE ff were to be given as a primitive to the user of 



234 National Computer Conference, 1980 

a CONLAN language, a FORMAT statement would prob
ably be attached to ACTIVITY load, in order to define a 
more convenient infix notation, such as 

?c? x < = d 

But such possibilities of abbreviation are not our point in 
this paper, and we shall retain the standard prefix notation. 

If y has been declared ff, the statement: 

IF ci THEN load (c, -, y, y) 

can be implemented by either of the circuits in Figure 4. 
The module 6 counter of Figure 5, whether implemented 

with one type of flip-flop or another, is described by: 

DECLARE rl, r2, r3: ff, c1: btmO ENDDECLARE 
load(cl, - r3, rl), 
load(cl, rl, r2), 
load(cl, r2, r3) 

U sing this abstract carrier type ff, the conditional transfer 
of Figure 3 can be simply written as: 

DECLARE fa,fb,c: btmO, a[O: 15],b[0: 15],r[0: 15]: ff 
ENDDECLARE 
c . = fa V fb, 
OVER i FROM 0 to 15 REPEAT 

IF fa THEN load (c, a[i], r[iD ENDIF, 
IF fb THEN load (c, b[i], r[i]) ENDIF 

ENDOVER 

4.2 Duality between operation and DESCRIPTION 

In a digital system, some components are viewed primarily 
as operations which transform input signals, seen as oper
ands, to produce new values. Typical examples are combi
natorial circuits, but sequential operative modules such as 
microprocessors are not excluded. 

CONLAN supports two ways of representing such com
ponents. If the hardware designer is mainly interested in 
describing behavior, he will define and invoke FUNCTION 
and ACTIVITY segments. If structure must be displayed, 
he will define and instantiate DESCRIPTION segments. The 
choice is not dictated by the level of detail he wishes to 
display: all of these segments can be used for various levels 
of abstraction. Yet a fundamental difference exists as to how 
much hardware is implied in the designers text. If the same 
FUNCTION or ACTIVITY segment is invoked three times 

c 

Figure 4(a)-y as JKFF. 

~ 
:i==r=r~ 

Figure 4(b)-y as dff. 

c\ 
Figure 5-Module 6 counter. 

in a model, there is no a priori indication of the number of 
hardware units: there could be one (with multiplexing or time .. 
sharing) or as many as three. On the contrary, if a DE
SCRIPTION segment is used, there are exactly as many 
distinct hardware components as are instantiated. And in 
fact, in a top-down approach, going from a model expressed 
in terms of operations to a model expressed in terms of in
stances of descriptions is precisely what is called synthesis. 

Thjs duality between operation and instance of description 
was suggested in the description of flip-flops dffl and dff2 
presented above. We shall illustrate it here with additional 
examples. 

An adder as FUNCTION and as DESCRIPTION 

Suppose we have defined the two types: (a) btmlvector 
to be a normalized (l:n) vector of Boolean terminals, default 
0, and (b) boolvector to be a normalized vector of Booleans. 

A generalized parallel adder, with interface carriers being 
Boolean terminals, can be written for all possible lengths of 
its x and y inputs, and z result, provided the size of x, yand 
z are equal: 

DESCRIPTION adder(IN x,y: btmlvector, cin: btmO 
OUT z: btmlvector, cout: btmO) BODY 

ASSERT size = size(y), size(z) = size(y) ENDASSERT 
DECLARE c[O:size(x)]: btmO ENDDECLARE 

c[size(x)] . = cin, 
OVER i FROM 1 TO size(x) REPEAT 

z[i] . = x[i] XOR y[i] XOR c[i], 
c[i - 1] . = x[i] 1\ y[i] V x[i] 1\ c[i] V y[i] 1\ c[i] 

ENDOVER, 
cout . = c[O] 
ENDadder 

On the other hand, an adder may be viewed as a function 
on two Boolean vectors of same size, returning a Boolean 
vector with one more element, the leftmost bit being the 
carry. 

FUNCTION add (x, y: boolvector, cin: bool): 
boolvector BODY 
ASSERT size(x) = size(y) ENDASSERT 
DECLARE c[O:size(x)], z[1:size(x)]: btmO 
ENDDECLARE 



CONLAN-Formal Construction Method: Language Application 235 

c[size(x)] . = cin, 
OVER i FROM 1 TO size(x) REPEAT 

z[i] . = x[i] XOR y[i] XOR c[i], 
c[i - 1] . = x[i] 1\ y[i] V x[i] 1\ c[i] V y[i] 1\ c[i] 

ENDOVER . 
RETURN c[O] * z "/ =#= is catenate operator /" 
ENDadd 

At the point of use of either segment, the size of their 
inputs must be known. 

Suppose we want to perform addition on two bytes, and 
the model includes the following DECLARE statement: 

DECLARE a[1:8], b[1:8], s[I:8], ca: btmO 
ENDDECLARE 

A number of possible statements will produce the same effect 
in terminal sand ca: 

USE addition(a, b, 0, s, ca): adder ENDUSE 
USE additionl(a[5:8], b[5:8], 0, s[5,8], addition 2.cin), 

addition2(a[1 :4], b[1 :4], addition 1.cout, s[1 :4],ca): 
adder 

ENDUSE 
ca * s.= add(a, b, 0) 

The first method clearly identifies one 8 bit adder; the 
second method shows two 4 bit adders; the third method 
does not call for a particular hardware implementation. 

An alu as ACTIVITY and as DESCRIPTION 

From IC data books, the logic diagrams and truth tables 
for each component can be modeled by a CONLAN de
scription segment. If the hardware designer had access to 
a library of such descriptions, the logic of a CONLAN de
scription could be tested, simulated, and verified by soft
ware. 

For instance, a 4 bit MSI alu chip is represented below. 
Only logic functions are spelled out, for reasons of space. 
A one to one correspondence exists between the actual IC 
pins and the DESCRIPTION segment interface carriers, ex
cept for power supply pins which are not taken into account. 

DESCRIPTION mcl0181(IN a[0:3], b[0:3], s[0:3], cin, 
m: btmO, OUT f[0:3], co, pg, gg: btmO) BODY 
If m = 1 THEN "/ logic functions /" 

CASE s IS 
0000: f. = -, a, 
0001: f. = -, a V -, b, 
0010: f . = -, a V b, 
0011: f. = 1111, 
0100: f . = -, a 1\ -, b, 
0101:f.= -, b, 
0110:f.= a XOR b, 
0111:f.= a V - b, 
1000:f.= -, a 1\ b, 

1001:f.=aEQVb, 
101O:f.= b, 
1011:f.= aVb, 
1100: f. = 0000 
1101:f.= a 1\ -, b, 
1110:f.= a 1\ b, 
1111:f.= a 
ENDCASE 

ELSE ... 
ENDIF 

ENDmcl0181 

, '/ arithmetic functions /" 

The same circuit can as well be written as an ACTIVITY 
segment. To do so, it is only sufficient to change the header, 
the body can be identical. However, for more clarity, input 
parameters can be typed bool, rather then Boolean terminal, 
to show that this ACTIVITY segment treats them as values. 

ACTIVITY mc10181a(a[0:3]: b[0:3], s[0:3], cin, m: bool, 
f[0:3], co, pg, gg: btmO) BODY 

"/same as above/" 
ENDmcl0181a 

Usage of one formulation or the other will be dictated, 
once again, by whether or not the actual number of ICs, and 
their exact interconnection, is to be displayed. 

Constructing a 32 bit alu from 4 bit slices would imply 
instantiating 8 mc10181 DESCRIPTION segments. Whereas 
the two conditional invocations 

IF cl THEN mc181a C .... ) ENDIF 
IF c2 THEN mc181a C .... ) ENDIF 

might imply multiplexing, if cl and c2 are mutually exclusive. 

5. CONCLUSIONS 

Base CONLAN is primarily a starting point, with well 
defined and semantically sound primitives, for language de
signers, to derive a coherent and comprehensive family of 
digital system description languages. As a result, writing 
hardware descriptions in Base CONLAN, although quite 
possible as we have seen, may look verbose. More time and 
effort will be needed before user oriented, less general but 
simpler, special purpose languages will be developed. 

Nevertheless, all concepts pertinent to hardware modeling 
are already here, and will be common to all languages of the 
CONLAN family. The ability to partition a design into a 
network of interconnected modules is supported by the no
tion of DESCRIPTION segments. Instantiation of such seg
ments, and intercommunication between instances, directly 
depicts the structure of a system, and the data and control 
paths which connect its components. 

Declaring objects of a carrier TYPE may correspond to 
a physical hardware unit, but may also constitute an ab
straction. In that sense, it is expected that hardware com-



236 National Computer Conference, 1980 

pilers, fed with alternative libraries of DESCRIPTION seg
ments, will generate models specialized for a given technology. 
CONLAN also provides FUNCTION and ACTIVITY seg
ments, to describe the behavior of a system, often in more 
concise manner than when structure is fully displayed. 

Space limitations prevented us from giving other than 
small examples. However, we hope to have made clear to 
the reader that, at each stage of the design of a real project, 
judicious selection of CONLAN segments leads to descrip
tions which are both adapted to the available amount of in
formation and writing style. 

6. ACKNOWLEDGMENTS 

The authors are indebted to Bell Northern Research (Ot
tawa), Sperry Univac (Philadelphia), Office of Naval Re-

search, Ballistic Missile Defense Advanced Technical Cen
ter (Huntsville), IRIA (Paris), Busdesministerium fur 
Forschung und Technologie (Bonn), Siemens (Munich), and' 
Fujitsu (Tokyo) for their interest and support, Professor 
Yaohan Chu for his early contributions, and in particular to 
Professor Jack Lipovski for his help and unwavering con
fidence in the group. 

7. REFERENCES 

I. Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill, F. and Skelly, 
P., "CONLAN-A Formal Construction Method for Hardware Descrip
tion Languages: Basic Principles," Proceedings National Computer Con
ference, Volume 49, Anaheim, California, 1980. 

2. Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill, F. and Skelly, 
P., "CONLAN-A Formal Construction Method for Hardware Descrip
tion Languages: Language Derivation," Proceedings National Computer 
Conference, Volume 49, Anaheim, California, 1980. 



Design decisions for the intelligent database machine 

by ROBERT EPSTEIN and PAULA HAWTHORN 
Britton-Lee Inc. 
Albany, California 

1. INTRODUCTION 

The Intelligent Database Machine (IDM), manufactured by 
Britton-Lee Inc., is a back-end processor and storage system 
that contains a complete data management system. It in
cludes specialized hardware to perform data management 
functions. It is our contention that the designers of a data
base machine must choose a focus for their machine which 
strongly influences other design decisions. The IDM is low 
cost, high performance machine designed to support' 'mid
range" users. This paper presents the reasons for this choice, 
and the resultant design issues. 

The discussion is divided into four sections. In section two 
we describe our conception of the population of database 
users. We show that a single machine cannot solve all classes 
of user performance and cost problems. We identify the class 
of applications for which we focus the IDM. In section three 
we discuss the design trade-offs for that class of applications. 
The last section, section 4, is the conclusion. 

2. TARGET USER POPULATION 

There are four user attributes which affect the design of 
a database machine. These are: 

(1) Required transaction rate 
If an extremely high transaction rate is required, a high 
degree of parallelism and/or very fast storage (semi
conductor memory, fixed head disks), must be incor
porated into the design of the database machine. 

(2) Storage requirments 
Very large storage requirements preclude the use of 
expensive storage as the total storage required, and 
mandate a multi-level storage system. 

(3) Wealth 
The cost of the database machine is the major con
straint in its design. 

(4) Predictability of access to data 
Is the data base generally accessed in a predictable 
manner? Certain applications naturally reference data 
by one or more keyed values, for example, part num
bers, employee numbers, employee names, etc. In 
some applications, there may be many possible access 
patterns, for example, census data and other statistical 

237 

applications. Database machines can be designed to
ward the expected usage pattern. 

U sing these four attributes we shall attempt to define gen
eral user populations. Let us define four general user cate
gories: the small business system, the scientific and medium 
business system, the large business system, and the special 
purpose system. Figure 1 shows the transaction rates and 
storage requirements for these categories of users. The trans
action rate is on the horizontal axis, and the storage require
ments on the vertical axis. A small business system has 
relatively few users and correspondingly a low transaction 
rate. The storage requirements for the small business system 
are also relatively small. 

The transaction rate and storage requirements increase 
proportionately for the medium-scale and scientific systems,' 
the large business systems, and, finally, the special purpose 
system, where the database is huge and/or the necessary 
transaction rate very high. Of course, there will be excep
tions to this conceptual graph: there are systems that are 
small and require very fast access, or large and have rela
tively low transaction rates. However, most systems appear 
to fall in the general categories marked on the graph. 

The cost of a system must be related to the performance 
needed by the end user. Those who require high-perform
ance, large storage systems can usually pay premium prices 
for them; the small to medium scale users are usually the 

size 1 
db -------------------------------------------------------

1 
1 SPECIAL PURPOSE SYSTEM 
1 

100G 1-----------------------------------------------
1 1 
1 LARGE BUSINESS SYSTEM 1 

lOG 1 1 
1 1 
I 1 

IG 1------------------------------------ 1 
1 1 1 
1 MEDIUM BUSINESS AND SCIENTIFIC 1 1 

100M 1 1 1 
1 1 1 
1---------------------- 1 1 
1 1 1 1 

10M 1 SMALL BUSINESS 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
---------1------------1-------------1----------1-------

1 10 100 1000 10000 

transactions / minute 

Figure I-User classification. 



238 National Computer Conference, 1980 

ones who do not need, and do not wish to pay for, extremely 
high performance. 

Unlike attributes (1) through (3), predictability of access 
cannot be correlated with the size of the database. It is an 
attribute of many general purpose business database appli
cations. A typical example is a business system, where there 
is an employee file. If the file contains employee name, ad
dress, phone number, employee number, etc., it is very 
likely that it will be accessed by specifying a name or em
ployee number, and very unlikely that it will be accessed by 
specifying a phone number. This means it is reasonable to 
expect a request such as "What is Smith's phone number?" 
and not "Who has phone number 527-7646?" 

We shall now show that the choice of target user popu
lation dictates the design of the machine. 

2.1. Possible decisions 

If a database machine is designed for users who need ex
tremely high transaction rates it must include either very fast 
storage (ram or fixed head disks), as in DIRECT [DEWI79], 
or it must include a mechanism to parallel search the disk, 
as in CASSM [LIP078]. On the other hand, if the focus of 
the machine is toward the user of very small databases, 
under 1M on our graph, and a low transaction rate, a stand
alone microprocessor system might suffice. The focus of the 
machine dictates the design of the machine because each 
increase in performance (either storage or transaction rate) 
results in an increase in price. As the price goes up, the 
potential market changes. 

2.2. The IDM decision 

It was decided to focus the IDM toward the mid-scale 
user. By "mid-scale" we mean users who require transac
tion rates in the range of 100 to 1000 per minute (possibly 
higher in certain applications). We further expect mid-scale 
users to have applications where the majority of transactions 
have predictable access patterns. This decision was made 
because large and special users are well served by other 
database machines being developed,. 'such as DBC [BAUM76], 
MUFFIN [STON79] and DIRECT [DEWI79]. Small to me
dium scale systems are currently not served well at all: data 
management systems, because of their necessary complex
ity, are expensive and do not perform well on small to me
dium scale computer systems. As a result, general data man
agement systems are often not used by this user group, and 
special purpose in-house systems are often developed. A 
family of database machine products can be developed which 
provide mid-scale performance and can be trimmed down' 
toward the small user or expanded upwards toward the 
larger user. 

In choosing this market, it is essential to have a good price/ 
performance ratio and be as host independent as possible, 
since there are many different types of host machines in use 
by mid-scale users and even more diversity among the small 
business systems users. The decision to focus the design 

toward the mid-scale user dictates various design choices, 
which are discussed in the following section. The IDM can 
accommodate moderately large or small users. It is designed 
to store databases up to 32 Gigabytes. It should achieve 
transaction rates up to 2000/minute in certain applications 
but also be capable of being scaled down for users who only 
need 100 transactions/minute. 

3. DESIGN TRADE-OFFS 

Having chosen to build a database machine emphasizing 
a low cost/performance ratio, there are a number of funda
mental design trade-offs which must be considered. We will 
explain each one and discuss how the choice of user appli
cation influences the decision. 

3.1. Functionality of the back-end machine 

Tbe first decision is what functionality to provide in the 
database machine. The degree of host independence is 
closely tied to the level of functionality provided in the back
end machine. The performance improvement derived from 
using a database machine is related to how much work can 
be off-loaded to the back-end. Figure 2 shows possible levels 
of service that a back-end database machine can provide. 
Thes.e are: 

1) User-programmable, cached controller. 
Allows the user a programming environment in the disk 
controller where (s)he can controi the on-disk pro
cessing. Caching can be used to read a track at a time 
and other such techniques can be used to reduce the 
apparent access times. 

2) Search unstructured files for values requested by the 
front-end. 
This is a simple search engine, and is most suited to 
applications with data that cannot be structured (such 
as text processing). 

3) A record management system. 
This would provide an interface at the record level such 
as insert record, get next record, etc. 

4) Provide a basic relational data-management system, 

complete user application contained 
in back-end machine 

functionally complete relational DBMS, 
including audit trail, back-up, protection 

data definition 

basic relational 
data management system 

record management 
system 

search engine , , 
--------------------- , 
'user - programmablel , 
, cache controller , , 

Figure 2-Evolution of back-end intelligence. 



with search and update capabilities, interfaced through 
a high level language. 
Host communication time and software support is min
imized by such an approach. The database machine can 
be used most effectively by fully containing a basic 
database system within it. 

5) Provide audit trails, back-up and recovery facilities. 
If a data management system is to be contained in the 
back-end, it should maintain its own back-up and re
covery system; otherwise, the host will have commu
nication difficulties knowing what the system is doing, 
and when. 

6) Provide protection and data definition facilities. 
Logically, this can be done in the host or in the database 
machine; doing it in the database machine provides a 
mechanism that the database machine can use to op
timize performance. 

7) Full end user support. 
If the database machine is to provide a complete data 
management system, why not make it directly control 
the terminals and run the application programs, thus 
eliminating the need for a host? 

Figure 2 represents the evolution of increasing back-end 
intelligence from a disk controller to a back-end machine. 
Each of the steps makes sense but the crucial issue is which 
are cost effective and how much do they affect the host sys
tem. Until one reaches a level where the back-end is func
tionally independent from the host, many portions of the 
host are closely tied to the back-end. Another consideration 
is that a database machine is a piece of hardware replacing 
what has traditionally been software. It is not readily subject 
to user modification. Issues which are closely tied to the end 
uSer should be solved in the host since they are likely to 
require local customization. 

A final consideration, and one that cannot be over-em
phasized, is that the amount of work which the back-end 
offloads from the host should be significantly greater than 
the amount of work needed to communicate with the back-
end. \ 

The amount of work done by the back-end in 1, 2, and 3 
is not large compared with the overhead of interacting with 
the back-end. Also, at such a low level, the host processor 
system is tightly coupled to the low level implementation 
decisions of the back-end. For these reasons we feel the first 
significant performance improvement occurs when the host 
deals with the back-end at a high level (case 4). Case 4 is 
a database management system with a high level interface. 
The decision to make the system relational was never ques
tioned. 

Providing the additional functionality of 5 and 6 increases 
the complexity of the database machine but greatly simplifies 
the tasks done in the host. 

The final step, doing everything in the back-end, is counter 
productive. It casts in concrete parts ofthe end user interface 
and furthermore, the back-end processor has no performance 
advantage for running application programs over any number 
of very good host processors available today. The database 
machine's hardware performs extremely well for database 

Design Decisions For Intelligent Database Machine 239 

management but offers little to the general programming en
vironment. Running application programs requires a differ
ent architecture than running a dedicated database manage
ment system. 

3.2. Storage medium 

In order to keep the cost/performance ratio low, providing 
on line storage in the range of 8 Megabyte to 32 Gigabyte 
requires the use of moving head disks. They currently are 
the only non-volatile storage medium with a price/perform
ance suitable for the target market place. The end user costs 
for standard, moving head disks are $60 to $120 per megabyte 
for large systems (over 100M) and $100 to $200 per megabyte 
for small systems. These costs have been dropping and re
search has shown that they will continue to drop for some 
time to come. 

3.3. Search mechanism 

A fundamental part of database management involves 
searching through objects in the database. The choices for 
search mechanism can be broken into two categories: com
plete scanning of the object, or indexing/hashing techniques 
(which we shall call access methods for the purpose of this 
discussion). Access methods limit a search based on certain 
predefined keys. Some commonly used access methods in 
modem database management systems are B-trees [BAYE70], 
ISAM [lBM66], and hashing [KNUT73]. In contrast, a com
plete scan takes any search keys and linearly searches. On 
traditional systems such a search will take an inordinate 
amount of time and is impractical except in very small da
tabases. Special database machines, however, can be de
signed to perform multiple linear searches in parallel. For 
moving head disks, this requires having mUltiple heads active 
at the same time. Each head needs search logic sufficient to 
search at the transfer rate of the disk. A number of database 
machines, such as RAP [OZKA78], have been proposed 
whose speed depends on having many search elements. 

The basic trade-off is to compare access methods against 
mUltiple search paths, based on expected access patterns 
and cost. With current technology, the cost of one search 
mechanism which can perform at disk speeds is substantially 
less than the cost of multiple search paths employing multiple 
active heads. MUltiple search paths may work for the upper 
end of the cost/performance curve but they are unaffordable 
at the other end. Access methods are clearly cheaper; the 
next step is to determine how they can be expected to per
form compared to mUltiple search paths. Studies have shown 
that access methods out-perform multiple search path sys
tems on transactions which have a predictable access pattern 
[HAWT79]. 

One final trade-off to consider is the impact on the end 
user. Multiple search paths relieve the Database Adminis
trator from having to determine the physical structure of the 
database objects, that is, what access methods should be 
used on what fields. In some cases this is a simple task (for 



240 National Computer Conference, 1980 

example employee numbers and employee name will be com
monly accessed), but there are other cases when the optimal 
choice of access methods is extremely difficult to determine. 
We have opted to leave this burden with the end user in 
exchange for a system which will be much lower in cost and 
will have a potentially high performance. 

In summary, the use of access methods fits in well with 
databases which have predictable access patterns. To the 
degree that this is true, an access method database machine 
will have a much better cost/performance ratio than a mul
tiple search path machine. 

3.4. Low cost processors 

Having decided to use standard moving head disks and 
access methods, we need processing elements which have 
comparable speeds. Low cost implies the use of micropro
cessors but no existing microprocessors have a speed which 
is satisfactorily matched to the database application. Exist
ing database management systems are frequently execution 
bound even on fast mainframes. Moving a DBMS onto one 
oftoday's 16 bit microprocessors makes economic sense but 
does not provide reasonable performance for the class of 
users we have identified. 

The trade-off we pursued was to achieve processing rates 
at least one order magnitude greater than those of micro
processors but at only a modest increase in price. The folk
lore in processing costs, Grosch's Law [GROS75,CALE79], 
dictates that this is impossible in the general case. However, 
if one chooses to do a specific task, not a general one, some 
surprising results come out. It is possible to structure a 
DBMS such that an enormous percentage of its time is spent 
in a small (under 4K) amount of its code. This code is simple 
in function and specific in nature due to the fact that it deals 
only with the issues of one task, database management. 

By building a to MIPS, pipeline machine from standard 
Shottky TTL logic and microcoqing a well defined collection 
of subroutines, we are able to meet a high performance at 
a modest increase in price. The special purpose "Database 
Accelerator" board costs approximately two times the cost 
of a microprocessor board but in our case has a 30 times 
increase in performance for the set of code it is intended to 
perform. Such trade-offs are inherent in special purpose ar
chitectures such as database machines. 

The high speed of the Database Accelerator enables the 
IDM to process data as it is coming off the disk. For oper
ations which require disk access, the Database Accelerator 
will appear to process data with zero real time cost. The 
operation is limited by the speed of the disk. When only a 
small transaction rate is required, the Database Accelerator 
can be removed, reducing the cost of the machine. 

3.5. Use of cache memory 

If we want a machine that can run faster than disk speed, 
it is possible to implement a disk cache using random access 
memory. This will improve performance only if a disk page 

is referenced more than once in a reasonably small period 
of time. The trade-off is the cost of the cache versus the 
relative performance improvement. The performance is 
completely dependent on the amount of "rereferencing." 
This in turn is highly dependent on the relative ratio of the 
cache size to the data storage size. 

In general most database applications show very little 
rereferencing. There are, however, certain exceptions 
[HA WT79]. These include references to the upper levels of 
index pages, references to system catalog pages (audit trail, 
locking, data dictionary, etc.) and rereferencing does occur 
in more complicated user queries. The optimal amount of 
cache is therefore strongly application dependent. The low 
end IDM provides a minimum amount of cache (approxi
mately 32K). Additional cache can be included as a user 
option. Those applications which have a very high trlans
action rate on a modest size database can incorporate'suf
ficient cache to speed the database machine to near main 
memory speeds. This ability is consistent with the desire to 
serve a large range of speed requirements. 

3.6. Single/multi-thread 

Both the host independence and the performance of the 
database machine are affected by the decision of whether 
to multi- or single-thread the database transactions. A data
base machine has the choice of either sequentially executing 
one transaction at a time or accepting mUltiple transactions 
and scheduling their execution in a manner similar to what 
is done in time sharing systems. 

To provide an intuitive example, we examine an analogy 
found in traditional disk controllers. Ignoring the issue of 
overlapped seeks, a controller takes one operation (read a 
sector) and does not accept another until the current oper
ation is complete. To enhance performance an operating sys
tem will schedule the next disk request from a queue of re
quests by some strategy which tends to minimize overall 
seek time. If the selection strategy were moved into the disk 
controller, it would then appear to be multi-threaded. Disk 
requests could be made by the host at any time. When an 
operation was complete, the disk controller would need to 
tell the host processor not only that an operation was com
plete, but what operation was completed. The trade-off for 
doing scheduling in the disk controller is minimal. It would 
move a small amount of overhead out of the host. It would 
also allow global scheduling when multiple hosts are con
nected to one controller. 

For a database machine, the trade-offs between single and 
multi-threading are much more significant. To begin with, 
how would an operating system decide how to schedule a 
database transaction? It would require an enormous amount 
of information about what the transaction does. This amount 
of information is contrary to the one of the goals of back
end processing, e.g. independence between devices. 

The range of times it takes to process a database trans
action varies enormously. A typical transaction may require 
only a few to's of milliseconds, but other transactions can 
take minutes or hours. 



To allow a mixture of different transactions of differing 
amounts of work, it is necessary to be multi-threaded and 
also allow preemption of a transaction. The cost to do this 
includes adding scheduling code, and room for swapping 
different transactions in and out of execution. This requires 
a significant amount of logic in the database 'machine. Many 
of the proposed database machines are single-threaded or 
depend on a cooperating program in the host to coordinate 
rescheduling. _ 

The decision for the IDM is to provide a multi-threaded 
environment. This gives a very high degree of independence 
from the host operating system. Additionally, the problem 
of where to store transactions which are waiting· for re
sources is solved by "stealing" memory from the cache. At 
any point in time a percentage of the cache memory is ded
icated to transactions and to caching disk activity. The per
centage is allowed to change dynamically. For example, at 
a particular point in time there may be only one transaction 
running and it may have nearly all the cache memory to use 
for processing. Similarly, if there are many, short transac
tions, the cache will be allocated mostly for transaction 
swapping. A heuristic algorithm is used to determine how 
best to utilize the cache resource. This fine degree of control 
is best done in the database machine. The host operating 
system has very little to do except pass program requests 
to the IDM and pass results back to the program. In DMA 
interfaces, this overhead is trivial, making the driver pro
gram in the host operating system very simple. 

4. CONCLUSIONS 

In this paper we have examined a number of the funda
mental design decisions in designing database machines. We 
began by identifying the class of applications which the da
tabase machine was to address, namely, the mid-range user 
who has applications with predictable access patterns. To 
build a machine with a good cost/performance range over 
a wide range of storage requirements requires moving head 

Design Decisions For Intelligent Database Machine 241 

disks and access method search techniques. To achieve high 
execution speed, special purpose hardware (the Database 
Accelerator) is used. There are specific applications where 
a variable size cache can greatly improve performance. Fi
nally we have illustrated why a database machine must be 
multi-threaded and the rationale behind making the database 
machine support a functionally complete, relational database 
management system. 

BIBLIOGRAPHY 

[BAUM76] Baum, Richard I., Hsiao, David K., and Kannan, Krishnatmuti, 
"The Architecture of a Database Computer - Part I: Concepts and Ca
pabilities," Technical Report OSU -CISRC-TR-76-1, Computer and In
formation Research Center, The Ohio State University, Columbus, Ohio 
(National Technical Information Service Number AD-A034 154). 

[BAYE70] Bayer, R. and McCreight, E., "Organization and Maintenance 
of Large Ordered Indices," Proc. 1970 ACM-SIGFIDET Workshop on 
Data Description, Access, and Control, Houston, Texas, Nov. 1970. 

[CALE79] Cale, E. G., et aI., "Pri'ce/Performance Patterns of U.S. Com
puter Systems," CACM, Volume 22, Number 4, April 1979. 

[DEWI79] Dewitt, D. J., "Query Execution in DIRECT," Proceedings, 
SIGMOD International Conference on the Management of Data, 1979, 
pp. 13-22. 

[GROS75] Grosch, H. A., "Grosch's law revisited," Computerworld 8,16, 
April 16, 1975. 

[HA WT79] Hawthorn, Paula, "Evaluation and Enhancement of the Per
formance of Relational Database Management Systems," Electronics 
Research Laboratory, University of California at Berkeley, Berkeley, 
Ca., Memo Number M79-70, December, 1979. 

[IBM66] IBM Corporation, "aS ISAM Logic," IBM, White Plains, N.Y., 
1966, GY28-661S. 

[KNUT73] Knuth, D. The Art of Computer Programming, Vol. 3, Addison
Wesley, Reading, Mass., 1973. 

[LIP078] Lipovski, G. J., "Architectural Features of CASSM: a Context 
Addressed Segment Sequential Memory," Proceedings, Fifth Annual 
IEEE Symposium on Computer Architecture, April, 1978. 

[OZKA78] Ozarahan, E. A., Schuster, S. A., and Sevcik, K. C., "Perform
ance Evaluation of a Relational Associative Processor," AFIPS Confer
ence Proceedings, Vol. 44, 1975, pp. 379-388. 

[STON79] Stonebraker, Michael, "MUFFIN: A Distributed Database Ma
chine," Electronics Research Laboratory, University of California at 
Berkeley, Berkeley, Ca., Memo Number M79-28, May 1, 1979. 





DIALOG-A distributed processor organization for 
database machine 

by BENJAMIN W. WAH and S. BING YAO 
Purdue University 
West Lafayette, Indiana 

1. INTRODUCTION 

The conventional physical storage mechanism of a computer 
system is usually comprised of a memory hierarchy that 
stores program and data. The requirement for high perform
ance and low cost is achieved through a combination of 
memories of different speeds. By automatically managing 
the files so that the most frequently used files reside in fast 
storage, an overall speed comparable to the speed of the 
fastest memory can be achieved. However, with the appli
cations of large databases, the maintenance of large files on 
a conventional memory hierarchy becomes increasingly dif
ficult. Most database applications perform a small number 
of simple operations on a large amount of data. Usually only 
a small fraction of the data accessed is required by the ap
plication. It is more cost effective to perform database op
erations directly on the data in the secondary storage in order 
to avoid the transfer of unnecessary data across different 
levels of the memory hierarchy. The Database Machine 
(DBM) is the result of an architectural approach which dis
tributes processing power closer to the devices on which 
data are stored and offloads database processing functions 
from the main computer [LAN79]. 

The feasibility of database machines has greatly improved 
with recent advances irl the computer system device tech
nology. The number of components per chip is approxi
mately doubling each year and"the CPU speed is growing 
exponentially. At the same time, the cost per unit of memory 
is decreasing and a wide variety of new storage devices, 
which include CCD memory, bubble memory, and the elec
tron beam access memory, are becoming available. It is now 
possible to design inexpensive processing elements to be 
embedded within these new storage devices. Disk technol
ogies have also been improved and it is possible to provide 
inexpensive secondary and archival storage to the computer 
system. On the other hand, the software costs and overheads 
are usually a deterrent factor for computer system devel
opment. This cost is becoming dominant in present data pro
cessing systems, and is expected to increase rapidly to an 
even higher percentage in the near future. The replacement 
of expensive database system software with custom built 
hardware is therefore a feasible and desirable trend in the 
future. 

243 

The database machine proposed so far can be divided into 
three types. The first type is the backend system which 
utilizes mini-computers to enhance the database processing 
of large host computers. The funetions of the backend sys
tem include access validation, storage management, con
currency control and I/O control. However, the principle of 
the design is basically the same as a conventional database 
system. Large amounts of data not required by the database 
application are accessed and transferred to the mini-com
puters. The use of a backend machine is only a temporary 
method to extend the processing power of a large CPU. 

The second type of database machine utilizes the single 
instruction multiple data stream (SIMD) principle. This con
cept is extended from backend machines in which the da
tabase processing functions are moved to a lower level. The 
characteristics of this design are that simpler, less costly 
processors that are dedicated to a small block of data are 
used. This concept, when applied to the storage cells (mod
ules), is exemplified by the Logic-Per-Track device in which 
processing logic are duplicated for each track and the keys 
in different tracks are searched in parallel. Examples of this 
design are TapeDRUM [HOL56], Slotnick's Logic per Track 
Disk [SL056], RAPID [PAR72], CASSM [LIP78, SU79], 
RAP [OZK77, SCH79], RARES [LIN76], DBC [BAU76, 
KER79, BAN79], and Chang's Major/Minor Loop Machine 
[CHA 78]. In this type of design, the database workload must 
be heavy in order to keep the parallel resources fully utilized. 
For large databases, the amount of replicated processor ele
ments may be prohibitively large. The degree of parallelism 
in this type of design is also limited by the number of read/ 
write heads, i.e., the number of data streams that can be 
read in parallel. This concept results in an expensive memory 
device with parallel read/write heads. Moreover, the pro
cessors under most of these designs are quite general with 
limited amount of communications. Lastly, if the database 
machine is built on a disk, the processors must be extremely 
fast because many fast signal translations are needed in order 
to perform real time processing and disk marking. 

If the replication goes further down to the bit level, an 
associative memory results. Associative memories are usu
ally very expensive and, therefore, can be only shared by 
swapping in data when needed. This is exemplified by RE
LACS [BER79] in which STARAN is used as the associative 



244 National Computer Conference, 1980 

memory. However, this design experiences the usual prob
lem of data swapping in a memory hierarchy, and there is 
no provision to select data before it is accessed and trans
ferred to the associative memory. The throughput of the sys
tem is therefore quite limited. Further, 1/0 lines must be 
extensive in order to load the associative memory in parallel. 

The last type of database machine design is based on the 
Multiple-Instruction-Multiple-Data System (MIMD) princi
ple. In this architecture, which is exemplified by DIRECT 
[DEW79], the processing logics are separated from the stor
age modules and are interconnected with an. array of CCD 
memories through a cross bar switch. This design offers 
more flexibility and better load balancing and allows the 
processors to be shared among the storage modules. Because 
of the fact that each processor can access multiple storage 
modules simultaneously, it is easier to perform database 
operations which require multiple files to be coupled, e.g. 
a multi-relation join. Further, expansion is easy and mod
ular. However, this design suffers from the same disadvan
tage as the associative memory when the size of the CCD 
memory is not large enough, in which case excessive swap
ping will occur. Again, since the processing logic is removed 
from the storage device, large amounts of unnecessary data 
are accessed and transferred. 

We note that the previous designs are built around a single 
type of storage device, e.g. disk, CCD, etc. Intramodule 
operations can be performed very efficiently because they 
do not utilize the 110 bus. However, inter-module operations 
often result in a bottleneck at the 110 bus. At anyone instant, 
only one inter-module operation can be processed because 
the designs are essentially SIMD. In some designs, e.g. DI
RECT, where the problem of 1/0 bus has been solved by 
using a simple cross bar switch, the operations are expensive 
because data have to be transferred from the mass storage 
to the CCD storage modules. Only when a sizable amount 
of operations are performed on the file transferred would the 
transfer be cost effective. 

In this paper, we propose a design of a backend database 
machine, DIALOG(Dlstributed Associative LOGic data
base machine) which addresses some of the problems men
tioned above. We want to design intelligent but simple pro
cessing logic so that they can be replicated on the storage 
modules. Algorithms such as select, project and join will be 
implemented in hardware so that they can be processed very 
efficiently. These processors work directly on the storage 
devices, so that the amount of data transfer is kept at a 
minimum. A network is proposed which provides a uniform 
medium to connect heterogeneous memory devices together. 

The DIALOG database machine is designed with the fol
lowing design goals in mind. First, the system should be 
extendable and be able to support very large on-line data
bases in the future. Second, the design must have high per
formance and the cost should be low by replicating a few 
simple devices. Third, the system should use existing mem
ory technologies in the design such that it can be imple
mented now, and the design should be able to evolve as new 
memory technologies are available in the future. Fourth, the 
system should accommodate heterogeneous storage devices 

such that files with different workload and sizes can be 
stored in the devices with appropriate speeds and sizes. 
Fifth, the system should implement low level operations 
(such as select and join) and facilitate higher level query 
optimization. Finally the system should be able to interface 
with the host computer in multiple data models (such as re
lational, hierarchical, and network data models [COM76]). 

This paper is divided into five sections. Section 2 provides 
the overall architecture of the system. It also illustrates how 
an inter- or intra-module operation is performed. Section 3 
describes the architecture of the data module. The functions 
to be performed in a module are partitioned into the select 
processor, the associative processor, the join processor and 
the communication processor. Section 4 presents an analysis 
on the buffer size required. Section 5 provides some dis
cussions of this system and compares this system against 
other systems. Lastly, Section 6 gives some concluding re
marks. 

2. SYSTEM ARCHITECTURE 

The secondary storage, where the bulk of the database is 
stored, is usually made up of multiple types of storage de
vices like disks and tape drives. As the storage technology 
advances, devices such as CCD memories, bubble memo
ries, EBAM's, etc. could become part of the storage system. 
Each of these storage types has different capacities and 
speeds. Since many database operations require data stored 
in mUltiple files, it is often necessary to access these files 
simultaneously. One approach is to tqmsfer all the required 
data for an operation to a uniform storage device such as 
CCD memories, which are connected to a set of processors, 
before processing it. However, there is a significant over
head associated with this data transfer, especially when the 
original storage device has no selection capability. Further, 
if the intermediate device is not large enough to accommo
date the entire file, costly multiple passes have to be made. 

An alternative approach is to send the required data di
rectly from the storage device on which the file is stored to 
a second storage device on which the file is to be processed. 
The time to stage these files to an intermediate storage device 
can be saved. If the storage devices are enhanced by suf
ficiently powerful processing elements, the results of data
base operations can be output at a very high speed. In order 
to facilitate the transfer of data, a communication network 
must be designed to connect the heterogeneous devices to
gether. 

In this section, we describe the general architecture for 
the latter approach to database machine design. The design 
of the network will be examined and the processing capa
bility of the machine will be discussed. 

A. General architecture 

The general architecture of the system is shown in Figure 
1. Data in the system is stored in the data modules. Each 



Distributed Processor Organization for Database Machine 245 

Data 
Modules 

Host Computer 

Backend 
Controller 

Communication Network 

Other Backend 
~-~ Controller 

Figure I-System architecture of a cluster in DIALOG. 

data module is consisted of a storage device and an asso
ciative processor. Data modules are connected together by 
an interconnection network. Only data can flow across this 
network. The cluster of data modules are connected directly 
with a backend controller which allows both data and control 
communication. The backend controller provides commu
nication between the cluster of data modules and the host 
computer. Queries expressed in a high level representation 
are sent from the host to the backend controller and query 
responses are returned to the host. 

The major functions of the backend controller of a cluster 
include pre-processing and optimizing the queries, looking 
up system directory, establishing links between data mod
ules, initiating and scheduling operations within each data 
module, receiving and buffering output from data modules, 
managing the sharing of resources, and initiating rollback 
and recovery as ~ystem components fail. All of the above 
functions will be implemented in software. 

Depending on the number of data modules in the database 
machine, the interconnection network may become quite 
complex. It may be necessary to group data modules into 
multiple clusters. The backend controllers of these clusters 
are connected using a network of the same design as that 
developed for interconnecting the data modules within a 
cluster. A higher level backend controller is used to coor
dinate the controllers of all the clusters. 

An example of this hierarchical network is shown in Figure 
2. We note that the communication between data modules 
of different clusters is achieved by sending data through the 
backend controllers and a high level communication link. 
The highest level backend controller assumes the respon
sibility of communicating with the host computer. The op
eration of the network in each level of the hierarchy behaves 
in the same fashion as the network in the lowest level which 
will be discussed later. 

Host 
Computer 

A Cluster 

Controllers 

Data Modules 

Figure 2-An example of the hierarchical network in DIALOG. 

B. Processing capabilities 

Although DIALOG is designed to support mUltiple data 
models, only the database operations defined on the rela
tional data model [COD70] are discussed in the present 
paper. The relational operations currently included in the 
design are: select, project, join, union, and cartesian prod
uct. 

Operations that require only one file, such as selecting 
records that satisfy a given predicate and projecting on cer
tain attributes are usually resolved within one data module. 
Database operations that require the cross-referencing of 
files stored in two data modules (such as join and cartesian 
product) are performed by sending all the required records 
to one of the data modules and then processed there. In the 
case when the two files to be processed reside in the same 
data module, one of the files can be retrieved into the input 
buffer. The processing continues as if the file in the input 
buffer were received from a different module. 

Database operations that access multiple files in several 
data modules are decomposed into a set of two-module op
erations which can be processed either in sequence or in 
parallel. The decomposition and scheduling of database op
erations and the routing of files are determined by the back
end controller. 

C. Network design 

The design of the interconnection network has an impor
tant implication on the throughput of the system. A ring 
network is the simplest form of communication network, but 
it could cause a lot of contention. If the conflict is resolved 
by a centralized controller, the controller may become a 
bottleneck of the system. If the conflict is resolved in a dis-



246 National Computer Conference, 1980 

tributed fashion, the software for the communication pro
tocol may be complicated. It is therefore desirable to have 
a network that is conflict free and requires a small amount 
of software development. 

The simplest conflict-free network is the fully connected 
network, although this network may seem very expensive 
because the number of links grows as n 2 where n is the num
ber of data modules. However, these links are merely serial 
lines governed by a central clock, and their costs are mini
mal. An implementation of the link between two data mod
ules is shown in Figure 3. The link can be established by the 
controller which sends a command to the communication 
processing modules of the two data modules. The commu
nication processors at the two data modules then set the 
multiplexor and the demultiplexor and the link is established. 
The links can only be broken by a command from the con
troller. The communication processor is responsible for man
aging the buffer pool, detecting and correcting errors in the 
data, informing the controller if a non-recoverable error is 
detected, and signaling the source of a data transfer to stop 
when the buffer is full. Since the communication between 
two data modules is governed by a central clock, any type 
of memory device can be connected to the network. The. 
design can also be modified to broadcast data to several 
modules simultaneously. 

With this network design, global data transfer is very easy. 
Referring to Figure 2, suppose one of the data modules in 
cluster 1 wants to send data to a data module in cluster 3. 
Since there is no direct path of communication between these 
two data modules, data from cluster 1 will be sent first to 
its controller. Since there is a direct path of communication 
between controllers of clusters 1 and 3, this path is estab
lished by controller 5, the controller in one level higher than 
controllers 1 and 3. The file transfer can be carried out with
out the intervention of controller 5. Of course, this approach 
can result in excessive overhead for the lower level con
trollers when inter-cluster transfers are large. However, by 
carefully allocating the relations to the clusters so that the 
inter-cluster communications are minimal, this technique is 
still a cost effective approach. 

Buffer 
Pool 

Communication 
Processor 

s., 
o 
~ 

Serial ~ 
, ____ ---' Data .e-

.... 
.-i 

~ 

To 
Other 
Modules 

Communication Network 
Processing 
Module 

Buffer 
Pool 

Communication 
Processor 

Communication 
Processing 
Module 

Figure 3-A communication link between two data modules. 

3. DATA MODULE DESIGN 

In this section, we describe the internal design of the data 
module. The function of the data module is to store the data 
and to process relational queries directed on the stored data. 
The design should allow both inter- and intramodule queries 
to be performed efficiently. Furthermore, the design should 
be modular and functional so that current microprocessor 
and VLSI technologies can be used in the design. 

A. General data module architecture 

The general architecture of a module is shown in Figure 
4. There are five basic sub-modules of the system, namely: 
the physical storage device which contains the database; the 
selection processing module which processes projection and 
selection operations; the associative processing module 
which compares the output from selection processing with 
the stored search keys and passes successful matches to the 
join processing module which then produces the join; and 
lastly, the communication processing module which man
ages the buffer pool and communicates with other data 
modules in the network. We describe each ofthese sub-mod
ules here. 

B. Data allocation in the physical storage device 

The physical storage device is made up of multiple cir
culating loops of data with a single read/write head for each 
loop. The loops may be simple which can model devices like 
CCD memories. It may be more complicated such as the 
major/minor loop of a bubble memory, the LARAM orga
nization of the CCD memory, or a cylinder of a disk. The 
access time distribution for accessing a piece of data within 
the loop consists of two components, the time to switch to 
read/write a particular loop and the time to shift the data in 
the loop to the read/write mechanism. Different memory 
devices have different time delays for each component. In 
the case of a single loop, data can only be read out serially. 
However, in the case of a multi-loop organization, data may 
be read out one loop at a time with electronic switching be
tween the loops. This is characterized by a cylinder of a disk 
or a LARAM organization of CCD memory. Data may also 
be read out serially from all the . loops simultaneously. This 
type of memory is characterized by a multi-chip bubble or 
CCD memory and the Parallel-Transfer-Disk [AMP78]. 
However, in some implementations, it may not be possible 
to synchronize all the parallel outputs on the device (e.g. a 
cell may be bad in one of the loops and unless all the cor
responding cells in other loops are marked bad, the outputs 
will be out of synchronization). It is therefore not practical 
to organize the database such that a tuple of a relation is 
read out bit parallel but word serially. The organization of 
the database in a multi-loop device is therefore chosen to 
be bit-serial and word-parallel, that is, multiple tuples will 
be available simultaneously at the read heads. In this case, 
since we assume that the selection processing module can 



Distributed Processor Organization for Database Machine 247 

r - - - -- -- - - - - - - -., 
I n l m2 I 

Buffer B2 

Condition 

r- - -- - ------, 
I 

I , 
I Loops' 
I I 

I 
I 
I 
1 
I 
I 

Selector 1'-_ ......... 
I 
I 

I 
I I, I 

I I 
I 

I 
I 
I 
I 

Look Aside 
I 

, I I I 
I I 

I B4 I I I 
l _______ ---- - --- _ _ 1' l _______ ~ _ ______ J L __ J 

Join Processing 
Module 

Associative 
processing Module 

Select 
Processor 

Physical 
Storage Device 

r ----------- ---------------
I 
I Buffer Pool 

I 

_ - _ -"'t" - ..... - - - - --- - - - - I 

I 
I 

Communication I 
Processor I 

I 
L_ 

I--------------~. I 
_ C£~u!!.i~ti.£n_PE.0...9~~i!!<L~<2..dll1:~ _________ - -- - -i..J 

Network 

Figure 4-Architecture of a data module. 

process one tuple at a time, a buffer is added between the 
physical storage device and the selection processing module 
so that all the parallel tuples are sequenced sequentially. Of 
course, the speeds of'the other processing modules have to 
be increased from a single loop model correspondingly. With 
the use of a buffer, a multi-loop device behaves like a single 
loop device. We conclude that a single loop model is suffi
cient for our design. 

C. Selection processing 

In selection processing, tuples are examined in the data
base one at a time and only those tuples satisfying certain 
predicate will be output. This output can be sent to the buffer 
pool or it can be sent to the associative processing module. 
When the output is sent to the buffer pool, it may be sent 
to another data module in the system for join processing or 
it may be used to join with another relation on the same data 
module. Projection is an operation similar to selection. How
ever, we assume that duplicates will not be removed in the 
data module because of the limited buffer capability. 

D. Join processing 

In performing a join on this system, both the associative 
processing module and the join processing module will be 
used. The buffer data allocations are as follows (see Figure 
4). Buffer B I contains m I tuples, each of n I bytes. The con
tents of B I is filled from the buffer pool and they represent 
part of the tuples of a relation coming from the same or a 
different data module in the system. These tuples are used 
to join with the tuples coming from the output of the selection 
processing module. The size n I is chosen so that it can ac
commodate the largest tuple used. The size of m I will be 
determined in Section 4. 

The associative sequential memory in the associative pro
cessitlg module is made up of m, circulating loops of size 
k. It contains the keys of the join domain of the correspond
ing tuples in buffer B I' It is a one to one correspondence 
and the keys of the ith tuple in B I is contained in the ith loop 
of the associative sequential memory. The size k is chosen 
so that the loop can accommodate the largest key used. For 
smaller keys, multiple copies may be made in the same loop 
to allow faster access. 



248 National Computer Conference, 1980 

The associative processing module compares the serial 
output tuple from the selection processing module associa
tively against all the keys in the associative sequential mem
ory. If at least one match occurs, it indicates that a join is 
possible between this tuple and the corresponding tuple in 
B l' This tuple is put in buffer B 2 and it will be joined with 
the corresponding tuples in B 1 when all the previous joins 
are performed. B 2 contains a queue of m 2 tuples, each of n 2 

bytes that can be used to join with keys in B l' The size of 
n 2 is chosen so that it can accommodate the largest tuple 
used (n 1 and n2 are probably chosen to be identical). The 
size of m 2 is determined in Section 4. 

As the match is done in the associative processor and a 
successfully matched tuple is added to B 2, a word is written 
into buffer B 3 • B 3 is an m 1 by m 2 bit matrix. A column in B 3 

represents the set of tuples in B 1 which match with the cor
responding tuples in B 2, where a 1 indicates a match and a 
o indicates a no-match. 

The example in Figure 5 illustrates the functions of B 1 , 

B 2, B 3 and the associative sequential memory where m 1 , 

m2 are chosen to be 2 and n 1 and n2 are chosen to be 12. 
In this example, suppose the following join is to be per
formed. 

RETRIEVE (A. city , B.pname): A.p# = B.p# 

ml 

.A 

m2 

Part of relation A 

P# CITY 

5 New York " ~ 

20 Chicago ~ ... 

n
1 

'1 .. 
V 

Join 
Processor 

l\ 
P# Pname 

5 Bolts 

5 Nuts 

Part of relation B to be 
joined with tuples in Bl 

m1 

1 

0 

m2 

B 1 contains part of the tuples of relation A, and B 2 contains 
part of the tuples of relation B which are to be joined with 
the tuples in B 1 • For the left column in B 3, it indicates that 
the first tuple in B 2 can be joined with the first tuple in B 1 • 

Similarly, the right column in B 3 indicates that the second 
tuple in B 2 can be joined with the first tuple in B 1 • The loops 
in the associative sequential memory contain the keys of the 
corre'sponding tuples in B 1, Note that in our example, the 
p# domains in Bland B 2 are never output from the join 
processor and they are not used by the join processor to 
determine which of the tuples in Bland B 2 are to be joined 
(because B 3 provides this information). These two domains 
therefore do not have to be included; however, they are 
shown here for illustration. 

The join processor performs the join between the tuples 
in Bland B 2 by picking up the first tuple in B 2 and joining 
it with all the tuples with matched keys in B 1, before pro
ceeding to the next tuple in B 2' The results of the join pro
cessor are routed to the buffer pool. 

E. Associative sequential memory 

The design of this associative sequential memory is based 
on the design by Ramamoorthy, Turner and Wah [RAM78, 

1 ~. Y 5 '"" Asso. 
Logic 

0 ~ rl 20 " 
JI'-

,v 

Associative A 

< Processor ... 

Figure 5-Example to illustrate the function of buffers B I, B 2, B 3 and the 
Associative Sequential Memory. 

I 
I 



Distributed Processor Organization for Database Machine 249 

W AH79]. The sequential memory is made up of multiple 
loops of circulating bits shifting in synchronism that may be 
CCD memory or bubble memory. In this design, m 1 keys 
are stored in the memory, with one key occupying each loop. 
Associative logic capable of performing equality, threshold 
and proximity searches are put at the read/write head of each 
loop. The architecture of this design is shown in Figure 6. 
The detailed cell logic is shown in Figure 7. During a clock 
period, a bit-slice of these m 1 keys is shifted out from the 
sequential memory and is compared associatively with the 
output from the selection processing module. The enable 
signals are stored in temporary flip flops. As the bit-slices 
are shifted out, most significant bit first, the bit-slice, to
gether with the stored enable signals, generate a new set of 
enable signals which are stored back into the temporary flip 
flops. There are three significant improvements in this design 
as compared with conventionallogic-per-track device. First, 
the additional logic for each loop is very small and therefore 
the cost increase is minimal. Further, the cell logic is simple 
enough to be implemented on the same chip as the memory 
elements with only a minimal cost increase. Second, there 
are no communication lines between two adjacent loops and 
therefore the number of loops can be modularly expanded. 
Lastly, the number of loops is not governed by the number 
of read/write heads on the physical storage device. Previous 
database machine designs assume that the number of asso
ciative logic is replicated for each head of a disk which there
fore limits the maximum degrees of parallelism. In our de
sign, the number of heads on the disk is not a factor in the 
number of loops used in the associative sequential memory. 
The degree of parallelism can therefore be improved signif
icantly. 

One problem that exists with this design is to choose the 
loop size of the associative sequential memory so that the 

Bit Slice 
Control 
Logic 

Key 0 

Key 1 

Sequence of Bits from Output of 
Selection Processing Module 

Figure 6-Associative Sequential Memory [RAM78, WAH79]. 

.--+--+--+-___ +4-<~From 

State Delay 
Fl i P Flops 

Loop; 

Figure 7-Associative logic for Associative Sequential Memory with equality, 
greater than, less than and proximity searches [RAM78. WAH79].· 

largest key can fit into the loop. However, if the loop size 
is too large and the time it takes for the loop to make one 
complete revolution is longer than the time it takes for a 
tuple to be shifted out, the associative sequential memory 
may not be able to catch up with the output rate of the se
lection processing module. In this case, one simple solution 
is to duplicate the keys in the loop so that the time to reach 
the key is always shorter than the time to shift out a tuple. 
Buffers may also be placed between the associative pro
cessing module and the selection processing module to 
smooth out the irregularities. Since the output of the asso
ciative processing module goes to the join processing module 
and there is a finite probability that B 2 is full, the associative 
processor may not be able to continue to process the tuples 
once B2 is full. In this case, a lookaside buffer, B 4 , is used 
to store the missed tuples. This buffer is a queue with each 
element being a tuple identifier. The size of B 4 is chosen so 
that it would accommodate all the missed tuple identifiers. 

F. Join processor 

The join processor uses buffers B 1 , B 2 , and B 3 to produce 
the join outputs. One characteristic about B 2 and B 3 is that 
they are variable size queues. This feature may be im
plemented by a hardware or a software linked list. Further, 
accesses to each column of B 3 must be made in parallel. The 
join processor uses one column of B 3 to find out which tuples 
in Blare to be joined with a tuple in B 2' This is a conven
tional multiple match resolution problem. We assume that 
a sequential ,Search is made to find all the l' s in a column 
of B 3' However, tree circuits [FOS68] or associative mem
ory [RAM78, W AH79] can be used to do the multiple match 
resolution. 

We have discussed in this section the detailed design of 



250 National Computer Conference, 1980 

the data module. Finally, when the tuples in B 1 have been 
matched with all the tuples in the physical storage device 
(e.g. a cylinder, a loop, etc.), the contents of Bland the 
associative sequential memory are switched to a new set. 
As data are moved into the buffers, they are also moved in 
parallel into buffers Bland the associative sequential mem
ory. The processing of a join is therefore pipe lined and the 
throughput of the system can be greatly enhanced. The 
throughput of the system is a function of the sizes of B 1 , B 2, 

B 3, the tuple size and the bit rate (the rate at which tuples 
are selected out from the physical storage device). We pre
sent in the next section an analysis for the sizes of Bland B 2 

if the join outputs are to be made in disk transfer rate. 

4. APPROXIMATE ANALYSIS OF BUFFER SIZE 

In this section, we perform an analysis on the size of the 
buffers. The sizes of B 1, B 2 and B 3 are critical factors in our 
design. We first establish an upper bound on the average 
queue length in B 2 and B 3 given the size of Bland the prob
ability that a match occurs between the contents of Bland 
a tuple output from the selection processing module. We 
further assume that B 2 and B 3 are very large. Using the upper 
bound on the queue size of B 1 , we can establish a size for 
B 2 and B 3 so that, under most circumstances, B 2 and B 3 will 
not be full. The approximations are then compared with the 
simulation results. 

Let: 

P = probability that a tuple of relation A in B 1 will be 
joined with a tuple of relation B; 

Aa = length of each tuple of relation A in B 1 ; 

Ab = length of each tuple of relation B in B 2 ; 

A.a I = length of each tuple of relation A after restriction; 
r = transfer rate of physical storage device; 

r 0 = desired join output rate; 
s 1 = number of tuples in B 1 (= size of buffer B 1, m 1); 
s 2 = number of tuples in B 2 (size of buffer B 2 is assumed 
_ to be very large); 
s2=E(S2). 

When the join processor picks up a tuple in B 2, there is at 
least one match with a tuple in B 1 (otherwise, the associative· 
processor would not have passed this tuple to B 2). The time 
to produce all the corresponding joins depends on the num
ber of matches in B 1. For i equal matches (i = 1,2, ... ,s d 
with a probability of (II) pi(1-p)(sl-i)Il-(1-p)sl, the time 
to produce all the joins are (A.a' + A.b)*ilrO. On the other hand, 
the inter-arrival time distribution is geometrically distrib
uted, with a probability of (1- p )SI(i - 1)*(1- (1 - p )SI) for an 
interarrival time of (i*l a )lr (i= 1,2, ... ). This system is in ef
fect a GIIGIl queue. The queue is shown in Figure 8. We 
use Marshall's inequality [MAR68] to find the average delay 
time that a tuple spends in B 2, d. 

Do not match with keys in 
Associative Sequential Memory 

~--------------------~. sl 
Prob = (l-p) 

Requests from 
----~----------------------~~ 

. . . 
Associative 
Processing 
Module 

Match with at least 1 
key in associative 
sequential memory 

i*A Interarri va 1 time = __ a 
r 

sl(i-l) sl 
Prob = (l-p) (1-(I-p)) 
(i = 1, 2, ... ) 

Service Distribution 
I 

(Aa+Ab)*i 

ro 
,sl\ i (sl- i ) 

Prob= \i J p (l-p) 
sl 

1-(I-p) 

Figure 8-Queue to model operation of associative processing module and 
join processing module. 



Distributed Processor Organization for Database Machine 251 

d5:. A. (0' / + 0' /) 
2(1- p) 

(Marshall's Inequality) 

where lIA. and 0' a 
2 are the mean and the variance of the inter

arrival time, lIJ.L and 0'/ are the mean and the variance of 
the service time and p = A./J.L. After evaluating d, we can fur
ther apply Little's Formula [LIT61] to find a bound on 
sis 2 = A.d) 

- "a' + "b r - SIP [ ( )2 ( )2 [ ]] 
P + -"-a - ~ S !pO - p) p(S I - 1) + I - (I _ p) 

where p = (1 - p )Sl. Assuming that A.a = A.b = A.a ', r = r 0, we 
have, 

S25:.-------------------------------
2[1-2s IP] 

Simulations are also carried out on the queue in Figure 8. 
The simulation program is written in ASPOL and is run with 
2000 requests for each pair of P and S I . 

Table I shows the difference between the simulation re
sults and the estimated bounds for a sample of values of S 2 

for various values of S I and p. It is seen that the estimations, 
although not accurate, produce a close enough bound for S2. 

We have also indicated in Table I a column that indicates 
the value of S2 such that Pr(queue size <s2)5:.0.95. These 

TABLE I.-Sample of Values of S2 for Various Values of Sl and p 

S imulat ion Es t i mat i on 

51 p mean std. dev P r(queue 5 i ze<s2) Server upper ~und 
52 52 ~ 0.95 Uti 1 ization of s2 

5 0.01 0.003 0.055 0 (0.9970) 0.099 0.53 
0.05 0.152 0.445 0 (0.8737) 0.477 0.80 
0.10 10.538 7.784 24 (0.9440) 0.976 00 

0.20 00 00 00 (1.0 ) 1.0 00 

10 0.01 0.015 0.122 0 (0.9850) 0.191 0.57 
0.02 0.068 0.266 0 (0.9352) 0.377 0.68 
0.03 0.264 0.620 1 (0.9480) 0.570 0.97 
0.04 0.925 1. 313 3 (0.9407) 0.773 1.89 
0.05 9.572 6.495 20 (0.9460) 0.978 00 

0.07 00 00 00 (1.0 ) 1.0 00 

15 0.01 0.032 0.183 0 (0.9698) 0.280 0.62 
0.02 0.252 0.550 1 (0.9570) 0.588 0.98 
0.03 3.066 3.484 10 (0.9588) 0.880 3.80 
0.04 00 00 00 (1.0 ) 1.0 00 

25 0.01 0.177 0.523 0 (0.8641 ) 0.486 0.80 
0.02 29·993 12.346 46 (0.9534) 0.996 00 

0.03 00 00 00 (1.0 ) 1.0 00 

40 0.01 0.890 1.265 3 (0.9500) 0.770 1.91 
0.02 00 00 00 (1.0 ) 1.0 00 

50 0.01 22.332 10.911 36 (0.9500) 0.994 00 

0.02 00 00 00 (1.0 ) 1.0 00 

75 0.001 0.007 0.082 0 (0.9933) 0.141 0.55 

100 0.001 0.013 0.115 0 (0.9865) 0.192 0.57 

120 0.001 0.019 0.136 0 (0.9816) 0.229 0.59 

140 0.001 0.028 0.169 0 (0.9729) 0.278 0.61 

160 0.001 0.046 0.225 0 (0.9578) 0.317 0.63 

values can be used to determine a fixed bound on s 2' For 
example, with p = 0.01, which means that there is a chance 
of 1 percent for a particular tuple in relation B to be joined 
with a tuple in relation A in B I , S I and S 2 can be chosen to 
be 50 and 36 respectively. For these values of s 1 and s 2, the 
utilization of the server Goin processor) is 0.994, which 
means that the join output is indeed coming out at the disk 
transfer rate. However, the choice of SI and S2 is not arbi
trary., If S I is set to be too large, the time to switch the 
contents of B I is large which induces large overheads on the 
system. On the other hand, if S I is too small, then there may' 
not be enough requests in B 2 and therefore the join processor 
may be idle most of the time. It is therefore necessary to 
choose S I as small as possible while giving a reasonably high 
utilization for the join processor. The choice is driven by the 
value of p which is dependent on the number of tuples in the 
relations and the number of distinct join keys in the two 
relations. For large relations, this is usually small. Table I 
shows some simulation results with p set to 0.001. It is seen 
that with S 1 set to 160, the utilization of the server Goin 
processor) is 0.317 and S2 can be set at 1. This means that 
the join processor will be idle 69 percent of the time and the 
output rate is 31 percent of the disk transfer rate. With S I 

set to be so large, there is a tremendous switching overhead 
in the system. In order to remedy this, mUltiple sets of B I 

and associative sequential memories can be implemented in 
each data module. The join processing operations on one set 
of B 1 can be overlapped with the loading of another set of 
B I. The switching overhead on B I is therefore overlapped 
with the join processing. This is feasible because the com
munication processor in each data module can be designed 
to send and receive from different data modules so that as 
the join processor is producing outputs to be sent to one data 
module, the communication processor can be receiving tu
ples from another data module to load a different set of B I • 

A final problem occurs when p is extremely small. In this 
case, B I has to be chosen to be excessively large in order 
to attain a reasonable join output rate. In this case, it may 
be better to send different sets of tuples of relation A to a 
set of spare data modules, each with a small buffer memory. 
Relation B from this data module is then broadcast simul
taneously to this set of spare data modules where the join 
can be performed in parallel. This approach provides a so
lution for an extremely small value of p without constraining 
on the size of B 1. Buffers B I can be kept relatively small at 
each data module. The use of spare data modules can also 
be applied for load balancing. This will be discussed in the 
next section. 

4. DISCUSSION 

The design we have proposed in this paper uses both as
sociative and distributed processing to enhance the system 
performance. Associative processing is used so that the data 
can be preprocessed and only the necessary data are se
lected. The amount of communications is therefore reduced. 
The associative processors designed are also very simple so 



252 National Computer Conference, 1980 

that they can be implemented easily using VLSI technolo
gies. On the other hand, distributed processing is used in the 
design of the system and therefore many useful techniques 
in distributed databases can be applied to enhance the per
formance. These techniques include query processing, file 
placement and migration, rollback and recovery, etc. We 
discuss several of these issues here. 

A. Query processing 

Since the system functions as a distributed database, it is 
possible to optimize the sequence of the processing of quer
ies so that some optimization criteria, such as minimum total 
time, can be satisfied. There are many techniques developed, 
e.g. [WON76, WON77, EPS78, HEV79], which can be used 
to optimize the processing of queries here. The processing 
of queries using this kind of data flow analysis is new in this 
design. Previously, the intermediate result of a query usually 
had to be stored in a temporary file before it could be used, 
e.g. DIRECT. By allowing intermediate results to be piped 
to their destinations, higher throughput can be achieved. 

B. File placement and migration 

Because each data module can read only one file at a time, 
query processing will be sequentialized if all the queries ac
cess files on the same data module. By allocating the files 
on the system so that related files are allocated to the same 
cluster and files that need to be processed together are al
located to different data modules, conflicts can be kept to 
a minimum and maximum utilization of resources can be 
attained. There are many file placement techniques devel
oped, e.g. [CHU69, CAS72, MAH76, MOR7?, WAH79] and 
can be applied to allocate the files on the system. The prob
lem is easier to solve than the general file placement problem 
because duplicate copies are usually not needed in the sys
tem. Further, as the access characteristics change, the files 
can be reallocated dynamically. 

C. Concurrency control 

Although there may exist mUltiple copies of a file on the 
system, we do not allow multiple copies to exist on the same 
type of memory device. Therefore, multiple copies of a file 
may exist in devices of different speeds and the copy on the 
fastest device is considered to be the primary copy. All the 
other copies are considered as secondary copies and no write 
throughs are done during updates. With this restriction, the 
problem on concurrent updates is solved easily because the 
processor at each data module provides a secure gateway 
to the data on the device. 

D. Load balancing 

Although our design does not require staging to transfer 
the files to a fast memory before the processing, it is not 

able to utilize multiple processors to process ajoin in parallel 
as is done in DIRECT. However, we can provide some 
spare data modules on the system, each of which has a small 
buffer memory. Instead of sending tuples directly from one 
data module to another, different sets of tuples of one re
lation are sent to the spare data modules, and the tuples from 
the other relation are broadcast to the spare data modules. 
The join is therefore performed in parallel in the spare data 
modules. In this sense, this resembles DIRECT's design. 
However, there are two significant differences.' First, data 
sent to the spare modules have been reduced in size by the 
selection processing modules of the two data modules and 
therefore their sizes are reduced. Second, the distributed 
system approach allows queries to be processed very effi
ciently because data can continuously be piped to other data 
modules as they are produced. A detailed evaluation of this 
system will be presented in a future paper. 

6. CONCLUSION 

In this paper, we have proposed a database machine design 
which facilitates query processing and parallel processing. 
Since the system is hierarchically designed, it can easily be 
extended to a very large database in the future. Communi
cations at higher levels can be reduced by carefully allocating 
related files to individual clusters so that most of the com
munications are intra-cluster. The logic we have designed 
in the associative processing module is very simple and can 
be extended modularly. This is different from the conven
tional approach in which the degree of associative processing 
is limited by the number of read heads. Further, we have 
designed the system based on the assumption that current 
memory technologies are used, e.g. movable arm disk, 
CCD, etc. This means that the system can be built now. 
However, we have made no restriction on the structure of 
the memory which is assumed to be a single loop of data. 
If, in the future, data can be stored inexpensively in parallel 
transfer disks, the data can be assumed to be buffered so 
that a serial stream of access is always achieved. Since the 
network provides a homogeneous medium for data transfer, 
heterogeneous memory devices can always be connected 
together. This advantage also facilitates future evolution of 
the system. Lastly, our design implements both low level 
database operations and high level query optimization. The 
network approach is very versatile and allows high level 
operations to be implemented. 

Our proposed design is given in a functional form. Al
though individual modules are separated, they do not have 
to be implemented in individual hardware. In fact, most of 
these functions can be built in either hardware and software. 
A detailed evaluation of the system will be shown in a future 
paper. 

BIBLIOGRAPHY 

[AMP78] Ampex Corporation, PTD-9300, Parallel Transfer Disk Drive, Red
wood City, CA. 1978. 



Distributed Processor Organization for Database Machine 253 

[BAN79] BaneIjee, J., Hsiao, D. K., and Kannon, K., "DBC-A Data Base 
Computer for Very Large Data Bases," IEEE Trans. on Computers, Vol. 
C-28, No.6, June 1979. 

[BAU76] Baum, R. I. and Hsiao, D. K., "Data Base Computers-A Step 
towards Data Utilities," IEEE Trans. on Computers, Vol. C-25, No. 12, 
Dec. 1976. 

[BER79] Berra, P. B. and Oliver, E., "The Role of Associative Array Pro
cessors in Data Base Ma<:hine Architecture," IEEE Computer, March 1979. 

[CAS72] Casey, R. G., "Allocation of Copies of a File in an Information 
Network," AFIPS, SJCC, 1972. 

[CHA78] Chang, H., "On Bubble Memories and Relational Data Base," 4th 
Int'l Conf. on Very Large Data Bases, Berlin, Sept. 1978. 

[CHU69] Chu, W. W., "Multiple File Allocation in a Multiple Computer 
System," IEEE Trans. on Comp., Vol. C-18, No. 10, Oct. 1969. 

[COD70] Codd, E. F., "A Relational Model of Data for Large Shared Data 
Bases," CACM, Vol. 13, No.6, June 1970. 

[COM76] Special Issue in Data Base Management Models, Computing Sur
veys, Vol. 8, No.1, March 1976. 

[DEW79] DeWitt, D. J., "DIRECT-A Multiprocessor Organization for 
Supporting Relational Data Base Management Systems," IEEE Trans. on 
Computers, Vol. C-28, No.6, June 1979. 

[EPS78] Epstein, et aI., "Distributed Query Processing in a Relational Data 
Base System," Report No. UCB/ERL M78/18, Electronics Research Lab
oratory, University of California, Berkeley, CA., 1978. 

[HEV79] Hevner, A. G. and Yao, S. B., "Query Processing in Distributed 
Data Bases," IEEE Trans. on Software Engineering, Vol. SE-5, No.3, 
May 1979. 

[HOL56] Hollander, G. L., "Quasi-Random Access Memory Systems," 
AFIPS Con!. Proc., EJCC, 1956. 

[KER79] Kerr, D. S., "Data Base Machine with Large Content Addressable 
Blocks and Structural Information Processors," Computer, Vol. 12, No. 
3, March 1979. 

[LAN79] Langdon, Jr., G. G., "Data Base Machine, An Introduction," 
IEEE Trans. on Computers, Vol. C-28, No.6, June 1979. 

[LIN76] Lin, C. S., et aI., "The Design of a Rotating Associative Memory 
for Relational Data Base Applications," ACM Trans. on Data Base Sys
tems, Vol. 1, No.1. 

[LIP78] Lipovski, G. J., "Architectural Features of CASSM: A Context 
Addressed Segment Sequential Memory," Proc. 5th Ann. Symp. on Compo 
Arch., ACM-SIGARCH. 

[LIT6l] Little, J. D. C., "A Proof of the Queuing Formula, L=Aw," Op-' 
erations Research, 9, 1961. 

[MAH76] Mahmoud, S. and Riordon, J. S., "Optimal Allocation of Re
sources in Distributed Information Networks," ACM Trans. on Data Base 
Systems, Vol. 1, No.1, March 1976. 

[MAR68] Marshall, K. T., "Some Relationships between the Distributions 
of Waiting Time, Idle Time and Input/output Time in the GI/GII Queue," 
SIAM Journal of App. Math., 16, 1968. 

[MOR77] Morgan, H. L. and Levin, K. D., "Optimal Program and Data 
Locations in Computer Networks," CACM, Vol. 20, No.5, May 1977. 

[OZK77] Ozkarahan, E. A., et aI., "Performance Evaluation ofaRelational 
Associative Processor," ACM Trans. on Data Base Systems, Vol. 2, No. 
2, June 1977. 

[PAR72] Parhami, B., "A Highly Parallel Computing System for Informa
tion Retrieval," AFIPS Conf. Proc., 1972, FJCC, Vol. 41, part II. 

[RAM78] Ramamoorthy, C. V., Turner, J. L., and Wah, B. W., "A Design 
of a Cellular Associative Memory for Ordered Retrieval," IEEE Trans. on 
Computers, Vol. C-27, No.9, Sept. 1978. 

[SCH79] Schuster, S. A., et aI., "RAP.2-An Associative Processor for 
Data Base and its Applications," IEEE Trans. on Comp., Vol. C-28, No. 
6, June 1979. 

[SL070] Slotnick, D. L., "Logic Per Track Devices," Advances in Com
puters, Academic Press, 1970. 

[SU79] Su, S. Y. W., et aI., "The Architectural Features and Imple"men
tation Techniques of the Multi-cell CASSM," IEEE Trans. on Computers, 
Vol. C-28, No.6, June 1979. 

[WAH79] Wah, B. W., "A Systematic Approach to the Management of Data 
in Distributed Data Bases," Ph.D. Dissertation, University of California, 
Berkeley, 1979. 

[WON76] Wong, E. and Youssefi, K., "Decomposition-A Strategy for 
Query Processing," ACM Trans. on Data-bases, Vol. I, No.3, Sept. 1976. 

[WON77] Wong, E., "Restructuring Dispersed Data from SDD-I: A System 
for Distributed Data Bases," Compo Corp of America Tech. Rep. CCA-77-
03, 1977. 





Distributed Data Base 
Processing 

Distributed Data Processing (i.e., the 
sharing of computing resources by several 
processors, each having a specified task 
to perform; and which may be either cen
tralized or geographically distributed), is 
one of the more exciting developments 
since the appearance of the transistor in 
1948. 

Distributed Data Processing encompas
ses data communication, teleprocessing, 
and data base technology. Designing and 
using distributed data processing systems 
have created a need to solve a wide range 
of problems, including problems associ
ated with expanding memories, operating 
system capabilities and data sharing. 

The sessions in this technical area are 

Alyce Jackson 
Area Director 

concerned with distributed data base technology. The focus is on current practices and 
proposed new solutions for problems unique to the field. 

Alyce Jackson, Ph.D, the technical area coordinator, has tailored each session to address 
a particular issue. The speakers are of diverse backgrounds and areas of expertise; each 
will discuss their involvement and contribution to areas of distributed data base technology. 

Dr. Baharat Bhargava will chair a session that addresses the issues of concurrency, 
consistency, and reliability. Dr. Ed Lee of TRW in Redondo Beach, California will present 
speakers discussing issues pertaining to distributed architecture design. Dr. A. Jackson 
will chair a session that addresses topics such as concurrency coordination, federated data 
base systems, and computer chaining. The final session in this technical area presents a 
survey of experiences with various data base management systems. 

255 





System deadlocks resolution 

by KOJI NEZU 
Nippon Electric Co., Ltd. 
Kawasaki, Japan 

INTRODUCTION 

With rapid large online systems growth, the system dead
locks problem is becoming of major importance. Sharing on 
increasingly sophisticated set of services and resources 
among an increasing number of terminal users leads to an 
increase in the chance for deadlock occurrence. 

Two approaches for the problem are: (1) deadlock occur
rence prevention or avoidanc~; (2) early deadlock detection 
and quick recovery. 

Approach 1 is ideal, if it would be completely realized 
within an allowable system performance degradation limit. 
However, a system design to fulfill this requirement is very 
difficult in most online systems. Typical is multiaccess da
tabase. For this reason, approach 2 must be studied and a 
practical method that realizes fully automatic deadlock de
tection and recovery must be developed. 

A general deadlock detection algorithm has been known. 1 

IVoI0reover, high speed hardware which simulates the algo
nthm has been proposed.2 However, no general algorithm 
has been developed for recovery. 

Recovery from system deadlocks is carried out by aborting 
appropriate deadlocked processes, freeing the resources that 
had been exclusively allocated to these processes and mak
ing it possible to run the other deadlocked processes whose 
execution has been blocked by a round robin wait for re
sources among deadlocked processes. 

As an example, assume two processes, Pa and Ph, are 
detected to be mutually deadlocked. It is obvious that there 
are two solutions for resolving this problem, one is process 
Pa abortion, and another is process Ph abortion. When there 
are more than two deadlocked processes, the existence of 
mUltiple solutions may also be expected. In fact, as proven 
in the following section, mUltiple solutions always exist. 

The above discussion indicates that the folldwing three 
steps are necessary for recovery: (step 1) obtain solutions; 
(step 2) select one solution to actually aborted processes and 
ex.ecut~ abort; (step 3) restart aborted processes at appro
pnate Instants. 

In order to accomplish an optimum decision at step 2, all 
the solutions should be known for step 1. 

This paper presents a new systematic method for obtaining 
all the solutions for step 1. 

Fur~her discussion about steps 2 and 3 does not appear in 

257 

this paper. The papers indicated in the references 1.3 will be 
helpful for understanding these subjects. 

PRELIMINARIES 

To clarify the discussion, consider the following system 
model, which was proposed by Habermann.4 

A set of sequential processes which shaTe system re
sources in such a way that, while resource A is allocated to 
process Pi, no other process Pj can seize A, and an allocated 
resource is not released until it has fulfilled its task. 

Generally every resource is not necessarily unique. There
fore, consider such a system that consists of n processes 
PI, P 2 ,-----Pn and m different kinds of resources (n~ 1 ,m~ 1). 

Although deadlock detection is not the subject of this 
paper, a brief description about the detection algorithm is 
also necessary. 

The deadlock detection algorithm given by Shoshani and 
Coffman is summarized as follows. 1 

The first step is to pick up processes which are requesting 
no specific resources or requesting only free resources. It 
is clear that these processes are not deadlocked. The second 
step is to assume the resources allocated to the picked up 
processes as "free resources," and go back to the first step. 
By this loop, all the non-deadlocked processes are picked 
up. Therefore, if all the processes are confirmed to be non
deadlocked, no deadlock exists in the system. Otherwise, 
deadlock exists and remaining processes are deadlocked. 

SOLUTIONS 

. It can be said tha~ the deadlocked state complexity level 
IS closely related to the number of deadlocked processes. 
~hen ~here are two deadlocked processes, all solutions are 
Imm~dtately known. As illustrated in the preceding section, 
that IS Pa and Ph are deadlocked mutually, solutions are 
{Pal and {Ph}. However, when there are more than two dead
locked processes, probably all the solutions cannot be ob
tained immediately. Up to now, the term 'solution' has been 
used in a tacit sense. Now, let us define it clearly as follows: 

"A solution is the smallest subset of deadlocked processes, 
whose aborting resolves the deadlock." 



258 National Computer Conference, 1980 

For example, consider that the deadlock in which four 
processes PI, P 2, P 3 and P 4 fall, and that, by some means, 
it is confirmed that, by aborting both PI and P 2, deadlock 
is resolved, but that by aborting only P I or P 2, the deadlock 
is not resolved. Then, {P I ,P 2} is a solution. Obviously by 
aborting {PI ,P2,P3} it is resolved, but abortion of P 3 inad
dition to {P I ,P 2} is meaningless. Above definition eliminates 
{P I ,P 2 ,P 3} from solutions. 

Consider in the same example, {P 2 ,P 3 ,P 4} is aborted. 
Obviously, the deadlock is resolved because the only re
maining process is PI' As P I is an element of above solution, 
this means another solution, which does not involve PI, 
exists. From this example, the following general theory is 
induced. 

"When deadlock occurs, multiple solutions always exist." 

OBTAINING A SOLUTION 

Among the multiple solutions, one solution can be ob
tained by the following procedure; 

Procedure 1 

Step 1: Arrange all the deadlocked processes linearly in 
an arbitrary order, such as (Pd I ,Pd2 ,-----Pdn ). 

Step 2: Scan from Pd I to Pd ll , marking such processes 
that must be aborted for deadlock resolution, if 
no un-marked processes, those that have been 
scanned, are aborted. 

Step 3: Collect all the marked processes. This set is one 
of the solutions. 

It may be easily understood that, by aborting the above 
obtained set of processes, deadlock is resolved, but that by 
aborting any true subset, it is not resolved. Therefore, the 
set of above marked processes is a solution. 

Note that a solution can be obtained in a straightforward 
way. 

Example 1 

Obtain a solution for the system deadlock shown in 
Table I. 

TABLE I.-System State Table 

RESOURCE NAME Rl R2 R3 R4 

NUMBER OF RESOURCES 2 3· 3 2 

NUMBER OF PI I/O I/O 0/3 0/1 

RESOURCES P2 0/2 I/O I/O 0/1 

ALLOCA TED/REQUESTED* P3 0/0 I/O 0/2 0/0 

P4 0/0 0/0 0/0 2/0 

P5 I/O 0/3 2/0 0/1 

* requested but not allocated to the proceSs 

By applying Shoshani and Coffman's algorithm explained 
in the previous section, it is known that, except for P 4 which 
is requesting no resource, all other processes are mutually 
deadlocked. 

U sing procedure 1, a solution for the deadlock resolution 
can be obtained. 

Step 1: (P I ,P 2 ,P 3 ,P 5) 

Step 2: PI: not marked. ':The deadlock is resolved by 
aborting P 2 ,P 3 ,P 5 • 

P 2: marked. ':Even if P 3 and P 5 are aborted, 
deadlock is not resolved. (Use Shoshani and 
Coffman's algorithm hereafter.) 

P 3: not marked. ':The deadlock is resolved by 
aborting P 2 and P 5. 

P 5: marked. ':The deadlock is not resolved by 
aborting P 2 • 

Step 3: one solution = {P 2 ,P 5} 

Note that the solution depends on the process order ar
ranged in step 1. Therefore, denote each solution, suffixing 
the process order, such as <X(I,2,3,5)={P2,P5}. 

ALL SOLUTIONS 

Another solution for the above example can be obtained 
by placing one of the processes contained in the above so
lution {P 2 ,P 5} to the left end of the line in step 1, such as 
(P 2 ,P I ,P 3 ,P 5), and then executing step 2. Obviously, the 
new solution, that is <X(2,1,3,5), is different from the previous 
solution, because <X(2,1,3,5) does not contain P 2' For the third 
and further solutions, the same basic idea can be applied. 
However, existence of more than two solutions is not guar
anteed. Therefore, before applying procedure 1, confirming 
step is necessary. 

The following theorem is useful for this objective. 
"If there is any set of deadlocked processes which, for 

every already known solution, contains at least one same 
process, where the deadlock can be resolved without abort
ing this set, at least one new solution exists. Otherwise, no 
new solution exists." 

The first half may be trivial. The latter half is proven as 
follows: From the definition of "solution," a solution is nei
ther subset nor superset of another solution. Therefore, a 
new solution, when it is compared with an already known 
solution, does not contain at least one deadlocked process 
that is contained in the already known solution. This relation 
is maintained over all already known solutions. 

Example 2 

Obtain all the solutions for the system state shown in ex
ample·l. 

The first solution has been obtained. 

<X (I ,2,3,5) = {P 2 ,P 5} 



The second solution is obtained by placing P 2 on the left 
end of the line in step 1 of procedure 1. 

<X(2,I,3,5) = {P I ,P 5} 

For the third solution, its existence must be checked. To 
apply the theorem, a check table is convenient. 

Note that in Table II, all the combinations, which involve 
a single element picked up from each already known solu
tion, are checked. The reason will be clear later. 

From the table, it is confirmed that a new solution exists 
and does not contain P 5 • 

Placing P 5 at left end of the line, a new solution is obtained 
by procedure 1. 

<X (5,1.2,3) = {P I ,P 2,P 3} 

Existence of the fourth solution is checked in the same 
way. However, a direct check about all the combinations 
for the three already obtained solutions is not necessary, 
because all the combinations up to the second solution have 
been checked in Table II. An additional check must be made 
for the 'YES' row in Table II, that is P 5 row, and the third 
solution. 

As all rows are NO, no further solution exists. Summing 
up, all the solutions are 

{P 2,P 5}, {P I'P 5}, {P I,P 2,P 3} 

CHECK TABLE NORMALIZATION 

In this section, redundant rows elimination from check 
tables is discussed. 

Clearly, the objectives for making check tables is to pick 
up all the subsets of the deadlocked processes which contain 
new solutions. From this objective, it may be understood 
that the second and the third rows in Table II are redundant, 
because, in these rows, the subset for the fourth row are 
checked. More concretely speaking, at the second and third 
rows, solution existence in {P I ,P 3 } or {P 2,P 3 } respectively, 
is checked. At the fourth row, the solution existence in 
{P 1 ,P2,P3 } is checked. If the fourth row is "YES," it is not 
necessary to check the second and the third row due to the 
above mentioned objectives. If it is "NO," the latter two 

TABLE I1.-Third Solution Check Table 

DLP*s not being aborted Can deadlock be resolved? 

Pl'P2 NO 

P2,P5 NO 

P1,P5 NO 

P5 YES 

I *. Deadlocked process 

all combinatlons extractmg one process from each solutlon. 

System Deadlocks Resolution 259 

TABLE I11.-Fourth Solution Check Table. 

DLPs not being aborted Can deadlock be resolved? 

P1,P5 NO 
) (Checked in Table 1) 

P2,P5 NO 

P3,P5 NO 

rows are obviously "NO" too. Therefore, no check is nec
essary at second and third rows. 

In summary, check table simplification is accomplished 
by eliminating all rows which are supersets of another row 
in the same table. 

This simplification is called "check table normalization." 
By applying "normalization," the procedure shown in the 

example 2 can be executed more clearly and efficiently. 
Normalization effectiveness becomes conspicuous for 

more complicated deadlocks. 

Example 3 

Assume, in example 1, that a new request for three R2 
resources is issued from P 4, and P 4 also falls into deadlock, 
as a result. 

The first solution is 

<X 0,2,3.4,5) = {P 2 ,P 4 ,P 5} 

The second solution is 

<X (2,1.3.4.5) = {P I ,P 4 ,P 5} 

Check table for the third solution is: 

Pl'P2 

P2,P4 ) 

P2,P5 Normalized to 

Pl'P4 

P4 

P4,P5 

P1,P5 

P5 

Third solution: 

<X(4,I,2,3,5) = {P 1 ,P 2 ,P 5} 

P1,P2 NO 

P4 YES 

P5 YES 



I 

" 

260 National Computer Conference, 1980 

Check table for the fourth solution is: 

Pl,P4 

P2,P4 

P4,P5 

P1,P5 

P2,P5 

P5 

Normalized to 

Fourth solution: 

a(5.1.2.3.4) = {P I ,P 2 ,P 3} 

Check table for the fifth solution is: 

NO 

NO 

YES 

NO 

NO 

NO 

(Normalized from origin) 

No further solution exists. 

CONCLUSION 

To accomplish non-stop operation of large online systems, 
a new general algorithm, for obtaining deadlock resolution 
solutions, has been proposed. Experimental implementation 
on a multiaccess database system is planned at Central Re
search Laboratories, NEC. 

ACKNOWLEDGMENT 

The author would like to thank H. Kubo and M. Mizuma, 
both of Central Research Laboratories NEC, for their critical 
advice in preparation of this paper. 

REFERENCES 

I. Shoshani, A. and Coffman, E. G., "Prevention, detection, and recovery 
from system deadlocks," Proc. 4th Annual Prin,ceton Conf. on Information 
Science and Systems, March 1970. 

2. Nezu, Koji, "Simplified deadlock detector," Trans. IECE, Vol. 61-D, No. 
9, 1978 (in Japanese). 

3. Verhofstad, Joost S. M., "Recovery techniques for database systems," 
Computing Surveys, Vol. 10, No.2, June 1978. 

4. Habermann, A. N., "Prevention of system deadlocks," Comm. of the 
ACM, Vol. 12, No.7, July 1969. 



Database semantic integrity f~r a network data manager* 

by ELIZABETH FONG and STEPHEN R. KIMBLETON 
National Bureau of Standards 
Washington, D.C. 

1. INTRODUCTION 

The goal of semantic integrity is assuring that data within 
a database is logically correct. Logical correctness is eval
uated by showing that the data represents a valid abstraction 
or model of a 'real world' application. This is required for 
effective use of the database. 

The starting point in assuring database semantic integrity 
is a clean (semantically correct, i.e. logically correct) data
base and the objective is ensuring that subsequent updates 
also result in a clean database. Since individual updates may 
involve operations across data structures, may require sev
eral statements of the data manipulation language being 
used, and may involve logically interrelated data, assuring 
semantic integrity is a difficult problem which currently lacks 
a complete solution. 

This paper has two major objectives. The primary objec
tive is establishing a collection of capabilities appropriate for 
a semantic integrity system. This assumes an environment 
providing a uniform mode of access for the network user to 
mUltiple, remote heterogeneous DBMSs. The secondary ob
jective is providing a brief survey of the existing semantic 
integrity literature. Thus, the following two sections explore 
the existing approaches to semantic integrity. Thereafter, 
the environment supporting remote database access is de
scribed. This is followed by a discussion of the design of an 
Experimental Semantic Integrity System (XSIS) currently 
being constructed at the National Bureau of Standards. 

2. WHAT IS SEMANTIC INTEGRITY? 

Data within a DBMS can be in error for one of three rea
sons: incorrect entry, system failure, or conflict with the 
intended meaning of the data. Incorrect entry occurs when 
a wrong value gets keyed-in during the data entry process. 

* This work is a contribution of the National Bureau of Standards and is not 
subject to copyright. Partial funding for the preparation of this paper was 
provided by the u.s. Air Force Rome Air Development Center (RADC) under 
Contract No. F 30602-77-0068. Certain commercial products are identified in 
this paper in order to adequately specify the procedures being described. In 
no case does such identification imply recommendation or endorsement by 
the National Bureau of Standards, nor does it imply that the material identified 
is necessarily the best for the purpose. 

261 

For example, due to a keypunch error, a person's weight 
might be entered as 87 rather than 78 kgs. 

System errors reflect a variety of failures of design or im
plementation including: security violations, hardware fail
ures, and failures in system or DBMS software such as the 
concurrency control mechanism. 

Conflicts with the intended meaning of data occur through 
violations of perceived interrelationship among the data 
within DBMS. For instance, the sum of division capital ex
penditure budgets, after an update, may no longer equal the 
org&nizational capital expenditure budget. 

Semantic integrity is concerned with assuring that such 
violations cannot occur. Since such violations represent a 
conflict with the understood meaning of data, and since this 
understood meaning is usually not formally expressed, the 
goal of achieving semantic integrity has proved elusive. 

Because semantic integrity is concerned with the logical 
meaning of data, it can also provide limited assistance in 
detecting data entry errors or system failures. For instance, 
through value-range specification, the semantic integrity 
system could detect the error in entering a person's weight 
as 570 kg. rather than 70 kg. It could not detect the difference 
between 78 and 87 kgs. Similarly, system failures resulting 
in major data errors can be detected when the data is ex
amined. 

2.1 Approaches to semantic integrity 

There ate two primary approaches to semantic integrity. 
The assertion based approach permits users or Database 
Administrators to specify those semantic integrity rules 
which seem important. This approach facilitates incremental 
incorporation of a semantic integrity capability for a DBMS. 

The disadvantages of the assertion based approach are 
potentially significant and include: i) the inability to deter
mine the completeness of a collection of rules since there 
is no basic point of reference for their assessment, ii) the 
possibility that adding a new rule will show that a database 
previously thought to be semantically correct now suffers 
from integrity violations, and iii) the need for explicit in
corporation of consistency checks on the collection of rules, 
which might lead to significant overhead. 

The major alternative to the assertion based approach de
pends on a thorough development and application of the 



262 National Computer Conference, 1980 

concept of type [BRODM 78]. Strong data types are con
structed from system data types. Moreover, through ex
ploiting the concepts of aggregation and generalization, type 
interrelationships can be formally specified. Such specifi
cation has the advantage of permitting semantic integrity 
assertions to be checked statically at compile-time rather 
than run-time. Additionally, the completeness and consist
ency of data type specifications can be shown. 

The disadvantage of this approach is the explicit require
ment for complete specification. For databases of significant 
size, completion of the specification process requires a major 
investment of effort. Another drawback is that not all se
mantic integrity requirements can be specified using the data 
type concept because certain validity criteria are "value" 
rather than "type" oriented. A combined approach may 
prove best in an operational environment. 

2.2 Semantic integrity system 

A combined approach to supporting semantic integrity 
seems appropriate. Implementing such a system requires 
specification of three major components: i) the rules speci
fying the semantic integrity constraints which may be either 
type or value constraints, ii) the process for checking con
formance with these rules, and iii) the actions which occur 
upon detection of an integrity violation. 

2.2.1 Rules specifications 

The semantic integrity rules or constraints need to be 
stated prior to database use. These constraints specify all 
the required information to be used during rules enforcement 
time. Strong data type specifications effectively augment the 
traditional concept of schema and are stated through de
notational or declarative methods at data definition time. 
Assertion based approaches require a means for specifying 
the assertion and are evaluated while a request is being proc
essed. 

Designing a semantic integrity specification language re
quires considering two main issues: i) the style of the spec
ification language used by users 'and database administra
tors, and ii) the volume of information required by the system 
to check conformance with the rules. 

2.2.2 Rules enforcement 

Evaluating conformance with semantic integrity rules can 
be thought of as being performed by an abstract observer 
or daemon monitoring database operations. 1/he times at 
which the daemon can observe the database/are defined; 
there may be times during an update when the daemon is 
precluded from judging whether semantic integrity is being 
maintained. 

Implementation of the daemon requires considering three 
major issues: i) the types of tests which the daemon may 

perform, ii) the information required to support these tests, 
and iii) the cost of performing them. This last item is very 
important from a practical point of view. 

2.2.3 Violation actions 

Detecting a semantic integrity violation requires flagging 
the error and, probably, rejecting the update. The precise, 
rule(s) responsible for the violation action should be iden
tified. The options may be a call to a user-specified error 
routine, reporting an error message to the user, or semi-au
tomated error elimination by the system. 

2.3 Related works on semantic integrity 

, 
Much of the existing semantic integrity literature is con-

cerned with isolated aspects of the global problem-place
ment of responsibility, data semantics, specification lan
guages, invocation techniques, and supporting system I 

environments. For instance, [FERNE 76], [ORA VR 75], and 
[MACHC 76] all describe high level semantic integrity spec
ification languages. In [WEBEH 76] semantic integrity is 
viewed in the context of state transitions; therefore, con
straints are expressed upon database operations. Buneman 
and Morgan [BUNEO 77] developed "alerting" mechanisms 
for supporting semantic integrity. Several selected semantic 
integrity systems are reviewed below. 

2.3.1 Brodie 

Brodie's approach [BRODM 78] views semantic integrity 
as a (semantic integrity) system rather than user responsi
bility. A specification language together with a verification 
methodology is developed. The specification language is 
based on a denotational approach and the emphasis is on 

'proving consistency and completeness. 
Since Brodie's approach is not currently implemented, 

support system requirements have not been identified. How
ever, the extremely systematic approach which is presented 
requires complete specification at database design time. 
Operational use would require investigation of the issues of 
sizing and flexibility. 

2.3.2 McLeod 

McLeod's approach [MCLED 76, HAMMM 75] is asser
tion based, views semantic integrity as a system responsi
bility, and also describes a semantic integrity system. Special 
emphasis is placed on the design of a constraint specification 
language for a relational data model. The specification lan
guage is based on using a high level, non-procedural language 
permitting specification of: i) constraints, ii) times at which 
the constraints are to hold, and iii) actions to be taken on 
occurrence of a constraint violation. 



2.3.3 System R 

System R, a relational database management system de
veloped at IBM, provides semantic integrity facilities as part 
of the SEQUEL language [ESWAK 75]. The approach uses 
the assertion based method. An assertion can be any SE
QUEL predicate evaluating to a Boolean. System R provides 
a very extensive collection of supporting capabilities. Var
ious types of semantic integrity features are provided, such 
as: tuple and set assertions, state and transition assertions, 
and immediate and delayed assertions. Semantic integrity 
enforcement is implemented using system triggers and, if the 
result of a transaction is proven to violate an assertion, the 
transaction is rejected and a predefined procedure or failure 
action is invoked. 

2.3.4 INGRES 

INGRES is a relational database management system de
veloped at University of California, Berkeley. Stonebraker 
[STONM 75] introduced semantic integrity assertion state
ments in the INGRES system as one or more range state
ments plus an integrity qualification. These assertion state
ments in the form of predicates are appended to all user 
interactions with a database. Thus certain types of update 
errors are prevented. This implementation technique has 
been referred to as query modification, and has been char
acterized as easy to implement. The INGRES approach of 
incorporating semantic integrity via query modification min
imizes the requirement for support. However, it also limits 
the set of semantic integrity features which are provided. 

2.3.5 CODASYL 

The CODASYL Data Description Language Committee 
Journal of Development specification [CODAS 79] provides 
a user-written procedure invocation mechanism which al
lows integrity requirements to be programmed in procedural 
code by the user. The keyword CHECK with user specified 
parameters provides the triggering mechanism when a data 
item is changed. 

CODASYL does not use the system approach but, rather, 
places the burden of specification and enforcement of se
mantic integrity upon users who must write application pro
grams. 

The CODASYL specification supports an underlying net
work data model with stringent structural requirements; 
therefore, facilities for duplicate checks, member record in
sertion conditions, and unique keys checks are supported. 

[MELOR 79] proposes semantic integrity facilities to be 
incorporated in a CODASYL-like DBMS. These integrity 
constraints are meant to enhance those integrity capabilities 
that are provided by the CODASYL specification and those 
that are inherent in the network data model. 

Database Semantic Integrity for a Data Manager 263 

3. SEMANTIC INTEGRITY FEATURE LIST 

The above brief survey reveals that, currently, there is no 
unified, practical, comprehensive and complete approach to 
database semantic integrity. Semantic integrity features of
fered within a DBMS range from very simple data type 
checking to complex assertion processing. We present a 
gross' feature list with the following categorizations: 

3.1 Strong data type constraints 

Semantic integrity constraints based on an extension of 
the data type concept can be specified at data definition time. 
Such constraints are related to the concept of strong typing 
developed for program languages. 

The concept of a strong data type arose from develop
ments in abstract data types [LISKB 74; GUTTG 77] which 
can be informally described as special purpose entities with 
constrained usage properties. Constraints typically include 
both the operations which may be performed on a given data 
element as well as the collection of other data elements 
which may be involved in binary operations. 

Some examples of strong data type constraints are de
scribed as follows: 

1. Value constraints-specify the range of acceptable val
ues, establish whether a value must be specified, and 
define whether a data value must be unique. For in
stance, data values may be required to lie within certain 
bounds (e.g., age between 1 to 100). Data values may 
also be constrained to an enumerated set (e.g., colors 
are red, green, blue). Data values may be specified to 
be essential or non-missing in which case missing val
ues are considered to be semantically incorrect (e.g., 
data element EMPNO must not be missing). Data val
ues may be required to be unique (e.g., EMPNO must 
be unique). 

2. Extended format constraints-permit specification of 
a data format pattern composed from primitive types, 
such as character, integer or real. For example, the first 
character of a supplier number may be required to be 
the letter S. 

3. Domain compatibility-supports assurance that cross 
domain operations, e.g., binary operators. are applied 
against compatible units and prohibits such operations 
against incompatible domains. For example, automatic 
invocation of scaling factors is required when some 
weights are expressed in kilograms and others in 
pounds. Some automatic techniques for performing 
such conversions are given in [KARRM 78]. Invalid 
comparisons, e.g., comparing weight to time, should 
be flagged as constraint violations. 

4. Legal operation constraints-limit the operations which 
can be performed on a given domain to those judged 
semantically correct. Thus, a set of legal operations 
may be associated with a data item. Attempting to per-



264 National Computer Conference, 1980 

form any other operation will result in a semantic in
tegrity violation, e.g., SSN * 2 or NAME> "123" will 
be detected as semantically incorrect. 

3.2 Constrained data dependency assertions 

Integrity constraints may be imposed upon an individual 
data element or group of data elements. The constraint ex
presses a condition or predicate on the subset of the database 
to which the constraint applies. Such constraints across data 
elements can be further categorized: 

1. Data grouping constraints-reflecting logical relation
ships among data elements. For example, if the data 
is represented in tabular form, there can be a constraint 
that is dependent upon the other values in the same 
row (row constraints), or column (column constraints), 
or table (table constraints), or collection of tables (inter
table constraints). The constraint: salary of employee 
must be less than salary of manager, would be a table 
constraint if salary information and salary of manager 
appeared in the same table, and an inter-table con
straint if this information appeared in two different ta
bles. 

t. Aggregate function constraints-based upon built-in 
aggregate functions such as average, minimum or max
imum. For example, average salary may be constrained 
to be less than $15,000. 

3. Data model constraints-based upon the particular 
characteristics of a data model such as relational, hi
erarchical or network. 

3.3 Transition constraints 

Transition constraints specify relation between old and 
new states of the databases and are invoked when the da
tabase changes from one state to another. The two major 
types of transition constraints are: 

1. Old/New transition constraint-During an update op
eration, there exists an "old" value to be changed to 
a given "new" value. For example, new salary must 
be greater than old salary. 

2. Nonexistence/existence transition constraint-The in
sertion operation involves a nonexistence to existence 
transition, while a deletion involves an existence to 
nonexistence transition.· For example, deletion of an 
account number may require that the balance be zero. 

3.4 User-controlled enforcement 

U sing one of the constraints specified above requires es
tablishing when the constraint is to be invoked. User con
trolled enforcement permits the user to state WHEN to en
force the integrity constraints: 

1. Deferred/immediate enforcement-for transactions re
quiring more than one data management request, will 

permit suspension of integrity constraints until all re
quests have been issued. The user is responsible for 
specifying deferred enforcement and the system must . 
be able to back-out the transaction when deferred en
forcement results in a constraint violation. 

2. ON/OFF enforcement-permits the user to switch in
tegrity checking ON or OFF depending upon the level 
of integrity needed for the application. It is useful since 
some integrity checking is costly. 

3.5 Integrity specification and maintenance facilities 

Some integrity checking, such as simple data type check
ing, is easily supported. More complex kinds of assertions 
need to be stated, maintained, and invoked at the appropriate . 
time. Some semantic integrity system facilities might be: 

1. User-written Application Program Interface-The 
DBMS does not provide a centralized semantic integ
rity subsystem but provides interface mechanisms so 
that users can code their own integrity enforcement 
routines as an application program. This application 
program interface is usually available in most of the 
commercially available DBMS. 

2. Integrity Specification Language-The semantic integ
rity system permits users to specify integrity con
straints in a higher-level language. This language is 
compiled into procedures which are triggered for the 
enforcement of the constraints. 

3. Integrity Constraint Maintenance-The semantic in
tegrity system permits users to read, modify, create and 
destroy integrity constraint assertions. 

3.6 Feature summarizations 

Not all of the features identified above are offered by each 
of the reviewed systems. Moreover, substantial differences 
exist in the implementation of features common to two or 
more systems. Brodie's approach has not yet been imple
mented. McLeod's has been partially implemented. System 
R has not been released as a product. INGRES is available 
and is being used at several sites. CODASYL specifications 
are still in the process of enhancement. Implemented ver
sions of CODASYL-like systems usually include the CHECK 
clause plus interface mechanisms for user-written proce
dures so that necessary integrity features may be coded by 
the user via application programs. 

The semantic integrity feature list contained in Figure 1 
together with the various enforcement approaches provides 
a basis for the design of a prototype Experimental Semantic 
Integrity System. 

4. XSIS SUPPORT ENVIRONMENT 

A prototype Experimental Semantic Integrity System 
(XSIS) is currently under construction at the National Bu-



FEATURES 

STRONG DATA 
TYPE CONSTRAINTS 

1. VALUE CONSTRAINTS 

2. EXTENDED FORMAT CONSTRAINTS 

3. DOMAIN COMPATIBILITY 

4. LEGAL OPERATION CONSTRAINTS 

CONSTRAINED DATA 
DEPENDENCY ASSERTIONS 

1. SINGLE DATA 

2. GROUPS OF DATA 

3. AGGREGATE FUNCTIONS 

4. DATA MODEL 

TRANSITION 
CONSTRAINTS 

1. OLD/NEW 

2. NONEXISTENCE/EXISTENCE 

USER-CONTROLLED 
ENFORCEMENT 

1. DEFE~RED/IMMEDIATE 

2. ON/OFF 

SPECIF'CATION & 
MAINTENANCE FACILITIES 

1. USER-WRITTEN PROGRAMS 

2. INTEGRITY SPECIFICA TION 
LANGUAGE 

3. CONSTRAINTS MAINTENANCE 

Database Semantic Integrity for a Data Manager 265 

reau of Standards. XSIS is designed to operate as part of a 
distributed, networked environment supporting access to 
multiple, remote, heterogeneous DBMSs which is provided' 
by an Experimental Network Data Manager (XNDM) [KIMBS 
79]. Since this paper explores the issues in defining, imple
menting and maintaining XSIS based on XNDM support, it 
is important to have an understanding of its basic structure 
and interrelationship to the network accessible DBMSs. 

4.1 Experimental network data manager (XNDM) 

The basic structure of XNDM is illustrated in Figure 2. 
It is implemented in the C language on a PDP-11145 attached 
to the Arpanet and running the UNIX operating system. 
Server modules exist on target systems to provide local sup
port. XNDM provides a uniform, table based virtual view 
of data maintained by independent, network accessible 
DBMS. It differs from a distributed database because: i) the • 
view of data provided the network user is virtual, ii) the 
DML provided the network user differs from that actually 
employed by the target DBMSs, and iii) different systems 
can use different DBMSs, data models, and DMLs. 

4.1.1 XNDM data structures 

The XNDM data structures are assumed to be constructed 
by a committee of Data Base Adminstrators who, collec
tively, identify the data whose access is to be supported and 
specify the access paths used to access this data. Although 
the virtual view of data presented by these structures is re
lational, i.e., table based, the data models used by the target 
systems can be relational, hierarchical, or CODASYL. 

4.1.2 XNDM data language 

The data language for XNDM is termed the Experimental 
Network Data Language (XNDL). It consists of three major 
components: a data definition language defining the tables 
and their-data attrihutes, a data control language providing 
nondiscretionary access controls and semantic integrity 
specifications, and a data manipulation language for issuing 
queries and updates. The DML is based on a subset of SE
QUEL (redundant predicates, sort operations, and a pro
gramming language interface are excluded) which has been 
extended to provide primitives appropriate to specifying and 
controlling concurrent access to multiple databases. A more 
complete specification of XNDL is contained in [KIMBS 
79]. 

4.1.3 Interfacing to the target systems 

Using XNDM requires the DML statements (XNDL quer
ies or updates) to be translated to the DML employed by the 

Figure I-Semantic integrity feature list. 



266 National Computer Conference, 1980 

DBMS 1 

PHOST 

o MANAGER 
DBMS 2 

DBMS 3 

Figure 2-XNDM interface between user program and multiple remote 
DBMSs. 

target system(s). Since this translation process is dependent 
upon both the preestablished source data structures as well 
as the locally determined target data structures, it proves 
substantially harder than that required to support database 
front ends. Substantial work has, however, been done on 
XNDM query translation [KIMBS 79], [W ANGP 80]. 

Currently, XNDM does not support updates. A major 
technical problem in their support is related to the recognized 
problem of updating views. A general solution to this prob
lem appears difficult if not impossible [DAY AU 78] because 
of hidden data. Although this is valid for a general, and hence 
arbitrary view, it may be resolvable in the context of XNDM 
applications by suitably defining the data structures pre
sented to the user. Such definition would require classifi
cation of DBMS data into independent groups coupled with 
a requirement that a user be able to update all data elements 
of the group if the user can update any data element of the 
group. Since remote users often have specialized interests, 
this approach may be commensurate with implicit organi
zational requirements. 

Deferral of XNDM update capabilities reflects the desire 
to complete implementation of query support since a thor
ough understanding of this problem is required to provide 
the basic addressability information required to support up
dates. In view of the strong interest which has been ex
pressed to the authors about the impact of the network user 
on the quality of data maintained by a DBMS, it seemed 
appropriate to establish the types of guarantees which can 
be provided together with the problems implicit in their sup
port. This is the objective of this paper. 

4.1.4 Need for semantic integrity in XNDM 

The preceding suggests that local acceptance of a remote 
updating capability may well depend upon the extent to 
which suitable correctness guarantees can be provided. Two 
basic support mechanisms for providing such correctness . 
can be developed. The first is an appropriate collection of 
discretionary access controls for assuring that individual re
mote users can only access data appropriate to their access 
rights. The second is a semantic integrity support capability. 
Issues related to the first have been discussed in [WOODH 
79]; the remainder of this paper is concerned with the second 
topic. 

4.2 Semantic integrity in the networking environment 

Semantic integrity in the XNDM environment differs in 
several essential ways from that usually associated with cen
tralized DBMSs. 

1. Global and local integrity constraint conflicts-reflect
ing the possibility of a conflict between globally estab
lished constraints and those established by local DBMS 
management. 

2. Conflicting assertions-constraints appropriate to dif
ferent target DBMSs may also be in conflict. 

3. Partial data problem-local semantic integrity asser
tions may involve data not accessible to the network 
user. Thus, it may prove impossible to provide global 



checking which is complete from the local point of 
view. 

5. XSIS DESIGN AND IMPLEMENTATION ISSUES 

XSIS is also being implemented in C on the same system 
on which XNDM is being implemented. Its design and im
plementation are intended to support exploration of both the 
assertion based and strong data type approaches to semantic 
integrity. Because of the preliminary nature of XSIS work, 
the following comments are provisional; based upon accrued 
experience, the basic XSIS design goals may be substantially 
modified in the future. 

5.1 XSIS design 

The major goal of XSIS is to provide a filter for checking 
remote database operations expressed via the XNDL. XSIS 
views semantic integrity maintenance as a system rather than 
user responsibility. 

The offloading of XSIS from both target systems and their 
DBMSs permits a flexible, iterative approach to its design, 
implementation and modification. The design of XSIS is 
guided by several principles: 

1. Offloading of semantic integrity enforcement-the bur
den of enforcing semantic integrity constraints on ac
cess by the network user should be offloaded, as much 
as possible, onto XSIS. This reflects the perception that 
local management may prove unwilling to incur an 
extra processing burden just to support remote users. 

2. Emphasis on global checking-because of the belief 
that remote users are less knowledgeable users, and the 
desire to minimize local system overhead in supporting 
semantic integrity. 

3. Modular design and implementation-to permit an it
erative design, implementation, operation and modifi
cation cycle without impacting local systems or other 
XNDM components. 

XSIS consists of two major components: One component 
supports constraint specification and maintenance. The con
straint specification processor accepts a constraint specifi
cation and stores an intermediate representation in the se
mantic integrity tables which are linked to the XNDM data 
dictionary. 

The second component supports constraint evaluation and 
enforcement. It is activated when a user issues a request in 
XNDL. Enforcement decomposes into those checks which 
can be performed independently of the target DBMSs, and 
those requiring retrieval of data from local databases. The 
former are primarily type checks while the latter test whether 
the appropriate assertions are satisfied. 

The XSIS processing sequence consists of: i) receipt of 
a parsed tree representation of an XNDL statement by the 
XNDM translator, ii) performance of type constraint tests, 
iii) retrieval of dependent data required to process run-time 

Database Semantic Integrity for a Data Manager 267 

tests, iv) performance of run-time tests, and v) return of a 
condition code indicating whether a semantic integrity vio
lation was detected and, if so, its type. 

5.1.1 XSIS strong type constraints 

XSIS supports strong data types whose specification in
cludes: 

1. Data name. 
2. Data format-a description of the format of the data 

type as composed from primitive types such as char
acter, integer, or real. 

3. Legal operators-permissible for a given domain, e.g., 
arithmetic, relational, and DML operators which, for 
binary operators, will be domain dependent. 

4. Compatible domain names-a list of domain names 
which can be involved in binary operations with the 
given domain. 

5. Value restriction-assertions upon value such as legal 
range or permitted set of values. 

This initial collection of capabilities is significantly less en
compassing than those reported in [BRODM 78] but does 
provide a reasonable range of functionality. Moreover, as 
experience is gained into their utility, additional extensions 
can be implemented because of the modular nature of XSIS. 

5.1.2 XSIS assertion processing 

Key issues in supporting XSIS assertion processing are: 
i) maintenance of the appropriate database of assertions, ii) 
evaluation of the collection of assertions for consistency, 
and, iii) utilization of these assertions in performing the ap
propriate run time checks. The first two issues are currently· 
being investigated. The third, given the nature of the net
working environment, is affected by data movement require
ments necessary to support run time processing. Such data 
movement can be reduced by having the local node perform 
some of the checking. This distributed approach has the 
obvious disadvantage of requiring local additions and mod
ifications. In an operational environment, however, such 
modifications may prove highly cost effective. 

XSIS assertions may involve interrelated data elements. 
Since a table based data model is being employed, such as
sertions can be classified into row, column, intra-table, or 
inter-table assertions. Evidently, processing of more com
plex assertions is likely to require retrieval of greater 
amounts of data from the supported DBMSs. 

Consistency constraints can be further classified. as: 
change rules, insertion rules, and deletion rules. Initially, 
only change rules are being implemented. 

The distributed environment provided by XNDM imposes 
a bandwidth limitation on communications between the re
questing process and the target DBMSs. As a result, it is 
highly desirable that such interactions have a transaction 
oriented flavor as observed in [GRA Yl 78]. In turn, this re-



268 National Computer Conference, 1980 

quires capability for user specification of when semantic in
tegrity rules are to be enforced. Since XSIS is external to 
the target DBMS, such temporary extensions are easy to 
effect. However, backing out an extension may prove rather 
difficult if the target system does not provide an appropriate 
collection of backout mechanisms. 

5.1.3 XSIS system issues 

XSIS semantic integrity specifications are maintained in 
tables associated with the XNDM data dictionary. Integrity 
maintenance commands are provided for DISPLAYing, DE
LETEing, DEFINEing and CHANGEing integrity specifi
cations. 

The cost of achieving a high degree of database semantic 
integrity may be prohibitive [BADAD 79; HAMMM 78]. The 
distributed nature of semantic integrity enforcement pro
vided by XSIS naturally raises the issue of performance. 
Consequently, timing and frequency statistics are to be main
tained with the integrity specifications for assessing invo
cation rates and performance penalties. Such information 
should permit estimating the cost and performance of as
suring semantic integrity in the network database environ
ment. 

6. CONCLUDING REMARKS AND 
IMPLEMENTATION STATUS 

The preceding discussion structured a basic approach to 
providing semantic integrity while supporting uniform access 
to multiple, remote, heterogeneous DBMSs. Moreover, the 
discussion has shown that the implementation framework of 
XSIS permits a blend of both strong data type and assertion 
based approaches to semantic integrity. Thus, a flexible ve
hicle supporting future research in this area has been 
achieved. 

XSIS implementation is currently in a very preliminary 
state. Some strong data typing capabilities exist and the im
plementation of assertion checking has begun. Although the 
early implementation status precludes reporting operational 
results, the structure has been described to encourage dis
cussion of this important issue. 

ACKNOWLEDGMENT 

The authors would like to express their appreciation to L. 
J. Miller and Pearl S.-C. Wang for their helpful comments 
on earlier versions of this paper. 

REFERENCES 

[BADAD 79] Badal, D. Z., "On Efficient Monitoring of Database Assertion 
in Distributed Databases," Proceedings of 4th Berkeley Conference on 
Distributed Data Management and Computer Neworks, August 1979, pp. 
125-137. 

[BRODM 78] Brodie, Michael L., "Specification and Verification of Data 
Base Semantic Integrity," University of Toronto, Computer System Re
search Group, Technical Report CSRG-91, April 1978. 

[BUNEO 77] Buneman, O. Peter and Howard Lee Morgan, "Implementing .. 
Alerting Techniques in Database Systems," The Wharton School, Uni- . 
versity of Pennsylvania, DDC No. AD-A057319, February 1977. 

[CODAS 79] CODASYL Data Description Language Committee, "Data De
scription Language-Journal of Development, 1978," available from 
CODASYL, P.O. Box 1808, Washington DC, 20043, updated thru July 
1979. 

[DAY AU 78] Dayal, Umeshwar and Philip A. Bernstein, "On the Updatability 
of Relational Views," Proceeding of 4th International Conference on 
Very Large Data Base, West Berlin, Germany, Sept 1978, pp. 368-377. 

[ESWAK 75] Eswaran, Kapali P. and Donald D. Chamberlin, "Functional 
Specifications of a Subsystem for Data Base Integrity," Proceeding of 
2nd International Conference on Very Large Data Base, Framingham, 
MA., Sept 1975, pp. 48-68. 

[FERNE 76] Fernandez, Eduardo B. and Rita C. Summers, "Integrity As
pects of a Shared Data Base," AFIPS Conference Proceeding, National 
Computer Conference, Vol. 45, 1976. 

[GRAVR 75] Graves, Robert W., "Integrity Control in a Relational Data 
Description Language," Proceedings of ACM Pacific Regional Confer
ence, 1975, pp. 108-113. 

[GRAYJ 78] Gray, James, "Notes on Data Base Operating Systems," in Goos 
and Harmanis (eds.), Operating Systems-An Advanced Course, Lecture 
Notes in Computer Sciences, Vol. 60, pp. 393-481. 

[GUTTJ 77] Guttag, J. V., "Abstract Data Types and the Development of 
Data Structures," Communications ACM 20,6 (June 1977), pp. 396-404. 

[HAMMM 75] Hammer, Michael and Dennis J. McLeod, "Semantic Integrity 
in a Relational Data Base System," Proceeding of 2nd International 
Conference on Very Large Data Base, Framingham, MA., Sept 1975, pp. 
25-47. 

[HAMMM 76] Hammer, Michael and Dennis J. McLeod, "A Framework for 
Data Base Semantic Integrity," in Proceedings of 2nd International Con
ference on Software Engineering, San Francisco, CA, Oct. 1976. 

[HAMMM 78] Hammer, Michael and Sunil K. Sarlin, "Efficient Monitoring 
of Data Base Assertions," Proceeding of ACM SIGMOD 1978, p. 159. 

[KARRM 78] Karr, Mechael and David B. Loveman III, "Incorporation of 
Units into Programming Languages," Communications of ACM Vol. 21, 
No.5 (May 1978), pp. 385-391. 

[KIMBS 79] Kimbleton, S. R., Pearl Wang and Elizabeth Fong, "XNDM: 
An Experimental Network Data Manager," Proceedings of the 4th Berke
ley Workshop on Distributed Database Management, August 1979, pp. 
3-17. 

[LISKB 74] Liskov, B. H. and S. N. ZilIes, "Programming with Abstract 
Data Types," Proceedings of ACM SIGPLAN Symposium on Very High 
Level Language, SIGPLAN Notices 9,4 (April 1974), pp. 50-59. 

[MACHC 76] Machgeels, Claude, "A Procedural Language for Expressing 
Integrity Constraints in the Coexistence Model," in Nijssen, G. M. (ed.) 
Modelling in Data Base Management Systems, North Holland Publishing 
Company, 1976. 

[MCLED 76] McLeod, Dennis J., "High Level Expression of Semantic In
tegrity Specifications in a Relational Data Base System," MIT Report 
MIT/LCSITR-165, available from DDC AD-A034184, 1976. 

[MELOR 79] Melo, Rubens N., "Monitoring Integrity Constraints in a CO
DASYL-Iike DBMS," Proceedings qf 5th International Conference on 
Very Large Database, Rio de Janeiro, Brazil, Oct. 1979, pp. 209-218. 

[STONM 75] Stonebraker, M., "Implementation of Integrity Constraints and 
Views by Query Modification," Proceedings of ACM SIGMOD Inter
national Conference on the Management of Data, San Jose, California, 
May 1985. 

[WANGP 80] Wang, P. S. C., "The Design ofa Network Virtual Query Lan
guage-XNQL" (in preparation). 

[WEBEH 76] Weber, Herbert, "A Semantic Model of Integrity Constraints 
on a Relational Data Base," in Nijssen, G. M. (ed.) Modelling in Data 
Base Management Systems, North Holland Publishing Company, 1976. 

[WOODH 79] Wood, Helen M. and Stephen R. Kimbleton, "Access Control 
Mechanisms for a Network Operating System," Proceeding of National 
Computer Conference, June 1979. 



Concurrency coordination in a locally 
distributed database system * 

by GRUIA-CATALIN ROMAN 
Department of Computer Science 
Washington University 
St. Louis, Missouri 

INTRODUCTION 

A database is called internally consistent (or just consistent) 
with respect to a given set of invariant properties if, in the 
absence of any database activity, the above said invariants 
hold true.! These properties reflect relations among objects 
of the application domain and characterize its semantic con
sistency (e.g., 'last name appears first on all government 
forms '). Because a single database may support many dif
ferent applications, these relations are generally assumed to 
be known solely by the database user and not by the database 
designer. The very definition of a transaction (a sequence 
of primitive database activities which, when acting alone, 
preserves, as a whole, all invariants) is in recognition of the 
fact that it is the user's duty to guarantee the integrity of the 
data he manipUlates. 

While the assumption that during the execution of one 
transaction no other transaction exists in the system is rea
sonable from the user viewpoint, it is not acceptable from 
a design perspective since it would preclude any concur
rency. It is the designer's task to assure the preservation of 
the user viewpoint while maximizing performance through 
the use of concurrency. The problem of developing concur
rency control or access synchronization algorithms is per
haps the most difficult issue facing the database designer 
today. On one hand, while each transaction by itself pre
serves database consistency, concurrent execution of sev
eral transactions may ultimately result in: (i) the violation 
of the invariants persisting even after termination of all in
volved transactions and (2) the reading of inconsistent data 
by some of the transactions. On the other hand, excessive 
overhead in propagating or waiting for' concurrency control 
messages can seriously degrade database performance. 
Starting in the early seventies and more extensively during 
the last three years, concurrency coordination has received 
considerable attention among database research groups. The 
very first approach to be considered for the synchronization 
of concurrent updates in distributed databases was the use 
oflocks (shared and exclusive).2.3 However, locking, which 

* This work has been supported in part by the Division of Research Resources 
ofthe National Institutes of Health under Grant RR 0396. 

269 

was suitable in centralized databases, proved to be very in
adequate for geographically distributed databases due to 
extreme communication delays. 

Consequently, efforts have been made toward' the devel
opment of more effective coordination schemes which re
duce the number of messages required to propagate locking 
information, e.g., Thomas4 and Ellis.s The savings gained 
by these approaches are, however, insufficient when a large 
number of sites and high transaction volume are involved. 
Other authors attempted to bring forth improvements through 
the incorporation of a minimal level of centralization with 
a distributed system, e.g., Alsberg and DaY,6 Stonebraker 
and Neuhold.7 The performance of such algorithms depends 
upon the degree to which a proper partitioning of database 
activities is achievable. 

Still another strategy was adopted by Bernstein, et al. 8 

This method takes advantage of an a priori classification of 
transactions based upon the different nature of their inter
actions. In this manner locking efficiency is achieved by 
avoiding unnecessary global locking when possible. 

A "best" algorithm has not yet been found, and the search 
continues. This paper is concerned with highly distributed 
local databases anticipated to emerge due to the advent of 
VLSI technology. A pipelined architecture for a multi-pro
cessor database system is proposed along with a concur
rency coordination scheme. The architecture can be mod
eled as a collection of single-rooted directed acyclic graphs 
(DAG's). The root of each DAG is associated with a column 
of a cross-bar switch; the rows correspond to separate user 
groups. Each node of the DAG represents a processor, and 
each arc indicates a communication link between processors. 
The leaves ofthe DAG's are called data processors and may 
contain single files or larger portions of the database. The 
other nodes, called directory processors are assumed to 
store, in a distributed fashion, an index structure designed 
to maximize throughput while maintaining a relatively con
stant response time. For the sake of simplifying the expo
sition, changes to the index structure will not be considered 
here. 

Transactions are entered serially at the root of each DAG 
and the concurrency coordination mechanism enforces their 
"proper" pipelining through the networks. Each directory 



270 National Computer Conference, 1980 

processor performs a routing function. When the leaves are 
reached, the requested data is read and passed back to the 
user who later sends the updates followed by a commit mes
sage. The sending of a commit message is fundamental to 
the approach; the fact that the user creates the updates is 
not. An optimized system would have the data and/or di
rectory processors create the updates. The decision would 
be determined by some data transfer volume minimization 
strategy. 

The remainder of this paper includes a short review of the 
terminology, a formal description of the proposed scheme, 
and a discussion of several performance related issues. 

DEFINITION OF TERMS 

The terms "database," "transaction" and "consistency" 
are used as defined by Gray.9 Each transaction is assumed 
to have three phases: 

(1) Data Selection Phase-A selection criterion or query 
is passed to the root nodes of the networks (DAG's). 
Each root node distributes the selection process 
among its successors by initiating appropriate 
subqueries. Later, when the answers to the subqueries 
return, it concatenates and sends them to the user 
along with an end-of-selection signal. All other nodes 
repeat the same scenario throughout the network. 

(2) Data Modification Phase-Upon receipt of the re
quired data, the necessary updating is carried out. 

(3) Data Commitment Phase-The updated data is sent 
back into the network to permanently replace the old 
copies. As soon as all updates are acknowledged, a 
final commit message is issued by the user. 

Some notation is introduced next as a necessary tool for 
enabling a formal treatment of the special case where a single 
DAG is present. The extension to multiple networks is made, 
in an informal manner, later on. 

-Xz denotes a single node (data or directory processor) 
in the network. XO is used to represent the root node. 

-Ti represents the transaction i. Each transaction is as
sumed to have a unique identifier i (e.g., distinct time 
stamps). All messages exchanged by processors in be
half of Ti carry the identifier i. 

-Qi denotes any non-null message associated with the 
transaction Ti during the data selection phase; it is called 
a query message. The notation QieTj means i = j. 

-i is used to represent a null query message associated 
with Ti. 

-Sk is called a schedule and is defined as an arbitrary, 
sequence of query messages. Sk is a serial schedule iff 
no two query messages in Sk have the same identifier, 
i.e., 
(Sk)/peTi & (Sk)/qeTj & p =1= q =1= ~</:. i =1= j 
where (Sk)/r is the rth query message in Sk. 

-A period denotes schedule concatenation. 

CONCURRENCY COORDINATION 

It has already been stated that concurrent execution of 
several transactions can result in violations of database con
sistency due to undesirable interferences among transac
tions. The network organization suggested in this paper adds 
a new level of complexity since each transaction is present 
concurrently in many nodes of the DAG. Thus, concurrency 
coordination is required even when a single transaction ex
ists in the system. The coordination scheme described below 
handles uniformly both types of situations. Furthermore, it 
assumes no centralization, is simple, and involves a small 
synchronization overhead. However, in contrast to previ
ously referenced approaches, it is architecture specific. 

The idea behind the scheme is the following. Given any 
two data processors, Xp and Xq, for any two transactions 
Ti and Tj which access (read or write) data from both Xp and 
Xq, the two processors are forced to see Ti and Tj in the 
same order. This can be accomplished by requiring the be
havior of every node to be describable by the functions 
below: 

(S is the set of all possible serial schedules) 

MATCH: sn~s 
SO = MATCH(SI ,S2, ... ,Sn) 
where 
(SO)/leTi iff (Sj)/leTi for j = 1,2, ... ,n 

. (SO)/l = {Pi !}} 3k: (Sk)/l= Qi . 
(Sj)/l = i for J = 1,2, ... ,n 

TRIM: snxs~sn 

(SI' ,S2' , ... ,Sn')=TRIM(Sl,S2, ... ,Sn; SO) 
where for j= 1,2, ... ,n 
Sj= Sj".Sj' 
(Sj")/leTi iff (SO)/leTi 

FORK: s~sm 

(SI ,S2, ... ,Sm) = FORK(SO) 
where for j= 1,2, ... ,m 

(S')/l = {Qi or i if (SO)/leTi & (SO)/l = i 
'.1 i if (SO)/l = i 

Each node Xu processes some transaction Ti if and only 
if it receives a message associated with Ti from all its pred
ecessors in the DAG. Some of the messages may be null, 
some may represent update requests, and others may be read 
requests. Xu (conceptually) combines all messages into a 
single one. The MATCH function simulates precisely this 
action while TRIM is used to express the removal of the 
respective messages from all input queues. It is essential for 
Xu to wait until all messages associated with Ti are received; 
otherwise, improper transaction processing and destruction 
of the serialization would occur. 

The interpretation of the combined query, built on behalf 
of the transaction Ti, results in subqueries (associated with 
TO to be sent to some of the successors of Xu. However, 
in order to assure correct propagation of the schedule, all 



Concurrency in a Locally Distributed Database System 271 

DATABASE CONFIGURATION 

TWO-DIGIT 

7 
1118 

PROCESSING OF THE SCHEDULE Tl.T2 

ENTRY: (Tl add 2 mod 6 to one-digit numbers).(T2 list even numbers) Ql.Q2 

ODD: (Tl nil).(T2 : nil) 1.1 

EVEN: (Tl: nil). (T2 . list even numbers) 1.Q2 Ii 

ONE-DIGIT: (Tl add 2 mod 6 to one-digit numbers).(T2 nil) Ql.2 

TWO-DIGIT: (Tl nil). (T2 nil) 1.2 

(Tl nil).(T2 : nil) 
111 : (Tl add 2 mod 6).(T2 nil) Ql.2 

(Tl add 2 mod 6).(T2 nil) 

(Tl nil).(T2 : list) 
116 (Tl add 2 mod 6).(T2 list) Ql.Q2 

(Tl add 2 mod 6).(T2 nil) 

(Tl nil). (T2 nil) 
1111: = (Tl nil).(T2 nil) 1.2 

(Tl nil).(T2 nil) 

(Tl nil).(T2 list) 
1118: = (Tl : nil).(T2 list) 1.Q2 

(Tl nil).(T2 nil) 

Figure I-Sample schedule processing 



272 National Computer Conference, 1980 

other successors of Xu also receive messages on behalf of 
Ti. These messages are null messages needed solely for con
currency coordination purposes. The function FORK is non
deterministic and simulates the process by which Xu decides 
what query messages to send to its successors as a conse-, 
quence of processing a combined query message generated 
by MATCH. Since each node processes and puts out mes
sages in the same order, the initial total order over the trans
actions Ti is maintained throughout the network. 

Proposition 

Given the fact that the entry node XO is presented with 
a serial schedule SO, every node Xu will execute an order 
equivalent serial schedule Su: 

(Su)lleTi iff (SO)lleTi.· 

Proof by induction 

(0) The proposition holds trivially for XO 
MATCH(SO) = SO 
TRIM(SO;SO)= 0 
FORK(SO) = (SO 1 ,S02, ... ,SOm)-where SOk rep
resents the schedule generated by SO for its kth suc
cessor and is order equivalent to SO. 

(N) . Let us assume the proposition to be true for nodes 
at distance N from XO. Distance is defined as the 
length (number of links) of the longest path from 
XO to the particular node. 

(N + 1) Given any node Xu at distance N + 1, due to as
sumption (N) all its input schedules are order equiv
alent to SO. By applying again the definitions of 
MATCH, TRIM, and FORK, one establishes the 
propositions to be true for the level N + 1. 

Figure 1 describes a database and the sample schedules 
seen by each node as a result of processing two transactions, 
Tl and 12. The reader should note, however, that in the 
example of Figure 1, the updates are carried out at the nodes. 
If node #6, for instance sends data to the entry point to be 
updated by the user processor that initiated the particular 
transaction, node #6 will not process the next message until 
the result comes back and is committed throughout the net
work. 

The extension of this coordination scheme from the one 
to several networks requires that all root nodes receive trans
actions spanning across nets in the same order. This can be 
achieved through the use of a hardware cross-bar switch, 
Figure 2. When a user terminal issues a transaction which 
concerns only one ofthe database networks, the query mes
sage transmission takes place as soon as the vertical path 
becomes available. However, if the query involves more 
than one network, the user must request allocation of all 
needed paths before sending query messages to the various 
networks. This strategy will guarantee that the separate se
rial schedules are all consistent with each other, i.e., any 

User 
Terminals 

Intelligent 
Hardware Switch 

-----] 
I------t--...---. - -- --

I------t--.....---.- -- --

1-----+---+---- - - -

I 
I 
I 

Separate Database Networks 

Figure 2-Use of a Hardware Cross-Bar Switch. 

two transactions occur in the same order in any serial sched
ule in which they appear together. Furthermore, if switching 
paths are viewed as resources and always allocated in: the 
same order, the possibility of deadlock is eliminated. At the 
same time, blocking within the switch can be minimized by 
allowing single network users to use paths which have been 
allocated to a mUltiple network user but are not yet in use. 

PERFORMANCE ISSUES 

The architectural solution described above has its justi
fication in the application domain for which it is intended
medical information systems. Such systems tend to be con
fined to a single geographical location, grow relatively fast, 
require quick response, and exhibit a processing pattern 
dominated by data retrieval and creation rather than updates. 
As such, modifications of the directories, other than addi
tions of new entries, can be assumed to be few. Therefore, 
the user should be willing, in those rare occasions, to pay 
an additional waiting penalty for coordinating the concurrent 
update of several directories. 

The distribution of the index structure over several direc
tory processors is meant to reduce the searching time 
through the use of concurrency in a pipelined-like fashion. 
The goal is to assure a good average time response through 
the addition of new directory and data processors when 
faced with transaction volume increases. However, the sys
tem's ability to handle the higher throughput relates not only 
to the number of processors being used but also to the "ap
propriateness" of the data and index distribution. Ideally, 
all data processors should be equally utilized. Furthermore, 
the searching load within each net should be equally dis
tributed among directory processors at equal distance from 
the root since the coordination scheme forces each processor 
to work at the rate of the slowest predecessor. 

With respect to transaction recovery and roll-back, a 
transaction failure in some node could be signaled by passing 
a failure message to the user processor, which, in turn would 



Concurrency in a Locally Distributed Database System 273 

send a "forget about my updates" message in place of the 
commit. Subsequently, the transactions would be started 
again with a new identifier. A node failure would have the 
effect of cancelling any transaction that requires its use. 

SUMMARY 

An architecture for a locally distributed database system 
was suggested. A simple solution to the problem of coor
dinating concurrent transactions within the database was 
presented. The solution requires no centralized control, is 
deadlock free, uses no locks, is fair, and involves little over
head. 

REFERENCES 

1. Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., "The Notions 
of Consistency and Predicate Locks in a Database System," Communi
cations of ACM, Vol. 19, No. 11,624-633, November 1976. 

2. Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M., "System Level 
Concurrency Control for Distributed Database Systems," ACM Trans
actions on DB Systems, Vol. 3, No.2, 178-198, June 1978. 

3. Stucki, M. J., Cox, Jr., J. R., Roman, G.-C., and Turcu, P. N., "Coor
dinating Concurrent Access in a Distributed Database Architecture," Pro
ceedings Fourth Workshop on Computer Architecture for Non-Numeric 
Processing, Syracuse University, August 1978. 

4. Thomas, R. H. and Henderson, D. A., "McRoss-A Multi-Computer 
Programming System," Spring Joint Computer Conference, 281-293, 1972. 

5. Ellis, C. A., "A Robust Algorithm for Updating Duplicate Databases," 
Proceedings 2nd Berkeley Workshop on Distributed Data Management 
and Computer Networks, 146-158, May 1977. 

6. Alsberg, P. A. and Day, J. D., "A Principle for Resilient Sharing of Dis
tributed Resources," Center for Advanced Computation, University of 
Illinois, Urbana, Illinois, 1976. 

7. Stonebraker, M. and Neuhold, E., "A Distributed Data Base Version of 
INGRES," Memo No. ERL-M612, 11, September (1976) University of 
California, Berkeley, California. 

8. Bernstein, P. A., Rothnie, J. B., et aI., "The Concurrency Control Mech
anism of SDD-l: A System for Distributed Databases (The Fully Redun
dant Case)," IEEE Transactions on Software Engineering, Vol. SE-4, No. 
3, May 1978. 

9. Gray, J. N., "Notes on Data Base Operating Systems," Research Report 
RJ2188(30001) IBM Research Laboratory, San Jose, California 95193, 1978. 





An introduction to computed chaining 

by KUO-CHUNG TAl and ALAN L. THARP 
North Carolina State University 
Raleigh, North Carolina 

INTRODUCTION 

A hashing function, H(x), is a transformation from a key value 
x to an address. Since such transformations may produce 
the same address for distinct keys, hashing functions lead 
to collisions in the address space. Many methods for re
solving hashing collisions have been reported [1,2]. Direct 
chaining and open addressing are the two basic collision
resolution methods. This paper presents a form of hybrid 
hashing, computed chaining, which is better than a previ
ously described hybrid hashing procedure called pseudo
chaining [3]. In certain situations it is also better than other. 
collision procedures. 

In direct chainil)g, distinct items which hash into the same 
home address are'linked into a chain. When a collision oc
curs while inserting an item x, if the item at H(x) is stored 
at its home address, then x is stored at the first empty cell 
encountered on the chain starting at H(x). If the item at H(x) 
is not stored at its home address, then that item is moved 
into an empty cell, its chain is updated, and x is inserted at 
H(x). The links in direct chaining are addresses of overflow 
items. Figure lea) shows the use of direct chaining for items 
A, B, and C which have the same home address, r, and are 
inserted in the given order. Only one probe is required to 

. retrieve an overflow item from its predecessor. 
In open addressing, when a collision occurs while inserting 

an item x, a function of x is used to determine the probe 
sequence. The first empty cell encountered in the probe se
quence is used to store item x. The same probe sequence 
will later be used to retrieve item x. Many probe-sequence 
generating functions have been studied [1,2]. Figure l(b) il
lustrates the use of open addressing for items A, B, and C. 
The number of probes required to locate an empty cell for 
storing an overflow item is a function f of that item and all 
other items in the table, and that same number of probes is 
later required to retrieve that item. 

Pseudo chaining [3] combines features of direct chaining 
and open addressing in the following way. Suppose that item 
x is stored at its home address H(x). When the first item y 
with H(y) = H(x) (y is called the first overflow item) is in
serted, an empty cell for storing y is located using open ad
dressing and the number of probes required to locate the 
empty cell is stored in the link field of H(y). By doing so, 
only one probe is required to retrieve y from its home address 

275 

I 

because the address of y can be computed from the probe 
number stored in the link field of H(y). Since the probe num
ber typically requires fewer bits than the full address, pseu
do chaining needs less link space than direct chaining. Sub
sequent overflow items with a home address of H(y) are also 
stored using open addressing, but they do not necessarily 
have the property of one-probe retrieval from H(y). Figure 
1(c) shows the use of pseudochaining for items A, B, and C. 
feB) is stored as the link of A so that only one probe is 
required to retrieve B from the address of A. f' is the mod
ified f after B is inserted (see [3] for details). 

Computed chaining is another form of hybrid hashing that 
uses probe numbers as links instead of actual addresses. This 
new method, however, is closer to direct chaining than is 
pseudochaining, because all items with the same home ad
dress are linked into a chain. Assume item x is stored at its 
home address, H(x). When inserting the first overflow item 
y with H(y) = H(x) , computed chaining uses a function of x 
(not y) to determine the probe sequence and then stores (in 
the link field of H(x» the number of probes required to find 
an empty cell for storing y. Later when inserting the second 
overflow item z with H(z) = H(x) , computed chaining first 
computes the address of y using item x and its link. Then 
this method uses a function of y to determine the probe se
quence starting from the address of y. It stores as the link 
of y the number of probes required to find an empty cell for 
storing z. By doing so, an item plus its address and link (a 
probe number) determine the address of the next item in the 
same chain. Thus, items with the same home address are 
linked into a chain without the addresses being stored; in
stead the addresses can be computed by using the probe 
numbers stored in the link fields. This method is similar to 
direct chaining in that only one probe is required to retrieve 
an overflow item from ,its predecessor. Figure led) illustrates 
the use of computed chaining for items A, B, and C. The 
number of probes required to locate an empty cell for storing 
an overflow item is a function g of its predecessor. By storing 
g(A) (g(B» as the link of A (B), only one probe is required 
to retrieve B (C) from the address of A (B). 

DESCRIPTION OF COMPUTED CHAINING 

The previous section highlighted computed chaining and 
compared and contrasted it with other well-known hashing 



276 National Computer Conference, 1980 

k e'y 1· k ln 

r A s 
\ 

s B t ~ 
\ 

t C 0 J 

(a) direct chaining 

r 

I 
I 

I 
f' (C) probes I 

\ 

\ 

" J 

k ey 

A 

B 

C 

1· k ln 

feB) f' 
\ 

J 
0 ~ 

0 

(c) pseudochaining 

1 probe 

r 

f(C) probes I , 
\ 

k 

I 
I 

\ 
~ 

e.Y 

A 

B 

C 

\ 
\ f( B) probes , 

) 
r 

(b) open addressing 

r 

k ey 1· k ln 

A cf(A1 

B Q1Bl 

C 0 

" \ 

I 
~ 

\ , , 
I 

II 

(d) computed chaining 

1 probe 

1 probe 

Figure I-Illustration of the basic hashing mechanisms. 

methods. A more detailed description of computed chaining 
will be given for the operations probe, store, move and re
trieve. Probe computes the next probe address based upon 
the linear quotient hashing method. Store places an item into 

the table according to the computed chaining method. Move 
displaces an item not stored at its home address and all sub
sequent items stored on that chain. And finally, retrieve lo
cates an item in the table. For this discussion, the linear 



quotient hashing scheme [4] is used as the hashing function 
and method for determining the address of the next probe. 
Computed chaining is not dependent upon the linear quotient 
hashing scheme; hashing functions other than the one which 
follows may be used with computed chaining. 

procedure probe (k, prob#, addr) 
Ilcomputes the next probe address by the linear quotient 
method using the key, probe number and current 
addressll 

1. incr ~ (kip) mod p Ilobtain incrementll 
2. if incr = 0 then incr ~ 1 Ilinsure a positive 

incrementl I 
3. return «addr + prob# * incr) mod p) Ilreturn new 

addressll 
end probe 

k is the key, prob# is the probe number and addr is the 
current address in the table. p is the prime number table 
size. 

Using the probe procedure, store locates the first empty 
cell or one that contains an item not at its home address. In 
the latter case, a call is made to the move procedure to free 
the cell for insertion. The new item is then inserted. If the 
new item is an overflow item, the number of probes for lo
cating the new item from its predecessor is stored in the link 
field of the predecessor. To subsequently access the new 
item, only a "single" probe from the predecessor is needed 
because the address of the new item can be computed from 
the address, key and link value of the predecessor. 

procedure store(x) 
Iistores an item with key x according to the computed 
chaining hashing methodl I . 

1. h ~ x mod p Illocate the home address using the 
linear quotient methodl I 

2. if T.h = 0 then [T.h ~ x; return] lithe home 
address is empty, so store the itemll 

3. If T.h = x then return Ilitem is a duplicatell 
4. if T.h mod p =1= h then 

[call move (h); T.h ~ x; return] Ilitem stored at 
h is not at its home address, so move it and 
store x at hi I 

Illocate the last item in this chainll 
5. while L.h =1= 0 do 
6. h ~ probe (T.h, L.h, h) Illocate the next probe 

address using the probe number stored at h, 
L.hll 

7. if T.h = x then return I litem is a duplicatell 
8. end 
9. i ~ 1 Ilinitialize a loop variable to locate the first 

empty cell for storing xii 
10. j ~ probe (T.h, i, h) Illocate the next probe 

addressll 
11. while T.j =1= 0 do 
12. i ~ i + 1 
13. if i > p then [print('overflow'); stop] 
14. j ~ probe (T.h, i, h) Illocate the next probe 

addressll . 

An Introduction to Computed Chaining 277 

15. end 
16. L.h ~ i Ilinsert the probe numberll 
17. T.j ~ x Iistore the itemll 

end store 
T.h refers to the key at location hand L.h is the link value 
at location h. T.h = 0 means that the cell at location h is 
empty. Initially T.h = 0 and L.h = 0 for 0 ::5 h ::5 P - 1. 

The move procedure in computed chaining is essential in 
minimizing the number of retrieval probes. As mentioned 
previously, it moves an item not at its home address. Since 
the address and link of the item being moved is used to locate 
subsequent items in the same chain, it is necessary then to 
move all of these subsequent items. A simple solution is to 
use an array oftemporary storage locations to queue all items 
to be moved. Then one by one (first-in-first-out) the items 
stored in the array are moved to new locations. By doing 
so, the order of the moved items remains the same after 
moving. (It is unnecessary to keep the same order or to use 
the array during moving. A better solution which does not 
need the array (or stack) exists, but it is not described here 
due to its complexity.) In this moving operation, the asso
ciated probe numbers are updated. Finding the new locations 
of the moved items is essentially the same as in the store 
operation. Note that the move operation and the special care 
associated with its use are performed only during the inser
tion of an item. If coalescence of mUltiple chains is allowed, 
then the move procedure is unnecessary but the performance 
of computed chaining will be degraded somewhat (see [1, 
pp. 514-518]). The move operation is recommended when 
the ratio of insertions to retrievals is quite small. 

procedure move(r) 
Ilmoves an item at location r not stored at its home 
address and all subsequent items in that computed 
chainll 

1. declare TEMPO: 100) Iideclare array for storing r 
and subsequent items in the computed chainl I 

2. h ~ T.r mod p Illocate home address for item 
stored at rI I 
Illocate the item preceding that at r in the 
computed chainl I 

3. while probe(T.h, L.h, h) =1= r do 
4. h ~ probe(T.h, L.h, h) 
5. end 
6. i ~ 1 Ilinitialize array indexll 
7. TEMP(i) ~ T.r Iistore the item at rll 

lifind subsequent items and store them in TEMPII 
8. y ~r 
9. while L.y =1= 0 do 

10. nexty ~ probe(T.y, L.y, y) lifind the next itemll 
11. i ~ i + 1 Ilincrement the array indexll 
12. TEMP(O ~ T.nexty //store the item found// 

,13. T.y ~ 0 Ilerase the item at yll 
14. L.y ~ 0 
15. y ~ nexty /Icontinue the search// 
16. end 
17. T.y ~ 0 Ilerase the last itemll 



278 National Computer Conference, 1980 

//restore items in TEMP on the first-in-first-out 
basis so that the order of items in the computed 
chain remains the same/ / 

18. if ~ 1 //initialize an array index for moving items// 
19. while if = < i do 
20. k ~ 1 //initialize a loop variable to locate the 

first empty cell for storing the item in 
TEMP(ii)// 

21. j ~ probe(T.h, k, h) //locate the next probe 
address// 

22. while (T.j =1= 0 or j = r) do 
23. k ~ k + 1 
24. if k > P then print ('overflow') //table is full// 
25. j ~ probe(T.h, k, h) //locate the next probe 

address// 
26. end 
27. L.h ~ k //store the probe number// 
28. T.j ~ TEMP( ii) 
29. ii ~ ii + 1 / /prepare to move the next item in 

the chain// 
30. h ~ j 
31. end 

end move 

The final procedllre, retrieve, is similar to the linear quo
tient retrieval scheme except for the probe function used to 
calculate the next probe address. 

procedure retrieve(x) 
//retrieves an item with key x which was stored 
according to the computed chaining hashing method// 

1. h ~ x mod p / /locate the home address using the 
linear quotient method/ / 

2. if T.h = x then return 
3. i ~ 1 //initialize a loop variable for searching x/I 
4. while (i = < p and L.h =1= 0) do 
5. h ~ probe(T.h, L.h, h) //locate the next probe 

address// 
6. if T.h = x then return 
7. i ~ i + 1 //increment the loop variable// 
8. end 
9. print (,item is not in the table') 

end retrieve 

If space is at a premium and sufficient bits in the link 
field are not available to store the "complete" probe num
ber, a technique from pseudochaining of using a function of 
the "complete" probe number (prob#) and the number of 
bits of the link field (s) can be incorporated into computed 
chaining. This function, GBD(prob#,s), gives the greatest 
divisor of prob# that is less than 2**s and relatively prime 
to p. To incorporate this modification into the previously 
defined procedures, it is necessary to replace statement 16 
in store with 

L.h ~ GBD(i,s) //insert the probe number// 

and line 27 in move should be replaced with 

L.h ~ GBD(k,s) //store the probe number// 

In addition, the use of the probe procedure to both find a 
successor and insert an item should be changed. 

First, consider the case of using the probe procedure for 
finding a successor. Assume that while inserting item y, the 
number of probes required to locate an empty cell for y from 
its predecessor x is i. Then GBD(i,s) is stored in the link 
field of x. To retrieve y from x, when the link field has suf
ficient bits (i<2**s), only one probe is necessary. However, 
if insufficient bits (i;;:::2**s) are available, multiple probes 
may be required (see Figure 2). Let item w be one of the 
intermediate cells probed. Then one of these cases must 
hold: 

(1) w is not an item in the chain. w could be zero as the 
result of a move or deletion. 

(2) w is an item in the chain, but it precedes x, or 
(3) w is an item in the chain, but it follows y. 

Note that case (3) should not be allowed, for if it were, items 
between x and w would not be accessible. To avoid case 
(3), care must be taken when inserting an item using the 
probe procedure as described in the next paragraph. If case 
(3) does not occur, then cases (1) and (2) can be detected 
easily because w is in the chain if and only if w =1= 0 and either 
H( w) = H(x) if no coalescence is allowed, or H( w) = H(z) 
where z is any of the items preceding w in the chain if co
alescence is allowed. 

Then consider the case of using the probe procedure to 
find an empty cell for inserting an item. To avoid case (3) 
in subsequent retrieval, the empty cell must not be any of 
the empty cells which have been encountered prior to finding 
the last item of the chain on which the item is being inserted. 

Two methods for both locating a successor and inserting 
an item when using the GBD function are suggested. One 
method would be to add a bit field to each cell in storage. 
This bit would signify whether a cell had been encountered 
previously in the same store, retrieve or move operation. 
When locating a cell with the probe procedure, this extra bit 
would be checked. Another procedure to accomplish the 
same result would be to establish a stack for storing, for 
subsequent interrogation, cells (or their addresses) previ
ously encountered in the probe procedure. For a table of 
relatively short items, the latter method would be more space 
efficient. 

The computed chaining technique described above is a 
hybrid of direct chaining and the linear quotient method of 
open addressing. Other open addressing methods can also 
be used in computed chaining. The reason that linear quo
tient was chosen is that it has the best performance among 
all "static" hashing methods (i.e., those which do not re
organize the table when inserting new items). 

The idea of reorganizing the table when inserting new 
items, which is used in "dynamic" hashing methods [5-10], 
can be used in computed chaining to improve its perform-



An Introduction to Computed Chaining 279 

k ey 1· k ln k ey 1· k ln 

X j ~ 

~ 
x j , 

J 
~ ( i / j) probes 

one probe w 

~ 
1./ 

y ~ 

y ,.. 

(a) i < 2**~ (b) i > 2**s 

(1 < i and is a divisor of jJ 
Figure 2-Locating successor item with computed chaining. 

ance. It is believed, however, that the improvement due to 
dynamic hashing is only marginal. 

Linear probing, a static hashing method, can be incor
porated into computed chaining with less difficulty than lin
ear quotient. The probe sequence in linear probing for an 
item x is 

H{x), H{x) + b, H{x) + 2*b, ... ,H{x) + i*b, ... 

where b is a constant. In computed chaining, b can be defined 
as a function of the item stored at H{x) and thus all items 
with the same home address will use the same b. Figure 3{a) 
illustrates this scheme in contrast to Figure led). This scheme 
provides the following advantages: 

(1) Since p (table size) is a prime number, the problem of 
encountering a previously encountered entry in both 
locating a successor and inserting an item as described 
earlier does not exist. . 

(2) Moving or deleting an item becomes simpler. Figure 
3{b) shows the deletion of item B in Figure 3{a) by 
replacing the link of A with the sum of the links of A 
andB. 

However, the hybrid of direct chaining and linear probing 
does not perform as well as the hybrid of direct chaining and 
linear quotient. Linear probing is less efficient than linear 
quotient for the problems of primary clustering and second
ary clustering (see [9]). These two problems will increase the 
values of "complete" probe numbers and thus degrade the 
performance of computed chaining based upon linear prob-

key 1 ink 

r A ml 

B m2 

t C 0 

, , 
\ 
I 
I 

I 

f 
\ 
\ 
\ 
I 
I 

If 

s = r + b * m1 

t = s + b * m2 

= r + b * (ml+m2) 

where b is a function of A 

Figure 3(a)-Illustration of computed chaining based upon linear probing. 



280 National Computer Conference, 1980 

key link 

r A m1+m 2 ... , 
\ 
\ 
\ 

deleted --B--
~L __ 

, 
f---- I 

I 
I 

I 

t C 0 If 

Figure 3(b)-Deletion of item B in Figure 3(a). 

ing when the link space is insufficient to store all of the 
"complete" probe numbers. 

PERFORMANCE OF COMPUTED CHAINING 

The computed chaining technique described above was 
tested with a table of size n = 997 using pseudorandom keys; 
After the table was filled for a specific loading factor (a), 
each item stored in the table was retrieved once and the 
mean number of probes required to retrieve an item was 
computed. Table I shows the mean number of probes for 
retrieval as a function of a and s (the number of bits in the 
link field). The last column of Table I shows minis(a), the 
minimum value of s required to store the "complete" probe 
numbers for a given a. When a is smaller so is minis(a) 
because fewer probes are required to find empty cells. 

For a given a, when s>minis(a), the same mean number 
of probes for retrieval is required as when s = minis(a). In 
fact, computed chaining needs the same number of retrieval 
probes as direct chaining when s> = minis(a). Since minis(a) 
is usually smaller than [lOg2n] , where n is the table size, 
computed chaining may take less space than direct chaining 
without loss of efficiency. As shown in Table I, when 
a=0.99, computed chaining requires only eight bits rather 
than ten bits as in direct chaining. 

When s<minus(a) for a given a, more probes are needed 
to retrieve items because "partial". probe numbers (obtained 
using the GBD function) are stored in the link fields. Table 

I indicates that the performance of computed chaining de
grades only slightly as s becomes smaller. The reason is that 
most of the "complete" probe numbers are small and thus 
the number of "partial" probe numbers in the link fields 
increases slightly as s becomes smaller. Table II shows the 
distribution of "complete" probe numbers for a = 0.99. 
Sixty-five percent of the "complete" probe numbers are 
zeros and only five percent require more than four bits. 

COMPARISONS WITH OTHER METHODS 

As discussed in the previous section, computed chaining, 
compared with indirect chaining, has the following advan
tages: (1) it performs as well as direct chaining with less 
space and (2) it uses even less space by slightly degrading 
its performance. 

Recently several improvements on open addressing which 
reduce the mean number of probes have been reported. 
Brent [5] suggested a method of reordering the table when 
new items are inserted. (A modification of Brent's method 
was described in Tharp [6].) Brent's method requires an av
erage of about 2.49 probes to retrieve an item from a full 
table (a = 1.0). Gonnet and Munro [7] and Mallach [8] pre
sented a better reordering method called "binary tree" hash
ing which leads to an average of roughly 2.13 probes for a 
retrieval from a full table. Lyon [9] proposed another reor
dering method using recursive entry displacements. Gonnet 
and Munro [7] and Rivest [10] discovered that the problem 
of reordering the table so as to minimize the average number 
of probes required for a retrieval is a special case of an as
signment problem. Gonnet and Munro [7] reported that the 
experiment of the optimal reordering scheme produces an 
average of about 1.83 probes for a retrieval in a full table. 
Experimental results of several open addressing schemes are 
given in Table III. 

Open addressing, even with optimal reordering, requires 
more retrieval probes than direct chaining, but does not need 
extra space as link fields. Computed chaining offers a com
promise. It can provide a performance somewhat between 
direct chaining and open addressing with optimal ordering 
by using storage between that required by those two meth
ods. As shown in Table III, when a = 0.99 and s = 6, com
puted chaining provides better performance than open ad-

TABLE I.-.:..Mean Number of Probes Required by Computed Chaining for 

20 

40 

60 

70 

80 

90 

95 

99 

s = 1 

1.090 

1.276 

1.604 

1.881 

2.148 

2.755 

3.294 

4.706 

s = 2 

1.070 

1.214 

1.381 

1.528 

1. 715 

2.062 

2.414 

3.330 

s = 3 

1.070 

1.168 

1.271 

1.343 

1.430 

1.666 

1.894 

2.639 

I Successful Lookup (n = 997) 

s = 4 

1.070 

1.168 

1.264 

1.323 

1.356 

1.459 

1.600 

2.198 

s = 5 

1.070 

1.168 

1.264 

1.323 

1.356 

1.409 

1.480 

1.829 

s = 6 

1.070 

1.168 

1.264 

1.323 

1.356 

1.408 

1.433 

1.601 

s = 7 

1.070 

1.168 

1.264 

1.323 

1.356 

1.408 

1.433 

1.450 

s = 8 

1.070 

1.168 

1.264 

1.323 

1.356 

1.408 

1.433 

1.449 

s = 9 

1.070 

1.168 

1.264 

1.323 

1.356 

1.408 

1.433 

1.449 

s = 10 

1.070 

1.168 

1.264 

1.323 

1.356 

1.408 

1.433 

1.449 

minis(a) 

2 

3 

4 

4 

4 

6 

6 

8 



An Introduction to Computed Chaining 281 

TABLE I1.-Distribution of Complete Probe Numbers for a 99% Packing 
Factor in a Table of Size 997 

Complete Number of Number Accumulative 
Probe Bits to of Percentage 

Numbers Store Link Items 

a a 639 65 

1 1 72 72 

2 - 3 2 86 81 

4 - 7 3 86 89 

8 - 15 4 54 95 

16 - 31 5 29 98 

32 - 63 6 14 99.2 

64 - 127 7 6 99.9 

156 8 1 100 

TABLE I11.-Comparison of Mean Number of Probes for Successful 
Lookup (n = 997) 

Computed Computed* Direct 
Chaining Chaining Chaining Pseudochaining Uniform Brent's Binary 

a. (s=6) (s=10) (theoreti ca 1) (s=10) Probing Method Tree Lyon** Optimum 

20 1.070 1.070 1.100 1 .101 1.115 1.102 1.102 

40 1.168 1.168 1.200 1.211 1.277 1.217 . 1.217 

60 1.264 1.264 1.300 1.347 1.527 1.367 1.364 

70 1.323 1.323 1.350 1.438 1.720 1.444 

80 1.356 1.356 1.400 1.563 2.011 1.599 1.579 1.49 1.489 

90 1.408 1.408 1.450 1.787 2.558 1.802 1.751 1.63 1.610 

95 1.433 1.433 1.475 2.023 3.153 1, .972 1.880 1.72 1.689 

99 1.601 1.449 1.495 2.649 4.651 2.242 2.049 1.785 

100 1.500 3.273 6.522 2.494 2.134 1.828 

*These are less than the theoretical expected values (1 + o./2). The experiments by Lum, Yuen, and Dodd [11J 
indicate a similar performance of the linear quotient method. 

**For n = 4999, based on 1(4}, a. = .97 average probes = 1.77 
a. = .98 average probes = 1.80 



282 National Computer Conference, 1980 

dressing with optimal ordering 0.601 versus 1. 785 probes) 
while using less space than direct chaining (6 bits versus 10 
bits per link field). Note that open addressing with optimal 
ordering requires that the whole table be reconstructed for 
deletion or insertion of an item and thus is practical only 
when the table is static. The performance of computed chain
ing is therefore usually more attractive than open addressing 
with optimal ordering. Computed chaining is in addition bet
ter than Lyon's method of open addressing (1.601 versus 
1.80 + probes) which is currently the best method of open 
addressing not requiring a complete restructuring of the table 
for an insertion. 

The performance of pseudochaining based upon uniform 
probing [3] and the performance of uniform probing are 
shown in Table III. The pseudochaining technique can also 
be applied to improve other open addressing schemes. How
ever, given the same link space, pseudochaining does not 
perform as well as computed chaining (2.65 versus 1.45 
probes for a = .99) because the former uses link fields for· 
first overflow items only. As a result, pseudochaining fails 
to perform the same as direct chaining or computed chaining 
even if it has sufficient link space to store" complete" probe 
numbers. Thus pseudochaining is less efficient when com
pared to computed chaining. 

Another advantage of computed chaining, which it inherits 
from direct chaining, is that items can be deleted immediately 
without much difficulty. To delete an item from the table, 
e.g., at location r, computed chaining will delete the items 
following in the same chain and reinsert them starting at 
location r. In open addressing, however, moving another 
item in the table to location r may require reorganization of 
the table. A common solution in open· addressing is to re
serve a special key to denote a deleted item so that reor
ganization of the table can be postponed until a number of 
deleted items exist. However, the average number of probes 
required to retrieve non-deleted items will increase if the 
table contains many deleted items. 

CONCLUSIONS 

Computed chaining is a hybrid of several existing methods 
for collision resolution. It is similar to direct chaining in that 

all items with the same home address reside on the same 
probe chain. Computed chaining resembles open addressing 
since it uses a function of an item to locate a probe address. 
And it borrows from pseudochaining the use of a probe num
ber in the link field instead of an actual address. 

Practical suggestions on when to use computed chaining 
conclude the discussion. If sufficient bits in each link field 
are available to store an actual address, direct chaining re
mains the preferable method. However, if full-address bits 
are not available, computed chaining gives results only 
slightly degraded from those of direct chaining. If only afew 
bits are available for the link field, computed chaining may 
still be more efficient than open addressing techniques. From 
the experimental results (a = .99) with computed chaining, 
sixty-five percent of the items stored in the table required 
no probe links and ninety-five percent required four or fewer 
bits to store probe links. 

REFERENCES 

1. Knuth, D. E., "The Art of Computer Programming," Vol. III: Sorting 
and Searching, Addison-Wesley, 1973. 

2. Maurer, W. D. and Lewis, T. G., "Hash Table Methods," Computing 
Surveys 7, 1 (March 1975), pp. 5-20. 

3. Halatsis, C. and Philokyprou, G., "Pseudochaining in Hash Tables," 
Comm. ACM 21, 7 (July 1978), pp. 554-557. 

4. Bell, J. R. and Kaman, C. H., "The Linear Quotient Hash Code," Comm. 
ACM 13, 11 (Nov. 1970), pp. 675-677. 

5. Brent, R. P., "Reducing the Retrieval Time of Scatter Storage Tech
niques," Comm. ACM 16, 2 (Feb. 1973), pp. 105-109. 

6. Tharp, A. L., "Further Refinement of the Linear Quotient Hashing 
Method," Information Systems 4, 1 (1979), pp. 55-56. 

7. Gonnet, G. and MUnro, I., "Efficient Ordering of Hash Tables," SIAM 
J. of Computing, 8, 3 (August 1979), pp. 463-478. 

8. Mallach, E. G., "Scatter Storage Techniques: A Unifying Viewpoint and 
a Method for Reducing Retrieval Times," The Computer Journal 20, 2 
(May 1977), pp. 137-140. 

9. Lyon, G., "Packed Scatter Tables," Comm. ACM 21, 10 (Oct. 1978), pp. 
857-865. 

to. Rivest, R.I., "Optimal Arrangement of Keys in a Hash Table," J. ACM 
25, 2 (April 1977), pp. 200-209. 

11. Lum, V. Y., Yuen, P. S., and Dodd, M., "Key-to-address Transform 
Techniques: A Fundamental Performance Study on Large Existing For
matted Files," Comm. ACM 14, 4 (April 1971), pp. 228-239. 



A federated architecture for database systems* 

by DENNIS MCLEOD and DENNIS HEIMBIGNER 
University of Southern California 
Los Angeles, California 

INTRODUCTION 

The contemporary approach to database system architecture 
requires the complete integration of data into a single, cen
tralized database; while multiple logical databases can be 
supported by current database management software, tech
niques for relating these databases are strictly ad hoc. This 
problem is aggravated by the trend toward networks of 
small to medium size computer systems, as opposed to large, 
stand-alone main-frames. Moreover, while current research 
on distributed databases 1,2,3,4,5 aims to provide techniques 
that support the physical distribution of data items in a com
puter network environment, current approaches require a 
distributed database to be logically centralized. 

Decentralized databases 

A decentralized database is a collectioQ of (structured) 
informatio~, which may be logically distributed, physically 
distributed, or both. Specifically, it is possible to identify 
two distinguishable though related aspects of database de
centralization: 

1. Logical decentralization concerns the division of da
tabase into components, for purposes of allowing sep
arate control over each component; the control that 
may be exercised for each component includes speci
fying the meaning and logical structure of data, de
scribing the accessibility of data items to users, and 
specifying the form in which users will see the data. 

2. Physical distribution concerns the allocation of data for 
storage to the nodes of a network or other assembly 
of interconnected computer system components. 

A comprehensive approach to decentralized database man
agement must address both the issue of logical decentrali
zation as well as the issue of physical distribution. 

* This research was supported, in part, by the Joint Services Electronics Pro
gram through the Air Force Office of Scientific Research under contract 
F44620-76-C-0061. 

283 

The need for logical decentralization 

Traditionally, a database is viewed as a complete and total 
integration of the data associated with a family of related, 
though distinct, applications. A database has associated with 
it a single structural specification: its conceptual/logical 
schema. Users and application programs manipUlate the data 
by performing operations phrased in terms of the schema. 
The database is then physically realized by a particular phys
ical design, which is a collection of storage structures and 
access methods that actually implement the schema. 

In contrast to the approach in which data files are closely 
associated with application systems and isolated from one 
another, the "integrated database" approach is founded on 
the principle of logical centralization. The complete cen
tralization of data at the logical level has many benefits as
sociated with it; in fact, these benefits are largely responsible 
for the great success of the "database approach" during the 
past decade: 

- Complete integration provides a global view of the data 
resources of an organization, and provides a basis for 
the resolution of conflicts; the importance of the da
tabase as an organizational resource is recognized. 

- By constructing a single integrated database, the 
amount of data redundancy in the overall information 
system is significantly reduced; this reduction in re
dundancy diminishes the opportunities for data incon
sistencies and related problems. 

- Centralization enables the more ready implementation 
of database applications that require data from several 
sources. 

- Logical centralization of a database allows uniform 
modes of access and usage to be established for all the 
data. 

While logical database centralization has important as
sociated benefits, it does impose certain limitations on da
tabase-intensive information systems. Specifically, it is often 
extremely difficult to completely integrate applications that 
are related, yet separate; integration may go too far in tightly 
coupling together aggregates of data that ought to retain 
~ome individual autonomy. 



284 National Computer Conference, 1980 

In the conventional view of database design, based on the 
concept of complete logical centralization/integration, a cen
tral authority is responsible for designing and maintaining 
"the" database; this authority, be it a single person or a 
group of individuals acting together, is usually called the 
database administrator (DBA). The DBA maintains control 
over all the data, and is responsible for determining and ad
judicating the disparate needs of the various database ap
plications and users. In such an approach, the ultimate prov
iders and users of the data must relinquish their authority 
over it to the DBA; this raises a number of concerns: 

- Users are often hesitant to entrust their data to an ex
ternal authority, despite any assurances they receive; 
experience has shown that these reservations may in
deed be valid. 

- The DBA is charged with developing a unified speci
fication of the content and meaning of a database. In 
practice, t~is is a difficult task, since various database 
users will have different perceptions of the data. 
In the process of selecting a physical design for a da
tabase, the DBA must ascertain the global usage pat
terns and response requirements, and then select the 
alternative physical design that provides the best over
all performance. While this approach may indeed best 
serve the overall organization, it may not be well suited 
to the needs of the principal users of a given portion 
of the database. A compromise physical design that 
attempts to satisfy all database users may in fact satisfy 
none of them. 

- Charged with the problem of serving as a liaison be
tween the database and all of its users, the DBA can 
easily become a bottleneck. All requests for database 
extensions and revisions are funnelled through the 
DBA; this indirection can and often does introduce 
serious delays and inconsistencies, particularly as the 
complexity of a database grows. 
New databases are often created as combinations of 
old databases; that is, it is not always true that a da
tabase is designed in strictly top-down fashion. In con
sequence, it is often very difficult to try to totally in
tegrate two related, but separate, databases into a 
unified whole. 

Distributed databases 

One particular approach to database decentralization is 
commonly called distributed database systems. In this ap
proach, a single logical database schema is defined, which 
describes all the data in the database system; the physical 
realization of the database is then distributed among the 
computers of a network. The physical data of a distributed 
database can be divided in three ways: 

1. partitioned, where no data is duplicated, 
2. fully duplicated, where all data is duplicated in every 

computer, 
3. partially duplicated, where some data is duplicated at 

some computers. 

There are two main advantages to distributed databases: 

1. A distributed database system is potentially mote ef
ficient than a physically centralized database system, 
because the data can be placed close to where it is 
needed. If it is needed at two or more places, then it 
can be duplicated. 

2. If data is duplicated, then a distributed database is po
tentially more reliable than a physically centralized 
database, because even if one computer fails other 
computers in the network may continue to operate. 

Although there are advantages to distributed database sys
tems, there are also a number of difficult design issues as
sociated with them: 

- How can the data be optimally allocated to the com
puters to minimize some cost, such as access time or 
physical storage space? 
How can a distributed database continue to operate 
after the failure of a computer? 
How can duplicated data be kept consistent? 

In response to the observation that decentralized com
puting systems are of increasing general importance, and the 
realization that logical centralization of a database (with or 
without physical decentralization) has many problems in 
practice, it is clear that a fresh approach is required. The 
goal of this new approach must be to serve as a compromise 
between total integration/centralization and the disorgani
zation of completely diffused and decentralized databases. 
The key to successfully realizing this goal is to balance the 
need for decentralization and the largely conflicting need for 
effective sharing of information. 

A FEDERATED APPROACH TO DATABASES 

The approach to database decentralization advocated here 
is termed federated databases; the basic idea of federation 
was introduced by Hammer and McLeod.6 A federated da
tabase consists of a number of logical components, each 
having its own logical/conceptual schema (component 
schema). These components are related, but independent, 
and they mayor may not be disjoint. Typically, a component 
of a federation corresponds to a collection of information 
needed by a particular application or a set of closely related 
applications. 

All of the components in a federation are tied together by 
one or more federal schemas that express the commonality 
of data throughout the federation; these federal schemas are 
used to specify the information that can be shared by the 
federation components, and to provide a common basis for 
communication among them. 

Database system users and application programs manip
ulate a database by issuing transactions, viz., operations that 
retrieve information from or modify information in a data
base. As a database user or application program is most com
monly affiliated with a single component of a federation, that 



user (or application program) normally issues transactions 
that can be performed within the local component. This 
property may be termed locality of reference and is funda
mental to federated database systems. 

On occasion, a user of component Cl may need to issue 
a transaction that involves data that belongs to another com
ponent, C2 (or several other components). In this case, the 
user consults a federal schema to find the necessary data; 
this reference can be explicit or implicit (i.e., the user may 
either refer to the data in the context of the federal schema, 
or may refer to it as local derived data (in which case the 
derivation specification must have already been provided)1. 
A transaction involving nonlocal data is processed by issuing 
a request to the federal controller, which issues the neces
sary instruction to C2 to actually provide the necessary data. 
While transactions involving local data execute with all pos
sible speed, transactions that require non-local data are in 
general substantially less efficient, because the federal con
troller must intervene to perform data movement and trans
lation. The federal controller is thus an important part of a 
federated database system, playing the role of coordinator 
and translator. 

In the federated approach, the (conceptual/logical) schema 
of each component is defined by a component DBA. A com
ponent schema is designed to suit the users and applications 
of the component; and, the physical design used to imple
ment a component schema is developed (and will evolve) so 
as to best satsify the performance requirements of these local 
users. In this way, the principal goal of each component is 
to satisfy its most frequent and important us~rs (viz., the 
local ones). 

All federal schemas are defined and controlled by thefed
eral DBA. Each federal schema is a virtual one, in the sense 
that there does not exist a physical database that corre
sponds to it; rather, a specification is provided that describes 
how the federal schema constructs are materialized from 
data maintained by the individual components. In particular, 
each component defines a subset of its component schema 
as available to the federal schema(s). 

The duties of the federal DBA supplement, rather than 
conflict with, the activities of the component DBAs. The 
principal responsibility of the federal DBA is to define the 
federal schema(s), relate them to the component schemas, 
and define the interface that each component must provide. 
The federal DBA is also responsible for determining how 
logical redundancy in the federation ought to be handled: in 
some cases, it is appropriate for a single component to take 
responsibility for it; in other cases, it is better for each com
ponent to maintain its own version (with a variety of possible 
consistency restrictions established to ensure that the var
ious versions remain appropriately related, e.g., the same). 
The choice may be determined for reasons of efficiency, re
liability, or requirements of components that need to access 
the data. 

In addition to directly accommodating logical database 
decentralization, the federated architecture also enhances 
the evolvability of a database. A federation evolves either 
by changes to components or changes to a federal schema. 
As long as a component continues to support its interface 

A Federated Architecture for Database Systems 285 

to the federation, it is free to change either its physical struc
ture or its logical structure without affecting other compo
nents{except possibly with regard to performance). The fed
eral schema can change for one of four reasons: 

1. a deliberate policy decision to change the federal 
schema, 

2. a radical change in a component that requires a change 
in its interface to the federation, 

3. adding a new component to the federation, 
4. deleting a component from the federation. 

Changes that enlarge or restructure the federal schema, such 
as by the addition of components, will impact components 
to the extent that they must accommodate the new infor
mation in the federal schema. Changes that actually remove 
information, such as the deletion of a component, in general 
require other components both to accept an altered federal 
schema and to redesign transactions that access the deleted 
information. 

In sum, in the federated approach, primary control over 
a database component resides with its principal maintainers 
and users, but adequate centralized authority is exercised 
in order to ensure appropriate levels of sharing, data com
patibility and data consistency. Each federation component 
can determine how to optimize its part of the database ac
cording to its own needs, and can decide what information 
should be made available to other components. Sharing of 
information is accommodated by the federal schema, and 
conflicts are resolved by the federal DBA. Finally, the fed
erated database architecture is based on the observation that 
many contemporary integrated databases are actually better 
suited to partial decentralization than complete centraliza
tion; for example, despite the availability of an integrated 
database, it is often the case in practice that the functional 
units of an organization make use of only a subset of the 
total schema and a limited portion of the data; in such cases, 
the remainder of the database can actually be a burden to 
a user. 

DESIGN ALTERNATIVES FOR FEDERATED 
DATABASE SYSTEMS 

Any design for a federated database system must deal spe
cifically with the following issues: 

- the precise structure of the federation (viz., the num
ber and organization of the federal schemas, and their 
relationship with the component schemas), 
the handling of physical data storage and access in the 
federation, 
the specific approach to the operation of the federal 
controller, 
the component facilities to support interaction with the 
federation. 

These four important design issues are specifically examined 
immediately below. 



286 National Computer Conference, 1980 

Logical distribution 

The logical distribution of a federation determines the ease 
with which changes to the schemas can be made and ease 
of maintaining the federal schemas. There are four principal 
logical distribution alternatives, with differing ability to han
dle change and maintenance: 

1. The first logical distribution strategy involves a single, 
global, federal schema derived from all the compo
nents. This structure is simple for the federal DBA to 
maintain, because there is only one federal schema. But 
such a comprehensive federal schema is difficult for the 
DBA to design, because it must reflect all the desired 
interactions between components. In addition, com
ponents are restricted from making radical changes in 
their component schemas because it may require 
changes to the federal schema. Components may be 
prohibited from seceding from the federation, because 
that may also require changes to the federal schema. 

2. An alternative distribution uses a separate federal 
schema for each pair of components. In the worst case 
of n components totally interconnected, there will be 
n(n -1)/2 federal schemas. Defining and maintaining 
this number of federal schemas may well place an in
tolerable burden upon the federal DBA, particularly for 
a large n. However, it may be that for a given federation 
only some small portion of the possible interconnec
tions is needed. Each pairwise federal schema is sim
pler than a global schema, since fewer components are 
interacting. In this pairwise federal schema approach, 
adding or removing components is simple: the com
ponent and its federal schemas are removed. 

3. A third logical distribution alternative is to associate 
a federal schema with each component, for use by all 
other components. Each component maintains two in
terfaces, a local one for its users and another one for 
use by all other components. In this approach, it is easy 
to add or remove components, and the number of fed
eral schemas is equal to the number of components. 

4. A final logical distribution, strategy is a variation of the 
global distribution strategy: instead of a single global 
federal schema, there are several federal schemas ar
ranged in a hierarchy. In this organization, the com
ponents are separated into disjoint sets with a federal 
schema for each such set. The federal schemas at the 
first level are partitioned into groups, and a second 
level set of federal schemas is defined upon the sets of 
first level federal schemas. This continues until a single 
federal schema (designated the root) is constructed. 
The result is a tree of schemas; the leaves are the com
ponent schemas and all interior nodes are federal sche
mas. In this approach the effects of adding or removing 
a component may be limited to some subtree of the 
hierarchy. Clearly, in this strategy, the simplicity of the 
federal schema hierarchy is determined by the criteria 
used to structure the tree. 

Also at issue in logical distribution is the nature of the 
view seen by a user associated with a given federation corn
ponent. A user associated with a given component must be 
able to access both local data, through the local schema, and 
non-local data through a federal schema. The local data is 
accessed by the normal mechanisms of the system (i.e., a 
data manipulation facility/language or programming lan
guage interface). Access to non-local data depends upon the 
user's view of the federation. At one extreme, the federal 
schema is integrated with and extends the local schema in 
such a way that the user cannot tell if he is accessing local 
data or non-local data. At the other extreme, the federal 
schema is separate from the local schema, although not nec
essarily disjoint; in this situation, the user must specifically 
address his request to the local schema or the federal 
schema. 

Complete integration makes it simple for a user to express 
a database transaction, since both local and non-local data 
look the same; the principal problem with this approach is 
that the user cannot directly observe that a potentially ex
pensive non-local reference may be required to process the 
transaction. When there is no integration, the user must per
form extra steps to retrieve non-local data, which may then 
be combined with a manipulation of local data. In this case, 
the user knows that a potentially expensive non-local ref
erence is needed. There is, of course, a viable middle ground 
between these extremes, in which the user sees two separate 
schemas, (component and federal) and the database trans
action processor accepts combined references to both local 
and non-local data. In this way, the user knows a costly non
local reference is being made, but the details of accessing 
are delegated to the database system. 

Physical distribution 

The federated database architecture does not assume that 
a database will actually be supported in a distributed envi
ronment; that is, it is not assumed that the database is to 
span a number of nodes in a computer network. A federated, 
database could well be implemented on a single computer. 
However, there are advantages to physically distributing 
data: 

1. to achieve better performance and allow higher degrees 
of concurrency by placing data close to its principal 
sources and users, 

2. to provide a higher degree of reliability and surviva
bility by redundantly' storing data items. 

The federated database architecture directly addresses the 
first of these two main goals; the concept of locality of ref
erence is key in the federated architecture. Moreover, the 
federated architecture provides a basis, through the federal 
schema and federal DBA, for establishing a policy for re
dundant data storage. 

As noted above, one of the main principles of the federated 
database' architecture is that the responsibility for storing 
and supporting physical access to the data in each compo· 



nent of a federation is the responsibility of that component. 
Thus, the most general approach might be to allow each com
ponent to choose its own method for storing data; if a com
puter network is being used to implement a federated da
tabase, each component may distribute its own data 
throughout the network. 

However, intolerable complexity may result from com
plete flexibility for physical distribution along with complete 
flexibility for logical decentralization. Moreover, logical de
centralization and physical distribution are not orthogonal 
issues. In consequence, it is appropriate in many cases to 
directly combine logical decentralization with physical dis
tribution. In this approach, if a computer network is avail
able for database implementation, then each 'federation com
ponent is allocated to a node in the network. The matching 
of a federation component to a node in a computer network 
provides a direct and natural way to implement a database 
that can be both logically decentralized and physically dis
tributed. 

Another aspect of physical distribution is the control of 
duplicate data. When two components contain duplicate in
formation in their schemas, the federal DBA must decide 
how that data is to be handled in the federation. Duplicate 
data can be eliminated from the physical level of the fed
eration by selecting one copy as the official copy; all ref
erences to a specific data item then refer to the official copy. 

If duplicate. data is retained, and it is desired that it be 
kept consistent (i.e., that all copies ultimately reach the same 
value after database modifications cease), then it is possible 
to apply the techniques developed for controlling duplicate 
data in distributed databases. 

A number of control algorithms for maintaining consist
ency in distributed databases have been developed;5 the al
gorithms that support partially duplicated data are directly 
relevant to federated databases. The proposed algorithms for 
maintaining the consistency of partially duplicated data are 
complex, since they attempt to keep all duplicate data as 
current as possible. This is important in a distributed data
base system so that the users continue to see a logically 
centralized database. However, complete consistency is not 
necessarily important for federated databases, because they 
are logically decentralized. In consequence, it may be pos
sible to apply looser and simpler algorithms for controlling 
duplicate data: in the federated environment. 

Federal controller operation 

A federated database requires a control component not 
present in conventional (centralized) database system: the 
federal controller. As described above, the federal controller 
performs the bulk of the transformations necessary to satisfy 
a request from a component for information described in a 
federal schema (and that is contained in another component); 
the request takes the form of a specified transaction. The 
federal controller must perform a sequence of seven steps 
for each such request/transaction: 

1. The transaction is checked for legality against the fed-

A Federated Architecture for Database Systems 287 

eral schema. The access rights of the requester are also 
verified at this time. 

2. The transaction is decomposed into a collection of sim
pler target transactions, each of which can be ulti
mately satisijed by a single target component. The tar
get component is the component that supports that rart 
of the federal schema referenced by the target trans
action. 

3. Each target transaction is translated from a reference 
to the federal schema to a reference to the target com
ponent schema. 

4. The target transactions are sent to the corresponding 
target components for processing. 

5. The federal controller waits for all the target transac
tions to be processed, and then the controller collects 
the results. 

6. The results are translated from target schema form back 
to federal schema form. 

7. The translated results are combined and returned to the 
requester. 

Steps five through seven can be performed in either set
at-a-time or element-at-a-time fashion. In set-at-a-time pro
cessing, the federal controller collects the results from all 
of the target components into a single result set, which is 
then returned to the requester. In element-at-a-time pro
cessing the federal controller translates and returns to the 
requester each element of the result as it is made available 
by a target component. The choice between set-at-a-time 
"and element-at-a-time processing should be made based on 
storage cost and communication cost information. 

The federal controller can itself be either centralized or 
distributed. If a computer network is used for implementing 
a federated database system, then there are three main ap
proaches to federal controller placement: 

- The federal controller resides on a special node of the 
network, i.e., one which does not also contain a com
ponent. This approach has the advantage of isolating 
the federal controller, and" the controller node need 
possess only the computational power necessary to 
perform the controller's functions. In this approach, 
it is also possible to easily replace the controller, 
should it fail. The disadvantages of a special controller 
node include the need for additional hardware, and the 
potential problem of a system performance and relia
bility bottleneck. 

- The federal controller can be co-located on a node with 
one of the components of the federation. This saves 
the cost of extra hardware, at the cost of possible com
petition for node resources with the component con
troller. The controller can also be made to migrate from 
one component node to another, should a node fail or 
a performance improvement be possible by shifting 
control. 

- The federal controller can be distributed, in which case 
a part of the controller is located at every node (or 
some subset of the nodes). This has advantages for 



288 National Computer Conference, 1980 

reliable operation, but the coordination of all the con
trollers is a difficult problem. 

The choice between a centralized or a distributed federal 
controller must be made in the context of the relative com
plexity of the algorithms for supporting coordination (anal
ogous' to work on distributed database control 
algorithms5,8,9,10,11,12), and the relative storage and commu-
nication costs involved. 

Component control 

In most respects, the control aspects of a component of 
a federation are the same as those for a centralized database 
system; but since a component is part of a federation, it must 
support an appropriate interface to the federation. In par
ticular, there are several important issues that a component 
must address, vis-a-vis its interaction with the federation: 

The component must allow for concurrent access to 
its data, because while a local user is accessing some 
part of the component data, some other component 
may be attempting to simultaneously access the same 
data (through the federal controller). Ifthe component 
already has the capability for concurrency control for 
local users, then requests by the federal controller 
present no difficulty. Otherwise, the component soft
ware must be augmented by software to control the 

. simultaneous access attempts. 
The component software must provide for communi
cating results back to the federal controller, on either 
a set':at-a-time or an element-at-a-time bases. Set-at-a
time processing requires bulk transfer of information 
to the federal controller, and element-at-a-time pro
cessing requires the buffering of the results at the com
ponent followed by single element transfers to the fed
eral controller. 

- The component must recognize locally-issued trans
actions that require accessing the federal schema, and 
forward an appropriate request for processing to the 
federal controller. When the federal controller returns 
the result of a transaction, the component combines 
the results from the federal controller with the results 
of any portion of the transaction that referenced data 
local to the component. 

In sum, it is the combined functioning of the components 
and the federal controller that allows a federated database 
system to effectively support information sharing and the 
decentralization of data. 

SUMMARY 

A federated architecture for database systems has been 
presented, which supports the logical decentralization of 
databases, and provides a basis for database physical dis
tribution (in a network of computer systems). The federated 

architecture responds to a number of problems associated 
with the complete centralization and integration of database 
systems (as detailed above). 

A federated database consists of a number of logical com
ponents, each having its own user-level structural specifi
cation (component schema). The components ofa federation 
are related, but independent, and they mayor may not be 
disjoint. Typically, a component corresponds to a collection 
of information needed by a particular user or application. The . 
components in a federation are tied together by one or more 
federal schemas that describe the data that is to be shared 
by the various federation components, and provide a com
mon basis for communication among them. A federal con
troller, which is an essential constituent of a federated da
tabase system, supports communication and translation of 
data among federation components, based on the federal 
schema(s). 

In this paper, a number of design issues and alternatives 
for federated database systems have been reviewed. Alter
native logical distributions and physical distributions were 
described, and the issues relevant to the operation of the 
federal controller and federation components discussed. We 
are presently developing a specific design approach based 
on the principles described in this paper. 7 A critical aspect 
of our present approach is the use of a meaning-based (se
mantic) database description and structuring formalism (da
tabase model) (such as those described in 13,14,15,16,17,18,19,20,21) 

to specify the component schema interface with the federal 
schema(s) . 

ACKNOWLEDGMENTS 

The authors are grateful for the very helpful efforts of 
Michael Hammer of MIT, a co-developer of the federated 
database concept. Gerald Short of TRW and the CADAM 
group of the Lockheed California Company (under Don 
Kawamoto) have provided additional motivation for the fed
erated architecture. 

REFERENCES 

1. Champine, G., "Six Approaches to Distributed Databases," Datamation, 
Pages 45-48, May 1977. 

2. Lien, Y. E. and Ying, J. H., "Design of a Distributed Entity-Relationship 
Database System," Proceeding of International Conference on Very 
Large Data Bases, Tokyo, Japan, 6-8 October 1978. 

3. Miller, M., "A Survey of Distributed Data Base Management," Infor
mation and Management, Pages 243-264, 1978. 

4. Ramamoorthy, C. V. and Wah, B. W., "Data Management in Distributed 
Data Bases," Proceedings of National Computer Conference, New York, 
NY, 4-7 June 1979. 

5. Rothnie, J. B. and Goodman, N., "A Survey of Research and Devel
opment in Distributed Database Management," Proceedings of Inter
national Conference on Very Large Data Bases, Tokyo~ Japan, 6-8 Oc
tober 1977. 

6. Hammer, M. and McLeod, D., On the Architecture of Database Man- I 

agement Systems, Technical Report 79-4, Computer Science Department, 
University of Southern California, Los Angeles CA, April 1979. 

7. McLeod, D., An Approach to Database Decentralization, Technical Re
port, Computer Science Department, University of Southern California, 
Los Angeles CA, 1980 (to appear). 



8. Bernstein, P. A., Rothnie, J. B., Goodman, N., and Papadimitriou, C. 
D., "The Concurrency Control Mechanism of SDD-l: A System for Dis
tributed Databases (the Fully Redundant Case)," IEEE Transactions on 
Software Engineering, Volume SE-4, Number 3, May 1978. 

9. Bernstein, P. A. and Shipman, D., "A Formal Model of Concurrency 
Control Mechanisms for Distributed Database Systems," Proceedings of 
Third Berkeley Conference on Distributed Data Management and Com
puter Networks, Berkeley CA, 29-31 August 1978. 

10. Garcia-Molina, H., "Performance Comparison of Two Update Algo
rithms for Distributed Databases," Proceedings of Third Berkeley Con
ference on Distributed Data Management and Computer Neworks, 
Berkeley CA, 29-31 August 1978. 

11. Stonebraker, M. and Neuhold, E., "A Distributed Database Version of 
INGRES," Proceedings of Second Berkeley Conferen'ce on Distributed 
Data Management and Computer Networks, Berkeley CA, May 1977. 

12. Thomas, R. H., "A Majority Consensus Approach to Concurrency Con
trol," ACM Transactions on Database Systems, Volume 4, Number 2, 
June 1979. 

13. Buneman, P. and Frankel, R. E., "FQL-A Functional Query Lan
guage," Proceedings of ACM-SIGMOD International Conference on the 
Management of Data, Boston MA, 30 May-l June 1979. 

14. Chen, P. P. S., "The Entity-Relationship Model: Toward a Unified View 
of Data," ACM Transactions on Database Systems, Volume 1, Number 
1, Pages 9-36, March 1976. 

A Federated Architecture for Database Systems 289 

15. Codd, E. F., "Extending the Database Relational Model," ACM Trans
actions on Database Systems, vol. 4, no. 4, December 1979. 

16. Hammer, M. and McLeod, D., "The Semantic Data Model: A Modelling 
Mechanism for Database Applications," Proceedings of ACM SIGMOD 
International Conference on the Management of Data, Austin TX, 31 
May-2 June 1978. 

17. Hammer, M. and McLeod, D., SDM: A Semantic Database Model, Tech
nical Report, Computer Science Department, University of Southern 
California, Los Angeles CA, 1980 (to appear). 

18. McLeod, D. and King, R., "Applying a Semantic Database Model," 
Proceedings of International Conference on the Entity-Relationship Ap
proach to Systems Analysis and Design, Los Angeles CA, 10-12 Decem
ber 1979. 

19. Shipman, D., "The Functional Data Model and the Data Language DA
PLEX," ACM Transactions on Database Systems, 1980 (to appear). 

20. Smith, J. M. and Smith, D. C. P., "Database Abstractions: Aggregation 
and Generalization," ACM Transactions on Database Systems, Volume 
2, Number 2, Pages 105-133, June 1977. 

21. Su, S. and Lo, D., "A Semantic Association Model for Conceptual Da
tabase Design," Proceedings of International Conference on the Enti
Relationship Approach to Systems Analysis and Design, Los Angeles 
CA, 10-12 December 1979. 





Data Base Architecture and 
Management 

The development of integrated data 
bases and Data Base Management Sys
tems (DBMS) has resulted in recognition 
that these alone do not insure information 
system effectiveness or user satisfaction, 
nor do they control the cost of handling 
data. Meeting these goals ultimately rests 
with improving the organizational man
agement/administration and understand
ing of "data" and "information" and their 
relationship. 

We must realize that DBMS is only one 
component of Data Management Systems 
(DMS) consisting of data resource direc
tory, data dictionary, query language, re
port generator, and usually a teleprocess
ing monitor. Data base technology has 

Linda Taylor 
Area Director 

focused, for the most part, on the constructs of data and their manipulation. 
The sessions in this technical area discuss current trends and advanced approaches to 

data base architecture, data base management systems, "naturallanguage"-based query 
languages, and implementing a data management plan. 

If we recognize that data and information are related but not exactly the same, then we 
face the problem of redesigning our "data systems" to provide "information." 

The four sessions in this technical area explore a broad spectrum of new avenues for 
making data base systems more useful in providing "information" to users through new 
architecture and query approaches. 

A data management implementation plan that emphasizes the pitfalls and how to resolve 
them is presented in the session chaired by Linda Taylor. This part of the session is 
followed by a description of two new user-oriented approaches to accessing data, assuming 
you have now implemented a sound data management plan. 

Dennis McLeod chairs a session discussing recent research at UCLA, IBM, US-Berkley, 
and Computer Corporation of America in applied data base technology. The results of this 
work are expected to affect the design and architecture of future data base management 
systems. 

E. L. (Ted) Glaser's session includes a panel of eminent authorities in the area of DBMS 
and data base architecture design, describing and then "debating" the advantages and 
disadvantages of various DBMS and data base architecture. 

The session chaired ,by Norm Sondheimer features an illustrious group of panelists who 
will examine current and predict future successful and problematical approaches to natural 
language access to a data base, system. 

291 





Definition of database transactions by the casual user 

by FRED J. MARYANSKI* and C. STEVEN ROUSH** 
Computer Science Department 
Kansas State University 
Manhattan, Kansas 

INTRODUCTION 

Database management systems have been in general use 
for more than a decade. However, only recently have ad
vances in technology and reduction in cost made such sys
tems feasible for the small enterprise. Experience with da
tabase systems over the years indicates that the definition 
of a schema, design and implementation of a set of appli
cation programs, and maintenance of the system are far from 
trivial tasks. Consequently, the ability to perform effectively 
any of the above three tasks has become a highly marketable 
skill. 

The need to make database systems accessible to the cas
ual, or nonprogramming, user was first addressed by Codd 
[9] and has been the subject of considerable recent work 
[6, 7, to-13, 15-17, 19-21,23-26]. Much of the effort in this 
area has centered upon the development of interactive query 
languages for the specification of ad hoc database transac
tions. In this document, we report the results of an effort 
to permit the casual user to specify a complete set of trans
actions for an enterprise. This transaction definition sub
system produces a set of "canned" transactions to which 
the user supplies any runtime parameters. 

The transaction definition subsystem is one unit in an ap
plication development system designed to facilitate database 
utilization by the nonprogramming users. The goal of the 
project is to create a database system that can be compre
hended and effectively utilized by a user whose enterprise 
cannot support a data processing professional. It is assumed 
that the user of the application development system is un
familiar with the concepts of database management but 
highly knowledgeable concerning the data of the enterprise. 
The system is highly interactive and relies upon the user to 
supply all information on the data items, relationships among 
data items, and operations on the database. 

In a prior effort a subsystem that permits a casual user to 
interactively create a third normal form schema has been 
developed [3, 14,22]. The outputs of this subsystem are used 
in the transaction definition process. Figure 1 depicts the 
present status of the application development system. 

The remainder of this paper concentrates upon the trans-

* Address: Digital Equipment Corp., Maynard, MA 01754 
*~ NCR Corp., Witchita, Kansas 57226 

293 

overview of the methodology employed to define the trans
action definition subsystem. The next section contains an 
actions. The structure of the subsystem is elaborated upon 
in the third section by describing the processing and inter
action that take place. The concluding section describes pos
sible future efforts in this area. A sample transaction defi
nition session is included in the appendix. 

OVERVIEW 

The function of the transaction definition subsystem is to 
receive a description of a document and through interaction 
with the user, create a transaction which generates the doc
ument. The definition of a transaction is dependent upon the 
presence of a hierarchical description of the document that 
the transaction is to produce and a third normal formal 
schema which embodies all noncomputed data items on the 
document. The hierarchical description and schema are out
puts of the data definition subsystem which must be com
pleted prior to the execution of the transaction definition 
subsystem. 

The document descriptor indicates all data items on the 
document and the hierarchical structure of the document. 
The hierarchical structure is a tree representing the logical 
organization of the document. The nodes of the tree are the 
unique lines of the document. Figure 2 illustrates the struc
ture of the document descriptor. Detailed information on the 
construction of the document descriptor can be found in 
Reference [14]. 

The feature that distinguishes this approach to transaction 
definition from other methods is that the user need not be 
aware of the structure of the database when the transactions 
are defined. However, we must emphasize that the user is 
required to be thoroughly familiar with the meaning and or
ganizqtion of the data on the documents of the enterprise. 

The transaction definition subsystem is highly interactive. 
The user is questioned in order to obtain information on the 
semantic nature of the transactions. Figure 3 depicts the 
structure of the transaction definition subsystem. The func
tion of each of the modules is explained in the succeeding 
section. 

The output of the transaction definition subsystem is a 
modified form of SEQUEL2 [5] code intended for execution 
by a relational database management system. 



294 National Computer Conference, 1980 

~ DATA DEFINITION 

)\------~~~_S_UB_S_YS_T_E_M~~ 

'1. _____ ~'_ __ T_R_AN_S~AC-T-I-ON--~ DEFINITION 
SUBSYSTEM 

Figure I-Application development system 

STRUCTURE 

In this section we explain the workings of the transaction 
definition subsystem by detailing the functions of the mod
ules pictured in Figure 3. For purposes of the presentation, 
the operation of the subsystem is explained initially for a 
retrieval transaction. The last portion of the section indicates 
the differences involved in the definition of an update trans
action. A complete description of the transaction definition 
subsystem is available in Reference [18]. 

Initialization 

The schema and document descriptor are read as input, 
and various internal tables are contructed using this infor
mation. The HANDLE-TRANSACTIONS module calls the 
PROCESS-LINE module in an iterative manner in order to 
generate the code for each document in the user's application 
system. 

Identification of primary relation 

A key concept of the transaction definition subsystem is 
the identification of the relation closest in terms of domains 
to the content of each line of the document to be produced. 
This relation is termed the primary relation for the line. The 
primary relation is used as the starting point for the navi- , 

DIVISION LOCATION 
DEPARTMENT 

GENERAL MANAGER 
MANAGER BUDGET 
EMPLOYEE SALARY 

DEPARTMENT MANAGER BUDGET 

A. SAMPLE DOCUMENT 

[pIVISION] LOCATION I GENERAL MANAGER --¥----
I DEPARTME~f __ -r MANAGER I BUDGET I 

£_-- ----, 
[8¥LOYE~_J SALARY I 

B. HIERARCHICAL STRUCTURE 

C. 

NAr~E LEVEL GROUP FLAG 
DIVISION 1 llO 1 (KEY) 
LOCATION 1 llO o (NON-KEY) 
GENERAL ~'lANAGER 1 llO 0 
DEPARH1ENT 2 210 1 
MMAGER 2 210 0 
BUDGET 2 210 0 
EMPLOYEE 3 310 1 
SALARY 3 310 0 

DOCUMENT DESCRIPTOR 
Figure 2-Document descriptor example 

INITIALIZATION 

HANDLE TRANSACTION 

PROCESS LI NE 
---------------------~-..., 

IDENTIFICATION OF PRIMARY RELATION 

DETERMINATION OF NAVIGATION PATHS 

SPECIFICATION OF THE DERIVATION OF 
COMPUTED DATA ITEMS 

COLLECTION OF SORT INFORMATION 

CAPTURE OF DATA SELECTION CONDITIONS 

SPECIFICATION ,OF UNIQUENESS 
'-------------------------' 

------.. --. ------------------------' 
Figure 3-Structure of transaction definition facility 



Definition of Database Transactions by the Casual U s~r 295 

gation paths that link all data on the line. The determination 
of the primary relation is made without interaction using in
formation in the schema and document descriptor. Figure 
4 is a high level description of the primary relation identi
fication algorithm. The primary relation is the starting point 
for all further processing by the transaction definition sub
system. 

As indicated in the high level description, the algorithm 
compares the contents of the lines and the relations. It is 
possible that two or more relations may be equally close, 
according to the metric of the algorithm, to a given line. In 
this situation the program maintains mUltiple primary rela
tions and begins navigation from all primary relations in 
order to cover all elements in a line of a document. 

Determination of navigation paths 

In order to produce a transaction without requiring that 
the user have a knowledge of the schema, the system must 
be able to determine navigation paths from the primary re
lation to relations containing all data items in the line being 
processed. The algorithm for the determination of a navi
gation path for retrieval operations is portrayed in Figure 5. 
The algorithm involves searching through relations begin-

DETERMINE A REASONABLE SET OF CANDIDATE 
DETERMINANTS OF THE LINE 

I. ELIMINATE ELEMENTS NOT MARKED AS 
POSSIBLE DETERMINANTS BY THE USER 

2. ELIMINATE ELEMENTS NOT KEY TO ANY 
RELATION 

3. IDENTIFY ELEMENTS WHICH ONLY APPEAR 
IN RELATIONS AS KEYS 

4. ELIMINATE ELEMENTS WHICH NEVER APPEAR 
IN A CONCATENATED KEY WITH THE ABOVE 
ELEMENTS 

DETERMINE A SET OF CANDIDATE RELATIONS 

I. START WITH EVERY RELATION WITH ANY 
CANDIDATE DETERMINANT IN ITS KEY 

2. ELIMINATE THOSE RELATIONS WITHOUT 
FULLY COVERED KEYS 

3. ELIMINATE ANY CANDIDATE RELATION 
WHICH CAN BE COVERED BY ANOTHER 

REMAINING RELATION IS THE PRIMARY RELATION 
Figure 4-Primary relation algorithm 

NAVIGATION 

FOR EACH ELEMENT INVOLVED 

IF FOUND IN PRIMARY RELATION 

STOP--THAT'S IT 

ELSE 

IF IT APPEARS IN ONLY ONE RELATION AS NONKEY 

STOP--THAT'S IT 

ELSE 

FOR EACH RELATION IN WHICH IT APPEARS AS NON-KEY 

IF ALL THE KEYS OF THAT RELATION ARE NOT 

IN THE LINE 

ELIMINATE THAT RELATION FROM CANDIDACY 

ENDIF 

ENDLOOP 

IF ONLY ONE CANDIDATE LEFT 

STOP--USE IT 

ELSE 

CAN'T BE DETERMINED 

Figure 5-Algorithm for navigation paths 

ning at the primary relations until all data items for the line 
have been reached. Although the implementation is differ
ent, the algorithm for the determination of the navigation 
paths is conceptually similar to Bernstein's membership al
gorithm [1, 2]. 

Specification of the derivation of computed data items 

During the execution of the data definition subsystem, the 
user has identified all data items which are computed and 
consequently not included in the schema. This information 
is preserved in the document descriptor which is an input 
to the transaction definitipn subsystem. The user is re
quested to indicate the data items used in the derivation of 
the value of each computed data item. In the current version 
of the prototype only the operands, but not the operators, 
of the expression for the computed data item's value need 
be specified. Alternatives for the capture of the complete 
expression for a computed data item are being investigated. 

Collection of sort information 

The user is asked to supply any sort ke'ys in major to minor 
order and the sorting sequence for each key. 

Capture of data selection conditions 

The user is requested to indicate if he wishes all instances 
of the data items on the line or ~fhe wishes to apply selection 
criteria to the data. Again, a reasonably straightforward in
teraction, as illustrated in Figure 6, is utilized to capture the 
data selection conditions. 

Another limitation of the prototype affects the operands 



296 National Computer Conference, 1980 

DO YOU WANT THIS TRANSLATION TO INVOLVE EVERY 
OCCURRENCE OF THE DATA FOR THIS LINE? (YIN) 
('N' IF THERE IS ADDITIONAL SELECTION CRITERIA) 

(ACCEPT ANSWER) 

OF THESE ELEMENTS I N THE LI NE 

(D I SPLAY LI NE) 

WHICH IS INVOLVED IN THIS CONDITION? 

(ACCEPT ITEM USED IN SELECTION) 

PLEASE ENTER CONDITIONAL OPERATOR (=J <J >J ETC,) 

(ACCEPT OPERATOR) 

FOR NOH J THE I RI GHT -HAND S IDE I WI LL COME FROM THE 
CRT 

Figure 6-Capture of data selection conditions 

of the selection expressions. In the case of selection criteria, 
one operand must be a data item on the line being processed. 
In the prototype, the other operand is restricted to being a 
value accepted from the keyboard. Many possibilities exist 
for the source and format of the second operand. The most 
difficult situation arises when the second operand must be 
retrieved from the database. The main difficulty here is the 
specification of the source of the operand by the user. This 
problem is currently under study. 

Specification of uniqueness 

Depending upon the selection criteria, an operation may 
retrieve tuples containing duplicate values. In some situa
tions, the user may desire to observe only unique tuples sat
isfying the selection criteria. This option is provided inter
actively to the user. Based upon the response to the 
uniqueness question, a command that will retrieve either 
unique or duplicate tuples is generated. ' 

Update transactions 

As shown in Figure 7, the overall structure of the algo
rithms for the production of transactions that write to the 
database is similar to that of the algorithm for read-only 
transactions. In a retrieval transaction, it is necessary to 
establish the existence of navigation paths that reach at least 
one occurrence of each data item to be retrieved. When a 
data item is to be written (stored, updated, or deleted), all 
occurrences of that data item must be located. 

In a third normal form database, the problem of multiple 
occurrences exists only for keyed data items. The existence 

of a third normal form schema implies that for a given set 
of keys, the tuple containing that data item must be uniquely 
determined [4, 8]. However, keyed items may exist in mul
tiple relations. Therefore, the navigation path routines in
clude the ability to locate all instances of keyed data items. 
Stored and deletion transactions will always operate upon 
keyed data items. At the present time, the ability to update 
a keyed data item is not provided. 

Example 

The appendix contains a comprehensive example of the 
input, user interaction, and output of the transaction defi
nition subsystem. The information in the appendix should 
be self-explanatory. The only non-SEQUEL2 statements 
produced as output are the SELECT(NEXT) and SE
LECT(ALL) which are iterative retrieval statements. A SE
LECT(NEXT) statement in effect defines a loop in which 
one tuple is retrieved and then, in this example, the following 
ACCEPT and SELECT stateqlents are executed. A SE
LECT(ALL) statement causes all tuples that satisfy the se
lection criteria to be retrieved. In this example, all grades 
will be listed on a student-by-student basis. 

CONCLUSION 

Summary 

The application development system described here is 
oriented toward the casual user or the small businessman 
with the need for a computer but not a programming staff. 
The system captures the data from the user and then inter
actively synthesizes a third normal form schema and the 
transactions which operate upon the schema. A distinguish
ing feature of this system is that the user is not required to 
reference the schema in the definition of the transactions. 

I N IT I ALI ZAT ION 

HANDLE TRANSACTION 

PROCESS LINE 

IDENTIFICATION OF PRIMARY RELATIONS 

I DENTI F I CAT ION OF UPDATED ITEMS 

DETERMINATION OF NAVIGATION PATHS 

SPECIFICATION OF THE DERIVATION OF 
COMPUTED DATA ITEMS 

Figure 7-General organization of write transactions 



Definition of Database Transactions by the Casual User 297 

Further work 

At present the system's final output is a set oftransactions_ 
in a modified form of SEQUEL2. Extensions are planned 
to incorporate maintenance utilities into the system. The 
addition of these features would permit the user to construct 
an entire application system. 

As mentioned in the body of this paper, certain limitations 
presently exist in terms of the operations available within 
the transactions that may be defined. These restrictions are 
a reflection of the prototype status of the system and are 
expected to disappear as further work on the system t~an
spires. 

An important feature of any system with a high degree of 
interactivity is the understandability of the questions by the 
user. An effort has been made to involve representative users 
in the design of the interactive phases of the system. It is 
hoped that the effect of this involvement will be easy un
derstanding of the system by the casual user. If the user can 
interact easily with the system, then the database and trans
actions can be designed without requiring special training. 

REFERENCES 

1. Beeri, C. and Bernstein, P. A., "Computational Problems Related to the 
Design of Normal Form Relational Schemas," ACM TODS (4, 1), Mar. 
1979, pp. 30-59. 

2. Bernstein, P. A., "Synthesizing Third Normal Form Relations from Func
tional Dependencies," ACM TODS (1, 4), Dec. 1976, pp. 277-298. 

3. Buser, R. H. and Kusnyer, S. K., "Automatic Synthesis of Third Normal 
Form Relations," M. S. Report, Compo Sci. Dept., Kansas State V., Dec. 
1977. 

4. Chamberlin, D. D., "Relational Data-Base Management Systems," Com
puting Surveys. (8, 1), Mar. 1976, pp. 43-66. 

5. Chamberlin, D. D. et aI., "SEQVEL2: A Vnified Approach to Data Def
inition, Manipulation, and Control," IBM Journal R&D (20,6), Nov. 
1976. 

6. Chang, S. K. and Ke, J. S., "Translation of Fuzzy Queries for a Relational 
Database System," Knowledge Systems Lab., V. of Illinois at Chicago 
Circle, Mar. 1978. 

7. Christensen, M. A. and Herndon, M. A., "QVEASY: The Design and 

APPENDIX 

1. Document Descriptor to STUDRECD Document 

Name 

STUD# 
STUDNAME 
GRADDATE 
GPA 
STUD# 
COURSWORK 
COURSGRADE 

Level Group Flag 

1 
1 
1 
1 
2 
2 
2 

110 
110 
110 
110 
210 
210 
210 

1 
o 
o 
o 
1 
1 
o 

Implementation of a Management Information System for Casual V sers, " 
ACM Annual Conf., Dec. 1978, pp. 230-233. 

8. Codd, E. F., "A Relational Model of Data for Large Shared Data Banks," 
CACM (13, 6), June 1970, pp. 377-387. 

9. Codd, E. F., "Seven Steps to Rendezvous with the Casual Vser," in 
Data Base Management, (J. W. Klimbie and K. L. Koffeman, eds.), 
North-Holland, Apr. 1974, pp. 179-200. 

10. Codd, E. F., "How About Recently," in Databases: Improving Usability 
and Responsiveness (B. Shneiderman, ed.), Academic Press, 1978, pp. 
3-28. 

11. Greenblatt, D. and Waxman, J., "A Study of Three Database Query 
Languages," in Databases: Improving Usability and Responsiveness (B. 
Shneiderman, ed.), Academic Press, 1978, pp. 77-97. 

12. Harris, L. R., "The ROBOT System: Natural 'Language Processing Ap
plied to Data Base Query," ACM Annual Conf., Dec. 1978, pp. 165-172. 

13. Hendrix, G. G. et aI., "Developing a Natural Language Interface to Com
plex Data," ACM TODS (3, 2), June 1978, pp. 105-147. 

14. Hunt, W.O., "Interactive Generation of Functional Dependencies," M. 
S. Report, Compo Sci. Dept., Kansas State V., Dec. 1977. 

15. Lozinskii, E. L., "Performance Considerations in Relational Data Base 
Design," in Databases: Improving Usability and Responsiveness (B. 
Shneiderman, ed.), Academic Press, 1978, pp. 273-294. 

16. Powell, P. B. and Thompson, P., "Natural Language and Voice Output 
for Relational Data Base Systems, ACM Annual Conf., Dec. 1978, pp. 
585-595. 

17. Reisner, P., "Vse of Psychological Experimentation as an Aid to De
velopment ofa Query Language," IEEE Trans. on Soft. Eng. (SE-3, 3), 
May 1977, pp. 218-229. 

18. Roush, C. S., "A Vser-oriented Transaction Definition Facility For a 
Relational Database System," M. S. Report, Compo Sci. Dept., Kansas 
State V., Aug. 1979. 

19. Shen, S. N. T., "A Semantic Approach in Designing Relational Data 
Base," ACM Annual Conf., Dec. 1978, pp. 596-601. 

20. Shneiderman, B., "Improving the Human Factors Aspect of Database 
Interactions," ACM TODS (3, 4); Dec. 1978, pp. 417-439. 

21. Sorenson, D. G. and Wald, J. A., "PICASSO-An Aid to an End-Vser 
Facility," ACM SIGMOD Con/., Aug. 1977, pp. 30-39. 

22. Stevens, T. J., "Implementation of a Text Editor for the Third Normal 
Formal Synthesis System," M. S. Report, Compo Sci. Dept., Kansas 
State V., Dec. 1977. 

23. Waltz, D. L., "An English Language Question Answering System for a 
Large Relational Database," CACM ~21, 7), July 1978, pp. 526-539. 

24. Weiner, J. L., "Deriving Data Base Specifications from Vser Queries," 
Berkeley Workshop on Distributed Data Management and Computer 
Networks, May 1977, pp. 182-195.' 

25. Zloof, M. M., "Query-By-Example," National Computr;r Conf., Vol. 44, 
May 1975, pp. 431-437. 

26. Zloof, M. M. and de Jong, S. P., "The System for Business Automation 
(SBA): Programming Language," CACM (20,6), June 1977, pp. 385-396. 



298 National Computer Conference, 1980 

2. Relations 

ROt STUD# STUDNAME GRADDATE GPA 
R02 STUD# COURSWORK COURSGRADE 

3. User Dialog with Transaction Definition Subsystem 

TDS: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 
TDS: 

USER: 
TDS: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 

STARTING NEW TRANSACTION (REPORT) 
TRANSACTION-NAME: STUDRECD 

STUD# STUDNAME GRADDATE GPA 
WHIC;H DO YOU WANT TO DISPLAY 

Y -YES, THIS ITEM 
N-NOT, THIS ITEM 

STUD# 
Y 

STUDNAME 
Y 

GRADDATE 
y 

GPA 
Y 

A-ALL OF THE REST OF THE ITEMS 
S-STOP, NONE OF THE REST OF THE ITEMS 

DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY 
OCCURRENCE OF THE DATA FOR THIS LINE? (YIN) 
('N' IF THERE IS ADDITIONAL SELECTION CRITERIA) 

N 
OF THESE ELEMENTS IN THE LINE: 

STUD# STUDNAME GRADDATE GPA 
WHICH IS INVOLVED IN THIS CONDITION? 

STUD# 
.PLEASE ENTER CONDITION OPERATOR (=, <, >, ETC.) 

FOR NOW, THE 'RIGHT-HAND SIDE' WILL COME FROM 
THE CRT 
OF THESE ELEMENTS IN THE LINE: 

STUD# STUDNAME GRADDATE GPA 
WHICH IS INVOLVED IN THIS CONDITION? 

STUD# STUDNAME GRADDATE GPA 
DO YOU WANT THIS LINE SORTED? (YIN) 

Y 
ENTER SORT KEYS MAJOR TO MINOR 
STUD# 

Y 
ASCENDING OR DESCENDING? (AID) 

A 
ARE THERE ANY MORE SORT KEYS? (YIN) 

N 
STUD# COURSWORK COURSGRADE 

WHICH DO YOU WANT TO DISPLAY 
Y - YES, THIS ITEM 
N-NOT, THIS ITEM 

STUD# 

A-ALL OF THE REST OF THE ITEMS 
S-STOP, NONE OF THE REST OF THE ITEMS 

N 
COURSWORK 



USER: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 
TDS: 
TDS: 
TDS: 
TDS: 

USER: 
TDS: 
TDS: 

USER: 
TDS: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 

USER: 
TDS: 
TDS: 

USER: 

4. Output 

Definition of Database Transactions by the Casual User 299 

Y 
DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY 
OCCURRENCE OF THE DATA FOR THIS LINE? (YIN) 
('N' IF THERE ARE ADDITIONAL SELECTION CRITERIA) 

N 
OF THESE ELEMENTS IN THE LINE: 

STUD# COURSWORK COURSGRADE 
WHICH IS INVOLVED IN THIS CONDITION? 

STUD# 
PLEASE ENTER CONDITION OPERATOR ( =, <, >, ETC) 

FOR NOW, THE 'RIGHT HAND SIDE' WILL COME FROM 
THE CRT 
OF THESE ELEMENTS IN THE LINE: 

STUD# COURSWORK COURSGRADE 
WHICH IS INVOLVED IN THIS CONDITION? 

COURSWORK 
PLEASE ENTER CONDITION OPERATOR ( =, <, >, ETC) 

FOR NOW, THE 'RIGHT HAND SIDE' WILL COME FROM 
THE CRT I 

OF THESE ELEMENTS IN THE LINE: 
STUD# COURSWORK COURSGRADE 

WHICH IS INVOLVED IN THIS CONDITION? 

COURSWORK COURSGRADE 
DO YOU WANT THIS LINE SORTED? (YIN) 

Y 
ENTER SORT KEYS MAJOR TO MINOR 
COURSWORK 

Y 
ASCENDING OR DESCENDING? (AID) 

A 
ARE THERE ANY MORE SORT KEYS? (YIN) 

N 
DO YOU WANT TO DISPLAY ALL VALID RECORDS, . 

OR JUST THOSE THAT ARE UNIQUE? (A/U) 
A 

TRANSACTION-NAME STUD-RECD 
ACCEPT PARAMETER-Ol FROM CRT 
SELECT (NEXT) 

ROl.STUD 
ROl.STUDNAME 
ROl.GRADDATE 
ROl.GPA 

FROM 
ROl 

WHERE 
ROl.STUD# = PARAMETER-Ol 

ORDERED BY 
ROl.STUD# ASCENDING 

ACCEPT PARAMETER-Ol FROM CRT 
ACCEPT PARAMETER-02 FROM CRT 



300 National Computer Conference, 1980 

SELECT (ALL) 
R02.COURSWORK 
R02.COURSGRADE 

FROM 
R02 

WHERE 
R02.STUD# = PARAMETER-Ol 

AND R02.COURSWORK = PARAMETER-02 
ORDERED BY 

R02.COURSWORK ASCENDING 



Programming with data frames for everyday data items* 

by DAVID W. EMBLEY 
University of Nebraska 
Lincoln, Nebraska 

INTRODUCTION 

Processing everyday data items such as dollar amounts, 
time, dates, and account numbers constitutes a significant 
portion of real-world computer applications. Programmers 
involved with everyday data items confront the drudgery of 
writing routines to recognize, validate, transform, store, re
trieve, manipulate, and display these items and also the chal
lenge to develop user-friendly data-entry systems and insure 
data integrity. They usually meet these challenges using var
ious and sundry ad hoc techniques. 

Sometimes, much of the burden is transferred to data
entry personnel who are asked to adhere to rigid input for
mats and to insure accuracy by tedious double checking. As 
explained by Gilb and Weinberg in their book Humanized 
Input, many poor system designs have been saved by the 
accurate touch of the keypunch operators. l 

In an attempt to systematically address the problems en
countered when processing everyday data items, the concept 
of a data frame is proposed. A data frame provides a means 
to encapsulate the concept of a data item with . all of its es
sential properties including alternative natural language writ
ten forms, computer representation, applicable contextual 
information, permissible operations, and relationships with 
other data items. 

DATA FRAMES 

The name "data frame" has been coined because of the 
concept's similarity to data abstractions2,3 and Minsky 
frames. 4 A data frame can be thought of as an extension to 
data abstractions or as a Minsky frame cast in the form of 

. an abstract data type. 
Minsky's theory of frames is a theory of rich symbolic 

structure where a frame represents a particular situation. 
Included in the frame is information about how to use the 
knowledge, what can be expected, and what to do if expec
tations are not confirmed. Data frames represent data items 
instead of situations, but the information included and its 
purpose are quite similar. 

* This material is based upon work supported by the National Science Foun
dation under Grant No. MCS-7904126. 

301 

An attempt to precisely define the syntactic structure that 
includes all information that might be needed for all possible 
applications is premature, but it seems reasonable to extend 
the structure of data abstractions to represent the additional 
information required. The aim is to appropriately model the 
behavior of a particular data item. 

Figure 1 shows some of the essential features for a data 
frame for dollar amounts. There are several acceptable writ
ten forms for U. S. currency, for example, $25.63, $2,-
638,457.00, $.63, 63¢, $47, 47$ or just plain 25.63 when the 
context is understood. In general, the dollar amount input 
routine should accept any of these forms and perform the 
necessary translation to an internal computer representation. 
A return code supplied by the input routine gives the com
pletion status and provides information for error messages. 
The corresponding output routine produces a formatted 
string ready to be displayed. A more detailed description of 

. input/output conversions is given elsewhere.~ 
The context keywords in Figure 1 are extracted from the 

forms in common use in the Computer Science Department 
at the University of Nebraska. In the context of one of these 
keywords, if a data item is expected, it is quite certain that 
the type of the data item is a dollar amount. Also extracted 
from the forms are the operations addition, subtraction, and 
mUltiplication by an integer, along with context keywords 
that indicate an operator's applicability. 

A library of commonly used data frames would be a val
uable asset to application programmers who could then ex
tract, possibly modify, and use them along with data frames 
created by themselves to fit their needs. A general dollar 
amount data frame taken from a library, for instance, could 
be adopted for use in an application involving UNL Com
puter Science departmental forms with very little if any al
teration. The general library version might have a somewhat 
longer or different list of context keywords and an additional 
operator or two, but would be essentially the same. 

Data frames can also be grouped together to model items 
more complex than a data element. Indeed, a data frame 
group is indistinguishable from a data frame for an elemen
tary item except that selector operations would be available 
to provide access to an item within the group. A date, for 
instance, may be constructed. as an elementary- data frame 
or as a data frame group with selector functions for day, 
month, and year. 



302 National Computer Conference, 1980 

data frame dollar_amount; 

internal representation real; 

_input .(s: string) returns (dollar_amount, return_code); 
(* validate string s and translate it into the internal representation *) 

output (a: dollar_amount, f: format specification) returns (string, return_code); 
(* translate a dollar amount variable a into a string according to a 

given format specification f *) 

context keywords: anlount, amt, budget, cos t, dollar, expense, extension, funds, 
honorarium, income, price, rate, sal, salary, sales, total, $; 

infix function (al: dollar_amount) + (a2: dollar_amount) 
returns (dollar_amount); 
context keywords: add, total, +; 
return (al+a2); 
end; 

infix function (al: dollar_amount) - (a2: dollar_amount) 
returns (dollar_amount); 
context keywords: difference, subtract, -; 
return (al-a2); 
end; 

infix function (a: dollar_amount) * (n: integer) returns (dollar_amount); 
context keywords: amount., extension; 
return (a*n); 
end; 

end. 

Figure l-Illustratiom of some of the essential features for a dollar amount data frame 

In the next three sections, examples are presented to show 
how data frame features might be utilized. 

Computer-assisted instruction example 

One of the problems with CAl is the lack of flexibility in 
accepting student responses. The main reason for this ri
gidity is that input validation and interpretation is so difficult. 
For questions that require common items of data as answers, 
data frames can help make the development of user-friendly 
input requirements easier. 

Figure 2 shows several student responses to the question, 
"When was Abraham Lincoln born?", and a reasonable sys
tem reply to each response based on information from a 
data frame for dates. A date input routine would reject 
"Kentucky" and "32 Feb, 1890" as invalid dates. Both 
"2/12/1809" and" 12/211809" would be acceptable because 
the ambiguity could be resolved by comparing with the ex
pected answer .. By making use of the available date opera., 
tions, dates that are too early, late, or only partially correct 
could also be identified. 



Programming with Data Frames for Everyday Data Items 303 

When was Abraham Lincoln born? 

> Kentucky 

No, the answer should be a valid date. 
Try again. 

> 32 Feb 1809 

No, the answer should he a valid date. 
Try again. 

> 2/12/1809 

Ok, your answer is correct. (February 12, 1809) 

> 12/2/1809 

Ok, your answer is correct. (February 12, 1809) 

> November 17, 1805 

No. he was born after that. 
Try again. 

> Jan. 4. 1815 

No. he was born befote that. 
Try again. 

> 12-2-1808 

No. the year is wrong. 
Try again. 

> 12 February 1809 

Ok. your answer is cotrect. 
I 

Figure 2-Student responses (preceded by">") and CAl-system replies to 
a question requiring a date for an answer 

Query language example 

At the University of Nebraska, several students and fac
ulty in the Department of Computer Science together with 
personnel from the Computing Network are in the process 
of developing SIMPLE, a programming environment de
signed for instructional use for beginning students and stu
dents with minimal system requirements.6 As part of the 
project, a database has been established containing infor
mation about student users such as account number, name, 
account balance, processor usage, and available command 
set. A query language was hastily provided to enable in
structors to access and update the information, but a more 

, user-friendly interface based on data-frame ideas is being 
designed. 

The data-frames query language has no syntactic structure, 
neither is it based on natural language processing concepts. 
Instead, self-identifying data in its natural language form, 
context keywords, and available operators provide the in
formation necessary for inferring the desired action. 

Figure 3 shows a sample dialogue betw~en a class instruc
tor and the system. In the first request,' the "$25" can be 
recognized as a dollar amount; then, with the context key
word" + " and the lack of any account designation, the sys-

tem proposes that all accounts receive an additional 25 dol
lars. In the second request, the English phrase should not 
be construed to carry meaning; the presence of the keyword 
"ADD" along with a dollar amount and account numbers 
is all that is necessary. In the third request, a context de
pendency arises since the instructor has just singled out two 
specific accounts. In a second attempt, the discrepancy is 
resolved. For this request, of course, a data frame on SIM
PLE commands would have to be available to recognize 
GET, PUT, and APPEND as commands and to recognize 
ADD as a context keyword associated with set union. (SIM
PLE allows an instructor to tailor its use by specifying which 
commands are available to each user.) The only reasonable 
response to a name when no context information applies is 
to display information about the individual, and since the 
database is not being altered, no confirmation is necessary. 
(In SIMPLE all command keywords are uniquely identified 
by their first letter.) In the fifth request, SINCE is not rec
ognized, so more than one reasonable alternative exists. If 
an impasse is reached where the system sees no other rea
sonable alternatives, the query language provides a struc
tured request format that can be used as a last resort. 

Forms-based programming example 

In a forms-based approach to programming, an application 
programmer describes data processing operations by means 
of structures modeled on conventional administrative forms. 
For a particular function, the programmer designs the form, 
specifies the data type for each item on the form, and defines 
relationships among the items. A system of related forms 
can be defined so 'that information is manipUlated and routed 
among forms, a database, and external devices.-] 

, >+$25 
ADD $25 TO ALL ACCOUNTS? (yIN) 
>Y 
DONE 

>ADD AN ADDITIONAL $10 TO. ACCOUNTS CSC0321 AND CSC0607. 
ADD $25 TO CSC0321 CSC0607? (yIN) 
>Y 
DONE 

>ADD GET. PUT. AND APPEND 
INCLUDE GET PUT APPEND IN CQMMAND SET FOR CSC0321 CSC0607? (yIN) 
>N 
INCLUDE GET PUT APPEND IN COMMAND SET FOR ALL ACCOUNTS? (yIN) 
>Y 
DONE 

>MARK MEYER 
ACCOUNT II NAME BALANCE NR. RUNS COMMANDS 
CSC0097 MARK MEYER $43.17 12 ABCDFGHILNOPQRT 

>NUMBER OF PASCAL RUNS FOR ALL USERS SINCE 12 APR 
ON APRIL 12, 19791 (yIN) 
>N 
FROM APRIL 12, 1979 TO PRESENT? (yIN) 
>Y 
493 

Figure 3-SIMPLE query language (lines preceded by">" are input by the 
user) 



304 National Computer Conference, 1980 

Suppose that the invoice-voucher form shown in Figure 
4 is part of a system of forms that models a business oper
ation. As an application programmer designs the form, blank 
spaces for expected entries are specified to be of a certain 
type and are associated with key phrases that indicate what 
entries are expected. The blank spaces for vendor name, 
street, city, state, zip code, and voucher total $ all expect 
a single entry. Item no., description, quantity, unit price, 
and amount are members of a group of items each containing 
an unknown but equal number of entries. 

With a library of appropriate data frames at its disposal, 
it is conceivable that a forms-based programming system 
could select the appropriate frame for each item on the form 
and define relationships among the items without any inter
vention from an application programmer. For the dollar 
amount entries, the associated key phrases all contain con
text keywords that appear in the data frame in Figure 1. It 
is not hard to imagine that the other needed data frames 

likewise contain the essential context keywords to enable 
the entry type to be determined. 

In addition to context keywords, data frames used for 
forms-based programming also require knowledge about the 
nature and layout of forms. The addition operator in the 
dollar amount data frame, for instance, must know that a 
column of dollar amounts can be added together to produce 
a total. For the invoice-voucher, this information coupled 
with the expectation of a total in the blank space immediately 
below the column of dollar amounts is enough for the system 
to propose the relationship Iamounti = voucher total $. 

Rows also imply relationships. Record information is often 
placed on a row; and therefore, if the item no., description, 
and unit price match field descriptors for records in a da
tabase file, values for these entries could be either double 
checked against a database or partially acquired from the file 
given only the item no. 

The relationship quantitYi*unit pricei = amounti is also de-

INVOICE-VOUCHER 

l 
p vendor name 

A 

y street 

E 

E L city state zip 

item no. description quantity unit price amount 

I voucher total $ 

Figure 4-Invoice-voucher form 



Programming with Data Frames for Everyday Data Items 305 

ducible from the facts at hand. Where relationships cannot 
be deduced or where ambiguities or misunderstandings arise, 
an application programmer can supply the information or 
resolve the issue and always has the final say. 

CONCLUDING REMARK 

Although much remains to be done, even a step toward 
the encapsulation of the essential properties of everyday data 
items in data frames would benefit programmers in many ap-: 
plications. Extending data abstractions with input/output 
routines alone could simplify many programming tasks par
ticularly for business and interactive computing applications 
where handling input and output constitutes a significant 
portion of the programming effort. 

REFERENCES 

1. Gilb, T. and Weinberg, G. M., Humanized Input, Winthrop Publishers, 
1977. 

2. Guttag, J. V., Horowitz, E., and Musser, D. R., "The Design of Data 
Type Specifications," in Current Trends in Programming Methodology, 
R. T. Yeh (ed.), Prentice-Hall, 1978, pp. 60-79. 

3. Liskov, B. H. and Zilles, S. N., "Programming with Abstract DataTypes," 
Proceedings of ACM Symposium on Very High Level Languages, SIG
PLAN Notices, Vol. 9, No.4, April 1974, pp. 50-59. 

4. Minsky, M., "A Framework for Representing Knowledge," in The Psy
chology of Computer Vision, P. H. Winston (ed.), McGraw-Hill, 1975, pp. 
211-277. 

5. Embley, D. W., Data Abstractions for Everyday Data Items, Department 
of Computer Science, University of Nebraska-Lincoln, August 1979. 

6. Embley, D. W. and Nagy, G., SIMPLE Specifications, Department of 
Computer Science, University of Nebraska-Lincoln, June, 1979. 

7. Embley, D. W., "Forms-Based Automatic Program Generation," ACM 
78 Proceedings, December 1978, pp. 972-979. 





Implementing data management 

by DANIEL S. APPLETON 
Appleton and Associates 
Manhattan Beach, California 

"If the organization plans to use database as a tech
nique and a disCipline for the long-term development 
of integrated applications, then there is far more to 
think about than if database is to be used simply as 
a sophisticated access method for the development of 
single, complex applications." 

A database administrator 
Infosystems 10-10-79 

Most businesses go through three distinct phases as they 
implement computer technology. In the first phase, they 
automate specific, reasonably well defined processes such 
as payables, receivables, invoicing and sales. In phase two, 
old applications are integrated and new applications are 
added either as integrated processes or as stand alone ap
plications. In the third phase, a company database is estab
lished and users are given access to the information stored 
there. 

According to most experts, today, only a few businesses 
are in phase three, though most are headed there. The vast 
majority of businesses are in the latter stages of phase one 
or in the initial stages of phase two. In short, the momentum 
toward database technology and data management strategies 
is rapidly mounting. 

One of the basic reasons for this movement toward phase 
three is a fundamental change in how business sees the com
puter. Phase one companies generally perceive the computer 
as a device to control certain business processes. Phase three 
businesses treat the computer as a source of information 
which can be used to both control business processes and 
to help make decisions. In phase three companies, computer 
hardware, i.e., the -mainframe or the mini-computer, be
comes a means to an end-not an end in itself. Its purpose 
is to support the company database(s). 

The general impression is that the movement from an ap
plications-oriented DP management approach (phase one) 
to a data-oriented DP management approach (phase three) 
is more evolutionary than it is revolutionary. This is un
doubtedly why very few companies achieve phase three. By 
treating the migration toward data management as a casual 
process, companies tend to get bogged down as they enter 
phase two. They end up only partially implementing data 
management. This they achieve by token changes in the tools 
they use (e.g., a database management system, a data dic-

307 

tionary or some "user friendly" programming language) or 
the structure they employ (e.g., database administration, pro
grammer teams). Gradual implementation of changes in tools 
and structures tends to result in poor implementation of data 
management. This can be read as phase one managment 
using phase three tools and structures. It should not be mis
interpreted as phase three. 

The movement to data management should be treated as . 
revolutionary rather than evolutionary. This does not mean 
it should be done overnight, in great haste or with massive 
personnel changes or infusions of money. It does mean that 
data management should be understood to mean changes in 
the total approach to automation. Not only will tools 
change-requiring significant investments, retraining and 
software conversions-but structures will change as will 
methods of doing things. Structured changes, as we shall 
see, will affect more than just DP-the user will also be 
affected. And, as far as methods, they should be the first to 
change. Among them, probably the most important method 
to change is the approach used for designing and imple
menting software. This method is often called software en
gineering. The revolution which will result in phase three 
must be felt in all three of the major dimensions of the prob
lem: DP tools, structures and methods, especially in soft
ware engineering. 

AT THE HEART OF DATA MANAGEMENT IS 
DATABASE 

Before examining each of the three dimensions of the data 
management problem, we must examine data management 
itself. The roots of data management are buried deep in the 
concept we know as database. In the early days, database 
was just a set of computer software called a Data Base Man
agement System (DBMS). Its purpose was simply to maxi
mize the accessibility of data stored in files on the computer. 
Subsequently, "database" developed a broader meaning. It 
came to be an approach to data processing management 
which rivaled the conventional approach of applications 
management. It is this concept of database which evolved 
to become "data management." 

To fully comprehend what data management has come to 
mean in today's world of data processing, we must coin a 
new word: IRRIASSPA, pronounced ear-e-asp'-a. This 
word is actually an acronym for the nine major attributes of 



308 National Computer Conference, 1980 

data management. Each letter, as we shall see, stands for 
somethingthat is noticeably deficient in the conventional data 
processing environment. 

The I in IRRIASSPA stands for data "independence." 
Very simply this means that data stored on the computer 
must be independent from the programs which access and 
manipulate it. 

The R stands for data' 'relatability." A little more difficult 
to understand, this means that the structure and relationships 
among the data stored in the database must be flexible at all 
times. Thus we must be able to change the content of the 
database not just in terms of data stored but also in terms 
of the relationships among those data. 

The second R stands for data "non-redundancy." This 
means that we should be able to store data only once and 
still have it available for use by all computer programs. 

The I in IRRIASSP A stands for data "integrity." Main
taining the integrity of data stored on the database is a crucial 
function of the data management environment. 

The A stands for data "accessibility." Data stored on the 
database must be accessible in an infinite variety of ways, 
through cathode ray tubes, hard copy reports, graphic dis
plays, microfilm, etc. 

The first S stands for data "shareability." This means that 
different computer programs written in different languages 
should be able to share a common database. Also, they 
should be able to do so without each having to be aware that 
the other exists. 

The second S in IRRIASSP A stands for data "security." 
The ability to secure data on the database in order to assure 
against malicious actions is crucial to a good data manage
ment environment. Data security is necessary on both the 
input and the output sides of the database. 

The P in IRRIASSPA stands for "performance." Data 
processing departments must have the capability to control 
processing performance of the database as the demands 
against it change through the years. They must be able to 
restructure the database and modify it based upon perform
ance characteristics and upon the demands of individual 
users. 

And finally, the A stands for database "administration." 
Very simply, this means that the database must be managed 
as a company asset. This in itself is a new concept. Tradi
tionally computer applications systems are managed as de
partmental expense items. But if a database is created to 
support the whole business, then that database must be 
viewed in much the same manner as the other essential ele
ments of the businesses asset structure. 

IRRIASSPA is data management. Without IRRIASSPA, 
data management is unattainable. But, IRRIASSPA is not, 
as many seem to believe, just a DBMS. Nor is it a database 
administrator. It is much more. 

To establish a data management environment, data pro
cessors must change their whole approach to data pro
cessing. They must change their structure, their tools and 
their approach to software engineering. Each of these is a 
crucial dimension of the data management issue (see Figure 
I). 

First and foremost, DP must overcome the tremendous 
inertia behind the traditional, deterministic approach to soft
ware engineering. This traditional approach will not work in 
a data management environment. What is worse, it inhibits 
the whole development of data management. Software en
gineering is the bedrock of data processing. It is the take
away It sets the whole pace. Ifthe methodology is not geared 
to produce software which is sympatico with data manage
ment strategies (IRRIASSPA), the result will be highly dis
satisfying. 

In addition to software engineering, the whole structure 
of data processing must be made compatible with data man
agement. This will affect both DP and the user, and it will 
affect organization structures, job descriptions, organiza
tional policies and operational procedures. 

The final piece to the data management puzzle concerns 
the tools necessary to attain and retain control over IR
RIASSPA. These tools involve both hardware and software, 
and more and more they involve capabilities in the area of 
communications. These tools, along with the appropriate 
database software engineering methodology and a well de
signed data management structure, will help data processing 
departments to attain the real objectives of data manage
ment: IRRIASSP A. 

Failure to recognize and deal with each of the three di
mensions of data management is the single most serious im
pediment to its implementation. DP managers who expect 
to gain its benefits while only doing half of the job are only 
fooling themselves; they are also fooling their employees, 
their users and their management. 

DATABASE SOFTWARE ENGINEERING 

Marshall McLuhan became famous for writing: "The 
Medium is the Message." This phrase is tremendously im
portant to data management. Software engineering is the 
process of designing and building database applications. It 
i~ singularly important in determining the products which 
will have to be maintained within the data management en
vironment. Thus, there are several critical aspects to this 
software engineering methodology which we must consider. 
One of the most important is that the software engineering 
methodology must fit snugly within the data management 
structure. As we shall see, this data management structure 
contains certain basic operational activities which are on
going and which are important for both flexibility and con
trol. 

Another crucial aspect of database software engineering 
is that it must make maximum use of data management tools. 
DBMS indexing capabilities,non-procedural programming 
languages, data dictionaries and directories, interactive 
query facilities, data definition languages, on-line update fa
cilities, etc., must be integral parts of the development pro
cess, not just afterthoughts of the system design. 

The primary target of database software engineering is the 
database itself. The database has meaning beyond the re
ports which it generates. These reports are its "kinetic" 



· Implementing Data Management 309 

Dft 
TWA~E 

Figure I-The three dimensions of data management. 

energy. What conventional development methodologies ig- . 
nore is the "potential" energy of the database. Database 
software engineering must maximize the database's potential 
by designing the database first, not last as is dictated by 
traditional structured design methodologies. Database soft-

ware engineering deals directly with data entities, attributes 
and relations. It does not deal obliquely with issues of data
base content and structure, looking at them through the haze 
of arbitrary, temporary output requirements. This is the con
ventional approach: freeze the user's reporting require-



310 National Computer Conference, 1980 

ments, develop the input capabilities to be compatible with 
those requirements and, ultimately, design the data files to 
optimize the input to output conversion. 

One of the major problems with the traditional approach 
to software development is that it purposefully excludes the 
user "experience" from the design process. This is why user 
involvement is always so low. (In most structured design 
methodologies it is less than 5 percent.) The user does not 
consider "involvement" to mean "report definition." The 
conventional development process does. To get the user in
volved, as he must be in a true data management environ
ment, the development methodology must give him expe
rience with the database so that he can understand its full 
capabilities and limitations. It must also allow him to change 
the database and to modify its applications (i.e., its outputs 
and its inputs) without necessarily resorting to complex pro
cedural programming languages or data processing profes
sionals for everything. 

With objectives like designing the database first and in
tegrating user experience in the design process, conventional 
software engineering methodologies quickly lose their ap
peal. They are too deterministic, and they depend too much 
on detailed design accuracy. What is more appropriate is a 
"heuristic" process, especially one which employs a "pro
totype." Such an approach used to be impractical, given 
state of the art of programming languages and systems anal
ysis techniques. However, with today's capabilities in 
DBMS software and non-procedural programming lan
guages, prototype development and heuristic analysis are 
practical, viable approaches to software engineering. But, 
they must be managed properly. They cannot be used cas
ually. 

Like conventional development techniques, database de
velopment techniques must be formal and rigorous. How
ever, their approaches to software engineering are different 
in other important ways. Conventional development meth
odologies do not formally separate input technology and 
strategy from either output or database technology and strat
egy. This is a significant flaw, especially given the concepts 
of IRRIASSPA. Nor do conventional methodologies allow 
for the use of non-procedural programming languages in the 
design stages. Instead, they concentrate on detailed design 
techniques to lay the foundations for writing structured pro
cedural code. This is one key reason why conventional de
velopment methodologies entail so much rewrite (up to 25-
45 percent, depending on the depth of the detailed design) 
and why they are so costly, inflexible and slow. 

The last major consideration in database software engi
neering is that it must have a significant step which involves 
performance and tuning. This tuning concept must involve 
users so that they can see how the database reacts to various 
operational environments. Various statistical methodologies 
and computer software facilities can be used to build statis
tical analyses about the database structure, and these can 
in turn be used to make modifications to the database content 
and the relational structure of the database. 

Everyone must agree that tuning is a critical aspect of data 
management environment. The difference between the da-

tabase software engineering approach and the conventional 
software engineering approach is that in database software 
engineering tuning takes place after the database is opera
tional, while in the conventional software engineering meth
odology, it must take place in the initial design stages, i.e., 
before the code is laid. This is one of the main reasons why 
computer applications systems are so inefficient, and why 
so much time is spent in design and development. Design 
changes tend to reek havoc witp efficiency. 

The ideal database software engineering methodology 
probably contains six steps (see Figure 2). The first two steps 
are specifically geared to requirements analysis. The first is 
an Operational Audit specifically to reveal the "as is" sit
uation and problems. The second step is Conceptual Design. 
This step defines the database scope and the "service func
tions" (applications) which the database will probably sup
port. This Conceptual Design stage is not in infinite detail, 
but it should be fairly specific in terms of the data scope. 

The third step of the database software engineering meth
odology is "Database Definition." Here the systems ana
lysts and the users define the data content of the database, 
define the data structures, normalize the database and es
tablish a prototype, actually installing the database on the 
computer. This last step is relatively easy to accomplish, 
especially with some of the new tools available to DP today. 

The fourth step of the development process is "Heuristic 
Analysis." (Heuristic means "trial and error.") In Heuristic 
Analysis users should interact with the prototype database 
(on-line if possible) in order to finalize its structure and con
tent. Also, in Heuristic Analysis it is necessary to build the 
input structures required to support the database. 

The fifth step of the database software engineering meth
olology is to define both the standard and ad hoc reporting 
requirements of the database and to build and implement an 

. output structure. We might call this step Environmental 
Test. 

The final phase of development must be Performance Re
view. In this phase, DP must make evaluations necessary 

I for final database tuning. This step closes the development 
loop because it can be directly related to the original step 
of Operational Audit. 

THE DATA MANAGEMENT STRUCTURE 

The concept of a data management structure may be hard 
to grasp. DP managers are used to dealing with using or
ganizations (composed of users) and DP departments (of 
analysts, programmers and the like). The traditional rela
tionship is that between the' 'users" and the' 'used. " Little 
has been done organizationally to change this relationship, 
though major changes are required for data management. 
These changes assault traditional DP concepts, and they 
affect our perceptions about things as fundamental to data 
processing as documentation techniques, programming stra
tegies, systems responsibility structures, and system design 
content. 

Data management is a much more participative environ-



Implementing Data Management 311 

1.0NGRANC£ 04TA8A6' 
BUSINESS PIAN MOPI!:L 

'sI1 :: IJa/abtUJe S~l'lwa~ tJevel",men/:' ... 
Eu i~ OPf~nONAL~--------------~~~~------~~----------~~------~----~1_~ 
.sys~ AUDIT - _ D£FlC"Ncr usr 

-- CONCEPTUAL 
DESIGN 

-----t-·--OOCVM£NTAT/ON"4:======::l---

-- 1-~c;,~~fY 

---$-ERV-IC-£-/~ .. [)ATABAS£ "ala /J;eli"n4r§l~'''4 .... 
FUNCf"loN ..... 
DESC'uPr,ONS ~ OfF/NIT/ON - __ pR.oror't'PE DATABASE 

1" 
DBMS ... UFURI8TIC i1:;{P/t£ 

ANALYSIS ,.. 
~----~-------1~ __ ~ _____ ~~~DATAeASe 

N.P.L. ~NVIRON/1£NTAL Cllf!vl Sil'vI'vl'e .... 
--

INPur /' TEST - "-~ "DATABASE ~ 
STRUC7VRE i--a-._~ __ "l {)£FINI170/ll 
- 1" 

P.L. {)VAUTY 
INPUT""'" - REVIEW 

$T1lut::nJRE --
OtJrPUT t 
tiiTRuc:nJRE eIMULA"TORS 

Figure 2-Prototype development methodology. 

ment than is the applications environment. New institutions 
like database administration, input administration, output 
administration and information resource administration are 
inevitable. These new institutions are starting to replace the 
old "adversary" relationships created by conventional data 
processing management strategies, and they are beginning 
to fill in some of the gaps between "those that serve" and 
"those that are served." 

Database administration is already accepted as an indis
pensable part of data management. However, there is no 
generally accepted definition of what a database adminis
trator does; indeed, what he does today is to a large extent 
dependent upon his tools and his politics. 

The population of database administrators is very small 
at this point in time, and the vast majority of those that are 
available have specialized in specific DBMS software. As 
a result, they tend to be more technical than not. This tech
nical orientation of database administration is a reflection 
of its degree of maturity. 

A closer look at the DBA function shows that while its 
description can range from very technical to very abstract, 
at its heart are four attributes of our data management en
vironment: independence, shareability, relatability, and non
redundancy. If the DBA function does nothing else, it must 
insure that those four main objectives of IRRIASSP A are 
in fact achieved. Of course, it would be natural to add "ad
ministration" to the functional responsibilities of database 
administration, thus giving it five major responsibilities with 
IRRIASSPA. However in doing so, we expand its role be
yond that of the technical management of databases into one 
which has more political overtones. In other ~ords, we are 

raising it up organizationally. It is of real concern whether 
any individual could competently handle such a broad spec
trum of responsibilities. 

Data management is more than just four or five of the 
aspects of IRRIASSPA. It is all of them. Thus, we must 
either give our DBA function all of the responsibility for data 
management, or we must somehow supplement it. In other 
words, we must expand the data management structure be
yond the DBA himself, or we must turn it all over to him. 
We have already seen that the latter may well be impractical. 
So, we must explore the former. 

An examination of data processing from the functional 
perspective (i.e., database control, input and output) gives 
the clues needed for structuring data management. Figure 
3 shows the resource requirements of these three critical DP 
functions. We can see that the demands of the output func
tion are exactly the reverse of those for data storage and 
processing. Dynamics and responsiveness are low for the 
database while they are high for the output structure; quality 
requirements are relatively low for output while, along with 
technical expertise, they are high for data storage and pro
cessing. Input, as we can see, is also unique in its demands 
on resources. The lesson is that each of the three main DP 
functions places unique enough requirements to warrant its 
own administrative structure, with its own policies, proce
dures, job descriptions, budgets, objectives, technologies, 
etc. 

Figure 4 is one possibility for this DP structure. In ac
cordance with IRRIASSPA, we can allocate I,R,R and S to 
the DBA. We can give the I of data Integrity to the input 
administrator. While we're at it, we might as well give the 



312 National Computer Conference, 1980 

DEMANDS ON 
DP RESOURCES 

QUALITY 

DR 

ADMIN. 

INPUT 
ADMIN. 

OUTPUT 
ADMIN-. 

RISK ~j~illlllillilillillillllllllllll!ill'llillllllillillIllillillliil 
DIFFI CULTY 

RESPONSIVENESS 

DYNAMICS 

HIGH rEDIUM 

1IIIIil!llillllllllllll!illlll!lllllillllllll!IIIII!11I!lllll! 

fEEl 
BEl LOW D 

Figure 3-Demaods 00 DP resources. 

input administrator the programmers and the analysts which 
he will need to fill out his responsibility for input and update. 
The input administrator's responsibilities expand, however, 
beyond those simply required for data processing efficiency. 
He must also be concerned with functional procedures, e.g., 
input documents, input timing, development ofinput screens, 
input responsibilities, etc. He is required to maintain input 
integrity for the database, including checkpoint and restart 
facilities, on-line logging of up-dates, security, database re
loads and database restructuring. 

The input administrator must also control production se
quencing and the scheduling and updating, and he must have 
some responsibilities for database "S" ecurity as it applies 
to updating activities. Additionally, the input administrator 
has responsibility for edits, diagnostics, format checks and 
all other facilities necessary to maximize the quality of data 
in the database while minimizing the cost of getting it in 
there. 

Since we have given the database administration functions 
and the input administration functions to various adminis-



Implementing Data Management 313 

MIS 
I I 

~I:PJ 
Admf,nifln!li4n .. 

Figure 4-Data management structure. 

trators, we are left with output. It seems only fair that the 
responsibilities for output would be given to an output ad
ministrator. The respon~ibilities of this function deal with 
the data "accessibility" portion of IRRIASSPA. Like input 
administration function, these also deal with Security issues 
and with "P"erformance. The output administrator is re
sponsible for selecting various query facilities for use against 
the database, for training users on retrieval techniques, for 
assuring production schedules, for developing reporting 
modes and media, and for generally assuring the proper 
alignment between the database and the user's requirements. 
The output administrator is mainly responsible to assure the 
database output is responsive to user needs at the lowest 
possible cost. 

In addition to these three major administrative responsi
bilities within a data management environment, we must in
troduce a forth: the Information Resource Administrator. 
There is usually one IRA for each major department head 
within the using organization. Being an IRA is not always 
a permanent, full-time job, so usually the functions of in
formation resource administration are assigned to someone 
within a department; however, DP personnel could be dis
tributed to user departments to perform the IRA role. 

The responsibilities of the IRA are to monitor and docu
ment all departmental computer input and computer output, 
identify and define all departmental files, develop proce
dures and documentation, monitor the flow of work into and 
out of the department, and provide feedback to the database 
planning team about the efficiency of the department's in
formation resources. 

The IRA functions not only as a positive force in devel
oping and implementing systems, he or she also has a sig
nificant role in maintaining systems. By calling all depart
ment IRA's together, a database planning team can do a 
simple audit of the efficiency of the flow of information 
throughout the company. This audit can be used to provide 
for not only corrective action, but also preventive mainte
nance on the part of user management and DP management. 

IRA's are responsible for maintaining what is normally 
referred to as "user documentation." They are responsible 
for documenting all "discrepancies" to normal computer 
operations, and for officially requesting data processing ser
vices in support of their departmental needs, if those services 
are not directly related to their systems development plan. 
The latter recommendations should be approved by the da
tabase planning team before they are assigned budgets and 
schedules. 

Another job of the Information Resource Administrator 
is to learn to program using simple "user friendly" languages 
and then to operate as a source of intra-departmental ex
pertise for users who need to access the database in an ad 
hoc manner. He should do so without having to resort to the 
utilization of DP resources. The IRA is a focus for all data 
management training activities, and for participation on all 
new database development projects which affect his or her 
department. The IRA shares responsibilities with the other 
administrators for each and every component of IRRIAS
SPA. 

It is important to clearly establish the formal relationships 
among all four types of administrators. In doing so, the whole 



314 National Computer Conference, 1980 

DP/USER structure undergoes a metamorphosis. Users take 
on responsibilities they have never had in areas such as pro
gramming, documentation, maintenance, etc., and the data 

. processors, while giving up some of their traditional prerog
atives, undertake some new and more important ones. 

There are other dimensions to the data management struc
ture which, while less elemental, are still unique to data 
management. These affect planning, requirements analysis, 
database maintenance, etc. All of these functions look and 
act different in a data management environment. To leave 
them untouched is to leave the roots of future problems bur
ied deep within the organization. 

DATA MANAGEMENT TOOLS 

We.come now to the third and, in many ways, the most 
familiar of the three dimensions of data management: data 
management tools. As little as five years ago, these tools 
were few and far between. Limited to so called Data Base 
Management Systems (DBMS), they addressed very few of 
the IRRIASSPA attributes. Today, however, DBMS soft
ware is extremely elaborate; in fact, it is so elaborate that 
it is misleading to view it asjust DBMS software. To be clear 
about its capabilities, we must look at its component parts. 

For the sake of simplicity and understanding, we can de
velop six fundamental types of data management software 
tools. These include: 

-Data Dictionaries/Directories (DD/D's) 
-Database Definition Languages (DDL's) 
-Database Manipulation Languages (DML's) 
-Database Query Languages (DQL's) 
- Database Control. 
- Data Communications (DC) Facilities 

Before briefly describing each type of software tool, I will 
try to erase any confusion which might exist between these 
facilities and what we conventionally refer to as a Data Base 
Management System (DBMS). Depending on the DBMS 
vendor, any given commercial DBMS may be composed of 
all six of these facilities, or only one or two of them. Usually, 
the more elaborate DBMS's have all of these facilities, but 
they are individually priced or priced in groups. Less elab
orate DBMS's (such as those traditionally found on mini
computers) have only some of these facilities. Further, if 
compared facility by facility, some DBMS's are better in 
some than are their competitors and vice versa. I think it is 
a fair statement to say that no DBMS surpasses all of its 
competitors in all areas. 

To effectively deal with IRRIASSPA, all of these facilities 
are mandatory. Thus, to properly evaluate DBMS software 
tools, the DP department and the users should perform a 
careful analysis of their IRRIASSPA needs. Only from this 
vantage point can they intelligently evaluate the various soft
ware offerings and select its software tools. 

At first blush, DP management may feel that one vendor 
should provide all of these database software needs; how
ever, if they assume that this is necessary, they are mistaken. 

Further, they should not necessarily limit themselves to only 
one tool for each area. Multiple software tools, including 
mUltiple DDL's, DML's, DQL's, DD/D's, etc., are advisable 
under some conditions, depending, of course, upon data 
management's objectives, IRRIASSPA strategies and com
pany concerns. 

Let's look more closely at each class of software tool. 

Data dictionaries/directories (DD/D's) 

There are many approaches to DD/D's. Data dictionaries 
are most simply a list of all of the elements contained in the 
database and the relationships which are established among 
these elements. Usually a data dictionary describes each 
element within the database, its synonyms, the organization 
responsible for updating, any specific edits which are per
formed with regard to that data element, its security require
ments and a description of what data element means. Data 
dictionaries also include the data element format as well as 
its character composition. 

Usually supplementing the data dictionary is the data di
rectory. The main job of the data directory is to describe 
how each individual data element is used, and where it is 
used. The data directory might point to various computer 
programs which use a data element; it might point to various 
job streams; or it might point to various input documents or 
computer reports. Comprehensive data directories might 
cover all of these areas in attempt to give a complete de
scription of the utilization of every data element within the 
data dictionary. 

In selecting a DD/D, it is important to determine whether 
it is integrated or not integrated with the DDL and the DML. 
It is also important whether the host DBMS DDL was used 
in constructing the DD/D. In the final analysis, however, the 
best DD/D's are those which the DP department feels it can 
maintain. DD/D's are not only difficult to establish; they are 
difficult to keep current-especially the directory features. 
An elaborate automated DD/D which can't be maintained 
is just as useless as is a manual one. 

The DD/D is extremely critical in the data management 
environment. It has a direct affect on every aspect of IR
RIASSPA. In fact, in selecting the proper DD/D, data pro
cessing management must evaluate each of its IRRIASSP A 
requirements and assure alignment between the capabilities 
of the DD/D and the requirements of each IRRIASSP A com
ponent. 

Data definition languages (DDL's) 

The term Data Definition Language was established by the 
Committee On Data Systems and Languages (CODASYL). 
It is used in conjunction with the concepts of database 
"schema" and "subschema." Basically, a schema is a de
scription of a complete logical database, and a subschema 
is the description of a subset of that database which is uti
lized by an individual computer program. According to CO
DASYL, the main function of the DDL is to describe the 
content and structure of both the schema and the subschema. 



All DBMS's have DDL's. Some of these DDL's are ori
ented toward describing data elements within hierarchies, 
and some of them are oriented toward describing networks. 
Some DDL's are much more elaborate than others, provid
ing facilities for describing very complex relationships 
among data elements. Obviously, DDL's affect many of the 
aspects of IRRIASSPA. For example, the quality of a DDL 
is in large measure derived by evaluating its ability to pro
duce data Indpendence. Some DDL's are less efficient in 
establishing data independence than otpers. Some DDL's 
are more geared to reducing data Redundancy in describing 
certain types of database structures than are other DDL's. 
Another important feature o{DDL's is whether or not they 
establish relationships among data elements with pointers 
embedded in the database or with pointers which are stored 
in indexes to the database. No DDL is best for all conditions. 
Some DDL's are easier to use than others, and some are 
more flexible. Selection of the proper DDL is of critical im
portance to data management. (No DDL is capable of de
scribing a "structureless" database. This is the ultimate ob
jective of the "relational" DDL. However, relational DDL's 
are not practical given the current state of hardware and 
software technology. Perhaps they will be in the future.) 

pata manipulation languages (DML's) 

Data Manipulation Languages (another CODASYL term) 
are used to bind together normal procedural languages such 
as COBOL and FORTRAN with the capabilities of the Data 
Definition Language. There are many different methods for 
binding the DDL to procedural languages, and therefore 
there are many different techniques that are used within Data 
Manipulation Languages. Most often, DML's are used by 
procedural language programmers as if they were calls to 
the DDL. These calls treat the DDL as if it were a set of 
sub-routines. 

Facilities of the DML directly affect programmer produc
tivity. Where the DDL is usually the province of the Da
tabase Administrator, the DML is usually the province of 
the procedural language programmer. The DDL is used by 
the DBA to provide subschema of the database for manip
ulation by the procedural language programmer with his 
COBOL or FORTRAN program. Thus, DDL's and DML's 
are often closely related. The functionality reserved for each 
usually describes the technical responsibilities which must 
be assumed by either the Database Administrator or the pro
cedural language programmer. Some DML's require very 
little effort on the part of procedural language programmers. 
Other DML's force the programmer to write complex pro
grams required to navigate through the database. Where a 
DML can require extensive navigation on the part of the 
procedural language programmer, a good DDL can act as 
his automatic pilot, thereby improving his productivity. 

Database query languages (DQL's) 

Database Query Languages come in many forms with 
many different capabilities. Most often, they are interactive, 

Implementing Data Management 315 

on-line in nature; however, there are some very powerful 
"batch" DQL's. Database Definition Languages which 
store pointers in indexes as opposed to in the data file (often 
called "inverted list processors") often provide extremely 
powerful DQL facilities. These facilities allow direct inter
action with the total database schema, and they allow par
ametric and Boolean search strategies to be used for either 
data retrieval or update. 

DQL's are often referred to as "end user facilities." They 
are the attributes of the DBMS software which are said to 
make it "user friendly." Ultimately, DQL capabilities will 
turn over to users functions which traditionally have be-
longed to data processors. . 

While the DDL structure will remain under the control of 
the data processing department, the DQL structure will 
move under the control of using departments. The DML 
activities will, in all probability, remain twilight zone in na
ture, being shared by both d~ta processors and users who 
are technically capable. In referring back to our data man
agement structure, DBA's will use the DDL, Input Admin
istrators and Output Administrators will primarily use the 
DML's, and the Information Resource Administrators will 
primarily use the DQL's. 

Database utilities 

Every data processing organization requires specific soft
ware utilities to improve its capability for handling certain 
aspects of IRRIASSPA. These utilities, when coupled with 
the capabilities of the four prior software tools, will serve 
to fill in the gaps and equalize the balance among the various 
components of IRRIASSPA. 

Following is a list of the various types of Database Utility 
software which might be obtained by a company. 

- Backup/recovery 
-Password security 
- Incription/description software 
-Image management software (text, graphics) 
-Audit trail utilities 
- Database tuning utilities 
-Database development aids 
-Database reloading and reorganizing aids 
-Database sizing and responsiveness aids 

All organizations need all of these facilities. However, it is 
important that these tools be part of any data management 
environment. Their interrelationships with the various com
ponents of IRRIASSPA are self-explanatory. 

Data communications (DC) facilities 

It is not uncommon to hear data management referred to 
with the phrase DB/DC (Data Base/Data Communications). 
This terminology was introduced by IBM in the early 1970's 
to describe their thrust toward on-line database capabilities. 
In the early days of database, IBM was the only organization 



316 National Computer Conference, 1980 

tp foresee that database effectiveness was a function of the 
on-line accessibility of the database to the user. Therefore 
when IBM introduced its concept of database, they did it 
using additional software facilities specifically intended to . 

• provide on-line accessibility to the database. It is IBM, 
therefore, which actually introduced the concept of data 
communications (DC) as an integral part of data management 
technology. 

What, originally started out as DC software intended to 
provide on-line accessibility to databases has now evolved 
to the point of providing the capability for distributing da
tabases. Ultimately, these same software facilities provide 
the capability for establishing network DBMS facilities. 

Data Communications facilities come in all shapes and 
sizes. They are used to provide accessibility to DDL's, 
DML's and DQL's as well as to some ofthe Database Utility 
tools. Data Communications software can be provided by 
either a DBMS vendor or a mainframe vendor, and it can 
be used for many things beyond just accessing databases. 
DC strategies are critical in determining the ultimate effec
tiveness of the data management environment. ·They affect 
all areas of IRRIASSPA. As a result, data processing man
agement must be careful in defining its DC architecture, 
making sure that the facilities adopted for Data Communi
cations augment their strategic data management plans. 
When building the overall data management architecture, 
Data Communications facilities can be one of the most crit-

. ical aspects in determining future capabilities, constraints, 
costs and productivity. 

As I stated at the outset of this section, my topology of 
data management software tools is relatively arbitrary. I do 
not even claim that it is complete. However, I do think that 
it is useful in describing the types of facilities which one must 
consider in establishing a data management environment. To 
ignore any of these areas is to create downstream surprises 
and problems. I am also trying to get across the point that 
there is no single one best configuration for data management 

software and that no DP department should depend. totally 
on one vendor to provide all of its resources. 

CONCLUSION 

I have tried to describe the world of data management in 
such a way that those who desire to enter it can see its overall 
implications. I admit to over-simplification, but hopefully, 
I have raised just as many questions as I have answered. 
That was my objective. 

In this effort,I introduced several brain teasers. First, I 
introduced the concept of IRRIASSP A. This was to focus 
the dicussion and to define data management in terms mean
ingful to its implementation. Second, I defined three dimen
sions of data management, all of which affect IRRIASSPA. 
In so doing, I redefined two well-known dimensions (data 

. management structures and data management tools) so that 
they are now more meaningful. And finally, I introduced the 
crucial third dimension: Database Software Engineering, 
which, in my opinion, is of equal importance to the other 
two dimensions within the overall concept of data manage
ment. In fact, the Database Software Engineering method
ology is of so much importance that it probably should be 
the first step in any effort to convert from a conventional 
data processing environment to a modern data management 
environment. Establishing an appropriate Database Soft
ware Engineering methodology will establish the foundation 
for customizing the other two dimensions of data manage
ment: data management tools and data management struc
ture. I based this recommendation on my experiences and 
observations which say that if the inertia in an organization 
is so strong that the software engineering methodology can
not be changed, that organization will probably never get 
into the world of Data Management. Instead, what will hap
pen, is that the organization will implement new structures 
and new tools, but it will end up using them in old ways. 



Data Base Design 

In the past, data base design has been 
treated in literature and technology as a 
"universally" definable endeavor suscep
tible to some common or singular ap
proach or model. It is now being recog
nized, especially by data base designers 
and users, that data base design is not 
nearly as tractable as it once appeared 
since its design is much more user- and 
environment-dependent than previously 
recognized. 

The two sessions in this technical area 
present a broad range of views and ap
proaches to designing data bases. They 
cover user experiences with specific data 
base management systems, and academic Vincent Lum 
and industry research addressing data Area Director 
base design techniques and tools. _ 

One session, Data Base Practicuum, co-chaired by Prof. Jeffrey Hoffer and Donna Shep
pard Rund, surveys user experiences with various commercially available data base man
agement systems and with custom data base design efforts. 

The other session, co-chaired by Dr. David Jefferson and Nan Shu, will discuss data 
base design focusing on new techniques. These include new specification methodologies; 
representations of "properties" and their relationships; and other languages and tools for 
data base design. We find that there are key aspects we must examine when we are de
signing data base systems so that we can optimize the operational usage and realize the 
cost benefits for the following: 

• the industry/company operational and organizational environment; 
• the technical environment; 
• the user's current needs, wants, uses, and expectations of the system; 
• the future, unplanned uses of the system. 

The trend in data base design is toward a more formal, structured design approach. 
Success in this endeavor should result in more flexible and dynamically expandable data 
base systems. 

317 





Properties of relationships and their representation 

by RAMEZ EL-MASRI and GIO WIEDERHOLD 
Stanford University 
Stanford, California 

INTRODUCTION 

Data models can provide powerful abstractions to aid in the 
design of data structures that are relevant to database sys
tems. A large amount of effort has been expended in the 
development of suitable data models. Several of these 
models distinguish between classes of entities and relation .. 
ships among classes of entities in the abstractions they use 
for modelling the data. Among these models are the network 
model, 1,2 Schmid and Swenson's modeI,3 the entity-relation
ship model ,4 Navathe and Schkolnick's modeI,5 the semantic 
data model,s,7 and the structural model. 8 ,9,lo 

The relational model11 does not explicitly include entity 
classes and relationships, but concentrates on a simple and 
uniform representation for all structures as relations. Rela
tionships can then be discovered at query processing time 
by using relational operators such as the JOIN operator. 

The hierarchical model12 represents only I:N relationships 
in a straightforward manner, and requires additional refer
ence structures and redundant record types to represent 
M:N relationships. 

We are motivated by two reasons to consider that the cor
rect representation of properties of relationships is impor
tant. First, the data model is a representation of some real
world situation, and should reflect as many properties that 
are known about the real-world situation as possible. Sec
ond, most database implementations can take advantage of 
known relationships among entity classes, and hence it is 
useful to represent such relationships in the data model. 
Database processes also take advantage of relationships. 
Examples include all of the hierarchical and network data 
languages, but relational languages may also recognize re
lationships in the database structure. For instance, the re
lational language SEQUEL 213 as used in System-R has a 
LINK statement to relate tuples from different relations. The 
language LSL14 is a general query language for relational, 
hierarchical, and network data models which utilizes rela
tionships. 

All the models cited above, with the exception of the re
lational model, offer rules that govern existence. depend
encies of represented entities from different entity classes 
that are related together by a relationship. The pure rela
tional model does not define such rules, but extensions of 
the model provide for the definition of arbitrary assertions 

319 

to state such rules in an integrity subsystem separate from 
the model itself. 15,16 Such integrity constraints are not re
stricted to relationships,· and can define arbitrary rules to 
govern the behavior of a data model. However, it is useful 
to explicitly represent the important relationship-oriented 
constraints that have a natural correspondence to real-world 
structures, and that can be helpful in designing an imple
mentation ofthe data model. We hence do not consider inter
tuple constraints as: if sex = male then pregnancies = 0, nor 
constraints with procedural semantics: managers earn more 
than their employees. Such constraints will still require sep
arate integrity assertions. We are concerned with constraints 
of the form: an inventory item must have a supplier. 

ENTITY CLASSES AND RELATIONSHIPS 

The concept of an entity class is often used in database 
models.2,4,5,6,10 An entity class is a set of objects of similar 
structure. For example, an entity class cars-in-California is 
the set of all cars registered in California, or an entity class 
car-manufacturers is the set of all car manufacturers. 

Each object is described by properties (or attributes) that 
the object shares with all other objects of the entity class. 
For example, the entity class cars-in·California may have 
the properties license-number, color, owner, make, year, 
while the entity class car-manufacturers may have the prop
erties manufacturer-name, location. Some properties have 
unique values for each object in the class, and hence may 
serve to identify each object in the class uniquely. In our 
example, license-number and manufacturer-name identify 
uniquely a car and manufacturer respectively. 

Clearly, some object may not have all the properties, or 
may have additional properties that describe them, but all 
our formal models will impose such a regularity. Not much 
damage is done: an inappropriate attribute can be given a 
value not applicable, and exceptional attributes are rarely 
useful for computational purposes. Subclass concepts can 
deal with subsets of entities that have additional proper
ties,5,6,lo but this is not directly relevant to our discussion. 

A relationship between two entity classes is a mapping 
that associates with each object of one entity class a number 
of objects (possibly none) of the other entity class. For ex
ample, a relationship car:manufacturer associates with each 



320 National Computer Conference, 1980 

car object a related manufacturer object such that the car 
is made by this manufacturer. 

A relationship has rules that govern the mapping of objects 
from the two entity classes. We shall call these rules the 
properties of the relationship (different from the use of the 
word property for entity classes). For example, the 
car:manufacturer relationship may have the following prop
erties: 

1. Every car must be related to exactly one manufacturer. 
2. A manufacturer is related to at least one car, but can 

be related to any number of cars. 

These two rules imply that the relationship is a mutual or 
total dependency: the existence of a car depends upon the 
existence of its manufacturer, and the existence of a man
ufacturer depends upon his having manufactured at least one 
car. The rules also imply that a manufacturer can be related 
to N cars, when N is unspecified. Hence, the cardinality of 
the relationship cars :manufacturers is 1 :N. 

PROPERTIES OF RELATIONSHIPS 

There are two important properties of a relationship be
tween two entity classes: the cardinality and the depend
ency. We first consider the cardinality property. Within each 
cardinality case, we will discuss the dependency property. 

The cardinality property of a relationship places restric
tions on the number of objects of one entity class that may 
be related to an object of the other entity class. The de
pendency property governs whether an entity can exist in
dependently, or whether it requires the existence of related 
entities from another entity class. We will see the importance 
of the cardinality and dependency properties of a relation
ship when we discuss the representation of relationships. In 
the ensuing discussion, we will use A and B to denote two 
classes of entities, and A:B to denote a relationship between 
the two entity classes. 

Cardinalities are classified into three types: 1: 1, I:N and 
M:N. Dependencies are, classified into four types: total, par
tial A on B, partial B on A, and no-dependency. 

We now discuss the dependency properties as they apply 
to a relationship of known cardinality. 

One-to-one relationships 

Consider a 1: 1 relationship A:B. We can gistingaisirIolir 
cases based upon the dependency properties of the objects 
in the two related entity classes. 

(a) Total dependency: Every object of class A must be 
related to one object of class B, and vice versa. In this 
case, a one-to-one correspondence exists between the 
objects in the two entity classes. 

(b) Partial dependency of A on B: Every object of entity 
class A must be related to an object of class B, but 
some objects of class B can exist that are not related 
to an object of class A. Mathematically, this relation-

ship is defined by a total 1: 1 function from A into B. 
The inverse is a partial 1: 1 function from A onto B. 

( c) Partial dependency of B on A: This is symmetric to 
case (b) above. 

(d) No-dependency: Objects can exist in both entity 
classes that are unrelated to an object of the other 
class. This relationship is defined by two partial 1: 1 
into functions that are inverses of one another. 

These properties are relevant in the definition of the se
mantics of one-to-one relationships. We give examples to 
illustrate this point. 

A marriage relationship between the entity classes hus
bands and wives is a 1: 1 total dependency. A relationship 
managers :departments is a partial dependency of managers 
on departments (every manager must be related to a de
partment but short periods of time may exist when a de
partment does not have a manager). Finally, a relationship 
merchant ships :captains, which describes the current as
signment of a captain to a ship is a no-dependency. 

One-to-N relationships 

Consider a relationship A:B of cardinality I:N. Here, an 
object of class B can be related to at most one object of class 
A, while an object of class A can be related to any number 
of class B objects. If N is specified as a number, this restricts 
the number of class B objects related to a class A object to 
a maximum of N. We can distinguish four types of existence 
dependencies for such a relationship. 

(a) Total dependency (i): Every object of class A must be 
related to at least i objects, i>O, of class B, and every 
object of class B must be related to exactly one object 
of class A. The relationship is defined by a total func
tion from B onto A. 

(b) Partial dependency (i) of A on B: Every object of class 
A must be related to at least i objects, i>O, of class 
B. An object of class B may be related to at most one 
object of class A. The relationship is defined by a par
tial function from B onto A. 

Note that we define the dependency of class A objects on 
class B objects for a I:N relationship A:B by requiring an 
object of class A to be related to at least i objects of class 
B, i>O. We do not define it by requiring an object of class 
A to be related to exactly i objects, since the latter case can 
be decomposed into i relationships of cardinality 1: 1. 

(c) Partial dependency of B on A: Every object of class 
B must be related to exactly one object of class A. The 
relationship is defined by a total function from B into 
A. 

(d) No-dependency: Objects can exist in either class that 
are unrelated to objects of the other class. The rela
tionship is defined by a partial function from B into 
A. 

For examples, see the complete report. 17 



M-to-N relationships 

Finally consider a relationship A:B of cardinality M:N. 
This is the general case. No restrictions exist on the number 
of objects related to an object of either class. If M or Nor 
both are specified by numbers, a restriction on the maximum 
number of objects related to a single object of the other class 
is specified as in the I:N case. We can again distinguish four 
types of existence dependencies for such a relationship. 

(a) Total dependency (i,j): An object of class A must be 
related to at least i objects of class B, i>O while an 
object of class B must be- related to at least j object 
of class A, j>O. 

(b) Partial dependency (i) of A on B: An object of class 
A must be related to at least i objects of class B, i>O. 

(c) Partial dependency U) of B on A: An object of class 
B must be related to at leastj objects of class A, j>O. 
This case is symmetric to (b). 

(d) No-dependency: No restrictions exist on the relation
ship. This is the most general case. 

An example of a partial M:N dependency is the relation
ship between the two entity classes bills-bassed-in-congress 
and congress-persons that relates each passed bill with the 
congress-persons who voted yes on the bill. If we assume 
that a particular congress has 100 members, and a passed 
bill requires at least 51 yes votes, the relationship bills
passed-in-congress:congress-persons-voting-yes is a partial 
dependency (i) of bills-passed on congress-persons of car
dinality M:N, with i=51. 

An example of a no-dependency M:N relationship is that 
between the entity class suppliers that can supply parts to 
a company, and the entity class parts that are used by the 
company. Suppliers can exist that do not supply any parts 
at some moment, and parts may exist for which there is no 
longer a supplier. The relationship relates each supplier ob
ject with the part objects he currently supplies. 

REPRESENTATION OF RELATIONSHIPS OF 
KNOWN PROPERTIES 

A data model is used to represent a real-world situation. 
The objects in the real-world continuously undergo change. 
There are many constraints on the way in which the real
world can change. Since a data model implies the specifi
cation of rules, it is best if these rules match real-world con
straints. We expect representations of objects from entity 
classes to be inserted into and deleted from the database. 
These insertions and deletions should be go~erned by the 
rules implied in the data model. 

A relationship relates objects from entity classes. The 
properties of relationships discussed in the previous section 
define rules that govern changes to related objects from two 
entity classes that have a relationship between them. 

These are the rules we wish to consider in this section. 
When properties of a relationship are known beforehand, it 
is useful to represent these properties in the model as rules 

Properties of Relationships and Their Representation 321 

so that updates to the objects that participate in a relationship 
will maintain these properties. If properties of a relationship 
are not known, it can be represented in the data model using 
the most general case: the no-dependency, M:N r.elationship. 

While integrity assertion statements applied to a model are 
sufficient to describe any rules that constrain the model, they 
cannot affect the structure of the model, since they are not 
a part of the data model. As we shall see, known properties 
of relationships suggest specific model structures, and a 
small set of rules expressed in the data model can represent 
all the properties of relationships discussed in the previous 
section. 

Relationships and their constraints in normalized models 

An entity class is represented in relation-based models as 
a set ()f tuples of identical structure that constitute a relation. 
Each tuple represents an .object from the entity class. The 
properties of the entity class are described by the attributes 
of the relation. The attributes define the domains from which 
data items in a tuple can take values. The values of the iden
tifying, or key, attributes in a tuple define the correspond
ence between a real-world object and that tuple. Hence, 
values for key attributes are required to be unique for each 
tuple in the relation. The non-identifying, or dependent at
tributes, represent other properties of the object. 

In some cases, more than one set of identifying attributes 
exist. We will assume that one set is designated to identify 
the objects of the entity class, the primary key (PK), and 
use that set in our discussion of the representation of rela-
tionships. . 

Relationships can be represented in several ways. The 
three-relation representation uses a separate relation to rep
resent each entity class. A third association (or relationship) 
relation, which contains the P K attributes of the other two 
relations, represents the relationship.3.4.8 A tuple in this as
sociation relation serves to associate tuples from the rela
tions that represent the entity classes. 

Figure l(a) shows an example. Two relations that repre-

MANAGERS DEPARTMENTS MANAGER-DEP 

I EMP-NO, NAME, AGE I I DEP-NAML LOC I IEMP-NO, DEP-NAMEI 

(A) THREE-RELATION REPRESENTATION 

MANAGERS DEPARTMENTS 
IEMP-NO, NAME, AGE, DEPT-MANAGED I I DEP-NAME, LOC I 

(B) TWO-RELATION REPRESENTATION 

HUSBAND-WIFE 
I HUSBAND-NAML HUSBAND-AGE) WIFE-NAME, WIFE=AG'EJ 

(c) ONE-RELATION REPRESENTATION 

MANAGERS DEPARTMENTS 
I EMP-NO, NAME, AGE, DEPT -MANAGED I I DEP-NAME, LOC, MANAGER I 

(D) REDUNDANT ASSOCIATING ATTRIBUTES 

Figure I-Alternative representations of relationships. 



322 National Computer Conference, 1980 

sent entity classes managers and departments are related 
via a third relation manager-dep. We call manager-dep the 
associating relation, and the attributes emp-no and dep-name 
in manager-dep the associating attributes. A tuple (55, Pay
roll) in manager-dep means employee number 55 is the man
ager of the Payroll department, and associates the tuple with 
PK 55 in managers with the tuple with P K Payroll in de
partments. In our diagrams, we will show the PK and the 
associating attributes in capital letters. 

The two-relation representation includes the associating 
attributes in one of the relations that represent an entity 
class. Figure l(b) shows an example, using the same man
ager:department relationship. This representation only works 
for relationships of cardinality 1: 1 or 1 :N, since only one 
value of the associating attribute (the dept-managed attri
bute in our example) can exist in a normalized relation. 

For 1: 1 relationships, a one-relation representation is pos
sible (Figure l(c». It is also possible to represent the asso
ciating attributes twice, once via the associating attribute 
dept-managed in managers and a second time via the as
sociating attribute managers in departments. One of the as
sociating attributes is redundant, and to assure that a man
ager tuple is associated with the same department tuple in 
both representations, an additional constraint is needed. 

Since a large number of integrity constraints can be costly, 
to manage, one measure of goodness for the representation 
of a relationship is that it requires a minimum of additional 
constraints, but still correctly represents the properties of 
the relationship. 

When tuples that participate in a relationship are inserted 
or deleted, the transformation must not lead the database 
from a consistent state into an inconsistent one. The prop
erties of the relationship define conditions for a consistent 
state. Hence, update constraints that maintain the properties 
of a relationship should be specified in the data model. We 
can consider updates of the database as transactions which 
transform one consistent state of the database into another. 

Update constraints are specified on the relations of the 
data model to reflect the properties of the relationship. We 
now discuss these constraints for representations of rela
tionships between two entity classes. 

The associating attributes (AA) constraint, and rules to 
maintain it 

The associating attributes constraint ensures that we are 
associating two existing tuples (that represent two exiting 
entities) in the database: it does not make sense to associate 
a department which is not in the database with a manager. 
Hence, this AA constraint specifies that the values of as
sociating attributes must correspond to values of primary 
keys in the relations that represent the two related entity 
classes. 

The consequences of this constraint for insertion and dele
tion of tuples are: 

(1) Insertion of a tuple in a relation with associating at-

tributes is permitted only if the values of the associ
ating attributes correspond to values of primary keys 
of tuples in the relations that represent the entity 
classes. 

(2) Deletion of a tuple from a relation that represents an 
entity class is permitted only if the value of the primary 
key does not correspond to a value of associating at
tributes in some tuples that remain in the database after 
the deletion. 

The insertion rule is straightforward. Attempts to insert 
a tuple which violates the rule are rejected. To remedy the 
situation, one must first insert other tuples that make the 
required insertion legal. Another possibility is to insert this 
tuple, and other tuples associated with it simultaneously as 
a transaction so that after all tuples in the transaction are 
inserted, the insertion rule holds. The whole transaction may 
be rejected if it results in a violation. 

For deletion, two rules can be specified to ensure the con
sistency. The prohibit deletion (or PD) rule aborts the dele
tion until the tuples with associating values that correspond 
to the PK of the tuple being deleted are explicitly deleted. 
The delete related tuple (or DLn rule carries out the dele
tion, and automatically deletes all tuples with associating 
values that correspond to the P K of the tuple being deleted 
to ensure the consistency. This may result in the deletion 
of tuples that represent objects from the other entity class. 

The cardinality constraint 

We now consider how cardinality constraints can be ex
pressed in a data model. Consider the three-relation repre
sentation. If we specify no cardinality constraints, it rep
resents a general M:N relationship (Figure 2(a». For a l:N 
relationship if we restrict the associating attribute emp-no 
in the relation dept-emp to have unique values in the different 
tuples of dept-emp at all times, the l:N cardinality is guar
.anteed. To further restrict the cardinality to 1: 1, we specify 
that both associating attributes have unique values also 
(Figure 2(c». In our diagrams, we specify this uniqueness 
constraint by a (U). 

The two-relation representation can represent a I:N or a 
1: 1 cardinality. Figure 3(a) shows a l:N relationship. If we 
restrict the associating attribute to unique values (Figure 
3(b» we get a 1: 1 cardim~~i{y for the relationship. Note that 
the U A constraint can also be used to specify the P K when 
it is a single identifying attribute of a relation that represent 
entity classes (Figure 2 and 3). 

The dependency constraints 

Dependency constraints of a relationship A:B specify 
whether an object from one of the entity classes can exist 
independently, or whether the object must be related to ob
jects from the other class at all times. 

A no-dependency relationship is best represented by the 
three-relation representation. Tuples then exist independ-



SUPPLIERS PARTS 

I SUPP-NAML ADDRESS / 
(U) 

I PART -NO, DESC I 
(U) 

(A) CARDINALITY M:N 

DEPARTMENTS 

/ DEP-NAME, Loci 
(U) 

, EMP-NO, NAME, AGE, SAL I 
(U) 

(B) CARDINALITY l:N 

SUPPLI ER-PART 

'SUPP-NAML PART NO I 

1 DEP-NAME, EMP-NO I 

(U) 

CAPTAINS MERCHANT-SHIPS 

I CAPT-ID, NAME, AGE, ADDRESS I 
(U) 

'SHIP-In, NAME, TYPE, TONNAGE 1 

(0) 

SHIP-CAPT 

I CAPT-ID, SHIP-ID/ 
(U) (U) 

(c) CARDINALITY 1:1 

Figure 2-Cardinality constraints for the 3-relation representation. 

ently in the relations that represent the entity classes, and 
are associated via the third relation. This works for 1: 1, 1 :N, 
and M:N cardinalities (Figure 2). 

A partial dependency for a relationship of cardinality 1: 1 
is directly specified by the two-relation representation (Fig
ure 3(b». No additional constraints are needed, since the 
AA constraint enforces the partial dependency. The two-re
lation representation can also represent a partial dependency 
of B on A for a l:N relationship A:B. For example, Figure 
3(a) shows a partial dependency of employees on depart
ments. The partial dependency of A on B cannot be repre
sented without additional constraints, which we now con
sider. 

As an example, consider the l:N relationship depart
ments:employees and suppose the relationship is a partial 
dependency (i) of departments on employees. Hence, a de
partment is always related to at least i employees, where i 
is a specified'positive number, but employees may exist in
dependently. We represent an additional constraint on the 
three-relation representation (Figure 4) by a [min i] on the 
relating attribute dept-name in dept-emp. This constraint 
means that for every department tuple in departments, at 
least i tuples exist in dept-emp with the same value for dept
name. 

DEPARTMENTS EMPLOYEES 
I DEP-NAME" LOC I 

(0) 
IEMP-NO" NAME" AGE" SAL" DEP-NAME I 

(0) 

(A) CARDINALITY l:N 

MANAGERS 
I EMP-NO" NAME" AGE} DEPT-MANAGED I 

(U) (U) 

(S) CARDINALITY 1:1 

I DEP-NAME} LOC 
(0), 

Figure 3-Cardinality constraints for the 2-relation representation. 

Properties of Relationships and Their Representation 323 

To maintain such a constraint, insertion of a new depart
ment tuple must specify at least i employee tuples that al
ready exist in employees, and a transaction insert-new-de
partment will insert the new department and the least i 
associating tuples in dept-emp. Insertion of an employee is 
unconstrained, since it will never cause an inconsistency. 

Deletion of a department or employee tuple can be gov
erned by either the PD or the DLT rules. Deletion of an 
associating dept-emp tuple can result in an inconsistency if 
it reduces the number of employees tuples associated with 
a department tuple to less than i. We can either specify the 
PD rule (prohibit deletion of the associating tuple and do not 
carry out the requested deletion transaction) or the DLT rule 
(delete the department tuple, and all tuples in dept-emp as
sociated with it). In this case, the PD rule is more plausible, 
and can affect that the enterprise reconsider the state of its 
departmental structure. 

A partial dependency of a relationship of cardinality M:N 
can be handled in an identical way to the l:N partial de
pendency. The only difference is the absence of the (U) spec
ifying the cardinality on the associating attribute emp-no in 
dept-emp. Total depende,ncies are handled similarly, but re
quire two rules for maintaining the consistency. 

Non-normalized relations 

If we allow relations that are not in first normal form 11 a 
relation may include a repeating attribute. A repeating at
tribute allows a set of values for the attribute in a tuple of 
the relation rather than a single value. Now l:N and M:N 
relationships with partial or total dependency can be rep
resented more naturally using the two-relation representa
tion. This is because we can allow the associating attribute 
to associate a single tuple to a set of tuples of the other 
relation. 

Consider the partial dependency (i) of departments on 
employees in a l:N relationship departments:emp~oyees. It 
can be represented as in Figure 5(a). The associating attri
bute emp-no in departments is a repeating attribute, and the 
(i) means at least i values for this attribute must exist in each 
tuple of the departme~ts relation. The (U) specifies here that 
values of the attribute in all the relation are unique, and 
hence ensures the l:N cardinality. 

A partial dependency relationship of cardinality M:N can 
be represented similarly (Figure 5(b» with the (U) removed 
to allow the M:N cardinality. 

COMPARISON OF THE REPRESENTATION OF 
RELATIONSHIPS IN MODELLING APPROACHES 

In this section, we compare the representation of rela
tionships in the network model, the entity-relationship 
model, Schmid and Swenson's model, Navathe and Schkol-

DEPARTMENTS EMPLOYEES DEPT -EMP 
I DEP-NAME, LaC I I EMP-NO, NAME, AGE, SAL I "'-1 D-EP--N-A-ME-,-E-MP---NO ...... ' 

(U) '(U) [MIN a (U) 

Figure 4-A partial dependency (I) of departments on employees. 



324 National Computer Conference, 1980 

DEPARTMENTS 

I DEP-NAML LocJEMP-NO (I)J I 
(U) (U) 

EMPLOYEES 

I EMP-NO, NAME, AGE, SAL I 
(U) 

(A) A l:N PARTIAL DEPENDENCY 

BILLS-PASSED 

I BILL-NAME, lYES-CONGRESSPERSON-NAME(Sl)] I NAME, HOME-STATE, PARTY I 
(U) (U) 

(B) AN M:N PARTIAL DEPENDENCY 

Figure 5-Representation using non-normalized relations. 

nick's model, the semantic data model, and the structural 
model. We show what choices each model offers for the rep
resentation of relationships, and for maintenance of the con
sistency of the representation. 

We do not include the basic relational model since it does 
not explicitly represent relationships in the model, but re
quires integrity assertions separate from the model to rep
resent relationship constraints. While this is completely gen
eral, it does not influence the design of the data model, and 
may be expensive to maintain in an implementation. 

The network model 

The network model uses record types to represent entity 
classes, and link-sets to represent l:N relationships. To rep
resent an M:N relationship between two record types, two 
link-sets and an additional link record type are defined.2 

The CODASYL syntax allows specifications of database 
procedures that are automatically invoked upon update and 
deletion. These procedures could be used to implement ar
bitrary integrity assertions, but cannot be considered part 
of the model, and not all current implementations provide 
for them. 

There are several types of link-sets. An automatic link-set 
from owner record type A to member record type B repre
sents a I:N relationship A:B which is a partial dependency 
of B on A, since every record in B must be linked to a record 
in A. No associating attributes are represented, but the AA 
constraint is implicit. It is not clearly specified how it is 
maintained, but, in all network systems we know of, the 
DL T rule is applied, since loss of linkage makes the record 
inaccessible. However, this is not explicitly mentioned in 
the CODASYL report. 1 To achieve explicit control over this 
process, the maintenance of the linkage has to be pro
grammed appropriately. 

A manual link-set from A to B represents a no-dependency 
relationship A:B of cardinality I:N, since member records 
in B may exist that are not linked to an owner record. No 
associating relation is used (as in Figure 2(b», and it is not 
explicitly mentioned in 1 what action is taken when an owner 
record is deleted. The choice of whether the member records 
are deleted or become records without an owner has to be 
specified outside of the model. 

An M:N relationship A:B represented by two automatic 
link-sets and a link record is a no-dependency M:N rela
tionship, with the link record type representing the relation
ship. 

Direct representation of 1: 1 relationships in the network 

model is not possible within the model, and has to be defined 
by database procedures. 

The entity-relationship model 

The entity-relationship model4 uses entity relations to rep
resent entity classes, and relationship relations to represent 
relationships. The entity-relationship diagram can specify 
the cardinality of a relationship explicitly by stating whether 
it is 1: 1, 1 :N, or M:N. Two types of entity relations are 
defined: regular entity relations and weak entity relations. 
A no-dependency relationship of any cardinality is directly 
specified by a relationship relation between any two regular 
entity relations. A partial dependency of B on A in a l:N 
relationship A:B is specified by a weak relationship, where 
entity relation A is a regular entity relation and entity relation 
B is a weak entity relation. The DLT rule is used to maintain 
the consistency in both cases. 

Schmid and Swenson's model 

Schmid and Swenson's modeP uses third normal form re
lations. Entity classes are represented by independent object 
types, and relationships are represented by association re
lations. There are three other types of relations in the model, 
but we only consider independent object type and associa
tion relations, since they are used to represent relationships 
between entity classes. An association represents a general 
M:N no-dependency relationship. The AA constraint is 
maintained by the PD rule. Hence, associating tuples must 
be explicitly deleted before deleting the independent object 
type tuple. Representation of 1: 1 and I:N relationships re
quire additional constraints, separate from the model, as do 
dependency constraints. 

Navathe and Schkolnick's madel 

Navathe and Schkolnick's model uses entities to represent 
entity classes and simple associations to represent relation
ships. Other types of associations exist. Since we are here 
only considering relationships between different entity classes, 
and not subclass relationships, we will only consider simple 
associations. Two type of connectors exist in this model: / 
directed and undirected. 

We will categorize the three examples of simple associa
tions given in.5 A simple association between two entities A 
and B, where the connectors are not directed, defines a no
dependency M:N relationship A:B. Consistency is main
tained by the DLT rule (deletion of association tuples when 
an entity is deleted). 

An owner-member simple association, with directed con
nectors from the owner entity A to the association, and from 
the association to the member entity B, defines a I:N rela
tionship A:B. The dependency is a partial dependency of B 
on A, since tuples cannot exist in B that are not related to 
tuples in A. The consistency is maintained by the DLT rule. 

A simple association with an undirected connector from 
entity A to the association, and a directed connector from 
the association to entity B, specifies an M:N relationship 



A:B that is a partial dependency (1) of B on A, since each 
entity in class B must be related to at least one entity of class 
A. To maintain the consistency, when an entity of class A 
is deleted that is the only entity related to a particular entity 
of class B, this related class B entity is also deleted, which 
is the DLT rule. 

Additional integrity assertions, separate from the model, 
may be needed to specify other cardinalities and depend
encies. 

The seman.tic data model 

The semantic data model6
,7 is a rich semantic model which 

supports powerful user interface facilities. It provides con
crete object classes to support entity classes, and inter-class 
connections and event class to represent relationships. Many 
semantic constructs are part of the model, including sub
classes, abstractions, aggregates, and events. Detailed spec
ification is provided for attributes, such as mandatory (null 
values not allowed), unique, and ordering of values. Multi
valued attributes are permitted. 

We will discuss here what types of relationships inter-class 
connections can support. Suppose a relationship A:B is rep
resented by an attribute in the concrete object class A that 
references objects from concrete object class B. If the at
tribute is specified to be single-valued and unique, the re
lationship is 1: 1, and if it is specified to be single valued and 
non-unique, the relationships is N: 1. If the attribute is a set 
(repeating attribute) and unique, the relationship is I:N, and 
if it is a set but not unique, the relationship is M:N. 

For single-valued attributes that are mandatory (no null 
or unknown value), the relationship is a partial dependency 
of A on B for 1: 1 or N: 1. For a mandatory set attribute, a 
partial dependency (1) is specified for l:N or M:N. Total 
dependencies and partial dependencies (i) require additional 
constraints, separate from the model. 

The consistency of the AA constraint is maintained using 
the PD rule, since objects in class B that are referenced by 
objects from class A may not be deleted.7 

The structural model 

The structural model lO is formed from relations in Boyce
Codd normal form and three types of connections: owner
ship, reference, and identity connections. Identity connec
tions are used to represent subrelations of existing relations, 
and carry out functions similar to the categorization, selec
tion, and sub setting associations of Navathe and Schkol
nick's model, and the subclasses of the semantic data model, 
so we will not consider them further. Sets of attributes can 
be defined to have unique values, using the (V) notation 
described above. 

A partial dependency of B on A of cardinality l:N is spec
ified either using a reference connection (Figure 6(a» or an 
ownership connection (Figure 6(b». We show the l:N re
lationship departments:employee~ with partial dependency 
of employees on departments. The reference connection 
maintains the AA consistency using the PD rule, while the 

Properties of Relationships and Their Representation 325 

EMPLOYEES DEPARTMENTS 

I EMP-NO) NAME) AGE) SAL) DEPT ~I DEP-NAME) LOC I 
(U) (U) 

(A) A l:N PARTIAL DEPENDENCY WITH REFERENCE 
CONNECTION 
(ENFORCES PD (PROHIBIT DELETION) RULE) 

DEPARTMENTS 

I DEP-NAME) LOC I 
(U) ~ 

IDEPT-NAME) EMP-NO) NAME) AGE) SAL/ 
(U) 

EMPLOYEES 

(B) A l:N PARTIAL DEPENDENCY WITH OWNERSHIP 
CONNECTI ON 

(ENFORCES DLT (DELETE RELATED TUPLES) RULE) 

Figure 6-Partial dependencies in the structural model. 

ownership connection maintains it using the DLT rule. Both 
connections associate a department tuple with N employee 
tuples, and hence represent a l:N relationship. The 1: 1 re
lationship can be specified by restricting the associating at
tribute dept in the employees relation to unique values. 

No-dependency relationships are represented using three 
relations and two connections. AI: 1 or l:N cardinality is 
specified by restricting the associating attributes to unique 
values, otherwise the relationship is M:N. Figure 7 shows 
the l:N no-dependency relationship department:employees. 
An ownership or reference can be used to specify DLT or 
PD for each entity class. 

By choice of ownership or reference connections, the con
sistency maintenance rules are specified. In Figure 7(a), 

DEPARTMENTS H1PLOYEES 

/ EMP-NO) NAME) AGE) SAL I 
(U) 

(A) A NO-DEPENDENCY RELATIONSHIP WITH TWO OWNERSHIP 
CONNECT! ONS 

EMPLOYEES 

AGE) SAL 

DEPT-NAML EMP-NO ~IDEP-NO) LOC I 
(U) (U) 

(B) A NO-DEPENDENCY RELATIONSHIP WITH ONE REFERENCE 
AND ONE OWNERSHIP CONNECTION 

EMPLOYEES 

IEMP-NO) NAME) AGE) SALI 
/(U) 

~-"'------"'-....., 

DEPT-NAME) Er~p-NO 
(U) 

(c) A NO-DEPENDENCY RELATIONSHIP WITH TWO REFERENCE 
CONNECTIONS 

Figure 7-No-dependencies in the structural model. 



326 National Computer Conference, 1980 

deletion is unrestricted for both employee and department 
tuples, and the AA consistency maintained using the DLT 
rule. In Figure 7(b), deletion is unrestricted for employees 
(DLT) , and restricted for departments associated with at 
least one employee (PD). In Figure 7(c), the PD rule is used 
for both department and employee tuples. The choice of rep
resentation depends upon whether a check is desired when 
tuples that are related to other entity classes are deleted. 

Total dependencies, and partial dependencies (i) for 1:N 
and M:N relationships, cannot be represented in the struc
tural model. 

SUMMARY AND POSSIBLE EXTENSIONS 

None of the above models allows a full choice for repre
sentation of the properties of relationships discussed. In 
particular, partial dependency (0, i>1, for 1:N and M:N re
lationships, and total dependency relationships,cannot be 
represented without the specification of constraints separate 
from the model. 

Table I shows what relationship properties each of the six 
modelling approaches can represent without additional in
tegrity constraints. 

An extension to the structural model can allow represen
tation of all the relationship properties discussed earlier. We 
can suggest similar extensions for other models, and perhaps 
some of them have already been considered by their authors. 
The structural model is the one we are most familiar with. 

We attach a constant number <i> to an ownership or a 
reference connection. This means at least i tuples from the 
relation at the N side o/the connection are attached to each 
tuple at the 1 side of the connection at all times. If two 
numbers <it- i2> are attached to the connection, a mini
mum of it and maximum of i2 tuples are allowed. The default 
is <0, infinity>. Now, all cardinalities and dependencies 
discussed can be represented. 

CONCLUSIONS 

In this paper, we examined the semantic properties of a 
relationship between two entity classes. We identified two 

T ABLE I.-Relationship properties for different modelling approaches 

NETWORK ENT- SCHMID NAY AND SEM STRUCT 
MOD RELAT AND SW SCHKOL DM DM 

NO-DEP 
X X X 1:1 PARTIAL 

TOTAL X X 

NO-DEP X X X X X 
I'N PARTIAL X X X X X 

" PART(I) X(*) X(*) 
TOTAL 

NO-D~P X X X X X X 
r'1: N PART I) X(*) X(*) 

TOT(I~J) 

DLT X X X 

(*) 
PD X X X 
FOR 1=1 ONLY 

properties: the cardinality and the dependency, and dis
cussed the different cases of each property. 

We then showed how these properties can be represented 
_using normalized relations, and what update constraints are 
necessary to maintain these properties. We identified the 
basic AA (associating attribute) constraint and described two 
rules to maintain it: DLT (delete related tuples) and PD 
(prohibit deletion), We then discussed the cardinality and 
dependency constraints. 

We compared six data models with respect to the choices 
they offer for the representation of relationships. We sub
sequently showed how extensions can represent all prop
erties of relationships discussed. We suggest that the fol
lowing dimensions be used in describing relationships in data 
models: 

(1) Cardinality: 1:1, 1:N, or M:N 
(2) Dependency: Total, partial (2), no-dependency. 
(3) Deletion rule to maintain consistency: DLT or PD 

ACKNOWLEDGMENT 

This work was supported by the Defense Advanced Re
search Projects Agency, Contract MDA 903-77-C-0322, 
under the KBMS Project. 

REFERENCES 

1. CODASYL Data Description Language, Journal of Development (June 
1973); NBS Handbook 113, January 1974, 155pp. 

2. Taylor, R. W. and Frank, R. L., "CODASYL Data-Base Management 
Systems," ACM Camp. Surv. 8(1), March 1976, pp. 67-104. 

3. Schmid, H. A. and Swenson, J. R, "On the semantics of the relational 
model," ACM SIGMOD 1975 Can., pp. 211-223. 

4. Chen, P. P. S., "The Entity-Relationship Model-Towards a Unified 
View of Data," rODS 1(1), March 1976, pp. 9-36. 

5. Navathe, S. B. and Schkolnick, M., "View Representation in Logical 
Database Design," ACM SIGMOD 1978 Conf., pp. 144-156. 

6. Hammer, M. and McLeod, D., "The Semantic Data Model: A Modelling 
Mechanism for Data Base Applications," ACM SIGMOD 1978 Conf., pp. 
26-36. 

7. McLeod, D., "The Semantic Data Model and Its Associated Structure 
User Interface," Ph.D. Thesis, MIT/LCS/TR-214, August 1978,378 pp. 

8. Wiederhold, G., Database Design, McGraw-Hill, 1977. 
9. EI-Masri, R. and Wiederhold, G., "Data Model Integration Using the 

Structural Model," ACM SIGMOD 1979 Conf., pp. 191-202. 
10. Wiederhold, G. and EI-Masri, R., "A Structural Model for Database Sys

tems," Report CS-79-722, Stanford University, February 1979,53 pp. 
11. Codd, E. F., "A Relational Model for Large Shared Data Banks," CACM 

13(6), June 1970, pp. 377-387. 
12. Tsichritzis, D. C. and Lochovsky, F. H., "Hierarchical Data-Base Man

agement," ACM Camp Surv. 8(1), March 1976, pp. 105-124. 
13. Chamberlin, D. D. et aI., "SEQUEL 2: A Unified Approach to Data 

Definition, Manipulation, and Control," IBM Jour. R&D (20) 6, Novem
ber 1976. 

14. Tsichritzis, D., "LSL: A Link and Selector Language," ACM SIGMOD , 
1976 Conf., pp. 123-134. 

15. Stonebraker, M., "High level integrity assurance in relational data base 
management systems," ERL-M473, U. C. Berkeley, May 1974. 

16. Eswaran, K. P. and Chamberlin, D. D., "Functional Specifications of a 
Subsystem for Database Integrity," VLDB 75 Conf., ACM. 

17. EI-Masri, R and Wiederhold, G., "Properties of Relationships and Their 
Representation," CS Report, Stanford (to appear). 



Earth Resources 

The purpose of this session is to present 
a cross-section of talks relating to the cur
rent state of computer simulation model
ing as applied to solar energy systems. 
This field is of major importance today 
because of the national need to explore 
alternative energy sources in a quick, 
comprehensive, and inexpensive manner. 

Since a large scale solar energy industry 
does not presently exist, the application 
of these models can save years of time that 
might otherwise be wasted on unfeasible 
systems. The models to be discussed deal 
with: 

• Engineering and economic perform
ance of solar thermal and photovol
taic power plants. 

Leigh S. Rosenberg 
Area Director 

• The effects of ownership options, government policies and operating alternatives on 
the economic viability of small photovoltaic systems. 

• The interaction of solar electric power plants with existing utility grids. 

327 





BALDR-l: A solar thermal system simulation 

by JOSEPH G. FINEGOLD and F. ANN HERLEVICH 
Solar Energy Research Institute 
Golden, Colorado 

INTRODUCTION 

A system simulation, BALDR-l, was written to model the 
performance of solar thermal systems. The original appli
cation was to model the performance and economics of 0.1-
10 MWe solar thermal electric power plants.! It has subse
quently been used in receiver selective surface value analysis 
and in thermal storage value analysis, and is being adapted 
currently to model industrial process heat systems. 

The FIELD code models the optical and thermal perform
ance of the collector field and thermal transport subsystems. 
The POWER code models the power conversion and energy 
storage' subsystems. The ECON code determines the initial 
capital cost of the power plant and the life-cycle busbar en
ergy cost. A flow chart of the system simulation is shown 
in Figure 1. 

FIELD CODE 

The FIELD code is a second-order simulation based on 
a similar code previously developed by the Aerospace Cor
poration with modifications by the Jet Propulsion Labora
tory (JPL),2 and by Battelle Pacific Northwest Laboratories 
(PNL).3 The FIELD code uses meteorological data read in 
from SOLMET or TMY format weather tapes in 15-minute 
or hourly increments. Data used in the current version of 
FIELD are: direct normal insolation, solar time, global in
solation, ambient temperature, dew point, and day of the 
year. The FIELD code models the performance of collector 
subsystems in four different ways depending on the type of 
collector subsystem being modelled. There are separate 
modules to calculate the optical and thermal performance 
of each generic collector type. If tpe need should arise to 
model other collector types, it is a simple matter to add ad
ditional optical and thermal performance modules. 

For point focus central receiver systems (PFCR) and line 
focus central receiver systems (LFCR), the optical efficiency 
of the concentrator field is determined at each time step by 
a bivarient linear interpolation of tables of optical efficiency 
as a function of solar azimuth and zenith angles. These ef
ficiency tables must be input and generally result from third
order simulation programs such as DELSOL4 and MIR
VAL.s 

The radiative losses from the receiver are calculated in the 

329 

FIELD code based on the effective receiver temperature, 
the effective absorptivity and emissivity of the receiver and 
the effective normalized receiver area. The convective and 
conductive losses are assumed to be a constant fraction of 
the calculated radiative losses. The value of this fraction can 
be adjusted to yield receiver efficiencies similar to those 
predicted by third-order simulations and reconciled with ex
perimental results. The energy incident on the receiver at 
each time step per unit area of collector is then equal to the 
product of the optical efficiency, direct normal insolation, 
and the time step. The energy collected at the receiver is 
this term minus the calculated thermal losses. The energy 
collected in the collector field (ECF) is then equal to the 
product of the energy collected at the receiver and the ther
mal transport efficiency. 

For the point focus distributed receiver systems (PFDR), 
e.g., paraboloidal dishes, and fixed mirror distributed focus 
systems (FMDF), e.g. ,hemispherical bowls, the optical ef
ficiency is determined by explicit calculation at each time 
step. This calculation includes the effects due to solar azi
muth, zenith, concentrator position, intercept factor, reflec
tivity, blockage, shadowing, edge losses and dust. The re-

, ceiver thermal losses are calculated in a manner identical to 
that described above for the central receiver systems. The 
energy incident on the receiver at each time step per unit 
area is again equal to the product of optical efficiency, direct 
normal insolation and the time step. The energy collected 
at the receiver is the energy incident on the receiver minus 
the thermal losses. The energy collected from the field (ECF) 
is the product of the energy collected at the receiver and the 
thermal transport efficiency. This may be determined per 
unit area of concentrator or per unit collector module. 

For the line focus distributed receiver systems (troughs) 
with either tracking collectors (LFDR-TC) or tracking re
ceivers (LFDR-TR), the optical efficiency is determined by 
explicit calculation at each time step. This calculation in
cludes the effects due to solar azimuth, intercept factor, re
flectivity, blockage, shadowing, edge losses, dust, second
ary concentrator efficiency and transmissivity of receiver 
cover. The thermal losses of the receiver are based on a 
selectable fraction of the thermal losses resulting from tests 
of the best receiver to date.6 This fraction allows for future 
improvements in receiver design such as selective coatings, 
evacuated covers, etc. The energy incident on the receiver 



330 National Computer Conference, 1980 

Field C'oae 

- -- - - - - ----- - - - EconomicCode 

Figure I-Simplified flow chart for BALDR-I performance and cost 
simulation codes. 

at each time step per unit area is once again equal to the 
product of the optical efficiency, direct normal insolation 
and the time step. The energy collected by the receiver is 
the energy incident on the receiver minus the thermal losses. 
The energy collected from the field (ECF) is equal to the 
product of the energy collected at the receiver and the ther
mal transport efficiency. 

For low concentration non-tracking systems (LCNT), 
e.g., CPC collector, and shallow solar ponds (SSP), the total 
collector efficiency is determined from a linear relationship 
between total efficiency and I:lT (Tcollector- Tambient). These 
relationships were based on plots of test data for advanced 
concept versions for each of the two collector types. (The 
y-intercept, I:lT=O, is equal to the optical efficiency.) The 
energy collected from the field (ECF) is equal to the product 
of the total collector efficiency (including thermal losses), 
insolation, the time step, and the thermal transport effi
ciency. For the LCNT, insolation was taken as the sum of 
direct normal plus diffuse divided by the concentration ratio. 
For the SSP, insolation was taken as direct normal plus dif
fuse, or global. 

The variables passed to the POWER code include an array 
of values of ECF for each time step, dry-bulb and wet-bulb 
temperatures, and unit collector area. 

POWER CODE 

The POWER code is a second-order simulation based on 
the Aerospace computer code as modified by JPL2 and Bat
telle PNL.3 POWER differs from the earlier codes primarily 
in that it provides the option of using different control al
gorithms for both the operation of power conversion equip
ment and the dispatch of electrical and thermal storage. 
There are currently two operational control algorithms: 
CNTRL2 and CNTRL3. I 

CNTRL2 models systems with storage of receiver fluid 
(e.g., salt, sodium, etc.) at approximately tpe same condition 
as it leaves the receiver, sometimes called series storage. 
CNTRL3 models systems with storage of an intermediate 
fluid (e.g., storage of oil for a steam receiver system). In this 
case, the temperature of storage is significantly below the 
receiver outlet temperature and a dual admission turbine is 
therefore modelled. 

Both control algorithms share the following features not 
usually found in second order solar thermal system simu
lations: (1) electrical and thermal storage may both be mod
elled for any power plant; (2) a weighting factor may be 
used to reduce the value of electricity delivered above plant 
rating to simulate hard or soft limits on plant output; (3) the 
decision of how to dispatch the energy from the collector 
field is made for the current time step; knowledge of future 
insolation is not used; (4) depletion of thermal storage is 
limted to the value which will assure a hot start-up the fol
lowing morning; the minimum allowable amount of heat in 
storage is then a function of the number of hours until the 
next anticipated morning start-up. 

In addition, CNTRL2 incorporates the possibility of 
overload operation of the power conversion equipment for 
specified periods. While not currently incorporated into 
CNTRL3, this capability could easily be added. 

CNTRL2 operates with priority on producing and deliv
ering electricity. Thermal storage is used only when. there 
is insufficient energy to start the engine or when there is 
more energy than required to produce rated power. If elec
trical storage is modelled it is used for leveling the plant 
output curve. When the engine generator output is below 
plant rating, the output is supplemented by energy from elec
trical storage. 

In CNTRL3, there are three operating strategies available: 
electricity priority, storage priority, and peak load priority. 
The electricity priority strategy is identical to that used in 
CNTRL2. The storage priority causes thermal storage to be 
charged with the engine off until storage is filled to a spec
ified fraction. Only then is the engine turned on, and the 
priority reverts to generation of electricity for the remainder 
of the day. The peak load priority option is similar to the 
storage charging priority except that storage is maintained 
at the specified fraction until a designated peak period oc
curs. During the peak period, the priority Ireverts to gener
ation of electricity. When the peak period is over, any heat 
left in storage is retained for use during the following day. 

Component models in POWER were ~ritten in several 
levels of detail according to their impact on plant perform-



ance. The engine efficiency model is a function of hot engine 
temperature, cooling tower temperature, and the load at each 
time step. The thermal and electrical energy storage resi
dence losses are calculated based on the amount of energy 
in storage at each time step. The auxiliary electrical loads 
are calculated based on plant capacity and actual plant out
put at each time step. The electrical transport efficiency is 
based upon electrical current flow through the transport sys
tem. The component models for thermal and electrical stor
age charging and discharging, the electrical generator, power 
conditioning, the inverter and the converter currently use 
a constant average efficiency. The component models may 
be easily increased in accuracy if necessary or desirable for 
a particular application. 

The POWER code calculates the electricity delivered to 
the grid at each time step and sums it for one year. The total 
electrical energy delivered during the year is divided by the 
total electricity which would have been delivered had the 
plant operated at rated capacity for the entire year. This 
yields the plant capacity factor. This capacity factor is cal
culated for each plant described by an element of the three 
dimensional matrix of collector field sizes (AC), thermal en
ergy storage sizes (ST), and electrical storage sizes (STE). 

. Matrices of the operating mode of the plant and the dis
patch of electrical storage at each time step can be output. 
The calculated capacity factor, along with the corresponding 
collector field size, thermal storage size and electrical stor
age size, is output for use by the ECON code. In addition, 
the plant rated capacity and generator size are output for use 
by ECON. 

EeON CODE 

The ECON code includes two major subroutines (COST 
and BUSBAR) which are based on computer codes originally 
written by JPL.2,7 Using the output from POWER, ECON 
determines a capital cost, a life cycle busbar energy cost, 
a simple payback period, and annual operations and main
tenance (O&M) costs for each plant configuration based on 
either the thermal energy or the electrical energy produced. 

Subroutine COST uses unit costs as inputs to determine 
the cost streams for both capital expenditures and O&M. 
Capital costs are determined for each of four subsystems: 
(1) collector and receiver, (2) electrical and/or thermal stor
age, (3) power conversion, and (4) miscellaneous (including 
land, thermal and electrical transport, and spares and con
tingencies). These costs are currently distributed over the 
plant construction period as a uniform serie-s of payments. 
With slight modifications to the code, COST could create 
a nonuniform cost stream. 

Operations and maintenance costs are also determined in 
COST. Currently, O&M is a uniform stream of annual costs 
for each year of the plant's lifetime. In case a specific sched
ule of required maintenance is known, COST can be mod
ified to produce a nonuniform O&M cost stream. Alterna
tively, a periodic maintenance cost could be added onto the 
annual O&M cost stream currently produced by COST. 

BALDR-l: Solar Thermal System Simulation 331 

Subroutine BUSBAR is based on the Utility-Owned Solar 
Electric Systems (USES) model, a conventional present 
value analysis adapted for solar electric power plants by 
JPL.8 It calculates that busbar energy cost in constant-year 
dollars which will generate system-resultant revenues equal 
to the system-resultant costs. The inputs for BUSBAR rep
resent two types of information: system cost data and ac
counting ipformation. The cost data as currently used consist 
of the arrays of capital costs and O&M costs which are gen
erated in ~ubroutine COST. Escalation rates are input for 
capital anti O&M in addition to the general inflation rate. 
BUSBAR is written to handle separate maintenance charges, 
fuel costs and social benefits along with their appropriate 
rates of escalation. The ECON code also has the capability 
of doing only the busbar energy calculations if a net present 
value cost is input. 

The second group of input data, the accounting informa
tion, represents the variables that are used to determine the 
cost of capital. From these data, the discount rate, the fixed 
charge rate, and the capital recovery factor are determined 
in BUSBAR. 

An additional capability exists within ECON for producing 
plots of the data generated. Subroutine PLOTIT can be 
called to produce a graph of busbar energy cost versus ca
pacity factor for each system. For the systems which use 
either thermal or electrical storage, but not both, the graph 
will have a set of curves, each of which represents a distinct 
value of collector area with points marked representing var
ious amounts of storage (e.g., Figure 2). For the systems 
which use both electrical and thermal storage, a separate 
plot will be generated for each value of collector area. Each 
plot will consist of a set of curves, each representing an 
amount of thermal storage with points marked representing 
amounts of electrical storage. 

COMPUTATIONAL TIME 

To simulate the annual performance of a point focus cen
tral receiver system on a CDC 6600 computer using 15-min
ute time steps, approximately 50 seconds of CPU time is 
tequired for FIELD and approximately 300 seconds of CPU 
time for POWER for a full matrix of collector areas and stor
age sizes for electrical output cases. ECON requires ap
proximately 10 seconds of CPU time in the corresponding 
simulation. 

SUMMARY 

A system simulation has been written to model the per
formance of solar thermal power systems for both electrical 
and process heat applications. The models are modular al
lowing for easy use and modification. Annual performance 
and economics of most proposed solar thermal systems can 
be modelled by the simulation in its present form. 



332 National Computer Conference, 1980 

POrN! fOCUS CENTRAL RECEIVER-5MWe 

. LE:GE:NO 

o 

~~----------r----------r----------~--------~ 

0- .5000£:+05 112 Colleclor Areo 
0- .5300£:+05",2 Co~~act.or Area 
A - .5700C"05 1112 CoLLect.or Areo 
• - .6000C+05 ra2 CoLLeot.or Rreo 

0.30 0.35 0.10 0.15 
Capac'-t.!I F"aclor 

Figure 2-Graphical output from ECON: each point marked on a curve represents a different amount of storage. 

ACKNOWLEDGMENTS 

The development of this simulation is the work of many 
SERI employees. The following people participated in the 
development of BALDR-l. 

M. Buhl 
S. Cronin 
M. Edesess 
A. Edgecombe 
J. Finegold 
A. Herlevich 
M. Karpuk 

J. Kowalik 
L. Lacy 
D. Madison 
R. Mitchell 
L. Morrison 
R. O'Dougherty 
J. Pagano 

L. Morrison and A. Edgecombe are singled out for partic
ularly important contributions in the early stages of model 
development. We also gratefully acknowledge the support 
of J. Thornton, Task Leader of the Small Power Systems 
Study, under whom this work was conducted. Funding was 
provided under DOE Contract EG-77-C-01-4042. 

REFERENCES 

1. Thornton, J., Brown, K., Edgecombe, A., Finegold, J., Herlevich, A., 
Kriz, T., "Comparative Ranking of 1-1 OMWe Solar Thermal Electric Power 
Systems-An Executive Overview," SERIITR-35-238, Solar Energy Re
search Institute, Golden, CO, September 1979. 

2. EI Gabalawi, N., Hill, G., Bowyer, J., Slonski, M., "A Modularized. 
Computer Simulation Program for Solar Thermal Power Plants," JPL 5102-
80, Jet Propulsion Laboratory, Pasadena, CA, July 1978. 

3. Bird, S., "Modification of the JPL Solar Thermal Simulation Code for Use 
in the PNL Small Solar Thermal Power Plant Systems Analysis," Battelle 
Pacific Northwest Laboratory, Richland, WA, July 29, 1978. 

4. Dellin, T. A. and Fish, M. J., "A User's Manual forDELSOL: A Computer 
Code for Calculating the Optical Performance, Field Layout, and Optical 
System Design for Solar Central Receiver Plants," SAND 79-8215, Sandia 
Laboratory, Livermore, CA, June 1979. 

5. Leary, P. L. and Hankins, J. D., "A User's Guide for MIRVAL-ACom
puter Code for Comparing Designs of Heliostat -Receiver Optics for Central 
Receiver Solar Power Plants," SAND 77-8280, Sandia Laboratory, Liv
ermore, CA, February 1979. 

6. Dudley, V. E. and Workhoven, R. M., "Summary Report-Concentrating 
Solar Collector Test Results Collector Module Test Facility (CMTF) Jan
uary-December 1978," SAND 78-0977, Sandia Laboratory, Albuquerque, 
NM, March 1979. 



7. Slonski, M. L., "Energy Systems Economic Analysis (ESEA) Method
ology and User's Guide," JPL 5101-102, Jet Propulsion Laboratory, Pas
adena, CA, February 15, 1979. 

BALDR-l: Solar Thermal System Simulation 333 

8. Doane, J., O'Toole, R., Chamberlain, R., Bos, P. and Maycock, P., "The 
Cost of Energy from Utility-Owned Solar Electric Systems: A Required 
Revenue Methodology for ERDA/EPRI Evaluations," JPL 5040-29, Jet 
Propulsion Laboratory, Pasadena, CA, June 1976. 





Overview of the alternative power system 
economic analysis model 

by RICHARD B. DAVIS 
Jet Propulsion Laboratory 
Pasadena, California 

and 

JEROME V. V. KASPER 
UCLA 
Los Angeles, California 

INTRODUCTION 

The Alternative Power System Economic. Analysis Model 
(APSEAM) is an interactive computer model which can be 
applied in three ways: (1) the model projects the annual, 
after-tax costs of capital investment in various conventional 
and non-conventional energy technologies for each and 
every year in the investment time horizon; (2) the model 
serves as an investment. analysis tool; and (3) the model 
serves as a tool which can be used for evaluating the impact 
of specific policies on specific investors. 

The basic model premise is that the valuation of invest
ment alternatives should have a "lifecycle cost" perspective 
in addition to the usual "first-cost" perspective. The needed 
"lifecycle cost" perspective is obtained through use of a 
cash flow methodology. Detailed cash flow information is 
projected for each investment alternative for each and every 
year in the investment time horizon. This annual cash flow 
information is then 'aggregated to produce various measures 
of the lifecycle costs of each of the investment alternatives. 
The model can be used to quantify the impact on annual cash 
flows and on life cycle costs of variations in technology cost 
(capital costs and operations and maintenance costs), gen
eral economic conditions, investor-specific financial condi
tions, the method of financing of the capital investment, the 
resource (e.g., solar insolation, geothermal well, etc.), tech-' 
nology performance over time, supply and demand match
ing, incremental plant start-up, and component replacement 
scenarios. 

As an investment analysis tool, the model aggregates the 
projected cash flow information to produce an investor-spe
cific "investment profile" for ea,ch investment alternative
a set of figures of merit which include net present value, 
levelized energy costs, liquidity requirements, and fractional 
return on investment. As an investment analysis tool, the 
model produces investor- and application-specific projec
tions of how specific investors are likely to perceive the 

335 

worth of a particular investment alternative relative to 
others. 

The specific investor types which can be treated include 
private utilities, municipal utilities, corporations, and indi
viduals. In addition, various types of joint ventures and leas
ing arrangements can be modeled. 

As a tool for analyzing policies, the model quantifies the 
impact of specific state and federal actions on the perception 
of specific private sector investors concerning the economic 
viability of the various investment alternatives. For exam
ple, the model can quantify the implications of utilizing var
ious methods of depreciation accounting, various provisions 
for tax credits, various rules concerning the carry-back and 
carry-forward of tax credits and/or operating losses. Insofar 
as the model is a year-specific cash flow model, these gov
ernmental actions can be year-specific. 

The model has been applied to a study of the economics 
of a homeowner in Phoenix either buying or leasing a pho
tovoltaic system rather than relying on the utility grid for all 
electricity needs. The model is currently being applied to 
evaluate the financial viability of solar thermal technology 
in an island utility system (Catalina) and in a thermal stim
ulation scheme for heavy oil recovery (Kern County). 

Cash flow model 

The basic model premise is that the evaluation of invest
ment alternatives should be based upon a "lifecycle cost" 
perspective. The relative worth of the various investment 
alternatives in conventional and non-conventional energy 
technologies is particularly difficult to judge when the var
ious cost elements associated with the investment alterna
tives change at varying rates over the time horizon of in
terest. In general, the costs of the various investment 
alternatives ov'er the entire time horizon of interest must be 
recognized. The needed "lifecycle cost" perspective is ob
tained through use of a cash flow methodology. In a cash 



336 National Computer Conference, 1980 

flow model, detailed cash flow information is projected for 
each investment alternative for each year in the investment 
time horizon. Within APSEAM, this annual cash flow in~ 

formation is aggregated to produce various measures of the 
lifecycle costs of each of the investment alternatives. 

The model is capable of quantifying the effects of varia~ 
tions in the cost of various technologies (capital costs and 
operations and maintenance costs), general economic con
ditions, investor~specific financial conditions, the method of 
financing of the capital investment, the resource (e.g., solar 
insolation levels,), technology performance over time, sup
ply and demand matching, incremental plant start-up, and 
component replacement scenarios. 

Investment analysis tool 

The Alternative Power System Economic Analysis Model 
also functions as an investment analysis tool. As such, it 
seeks to answer the question: "What is the relative worth 
of different investment alternatives to a specific investor?" 
This question is much broader than the question "What are 
the lifecycle costs* of different investment alternatives?" for 
it takes into account a specific investor's financial environ
ment (for example, his ability to take advantage of tax cred
its, his cost of capital, etc.) as well as the specific investment 
alternatives available to that investor. As applied to energy 
system investments, the investment alternatives can include: 
(a) capital investments in various energy technologies (con
ventional or non~conventional) to meet specified energy re
quirements (electrical and/or thermal); or (b) purchase of all 
energy needs (electrical energy from the utility grid, thermal 
energy from combustion of purchased fossil fuel in fossil
fired boilers); or (c) cessation of those activities which create 
energy needs-investment in some alternative with no en~ 
ergy demands. ** 

The model "massages" the projected cash flow infor
mation and then aggregates it to produce an investor-specific 
"investment profile" for each investment alternative-a set 
of figures of merit which enable that investor to make an 
informed decision. 

Investor-specific policy analysis tool 

In addition to functioning as a life cycle cost model and as 
an investment analysis tool, the model also functions as a 
policy analysis tool. As such, it seeks to answer the question: 
"What is the impact of various governmental policies on 
specific private sector investors concerning' the relative 
worth of various investment alternatives?" 

* It is of course true that the calculation of the Iifecycle costs of an investment 
alternative requires assumptions about the investor's opportunity cost of in
vestment and his state and federal tax rates. 
** This last investment alternative is included to reflect the fact that, all other 
things being equal, private sector investors seek to maximize profit. If being 
in a business which produces or consumes energy is not ~s profitable as being 
in another type of business, an investor might be expected not to opt for 
investments involving energy production or consumption. 

The model quantifies the impact of specific state and fed
eral policies on the perception of specific private sector 
investors concerning the economic viability of the various 
investment alternatives. For example, the model can quan
tify the implications of utilizing various methods of depre
ciation accounting, various provisions for tax credits, var
ious rules concerning the carry-back and carry~forward of 
tax credits and/or operating losses. Insofar as the model is 
a year-specific cash flow model, many of these governmental 
policies can be year-specific. Thus, time-phased incentive 
strategies can be evaluated. This is an important feature of 
the model insofar as the government will likely use time
phased strategies to encourage the use of alternative, non
conventional energy systems: large incentives in the near
term, with a tapering off of the incentive size as the desired 
energy technologies penetrate the marketplace by natural 
mechanisms. 

Ownership options 

The specific investor types which can be treated include 
private utilities, municipal utilities, corporations, and indi
viduals. In addition, various types of joint ventures and leas~ 
ing arrangements can be evaluated. 

Alternative uses of model output 

As an investment analysis tool, the model produces pro
jections of how specific investors are likely to perceive the 
worth of a particular investment alternative in a specific ap
plication relative to other investment alternatives. This in~ 
formation, coupled with the market size potential which 
those specific investors represent, provides the basis for 
meaningful estimates of expected market penetration. t 
Hence, model-derived information can serve as valuable 
input to macro-market penetration models. In like manner, 
as a policy analysis tool, the model specifies what the impact 
of specific policy decisions is on the perceptions of specific 
investors in specific applications concerning the relative 
worth of various investment alternatives. Aggregated, this 
information enables the effects of alternative governmental 
policies and incentive strategies on the market penetration 
potential of various energy technologies to be quantified. In 
this way, the costs and the expected benefits associated with 
alternative policy options can be related and optimal trade
offs identified, both from the standpoint of the government 
and of individual investors. 

Model execution 

In actual operation, the model is a highly interactive pro
gram which possesses graphical capabilities. Internal doc-

t Actual market penetration will depend on largely subjective behavioral con
siderations and institutionaVpolitcial factors as well as upon the purely finan
cial, profit-maximizing decision-making criterion specified here. 



Overview of Alternative Power System Economic Analysis Model 337 

umentation is provided in the program. It has many user
oriented features to allow for easy input/output formatting, 
internal calculations and sensitivity analyses. In addition, 
its graphical capabilities enable the user to readily perceive 
trends and relationships. 

OVERVIEW OF MODEL METHODOLOGY AND 
OPERATIONAL CAPABILITIES 

The model compares each capital investment alternative 
to a "business-as-usual" option. This "business-as-usual" 
option is the status quo. 

The energy production systems associated with each cap
ital investment alternative are designed so that a uniform 
degree of energy production reliabilitytt is realized by the 
investor in his application. In this way, the various invest
ment alternatives can be directly compared in terms of the 
financial aspects alone. 

The comparison of a specific capital investment alterna
tive to the "business-as-usual" option is realized by: (1) 
projecting the expected annual after-tax cash flows associ
ated with that investment alternative; (2) projecting the ex
pected annual after-tax cash flows associated with the "busi
ness-as-usual" option; and (3) calculating the annual 
differential after-tax cash flows. 

The input data required to effect this comparison falls into 
one or more of the following categories: 

Purchased power costs (PP) 
Capital investment costs (CI) 
Capital funding costs (CF) 
Recurrent expenditures (EX) 
Revenues (RV) 
Taxes (TX) 
Escalation rates (ER) 
Economic parameters (EP) 
Performance (PR) 
Demand (DE) 
Timing (TI) 
The major steps in the process are as follows: 
1) The matching of supply (the performance ofthe Capital 

Investment Alternative) and the demand (the Load Pro
file) 

2) Determination of the pre-tax cash flows for the Capital 
Investment Alternative 

3) Determination of pre-tax cash flows for the Business
As-Usual Option 

4) Determination ofthe Subsystem Replacement Require
ments 

tt The term "reliability" here refers to th" probability that a power system 
will be able to satisfy the investor's demand for energy. Uniform reliability 
implies that the power system configuration which constitutes each of the 
investment alternatives has the same loss of load probability (as expressed 
in terms of the number of days within a given time period that the demand 
cannot be satisfied). Hence, for example, sufficient back-up or standby ca
pacity is provided in the definiton of an insolation-dependent technology al
ternative so that its reliability is equal to that associated with all other in
vestment alternatives and with the "business-as-usual" alternative. 

5) Determination of state and federal taxes for the Capital 
Investment Alternative and for the Business-As-Usual 
Option 

6) The calculation of the After-Tax Differential Cash 
Flows. 

MODEL APPLICATION 

Lifecyle costing 

APSEAM is a cash flow model which projects, for each 
investment alternative considered, all of the revenues and 
expenses to be experienced by an investor over the entire 
investment time horizon. These annual cash flow streams 
are summed to determine the lifecyle costs for each in
vestment alternative. * Four different measures of lifecycle 
costs are calculated, corresponding to the four different 
types of "dollars" which the model considers. These four 
types of "dollars" are: (1) nominal dollars; (2) real dollars; 
(3) energy dollars; and (4) discounted dollars. 

Nominal dollars are dollars actually "in hand." In in
flationary times, they possess less and less purchasing power 
over time. Real dollars are nominal dollars from which the 
effects of inflation have been decoupled. Real dollars have 
constant purchasing power over time for the "general mix" 
of consumer goods. Energy dollars are real dollars in which 
the effects of inflation and of a real escalation of energy costs 
have been decoupled: When energy costs escalate at a rate 
above the general inflation rate, a constant number of real 
dollars possesses less and less purchasing power over time 
for "energy goods." Hence, there is a need to work with 
"energy dollars": dollars of constant energy purchasing 
power over time. Discounted dollars are nominal dollars 
which have been "interpreted" to reflect the time value of 
money to a specific investor and to account for the alter
native uses he might make of his investment dollars. Assume 
that an investor has an opportunity cost of investment, in 
nominal after-tax dollars, of OCIN. ** This is that investor's 
time value of money, his "discount rate." If that investor 
were to receive A after-tax dollars one year from the present, 
he would be indifferent between that and receiving AI 
(1 + OCIN) dollars today; therefore the present worth of a 
cash flow, A, one year in the future, is AI(l +OCIN). In 
general, for the cash flow stream, c" and an investor dis
count rate, OCIN, the present worth of that cash flow stream 
extending over N years is: 

N C, 
present worth = '~I (1 + OCIN), 

Assuming no risk, an investor is indifferent between receiv
ing the actual cash flow stream over time or having the pres-

* Normal model operation produces differential cash flow information, the 
cost of a capital investment option relative to the cost of the "business-as
usual" or "purchased power" option. To obtain lifecycle costs, the cost of 
the purchased power option is set to zero. 
** The opportunity cost of capital contains an opportunity cost component 
and a risk premium component. 



338 National Computer Conference, 1980 

ent worth of that cash flow stream today-they are finan
cially equivalent. 

The lifecycle cost for each investment alternative is cal
culated in terms of these four types of dollars by expressing 
the after-tax cash flow stream for each investment alterna
tive valued in each type of dollar and by then summing each 
of them. 

The discounted life cycle cost of an investment alternative 
is perhaps the most informative of the four different types 
of lifecycle costs to a potential investor. The discounted li
fecycle cost specifies the effective amount of money the 
investor must have on hand, today, invested at his discount 
rate, OCIN, so that he can "cover" the costs associated 
with that investment alternative as they come due over the 
investment time horizon. 

INVESTMENT ANALYSIS TOOL 

The information contained in the annual differential cash 
flows must be aggregated in order for a potential investor 
to more readily evaluate the relative worth of the various 
investment alternatives. In acting as an investment analysis 
tool, the model aggregates the annual differential cash flow 
data to produce an "investment profile." This investment 
profile contains the type of information which enables a de
cision maker to make an informed decision. This investment 
profile contains five different figures of merit, each of which 
is expressed in terms of one or more of the four different 
types of "dollars" described above. 

These figures of merit are: 
1) Net Present Value 
2) Absolute, Levelized Energy Costs (after-tax) 
3) Liquidity Requirements 
4) Fractional Return on Investment 
5) Payback Period. 

POLICY ANALYSIS TOOL 

The model can be used to determine the impact of certain 
types of governmental actions on the cash flow stream and 
resultant figures of merit associated with the alternative in
vestment choices by specific investors. A series of options 
exist in the model which the user can specify when executing 
the program. 

These options were chosen insofar as they represented 
various means whereby the government could alter the per
ceptions of the private sector concerning the economic vi
ability of various investment alternatives. These options fall 
into the following major categories: 

Depreciation accounting 
Tax credit accounting 
Income tax brackets 
Income tax deductions accounting 
Taxable income 
Property taxes 

In the depreciation accounting category, options exist 
both as to method and application. The user must specify 
the depreciation method to be used at the federal and state 
level for initial investments as well as for replacements. The 
methods available are: (1) sum of the years digits; (2) straight 
line; (3) double declining balance; and (4) declining balance 
at a user-specified rate. The user must also specify if de
preciation is to be taken at the federal and/or at the state 
level and, if so, on what fraction of capital costs. Finally, 
the user must also specify if the special federal first, year 20 
percent depreciation allowance is to be taken. 

In the tax credit accounting category, options exist both 
as to method and application. The user must specify the 
terms of any tax credit, the size of the tax credit (usually a 
percentage of the capital cost) and the limit on the monetary 
amount of the credit (for example, the federal energy tax 
credit is 30 percent of the first $2000 and 20 percent of the 
next $8000 for a limit of $2200). The user must also specify 
whether the tax credit is to be taken at the federal level and/ 
or at the state level. Finally, if applicable, the user must 
specify the year the availability of the tax credit ends. 

Also included in this category are options with respect to 
the carryback and carryover of unused investment tax credit. 
Presently, at the federal level, t any part of the investment 
tax credit which is not applied as' a credit, because of the 
limitations with regard to the maximum credit in any given 
year, can be carried back three years and carried over seven 
years. These time periods can be adjusted in the model, to 
allow for evaluation of the impact of variations in them on 
specific investors. 

Two options exist with respect to the income tax bracket 
category: the income tax brackets can be assumed to remain 
fixed (the status quo) or they can be assumed to be indexed, 
that is, to inflate at the standard rate of inflation. 

In the income tax deductions category, options exist which 
are pertinent to both businesses and homeowners. With re
spect to businesses, the user can specify if fuel costs should 
be allowed as a tax deduction or not. Presently, they are, 
of course. The model allows this deduction to be either al
lowed or disallowed. With respect to homeowners, the user 
can specify that costs associated with buying and operating 
a power system are deductible, in addition to the usual in
terest costs. Homeowner costs, some fraction of which can 
be allowed as deductions at the user's discretion, include 
fixed costs, variable costs, other annual costs, and insurance 
costs. These deductions must be specified for both the state 
and federal levels. The rationale for allowing these options 
with respect to homeowners will become evident when the 
taxable income category is discussed. 

When a company has more deductions than gross taxable 
income in a given year, it has a net operating loss in that 
year; these net operating losses can be carried back three 
years and carried over seven years' at the federal level. tt 
Within the model, the time limits allowed for carryback or 
carryover of net operating losses are input parameters. 

t The State of California has no provision for investment tax credits. 
tt The State of California has no provision for carryback or carryover of net 
operating losses. 



Overview of Alterhative Power System Economic Analysis Model 339 

The options which exist in the taxable income category 
apply to homeowners. * They were incorporated in the model 
because homeowners purchasing power systems will fre
quently have excess electricity to sell back to the grid and 
will thereby realize revenues. What is the impact if these 
revenues are taxed at either the federal or state levels? The 
user must specify, for both the state and federal levels, what 
fraction of those sell-back revenues are taxed. In conjunction 
with this, as mentioned above, the user must specify what 
portion of homeowner costs are deductions at both the fed
eral and state levels against those revenues. 

The property tax option category requires the user to spec
ify the tax rate base on both land and improvements, the 
escalation rate of that tax rate base, and the property tax 
rates on the land tax base and on the improvements tax base. 
Thus, property taxes can be realized only on capital im
provements, only on new land acquisitions, on both, or on 
neither. 

SUMMARY 

The Alternative Power System Economic Analysis Model 
has served as the principal analytic tool for three case stud
ies: "The Effects of Ownership Options, Government Pol
icies, and Operational Alternatives on the Economic Via
bility of Residential Photovoltaic Systems," "An Analysis 
of the Economic Viability of a Solar Thermal Point Focusing 
Electric Plant for Santa Catalina Island-A Case Study," 
and "The Economic Viability of a Solar Thermal Plant for 
Enhanced Oil Recovery-A Case Study." 

Two major uses of these case study analyses are: 
(1) Determination of appropriate inputs for market pen

etration studies of various advanced energy systems: market 
penetration models for energy technologies typically assume 
that investment occurs when the levelized energy cost for 
the new investment alternative (such as solar) is less than 
or equal to the levelized energy cost from conventional al
ternatives (such as purchased power, oil-fired energy gen
eration, etc.). This assumption ignores the many other fi
nancial considerations/figures of merit which an actual 
investor would consider in making a capital investment de-

* These are inappropriate for a business, for which these costs are already 
acceptable deductions. 

cision. The alternative approach is to consider a particular 
investor/application whose characteristics are typical of a 

. particular segement of the market. A case study for that 
particular investor/application is then prepared, generating 
the appropriate figures of merit for capital investment de
cision-making, and evaluating the financial feasibility of any 
particular investment decision. Correlation of the predicted 
investment choices of particular application/investor sets 
with the market share which each represents then provides 
a good basis for estimation of the market penetration of new 
energy technologies. 
. (2) Identification of optimal candidates for government
sponsored technical experiments and demonstrations. Due 
to the highly visible nature of demonstrations and the im
portance of creating a positive image of new energy systems, 
it is imperative that government-sponsored experiments and 
demonstrations be sited where the new energy systems are 
projected to be perceived as financially favorable as possi
ble. 

Model development is continuing. The process of applying 
the model to various case studies has served to identify areas 
of necessary/desirable model refinement. The continued ap
plication of the model to other case studies will undoubtedly 
identify additional model development needs. 

Validation of the model has been initiated and is pro
ceeding in two phases. Phase I is in process and involves the 
review of the model code/documentation by a Certified Pub
lic Accountant (CPA). Suggested/required changes are being 
incorporated into the model. Phase II of the validation pro
cess involves a review of the model by an accounting firm, 
selected through the competitive procurement process. This 
contract will be initiated in mid-1980. 

It is anticipated that the model will be available for public 
use within a year. A user's manual is in preparation. The 
model is presently on a DEC V AX-ll/780 system. It will 
soon be modified to be usable on an IBM 370/3032 and a 
UNIVAC 1108. 

ACKNOWLEDGMENT 

The research described in this paper was carried out at 
the Jet Propulsion Laboratory, California Institute of Tech
nology, and was sponsored by the U.S. Department of En
ergy through an agreement with NASA. 





Computer simulation of the operations of utility grid 
connected photovoltaic power plants* 

by CHESTER s. BORDEN 
CaLifornia Institute of TechnoLogy 
Pasadena, California 

INTRODUCTION 

In order to evaluate the commercial viability of photovoltaic 
power systems it is necessary to have reliable estimates and 
descriptions of the supply of electricity generated by the 
solar technology, the demand for that electricity, and the 
market application. A methodology which produces infor
mation on performance, cost, and value components of util
ity grid connected photovoltaic power plants has been de
veloped to assist in these evaluations (References 1,2). This 
report describes that analytical model and presents an ap
plication to a utility grid connected central power system 
with a range of operations alternatives. 

The Lifetime Cost and Performance (LCP) model is de
signed to causally relate the effect of hourly weather con
ditions and component efficiencies, system design, electrical 
design, long run effects of exposure (module power output 
degradation over time, module and balance of system fail
ures over time, and dirt accumulation), and alternative op
erations/maintenance policies (timing and quantity of mod
ules to be replaced due to failure or degradation below 
certain performance levels, module cleaning frequency, and 
balance of system operations/maintenance alternatives) to 
system performance, cost, and value over the photovoltaic 
power plant's operating lifetime. When coupled with an 
economic model for electric utilities, LCP provides a con
sistent basis for describing and comparing alternative utility 
grid connected photovoltaic power system designs and op
erating strategies. The LCP model is currently being used 
by the Photovoltaic Technology Development and Appli
cations Lead Center and Low Cost Solar Array Projects at 
the Jet Propulsion Laboratory for photovoltaic system eval
uations. These evaluations include identifying reasonable 
operations, maintenance and replacement strategies for a 
range of photovoltaic system and module designs; perform
ing parametric studies of the effect of alternative degradation 
rates, failure rates, and cleaning policies on system technical 
and economic performance; calculating system and subsys-

* The research described in this paper was carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, and was sponsored by the 
U.S. Department of Energy through an agreement with NASA. 

341 

tem breakeven costs; and investigating the impact of regional 
differences on performance, cost, value, and system design 
preference. 

APPROACH 

The LCP model performs four operations: it 

1. incorporates initial design and construction of the 
power plant, 

2. simulates hourly photovoltaic system power output, 
3. analyzes the long term effects of exposure to an out

door environment and operations/maintenance poli
cies, and 

4. calculates the system-resultant benefits and costs as
sociated with owning and operating a photovoltaic 
power plant. 

Step 1 (for the central station application) begins with the 
initial expenditures on architect/engineer (A/E) activities in
cluding site selection, power plant design, engineering, en
vironmental reporting, permit/licensing acquisition, site 
preparation, and procurement of modules (the price of which 
can be determined in Reference 3) and balance of system 
hardware. Facility construction, component installation, 
power plant start up and testing procedures are then spec
ified. An incremental startup schedule for bringing capacity 
on-line prior to complete power plant installation can be 
identified by the user. The chosen installation process should 
reflect internal optimizations made by the A/E firm and the 
utility to identify potential bottlenecks and a tradeoff be
tween the timing and size of capacity increments, costs, and 
worth of early utility revenues. 

Step 2 is an hourly simulation of photovoltaics-generated 
electricity. Power output from any utility grid connected 
solar electricity generating facility must be calculated over 
a short time-frame (e.g., hourly) for a number of reasons. 
The primary reason is that the value to the utility of power 
generation (based on the coincidence of peak insolation and 
peak demand for electricity, the mix of power plants in the 
utility grid, and the cost of energy generation combined with 



342 National Computer Conference, 1980 

the dispatching of power plants) varies by time of day. An 
hourly simulation is the best way to capture the time-de
pendencies of photovoltaic system performance and value. 
Components of the analyses incorporated in Step 2 are: the 
basic hourly geometry (including the effects of array shad
owing), the electrical design of the modules and branch cir
cuits up to the power conditioning unit level (including the 
series/parallel connections and the effects of electrical mis
match), power plant system design, hourly weather condi
tions (from SOLMETdata tapes (Reference 4», module 
quality (based on age, as determined in step 3), and com
ponent efficiencies including those which vary over the day. 

Step 3 includes the monthly effects of both power reduc
tion due to exposure and power increase from' operations 
and maintenance activities. The long term effects of expo
sure in an operating environment are modeled both deter
ministically and probabilistically as reductions in system 
power output. To determine changes in power output over 
time, LCP uses the following models. 

(a) A Markov process is used to describe the time varying 
effects of degradation. In this analysis, a solar module 
probabilistically "migrates" to a lower module quality 
level until it is replaced due to failure, engineering 
constraints, or an economic replacement decision. 
Changes in module quality are incorporated as changes 
in the module short-circuit current level. Module deg
radation occurs, for example, due to yellowing of the 
encapsulant, cell cracking or encapsulant delamina
tion. 

(b) An analysis which estimates the effects of electrical 
mismatch for a string of modules (of varying quality) 
connected in series or series/parallel is then per
formed. 

(c) Power losses due to module open-circuit failures (at 
a rate which varies depending on the age of the mod
ule) are then calculated. 

(d) The effect of dirt accumulation on the modules is to 
reduce the transmissibility of the encapsulant, thus 
reducing power output. The analysis which calculates 
monthly power losses due to dirt accumulation uses 
an exponential decay model. 

(e) Components other than modules may also fail causing 
power outages. Balance of system failures are treated 
probabilistically. 

(f) Operations and maintenance activities are both input 
by the user and derived by the LCP computer program. 
Cleaning poli~ies, for example, are input as either a 
specified number of cleanings per calendar month, or 
continuous for a given duration. Replacement of mod
ules occurs when there is a failure, a reliability con
straint is encountered, a replacement activity is exog
enously input, or it is endogenously calculated to be 
economically attractive to make replacements. Bal
ance of system maintenance proceeds as specified by 
the user. 

LCP causally relates each of these occurrences to their effect 
on power reduction or improvement, cost, and value on a 
monthly basis over the power plant lifetime. 

TABLE I.-LCP model 

~ LCP MODEL 

Power Plant Location Initialize Program Variables 
Latitude/Longitude 
Hourly Insolation (S) /Temperature Verify Inputs 
Climatic Conditions 

Power Plant Design 
Electrical Configuration 
Array Configuration 
Component Efficiencies 
Facilities 
Support Equipment 

Photovoltaic Module f(haracteristics 
Short Circuit Current 
Open Circuit Voltage 
Area (A) /Efficiency (TlMod) 
Distribution of Module Quality 
Dearadation/Failure Rates 

Plant Construction/Startup/Test 

Operations and Maintenance (O&M) 
Cleaning Frequency/Effectiveness 
Replacements/Repairs 
Balance of System (BOS) O&M 

Financial Attributes 
Capital Expenditures Over Time 
Expenses Over Time 
Salvage/Residual Value 
Inflation/Escalation Rates 
Discount Rate 
Tax Environment 

Utility Grid 
Time of Day Demand 
Marginal Cost of Generation 
Mix of Power Plants 

Start Simulation 

Calculate Initial Non Energy Parameters 
Financial (Fixed Charge Rate) 
Baseline Electrical Design 

Calculate Initial Energy Parameters 
Initial Hou'rly Power Output (nominal) 

including. TlTemp' TlpCU' TlBOS 
Utility Grid Analysis 

Monthly Calculations 
Module Power Degradation } ( ) 
Electrical Mismatch in Branch Circuit nDeg 
Module Failures/RePlacements} 
BOS Failures/Replacements (nlnt) 
Dirt Accumulation/Cleaning (nCl an) 
Compute Energy Output for Month k ~at PCU level) -

L: 
Branch 

Circuits 

L nDeg )( nMod )( S )( A )( nTemp )( npCU )( nBOS )( nClean )( nlnt 

Hours 
in Month 

Energy for Entire Plant -, L (PCU Energy at Month k) )( (No. of PCUs in ITC) 

Increments 
to Capacity 

(ITC) 

Evaluate Alternative Replacement Scenarios 
Input or Endogenously Calculated (Benefit/Cost Analysis) 

Compute Monthly Capital Costs and F.xpenses' 

Execute Economic Model 

Monthly Energy Generated 

Monthly Capital Expenditures 

Monthly Expenses 

Amount and Value of Conventional 
Energy Displaced from Utility 
Grid 

Amount and Value of Conventional 
Capacity Displaced from Utility 
Grid 

Life Cycle Cost 

Net Present Value 

Cost per Unit Energy 



Computer Simulation of the Operations of Utility Grid Connected Photovoltaic Power Plants 343 

0 
0 
~ 

N 

0 
0 ~ 
~ 
0 

~ 
fE 

0 UJ 
0 -' CD a: 

Eo u 
III 

U 
<t: c.. 
<t:O 
uo 

r--
0 
I- 0 

I-
:z: 
w 
~ 
wo 
ex: 0 
U!.O 

==~ 
I-
U') 
ex: 
U:o 
....,0 

lfl 
H 

I 
0 

ex: 
0 
l-
UD 
<t:0 
U-"': 
2:0 
0 
;:: 
<t: 

~B 
lD (\") 
w 
QO 

ex: 
w 
3: 

~B 
C"! 
0 

0 

8 
0 

~ 
o 
~~~~~~~~ __ ~-L~ __ L-~~ __ L-~~~ __ ~~~ __ L-~~ __ ~~-L~ __ L-~~ __ L-~-L~~~~ 

-5 -4 -3 -2 -1 Q 1 2 3 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3J

TIME - 12 f'10iHHS/INTERVAL (YEAR)

Figure I-Power degradation over time.

LCP describes the benefits of utility ownership of pho
tovoltaic systems in terms of the costs not incurred in gen
erating electricity from other conventional sources (capital,
fuel, and operations/maintenance costs). Step 4 of the LCP
approach first determines the value of photovoltaics as a
conventional energy production cost saver in terms of the
short-run marginal cost (fuel and variable operations/main
tenance) of conventional energy generation not spent. Time
of day (hourly) utility load and marginal cost are analytically
matched to the (hourly) photovoltaic system power output
(see Steps 2 and 3). Savings for conventional capacity dis
placement are then calculated either as a reduced capacity
charge by time of day included in the marginal cost of energy
displaced (above), or as a separate capacity displacement
calculation from any of a number of utility grid simulation
models. These grid simulation models determine utility sys
tem reliability in terms of a loss of load probability constraint
(R'eferences 6,7). Finally, costs for photovoltaic power plant
design, construction and operation are incurred. These costs
are aggregated into either capital-related expenditures or ex
penses (for tax purposes).

These dollar and energy flows are input to an economic

model which calculates the life cycle cost and busbar energy
cost for utility-owned solar electric systems (USES) (Ref
erence 5) and then determines the net present value of the
photovoltaic system to the utility owner. Energy cost and
net present value are the two decision criteria for identifying
the most cost-effective alternatives. All results are neces
sarily location-, a~plication-j and utility-specific.

A summary of the major inputs, routines and outputs for
the model described above is shown in Table I.

LCP OUTPUT CAPABILITIES

The LCP model generates monthly streams of energy out
put, cost, and value. As discussed above, monthly energy
generation combines the effect of hourly power output, the
long term effects of degradation, failure and dirt accumu
lation, and operations/maintenance activities. Figures 1, 2
and 3 are presented to help illustrate the analytical processes
and show sensitivities.

Figure 1 displays several photovoltaic module power deg
radation alternatives over time. Depending on the module

344 National Computer Conference, 1980

technical design and operating environment, a range of deg
radation rates may be envisioned. Based on the degradation
rate, a power multiplier is calculated which is used to reduce
the monthly system power output from its initial capability.
These curves reflect the initial module quality distribution,
all changes to that distribution over time based on the Mar
kov process (which includes both degradation and the re
placement of failed modules) and the effects of electrical
mismatch. The curve labeled "3%, 1%" reflects a degra
dation rate which changes over the module lifetime. In this
example, modules degrade at a 3 percent rate until their short
circuit current is reduced to 60 amps (from a design point
of 69 amps), then the degradation rate is reduced to 1 per
cent. At the 3 percent annual rate, it would take the mean
module 5 years to reach 60 amps. The curve "3%" degrades
at that constant rate over its lifetime until the system en
counters a power output constraint (at 50 percent of original
capability). At that time, modules are replaced from the
module quality distribution (starting with the worst short
circuit current and continuing to higher quality levels) until
a specified level of power improvement is achieved. Note

o
o
~

gr--~~-------__
'0

o o
~
o

o
~
o

~

CLEAil I ;lG FREQUE~CY
I WEEKLY

o MOIiTHLY

t> RAIN ONLY

that the power degradation multiplier has its first non-zero
amount six months (l/2 year) prior to power plant capacity
genertion at year = O. This reflects the fact that the first
increment to capacity comes "on-line" six months early.

Figure 2 shows power reduction over the months of the
year based on the monthly power loss rates due to dirt ac
cumulation and the alternative cleaning schedules. The
curves of "Weekly" and "Monthly" cleaning schedules are
not constant over a year since dirt accumulation and rain
effects on power output vary during the year. In the case
of no cleaning, "Rain Only," the cleansing potential of
heavy rains is included for the winter months. The "Monthly"
cleaning case includes the same three months of heavy rains
and nine scheduled cleanings.

Figure 3 combines all the hourly power variations (from
Step 2) and the monthly effects of exposure and operationsl
maintenance (Step 3) over the power plant lifetime. It in
corporates the "3%, 1%" power degradation rate from Fig
ure 1 and the monthly cleaning from Figure 2.

Figure 4 illustrates all of the pre-tax cost flows associated
with the power plant shown in Figure 3. It shows high initial

o ~~ __ ~ __ -L __ ~ __ -L __ J-__ ~ __ ~ __ L-~ __ ~ __ -L __ ~ __ -L __ J-__ ~ __ ~ __ L-~ __ ~ __ -L __ ~ __ ~ __ ~

JAN JULY JAN JULY JAN

Figure 2-Dirt accumulation and cleaning effects o~ power output.

Computer Simulation of the Operations of Utility Grid Connected Photovoltaic Power Plants 345

N
r--
"': .,.,

l/l 0

~
.,; a::

c
u
a: u..

~ UJ
-' r-: a:
u

N '"

0 .,.,
::r

~N

~~
cr'
....IN
(L

W
:r: Ul

f-~
lJ...-

, D

f-
::JOJ
(LtC
f-":
::J-
D

>-
ON
Cl:::r
UJO z·
UJ

::r OJ
~
0

r--
::r
":
0

~
O~~~ __ ~~-L-.....I __ ~-L~ __ L--L-i __ L-~-L-.....I~~-L~ __ L--L-i __ L-~-L-.....I __ ~-L~ __ L--L-i __ L-~~

-5 -II -3 -2 -1 0 1 2 6 7 9 10 11 12 13 III 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
TIllE - 12 MOHTHSIINTERVAL (YEAR)

Figure 3-Energy output over time.

capital cost and relatively small operations and maintenance
costs. The monthly variations during operations are due to
the chosen cleaning policy, the timing of module purchases
for replacement of failures, warehousing, and repair costs.

Once all of this information is generated, an economic
model can then be used to determine "bottom line" results
in terms of the net present value of the investment, the cost
of energy, or the life cycle cost.

STATUS

The LCP computer program is currently implemented on
an IBM 370/3032 at the California Institute of Technology.
It is written in SIMCRIPT 11.5, a simulation language. This
model is currently being used by the Photovoltaics Program

at the Jet Propulsion Laboratory for photovoltaic system
evaluations.

ACKNOWLEDGMENTS

Development of the Lifetime Cost and Performance (LCP)
Model has benefited from interactions with a number of in
dividuals at the Jet Propulsion Laboratory. In particular, I
would like to thank the following for their contributions: D.
L. Schwartz (who provided many of the mathematical for
mulations of electricity generation) R. G. Chamberlain,
Tung-Chiang Deng, J. W. Doane, P. K. Henry, and J. H.
Smith. In addition, many thanks to M. C. Davisson and J.
Bevan of CACI, Inc.-Federal for computer programming
support.

346 National Computer Conference, 1980

(J)

Lii
N

...
1Il 0
(J)

~
N

~
~

('t)

~ q
N lJ!

N
(J)

r-;

CJ)
a:
([0
-.J_
-.J1Il o .
0-

Za:>

~~
f- -:::>
CD

a:r-
f-O
(f)~

0-
.f-
(f)1Il
Olll Ur-;

C

('t)
0

~
C

N
1Il
~
C

~
o
~~ __ ~~ __ ~~~~ __ ~-L __ ~~ __ ~~ __ ~ __ ~-L __ ~~ __ ~~ __ ~ __ ~-L __ ~~ __ ~~ __ ~~~-L __ ~~ __ ~~ __ ~~

-s -II -3 -2 -1 0 1] 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 3Q
TIr1E - 12 l·l0NTHS PER INTERVAL (YEAR)

Figure 4-Expenditures over time (in nominal dollars).

REFERENCES

1. Borden, Chester S., "Lifetime Cost and Performance Model for Photo
voltaic Power Systems," Proceedings of the 13th IEEE Photovoltaic Spe
cialists Conference, Washington, D.C., June 5-8, 1978.

2. Borden, Chester S. and Schwartz, Diane L., An Evaluation Techniquefor
Utility Connected Solar Power Systems: The LCP Modelfor Utility Owned
Photo voltaic Systems, Jet Propulsion Laboratory, (forthcoming).

3. Chamberlain, Robert G., A Normative Price for a Manufactured Product:
The SAMICS Methodology, Vol. 1, Executive Summary, DOE/JPL-I012-
79/5, Jet Propulsion Laboratory, Pasadena, California, January 15, 1979.

4. Hourly Solar Radiation-Surface Meteoroligical Observations, SOLMET,
Volume 1, User's Manual, TD9724, U.S. Department of Commerce, Na-

tional Oceanic and Atmospheric Administration, Environmental Data Ser
vice, National Climatic Center, Asheville, North Carolina. December 1977.

5. Doane, J. W., O'Toole, R. P., Chamberlain, R. G., Bos, P. B., and May
cock, P. D., The Cost of Energy from Utility-owned Solar Electric Systems:
A Required Revenue Methodology for ERDA/EPRI Evaluations, JPL Doc
ument 5040-29, ERDA/JPL-I012-76/3, Jet Propulsion Laboratory, Pasa
dena, California, June 1976.

6. Finger, Susan, Electric Power System Production Costing and Reliability
Analysis Including Hydroelectric, Storage, and Time Dependent Power
Plants, MIT Energy Laboratory Technical Report No. MIT-EL-79-006,
February 1979.

7. Requirements Assessment of Photovoltaic Power Plants in Electric Utility
Systems, Report EPRI ER-685, General Electric Company for Electric
Power Research Institute, Schenectady, NY, June 1978.

Computer simulation of solar electric generating
plants in a utility grid *
by S. YOUNG, O. MERRILL, R. KNOWLES and Y. GUPTA
Science Applications, Inc.
McLean, Virginia

INTRODUCTION

Solar electric power systems have the potential to supply
power for industrial, commercial, institutional, and utility
applications and to reduce consumption of non-renewable
fossil fuels. However, widespread utilization of solar electric
technologies in the United States will require that the solar
systems be operated in parallel with, or as supplements to,
the existing utility grid. For such systems, assumptions re
garding future electric energy costs and rate structures have
a major impact on solar system design and economics. Thus,
in order to fully assess the economic worth of solar electric
systems, it is necessary to evaluate their impacts on utility
generation characteristics and to determine solar electric
system design and cost relations within the context of the
overall utility/solar system interaction.

SAl has developed a methodology which evaluates the
performance and economics of grid-connected solar electric
technologies within the overall utility context. Because solar
energy varies both hourly and seasonally, reaching a peak
level for only a few hours each year, solar generation is
unique relative to conventional generation currently in use
by most utilities. The value of solar plants integrated in a
utility network consists of both electric generation costs and
capacity costs to meet a specified reliability level and de
pends on a number of variables: the mix and cost of con
ventional (non-solar) generation; the stochastic coincidence
between solar generation patterns and the electric system
load shape; the amount of solar penetration; the energy stor
age capability of the solar systems; and the solar system
dispatch strategy. This paper summarizes the various tech
niques which have been developed and provides initial re
sults for the worth of on-site photovoltaic, wind, and solar
thermal electric technologies.

* This work was partially supported by the U.S. Department of Energy under
Contract #XP-9-805J-J with SERI and Contract #955238 with the Jet Pro
pUlsion Laboratory.

347

METHODOLOGY OVERVIEW

Grid-connected solar electric systems have an impact on
utility characteristics by modifying the load to be supplied
by conventional generation. This provides direct economic
benefits to the utility in the form of reduced fuel costs and
operation and maintenance costs. In addition, the resulting'
load may also provide capacity savings in the form of re
duced installed capacity requirements, depending on the sta
tistical reliability of the solar generation during peak load
periods; and the modified load will affect the appropriate
utility generating mix of base, intermediate, and peaking
plants. Figure 1 illustrates these impacts and interactions
between solar electric power systems and the utility net
work.

The model developed by SAl provides a comprehensive
analysis of the impacts of different solar electric technologies
on the utility, and estimates the economic value of the solar
plants to the utility, dispersed user, and/or third-party inves
tor. The final output of the model is a set of estimates of the
breakeven cost for solar electric technologies under different
assumptions about ownership, payback period, and return
on investment. The model calculates the economic benefits
to dispersed users by assuming that the annual cost savings
to the utility are passed on to the user via an appropriate
rate structure. The precise nature of this rate structure is
currently the subject of rather controversial legislation,
partly because of the many complex interactions which are
involved and which this model is designed to evaluate.

An overview of the model is shown in Figure 2(a). The
overall assessment methodology involves five separate
model segments: hourly simulation of solar electric system
performance; utility load projection and adjustment for the
output of the solar plants; capacity expansion and mix ad
justment for conventional utility generation; production
costing for the resulting conventional utility mix; and finally
economic analysis of the solar plant value under different
ownership alternatives. Because of the extensive calcula
tions that are involved, the models have been implemen~ed

348 National Computer Conference, 1980

DISPERSED
SOLAR

SYSTEMS

UTILITY
LOAD

DEMAND

CURRENT I
UN ITS.

GENERATOR
CAPACITY

USE

,---------.
GENERATION RATES AND

RATE STRUCTURES
'"'4-----i PLANN I NG AND

CONSTRUCTION

ENERGY COSTS
AND

AVAILABILITY

REGULATORY
AGENCY

Figure I-Solar electric power systems impacts and interactions.

with a modular structure so that analysis runs can be made
independently of the others. The inputs, outputs, and anal
ysis steps of the various model segments are summarized in
Fi~ure 2(b) and described in what follows.

SOLAR ELECTRIC SYSTEM PERFORMANCE
MODELS

The solar electric performance models simulate the hourly
output of various solar technologies. Separate models are
available for photovoltaic, solar thermal electric and wind
systems. Each model consists of subsystem component
models which are used to compute steady-state efficiencies
at each hour. As an example, Figure 3 provides an overview,
of the simulation model for solar thermal electric power sys- '
tems. At each hour the model computes steady state energy
balances, tracking losses, cosine losses, blocking and shad
ing, reflectivity (or transmissivity), surface error losses, re
ceiver intercept factors, receiver absorptivity, receiver re
radiation and convection losses, thermal transport losses,
storage or hybrid energy flows, and part-load turbine gen
erator efficiencies.

Inputs for the various models comprise the following cat- ,
egories:

• Hourly meterological data on SOLMET tapes
- Beam and total horizontal radiation
-Sun position
- Temperature
-Wind speed

• Solar electric plant data
-Type
-Collector parameters
- Energy conversion parameters
-Subsystem efficiencies

-Storage/hybrid configuration
- Dispatch strategy

• Hourly on-site electric demand profiles

Outputs consist of the annual energy flows to/from various
subsystems, overall plant performance summaries, thermal
energy credits (where applicable), and hourly electric output
files for total generation and energy consumed onsite. The
model outputs can be used directly for systems analysis and
design trade studies, or the hourly output files can be at
tached for input to subsequent analysis models.

LOAD ADJUSTMENT MODEL

The load adjustment model estimates the impact of the
solar electric generation on the overall utility loads. The
original loads for the utility are first projected to the time
span of interest, and then the outputs of the solar electric
plants are subtracted on an hourly basis, taking into account
the transmission and distribution benefits of on-site gener
ation. Solar plant outputs are scaled by the number of units
and capacities of the various solar systems, and then their
hourly outputs are subtracted probabilistically in the sense
that various combinations of solar plant outages are consid
ered at each hour in accordance with the forced outages
probabilities. The hourly results are then accumulated in the
form of load duration curves for each month or season, as
indicated in Figure 4. These load duration curves are stored
for both the original load projection (without solar) as well
as for the solar-subtracted loads. This provides a non-solar
reference case which is carried along with the solar case
tl,troughout the remaining analysis, so that the differential
impacts of the solar generation can be accurately measured.

Simulation of Solar Electric Generating Plants 349

SOLAR
ELECTRIC

PERFORMANCE
MODEL

IIOURLY OUTPUT PROFILE
• TOTAL
• CONSUMED ON SITE
• THERMAL CREDIT

./

'" ./

'" ./
./

",'" --------------------------..... ..-'-'-------------

LOAD
ADJUSTMENT

HODEL

LOAD DURATION CURVE
FOR EAC .. SUDPERIOD
, HI TlfOUT SOLAR
• H I TIl SOLAR

~~~~~-~~~~~~~~~~~~~~-~~~~~~~~~~ 
MIX 

ADJUSTHENT 
HODEL ---- --------- ---------- -----~----- ------ ----- ------ ------ --- SYSGEN 

PR08ABILISTIC 
PRODUCTION 

COSTING 
------------------------------------------.... ~ .... .-. .......... --. ... .-. ......... -.. ..................... .-..-.~ .... -----~ ............... --. .... ~ ..... .--. ... 

ECONOMIC 
ANALYSIS 

MODEL 

Figure 2(a)-Overview of solar electric power systems impact analysis 
methodology. 

MIX ADJUSTMENT MODEL 

The mix adjustment model performs a capacity expansion 
analysis to determine the type and number of conventional 
generating units which should be added to the existing utility 
mix to meet projected electric demands at minimum total 
~ost. This analysis is performed for both the solar case and 
the non-solar reference case. Inputs for the analysis include 
the existing utility system generating plants; the available 
plants for capacity expansion; characteristics of each plant 
type, including rated capacity, minimum operating levels, 
fuel type, heat rates, forced outage probabilities, mainte
nance requirements, fixed capital costs, and variable O&M 
costs; utility economic data, such as fuel costs, escalation 

rates, taxes, discount rate, insurance, etc.; and projected 
utility load data in the form of seasonal or monthly load 
duration curves both with and without solar. 

Figure 5 presents a screening curve analysis which illus
trates the considerations involved in performing the utility 
mix optimization. The upper curve shows capacity costs for 
different plant types as a function of the number of hours 
per year which they are run; the lower curve represents the 
annual load duration curve. Capital-intensive plants such as 
nuclear or large coal have high fixed costs but low variable 

,costs, so they are most appropriate when used as base
loaded plants that are run almost continuously. Combustion 
turbines, on the other hand, have low capital costs but high 
variable costs, so they are most appropriately used as peak-



350 National Computer Conference, 1980 

SOlAR PtANT SPECJFlCATtOR FllE _____ _ 
- COl.LECTOW 

,;/ 
- DfSP"TOf sTRAuey ,;,; 

soutT IIOURlY P£TEorQ.OOICAl TAPE"'; ",; 

/" 
",'" 

- WI NO SPEtD '" 
- HUMIDITY ,;'" 

- PRESSURE '" 

US£R IE-'ANO FILE /'" 

- ENERGY CONVERSION 

- STOftAGE/HYIIRID 

- SOLAR RADIATION 

- SUN PMITtOM 
- TEMPtRATURI 

- HOURt.V ON-SITE ELECT1UC DEMAND 

SOlAR PlANT DATA ----------. 
FOR EACH Pt.,J.NT TYPE: 

- MUMIIER OF PlANTS 
- !4OURt.Y ELECTRIC OUTPUT FtlES 

- OUTAGE PROlAlillTtES 
- TRANSHnSiOft LOSS FACTOR 

UTIliTY LOAD DATA _________ .... 

- PROJECT~D HOURLY LOAD FILE 

PftOCESSING SEGPm' 

S IrM..ATE SOlAR Pt.NtT PERFORIWfCE 
• tNlTtALltE SUBSYSTEM 

'''ltAMlURS 
• DO FOR IACH HOUR I 

- CAlCut.AT£ SUISYSTEM 
E'''CIEHCIES 

- CALCut.AT! STUDY-STATE 
ENERGY BAlANCE 

COPPUTE ADJUSTED UTIlITY lOAD 
• INlTtALIIE LOAD DURATION 

CuqVES 

• DO FOR EACH HOUR AND 
PUHTi 

- SCAle PlANT OUTPUT 

- COf1PUTE RESUl.T1NG LOAD 

- ACCUMULATE INTO LOAD 
DURATtOM CURVE ACCORD-
ING TO OUTAGE PROIA81LITY 

OUTPUTS 

_----.-.sot.AR PtMT Pf:RFORfWtCE FlLE 
- ANNUAL ENERGY TOTALS 

- HOURLY ELeeTR I C OUTPUT 

/ 
II 

II 
II 

II 
II 

I 

7
1 ---... LOAD DURATION CURVES FOR 

EACH MOMm 
- WfTH SOUR CASE 

// 

- PfO-SOLAR CAse 

/'" 
// 

// 
~~~~~~~~~~~~L __ ~ OPTlf11ZED CAPACITY t1lX 

UTILITY PlANT OATA _________ --.. PERFOR" tJTIliTY CAPACITY EXPANSION --- - SOUR CASE

• eXISTl1f6 ANO AV"IUlLE, • 00 FOft SOUR A~D HO-SOt..AR CASE - HO-SOLM CASE
PUNT TYPES" - SET UP LINEAR PROGRAM TO

" "INIMIZE COSTS • FOR EACH PUNT TYPE:

- CAPACITY "
- SOlVE "IXED INTeGER LINEAR

PROGAAM
- "INIMUM OP~RATING LEVEL ~

- AD./UST P~AItIHG iJMlTS TO
MEET REOUIAn LOSS OF
EACH PROIA"ll"

- H£AT RATES ~
- FORen OUTAGE ",",liABILITIES ~ ",

- MAINTENANCE REauIR~f'lENTS ~,; - FOAHUlA T("A I NTeMAHCE
SCHEDULE .

- I.:APITAL COST' * COST DATA ,;<
,;,; ~

,;,; ~'"
UTILITY ECClHC»IIC OATA~~~ ______ ~. SIl1ULATE UTILITY GfHERATlOlt·

- FuEL COSTS ":..& • INITIALIZE PLAltT DATA

- I NfLATI OH, fUEL ESCALATION """ • DO FOR SOLAR & HO-SOLAR

- UTILITY TAXES. FIXED CHAftGE CASE:
RATES " - SET Uf> PLANT LOADING

'" M~
'" - ITERATE QN PLAHTS TO '" ~~~~M~~:T~R=-

'\.. SUCCESS I VE LOAD
'- DURATION CURVE fOR
'- NEXT PLANT (eOOTH-
'" BALER lAUX ALGOR 1 THH)

'" '" '" '" '"

• COMPUTE LO'S Qf LOAD PROB
~81LJTIES AND ENERGY NOT
~ERYED

US~R ~~~~!~u~ATA _______ .. __ ! EV:lU~~C~~;~!H~C=I~;
SOLAR PLAl4T TO THE un LlTY

- RATE Of RETURN
- TIME HORIZON

- SOLAR PLAN"' CAPITAL COSTS

- SOLAR PLANT 0," COSTS

• ASS1GH BENEfITS TO SOLAR
PLAHT USER

• EVALUATE BREAKEYEH PLANT
COSTS, PRESENT WORTH OF
SOLAR

______ .. IJTIUTY PERFORMNCE S!Jf1ARY
- GENERA T1 ON COSTS

/,;
,;/

- FIXED COSTS
- LOSS 0' LOAD PROIIABIllTY

- 1'1" I HTENAHeE SCHEDULE.

- ALL Of TUE A1QV£ FOa
SOLAIt AltO NO-sOUR CME

- GENERATION COSTS

- LOSS OF LOAD PROBAaILJTY

- EXlEc:TED EHERGY NOT
SERVED

- ENERGY PRODUCED BY
EACH PlANT

- ALL OF THE ABOVE FOR
SOLAR AHD HQ-SQLAR
CASE

,;'"
,;,;

,;
~ ____ .. SOW ECOftOftIC AlfAL'tSIS

- PRESENT WORTH TO
UTlLJTY

- PRESENT WORTH TO
US£Jl

- BREAKEVE" SOLAR PlANT
COST

Figure 2(b)-Summary of simulation inputs, outputs, and analysis
methodology"

CONCENTRATION/RECEIVER
• PARABOLOID DISH
• POINT FOCUS FRESNEL
• HELIOSTAT CENTRAL

RECEIVER
• PARABOLIC TROUGH
• FIXED MIRROR

DISTRIBUTED FOCUS

t-.....

Simulation of Solar Electric Generating Plants 351

THERMAL TRANSPORT THERMAL STORAGE / HYBR I D
• WATER/STEAM • SENSIBLE

• OILS ~. LATENT (PHASE CHANGE)

• SALTS
• LIQUID METALS
• CHEMICAL

TURBINE/GENERATOR
• OPEN BRAYTON

• CHEMICAL
• HYBRID FOSSIL FUEL

ELECTRICAL
ITRI\NSPORT

ELECTRICAL
STORAGE

~. CLOSED BRAYTON ~. DISTRIDUTED~' VARIOUS
• STEAM RANKINE • CENTRAL BATTERIES
• ORGANIC RANKINE
• STIRLING
• COMBINED CYCLES

POWER
CONDITIONING

l-+ AND
LOAD/UTILITY
INTERFACE

-Figure 3-Solar thermal electric generating plant model.

TO
LOAD

TYPICAL DAILY LOAD PROFILE LOAD DURATION CURVE

.pEAKING

INTERMEDIATE INTERMEDIATE

BASE BASE

TIME (HOURS)' PERCENT OF TIME

Figure 4-Formulation of utility load duration curves.

I
I

R ADJUSTED
I
I
I
I
I

352 National Computer Conference, 1980

PEAK I HG

INTERMEDIATE

BASE LOADED LOAD DURAT I ON CURVE

HR/YR-IN
OPERATION

HR/YR

Figure 5-Screening curve analysis for mix optimization.

ing units which run only a few hours per year to meet the
highest demand levels. By projecting the intersection points
of the plant cost curves onto the load duration curve, as
shown in the screening curve analysis of Figure 5, it is pos
sible to estimate the amount of capacity desired for each
plant type.

The screening curve analysis does not account for the
previously existing plant mix of the utility, the discrete sizes
of the available plants, the minimum operating levels of the
plants, the spinning reserve requirements to maintain avail
able capacity for meeting sudden load increases, or the prob-

$/H

GENERATOR VARIABLE
COST REPRESENTATION

MIN MAX

UNIT OUTPUT MW

HOURS

abilistic forced outage characteristics of the various plants.
SAl has formulated the basis capacity expansion problem
as a mixed-integer linear programming problem which is
solved using a standard linear programming package with
branch and bound techniques for the integer variables. Fig
ure 6 illustrates the discretization of the load duration curve
into demand segments and the variable cost representation
of each generator (which allows non-linear heat rates but
assumes linear incremental heat rates). The variables for the
linear program are the number of plants of each type to be
installed, the number of plants of each type which are dis
patched in each demand segment (if minimum operating lev
els are accounted for), and the operating level of each plant
in each demand segment. The objective function of the linear
program is to minimize the present worth of total fixed plus
variable plant costs. Constraints for the problem include the
following categories:

• Installed Reserve Margin
• Demand Requirements
• Spinning Reserve
• Plant Capacity
• Plant Availability and Purchase Constraints
• Plant Energy Limits (e.g., Hydro)
• Integer Variable Constraints.

The solution of the linear program provides the basic ca
pacity expansion plan; however it assumes de-rated plant
capacities without accounting explicitly for the probabilistic
nature of plant forced outages. This is performed in a sub
sequent analysis step, which estimates loss of load proba
bility (LOLP) using a Gram Charlier series expansion tech
nique to rapidly evaluate convolutions of the demand and
plant outage random variables. Peaking capacity is then
added or subtracted from the generation mix to meet the
required LOLP reliability criterion. Finally, a maintenance
schedule is estimated by removing plants according to main
tenance requirements so as to levelize the reserve margin
defined as total available plant capacity (minus peak de
mand) over all months. The final output of the mix adjust
ment model is the adjusted capacity mix (both with and

LDC REPRESENTATION

-,...."...--.--JSPINNING RESERVE ...
..,..--..... -=-04~ LOAD

DEMAND MW
Figure 6-Linear programming formulation.

without solar), the estimated annual production costs for
each generator type and fuel type, and an estimate of the
present worth of revenue requirements for the utility.

DETAILED UTILITY PRODUCTION COSTING
MODEL

A detailed probabilistic production costing model, SYS
GENt, is used if necessary to provide a refined estimate of
production costs based on the modified load duration curves
and the optimized conventional capacity mix for both the
system with solar generation and the reference system with
no solar generation. SYSGEN uses the standard Booth-Bal
eriaux algorithm to account for plant outages, in which the
effective load duration curve seen by each generator (or
valve point) is expressed as the original load duration curve
plus the random outages of previous generators in the loading
order. The successive load duration curves are computed
using a recursive technique to perform the required con
volutions, as described in Reference (1). *

* (1) S. Finger, "SYSGEN Production Costing and Reliability Model User
Documentation," M.I.T. Energy Laboratory Technical Report, May 1979.

Simulation of Solar Electric Generating Plants 353

ECONOMIC ANALYSIS MODEL

The outputs of either the mix adjustment model and/or the
detailed production cost model are then used to provide es
timates of the breakeven costs of the solar plants for utility,
on-site user, and third party investor ownership alternatives.
Additionally, the economic analysis can calculate the net
present worth of the solar systems for various solar plant
cost assumptions. The key assumption of the economic
analysis is that the rate structure applied to solar system
investors will reflect the difference in cost of electric service
to this customer class, so that the overall savings provided
by the solar plants are passed on to the investor.

CONCLUSIONS

The methodology described above provides a comprehen
sive and consistent analysis of the economic worth of dif
ferent solar electric technologies operating in a utility net
work. This is an important consideration in determining solar
electric system design and cost relations within the context
of the overall utility/solar system interaction. Representative
results of the modeling analysis will be presented at the con
ference for the worth of on-site photovoltaic, wind, and solar
thermal electric technologies.

Numerical Methods for the '80s

After more than a decade of emphasis
on commercial applications, scientific
computing is again emerging as an impor
tant area. This session will present two
papers, one dealing with methods for mak
ing use of the new parallel architectures
now being marketed, and the other pre
senting a language which makes matrix
computations accessible to the scientist or
casual programmer. The panel discussion
will examine a number of issues of current
concern in scientific computation and nu
merical analysis.

355

Roger Firestone
Area Director

Numerical algorithms for parallel computers

by DAVID K. STEVENSON
Zilog, Inc.
Cupertino, California

INTRODUCTION

Numerical methods are generally judged on their ability to
produce a reasonably accurate answer in a reasonable
amount of time. This paper deals with the latter criterion in
the context of non-standard architectures-namely vector
and array processors. These architectures owe their very
existence to the demands for more computing power than
is available on conventional, sequential computers, so speed
and efficiency are especially relevant in this area.

The major characteristics of array and vector processors
are described in the next section. We then indicate how these
features affect the formulation of efficient parallel algo
rithms. This leads to considerations involving information
flow during a parallel algorithm and its affects on bandwidth
requirements. The concluding section suggests the relevance
of this work to the explosive growth in integrated circuit
technology.

ARRA Y AND VECTOR PROCESSORS

Two types of parallel computer architectures are consid
ered in this paper: the array processor and the vector, or
pipelined, processor. Both have a centralized control facility
so that in both architectures, only one instruction is being
executed at a time, at least as far as the programmer is con
cerned. The machines get their parallel nature from the fact
that one instruction may cause many pairs of operands to
be combined to produce many results. The combining of the
operands is logically simultaneous-all results seem to the
programmer to be produced at once, although in reality their
production may occur over a number of time periods with
some being produced before others. It is the commonality
of the two implementation approaches at the instruction level
that makes it meaningful to talk about numerical techniques
in common for both types of parallel computers.

Many of the algorithmic concerns of one type of processor
are common to the other, although they may arise from dif
ferent implementation details. This section presents a gen
eral description of array and vector processors, together with
some general comments about how the implementations af
fect the design of numerical algorithms.

An array processor consists of a group of processing mod
ules all under the control of a centralized control unit. The /

357

central unit synchronizes the computation by issuing com
mands to the modules which in turn execute the commands
on data in their respective memories. Thus when an array
operation (sayan add) is in progress, n pairs of operands
will be processed, where n is the number of modules in the
array. There is also the capability of selecting only a subset
of the modules to be active for any command (either by the
central unit or based upon local data in each module). When
data must be transferred among modules, an interconnection
network is used. The network is also under the control of
the central control unit-the central unit commands the
modules to place data to be transferred into a network output
register, then causes all data to be transferred simultaneously
and finally commands the modules to read the new data from
their network input registers. An example of an array pro
cessor is the ILLIAC IV) which is an array of sixty-four
modules having a two-dimensional interconnection network.

A vector processor consists of a central computing unit
and a main memory. Data resides in the memory and is
brought into the central computing unit in streams to be pro
cessed. While the central computing unit is processing some
operands, computed results will be streaming back to the
memory and additional operands will be streaming to the
computing unit for processing. Typically, eight to thirty-two
different pairs of operands will be in some stage of processing
in the central computing unit during anyone time during the
execution of a vector instruction. As with the array proces
sor, there is a method of preventing a subset of the result
vector from being modified by computed results; in the vec
tor processor this is done by means of a control vector. A
vector of operands is usually restricted to be data in contig
uous memory locations or in memory locations separated by
a constant distance. Examples of vector processors are the
Cyber 203 (nee STAR-100)2 and the CRA Y _I. 3

An array architecture is predicated on the advantages of
replicating identical devices: economies of scale and sim
plicity of control. Economies of scale pertain both to man
ufacture and to maintenance: replication of identical mod
ules as opposed to different types of modules implies fewer
different types of modules to design, fewer different types
of modules to understand how to repair, and the implied
increase in volume suggests faster rise on the learning curve
to manufacture. Simplicity of control stems from a control
unit that treats all array modules the same; thus controlling
an array with twice the number of modules {twice the max-

358 National Computer Conference, 1980

imum computing power) is logically the same as controlling
a smaller configuration. Indeed, conceptually the processing
power of an array processor can be increased simply by add
ing more modules until money runs out or, more likely, until
the mean time between failures becomes intolerable.

A vector architecture is predicated on the advantages of
centralized processing-flexibility of use and sophistication
of available operations. Flexibility arises from there being
no "natural" vector length as in an array processor where
the number of modules defines the basic extent of parallel
ism. Vector processors can easily change the length of the
vectors they process during the course of the computation,
as required by'the algorithm. And by centralizing the com
puting power, complex operations become possible-once
data has been brought to the centralized arithmetic unit, it
can be used in complex operations, perhaps iteratively, be
fore being returned to the main memory. In contrast, iter
ative use of computed data in a sequential fashion seriously
degrades the performance of array architectures.

IMPLICATIONS FOR ALGORITHM DESIGN

There are certain characteristics that both types of pro
cessors have in common from the point o(view of algorithm

. design. The most important is that their parallel computing
rate is much greater than their sequential or scalar computing
rate-this is, in fact, their primary reason for existence. In
current machines, the difference in computing power for
parallel vs. scalar ranges from a factor of five (for the CRA Y -
1) to a factor of a hundred (for the ILLIAC IV) with a factor
of twenty being a convenient rule of thumb.

For the algorithm designer, this fact translates into a goal
of trading scalar formulations for vector formulations until
a point of diminishing returns is reached. A simple example
will clarify this principle. Suppose a function is to be eval
uated at each point of a grid, with the values dependent only
on the value of a parameter at that grid point. Thus all func
tions may be evaluated in parallel. In a sequential computing
environment, a typical approach would be to divide the range
of the parameter into subsets (sub-ranges) and find an effi
cient numerical approximation for each subset. Assume that
a continued fraction approximation is chosen, with each sub
range determining how many terms to use in the evaluation.
This may lead to a function where 50 percent of the calls
require 20 time units, 30 percent require 40, 10 percent re
quire 80, 5 percent require 160, 4 percent require 320 and
1 percent require 640. Thus evaluating the function at 100
points will take an average' of 5720 time units.

A straightforward translation of this approach to a vector
algorithm would be to use the worst case for all points. Since
this Will be done in vector mode, the time required is only
32 Wne units per point, 'or a total time of 3200 time units for
100 points (using the ratio factor of 20 mentioned above).
This is about a 44 percent decrease in execution time. A
better re-formulation would be to use the next to worst case
assumption (the form that works for 99 percent of the points)
for the entire grid, and then go back and correct the 1 percent
that require a more accurate approximation. This reduces'

the average time to 2240 time units, neglecting the overhead
to find that 1 percent.

An even better solution might be to try to find a single
approximation sufficiently accurate over the entire range
for example one that requires 120 time units per evaluation
in sequential mode. For sequential computing, this would
be a poor 'choice, but in the parallel processing context it
takes only 600 time units to evaluate the function at 100 grid
points, a definite improvement over the first adaptation of
the algorithm.

In both array and vector architectures, the key to a good
parallel algorithm is the partitioning of the task into a large
set of identical operations on different, independent data
sets. In an array architecture this leads to putting each data
set in a separate module and then executing the same pro
gram in each module. In a vector processor this leads to
putting each data set in a separate index of a set of vectors
and. then executing a program using vector instructions
rather than scalar instructions.

In an array processor, once the number of identified in
dependent tasks equals the number of modules there is little
incentive in further refinements. However, in a vector pro
cessor, there is the phenomenon of vector start-up which
encourages the use of long vectors (many independent
tasks). With each vector instruction, there is an initial period
of time while the vector processor is establishing data paths
and computing the first element of the result vector. This
time is generally lost, so that if one can combine several
vector instructions into one, then the number of lost start
ups can be reduced to one.

Thus, for example, if one is to perform a succession of
discrete Fourier transforms on different sets of data, it is
beneficial to process them together, since the vectors will
be M times as long, where M is the number of data sets. In
practice, it turns out that when M is larger than five on the
Cyber 203, executing the standard fast Fourier transform on
M sets simultaneously is faster than evaluating a specially

. designed parallel discrete Fourier transform on the data sets
(developed by Pease with an eye to using long yectors).4

As another example of the use of long vectors, consider
the multiplication of two banded matrices. Matrix mUltipli
cation is traditionally expressed in terms of the inner product
of rows of the first matrix and columns of the second matrix.
But in the case of matrices of low bandwidth, this approach
leads to short vectors and is therefore ill suited to parallel
computers. Instead, consider the banded matrix as a sum of
diagonal matrices. Matrix multiplication in this case takes
the form. of mUltiplication of diagonal matrices which is
equivalent to component-wise multiplication of vectors. If
the size of the matrix is much larger than its bandwidth, this
leads to a substantial improvement in the time required to
multiply banded matrices. This example will be used again
in the discussion of information bandwidth in the next sec
tion.

INFORMATION FLOW IN PARALLEL ALGORITHMS

In a parallel processing environment, one is acutely aware
of the placement and movement of data during a computa-

tion. In an array processor, data to be combined that reside
in different modules must be sent to a single module to be
processed. In a vector processor, vectors can be fetched
most efficiently if they reside in contiguous memory loca
tions. In both architectures, these considerations often lead

. to the rearrangement of data between steps in an algorithm.
The traditional example of data rearrangement is a matrix

transpose. In an array processor, assume that each column
of an n by n matrix resides in a separate module and that
the matrix must be stored by row for the next step in an
algorithm. Transposition of a matrix can be viewed as in
terchanging its diagonals. Each step of the process will
choose a super-diagonal and a sub-diagonal to interchange.
As the diagonals away from the main diagonal are progres
sively shorter, it is in fact possible to interchange two pairs
of diagonals simultaneously, thereby making maximum use
of the processor's bandwidth.

In a vector processor, there is usually a vector instruction
that will gather up elements from random memory locations
(or store a vector into arbitrary locations), as indicated by
a target vector. Because of the unstructured or non-local
distribution of operands, such instructions generally take
much longer than standard vector instructions (a factor of

. ten to twenty on the Cyber 203, for example). One could
transpose a matrix in this fashion, first generating the target
addresses and then effecting the chaotic move. However,
for matrices with dimensions a power of two, another
method is attractive. If the indices of the matrix are consid
ered as bit strings, then transposing the matrix corresponds
to interchanging these bit patterns, or a series of rotations
of these bit patterns. Such data re-arrangement corresponds
to successive applications of a perfect shuffle data re-ar- .
rangement. 5 Thus matrix transposition can be performed in
log2 n steps, where n is the smaller dimension, each step
operating on vectors of length nm, where m is the other
dimension. Note that this algorithm deals with considerably
longer vectors than an adaptation of the matrix transpose
operation given for array architectures. The major disad
vantage of this second algorithm is that it requires several
passes through the entire matrix; too many such passes (large
values of n) make the first, random gather algorithm faster.

The movement of information during an algorithm de
serves careful scrutiny in a parallel algorithm. In an array
processor, this is essentially the movement of data among
the modules. In a vector processor, this is essentially the re
arrangement of data to form contiguous vectors.

For example, consider a two dimensional fast Fourier
transform, which is the tensor product of one dimensional
fast Fourier transforms. With regard to data movement, the
two dimensional fast Fourier transform on an n by n data
set is equivalent to n simultaneous one dimensional trans
forms along one dimension, followed by n simultaneous one
dimensional transforms along the other dimension. If the
data set is arranged so that one dimension is across array
modules and the other is within modules, then the first step
involves executing the transform in parallel on data con
tained entirely within modules-no transfer of data among
modules is required. The next step requires n more trans
forms, and these may be done successively, using a parallel

Numerical Algorithms for Parallt~l Computers 359

transform where each transform takes one datum from each
module. This entails on the order of log2 n transfers of data
among modules per transform. An alternative is to transpose
the data and repeat the first step. Jesshope6 has shown that
if the array is interconnected as a k-dimensional grid (for any
k) then the better method is to transpose and repeat the trans
form within modules.

Jesshope's work assumes that the data are stored in a
"natural" order, that is, the processors are numbered such
that adjacent processors have numbers that differ by a con
stant and the- constant is the same for each processor; also,
the (i,j) data element is assigned to processor i. The -q'uestion
arises as to lifting this last restriction; that is, to allow the
data to be assigned to processors so as to minimize the time
required for data inter-communication. Although for some
types of data manipulation this idea can produce substantial
time savings, the work by Kung and Stevenson7 suggests that
this is not the case for the fast Fourier transform.

As another example of information flow during the course
of a parallel algorithm, and a measure of the bandwidth re
quired by the two architectures to support the execution of
a parallel formulation of the problem, consider the above
example of multiplying two banded matrices. For the fol
lowing discussion, the equations of matrix multiplication for

· tridiagonal matrices A and B will be used. The method is
expressed in vector notation where ad is the main diagonal
of A, ad-l is the first sub-diagonal and ad+ 1 is the first super
diagonal. Thus aji) corresponds to a(i,i) and ad-l(i) corre
sponds to a(i,i -1). The equations are

Cd+2(i) = ad+ I(i) bd+ l(i + 1)

Cd+ I(i) = aii) bd+ I(i) + ad+ l(i)bii + 1)

Cd(i) = ad-l(i)bd+I(i-I)+ad(i)bii) (1)

+ ad+ l(i)bd-l(i + I)

Cd- tU) = ad-l(i)bii -1) + aii)bd-l(i)

Cd-2(i) = ad-l(i)bd- l(i-1)

In this form the algorithm can be implemented on either
a vector or an array computer. On a vector processor, nine
vector mUltiplies and four vector adds are indicated. Current
vector processors, such as the Cyber 203, permit only one
vector operation per pass through the central computing unit
(on the CRAY-l, a multiply and an add may be performed

· under certain conditions). Thus the number of operands
streaming to and from memory during the course of this al
gorithm is approximately 39n where n is the length of the
main diagonal of the matrices. Because of the centralization
of the computing, this means that the bandwidth of the cen
tral unit must be tremendous for high performance, and in

· fact becomes the bottleneck in constructing very large sys
tems based on a vector architecture.

Now consider the same algorithm on an array processor.
Here the l'th element of each vector is stored in module num
ber i. For the computation, six numbers must be exchanged
among modules, and this can be done in six parallel steps.
Thus the number of operands that must flow during the

360 National Computer Conference, 1980

course of the algorithm is approximately 6n. This is consid
erably less than the case for a vector processor, and the
required bandwidth of the array is distributed among the
modules rather than concentrated at a centralized point. This
means that the bandwidth between any two modules can be
rather pedestrian and still maintain high performance of the
machine.

The natural question which arises at this point is whether
there is a way to reduce the bandwidth requirement between
the main memory and the centralized computing unit in a
vector processor. The answer is yes: do more with each
datum before returning the intermediate results to memory.
This is the approach taken in the BSP, 8 where up to five
streams of operands may be combined by one vector in
struction to produce one result (e.g., one BSP instruction
forms A + B*C for vectors A, Band C, a primitive operation
that is useful in matrix multiplication, for example).

The major difficulty with his approach lies in the com
plexity of the centralized computing unit, which must now
have internal registers to hold temporary results and nu
merous data and control paths to implement many templates
for combining operands.

Work by Kung and Leiserson9 shows that a regular array
of simple elements can be used for the centralized computing
unit to perform several useful and powerful operations: ma
trix multiplication, LU decomposition, and finite impUlse
response calculations are a few of their examples. All these
algorithms require only one pass through the data.

Each of the simple elements in their array is designed to
perform a simple basic operation A + B*C where A, Band
C are inputs. Outputs of the elements are B, C and the com
puted value. Other capabilities are needed for some of the
more complex examples, but this capability is enough to
mUltiply two tri-diagonal matrices. The diagonal elements
of matrices A and B stream into the unit and the product C
is computed, again by diagonals. Equations (1) are used to
compute the products.

The important point of this example is that the data are
fetched from memory exactly once, reducing the bandwidth
demands on the memory; the bandwidth available within the
array is actually greater than needed, but is distributed
among the modules of the array and therefore is relatively
low. The second key point is that the centralized computing
unit is a regular array, but a larger configuration must be
used to process larger matrices at maximum efficiency. Thus
this approach achieves the advantage of the vector processor
in handling variable sized vectors and the advantage of the
array processor with its regular structure, replicated units
and lower inter-module bandwidth requirements.

One drawback which stiH remains, however, is that pro
cessing time is still a function of the vector length since entire
vectors must be pushed through the centralized unit. For
some problems, this is unnecessary, as the next example
shows.

The structures of Kung and Leiserson also lend them
selves to solving certain problems with an inherently
recursive formulation, provided their modules are given ad
ditional capabilities of operations and mapping of results to

outputs (the latter is needed to effect the loops implied by
the recursive use of computed results). One example of re
cursion is the LU decomposition of a matrix, which illus
trates the last topic in this paper.

The LU decomposition of a tri-diagonal matrix C is spec
ified as a lower bi-diagonal matrix A with ones on the di
agonal and an upper bi-diagonal matrix B such that C = A * B,
where * is now matrix multiplication. The equations defining
A and B can be expressed as

ad-l(i) = Cd-l(i)/bii - 1)

(2)

Note that the definition of bji) depends through ad-l(i) on
the value of bi; -1). In the Kung and Leiserson array, this
computed quantity can be fed back into the calculation as
well as returned to memory, indicating the adaptability of
their approach.

However, if equations (2) are considered as specifying the
computation being performed by module number i in an array
processor, this recursive dependency means that module ;
will require the correct input from module; - 1 before it can
produce correct values for its components of A and B. Thus
it will take time proportional to the number of modules
(length of the vectors) for this information to trickle from
the first module to the last.

While waiting for the correct value of b, the modules are
idle, with no useful work. What happens if they perform the
same operation as if they had the correct data-that is, fetch
a value bd from the predecessor module, compute ad-I and
bdand pass their newly computed value of bd to the successor
module?

As shown by Heller, Stevenson and Traub, 10 if the matrix
C is diagonally dominant, successive computed values of A
and B are closer to the solution. And depending on the
amount of diagonal dominance, the convergence can be rapid
enough to terminate the process well before n steps (where
n is the size of the system), depending upon the degree of
accuracy needed. The interesting point of this work is an
indication of how far information must travel in computing
a suitably accurate answer, which need not be the distance
required for an exact answer using exact arithmetic.

CONCLUSION

The advent of sophisticated microprocessors and special
ized chips capable of floating point arithmetic signal a ma
turing technology well suited for large arrays dedicated to
parallel processing. Experience with the large scale parallel
processors has indicated several general techniques or guide
lines for developing parallel algorithms for such configura
tions, as discussed in this paper, but more work needs to be
done if these new structures are to be used effectively in
many applications. New numerical algorithms are needed
that are better suited for these parallel architectures than
are conventional sequential approaches.

REFERENCES

1. Barnes, G. H., Brown, R. M., Kato, M., Kuck, D. J., Slotnick D. L. and
Stokes, R. A., "The ILLIAC IV Computer," IEEE Transactions on Com
puters, Vol. C-17, 1968, p. 746.

2. Holland, S. A. and Purcell, C. J., "The CDC STAR-loo: A Large Scale
Network Oriented Computer System," Proceedings IEEE Conference
(Boston), 1971, p. 55.

3. Russell, R. M., "The CRAY-l Computer System," Communications of
ACM, Vol. 21, 1978, p. 423.

4. Korn, D. G. and Lambiotte, J. J., "Computing the Fast Fourier Trans
form on a Vector Computer," Mathematics of Computing, Vol. 33, 1979,
p.977.

5. Stone, H. S., "Parallel Processing with the Perfect Shuffle," IEEE Trans
actions on Computers, Vol. C-20, 1971, p. 153.

Numerical Algorithms for Parallel Computers 361

6. Jesshope, C. R., "Implementation of Fast Radix 2 Transforms on Array
Processors," Department of Computer Science Technical Report, Uni
versity of Reading, 1977.

7. Kung, H. T. and Stevenson, D. K., "A Software Technique for Reducing
the Routing Time on a Parallel Computer with a Fixed Interconnection
Network," Proceedings of a Symposium on High Speed Computer and
Algorithm Organization, Academic Press, New York, 1978, p. 423.

8. Stokes, R. A., "Burroughs Scientific Processor," Proceedings of a Sym
posium on High Speed Computer and Algorithm Organization, Academic
Press, New York, 1978, p. 85.

9. Kung, H. T. and Leiserson, C. E., "Algorithms for VLSI Processor
Arrays," Introduction to VLSI Systems, Addison Wesley, Reading MA,
1980, p. 271.

10. Heller, D. E., Stevenson, D. K. and Traub, J. F., "Accelerated Iterative
Methods for the Solution of Tridiagonal Systems on Parallel Computers,"
Journal of ACM, Vol. 23, 1976, p. 636.

Design of an interactive matrix calculator

by CLEVE MOLER
University of New Mexico
Albuquerque, New Mexico

INTRODUCTION

MA TLAB is an interactive computer program that serves
as a convenient "laboratory" for computations involving
matrices. It provides easy access to matrix software devel
oped by the LINPACK and EISPACK projects [1-3]. The
capabilities range from standard tasks such as solving si
multaneous linear equations and inverting matrices, through
symmetric and non symmetric eigenvalue problems, to fairly
sophisticated matrix tools such as the singular value decom
position.

It is expected that one of MA TLAB' s primary uses will
be in the classroom. It should be useful in introductory
courses in applied linear algebra, as well as more advanced
courses in numerical analysis, matrix theory, statistics and
applications of matrices to other disciplines. In nonacademic
settings, MATLAB can serve as a "desk calculator" for the
quick solution of small problems involving matrices.

The program is written in Fortran and is designed to be
readily installed under any operating system which permits
interactive execution of Fortran programs. The resources
required are fairly modest. There are about 6000 lines of
Fortran source code, including the LINPACK and EIS
PACK subroutines used. With proper use of overlays, it is
possible to run the system on a minicomputer with only 32K
bytes of memory.

The size of the matrices that can be handled in MA TLAB
depends upon the amount of storage that is set aside when
the system is compiled on a particular machine. We have
found that an allocation of 4000 words for matrix elements
is usually quite satisfactory. This provides room for several
20 by 20 matrices, for example. One implementation on a
virtual memory system provides 50,000 elements. Since most
of the algorithms used access memory in a sequential fash
ion, the large amount of allocated storage causes no diffi
culties.

In some ways, MATLAB resembles SPEAKEASY [4]
and, to a lesser extent, APL. All are interactive terminal
languages that ordinarily accept single-line commands or
statements, process them immediately, and print the results.
All have arrays or matrices as principal data types. But for
MATLAB, the matrix is the only data type (although scalars,
vectors and text are special cases), the underlying system
is portable and requires fewer resources, and the supporting

363

subroutines are more powerful and, in some cases, have
better numerical properties.

Together, LINPACK and EISPACK represent the state
of the art in software for matrix computatjon. EISP ACK is
a package of over 70 Fortran subroutines for various matrix
eigenvalue computations that are based for the most part on
Algol procedures published by Wilkinson, Reinsch and their
colleagues [5]. LINPACK is a package of 40 Fortran sub
routines (in each of four data types) for solving and analyzing
simultaneous linear equations and related matrix problems.
Since MATLAB is not primarily concerned with either ex
ecution time efficiency or storage savings, it ignores most
of the special matrix properties that LINPACK and EIS
PACK subroutines use to advantage. Consequently, only 8
subroutines from LINPACK and 5 from EISPACK are ac
tually involved.

This paper gives a brief description of MA TLAB from the
user's point of view and presents a formal description ofthe
MATLAB language. The system was designed and pro
grammed using techniques described by Wirth [6], imple
mented in nonrecursive, port~ble Fortran.

1. Elementary operations

MATLAB works with essentially only one kind of object,
a rectangular matrix with complex elements. If the imaginary
parts of the elements are all zero, they are not printed, but
they still occupy storage. In some situations, special meaning
is attached to 1 by 1 matrices, that is scalars, and to 1 by
nand m by 1 matrices, that is row and column vectors.

Matrices can be introduced into MA TLAB in four differ
ent ways:

-Explicit list of elements,
-Use of FOR and WHILE statements,
-Read from an external file,
-Execute an external Fortran program.

The explicit list is surrounded by angle brackets, '(' and
'),' and uses the semicolon ';' to indicate the ends of the
rows. For example, the input line

A = (1 2 3; 4 5 6; 7 8 9)

364 National Computer Conference, 1980

will result in the output

A=1. 2. 3.

4. 5. 6.

7. 8. 9.

The matrix A will be saved for later use. The individual ele
ments are separated by commas or blanks and can be any
MATLAB expressions, for example

x=(-1.3, 4/5, 4*atan(1»

results in

X= -1.3000 0.8000 3.1416

The elementary functions available include sqrt, log, exp,
sin, cos, atan, abs, round, real, imag, and conjg.

The FOR statement allows the generation of matrices
whose elements are given by simple formulas. The above
matrix A could also have been produced by

for i= 1:3, for j= 1:3, A(i,j) = 3*(i -1) + j;
The semicolon at the end of the line suppresses the print

ing, which in this case would have been nine versions of A
with changing elements. Several statements may be given
on a line, separated by semicolons or commas.

Names of variables are formed by a letter, followed by
any number of letters and digits, but only the first four char
acters are remembered.

The special character prime (') is used to denote the trans
pose of a matrix, so

X=x'

changes the row vector above into the column vector

X= -1.3000

0.8000

3.1416

Addition, subtraction and multiplication of matrices are
denoted by +, -, and *. The operations are performed
whenever the matrices have the proper dimensions. FQr ex
ample, with the above A and x, the expressions A + x and
x*A are incorrect because A is 3 by 3 and x is now 3 by 1.
However,

b=A*x

is correct and results in the output

B= 9.7248

17.6496

25.5743

Note that both upper and lower case letters are allowed for
input (on those systems which have both), but that lower
case is converted to upper case.

There are two "matrix division" symbols in MATLAB,
\ and I. If A and B are matrices, then A\B and BIA correspond
formally to left and right multiplication of B by the inverse
of A, that is inv(A)*B and B*inv(A), but the result is obtained
directly without the computation of the inverse. In the scalar

case, 3\1 and 113 have the same value, namely one-third. In
general, A \B denotes the solution X to the equation A * X = B
and BIA denotes the solution to X*A =B.

Left division, A\B, is defined whenever B has as many
rows as A. If A is square, it is factored using Gaussian elim
ination. The factors are used to solve the equations A * X(:, j)
= B(:, j) where B(:, j) denotes the jth column of B. The
result is a matrix X with the same dimensions as B. If A is
nearly singular (according to the LINPACK condition esti
mator, RCOND), a warning message is printed. If A is not
square, it is factored using Householder orthogonalization
with column pivoting. The factors are used to solve the
overdetermined equations in a least squares sense. The result
is an m by n matrix X where m is the number of columns
of A and n is the number of columns of B. Each column of
X has at most k nonzero components, where k is the effective
rank of A.

Right division, BIA, can be defined in terms of left division
by BIA=(A'\B')'.

The expression A **p means A to the pth power. It is de
fined if A is a square matrix and p is a scalar. If p is an integer
greater than one, the power is computed by repeated mul
tiplication. For other values of p the calculation involves the
eigenvalues and eigenvectors of A.

There are three predefined variables, RAND, EYE and
FLOP. The value of RAND is a random variable, with a
choice of a uniform or a normal distribution. The name EYE
is used in place of I to denote identity matrices because I
is often used as a subscript or as sqrt(-1). The dimensions
of EYE are determined by context. For example,

B=A+3*EYE

adds 3 to the diagonal elements of A and

X=EYEIA

is one of several ways in MATLAB to invert a matrix.
FLOP provides a count of the number of floating point

operations, or "flops," required for each calculation.
All computations are done using either single or double

precision real arithmetic, whichever is appropriate for the
particular computer. There is no mixed-precision arithmetic.
The Fortran COMPLEX data type is not used because many
systems create unnecessary underflows and overflows with
complex operations and because some systems do not allow
double precision complex arithmetic.

2. MATLAB functions

Much of MA TLAB' s computational power comes from
the various matrix functions available. The current list in
cludes:

INV(A)-Inverse.
DET(A)-Determinant.
COND(A)-Condition number.
RCOND(A)-A measure of nearness to singularity.
EIG(A)-Eigenvalues and eigenvectors.
SCHUR(A)-Schur triangular form.
POL Y(A)-Characteristic polynomial.

SVD(A)-Singular value decomposition.
PINV(A,eps)-Pseudoinverse with optional tolerance.
RANK(A,eps)-Matrix rank with optional tolerance.
LU(A)-Factors from Gaussian elimination.
CHOL(A)-Factor from Cholesky factorization.
QR(A)-Factors from Householder orthogonalization.
RREF(A)-Reduced row echelon form.
ORTH(A)-Orthogonal vectors spanning range of A.
EXP(A)-e to the A.
LOG(A)-Naturallogarithm.
SQRT(A)-Square root.
SIN(A)-Trigonometric sine.
COS(A)-Co,sine.
AT AN (A)-Arctangent.
ROUND(A)-Round the elements to nearest integers.
ABS(A)-Absolute value of the elements.
REAL(A)-Real parts of the elements.
IMAG(A)-Imaginary parts of the elements.
CONJG(A)-Complex conjugate.
SUM(A)-Sum of the elements.
PROD(A)-Product of the elements.
DIAG(A)-Extract or create diagonal matrices.
NORM(A,p)-Norm with p= 1,2 or 'Infinity.'
EYE(m,n)-Portion of identity matrix.
RAND(m,n)-Matrix with random elements.
ONES(m,n)-Matrix of all ones.
MAGIC(n)-Interesting test matrices.
HILBERT(n)-Inverse Hilbert matrices.
ROOTS(C)-Roots of polynomial with coefficients C.
USER(A)-Function defined by external Fortran

program.

Some of these functions have different interpretations
when the argument is a matrix or a vector and some of them
have additional optional arguments.

Several of these functions can be used in a generalized
assignment statement with two or three variables on the left
hand side. For example

<X,D) = EIG(A)

stores the eigenvectors of A in the matrix X and a diagonal
matrix containing the eigenvalues in the matrix D. The state
ment

EIG(A)

simply computes the eigenvalues and stores them in ANS.

3. Rows, columns and submatrices

Individual elements of a matrix can be accessed by giving
their subscripts in parentheses, e.g., A(1,2), x(i),
TAB(index(k-1)+ 1). An expression used as a subscript is
rounded to the nearest integer.

Individual rows and columns can be accessed using a colon
':' for the free SUbscript. For example, A(1,:) is the first row
of A and A(:, j) is the jth column. Thus

AU,:) =AU):) + c*A(k,:)

adds c times the kth row of A to the ith row.

Design of an Interactive Matrix Calculator 365

The colon is used in several other ways in MATLAB, but
all of the uses are based on the following definition.

j:k is the same as (j, j + 1, ... ,k)
j:k is empty if j>k.
j:i:k is the same as (j,j+i,j+2i, ... ,k)
j:i:k is empty if i>0 and j>k or if i<0 and j<k.

The colon is usually used with integers, but it is possible to
use arbitrary real scalars as well. Thus

1:4 is the same as 0,2,3,4)
O: 0.1: O.5 is the same as <0.0,0.1,0.2,0.3,0.4,0.5)

In general, a subscript can be a vector. If X and V are
vectors, then X(V) is <X(V(l», X(V(2», ... , X(V(n»). This
can also be used with matrices. If V has m components and
W has n components, then A(V, W) is the m by n matrix
formed from the elements of A whose SUbscripts are the ele
ments of V and W. Combinations of the colon notation and

. the indirect SUbscripting allow manipulation of various sub
matrices. For example,

A(0,5),:)=A«5,l),:) interchanges rows 1 and 5 of A.
A(2:k,l:n) is the submatrix formed from rows 2 through

k and columns 1 through n of A.
A(:,<3 1 2» is a permutation of the first three columns of

A.

4. FOR, WHILE and IF

The FOR clause allows statements to be repeated a spe
cific number of times. The general form is

FOR variable = expr, statement, ... , statement, END

The END and the comma before it may be omitted. In gen
eral, the expression may be a matrix, in which case the col
umns are stored one at a time in the variable and the fol
lowing statements, up to the END or the end of the line, are
executed. The expression (s often of the form j:k, and its
"columns" are simply the scalars fromj to k. Some examples
(assume n has already been assigned a value):

A = EYE(n); for i= 1 :n, for j= 1 :n, A(i, j) = I/(i + j -1);

generates the Hilbert matrix.

forj=2:n-l, for i=j:n- \, A(i,j)=0; end; A(j,j)=j;
end; A

changes all but the "outer edge" of the lower triangle and
then prints the final matrix.

for h= 1.O: -O.1: -1.O, «h,cos(pi*h»)

prints a table of cosines.

(X,D) = EIG(A); for v = X, v ,A *v

displays eigenvectors, one at a time.

366 National Computer Conference, 1980

The WHILE clause allows statements to be repeated an
indefinite number of times. The general form is

WHILE expr relop expr, statement, ... , statement,
END

where relop is =, <, >, < =, > =, or <) (not equal). The
statements are r~peatedly executed as long as the indicated
comparison between the real parts of the first components
of the two expressions is true. Here are two examples. (Ex
ercise for the reader: What do these segments do?)

eps= 1;
while 1 + eps> 1, eps = eps/2;
eps= 2*eps

E=0*A; F=E+EYE; n= 1;
while NORM(E+F-E,1»0, E=E+F; F=A*Fln;

n=n+l;
E

The IF clause allows conditional execution of statements.
The general form is

If expr relop expr, statement, ... , statement, ELSE
statement, ... , statement

The first group of statements is executed if the relation is
true and the second group is executed if the relation is false.
The ELSE and the statements following it may be omitted.
For example,

if abs(i - j) = 2, A(i,j) = 0;

5. Commands, text and files

MATLAB has several commands which control the output
format and the overall execution of the system.

The HELP command allows on-line access to short por
tions of text describing various operations, functions and
special characters.

Results are usually printed in a scaled fixed point format
that shows four or five significant figures. The commands
SHORT, LONG, SHORT E, and LONG E alter the output
format, but do not alter the precision of the computations
or the internal storage.
, The command CHOP(P) causes p octal or hexadecimal
figures to be chopped off after each subsequent floating point
operation, thereby simulating a computer with a shorter
word length. CHOP(0) restores full accuracy.

The CLEAR command erases all stored variables, except
FLOP, RAND and EYE. The statement A = <) indicates that
a "0 by 0" matrix is to be stored in A. This causes A to be
erased so that its storage can be used for other variables.

MATLAB has a limited facility for handling text. Any
string of characters deliniated by quotes (with two quotes
used to allow one quote within the string) is saved as a vector
of integer values. For example

'A =2+2' is the same as (1036463623641 362)

It is possible, though seldom very meaningful, to use such
strings in matrix operations. More frequently, the text is used
as a special argument to various functions.

NORM(A, 'inf) computes the infinity norm of A.
EXEC(T) replaces the remainder of the input line with

the text stored in T.
EXEC('file ') obtains subsequent MATLAB input from

an external file.
SAVE('file') stores all the current variables, pointers,

etc. in an external file.
LOAD('file ') retrieves everything stored by a previous

SA VE(,file ')
PUT('file, 'X) writes X on a file so that it can be retrieved

with GET or accessed by another program.
X = GET(,file ') reads X from a file where it was placed

by PUT or another program.

The operations which access external files cannot be han
dled in a completely machine-independent manner by port
able Fortran code. It is necessary for each particular in
stallation to provide a subroutine which associates external
text files with Fortran logical unit numbers.

6. Syntax diagrams

A formal description of the language acceptable to MAT
LAB, as well as a flow chart of the MATLAB program,
is provided by the syntax diagrams or syntax graphs of Wirth
[6]. There are ten nonterminal symbols in the language:

line,1 statement, clause, expression, term, factor, number,
integer, name, command.

The following syntax diagrams define each of the nonter
minal symliols using the others and the terminal symbols:

letter-A through Z,
digit-0 through 9,
character-() ; : + - * / \ = . , , <)
text-any sequence of letters, digits, and characters.

line

1->
1
1->

statement >- 1
1

clause >----1
1 I

----1-> command >--1----->
1 1 1 1
1 1-> expr >-----1 1
1 1 1 1
1 1----------1 1
1 1
1 1-< ; <-I 1
1---1 1----1

1-< , <-I

statement

1-> name >-----------------1
I I I
I I 1-> : >---1 1
I 1 1 1 1
I 1-> (>--1-> expr >-1-->) >-1
I 1 1 1

--I 1--< , <-I 1--> = >--> expr >-->
I 1
I 1-< , <--I 1
I 1 1 1
1-> <)---> name >---> > >------------1

clause

1-> FOR)---> name >--> = >--> expr >--------1
I I
I 1-> WHILE >-1 I
I-I 1-> expr >------------- I
I 1-> IF >-1 I I 1 I 1 I 1

-.-1 < <= = 0 >= > 1-->
I I I I I I I I
I ------------> expr >--1
I 1
1-> ELSE >------------------------------1
I I
1-> END >--------------------------1

expr

1->+>-1
1 1

---1----1---> term >------>

term

1 1 1 1
1-> - >-1 1 1-< + <-I I

I 1 1 1
1-1-< <-1-1

1 1
1-< <-I

> factor >----->
I

1-< * <-I 1
I 1 I'
1-·1-< / <-1-1

1 1
1-< \ <-I

Design of an Interactive Matrix Calculator 367

factor

1------> rillnber >-------1
1 1
1-> name >- -----1
1 1 1
1 1 1-> : >--1 1
1 1 1 1 1
1 1-> (>--1-> expr >-1->) >-1
1 1 1 1
1 1--< , <--I 1
1 1

--1-----> (>---> expr >---->) >-1-1-·--1-->
1 1 1 1 1
1 1--------1 1 1-> ' >-1 1
1 1 1 1 1
1--------> < >-1--> expr >---1-> > >-1 1
1 1 1 1 1
1 1-< <---I 1 1
1 1 1 1 1
1 1-< ; <---I 1 1
1 1 1 1 1
1 1-< , <--I 1 1
1 1 1
1--> factor >--> ** >--> factor >--1 1
1 1
1-----> ' >--->. text >--> ' >-------1

nllnber

1------1 1-> + >-1
1 1 1 1

--> int >---> . >---> int >----> E >------> int >--->

int

name

1 1 1 1 1 1
1 II 1->->-1 1
1 1 1 1
1------------------------1

> digit >--------->
1
1

1-< letter <-I
I 1

---> letter >--1-----------1--->
1 1
1-< digit <-I

command

----> reserved name >----->

368 National Computer Conference, 1980

ACKNOWLEDGMENT

Work on MATLAB has been carried out at the University
of New Mexico, and during visits to Stanford Linear Ac
celerator Center, Argonne National Laboratory and Los
Alamos Scientific Laboratory. Support has been provided
by the National Science Foundation and the Department of
Energy.

REFERENCES

I. Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., "LlN-

PACK Users' Guide," Society for Industrial and Applied Mathematics,
Philadelphia, 1979.

2. Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y.,
Klema, V. c., and Moler, C. B., "Matrix Eigensystem Routines-EIS
PACK Guide," Lecture Notes in Computer Science, volume 6, second
edition, Springer-Verlag, 1976.

3. Garbow, B. S., Boyle, J. M., Dongarra, J. J., and Moler, C. B., "Matrix
Eigensystem Routines-EISPACK Guide Extension," Lecture Notes in
Computer Science, volume 51, Springer-Verlag, 1977.

4. Cohen, S. and Piper, S., "SPEAKEASY III Reference Manual," Speak
easy Computing Corp., Chicago, III., 1979.

5. Wilkinson, J. H. and Reinsch, c., "Handbook for Automatic Computa
tion," volume II, Linear Algebra, Springer-Verlag, 1971.

6. Wirth, Niklaus, Algorithms + Data Structures = Programs. Prentice
Hall, 1976.

Image Processing

NCC '80 has addressed three important
areas of image processing through individ
ually organized sessions. These topics are
medical imaging, facsimile transmission,
and image understanding. In addition, the
panel discussion organized by T. Wiener
addresses various current topics.

The addressed image processing activ
ities have been strongly influenced by
computer technology advances.

369

Andrew Tescher
Area Director

Derivation of invariant scene characteristics from images

by BERTHOLD K. P. HORN
Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
Cambridge, Massachusetts

UNDERESTIMATING THE DIFFICULTIES

To us, vision is an immediate experience, not subject to care
ful introspection. We cannot write down protocols of pro
cessing steps that lie between the raw image intensities and
our vivid impression of the surrounding scenery. Further
more, we find ourselves in possession of this faculty long
before we learn to master the more sequential processing
tasks involved in the use of language, for example. Conse
quently, the difficulties of the vision process are often not
appreciated. This is as true today, when many inroads have
been made on the problem of understanding this process, as
it was earlier when it was thought that vision could be under
stood simply in terms of some general ideas of artificial in
telligence.

DIVERGENCE OF OBJECTIVES

This difficulty is further compounded by the fragmentation
of efforts resulting from widely varying motivations which
bring researchers to this problem. These range from an in
tense desire to understand naturally occurring vision systems
to an interest in industrial application of the machine vision.
Somewhere in between we find those pursuing the infor
mation inherent in an image without regard to the imple
mentation details of particular vision systems. It is not too
surprising then that one finds widely diverging criteria for
judging the importance of a particular piece of work.

Machine vision is not the "//0 of A.l."

Still others use the vision domain only as a test bed to
illustrate some general mechanisms currently favored in
other artificial intelligence work, or think of machine vision
and manipulation merely as the "I/O of A.I.," the interfaces
which allow the smart machine to interact intelligently with
its environment. I contend that this is unreasonable since
vision appears to have interesting features which do not have
counterparts elsewhere, certainly not in the serial, linguistic
kind of reasoning pursued in other areas of artificial intelli
gence. It is these features which make vision worthy of study
in its own right. One such aspect which has not been ap-

371

pro ached seriously elsewhere is that of spatial reasoning
which cannot be conveniently handled using the kinds of
data structures explored so far and found so useful in other
domains.

Task of a vision system

What is the task to be tackled by a vision system? Despite
widespread disagreement on many other aspects of vision,
most would agree that a vision system is expected to produce
a description of what is being viewed. The input may beone
or more images, each a two-dimensional distribution of scene
radiance values obtained from some sensing device. There
is less agreement on the form of the output. What kind of
description is acceptable? Clearly two criteria must be sat
isfied: The description must

(1) reflect some aspects of the three-dimensional reality,
and

(2) be useful in carrying out a specified task.

Usually it is expected that the description take a symbolic
form. Quite different kinds of descriptions are likely to be
considered adequate when the system is part of a device
which lines up integrated circuit chips for automated lead
bonding [Horn, 1975b], as opposed to a stage of a system
meant to express an opinion about the merits of a work of
art. As is so common, the representation of the given in
formation must be matched to the task at hand.

Task independence

It would be much nicer if one common mode of description
could be employed, since the system dealing with visual,
inputs then could be designed in isolation, without consid
ering the overall task. Perhaps this will turn out to be pos
sible, at least for early stages of an image analysis system.
Certain kinds of operations on images appear to be dictated
by the image rather than the task and ought to be done with
out consideration for the task. At this point, however, it
seems that task-dependent representations will be with us
for a while.

372 National Computer Conference, 1980

COMPLEXITY OF MACHINE VISION

An important lesson to be learned from the work on vision
so far is that the problems are profound and not likely to
succumb to the application of a bag of tricks from some other
field, such as communications theory, statistics or linear
systems theory. Machine vision merits its own methodology.
Attention must be paid to both the physics of image for
mation as well as the information processing techniques
which can produce the desired internal descriptions of what
is being viewed. It now seems that this latter endeavor can
be helped along by careful consideration of the human visual
system and its strength and weaknesses.

Unfortunately biological vision systems are extremely
complex and one can easily be led astray while studying
them in isolation, without adequate tests of hypdthesis one
develops. Similarly, knowledge of certain physiological or
chemical detail, for example, may not turn out to be very
illuminating. What happens to the conformation of the rho
dopsin molecule in the first few pico-seconds after a photon
hits it is very exciting, but not helpful in the understanding
of vision in a broader sense. One thing one learns quickly
from even casual study of natural vision systems is that pro
digious amounts of computation are involved in the pro
cessing of the image information.

A PECULIAR DICHOTOMY

For a mobile biological entity above a certain size, vision
is vital. It is hard to survive in a world where others have
this faculty and use it in competition for food and in predator
avoidance. Similarly, machine vision holds great promise for
artificial systems. Many tasks cannot be done, or can be
done only slowly or clumsily without it. So, vision, while
difficult, is also very useful. As a result people will push the
technology hard to get working systems. This has resulted
in a peculiar dichotomy. There are two kinds of systems:

(1) systems which work at reasonable speeds, and
(2) systems which work reasonably well.

"Automated" stereo

Illustrations of this curious phenomena abound. There are,
for example, a variety of machines which extract topo
graphic information at reasonable speeds from stereo pairs
of aerial photographs. These devices use special purpose
hardware to implement rather simple correlation techniques,
and, as a result, require significant human assistance. First,
the operator is obliged to help the system out of "trouble
spots" where the correlation technique fails because either
there is no detail, as on smooth sand or a lake, or because
the two views are too different, perhaps because the slope
is large. Many times the machine does not even note that
it is in trouble and so records bad information. These"glitches"
then have to be tediously removed in an interactive editing
process if the data is to be at all useful.

On the other side of the coin, one finds many good ideas
in the machine vision community which require sophisti
cated hardware and software for their implementation and
which are slow on computers oftoday's ilk. Methods recently
developed at Stanford [Quam 1971, Gennery 1977, Arnold
1978] and at M.I.T. [Marr 1974, Marr & Poggio 1976, Marr
& Poggio 1977] are considerably more robust, but require
staggering computing power on machines of standard ar
chitecture.

"Automatic" terrain classification

Systems have been developed for classification of terrain
based on the application of pattern recognition techniques
on a point by point basis. Special hardware has even been
built to implement this simple process, perhaps prematurely,
since the performance of this method leaves much to be de
sired. The classifier has to be trained anew for each image;
it cannot deal with hilly terrain and changes in the lighting
angles. Typically, the classifier is only used as a step in an
iterative refinement process with the human operator making
the real decisions. Even then many points are incorrectly
classified if the separation between classes is not very dis
tinct.

Yet at the same time work at Purdue [Landgrebe 1973,
Landgrebe 1975, Gupta et al. 1973, Swain 1973] and the
University of British Columbia [Starr & Mackworth.1978],
has demonstrated the advantages of several methods for in
cluding contextual information. Growing small regions of
similar spectral signature and classifying the regions, rather
than individual points helps, as does the use of even rather
primitive textural measures [Bajcsy 1973]. Amongst several
other promising ideas are those recently expounded at the
University of Maryland [Rosenfeld 1977b, Rosenfeld 1978]
regarding the use of relaxation methods, also known as co
operative computation methods. While all of these methods
produce results far superior to those generated by the point
by point methods, it must be admitted that they require con
siderably more computing power.

Line-finding

As a last example we may look at edge-detection and line
finding. Many fast systems, some even running at full video
speeds [Nudd 1978], use simple operations such as Robert's
gradient, discrete approximations to the Laplacian operator

. or Sobel gradients. These produce visually pleasing results,
but the edge fragments produced tend to be too noisy and
ill-defined to succumb to concerted efforts to glue them into
reasonably continuous lines and well-defined vertices.

Systems which do produce usable symbolic edge infor
mation such as those developed at M.I.T. [Griffith 1970,
Horn 1971, Shirai 1975, Marr 1976, Marr 1978] require vast
amounts of computing power both in terms of storage and
machine cycles. Very similar sorts of things can be said
about approaches which depend on scene segmentation
using region growing techniques instead of edge-finding

[Brice & Fennema 1970, Ohlander 1975, Tenenbaum & Bar
row 1977].

VISION HARDWARE

Part of the explanation for this dichotomy then lies in the
impatience of the implementers and the real world need for
solutions to pressing problems involving processing of visual
information. It is natural to think in terms of special purpose
hardware suited to particular algorithms. For specialized
tasks it is possible to realize one to three orders of magnitude
speed-up in processing with affordable special purpose de
vices. In the past the development of such hardware was
perhaps inappropriate since no one had enough confidence
in any particular scheme to commit resources to an imple
mentation effort. Also, the existence of fast systems that use
very simple methods has discouraged further work, since
"the problem has been solved." A look at the results quickly
convinces one that this is not so.

ROOTS

Several fields may be identified as having contributed
major ideas to machine vision. I will single out just three
here for discussion.

(1) Image Processing
(2) Pattern Recognition
(3) Scene Analysis

Each field has now matured sufficiently to have its basic
tools documented in a number of monographs, collections
and text books [Andrews 1970, Biberman 1973, Gonzalez
& Wintz 1977, Huang 1975, Lipkin & Rosenfeld 1970, Ro
senfeld 1969b, Rosenfeld 1976b], [Cheng 1968, Fu 1974, Fu
1976, Grasselli 1969, Tou & Gonzalez 1974, Watanbe 1969],
[Duda & Hart 1973, Hanson & Riseman 1978, Winston 1969,
Winston 1977], as well as hundreds of papers. Indeed, I can
not begin to do justice to these here, but instead refer the
reader to A. Rosenfeld's excellent bibliographies issued an
nually [Rosenfeld 1969a, Rosenfeld 1972, Rosenfeld 1973,
Rosenfeld 1975, Rosenfeld 1976a, Rosenfeld 1977a]. In order
to see where we are and to discern possible future trends we
should analyze the strength and weaknesses of each of these
paradigms in tackling the basic task we have set out for a
machine vision system.

Image processing

Image processing, as the name suggests, is something one
does with images. Herein lies both its strength and its weak
ness. Of the three fields mentioned, this is the only one which
deals with images as input. Indeed the basic operations apply
to arrays of raw image intensities. Many useful transfers of
ideas to machine vision can be traced to this emphasis. Un-

Derivation of Invariant Scene Characteristics 373

fortunately, image processing also produces images as out
put-not descriptions. Only in so far as these new, possibly
enhanced, smoothed or sharpened images are easier to pro
cess are these techniques useful. Since, in the case of image.
processing, the final product is intended for human viewing,
this is rarely the case. Further, one finds an unfortunate
emphasis on linear, shift-invariant methods and conse
quently assorted transform techniques. Such ideas have only
played a limited role in machine vision.

Pattern recognition

At the core ofthis field is a method, pattern classification,
which is concerned neither with images nor with descriptions
thereof. Pattern classification instead deals with the mapping
of vectors into integers-the vectors· having components
which represent measurements of some entity, the integers
denoting the classes to which this entity might belong. This
paradigm of feature extraction followed by pattern classifi
cation is of interest here, however, because many of its
applications have involved features extracted from visual
data. Several techniques used in the calculation of the nu
merical feature values for the classification process have
found other applications in machine vision. Much of the so
phisticated mathematical paraphernalia used to analyze the
pattern classification stage has not.

Scene analysis

Scene analysis concerns itself with the processing of de
scriptions of images into more sophisticated, or perhaps
more useful, descriptions. In this category one finds much
of the blocks-world work on line drawings [Roberts 1965,
Clowes 1971, Huffman 1971, Waltz 1975]. As it turns out,
obtaining the line drawings in the first place from the raw
image information was the more difficult task; in fact, no
system produces the perfect descriptions needed by early
scene analysis systems [Winston, 1972, Grape 1972, Falk
1972].

More recently, discouraged by the complexity of the dis
tributions of raw image intensities, researchers have turned
to methods which exploit prior knowledge about the likely
contents of the scene being viewed [Reddy et al. 1973, Te
nenbaum & Barrow 1976]. In Max Clowes' words: "Vision
is controlled hallucination." The image contributes a small
"controlling" influence on the vision system's "hallucina
tions" based on expectations and predictions. Similar ideas
have taken hold in other areas such as speech, where re
searchers despair of dealing with the complexities of the raw
acoustic waveform without guidance from various "knowl
edge sources.'~ There is however an ever-present danger of
"controlled hallucination" turning into "hallucination." I
think we may have closed our eyes to the raw image for too
long.

374 National Computer Conference, 1980

THINGS TO A VOID

The early years of any field tend to be characterized by
a wide variety of approaches, many false starts and tech
niques based on inappropriate analogies. We can learn from
these mistakes if we wish. Here are some things to avoid:

(1) Using a mechanism-oriented approach, instead of a
problem-oriented one.

(2) Applying a known bag of tricks from another field.
(3) Believing that complexity will automatically give rise

to interesting behavior.
(4) Hoping that "learning" will provide a boot-strapping

mechanism.
(5) Believing what works in a simple situation can be

easily extended to a more complex one.
(6) Suffering from theorem-envy-introducing unwar

ranted mathematical hair.
(7) Working only on the "interesting" sub-problem

often not the weakest link.
(8) Following the latest fad. Create your own instead!
(9) Taking a random path through a maze of possibilities

without explanation.
(10) Admiring the King's new clothes.

CURRENT TRENDS

Attempts are being made to apply machine vision methods
to so many different problems using so many different meth
ods that it is impossible to give any kind of coherent sum
mary. Furthermore, progress is being made in understanding
several important fundamental issues which cut across the
spectrum of applications domains. It seems appropriate to
concentrate attention to some of these issues.

Representation of objects

If the task of the vision systept is to produce useful de
scriptions of the scene being viewed, it is naturally important
to pick a good representation for three-dimensional objects.
If such a description is then to be used for recognition or in
the determination of an object's position and orientation, it
must capture information about the shape of the object and
its disposition in space. This is an important problem, which
does not occur in the processing oftwo-dimensional patterns
such as microscopic image ofbio-medical interest or in other
areas such as finger-print identification or character recog
nition. A number of representations are currently being ex
plored. One uses generalized cylinders or cones to approx
imate parts of objects after segmenting them into suitable
pieces [Agin & Binford 1973, Nevatia 1974, Binford 1971a,
Hollerbach 1976, Nevatia & Binford 1977, Marr & Nishihara
1977]. The information needed to construct such represen
tations may be obtained by a variety of techniques including
laser range finding [Nitzan et al. 1977] and stereo disparity
calculations.

Spines

Another representation of the shape of an object uses sur
face normals or "spines." This was suggested [Horn 1977],
as a more appropriate representation than one in terms of
elevations above some reference plane [Horn 1975a], in part
because surface normals undergo a simpler transformation
under rotation. Indeed, human performance on shaded im
ages suggest that we are rather poor at establishing rela
tionships in elevation, but have a pretty good idea about the
local surface orientation. Fortunately, methods for deter
mining this kind of information exist, ranging from photo
metric stereo [Woodham 1977] to the shape from shading
algorithm. More recently this representation has been sug
gested as a half-way step to representation in terms of gen
eralized cones [Marr 1978].

Early symbolic description

From the discussion of the roots of machine vision it must
be clear to the reader that the crucial thing missing from all
three ancestor fields is the lack of a method which takes one
from raw image intensities to symbolic descriptions. Little
thought had been given even to the problem of where the
appropriate point for this transformation would be. Recent
work suggests that the first symbolic description be obtained
at an early stage [Marr 1976] of the processing of the visual
information. That is, the initial symbolic description contains
very many items, each of a rather simple nature. Further
analysis is then carried out using symbolic information pro
cessing techniques on this initial data base.

This is a considerable departure from vision work in the
blocks world, where the first real symbolic description was
a complete line drawing. Even then it was clear that this was
inappropriate, and crude symbolic description and the mech
anisms for manipulating them, existed hidden in huge as
sembly language programs [Horn 1971].

Many of the ideas regarding the use of early symbolic de
scriptions have come from a better understanding of human
vision. Conversely, computer implementations provide an
outstanding way of testing emerging theories about visual
perception [Marr 1978]. Without such checks speCUlation
runs rampant.

UNDERSTANDING IMAGE FORMATION

It is not uncharacteristic of computer science to tackle a
new domain with total disdain for the details of the mech
anisms evident in that domain. Of more interest to the com
puter scientist are questions of computational structures and
efficiency and whether a proposed algorithm will apply in
the new domain. Machine vision is no exception in this re
gard. It seems that for a long time there was very little in
terest in the origins of the arrays of numbers given as input
to a machine vision system. Recently it has been found that
many constraints due to the physics of the real world situ
ation can be successfully exploited, once understood [Waltz

1975, Horn 1975a]. This enables processing not otherwise
possible.

Understanding the process of image formation is helpful
in inverting the image formation. That is, it is useful to know
how objects are imaged, if one wishes to build a symbolic
description of what is being viewed from the image. This
kind of consideration has focused attention on smooth var
iations in intensities in an image [Horn 1977, Horn 1978].
Previously, image intensities were processed only to extract
regions of more or less uniform properties or to locate points
of more or less rapid intensity change. At that point the image
intensities themselves were discarded. This is unfortunate
since a great deal of information about the objects being im
aged is available there. This is quite different from the sit
uation which applies in the case of binary images, useful in
character recognition and printed circuit inspection, for ex
ample.

Basically, what one is after is information about the per
manent properties of the objects, such as reflectance color
and shape. This information is present in the raw image, but
only in a coded fashion [Barrow & Tenenbaum 1978]. One
may, for example, have to also deal with illumination con
ditions and shadowing. It is possible to extract all of this
information from the raw image intensities, once the basic
laws of image formation are understood. It is time to break
the code.

CONCLUSION

Progress has been made-at least we now know more
about what we are up against. Much remains to be done.
There is no shortage of good ideas right now, so we can
discard some that no longer serve us well.

REFERENCES

1. Agin, G. J. and Binford, T. O. (1973), "Computer Description of Curved
Objects," Proc. 3rd Int. Joint Conf. on Art. Intell., Stanford University,
Stanford.

2. Andrews, H. C. (1970), Computer Techniques in Image Processing, Ac
ademic Press, N. Y.

3. Arnold, R. D. (1978), "Local Context in Matching Edges for Stereo Vi
sion," Proc. DARPA Image Understanding Workshop, May 1978, Bau
mann, L. (Ed), Science Applications, Inc.

4. Bajcsy, R. (1973), "Computer Identification of Visual Surfaces," Com
puter Graphics and Image Processing, Vol 2, No.2, pp 118-130.

5. Barrow, H. G. and Tenebaum, J. M. (978), "Recovering Intrinsic Scene
Characteristics from Images," in Hanson, A. & Riseman, E., Computer
Vision Systems.

6. Biberman, L. M. (Ed) (1973), Perception of Displayed Information,
Plenum Press, N.Y.

7. Binford, T. O. (1971a), "Visual Perception by Computer," Proc. IFIP
Con/., Dubrovnik, Yugoslavia.

8. Binford, T. O. (1971b), "Visual Perception by Computer," IEEE Conf.
Systems and Control, Miami, Dec 1971.

9. Brice, C. and Fennema, C. (1970), "Scene analysis using regions," Arti
ficial Intelligence, Vol 1, No.3, pp 205-226.

10. Clowes, M. B. (1971), "On seeing things," Artificial Intelligence, Vol 2,
No.1, pp 79-112.

11. Cheng, G. C., et al. (Eds) (1968), Pictorial Pattern Recognition, Thomp
son Book Co., Washington D.C.

Derivation of Invariant Scene Characteristics 375

12. Duda, R. O. and Hart, P. E. (1973), Pattern Classification and Scene
Analysis, John Wiley & Sons, N.Y.

13. Falk, G. (1972), "Interpretation of imperfect line data as a three-dimen
sional scene," Artificial Intelligence, Vol 4, No.2, pp 101-144.

14. Fu, K. S. (1974), Syntactic Methods in Pattern Recognition, Academic
Press, N.Y.

15. Fu, K. s. (Ed) (1976), "Digital Pattern Recognition, Springer, N.Y.
16. Gennery, D. B. (1977), "A Stereo Vision System for an Autonomous

Vehicle," Proc. 5th Int. Joint Can/. Art. Intell., Cambridge, Mass.
17. Gonzalez, R. C. and Wintz, P. (1977), Digital Image Processing, Addison

Wesley, Reading, Mass.
18. Grape, G. R. (1973), "Model Based (Intermediate-Level) Computer Vi

sion," Stanford Univ. A.1. Memo 201.
.19. Grasselli, A. (Ed) (1969), Automatic Interpretation and Classification of

Images, Academic Press, N.Y.
20. Griffith, A. K. (1970), Computer Recognition of Prismatic Solids, M.I.T.

Project Mac, TR-73, M.I.T., Cambridge, Mass.
21. Gupta, J. N., Kettig, R. L., Landgrebe, D. A. and Wintz, P. A. (1973),

"Machine boundary finding and sample classification of remotely sensed
agricultural data," Machine Processing of Remotely Sensed Data, Purdue
University,4B25-4B35.

22. Hanson, A. and Riseman, E. (Eds) (1978), Computer Vision Systems,
Academic Press, N.Y.

23. Hollerbach, J. (1976), "Hierarchical Shape Descrition of Objects by Se
lection and Modification Prototypes," M.I.T. A.1. T.R. 346.

24. Horn, B. K. P. (1971), "The Binford-Horn Line-Finder," M.I.T. A.1.
Memo 285.

25. Horn, B. K. P. (1974), "Determining Lightness from an Image," Com
puter Graphics and Image Processing, Vol. 3, No.1, pp 277-299.

26. Horn, B. K. P. (1975a), "Determining Shape from Shading," Chapter 8,
in Winston, P. H. (Ed) The Psychology of Computer Vision.

27. Horn, B. K. P. (1975b), "A Problem in Computer Vision: Orienting Sil
icon Integrated Circuit Chips for Lead Bonding," Computer Graphics
and Image Processing, Vol 4, No.3, pp 294-303.

28. Horn, B. K. P. (1977), "Understanding Image Intensities," Artificial In
telligence, Vol. 21, No. 11, pp 201-231.

29. Horn, B. K. P. and Bachman, B. L. (1978), "Using Synthetic Images to
Register Real Images with Surface Models, C.A.C.M. (in the press).

30. Hueckel, M. H. (1971), "An operator which locates edges in digital pic
tures," J. Assoc. Compo Mach., Vol 18, pp 113-125.

31. Hueckel, M. H. (1973), "A local visual operator which recognizes edges
and lines," J. Assoc. Compo Mach., Vol 20, pp 634-647.

32. Huffman, D. A. (1971), "Impossible Objects as nonsense sentences," in
Machine Intelligence, Vol 6, Metlzer B. & Michie, D. (Eds), Edinburgh
University Press, Edinburgh, pp 295-323.

33. Huang, T. S. (Ed) (1975), Picture Processing and Digital Filtering, Sprin
ger, N.Y.

34. Landgrebe, D. A. (1973), "Machine Processing for Remote Acquired
Data," LARS Information Note 031573. Laboratory for Applications of
Remote Sensing, Purdue Univ., Lafayette, Ind.

35. Landgrebe, D. A. (1975), "NASA Contract NAS9-1416 Final Report,"
Laboratory for Applications for Remote Sensing, Purdue Univ., Lafay
ette, Ind.

36. Lipkin, B. S. and Rosenfeld, A. (Eds) (1970), Picture Processing and
Psychopictorics, Academic Press, N.Y.

37. Mackworth, A. K.(1973), "Interpreting pictures of polyhedral scenes,"
Artificial Intelligence, Vol 4, pp 121-138.

38. Marr, D. (1974), "A note on the computation of binocular disparity in a
symbolie, low-level visual processor," M.I.T. A.1. Memo 327.

·39. Marr, D. (1976), "Early processing of visual information," Phil. Trans.
Roy. Soc. B 275, 483-524.

40. Marr, D. & Poggio, T. (1976). "Cooperative computation of stereo dis
parity," Science 194,283-287.

41. Marr, D. and Poggio, T. (1977), "A Theory of Human Stereo Vision,"
M.I.T. A.1. Memo 451.

42. Marr, D. and Nishihara, H. K. (1977), "Representation and recognition
of the spatial organization of three-dimensional shapes," Proc. Roy. Soc.
B (in the press).

43. Marr, D. (1978), "Representing visual information," in Computer Vision
Systems, Hanson, A. & Riseman, E. (Eds).

376 National Computer Conference, 1980

44. Nevatia, R. (1974), "Structured Descriptions of COIhplex Curved Sur
faces and Visual Memory," Stanford University, A.1. Memo 250.

45. Nevatia, R. (1976), "Depth Measurement by Motion Stereo," Computer
Graphics and Image Processing, Vol 5, No 2., pp 203-214.

46. Nevatia, R. and Binford, T. O. (1977), "Description and Recognition of
Curved Objects," Artificial Intelligence, Vol 8, No.1, pp 77-98.

47. Nitz·an, D., Brain, A. E. and Duda, R. O. (1977), "The measurement and
use of registered reflectance and range data in scene analysis," Proc.
IEEE, Vol 65, No.2, pp 206-220.

48. Nudd, G. R., Nygaard, P. A. and Thurmond, G. D. (1978), "Charge
Coupled Device Technology for Smart Sensors," Proc. DARPA Image
Understanding Workshop, May 1978, Baumann, L. (Ed), Science Ap
plications, Inc.

49. Ohlander, R. B. (1975), "Analysis of Natural Scenes," Carnegie-Mellon
University, Department of Computer Science, Ph.D. Thesis.

50. Quam, L. H. (1971), "Computer Comparison of Pictures," Stanford
University A.1. Memo 144.

51. Reddy, D. R., Erman, L. D., and Neely, R. B. (1973), "A model and a
system for machine perception of speech," IEEE Trans. Audio and Elec
tronics, AU-21, Vol 3, pp 229-238.

52. Roberts, L. G. (1965), "Machine Perception of Three-Dimensional Sol
ids," in Optical and Electro-optical Information Processing, Tippet, J.
T., et at. (Eds), M.I.T. Press, Cambridge, Mass.

53. Rosenfeld, A. (1969a), "Picture Processing by Computer," Computing
Surveys, Vol 1, pp 147-176.

54. Rosenfeld, A. (1969b), Picture Processing by Computer, Academic Press;
N.Y.

55. Rosenfeld, A. (1972), "Picture processing: 1972," Computer Graphics
and Image Processing, Vol 1, pp 394-416.

56. Rosenfeld, A. (1973), "Progress in picture processing: 1969-71," Com
puting Surveys, Vo15.

57. Rosenfeld, A. (1975), "Picture Processing: 1974," Computer Graphics
and Image Processing, Vol 4, No.2, pp 133-155.

58. Rosenfeld, A., Hummel, R. A. and Zucker, S. W. (1976), "Scene La
belling by Relaxation Operations," IEEE Transactions on Systems, Man
and Cybernetics, SMC-6, pp 420-433.

59. Rosenfeld, A. and Kak, A. C. (1976), Digital Picture Processing, Aca
demic Press, N.Y.

60. Rosenfeld, A. (1976a), "Picture Processing: 1975," Computer Graphic
and Image Processing, Vol 5, No.2, pp 215-237.

61. Rosenfeld, A. (Ed) (1976b), Digital Picture Analysis, Springer, N.Y.
62. Rosenfeld, A. (1977a), "Picture Processing: 1976," Computer Graphics

and Image Processing, Vol 6, No.2, pp 157-183.
63. Rosenfeld, A. (1977b), "lterative'Methods in Image Analysis," Proc.

IEEE Conf. on Pattern Recognition and Image Processing, June 1977,
pp 14-18.

64. Rosenfeld, A. (1978), "Some Recent Results Using Relaxation-Like Pro
cesses," Proc. DARPA Image Understanding Workshop, May 1978, Bau
mann, L. (Ed), Science Applications, Inc.

65. Shirai, Y. (1975), "Analyzing Intensity Arrays using Knowledge about
Scenes," Chapter 2, in Winston, P. H. (Ed) The Psychology of Computer
Vision.

66. Starr, D. W. and Mackworth, A. K. (1978), "Exploiting Spectral, Spatial
and Semantic Constraints in the Segmentation of LANDSAT Images,"
University of British Columbia, Computer Science T.R. 78-1.

67. Swain, P. H. (1973), "Pattern Recognition: A Basis of Remote Sensing
Data Acquisition," LARS Information Note 111572. The Laboratory of
Applications of Remote Sensing, Purdue Univ., Lafayette, Ind.

68. Tenenbaum, J. M. and Barrow, H. G. (1976), "IGS: a paradigm for in
tegrating image segmentation and interpretation," in Pattern Recognition
and Artificial Intelligence, Academic Press, N.Y.

69. Tenenbaum, J. M. and·Barrow, H. G. (1977), "Experiments ininterpre
tat ion-guided segmentation," Artificial Intelligence, Vol 8, No 3, pp 241-
274. '

70. Tou, J. T. and Gonzalez, R. C. (1974), Pattern Recognition Principles,
Addison-Wesley, Reading, Mass.

71. Waltz, D. L. (1975), "Understanding Line Drawings of Scenes with Shad
ows," Chapter 2, in Winston, P. H. (Ed) The Psychology of Computer
Vision.

72. Watanabe, S. (1969), Methodologies of Pattern Recognition, Academic
Press, N.Y.

73. Winston, P. H. (1972), "The M.I.T. Robot," Machine Intelligence 7,
Edinburgh University Press, Edinburgh.

74. Winston, P. H. (Ed) (1975), The Psychology of Computer Vision,
McGraw-Hill, N.Y.

75. Winston, P. H. (1977), ArtificialIntelligence, Chapter 8, Addison-Wesley,
Reading, Mass.

76. Woodham, R. J. (1977), "A cooperative algorithm for determining surface
orientation from a single view," Proc. 5th Int. Joint Conf. on Art.Intel/.,
M.I.T., Cambridge, Mass.

Image understanding architectures*

by GRAHAM R. NUDD
Hughes Research Laboratories
Malibu, California

I. INTRODUCTION

One of the more complex processing problems facing both
the military and commercial world is that of image analysis
and understanding. The range of applications in which a real
time computer vision system could have impact is extraor
dinarily large. In the military arena the need and potential
benefits of a real time capability for target acquisition, au
tonomous guidance and image interpretation are well rec
ognized and understood. To this end the Department of
Defense is currently supporting several projects such as the
DARPA Image Understanding (I.U.) Program to analyze
both the processing requirements and machine organization
for complex image processing and analysis. Truly autono
mous systems which can perform both the imaging and pro
cessing in real-time using inexpensive and compact hardware
will have significant impact in the tactical scenario for ap
plications requiring remote sensing and analysis. (The term
'smart-sensors' has been introduced for hardware which
performs both the sensing and processing in a single sub
strate.) In addition, an equally important impact might be
made in areas such as automated production and inspection
for machine assembly, etc. These two general areas are in
many ways analogous and much of the hardware and soft
ware developed can be applied to both problems. Significant
differences do, however, exist in terms of the signal to noise
specification of the images, the required response time of
the machinery, and the system constraints such as machine
size and cost.

The image understanding problem can be divided into two
largely separate issues. The first is the selection of the ap
propriate processing functions required to analyze the im
agery, and the second is concerned with specification and
design of the optimum machinery to perform those functions.
The first issue has been the subject of much research tra
ditionally performed on large scale general purpose machines
at both academic institutes and industrial companies. De
spite the very significant advances made in this area in recent
years, this topic continues to be one of very fruitful research,

* This work is supported in part by the Advanced Research Projects Agency
of the Department of Defense and was monitored by the Wright Patterson Air
Force Base under Contract F-33615-76-C-1203, ARPA Order No. 3119.

377

and while it is fair to say there is as yet no widely accepted
general consensus concerning the optimum set of processing
algorithms, a fairly well defined class of functions and in
structions can now be enumerated. The second issue con
cerns the machine architecture and design to effectively per
form the desired functions with sufficient throughput to
enable real-time implementation. This paper is concerned
primarily with this issue as it relates to present and emerging
technology.

To set a perspective for this work, in Section II of this
paper, we briefly review some architectural concepts for the
machines developed to date and describe their performance
goals. In Section III we discuss the type of arithmetic op
erations and instructions important to image understanding
and give estimates of the potential throughput requirements.
In this regard it is important to be aware of the distinction
between required functions (such as convolution, for ex
ample) and the algorithm or technique required to perform
it. This is significant with the very rapid changes in Very
Large Scale Integrated circuit (VLSI) and Very High Speed
Integrated circuit (VHSI) technology, since much of the al
gorithm development to date has been concerned with
matching the necessary mathematical operations to current
or previously developed machinery. In Section IV we de
scribe the computational elements or primitives for the low
level processing and discuss some of the techniques which
may prove effective using both the present level of metal
oxide-semiconductor (MOS) integration and VLSI tech
niques. We illustrate this by some charge coupled device
(CCD)/MOS circuits we have developed under the DARPA
IU program, and discuss how these might be appropriate for
a distributed architecture concept.

It should, however, be emphasized that the complexity
of the imaging problem, both in terms of the processing re
quirements, algorithm definition and the necessary compu
tation throughput, has not allowed a single unique solution
for the optimum processor to be defined at this time. How
ever, the advent of the new high density technologies pro
vide the potential of removing one of the principal barriers
to this solution, namely the conventional limits in throughput
and processor complexity. Further, in many respects it ap
pears that the issues of computer vision may well be one of
the major beneficiaries of the new VLSI and VHSI tech
nologies.

378 National Computer Conference, 1980

II. SOME EXISTING ARCHITECTURES

Computer vision and image understanding has been of in
terest for some time, and it is instructive to consider some
of the machines designed and developed for this purpose. ! - 10

Much of the effort to date in special purpose machinery for
image understanding has concentrated on parallel architec
tures. It has been accepted for some time that sequential
processors are not suited to computations where two-di
mensional spatial relationships are an important part of the
information. Moreover the necessary throughput, certainly
at the low end of the processing, considerably exceeds that
of conventional uniprocessors. For example, a sequential
machine capable of 1 x 106 instructions/sec. might take from
several seconds to minutes to perform one relatively simple
low level operation such as a 5 x 5 convolution on an image
with resolution equivalent is television.

The initial work on array machines for vision is typified
by the work of Unger.! His concept was to have a central
control providing instructions for the operation of a large
rectangular array of identical modules (Figure 1). Each mod
ule was connected with its 4 nearest neighbors to allow data
exchange, and consisted of an accumulator, a small amount
of random access memory and some associated logic. One
of the issues with this architectural concept is the complexity
of the control and need for distributed storage. Also with
the conventional discrete technology of that time the hard
ware became extremely complex as the array size increased.
With the very high level of integration available with VLSI
and VHSI, configurations of this type could be more tract
able. However, the concept of using an array of identical
modules, with limited capability, working on local sub-areas,
has formed the basis of much of the later work such as the
ILLIAC IIF which was aimed at the automatic analysis of
binary images from bubble chambers. Its architecture was
divided into three elements. The first performed operations
for local pre-processing functions such as track thinning, gap
filling, and line element recognition by an array of local pro
cessing elements (PE's) within a 32 x 32 window. Then the
manipulation and assembly of these line elements on a global

'"

9305-5

MEMORY

I/O

,,' TO MODULES

DOTTED LINES USED ONLY
FOR L1NK/EXP

Figure I-Parallel array processing concept developed by Unger (Ref.1).

scale and the execution of higher-level mathematical analysis
was performed in higher level machines. Data in each of the
32 x 32 subwindows was processed sequentially so as to pro
vide a line drawing of the binary patterns within the window.
By labeling vertices, bends, crossovers and terminals, this
line drawing was then converted into a linear graph (or list)
structure and processed so as to characterize the local fea
tures. The machine itself suffered from the ability only to
process binary images and the limited amount of processing
that could be included in the local PE's. However, the par
titioning of the processing into low-level local operations and
the more sophisticated global operations is valid and with
today's technology some of the limitations of the local PE's
can be overcome.

Other parallel array architectures include the Cellular
Logic Image Processo~ (CLIP) which uses present gener
ation n-MOS LSI technology to incorporate 8 identical PE's
connected either as a rectangular or hexagonal lattice on a
single chip. The master control is provided by a PDP 11/10.
The logic structure is capable of performing simple Boolean
operations, propagating operations, and bit-plane arithmetic
operations. Simulations of this machine include line thin
ning, edge finding on grayscale images, solving maze prob
lems and producing histograms and perimeters. The projec
tions of the processing time for a single image are of the
order of many seconds or minutes. PICAP, a modified ver
sion of the Parallel Picture Processing Machine (PPM),5 first
proposed by Kruse in 1973, consists of a mini-computer con
trolling both the processors and the image input and display
devices. The PPM uses nine picture registers (each capable
of storing a 4 bit 64 x 64 pixel image) and two line buffers
to obtain a 3 x 3 processing kernel. Processing is performed
by neighborhood matching logic which can accept inputs
from the line buffers or directly from the picture registers,
depending on whether it is a local operation or a pointwise
comparison of multiple pictures. Templates are stored in the
control unit for matching operations. The system has been
in operation since 1975 and has been used for applications
such as fingerprint coding, malaria parasite detection and
printed circuit board inspection, but again the processing
speed is significantly below "real-time rates." The execution
time per operation for a 64 x 64 pixel image is typically
2.5 ms, indicating a total processing time for the applications
just mentioned varying from several seconds to minutes,
depending on the complexity of the function to be per
formed.

A machine with well documented performance character
istics is the Toshiba Pattern Information Cognitive System
(TOSPICSf which is a distributed processor controlled by
a TOSBAC-40C mini-computer, employing hardwired mod
ules to perform the basic image processing functions. The
seven primitives and their processing times are listed in
Table I. By building on the basic image pro(fessing functions,
more global and complex functions such as edge detection,
texture analysis and shape identification can be performed.
Processing of neighborhoods in the image is sequential, but
data access and computation at each pixel position are per
formed in parallel. The use of hardwired special purpose

modules allows considerable speed increase but, as can be
seen in Table I, the operations are approximately two orders
or less than that required for real-time processing.

Other machines such as the ILLIAC IV,8 STARAN E9
and PEPE,1O although not designed or matched specifically
for image understanding, include processing functions of
value in the imaging world.

While most of the above machines use a parallel array
structure, the efforts to date have not resulted in a processor
with sufficient throughput for real-time image analysis or
understanding particularly for missions of interest to current
military systems. Indeed, in some respects a highly parallel
structure of identical PE's may introduce greater penalties
than benefits. For example, the control and processing issues
soon dominate the system. The interconnects, in general,
grow as n 2 (for an array of n elements). The reliability and
maintainability of massively parallel structures even with
LSI and VLSI is a significant problem. In Section III we
discuss an alternate approach using a number of hardwired,
special purpose circuits with sufficient throughput to process
the low-level operators in real-time. This approach (similar
to TOSPICS) is particularly well suited to the pre-processing
or feature extraction level where a widespread unanimity
exists on the required operations, such as edge detection,
line thinning, line linking and the calculation of low-level
statistics such as histograms, variances, etc. These pro
cesses then feed into a more general purpose machine for
the higher level (or symbolic) type operations where the
probability of branching is high but the required throughput
has been reduced by several orders of magnitude.

III. PROCESSING REQUIREMENTS FOR I. U.
MACHINES

It is well recognized that the processing requirements for
real-time image analysis systems, particularly for present
and proposed military missions, greatly exceed that of cur
rently available general purpose computers. As an illustra-

TABLE I.-The Basic Image Processing Functions Performed by
TOSPICS and Execution Times

Function Applications Execution Time

Two-Dimensional Laplacian, Smoothing, 262 mS
Convolution etc.

Logical Filter Feature Detection 262 mS
Thinning 262 x mS

Region Labeling Region Separation 524 mS
Particle Measurement 786 mS

Data Conversion y- Correction 262 mS
Thresholding 262 mS

Histogram Generation Frequej cy Counting 262 mS

Affine Coordinate Enlargement with Rotation 262 mS
Transform Axis Skewing 262 mS

Pixel Operation Logical Operation 524 mS
Arithmetic Operation 524 mS

Gradient Operation Edge Detection 2.36 S

Image Understanding Architectures 379

tion of this, in Figure 2 we show estimates of both the
throughput and memory requirements for a number of mil
itary systems under consideration. From this it is clear that
some form of special machinery will be needed to approach
these capabilities. Further, many of the basic assumptions
used in present and previous generations of processors may
not be valid in the VLSI technology era. A significant ex
ample of this is the hitherto paramount aim to reduce the
necessary gate count in the processor so as to reduce the
machinery cost and increase the reliability. This constraint
may well be invalid in future special purpose processors

. where the gate density may exceed 105/chip. A good case
has been made that the data manipulation and interconnects
may be the significant burdens in future machines where
gates are essentially free and Vias cost highly in terms of
silicon area, delay times and design effort. 11

An alternative to the highly parallel configuration of iden
tical elements shown in Figure 1 can be devised if the pro
cessing is divided into distinct regions (or levels) determined
by factors such as the required throughput, probability of
branching and word length. When this is done, the "low
level" processing (directly at or adjacent to the sensor) can
be characterized by very high throughput, low branching
probability and relatively low accuracy requirements.

At this end of the computation the throughput is high be
cause typically each picture element must be processed (in
combination with its local neighbors) usually in terms of a
rather simple operation such as local averaging or convo
lution. Typically the kernel size for the low-level operations
will range from 3 x 3 to 15 x 15 pixels. This requires, forlinear
operations such as convolution and spatial filtering, an in
struction rate of the order of

where the kernel size is nIx n 2 pixels

I is the number of instructions per operation
o is the number of operations in the algorithm
N is the number of pixels/line and
F is the frame rate

For local averaging over a 3 x 3 pixel array on the image of
television quality we obtain a throughput requirement, for
just this function, of approximately 100 million instructions/
sec. For the next level of complexity, such as edge detection,
the required instruction rate is typically in excess of 500
million instructions/sec. Immediately we can see that this is
far in excess of the capability of current machines typically
operating at 1-10 MIPS. The situation is made somewhat
worse when low-level statistical operations such as histo
gramming or variance calculation requiring operations pro
portional to (n 1 x n2),2 are considered. In this case through
puts in excess of 1,000 MIPS are required for even relatively
small kernels. Fortunately, at this level of image understand
ing there is little need for conditional branching or high ac
curacy. Further, at the front-end or low-level a widely held
consensus exists of the types of processing functions nec-

380 National Computer Conference, 1980

10,000 r---~----~--'-~-r----'-----~--r-~'-----r---~--~~--r---~----~--~~~

i=
z
W
....J
«
>
:::>
o
w
o
Cl

~
U)
a..
o
~
1-
:::>
a..
I
t9

1000

6 100
ex: ::::::::::::::::::.::

~::::a!!·):
::::::::::::::::::::::::.::::::::::::::::::

:':<!:..
:.:.: ... : ... :::.::: : ••• : •••••••••••••••••• : •.•.•••• ·.···:··Lsi··:· •• •••

1985 TO 1990 BEYOND 1990

VHSIC-II

10 ~~~~~~~~~~----~~~~~~~~----~----~--~~~~--~----~--~~~
1 10 100

MEMORY, MBITS

1000 10,000

Figure 2-Estimation of processing and memory requirements for potential
military sys!ems.

essary; edge detection, edge linking, median filtering, his
togramming, etc.

This is in contrast to the next level of the process which
is highly image dependent and, as yet, a true consensus of
the necessary operations has not been formed even among
the I. U. experts. Typical operations required at the high end
of the processing are symbolic manipulations of the lines and
vertices extracted from the image by the low level architec
ture, and segmentation of the image using the features such
as texture derived by the low level operators. Of paramount
importance is the spatial relationship of the features (do the
lines interconnect so as to suggest a road or building, etc.).
The requirements at this stage can be characterized by: low
throughput (the input data rate having been reduced by a
factor of 102 to 104 from the raw pixel rate, by the extraction
of lines for example), and relatively long word length rep
resenting the requirement for high accuracy. Fairly sophis
ticated operations can be envisioned perhaps involving the
small difference of relatively large numbers and therefore
the word length should be significantly greater than the 6
bits or so typically used to represent the raw pixels.

An illustration of a hypothetical but representative I. U.
system is given in Figure 3. The overall processing require
ment can be considered to be a triangle as shown with
throughput represented in the horizontal direction and pro
cessing sequence represented vertically. The transition be
tween the low and high levels typically occurs after the re
quired throughput has been reduced from 102 MIPS or above
to the order of 0.1 MIPS or less. Much of the data below the
interface is in terms of processed pixels and the spatial re
lationship of the imagery is maintained by a pixel count
whereas above it the data is primarily in symbolic form rep
resented as lists, etc. The data reduction might typically be
of the order of 103 or more.

These two distinct regions are best suited to different types
of processors. At the low-end which might typically repre
sent 80 percent or more of the processing, custom built spe
cial purpose primitives which perform specific functions
such as convolution, edge detection or line linking in real
time seem most appropriate. The "high-level" processing
might best be performed by a general purpose architecture,
which could possibly be a commercial device if sufficient

DATA RATE THROUGHPUT
(SAMPLES/SEC) (I NSTRUCTION/SEC)

VERTICES SEGMENTATION

t t
LINE LINKING STATISTICS

t t
EDGE DETECTION HISTOGRAM

t t
.L-____________ ~ -107

,I
Figure 3-Processing requirements of typical image understanding system.

throughput can be achieved or a special purpose programm
able device with a limited instruction set suited directly to
the I. U. The resulting architecture shown in Figure 4a con
sists of a concurrent configuration of low-level or primitive
processors each performing a single function such as con
volution, edge detection or histogramming. These proces
sors perform all the enhancement operations, the feature
extraction and low level statistical operations. The output
from these which will consist of linked lines, or boundaries
of similar textures, etc., will be passed to the symbolic pro
cessor in the form of lists or vectors. This processor performs
a wide variety of operations to match the features and de
termine the shape of objects and make decisions based on
the required mission constraints. As an example, a config
uration for a typical military mission is shown in Figure 4b.
Three key issues are involved in configuring such a machine;
the selection and design of the primitives, the control and
local storage requirements, and the necessary instruction set
of the high-level (sYf!1bolic) processor.

IV. SELECTION AND CONFIGURATION OF
PRIMITIVES

Two essential demands are made on the primitives for the
I. U. configuration discussed above. Firstly, they must form
a full and comprehensive set of low-level operations for a
wide variety of image types and configurations. Without this,
the range and applicability of the machinery will be limited
to a sub-set of the vision problem. (If the control unit is
appropriately designed the addition of new primitives as re
quired may be possible.) Secondly, each primitive should be
capable of accepting input data at a rate equivalent to real
time imagery (taken here to be 7.5 MHz) and provide pro
cessed data at these rates. To determine the feasibility and
possible configuration of the primitives, it is necessary to
catalog the low-level operations and their instruction rate.

Image Understanding Architectures 381

INPUT IMAGERY

ITERATION LOOP

R Q

FEATURE
EXTRACTION

Figure 4(a)-Possible image understanding architecture.

A partial listing of some of the more common functions is
given in Table II together with the required throughput and
accuracy. Several distinct classes of function can be iden
tified including convolutional type operations such as spatial
filtering, local averaging and edge detection; low level sta
tistical operations such as sorting histogramming, median
and variance calculation; and logical operations such as bi
narization, edge thinning line linking, etc.

The formulation of some of these functions are described

• EXECUTIVE

• CLASSIFICATION

• ANALYSIS
PRIMITIVES

• SEGMENTATION

• SIGNAL PROCESSING

Figure 4(b)-Image analysis system for potential military application.

382 National Computer Conference, 1980

TABLE n.-Typical Low-Level Operations and the Processing
Requirements

Required Required
Throughput Accuracy (bits)

Enhancement O(p)
local averaging
non-linear gain

Feature Extraction O(p)
spatial filtering
convolution
edge detection

Statistical Operations O(~)
sorting
median operation
histogram
variances, etc.

Spatial Operations -O(p) x 10- 1

thresholding
thinning
edge linking

Intermediate Operations <O(p) x 10-2

vertex matching
moment calculation
segmentation

}>IO' MIPS

}>IO' MIPS

}>IO' MIPS

~<10 MIP
)

}<O.I MIP

6

6

6

-1

~16

below using the three by three array of pixels shown in Fig
ure 5.

The convolution operation consists of using a 3 x 3 tem
plate

[

W;_I,j_1 W;_I,j W;_I,j+1]

W= W;,j_1 W;,j W;,j+1

W;+I,j_1 W;+I,j W;+I,j+1

(2)

where W;,j' etc., may be either positive or negative to weight
the individual picture elements in the kernel (Figure 5) prior
to summation. In this case the necessary multiplications and
adds must be performed at the pixel rate (0.13 J.Lsec) to form
the full processed image

(3)

in real-time. This is equivalent to a sequential rate of 135
MOPs. For the simplest case where all the weights W ij' etc.,
are unity the resulting output is proportional to the local
average

[(e) =const[a + b +c +d+ e + J+ g+ h+ i]. (4)

For more complicated functions such as matched filtering,
etc., the individual weights can have a full gray scale typi
cally equivalent to 6 bits. For example edge detection can
be performed by performing a variety of convolutions, one
for each possible edge orientation. Using this approach hor
izontal and vertical edges might be found by using templates
equivalent to

W= [-~ +1

-1
o

+1
-~]
+1

(5)

and

W=
[

-1 0
-1 0
-1 0

(6) !! I]
+1

respectively. This approach can be generalized to find each
edge component at angular increments of 45° using the 3 x 3.
If finer resolution is required the kernel size must be in
creased. A specific edge calculation algorithm which can be
performed as a convolution and has found widespread ac
ceptance in the Sobel Operation12

S(e) =i[l(a + 2b+ c) -(g+2h +i)1

+ 1 (a + 2d + g) - (c + 2J + i) 11. (7)

Two coincident templates

W =![~ x 8
-1

and

W = - 2 0 1 [1 0
y 8 1 0

(8)

together with an absolute magnitude operation and addition
are required for this. The Laplacian operator which performs
a two dimensional differentiation equivalent to

a2[lax 2 + a2[lay2

can be used either as a preprocessing operatorl2 or for edge
crispening. It requires a template equivalent to

W= [-~ ~~ -n (9)

The range of operations that can be performed by specialized
or programmable ~nvolutions in image understanding is
extraordinarily large. In many applications as much as half
of the total processing is either directly in the form of con
volutions or can be expressed in these terms, and hence this
operation is an essential element in the selection of the low
level special purpose primitives.

PIXEL

A B c
I NTENSITI ES

D E F

G H

Figure 5-Notation used for 3 x 3 pixel kernel.

UN- ORDERED
INPUTS

ORDERED
OUPUTS

MEDIAN

~-~~

TWO STATE COMPARATOR

A~A

B~B
A~A

B~B
Figure 6-Concept of parallel sorter and median operator.

In addition the simple logical operations, such as absolute
magnitude determination i(e) = II(e) I , binarization about some
calculated parameter such as the local mean·

I (e) = {I I(e)<e (10)
b 0 I(e)?:.e

PIXEL STORAGE 15 x L

L

Image Understanding Architectures 383

as well as a variety of simple hardwired logic functions, are
required at the low level. Examples of these occur in line
thinning and line linking13 which typically occurs after the
edge detection. In general the throughput requirement for
this type of operation is much less than the previous ex
amples and these circuits can readily be accomplished with
present MSI or LSI technology. More significant demands
are made by even quite low order statistical operations such
as histogramming sorting and median filtering. In general
these operations take calculation times proportional to (n 2). 14

The median calculation is illustrative of this class, and is
widely used to eliminate noise spikes, thin edge elements
. and as a size filter. (The median operation of a collection of
pixels II, 12 , ••• , In for n odd is that intensity for which
(n -1)/2 elements are smaller or equal in value.) The clas
sical way to perform this is to perform a rapid sort of the
picture intensities of the given array and simply take the
[(n + 1)/2] largest output. A simple sequential circuitl5 which
performs this is real-time but with a latency of (n - 1)/2 cycles
using (n - 1)2/2 simple comparators is shown in Figure 6. This

IFL = 256 PIXEL REG. =' 3840
4 REG'S = 1024
12 MULT. 22ADDERS
+ SCALERS, DELAYS, NEGATERS

Figure 7-Architecture for moment calculation.

384 National Computer Conference, 1980

sorter can form the basic element of many other statistical
operations such as histogramming, variance and mode fil
tering. The relatively high cost in terms of gate density to
achieve the essentially parallel structure is appropriate to
VLSI because of its high degree of regularity.

An additionafoperatiomll which is frequently required is
the moment calculation of the form

n

Mp= 2: (Iij-4)P

where I ij is the center picture intensity

I ij is the local average
n is the number of pixels in the kernel
P typically varies from 1 to 5.

(11)

(Equation 11 provides the mean, variance, skewness and
kurtosis for P = 1, 2, 3 and 4 respectively.) This is widely
used in calculations for texture analysis and segmentation
among other operations and is of sufficient interest to be
included as a low-level primitive. If the calculation is per
formed directly the operation rate required for a 15 x 15 array
is in excess of 103 MOPs. A preferable approach is to cal
culate the non-centered moments

1
M 1 = ML(lij)

(12)

1 ~ 2
M 2 = N £.J (l ij) etc.

A possible architecture for doing this is shown in Figure 7.

V. DESIGN AND PERFORMANCE EVALUATION OF
SPECIAL PURPOSE PRIMITIVES

Under partial support of the DARPA Image Understand
ing Program we have been investigating techniques to per
form these low-level functions at real-time rates. 16,17 As part
of this program we have developed a number of custom de-

. signed CCD/MOS LSI circuits to demonstrate the feasibility
of real-time operation. Initially our work was concerned with
operation over a 3 x 3 pixel kernel but more recently we have
performed operations over 5 x 5, 7 x 7 and 26 x 26 kernels
using both fixed operators and voltage programmable de
vices. A list of the algorithms implemented is given in Table
III. In the initial phase of this investigation we have con
centrated on charge couple device (CCD) and MOS tech
nology for two principal reasons. Firstly, since many of the
next generation of military imagers will themselves be CCD's
it is envisioned that many of the low-level operations can
be incorporated directly at the focal plane as illustrated in
Figure 8. Secondly, the power delay product (0.1 pico
Joules) ofCCD technology is significantly below that of com
peting circuitry and hence the potential for integration is that
much higher.

The technique used to date is essentially a sampled data
approach and as such is probably best suited to accuracies

I+- 500 PIXELS

r IMAGER

500 PIXELS ______ MONOLITHIC

1
~ PROCESSOR

IMAGE DATA

'----y---J
PROCESSED OUTPUTS

Figure 8-Co,?cept of smart sensor for monolithic imager and processor.

of about six bits (which is sufficient for the low-level op
erators). It does, however, allow the necessary processing
speeds for real-time operation and many of the architectural
concepts can be translated to either binary operation or
mixed radix multi-valued logic. The three test chips devel
oped to date are shown in Figures 9-11. Where possible we
have structured the processors in the form of a sampled data
two-dimensional transversal filter toachieve optimum
pipelining.

A photomicrograph of Test ChIp I is shown in Figure 9.
The area shown is equivalent to 40 mils x 50 mils, and the
two-dimensional filter can be. seen at the center. The circuit
itself is an n-channel structure with a feature size equivaJent
to -6 f.1m. The processing operations (edge detection, spa-

Figure 9-Photomicrograph'of test chip I developed for the DARPA I.U.
program.

Image Understanding Architectures 385

TABLE III.-CCDIMOS Circuits Developed on the I.V'. Program

Test Chip Algorithms
Numbers Implemented

I Edge detection

High-pass spatial filter

Laplacian

12 dB/aperture corrector

II Sobel

Hean

Unsharp masking

Binarization

Adaptive stretch

III Laplacian

Mask progrannnable
convolution

Progrannnable convolu,tion

'Plus' shaped median

Bipolar convolution

tial filtering, and Laplacian and aperture correction) have
all been pipelined to increase the throughput as shown in
Figure 12. Examples of the processing capability for edge
detection are s~o~n in Figur;! 13. The image shown has a
resolution of 128 x 128 pixels with an intensity resolution of
equivalent to 4 bits. In Figure 14 we show. real-time test
facility which takes 512 x 512 pixel data at 30 frames/sec
directly from a CCD or vidicon camera and drives a single
LSI chip which performs the functions described in Equa
tions 13 through 17. The processed results' are displayed
directly on the monitor shown in real-time.

Edge Detection:

S(e) =! [I (a + 2b + c) - (g + 2h + i) I
+1(a+2d+g)-(c+2f+i)l] (13)

Kernel
Operations Effective

Size per Operation
Pixel Rate

3 x 3 16 '80 KOPS

3 x 3 18 90 KOPS

3 x 3 13 65 KOPS

3 x 3 18 90 KOPS

3 x 3 16 32 MOPS

3 x 3 9 18 MOPS

3 x 3 13 26 MOPS

3 x 3 10 20 HOPS

3 x 3 12 24 HOPS

3 x 3 13 91 MOPS

7 x 7 98 636 HOPS

5 x 5 50 350 MOPS

5 x 5 625 'Vl03 MOPS

26 x 26 1352 'Vl04 MOPS

Local averaging:

fm(e) =§ [a +b+c+d+e+ f+ g+h+ iJ

Unsharp masking:

S u(e) = (1- ex)e - exfm(e)

Adaptive binarization:

Adaptive stretch:

S () {
I for fm(e)$e

b e = 0 for fm(e»e

S (e) = {2 min e,r/2 for f m(e)~r/2
a 2 max e~r/2,0 for f m(e»r/2,

where r is the maximum pixel intensity.

(14)

(15)

(16)

(17)

386 National Computer Conference, 1980

Figure 10-Test chip II developed for the LV. program.

Examples of the real-time processing capability of these
primitives using data fed directly from a vidicon camera
are shown in Figure 15.

Other primitives developed in this program include the
5 x 5 programmable convolution array, a median filter/sorter
circuit, and a large bipolar convolutional filter designed as

VIDEO
INPUT
DATA

(3 ADJACENT
LINES)

SOBEL OUTPUT

Figure ll-Test chip III.

a pre-processor for the "primal sketch"18 vision system. A
photomicrograph of the programmable device (which is ca
pable of changing the convolutional template of a 5 x 5 array
at frame rates (30 Hz)), together with three arbitrary impulse
responses corresponding to _differing sets of input weights

TO
LAPLACIAN

o = PIXEL DELAY LAPLACIAN

TO NEXT
PRIMITIVE

o " WEIGHTING COEFFICIENT

Figure 12(a)-Schematic of the pipeline concept used to configure the low-
level operator. ,.

.... I . .. ,:"'.- I "",.

CHARGE
SUBTRACTION

SPATIAL fiLTER
tCRC·1I11

Figure I2(b)-Circuit sch~matic of test chip I.

is shown in Figure 16. The added complexity of providing
programmability to this primitive is worthwhile due to the
wide variety of convolutions employed. The median primi
tive, built using an architecture equivalent to that shown in
Figure 6, is' shown in Figure 17 together with the results
when used both to extract noise equivalent single pixel blem
ishes and as a width filter. In this case the width or size filter
is shown as extracting lines of two pixels or less width. This
type of operation is widely applicable both as an enhance~
ment tool and a screener or auto-cueing technique matched
to objects of a predetermined size.

ORIGINAL IMAGE SOBEL OF IMAGE

ORIGINAL IMAGE SOBEL OF IMAGE

Figure 13-Example of edge detection performance using the CCD/MOS
primitive.

Image Understanding Architectures 387

Figure I4-Test system developed for real-time operation of the low-level
functions.

Finally we show in Figure 18 a very large (26 x 26) bipolar
convolution with the circularly symmetric weighting func
tion illustrated, for the primal-sketch theory of vision. The
effective operation rate in this device is of the order of 104

MOPs. This circuit is designed to be used in an image un
derstanding system matched to the human eye and is a pr~
processor for both edge detection and stereo analysis, bas~d

. on . the theories of human vision devel()ped. by Prof. Marr,
and his colleagues at the Artificial Intelligence Laboratories
ofM.I.T.

The above operations and circuits are represent~tive of

Figure I5-Example of real-time operation of test chip. II.

388 National Computer Conference, 1980

(a)

Figure 16-5 x 5 programmable convolution. (a) Circuit layout.
(b) Programmed impulse response.

the high throughput requirements of the low-level primitives
shown in Figure 4. From the experience gained in this work
we feel it is indeed possible to build such primitives operating
at real-time television rates. Although the sampled data tech
niques employed hereare limited in accuracy to about . SIX
bits, the increased throughput available over conventional
binary circuitry and the fact that most of the low-level op
erators require no more than six bit accuracy indicates that
in many applications the approach may be appropriate. Prob
ably an optimum situation, which we are currently pursuing,
is a mixed radix operation which allows accuracy and·
throughput to be balanced throughout the system. At the
low level where high throughput and limited accuracy is re
quired, the radix or base might be quite high, say 8 or 16,
whereas in the latter stages in the symbolic processor it
would drop to the conventional two.

VI. CONTROL AND INTEGRATION ISSUES

The control issues for the types of processor shown in
Figure 4 are somewhat simplified with respect to the large
lattices discussed in Section II, but still present very signif-

icant problems. Firstly, since each primitive carries an
embedded knowledge of its processing algorithm, there are
very limited issues concerning the instructions. At most
these will take the form of changes in weighting functions
and kernel sizes which probably occur very infrequently.
The control issues center around storage of data to account

. for the differing latency in the primitives and the program
mable data paths between them. Since each local processor
is operated at the full pixel rate local storage can approach
a minimum equal to the difference in latency. If the opera
tions are performed in the inter-pixel period as discussed in
Section V, this is limited to the difference in size between
the largest and smallest kernels, which, however, might be
quite large. For example, a range of from one pixel to an
array of 15 x 15 is not uncommon, in which case a local stor
age of 210 pixels (-30 J.Lsec) has to be included in the worst
case to provide a totally synchronous operation. It is worth
while to note that this is comparatively simply achieved
using the 2D CCD array approach by simply extending the
number of CCD stages. But in general this is not so simple
and considerable simplification might be made if the selec
tion of primitives can be chosen 'a priori' and the data trans
fer latched. The data routing problem is also significant and

requires additional study. It is possible that an extension of
the 'data-flow' concepts developed by Dennis et al. 19,20 may
be applicable, where the routing is determined by appending
a key to each data stream. The concept might be to have a
series of comparators and exchange modules to route data
similar to the modified Batcher circuit15 shown in Figure 6.

Since most of the high throughput tasks will have been
performed prior to the symbolic processor the architecture
of this can conform to the conventional Von Nuemann con
cepts. Indeed a single commercial processor or series of
micro-computers might be appropriate, or, as the technology
develops it might be appropriate to develop a single high
throughput processor with a limited instruction set designed
specifically for I. U .

(b)

Image Understanding Architectures 389

With the advent of VLSI and VHSI with gate densities of
105/chip and clock rates approaching 108 Hz we could expect
much of the hardware for the full system to be put on rel
atively few chips. While this is ideal in_ terms of the pin-out
limitations and avoiding the necessary drivers to get off the
individual chips, the true benefits will be derived from an
optimum partitioning. Effective chip design will require that
the data bandwidth between packages be reduced to a min
imum. Those primitives which operate on each pixel and
produce a processed pixel for each clock cycle are the most
significant data handlers and an optimum configuration
would require as many of these on a single substrate as pos
sible. To enable these new technologies to provide the max
imum impact to the I. U. community, research must be di-

(c)

Figure 17-Median operator, (a) Circuit layout. (b) Input image. (c) Processed
image.

390 National Computer Conference, 1980

Figure 18-26 x 26 pixel bipolar convolution used for the primal sketch.

rected at the issues such as the optimum algorithm design
for high density silicon, optimum partitioning between chips
and means for providing an effective and fault tolerant con
trol.

ACKNOWLEDGMENTS

I am indebted to my colleagues in the Exploratory Studies
Department, Hughes Research Laboratories, Malibu, Cali
fornia for contributions to this paper and the Defense Ad
vanced Research Project Agency (DARPA) Information Pro
cessing Techniques Office for supporting the work.

REFERENCES

1. Unger, S. H., "A Computer Oriented Toward Spatial Problems," Proc.
of the IRE, Oct. '58, p. 1744.

2. McCormick, B. H., "The Illinois Pattern Recognition Computer
ILLIAC III," IEEE Trans. Electronic Computers, Dec. 1963, p. 791.

3. Gray, S. B., "Local Properties of Binary Images in Two Dimensions,"
IEEE Trans. Computers, v.c-20, no. 5, May 1971.

4. Preston, K., Jr., "Feature Extraction by Golay Hexagonal Pattern Trans
forms," IEEE Trans. Computers, v.c-20, no; 9, Sept. 1971.

5. Kruse, B., "A Parallel Picture Processing Machine," IEEE Trans. Com
puters, v.c-22, No. 12, Dec. 1973, p. 1075.

6. Duff, M. J. B., "CLIP 4: A Large Scale Integrated Circuit Array Parallel
Processor," Proc. of the Int'l Conf. On Patl. Recog., Coronado, Nov.
1976.

7. Mori, K., et aI., "Design of Local Parallel Pattern Processor for Image
Processing," National Compo Conf. Proc., 1978, p. 1025.

8. Barnes, G. H., et aI., "The ILLIAC IV Computer," IEEE Trans., c-17,
v. 8, Aug. 68, p. 746.

9. Potter, J. L., "The STARAN Architecture and its Application to Image
Processing and Pattern Recognition Algorithms," Nat'l Compo Conf.
Proc., 1978, p. 1041.

10. Enslow, P. H., Multiprocessors and Parallel Processing, John Wiley and
Sons, 1974, p. 139.

11. Sutherland, I. E., et aI., "Microelectronics and Computer Science," Sci
entific American, Sept. 1977, vol. 237, No.3, pp. 210-229.

12. Pratt, W. K., Digital Image Processing, John Wiley & Sons, N.Y., 1978.
13. Nevatia, R. et aI., "Linear Feature Extraction," Proc. ARPA Image

Understanding Workshop, Carnegie-Mellon, Nov. 1978, pp. 73-78.
14. Kuck, D. J., The Structure of Computers and Computations, John Wiley

& Sons, N.Y., 1977.
15. Batcher, K. W., "Sorting Networks and Their Applications," 1968 Spring

Joint Computer Conf., AFIPS Proc., Vol. 32, Washington, D.C. pp. 307-
314, 1968.

16. Nudd, G. R., et aI., "Application of Charge Coupled Device Technology
in Two Dimensional Image Processing," 1978 International CCD Device
and Application Conference, San Diego, Oct. 1978.

17. Nudd, G. R., et aI., "A CCD Image Processor for Smart Sensor Appli
cations," Proceedings of Society of Photographic and Instrumentation
Engineers Symposium, San Diego, August 1978

18. Marr, D., "Representing Visual Information," AIM-415, The Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cam
bridge, Mass. 1977.

19. Dennis, J. B., et aI., "A Computer Architecture for Highly Paralled Signal
Processing," Proc. of the Second Annual Symposium on Computer Ar
chitecture, IEEE, pp. 126-132 (1975).

20. Misunas, D. P., "Structure Processing in a Data Flow Computer," Proc.
of the 1975 Sagamore Computer Conference on Parallel Computation,
IEEE, pp. 230-234, (August 1975).

Map-guided interpretation of remotely-sensed imagery*

by J. M. TENENBAUM, H. G. BARROW, R. C. BOLLES,
M. A. FISCHLER, and H. C. WOLF
SRI International
Menlo Park, California

INTRODUCTION

Aerial and satellite imagery provide an economical means
of gathering large amounts of data on the earth's resources
and environment. However, except in the area of survey
tasks such as crop inventories and land use that can be per
formed with multispectral analysis, there are few economi
cally feasible techniques for automatically extracting the
useful information from such imagery.

This paper describes some initial experiments in auto
mating an important class of remote sensing taks that involve
continuous monitoring or tracking of predefined targets.
Monitoring tasks are concerned with detecting anomalous
conditions at specified geographic locations. Examples in
clude monitoring particular industrial plants for thermal or
chemical pollution, oil storage facilities for spillage, forests
for fires, and reservoirs for water quality. Tracking is a var
iant of monitoring, concerned with determining the current
geographic location of a slowly moving object or boundary
whose position is known approximately from a previous de
termination. Examples include tracking icebergs, the spread
ing boundaries of a known oil spill, the perimeter of reser
voirs (to assess changes in water volume), coastal shorelines
(to assess erosion), and the width of rivers (to assess flood
threat). For such tasks, an automated system is needed that
can extract updated information as new imagery arrives and
distribute it directly to interested users. Multispectral anal
ysis, by itself, is inadequate because spatial structure and
context are significant factors in interpretation.

A major problem in automating such tasks is locating the
designated sites in sensed imagery, that may be taken from
arbitrary viewpoints. Once the image locations of a site are
known, many monitoring tasks are reduced to straightfor
ward detection or classification problems. For example,
once the precise pixel location of a river passing beside a
manufacturing plant is known, pollution levels in the plant's
effluents can, in principle, be determined by using conven
tional multispectral analysis. Similarly, forest fires can be
detected by looking for infrared hot spots in known forested
areas. Tracking slowly changing boundaries, such as the
perimeters of water bodies, is also tremendously simplified

* ©1979 IEEE. Reprinted from Pattern Recognition and Image Processing
1979 conference record.

391

by knowledge of the boundaries' approximate prior location.
Boundary detection_and linking can then be accomplished
using simple edge operators to verify precise edge locations
along the predicted path.

To locate monitoring sites in an arbitrary image, we use
a map in conjunction with an analytic camera model. The
camera model is first calibrated in terms of known landmarks
and then used to transform between map coordinates of des
ignated sites and their corresponding image coordinates. By
constraining where to look in an image and what to look for,
a map and camera model greatly simplify the extraction of
relevant information in complex aerial scenes.

MAP-IMAGE CORRESPONDENCE

A fundamental requirement in exploiting a map is to es
tablish the geometric correspondence between image and
map coordinates, which then allows known ground sites to
be located in the image. Ground locations have convention
ally been determined by warping the current sensed image
into correspondence with a reference image, based on a large
number of local correlations [1]. The reference image serves
as a map indicating locations in the sensed image that cor
respond to previously determined points of interest in the
reference image. The process is computationally expensive
and limited to cases where the reference and sensed images
were obtained under similar viewing conditions.

To overcome these limitations, we abandon the use of a
reference image and rely instead on a symbolic reference
map containing explicit ground coordinates and elevations
for all monitoring sites as well as landmarks (roads, coast
lines, and so forth). The geometric correspondence between
this map and the sensed image is established by calibrating
an analytic camera model.

A typical camera model [2] has between five and seven
parameters that specify focal length and the location and
orientation of the camera (in map coordinates) when the
image was taken. Once these parameters are known, the
image coordinates corresponding to any map location can
be determined precisely with straightforward trigonometry.
(The camera location and map location jointly define a ray
in space. The intersection of this ray with the image plane
yields the desired image coordinates.) Since image coordi-

392 National Computer Conference, 1980

nates are determined for the original unrectified image, ex
pensive image warping is unnecessary.

Map data base

The map data base used in this research is essentially a
compact three-dimensional description of the location and
shapes of major landmarks and monitoring sites. Point fea
tures, such as road intersections, small buildings, and many

monitoring sites, are represented by their three-dimensional
world coordinates and (where applicable) a list of charac
teristics to be monitored. Linear landmarks, such as roads
and coastlines, are similarly represented as curve fragments
with associated ordered lists of world coordinates. Ground
coordinates are expressed in a standard reference frame, the
UTM grid, with elevations expressed in meters above sea
level. The data base can be accessed by location (e.g., What
is at x, y, z?), by entity name (e.g., What is the location of
factory x?), and by entity type (e.g., What factories are

Figure I-High altitude vertical mapping photograph of San Francisco Bay
area.

Map-guided Interpretation of Remotely-sensed Imagery 393

there?). For further details on map representation, the reader
is directed to Reference [3].

Our experimental domain throughout this project was the
San Francisco Bay Area, as depicted in Figure 1. Figure 2
is a computer display of a simple map data base of this area.
The map contains a major landmark (the coastline) and a
number of representative monitoring sites, each designated
by a cross. Longitude and latitude data for the on-line map
were obtained interactively from a USGS map, using a dig
itizing table .. Elevations were read off the map and entered
manually via keyboard. Although displayed as a cQntinuous
trace, the coastline, in fact, is internally represented by just
100 discrete sample coordinates. "

Several map data bases, each highlighting specific features
(e.g., roads, railroad yards, piers) were used in experiments
described in this report. These maps have not yet been in
tegrated into a monolithic data base, although all software
necessary to do so exists (Reference [3]).

Camera calibration

The traditional method of calibrating a camera model re
quires two stages: first, a number of known landmarks are
independently located in the image; and second, the camera
parameters are computed from the pairs of cprresponding
world and image locations, by solving an over-constrained
set of. e9!-lations [2,4]. •

Figure 2-Computer display of a simple map database for the San Francisco
Bay area, showing major landmark (coastline) and representative monitoring

sites (crosses).

Figure 3-Coastline extracted by boundary follower.

The failings of the traditional method stem from the first
stage: Landmarks are located in the sensed image by cor
relating with fragments of reference images. This requires
reference images taken under the same viewing conditions
as the current sensed image. Moreover, since landmarks are
found individually, using only very local context (e.g., a
small patch of surrounding image) and with no mutual con
straints, false matches commonly occur. (The restriction to
small features is mandated by the high cost of area corre
lation and by the fact that large image features correlate
poorly over small changes in viewpoint.)

A new calibration procedure, called "Parametric Corre
spondence," was developed that overcomes these failings
by integrating the landmark-matching and parameter solving
steps and by using global shape rather than tonal appearance
as the basis for matching. In this procedure, initial estimates
of camera location and orientation are obtained on the basis
of available navigational data. The camera model is then used
to predict the appearance of landmarks in an image for this
assumed viewpoint. Calibration is achieved by adjusting the
camera parameters (i.e., the assumed viewpoint) until the
predicted appearances of the landmarks optimally match a
symbolic description extracted from the image.

A detailed description of parametric correspondence is
given in Reference [5]. However, the essential ideas can be
quickly grasped through an example. Figures 3-6 illustrate
the process of establishing correspondence between the
symbolic map of Figure 2 and the sensed image of Figure
1, using the coastline as a landmark.

First, a simple edge follower was used to trace the high
contrast coastline in Figure 1, producing the edge image

394 National Computer Conference, 1980

Figure 4-Predicted image coordinates of coastline (based on navigational
estimates of camera location and orientation) superimposed on extracted

boundary.

shown in Figure 3. Next, using initial camera parameter val
ues (estimated manually from navigational data provided
with the image), the coastline coordinates in the map were
transformed into corresponding image coordinates and
overlaid on the extracted edge image (Figure 4). The average
mean square distance between the extracted coastline and
that predicted on the basis of the assumed viewpoint was
seven pixels. A straightforward hill-climbing algorithm then
adjusted the camera parameters to minimize this average

distance. Figure 5 shows the final state, in which the average
distance has been reduced to 0.8 pixel.

Using the final parameter values, it is now possible to
determine within a pixel the precise image locations corre
sponding to each monitoring site in the map. Only three sites
are actually visible in this image: two oil depots and a coffee
factory. These are shown in Figure 6, superimposed on the
original image. The apparent misregistration in Figure 5 is
actually the result of errors in contour extraction (Figure 3);

Map-guided Interpretation of Remotely-sensed Imagery 395

despite such errors, the global matching criteria is still able
to achieve subpixel accuracy of the projected map points.
Figures 7 and 8 provide two additional examples, illustrating
the ability of the calibration process to place the map in
Figure 2 into correspondence with imagery taken from ar
bitrary viewpoints.

Parametric correspondence has some significant advan
tages over conventional approaches to camera calibration

that depend on reference imagery. Computational require
ments (both processing and memory) are sharply reduced
because a symbolic map typically contains orders of mag
nitude less data than a reference image. Invariance to view
ing conditions (viewpoint, spectral band, sun angle, etc.) is
significantly improved because maps describe global shape
characteristics that are relatively immune to seasonal and
diurnal variation and to ambiguous matches. Moreover,

Figur~ 5-Predicted coastal coordinates after optimization of camera
parameters.

396 National Computer Conference, 1980

Figure6-Predicted image locations of visible monitoring sites bas~d on
optimized parameters.

since shape information is projected through the camera
model before matching, distortions due to viewpoint are no
longer a problem. A detailed discussion of these advantages
appears in Reference [5].

MAP-GUIDED MONITORING

Having placed an image into parametric correspondence
with a three-dimensional map, it is possible to predict the
image coordinates of any feature in the map and, conversely,

to predict the map features corresponding to any point in
the image. Given this capability, many basic monitoring
tasks of the type discussed in the introduction can be au
tomated using straightforward image-analysis techniques. In
Figure 8, for example, one could, in principle, test the pixels
located in reservoirs for water quality, the pixels located in
shipping channels beside oil depots for evidence of spillage,
the pixel located at the industrial plant for evidence ,?f par
ticulates, and the pixel located at the Sacramento River Delta -
for evidence of salt water intrusion.

Map-guided Interpretation of Remotely-sensed Imagery 397

Figure 7-Predicted locations of visible monitoring sites in an oblique view
looking west from Alameda.

These examples fall within the competence of traditional
multispectral analysis programs which uniformly process all
pixels in an image and produce a statistical result. For such.
tasks, the primary advantages of map guidance are an enor
mous reduction in the number of pixels to be processed,
potentially enhanced discrimination (resulting from the abil
ity to optimize classification criteria at each site), and geo
graphically specific results that are g~nerally more useful
than statistical summaries. In more complex interpretation

_ tasks, where spatial structure and context are important, the

benefits of map guidance are more profound. Four repre
sentative experiments will now be described.

Reservoir monitoring

Consider first the problem of monitoring the water level
of a reservoir. Water level, of course, is not directly meas
urable from an aerial image; some additional information or

398 National Computer Conference, 1980

Figure 8-Predicted locations of visible monitoring sites in a high altitude
oblique view looking east from the Pacific Ocean.

constraint is needed. The required information can be ob
tained from a terrain map in registration with the image.

As the water level rises and falls, the outline of the res
ervoir expands and contracts in a predictable way to follow
the elevation contours of the terrain (see Figure 9). Thus
water level can be determined by extracting the outline of
the reservoir in the image and determining its location with
respect to known elevation contours. Knowing the water
level, one can then integrate over the corresponding region
of flooded terrain to determine the volume of stored water.

(The function relating water volume and water level is mon
otonic and can be tabulated for each reservoir.)

Since the surface of a reservoir is flat, the water level can
be determined without a complete outline; the image coor
dinates of even a single point on the reservoir boundary
would, in principle, suffice. In practice, elevations can be
determined for a number of boundary points and averaged
together to compensate for statistical uncertainties in esti
mating the precise image coordinates of each boundary
point. (Concentrating the boundary samples where terrain

Map-guided Interpretation of Remotely-sensed Imagery 399

slope is most gradual maximizes the sensitivity .of edge lo
cation to changes in water level. See Figure 9(b).) The re
sulting distribution of elevations, which should be tightly
clustered, provides a check on the quality of the map-image
correspondence.

A reservoir monitoring procedure incorporating these
ideas was implemented. First, geometric correspondence
was established between the sensed image and a contour
map of the terrain using the techniques described in the pre
vious section. Correspondence was based on geographically
stable landmarks unrelated to reservoir boundaries.

Second, the image coordinates of selected points on the
reservoir boundary were determined to subpixel precision
by analyzing the gradient of intensity along a line in the image
perpendicular to the elevation contours at each point. The
analysis was restricted to a contour interval bracketing the
water level observed in a previously analyzed image. This
constraint not only reduced computation but also served as
an effective contextual filter for discriminating irrelevant in
tensity discontinuities, arising, for example, from other
nearby bodies of water.

Third, the water level corresponding to each detected
boundary point was obtained by linearly interpolating the
elevations of the terrain contours used to delimit boundary
detection.

Finally, the water volume corresp()nding to the average
water level was obtained by table lookup.

Steps (2)-(4) are repeated for each reservoir in an image
containing more than one.

The above procedure was tested on a set of images of
Briones reservoir, the rightmost of the twin reservoirs in the
upper center of Figure 8. Figure 10 is a higher resolution

(81 PROFILE VIEW

(bl TOP VIEW

Figure 9-Relationship of water level to topography of terrain.

image of the Briones shoreline with elevation contours su
perimposed. The lines in Figure 11 indicate selected per
pendiculars between the 500 and 550 elevation contours
where the terrain slope is most gradual. The location of the
land/water boundary along each of these lines was assigned
to the point of maximal intensity discontinuity, as shown in
Figure 12.

The water level corresponding to each boundary point was
computed by interpolation. The mean water level in the pres
ent image of Briones, based on interpolating 170 boundary
points, was determined to be 523.8 feet. This is within a foot
of the ground-truth figure provided by the reservoir operator
and corresponds to about a one percent error in volume. The
accuracy of this approach is limited by the accuracy of the
terrain map, the quality of map-image correspondence, and
the precision with which the land/water interface can be lo
cated in an image. These factors are discussed further in
Reference [6].

Reservoir monitoring is an instance of a generic class of
tasks in which it is necessary to determine the precise path
through an image of a linear feature (e.g., shoreline, river,
road) whose location and shape are known, perhaps only
approximately, from a map. Maps can be used in such tasks
to facilitate both the process of locating the boundary in the
image and the subsequent interpretation of boundary char
acteristics in terms meaningful to an application (e.g., in
terpreting image coordinates as water levels). Applications
of map-guided boundary verification might include moni
toring river widths (and heights) for flood threat, monitoring
coastlines for erosion, and monitoring river deltas for ex
cessive silt deposit. Unlike reservoir monitoring, extensive
manual ground-based monitoring is not economically feasi
ble in these applications.

Road monitoring

Locating known roads in an aerial image is a prerequisite
for a variety of applications ranging from vehicle monitoring
[7] to map updating. Finding roads is somewhat different
from finding reservoir boundaries in that a thin linear feature
is involved and a continuous path is needed.

Conventional sequential line-tracking algorithms are un
suitable because they are easily sidetracked whenever either
the local evidence for a line is weak or other lines are present
in close proximity. These contingencies arise frequently in
aerial imagery because roads are usually clustered into net
works and pass regularly through heavily textured areas
where one or even both edges may be locally obscured.

To overcome these problems, a line-tracing algorithm was
developed that uses a rough prediction of the path of a road,
provided by a map, as a guide in determining the precise
path. The map information constrains the analysis to rele
vant parts of the image and is used to bridge gaps where
local pictorial evidence is weak or ambiguous. The algorithm
operates by applying specially developed line and edge de
tectors in the vicinity of the predicted road path and then

400 National Computer Conference, 1980

uses a parallel dynamic programming algorithm to find a
globally optimal path through the local feature values. Fur
ther technical details can be found in Reference [8].

Figures 13-16 show the tracing algorithm in action. Figure
13 is an aerial image of a rural area taken for aU. S. Geo
logical Survey mapping project. The portion shown has been
digitized into 256 x 256 pixels (representing 20-foot squares
on the ground), each having one of 256 brightness levels.
Overlaid on the image is a road path predicted from a map

with standard (50-foot) cartographic accuracy. A local line
detector was applied at all image points within a band cen
tered on thIs guideline. The system then found the lowest
cost path from the start of the guideline to the finish, where
the incremental path cost between adjacent image points was
an inverse function of the local line detector score. The path
so traced is displayed in Figure 14. Figure 15 shows the re
sults of tracing many of the roads visible in the image. Note
that the program has traced the center line of the wide road

Figure 10-Terrain contours superimposed on image of Briones Reservoir.

Map-guided Interpretation of Remotely-sensed Imagery 401

and that it has performed extremely well in areas in which
the road is faint or partially obscured, such as at the lower
left and the upper right of the image. Figure 16 shows the
results of guided road tracing in an urban area containing
many intersecting streets. The tracings have been fitted with
straight line segments to cartographic,accuracy. The results
here, too, are extremely good.

Although we have performed only a limited number of
experiments with guided tracing, the results have been most

encouraging. The system is capable of tracing linear features
that are hard even for a human to discern through a wide
range of terrain types and environments. It needs relatively
little guidance; but the more guidance it is given, the more
reliable and efficient is its performance. It can accept guid
ance interactively (via light pen), as well as from preexisting
maps. Interactive guidance is useful in map updating, allow
ing new roads to be carefully traced on the basis of a quick,
lightpen sketch.

Figure ll-Lines designating location for determination of land-water
boundary.

402 National Computer Conference, 1980

Figure 12-Locationsof land-water boundary assigned to points of highest
local gradient along lines shown in Figure 11.

Map-guided tracing linear features is a requirement that
arises in a variety of remote sensing tasks, for example, in
the monitoring of rivers and railroad lines. Given suitable
operators for detecting local evidence, the optimal path al
gorithm used to obtain a continuous road track should also
work equally well in these other line tracing applications.

Object verification tasks

Railroad and highway monitoring are two examples of a
generic class of remote sensing applications we shall call
object verification tasks. Such tasks entail the detection,
mensuration, or counting of specified entities whose possible

Map-guided Interpretation of Remotely-sensed Imagery 403

Figure 13-A rural road with guideline.

locations and orientations in the image can be constrained
by a map. The general approach is to determine the image
coordinates for a reference structure (such as a railroad
track, ship berth, or road) and then apply special-purpose
operators to detect objects of interest (such as boxcars,
ships, or cars). For example, we have implemented a boxcar
counting routine that analyzes the intensity profiles along
predicted paths of railroad track in an image, looking for
possible ends of trains and gaps between cars. Such events.
usually appear as step changes in brightness and dark, trans
verse lines, respectively. Hypothesized gaps and ends are

interpreted in the context of knowledge about trains (e.g.,
standard car lengths and allowed intercar gap widths) and
about the characteristics of emply track to prune artifacts
and improve the overall reliability of interpretation. The
program then reports the number of cars classified by length
[8]. We have also implemented a ship-monitoring program
that analyzes intensity patterns alongside predicted berth
locations in a harbor to distinguish ships from water. (Water
characteristically has a low density of edges, [9].) Railroad
monitoring is illustrated in Figure 17 and ship monitoring in
Figure 18.

404 National Computer Conference, 1980

Figure 14-0utput of guided tracing algorithm.

The key to automating both tasks lies in using a map to
define a highly constrained context (i.e., area of the image)
in which relatively simple tests can be used to distinguish
objects of interest. Knowing the locations of tracks, for ex
ample, reduces the task of boxcar counting to a one-dimen
sional, template-matching problem, while knowing the lo
cations of berths reduces ship finding to a trivial discrimination
task. We believe that boxcar counting and ship monitoring
are representative of a broad class of object-verification
tasks that includes counting planes on runways and cars on
highways, for which similar monitoring programs can be
developed.

CONCLUDING COMMENTS

This paper has described a map-guided approach for au
tomating an important class of remote sensing tasks involv
ing long-term monitoring of predefined ground sites. The key
idea is the use of a map in conjunction with an analytic cam
era model to constrain where to look in an image and what
to look for. With map-guidance, many previously intractable
monitoring tasks become feasible, in some cases even easy,
to automate.

The map-guided approach has some potentially significant
advantages over the exhaustive statistical style of processing

Map-guided Interpretation of Remotely-sensed Imagery 405

Figure I5-Guided tracing of several rural roads.

currently used in applications such as crop classification.
First, processing can be focused on the relevant portions of .
an image, sharply reducing computational costs and making
feasible the use of sophisticated forms of analysis (involving
texture, spatial patterns, and the like) that would be utterly
impractical to apply at each pixel (16 million in a typical
4000 x 4000 LANDSAT image). Second, analysis routines
can be simplified and made more reliable by exploiting
knowledge of what to look for at each site. For example,
classification criteria can be optimally tuned to discriminate
the few relevant alternatives at each location. Finally, a map
~uided analysis yields geographically specific results that are
much more useful than conventional statistical summaries:

Knowing that a particular factory is emitting excessive S02
is much more useful, for example, than knowing that 1 per
cent of 16 million pixels are polluted.

The practicality of automating monitoring tasks using the
approach we have described depends, of course, on the
availability of high resolution satellite imagery and satellite
sensors that can be modeled analytically. Assuming these
are forthcoming, the payoffs from automated monitoring
could be substantial. We envisage systems that would ex
tract updated information automatically as new imagery ar
rived and distribute it to interested users on a sUbscription
basis. Initially, the analysis could be performed at existing
ground-based data-processing facilities with only modest in-

406 National Computer Conference, 1980

Figure 16-Guided tracing of several urban streets.

creases in computational load. Ultimately, the information
could be extracted on-board satellites dedicated to specific
monitoring functions and relayed direct to users via com
munication satellites. On-board processing appears feasible
because of the dramatic reductions in computation made
possible by the concept of map-guided image analysis.

For routine monitoring tasks with large user constituen
cies, centralized information extraction should significantly
reduce the overheads of storing, retrieving, and distributing

large volumes of data. Moreover, it would eliminate the need
for installing image analysis facilities at many user sites.

ACKNOWLEDGMENTS

This research was supported by the National Aeronautics
and Space Administration under Contract No. NASW-2865
and by the Advanced Research Projects Agency under Con
tract No. DAAG29-76-C-0057.

Map-guided Interpretation of Remotely-sensed Imagery 407

Figure 17-Automated boxcar counting. Lines indicating track locations were
traced interactively in this example but could have been obtained by putting
in correspondence with a three-dimensional map of the railyard, as in the ship
example of Figure 18. Statistical operators are flown along tracks to detect

dark transverse lines that are characteristic of gaps between boxcars. Boxcars
are indicated by dots whenever the spacing between hypothesized gaps is
inconsistent with knowledge of standard car lengths.

408 National Computer Conference, 1980

Figure I8-Automatic ship monitoring. The guidelines indicating known berth
locations were obtained for both images from the same three-dimensional map
of Oakland Harbor, based on determination of viewpoint for each image. The

REFERENCES

1. Bernstein, R., "Digital Image Processing of Earth Observation Sensor
Data," IBM Journal of Research and Development, Vol. 20, No.1 (Jan
uary 1976).

2. Sobel, I., "On Calibrating Computer Controlled Cameras for Perceiving
3-D Scenes," Artificial Intelligence, Vol. 5, pp. 185-198 (1974).

3. Barrow, H. G., "Interactive Aids for Cartography and Photo Interpreta
tion," Semiannual Technical Report (Appendix A), Contract DAAG29-76-
C-0057 , SRI Project 5300, SRI International, Menlo Park, California (De
cember 1977).

4. Duda, R., and Hart, P., Pattern Classification and Scene Analysis (John
Wiley & Sons, Inc., New York, 1973).

5. Barrow, H. G., et aI., "Parametric Correspondence and Chamfer Match
ing: Two New Techniques for Image Matching," in Proc. Fifth Inti. Joint

light, wiggly lines beside the berths indicate regions of high edge content,
characteristic of ships.

Conference on Artificial Intelligence (Cambridge, Massachusetts, August
1977).

6. Tenenbaum, J. M., Fischler, M. A. and Wolf, H. C., "A Scene Analysis
Approach to Remote Sensing," SRI A.I. Center Technical Note 173, SRI
International, Menlo Park, California (October, 1978).

7. Barrow, H. G., "Interactive Aids for Cartography and Photo Interpreta
tion," Semiannual Technical Report, Contract DAAG29-76-C-0057, SRI
Project 5300, SRI International, Menlo Park, California (June 1978).

8. Barrow, H. G., "Interactive Aids for Cartography and Photo Interpreta
tion," Semiannual Technical Report, Contract DAAG29-76-C;0057, SRI
Project 5300, Stanford Research Institute, Menlo Park, California (No-
vember 1976). .

9. Barrow, H. G., "Interactive Aids for Cartography and Photo Interpreta
tion," Semiannual Technical Report, Contract DAAG29-76-C-0057, SRI
Project 5300, Stanford Research Institute, Menlo Park, California (May
1977).

CCITT standardization for digital facsimile

by T. L. McCULLOUGH
3M Company
St. Paul, Minnesota

INTRODUCTION

In November, 1979, the CCITT Study Group XIV met to
complete, among other items, several years of work on the
Recommendations defining Group 3 digital facsimile. This
paper reviews the results of this work in terms of technical
implication, terminal features, and facsimile services. In par
ticular, ccrtT Recommendations T.4 and T. 30 are dis
cussed. (These Recommendations will be finalized by the
CCITT in Geneva, November, 1980.)

BRIEF HISTORY OF FACSIMILE

Hardly an article is written on facsimile without mention
'ing Alexander Bain's early work in 1842 using two swinging
pendulums. However, the single most important contribu
tion to this technology is not a technical breakthrough or
years of research; it is standardization.

Facsimile is a communications device and, as such, is most
useful when used as a graphic extension to voice commu
nication. This requires standardization between equipments.

Through the impressive cooperative efforts of the PTT's
(Postal Telephone and Telegraph Administration of each
country) and the manufacturers working within the frame
work supplied by the CCITT (Consultative Committee In
ternational Telephone and Telegraph), a series of recom
mendations has been completed. These recommendations
define the operation of the three groups of machines in use
today.

T.2-Defines Group 1 apparatus (6 minute FM)
T.3-Defines Group 2 apparatus (3 minute AM)
T.4-Defines Group 3 apparatus (approximately 1 minute

V.27 ter)
T.30-Defines the handshaking procedures for Groups 1,

2, and 3

The significance and applicability of T.4, T.30, and their
interaction is the main topic of this paper. However, an un
derstanding of the evolution and scope of these recommen
dations, particularly T.30, is essential to realizing their ap
plication.

409

SCOPE OF T.30

The protocol and handshaking procedures recommended
in T.30 for document facsimile transmission over the General
Switched Telephone Network (GSTN) apply to facsimile
service defined as Group 1, 2, and 3 type service. Machines
providing these services should comply with CCITT Rec-,
ommendations T.2, T.3, and T.4, respectively. These three
groups of machines provide a wide range of service with a
corresponding range of complexity and technology. Rec
ommendation T.30 was designed to have the fle~ibility to
meet the different needs of these machines.

In its simplest usage T.30 specifies a limited command/
response repertoire to be implemented using a simple set of
tones. When the service demands a more elaborate proce
dure, T.30 provides for a more extensive command/response
repertoire implemented by modulating (at 300 bps) two of
the tones previously specified (i.e., 1650 Hz and 1850 Hz).
Thus the T.30 procedures allow anyone or any combination
of facsimile services to be incorporated in a particular fac
simile unit. 1

The CCITT also recognized that individual manufacturers
will desire the design freedom to provide service in a manner
unique to their market. Thus, Recommendation T.30 not
only allows for a range of complexity but also allows a range
of machine configuration (i.e., Simplex, Half Duplex, and
Full Duplex). For those applications requiring even more
design freedom, T.30 allows for special non-specified op
tions.

Recommendation T.30 defines the line control procedures
to provide three major functions. These functions are:

1. The establishment of a compatible operating mode be
tween two facsimile units. This function is divided into
two phases:
a) Phase A which defines the call establishment pro

cedures for manual and automatic machines;
b) Phase B which utilizes a signaling scheme recog

nizably unique from the message signaling scheme
to define the pre-message procedures which iden
tifies and selects the proper operating mode.

2. The orderly means for transmitting and verifying,a fac-

410 National Computer Conference, 1980

simile document(s). This function is divided into two
phases:
a) Phase C which utilizes the message signalling scheme

for the actual transmission of the document (this
phase is covered by the appropriate Recommenda
tion for the equipment);

b) Phase D which defines the post-message proce
dures. Phase D specifies the end of Phase C, the
status of the message received, and the next phase
in the overall,procedure.

3. The orderly means for terminating a facsimile call. This
function is defined in phase E.

SCOPE OF T.4

Whereas T.30 defines the procedures necessary for doc
ument transmission, T.4 defines the specific apparatus char
acteristics relating to inter-operability of Group 3 apparatus.
As is T.30, T.4 is concerned only with operation over the
public switched telephone network. 2

ESSENCE OF T.4

Since the CCITT and the EIA will both be publishing a
detailed description of T.4, I shall endeavor to give the
reader only the essential items contained in T.4 and perhaps
some insight not available in the formal spec.

Apparatus dimensions

Scanning is accomplished left to right across a 215 mm
line. Each line consists of 1728 elements. The vertical scan
ning density is 3.851pm with an optional 7.71pm higher res
olution. COMMENTS: A4 paper is 210 mm wide. 8Yz"
"U.S." paper is 216 mm wide.

Minimum transmission time per scan line

The standard minimum time is 20 msec with 40 msec, 10
msec, 5 msec, and 0 msec options. COMMENTS: This is
basically a printer spec. It assures that data will not be sent
faster than it can be printed. The 40 msec "option l

, was
inserted to allow for a low-cost unit.

One-dimensional coding

One-dimensional run length data compression is accom
plished by the popular modified Huffman scheme. In this
scheme, black and white runs are replaced by a base 64 code
representation. Compression is achieved since the code
word lengths are invertly related to the probability of the
occurrence of a particular run (reference Figure O.

«!lJwur CWnAlAOOMAA!l:$$:Oft}
llaATA8ffS

Figure I-One-dimensional coding.

Two-dimensional scheme

The two-dimensional coding scheme agreed upon by the
CCITT in November, 1979 is labeled as the Modified READ
Code. It is an algorithm based on the original Japanese
READ (Relative Element Address Designate) Code but mod
ified considering U.S.A. concerns on the algorithm's per
formance and ease of implementation. The following prin
ciples were incorporated into the modified READ code.

One-dimensional EOL code plus a tag bit

This code offers increased immunity to noise by improving
error detection and recovery, minimizes additional cost as
the hardware already exists to detect this code for the one
dimensional standard, simplifies the injection of the FILL
code (as it is a natural extension of EOL), and eliminates
the need to provide zero insertion (bit stuffing) into the data
stream.

A maximum standardized K value with optional
programmability of smaller values

The ability to provide for programmability of the param
eter K improves compression efficiency by choosing either
the one-dimensional or two-dimensional code on a scan-line
by scan-line basis. Additionally, where the document con
tent is such that a large amount of FILL is present in the

data stream, the one-dimensional code can be chosen to im
prove error performance. The maximum value of K shall be
set as follows: normal resolution (i.e., 3.85 lpm), with Kless
than/equal to 2; high resolution (i.e., 7.7 lpm), with Kless
than/equal to 4.

An option for an uncompressed mode within a scan-line
of data

The two-dimensional code was chosen to have the ability
to be extended to an uncompressed mode of operation. This
avoids expansion of the compressed data for certain docu
ment conditions. NOTE: Although the eight test documents
chosen for evaluating these coding schemes do not exhibit
this effect, certain documents will.

Truncate examination of the history line in the vertical
mode of less than/equal to ± 3 pels

Examination of the data set forth to date indicates that
examination of the history line beyond ± 3 pels offers little
or no improvement in compression efficiency and compli
cates the implementation of the coding scheme. COM
MENTS: The resultant code bears a strong resemblance to
the U.K. R2 code which was itself a modified READ code
but more in line with the above-mentioned principles. Ex
tensive testing on the U.K. code showed it to be slightly
better than the previously unmodified READ code.

Two-dimensional coding is most efficient at high resolu
tion and only marginally efficient at the standard resolution.

Modulation and demodulation

There are at present four data rates defined for Group 3
apparatus: standard data rates of 4800 bps and 2400 bps in
accordance with CCITT Recommendation V.27 ter and op
tional data rates of 9600 bps and 7200 bps in accordance with
V.29. COMMENTS: It was generally felt that 4800 and 2400
bps would apply to the Public Switched Telephone Network
(PSTN) and that 9600 and 7200 bps would apply to private
networks. However, it is clear that the Recommendation
allows for any speed operation over either type of circuit
provided the performance of the service is not degraded.

COMMENTS ON T.4

The standard mode of operation is one-dimensional mod
ified Huffman coding at normal resolution, 20 msec per scan
line, transmitted at 4800 bps, using the V.27 ter modulation
process.

Selection of the various other modes of operation can be
done during the initial handshaking or between documents.
The details of this procedure are contained in Recommen
dation T. 30.

CCITT Standardization for Digital Facsimile 411

Although there is no standard algorithm for selecting op
tional capability, it is generally understood that: the trans
mission rate is selected as high as possible while still main
taining acceptable copy quality; one-dimensional coding is
best for normal resolution; two-dimensional coding is best
at high resolution; and the capabilities of the printer set the
minimum scan line time.

ESSENCE OF T.30

As mentioned previously, T.30 is concerned with the pro
cedures which are necessary for document transmission be
tween two facsimile stations in the general switched tele
phone network. These procedures essentially comprise the
following: 3

1. call establishment and call release;
2. compatibility checking, capability status, and selection

command;
3. checking and supervision of phone line conditions;
4. control functions and facsimile operator recall;
5. both recognized optional functions as well as other

(non-standard) options.

The above-mentioned features can be accomplished, at
best in a simplified manner, by the use of tones. And indeed,
the tonal procedures are very popular for Group 2 equip
ment. For more sophisticated automatic equipment and for
all Group 3 equipment, the binary coded procedures (300
bps) are used. The emphasis of the binary coded procedures
is in the compatibility/capabilities checking/selecting fea
ture. This feature is implemented in a straightforward man
ner. One unit (the identifying unit) lists all of its capabilities,
both standard and optional, and the other unit (the com
manding unit) selects from that list the most appropriate
mode of operation. Understanding this simple feature is the
key to understanding T.30.

The first phase in T.30 (Phase A) is to establish a telephone
list, then decide which unit will be the identifying unit and
which will be the commanding unit. This rule is followed:
all manual receivers and all auto answer units are identifying
stations; all manual transmitters and all auto dialing units are
commanding stations. NOTE: Calling an auto answer trans
mitter is a polling operation.

The next phase (Phase B) contains the important pre-mes
sage procedures. It encompasses both tonal and digital op
eration. In the procedure, an attempt is made by the iden
tifying unit to initiate either the digital procedures (by
transmitting the Digital Identification Signal, DIS) or the
tonal procedures (by transmitting the appropriate Group
Identification, GI, tone) (reference Figure 2).

The commanding station analyzes these signals, then ini
tiates either the digital procedures (by sending the Digital
Command Signal, DCS, followed by modem training) or the
tonal procedures (by sending the appropriate Group Com
mand, GC, tone followed by Phasing). The identifying sta-

412 National Computer Conference, 1980

Transmit CEO Called Station

Identification

'Ibne (2HJ~ Hz)

+------ Transmit binary-coded information

Listen for command information

3 secorrls + 15%

Transmit tonal preamble (GI)

+------ Transmit binary-coded information

Listen for canmand information

3 secorrls + 15%

Repeat tonal preamble (GI) and

binary-coded information

+------ until tonal or coded canmand is

detected or timeout occurs

(3~-41?J secorrls)

Figure 2-Initial identification attempting both tonal and digital handshaking.

tion assumes the selected mode, processes the training (or
phasing) and, if all is OK, responds with a Confirm to Re
ceive, CFR, reply. Phase C message procedure is now ready
to begin.

Phase C is referred to only briefly in T.30 since this phase
is covered in detail in the appropriate T.2, T.3, or T.4 Rec
ommendation.

Phase D, the end-of-message phase, serves to verify the
successful (or unsuccessful) reception of the document and
to direct the procedure to the next appropriate phase (usually
either Phase C or Phase E).

Phase E is simply Call Termination, where the control is
returned to the phone handset (this usually implies discon
nection if the handset is on hook). Figure 3 shows a signal
sequence diagram of the five phases.

To handle line' errors, T.30 incorporates a method, similar
to HDLC, wherein commands are repeated (three times) if
not responded to with valid responses. Accordingly, com
mands which are received in error are disregarded.

OPTIONS WITHIN T.30

Recommendation T.30 is rich in options giving the latitude
and flexibility to form a family of products while still main
taining overall compatibility. Whereas these options pertain

to all three groups of apparatus, they are perhaps most ap
propriate and best understood in reference to Group 3 equip
ments.

Options fall into two categories: recognized options,
where the operation is internationally defined; and non
standard options which are known only to a particular ma
chine model or communication service.

The following are recognized options which are defined
within the Digital Identification Signal, DIS. Their operation
is either self-explanatory or defined in Recommendation T.2,
T.3, or T.4. These options relate to apparatus parameters.

1. Group 1, 4-minute operation with an Index of Coop
eration of 176.

2. Group 1, 2, and 3 capability within one physical unit
(reference T.2, T.3, T.4).

3. 9600 and 7200 bps operation in accordance with V.29
(reference TA).

4. Higher resolution (7.7 lines/mm in the vertical).
5. Two-dimensional coding (reference T.4).
6. Wider paper widths (256 mm, B4, and 297 mm, A4).
7. Longer paper lengths (364 mm, B4, and unlimited, rolf

feed).
8. Additional scanning times (faster: 10, 5, and 0 sec; or '

slower: 40, msec).

T.30 also includes recognized options relating to proce
dure. These are:

Station identification

Three optional commands allow for identification of the
transmitter and/or the receiver using a 20-digit field. This
field contains the international telephone number.

Voice request

Three optional commands allow an operator at either end
to interrupt facsimile procedure and request voice contact.

Callil'YiJ Transmitter

Phase A

Conunand information

Called R:ceiver

~ Called station
identification

DIS/GI
+--- Capabilities identified

Phase B Phasil'YiJ and/or trainil'YiJ - - - ..

~ Confirmation to receive

Phase C Fax message ---+
-- ---- ---------- ---------- -- -- -- -- -- ...;--- -- ------ - ---------- ------ --.-

Phase D End of message bi •

4 MCF Message confirmation

Phase E DCN

Figure 3-Calling station transmitting.

Improved error detection

An optional response can be the response to a corrupted
command which shortens the 3-sec delay before the com
mand is repeated.

2400 bps operation of T.30

The 300 bps FM (1650 Hz/1850 Hz) modulation of T.30
was deliberately chosen as a unique modulation process
identifiably different from the modulation used for the fac
simile message. This uniqueness avoids confusion when
shifting from one message data rate to another. However,
for low-cost machines or for applications where only one
fixed speed is desirable, T.30 can operate at the message
rate of 2400 bps.

In addition to these recognized options, manufacturers or

T.30

GSTN

T.30 SIS

PDN

Figure 4-Relationship between facsimile service, facsimile standards, and
public communication facilities.

CCITT Standardization for Digital Facsimile 413

service groups can offer unique features by utilizing the non
standard facilities commands/responses. These signals con
tain a unique, 16 bit, registered, manufacturer's code iden
tifying that signal as pertinent only to one manufacturer. An
example of a non-standard option would be scrambling, Or
an alternative data compression scheme.

FUTURE WORK

Recommendation T.30 was developed to meet the present
demand for Group 1, 2, and 3 facsimile service over the
GSTN and in this context it is an optimal procedure. A new
group(s) of service is now being discussed which could take
advantage of the newly developing Public Data Networks
(PDN) and which could offer some very sophisticated fea
tures to the customer. This "Group 4" service has only been
briefly discussed in CCITT meetings, but it is obvious that
it will require a new machine recommendation (e.g., T.5)
and a new procedure definition (e.g., T.30 bis).

An overview of these services and the related specifica
tions is graphically depicted in Figure 4.

The details of the interplay between Group 3 service and
Group 4 service will be an item for close study. And it should
be noted that whereas Recommendation T.30 bis will have
a broader scope of application, it is not true that Recom
mendation T.30 will be outdated by T.30 bis or in any way
conflict with T.30 bis. Rather, the two recommendations will
complement each other providing a total range of cost ef
fective service.

REFERENCES

1. CeITT COM XIV-No. 47-E. Source: United States of America. Title:
Treatise on Recommendation T.30 (Revised).

2. CCITT COM XIV-D21. Source: United States of America. Title: Pro
posed U.S.A. Standardization of "Group 3 Facsimile Apparatus for Doc
ument Transmission in the General Switched Telephone Network".

3. CCITT COM XIV-D20. Source: United States of America. Title: Pro
posed U.S.A. Standardization of "Procedures for Document Facsimile
Transmission in the General Switched Telephone Network".

The application of optical character recognition techniques
to bandwidth compression of facsimile data

by PATRICE J. CAPITANT and ROBERT H. WALLIS
Compression Labs
Cupertino, California

INTRODUCTION

The goal of f~csimile bandwidth compression is the efficient
transmission of documents achieved by the removal of re
dundancy in the encoding technique. For the case of printed
or typewritten documerlts, the most powerful encoding
technique is the Combined Symbol Matching (CSM) algo
rithm, which is based on the detection of recurrent patterns
(such as alphanumeric characters) in the document being
encoded (4,5,6,10). As the transmitter scans the document,
it locates and extracts isolated patterns, transmits them to
the receiver, and stores them in a library. Using the received
patterns, the receiver also accumulates an exact copy of the
transmitter's library. As each new pattern is isolated, it is
compared with the library patterns which have been previ
ously encountered. If the pattern is unfamiliar, it is added
to the library. However if a "match" is detected, this in
dicates a recurrence of a pattern, and there is no need to re
transmit it, since it is available in the receiver's copy of the
library. Therefore, the library entry number (library ID) is
transmitted instead, enabling the receiver to reconstruct the
pattern from the "prototype" in its library. Since the library
ID can be transmitted with far fewer bits than the binary
pattern that it points to, a significant bandwidth compression
may be attained. For printed documents, the CSM algorithm
is typically twice as efficient as the best run-length coding
algorithms.

In order to operate efficiently, the transmitter must not
allow very many recurrences to escape detection, since this
leads to a loss of compression. Conversely, it must also avoid
declaring dissimilar characters to be a match, since this leads
to a substitution error in the reconstructed document. This
paper deals with the way in which the CSM algorithm de
termines whether two patterns match or not, and how the
basic algorithm may be modified to perform optical character
recognition.

COMBINED SYMBOL MATCHING SYSTEM

The Combined Symbol Matching (CSM) system is a dual
mode encoding system that possesses the advantages of ex
tended run-length encoding and symbol recognition systems.

415

Figure 1 illustrates the block diagram of the encoding system.
In' operation, a number of scan lines (equal to about two to
six times the average character height) of binary image data
are stored in a scrolled buffer. This data is then examined
line-by-line to determine if a black pixel exists. If the entire
line contains no black pixel, the information is encoded by
an end of line code. On the other hand, if a black pixel exists,
a blocking process is conducted to block the symbol. For
those blocked symbols, further processing is required to
determine if a replica of the symbol in question already exists
in the library. This process involves the extraction of a set
of features, a screening process to reject unpromising can
didates, and finally a series of template matches. The first
blocked symbol and its feature vector are always put into
the prototype library, and as each new blocked symbol is
encountered, it is compared with each entry of the library
that passes the screening test. If the comparison is success
ful, the library identification (ID) code along with the lo
cation coordinates are transmitted. If the comparison is un
successful, the new symbol is both transmitted and placed
in the library. Those areas in which the blocker cannot prop
erly block the symbol are assigned to a residue, and a two
dimensional run-length coding technique is used to code the
residue 1ata.

The following sections summarize the compression and
expansion algorithms.

Compression

The compression technique is based on the following se
quence of operations.

1. The raster image is scanned, one line at a time, until
a black pixel is found. This is called a "key pixel."

2. The local area around the key pixel, called a "trial
block," is examined to isolate a small contiguous
group of black pixels roughly the size and shape of
an alphanumeric character. .

3. If no symbol is found within the trial block, the trial
block is left as a residue. The blocker is designed to
avoid the residue in subsequent search for key pixels.

4. Residues are encoded using a two dimensional run
length code (8,9).

416 National Computer Conference, 1980

.------~------------_e.ot~ RESIDUE 1--_-.
-N-O-N-------~~ COD I N G

FROM

EMPTY
, LINE

ISOLATED
SYMBOL

INPUT _ KEY PIXEL SYMBOL SYMBOL' .
---t __ .-t SEARCH ~ BLOCI<ING~ DETERMINATION
BUFFER

UNKNOWN
PATTERN

ISOLATED
SYMBOL

. ______ ~ PROTOTYPE ~ PROTOTYPE~
....-.----t-LIBRARy \ CODING

, -

'UNKNOwN CANDIDATE
FEATURE . FEATURE CANDIDATE
VECTOR~, VECTORS PATTERN ~

~ FEATUREJt .. SCREENINGt-- MATCHING !--eo SYMBOL~ ~~TREAM
GENERATION 10 CODE FORMATION

I UNKNOWN
L-. ____________ ----' PATTE"R N

Figure I-Combined symbol matching facsimile coder,

TO
OUTPU' .
BUFFEf

5. Symbol blocks are isolated, labeled, and removed
from further key pixel consideration. The blocks are
used to build a library against which other symbol
blocks may be matched. The library is built from
scratch with each new page, and updated as new sym
bols are found.

a line sync code word is added every K lines, and the
resulting sequence is transmitted as the data stream.

6. A set of features is measured for each symbol block.
These are also stored in the library.

7. As each symbol is found, its features are compared
to the features of symbols in the library. Then library
entries with features most like the new blocks are
treated as candidates for the matching process.

8. Library candidates are aligned with the trial symbol
block, and a pixel-by-pixel comparison is made.

9. If the matching error is less than a threshold, the
matching process is stopped, and the identification of
the matching library member is stored for later coding.

10. If no match is found, the block is stored in its entirety
as a "prototype" block. It is also entered into the
library.

1 L When a line has been completely processed, i.e., all
pixel patterns in the line have been labeled as either
residue or symbols, the code bits for the residue are
concatenated with the code bits for the symbol blocks,

Expansion

The expansion technique is based on the following se
quence of operations.

1. Portions of the input data stream carrying the code for
one line of the image are isolated. The lines are sepa
rated by special "end of line" code words.

2. The code format is used to. separate residue from the
symbol code. These codes are processed separately.

4. The symbol code is used to generate a library of symbol
blocks, and the ID code is used to select library entries.

5. The residue and symbol blocks are combined.

System elements

The following sections describe the key elements of the
CSM system.

Application of OCR Techniques to Facsimile Bandwidth Compression 417

Input Buffer

The facsimile data to be processed is stored in a scrolled
buffer that "scrolls" through the input document. This is
accomplished by rotating the addressing of the input memory
such that the newest line that enters the buffer is written
over the oldest line. The buffer contains 128 lines, which is
about four times the height of the largest character that can
be matched.

Symbol blocking

The function of the key pixel scanner Symbol Blocker is
to examine the input buffer in a systematic fashion, and to
locate the position and size of any isolated symbols. A pixel
in the buffer, denoted here by the character'@,' is consid~
ered to be a key pixel whenever it is black and the four neigh
bors located above it and to its left are white, as shown.

.@

Whenever a key pixel is encountered, the blocker is initiated.
It will try to extract the symbol connected to the key pixel
at its top and is delimited by a border of white pixels. If such
a symbol can be found, it has to fit with its border into a 32
x 32 array. If no connection is made, go to the next key
pixel. If a connection is made, the symbol is stored with its
borders in a 32 x 32 RAM and erased from the input buffer.

The blocker algorithm separates the symbol from its sur
roundings by determining its boundary (perimeter). It does
this by starting on a known exterior point (i.e. the key pixel)
and following the exterior of the symbol in (say) the clock
wise sense until the entire perimeter has been traced. Con
sider the eight nearest neighbors of a central pixel to be in
dexed as follows:

5 6 7
4 X 0
3 2 1

A clockwise rotation from a perimeter point (i) is given
by

j = (i + n)(mod 8)

where n is the number of clockwise 45 degree increments
in the rotation. The perimeter following algorithm consists
of st!arching through the boundary points in a clockwise
sense until a black pixel is encountered. The search is ini
tiated at the neighbor that corresponds to the previous
boundary point.

Assuming "X" in the above diagram is the key pixel of
a possible symbol in a trial block, the algorithm first rotates
counter-clockwise from index four until a black pixel is en
countered. This vector is stored, and utilized as the stopping
criterion, since the last vector in the clockwise trace is ex
actly 180 degrees out of phase with the first vector in a
counter clockwise trace. In terms of the above notation

LAST(CLOCKWISE) = FIRST(COUNTER-CLOCK
WISE) - 4 (mod 8)

Once the perimeter has been traced, the character must
be extracted from the page for processing. This is accom
plished by generating a "mask" which contains all the in
terior points of the perimeter, and performing a Boolean
"and" between the mask and the trial block. The mask may
also be used to erase the processed character from the doc
ument so that the residue contains only unblocked patterns.

The generation of the mask is based on the relation be
tween a closed curve and its internal area. Specifically, the
line integral gives:

A= pYdX'

where A is the internal area.
A discrete counterpart of the continuous line integral

expression has been developed which is amenable to digital
mechanization. Each link of the perimeter is specified by a
chain code in the range (0,7), and thus representable as a 3 '
bit code. The following algorithm, which starts with a blank
buffer generates a mask of all the interior points of the pe
rimeter:

(1) Complement all locations to the left of the key pixel
and use the vector whose destination is the key pixel
as initial source vector.

(2) All locations are then determined by a source vector
and a destination vector. If N(s) = A x 4 + B x 2 + C is
the direction of the source vector (bits A,B,C specify
the chain code) and N(d) is the direction of the des
tination vector, let N(d)-.l (mod 8) =Dx4+Ex2+F.
Let

R=A .nor. D
L=A .and. D
S = (.not. E .or. B) .and. (A .xor. D)

Apply the following rules:

R = . true .?Complement location and locations to
the left

L = . true .?Complement locations to the left
S= .true.?Complement location

After the entire perimeter has been followed the mask
buffer is complete.

In addition, the area enclosed by the boundary may be
easily calculated as the perimeter is being traced. It is given
by

NLINKS-\

AREA = ~ COL(]) [ROW(l + 1) - ROW(])]
J=O

where NLINKS equals the number of lines in the chain of
coordinate pairs representing the perimeter, and all indices
are taken modulo NLINKS.

The area enclosed by the perimeter has proved to be a
useful feature for symbol recognition. Specifically, the ratio
of the perimeter squared to the area is invariant to magni
fication, rotation, and translation.

418 National Computer Conference, 1980

Feature Extraction

The most straightforward method to determine whether
a match exists between an unknown symbol and one of the
symbols stored in the library is to perform a template match
between the unknown and every library symbol. However,
a two dimensional template match is costly in terms of pro
cessing time. A method of reducing the number of such
matches is required. The approach that has been taken is to
extract a set of scalar "features" from the various symbols
in the library. These features are used to reduce or "screen"
the number of candidates for a template match to a tiny frac
tion of all the possibilities in the library.

The features used in the screening process are the block
height, block width, perimeter length, and internal area.

Candidate Screening

The purpose of the screening process is to reduce the bur
den on the template matcher by passing only "good pros
pects" to the matcher. This is accomplished by calculating
the feature space distance between the unknown and each
library entry, and selecting the library candidate with the
smallest distance as the best prospect for a match. If this
match is rejected, the next best candidate is considered, and
so forth, up to a maximum of N. The distance "metric" used
to determine how "close" an unknown is to a particular
candidate is the "city block" distance defined by

N

D(V, C) = ~ IF dl) - F v(l) I
1=1

where F dl) is the Ith feature of the candidate, F v(l) is the
Ith feature of the unknown, I * I denotes the absolute value,
D(V,C) is the distance between the unknown and candidate,
and N is the number of features.

Template Matcher

The template matcher forms a comparison between the
binary patterns of a detected symbol and a library prototype
symbol. Consid~r a two-di~ensional binary ~attern repre
sented by A(C,R) where C-i,2, .. ,N and R-l,2, .. ,N. A
conventional template matcher calculates the similarity be
tween a pair of vector patterns A(C,R) and B(C,R) by sum
ming the number of picture elements (pixels) for which
A(C,R) and B(C,R) differ. This "Exclusive Or" error is de
fined as

N N

E= ~ ~ A(C,R)fBB(C,R)
C=IR=1

where fB denotes the Boolean Exclusive Or operation.
A major shortcoming of the conventional template matcher

described above is that it treats all errors alike regardless of
where they occur spatially. The improved matcher, to be
described, utilizes an alternative error criterion that is based
on the context in' which the error occurred, known as the
"Weighted Exclusive Or Count."

Weighted Exclusive Or Count

The motivation behind this error criterion may be appre
ciated by examining the Exclusive Or Error (denoted AfBB)
in the diagrams below:

111111 111111
11111111 11111111

111 11 111 111 2
11 III 11 111 1 1 2 4

111 111 111 III 575
11 11 111 111 696
111 111 111 111 696

III 111 111 111 696

111 III 111 111 696
111 111 111 III 475
1111 1111 1111 111 4

111111111 11111111 2

PATTERN A PATTERN B AEBB Weighted XOR
Count =23 Error

, Count = 131

Compare the Exclusive Or pattern for the "c" and "0"
above with the pattern for the pair of "e's" below:

111111 111111 333332
1111111 11111111 1 3

1111 111 111 111 1 11 3 22
11 111 111 111 1 2

111 11 111 111 1 2
111 111 111111111111 111111 233333
111111111111 11111111111111
1111 111
111 111
111 111

111 111 111 1111 2343
111111111111 1111111111 1 3

111 111111 111 232

PATTERN A PATTERN B AEBB Weighted
Count = 29 XOR

Error
Count=73

Note that the Exclusive Or Error count for the pair "c"
and "0" (23) is actually less than that for the pair of "e's"
(29) implying that by this error metric, "c" and "0" are
"closer" than the pair of "e's" are to each other. However,
the error pattern for the pair of "e's," which should be de
clared a match, is composed of sparsely distributed pixels,
while the error pattern for the "0" and "c" shows a dense
node of error pixels corresponding to the missing right seg
ment of the "0." One Way to quantify the density of such
a "node" is to form a summation in which the "local den-

Application of OCR Techniques to Facsimile Bandwidth Compression 419

sity" of every black pixel is merely the sum of all the pixels
in its 3 x 3 neighborhood if the pixel is 1, and 0 if the pixel
is O. The patterns above labelled "Weighted XOR Error"
were calculated in this manner. Note that by this criterion,
the associated counts indicate that the pair "c" and "0" are
more separated (Count = 131) that are the pair of "e's"
(Count = 73).

Optical Character Recognition

The CSM system can be modified to perform optical char
acter recognition and various hybrid CSMIOCR tasks.

If a fixed set of symbols is to be expected, the library can
be preconstructed. Unrecognized symbols would then be
transferred in the residue.

A further modification would remove the residue coding
subsystem and only transmit recognized symbols and their
position on the page.

Finally the OCR mode would not transmit positions but
only library codes, in the sequence which they. would be
read. In this mode, however, two extra subsystems need to
be implemented to allow a meaningful reproduction.

Line Tracking

In the Western world, printed matter is "read" from left
to right, and from top to bottom. Therefore, a symbol block
ing system that transmits its output to a serial ASCII terminal
must do the same. However, the CSM algorithm extracts

R

characters from the document being scanned in a totally
different fashion. As the line buffer scrolls through the page
from top to bottom, the tallest of first encountered characters
are removed from the document and processed through the
recognition algorithm. Thus, characters emerge from the
CSM process in a sequence which would be totally incom
prehensible if viewed in chronological sequence. In the con
ventional CSM facsimile transmission mode, this is of no
consequence, since characters are placed in their appropriate
address locations regardless of their order of occurrence. In
the serial symbol recognition mode, the transmitter will as
sign each character an ASCII code, assemble the codes into
lines, inserting blanks, line-feeds, carriage returns, etc., and
transmit the lines serially to the receiver. For single spaced
or rotated documents, this "line-tracking" is more difficult
than one would imagine. The problem is basically that of
grouping the characters into lines. Determining the sequence
in which they should be transmitted is relatively easy since
the characters may be sorted by their column addresses. A
significant benefit of this serial ASCII· mode is that no in
formation on character location need be transmitted since
the correct sequence is all that is required in order to prop
erly reconstruct the received document.

The line tracking algorithm is based on a straight line fit
of the key pixel coordinates of characters on a text line, as
illustrated in Figure 2. The straight line is defined paramet
rically as

R=SxC+O

where R represents the row index, C is the column index,
S denotes the text line slope, and 0 is its offset. As char
acters are encountered, they are assigned to the nearest
straight line representing a text line.

- C

+ D
1

Figure 2-Line tracking.

420 National· Computer Conference, 1980

Telecommunicotion~ ManAger
International Company
1111 BroadwAY
New York, N.Y. 10022

Dear Mr. Manager:

August 15, 1978

This letter will oct AS the standard for determination

of the minimum compression ratios Acceptable for the FAX

COMP, facsimile data compressor. .The floppy disk of the

FAX-COMP will be able to store at least nine copies of this

page prior to overflowing which will guarantee a transmission

time of less than 25 seconds for the page. This transmission

time will be achievable using a 2400 baud digital modem for

line connection.

Compression ratios of from 5:1 up to 25:1 can be

expected from other pages of information, depending upon the

actual content of the pages. These compression ratios are

defined when using the 96 line per inch scanning resolution

only.

Very truly yours,·

~L'.If~
CLoYD E. MARVIN

Vice President

Marketing

CM:vg

Telecommunications Ma.nager
International Company
ll11 Broadway
New York, N.Y. 10022

Dear Hr. Manager:

August 15, 1978

This letter will act as the standard for determination

of the minimum compression ratios acceptable for the FAX

COHP, facsimile data compressor. The.floppy disk of the

FAX-COHP will be able to store at least nine copies of this

page prior to ·overflowing which will guarantee a transmission

time of less than 25 seconds for the page. This transmission

time will be achievable using a 2400 baud digital modem for

line connection.

Compression ratios of·from 5:1 up to 25:1 can be

expected from other pages of information, depending upon the

actual content of the pages. These compression ratios are

defined when using the 96 line per inch scanning resolution

only.

Very truly yours,

?

CLOYD E. HARVIN

Vice President

Ha rke ting

CM:vg

Figure 3-0CR results.

Handling of Special Characters

A number of characters which consist of two "sub-char
acters" must be treated as special. cases in the symbol
matching mode. This is because the blocker/matcher would
otherwise fragment them into their constituent parts and give
misleading results. These characters are: (i), (j), (!), (:),
(;), (=), and ("). After recognition of the two parts of the
character, the system will check if two compatible symbols
are on top or almost on top of each other. If so, the two
symbols are merged into one. For example, two (.)'s on top
of each other will be merged into a (:).

Performance

The CSM symbol recognition system has been extensively
evaluated by computer simulation to optimize its perform·
ance and to determine its compression ratio with respect to
other coding methods. The symbol recognition mode system
has been tested with 86 sets of data, each containing 1,000
samples of one of the 86 symbols of the Courier 10 font. In
these tes.ts, no mismatches occurred, and only very badly
damaged characters were rejected.

Figure 3 contains an example of a business letter and its
reconstruction in the symbol recognition mode of operation.
It should be noted that the reconstructed letter has been
printed with a different font than the original; however, the
format and spacing of the two letters are in basic agreement.
The compression factor obtained for this document for op
eration of the CSM system in the symbol matching mode is
about 257 : 1 and for operation in the facsimile mode is about
49: 1.

REFERENCES

1. Arps, R. B., "Binary Image Compression," in Image Transmission Tech
niques, W. K. Pratt, Ed., Academic Press, New York, 1979.

2. Musmann, H. G. and Preuss, D., "Comparison of Redundancy Reducing
Codes for Facsimile Transmission of Documents," IEEE Transactions
on Communications, Vol. COM-25, No. 11, Nov. 1977, pp. 1425-1433.

3. Ascher, R. N. alld Nagy, G. "A Means for Achieving a High Degree of
Compaction OIl Scan-Digitized Text," IEEE Transactions on Computers,
Vol. C-23, No. 11, November 1974, pp. 1174-1179.

4. Pratt, W. K., Chen, W., and Reader, C., "Block Character Coding,"
Proceedings SPlE, August 1976, pp. 222-228.

5. Chen, W., Douglas J. L., and Widergren, R. D., "Combined Symbol
Matching-A New Approach to Facsimile Data Compression," Pro-
ceedings SPIE, August 1978, pp. 2-9. '

Application of OCR Techniques to Facsimile Bandwidth Compression 421

6. Chen, W., Douglas, J. L., Pratt, W. K., and Wallis, R. H., "A Dual Mode
Hybrid Compressor for Facsimile Images," Proceedings SPIE, August
1979.

7. White, H. E., Lippman M. D., and Powers, K. H. "Dictionary Look-Up
Encoding of Graphics Data," in Picture Bandwidth Compression, T. S.
Huang and O. J. Tretiak, Eds., Gordon and Breach, New York, 1972,
pp. 265-281.

8. Mitchell, J. L. and Goertzel, G., "Two-Dimensional Facsimile Coding
Scheme," Proceedings International Communications Conference, 1979,
pp.8.7.1-8.7.5.

9. "Proposal for Draft Recommendation of Two-Dimensional Coding
Scheme," Report of Study Group XIV, Contribution No. 42.

10. Pratt, W., Capitant, P., Chen, W., Hamilton, E., and Wallis, R., "Com
bined Symbol Matching Facsimile Data Compression System," Proceed
ings IEEE,. May 1980.

Facsimile image coding

by JOAN L. MITCHELL
IBM Thomas J. Watson Research Center
Yorktown Heights, New York

INTRODUCTION

Facsimile image coding has recently received a lot of atten
tion because of the standardization work being done in this
area by the International Telegraph and Telephone Con~
sultative Committee (CCITT). In November, 1977, CCITT
Study Group XIV standardized a one-dimensional data
compression scheme for facsimile images.) Two years later
this standard was incorporated in a recommended two-di
mensional coding scheme.2

Data compression (coding) of images is essential if high
quality digital facsimile is to be practical. 3,4 A standard fac
simile document has 3.85 scan lines/mm vertically. How
ever, an optional vertical resolution of 7.7 lines/mm can be
used for images with fine details. The standard horizontal
resolution is fixed at 8.04 picture elements/mm (1728 picture
elements in 215 mm) to avoid excessive "stair stepping" on
curved or diagonal edges of the reproduced images.

Almost a quarter million bytes are required to store the
raw digitized data ofa 215 mm x 280 mm page at the normal
resolution. At the higher resolution, close to a half million
bytes are needed. Run length coding schemes, such as the
CCITT one-dimensional standard, reduce the storage re
quirement by factors of 5 to 15 for typical images.

Two-dimensional schemes take advantage of correlation
between successive scan lines to obtain better compression.

This paper considers only black/white reversible facsimil~
coding. The original black/white images are reconstructed
exactly (assuming no errors during transmission or storage)
after each encoding/decoding cycle.

SOURCE MODEL

The facsimile scanned image can be described mathemat
ically as a set of symbols representing various patterns of
picture elements (pels). The set of symbols, the "source
model," must be sufficiently general that all possible con
figurations of pels can be described. Each possible set of
symbols has particular statistical properties; once these sta
tistical properties are understood and the coding rules de
fined, the generation of variable length code words can be
a straightforward application of Huffman5 coding. Normally,
the tables are selected for a large set of documents and there
fore may not be optimum for individual documents. Shan-

423

non's entropy,6 the minimum number of bits per symbol,
together with the number of coded symbols can be used to
calculate the lower bound on the number of bits needed to
code each document for a· given model. The entropy is a
measure of the "randomness or surprise" found in an image
for a particular model. Thus, the entropy of a document can
change dramatically when a new source model is used.

Fixed codes assume that average statistics apply to all
documents. However, some documents do not fit these sta
tistics. When the assumptions are completely invalid, re
gions of the "compressed" image may require many more
bits than the original uncompressed image. The uncom
pressed mode option in the two dimensional CCITT rec
ommendation2 can be used to minimize the worst case local
expansion.

ONE-DIMENSIONAL CODING

The black and white picture elements in typical images are
not randomly distributed but come with a high degree of
correlation or redundancy. In each horizontal scan line the
pels of a given color (black or white) tend to come in groups
or runs. Run length coding takes advantage of this horizontal
correlation in a practical way. 7,8 The number of pels between
color changes is coded instead of each pel. The runs alternate
in color so that as long as the first run in a line is guaranteed
to be a white run no extra bits are needed to specify the
color. A length of zero can be used if the line actually starts
black. Figure 1 shows some examples of run lengths.

An average entropy per pel for run length coding was ob
tained by taking eight CCITT documents scanned at 1728
pel/line for 2376 lines (nominally 8 x 8 pel/mm) and collecting
the statistics ofthe entire set together. To simulate the stand
ard resolution the odd numbered lines were used (nominally
8 x 4 pel/mm). From the run length probability distribution
a lower bound of 0.113 bits/pel was obtained for both res
olutions (HIGH and STD). This entropy per pel for mixed
black and white run lengths is used as a reference point and
therefore is entered in Table I as 100 percent.

The model which considers the black and white run lengths.
as the same statistically is not optimum. It is well-known
that a strong peak in the black run distribution9 usually oc
curs for runs of two or three pels for typewritten documents
scanned at this resolution. The white runs tend to have a

424 National Computer Conference, 1980

Scan Line ~l----~'~~3-~'---5--~'~-2
Figure I-Run length examples.

less sharp peak spread out over the 4 to 7 pel runs. Optim
izing the black and white runs separately (B & W Sep.) de
creases the entropy per pel by a few percent.

CCITT Modified Huffman code

The CCITT one-dimensional standard Modified Huffman
Code) is a run length coding scheme in which the black and
white runs have separate tables. Runs longer than 63 are
coded in two pieces in order to decrease the size of the code
tables by an order of magnitude. Multiples of 64 are coded
first as a Makeup Code and then the remainder follows as
a Terminating Code. Short runs (0-63) only need the Ter
minating Code.

Since the CCITT standard is for telephone tra,nsmission,
the standard also includes a unique end of line (EOL) code
for resynchronization after transmission errors. It is a unique
pattern of eleven zeros followed by a one. Extra zeros can
precede the EOL as fill bits to maintain a minimum trans
mission time per line.

VERTICAL REFERENCE CODING

Run length coding can only take advantage of the hori
zontal redundancy. There is also strong vertical correlation
in most images which comes from the vertical continuity of
objects, strokes, or lines. Vertical reference coding3,4,IO-J3

codes a run as the difference between the run length and the
distance to the same color change on the history line (pre
ceding scan line). Figure 2 shows the black run ending one
pel to the right of the first black-to-white change on the his-

T ABLE I.-Entropy Per Pel as a Percent of One-Dimensional Mixed Run
Length Entropy Per Pel (0.113 bits/pel)

MIXED B & W Sep. Pass, B&W Sep.

RES. HIGH STD HIGH STD HIGH STD

1-D 100.0 100.0 96.3 96.3 96.3 96.3

N=O 72.2 81.2 70.5 75.6 70.2 74.6

N=l 57.9 72.2 57'.1 70.8 55.5 68.4

N=2 57.0 71.1 56.4 70.0 54.3 66.9

N=3 57.1 71.1 56.6 70.2 54.2 66.8

"N=4 57.3 71.2 56.8 70.6 54.4 67.0

N=5 57.6 72.0 57.1 71. 1 54.6 67.3

N=l + 55.8 69.7

N=3 + 54.8 68.9

+ Conditional entropy

Figure 2-Vertical reference coding.

tory line (VRl). The white run has a vertical difference of
zero (VO).

The entropy per pel as a percent of the one-dimensional
entropy per pel is listed in Table I for various maximum
allowed differences, N. Separating the black and white run
statistics decreases the entropy per pel by a few percent

"relative to the combined statistics.
Generally about half of all the runs vertically align exactly

and another 25 percent are within one pel of the appropriate
transition. Larger vertical differences are much less fre
quent. Table II gives the distribution of runs in percent for
N = 3. Runs which stop to the left of the transition on the
preceding line are given as VLx and those to the right are
shown as VRx. For differences greater than N a run length

. (RL) codeiis used. The white and black runs have a similar
distribution.

So far only independent statistics have been considered.
Conditional probabilities can also be used. Table II illus
trates how the distribution changes from almost 50 percent

TABLE n.-Distribution of Runs in Percent

RES. VL3 VL2 VLl VO VRI VR2 VR3 RL PM

WHITE RUNS

HIGH 0.8 2.9 16.0 46.9 15.0 2.4 0.7 15.4

STD 1.9 4.9 11.4 40.1 10.4 4.0 1.5 25.7

BLACK RUNS

HIGH 0.8 2.8 16.3 43.6 15.7 2.8 o • 9 17.2

STD 1.8 4.0 10.4 37.3 10.7 4.1 2.1 29.7

MIXED RUNS

HIGH 0.8 2.9 16.2 45.2 15.3 2.6 0.8 16.3

STD 1.8 4.5 10.9 38.7 10.6 4.1 1.8 27.7

RUNS FOLLOWING V

HIGH 0.7 2.8 17.3 49.3 16.6 2.8 0.8 9.7

STD 1.7 4.7 12.4 45.9 11.6 4.5 1.9 17.3

RUNS FOLLOWING RL

HIGH 1.3 3.4 10.4 24.3 8.7 1.4 0.5 50.1

STD 2.1 3.9 7.0 20.0 7.8 3.0 1.3 54.9

WITH PASS MODE

HIGH 0.9 2.9 16.8 46.9 16.1 2.7 0.7 12.9 5.6

STD 2.0 4.9 11.9 40.8 11.3 4.4 1.7 23.0 9.2

vo to more than 50 percent RL depending upon whether the
last code was a vertical (V) code or a run length (RL) code.
The entropies calculated from the conditional probabilities
for N = 1 and N = 3 are also given in Table I.

IBM coding scheme

IBM proposed to the CCITT a coding scheme l4
.
15 that only

considered vertical transitions within one pel. (Most of the
compression improvement attributable to vertical reference
coding is obtained with N = 1.) Figure 3 shows coding ex
amples using vertical reference codes within one pel of his
tory transitions.

Compression performance improvements are obtained by
switching the code tables so that they depend upon whether
the last code was a run length or a vertical reference code
to take advantage of the differences in the conditional prob
abilities. The RL-prefix is followed by the run length count
coded with the Modified Huffman codes. The code table is
given below.

Code Table

Following RL Following V

RL-prefix
VO

1
01
001
000

01
1

VLl
VRI

001
000
0001*

* Even numbered VRI 's in a series have an extra 1 to
break up long strings of zeros.

Additional compression is obtained by removing redundancy
from the code table. Pels at distances which would be coded
with vertical reference coding if they were the· final pel are
not included in the run length count. A few percent can be
saved by sometimes being able to represent a run by a count
shorter than its true length.

CCITT Modified READ code

The recommended CCITT two-dimensional Modified Rel
ative Element Address Designate (Modified READ) coding
scheme2 is a simplification of the original READ coding
schemel6 which considered vertical reference coding out to
plus or minus twenty-six pels. Modified READ only uses
vertical reference coding out to plus or minus three pels.

In both codes if a run does not end with a vertical reference
code, the horizontal mode (HM) code precedes two Modified

History Line

Scan Line ~lmll~1 I-VO~VL1~
Figure 3-Coding examples.

Facsimile Image Coding 425

Huffman· run length codes for that run and the next run ..
Coding a pair of runs with one prefix is another way of taking
advantage of the high probability that a run length code is
immediately followed by another run length code.

Sometimes a run on the preceding line comes from an
object which terminated on that line. A pass mode (PM) skips
over such runs on the preceding line. It is used if another
transition is encountered to the right of the first vertical ref
erence transition (before the end of the run). A new run is
started at that transition. figure 4 illustrates pass mode. Pass
mode can be coded several times within a single run. Table
I gives the entropy per pel with pass mode present where
the black and white runs have been considered separately.
Table II shows how the distribution of runs shifts slightly
when pass mode is used. Some runs are coded as a pass
followed by a vertical code instead of as a run length.

In order to limit the effect of transmission errors, at least
every Kth line is coded one-dimensionally. The value of K
is set as 2 for the normal resolution and 4 for the higher
resolution.

The code table is given below.

Modified READ Code Table
HM 001
PM 0001
VO 1
VL1 010
VR1 011
VL2 000010
VR2 000011
VL3 0000010
VR3 0000011
EO L 000000000001 T

Extensions
2-D
1-D

0000001xxx
000000001xxx

T on the EOL denotes a tag bit which tells whether the next
line is coded one-dimensionally (T= 1) or two-dimensionally
(T=O).

UNCOMPRESSED MODE

One of the future extensions has been identified as un
compressed mode. The xxx bits are' 111' for this mode. This
mode can improve compression significantly for scanned
halftones and images witp many one or two pel runs. IBM
proposed the following table as a simple uncompressed mode
coding scheme. 17

Figure 4-Pass mode followed by VO.

426 National Computer Conference, 1980

TABLE IlL-Compression Ratios for High Resolution Images (1728 pels
x 2376 lines)

K=l K=4 (EOls) K=2376 (no EOls)

~OC. 1-0 sro IBM MR IBM MR

13.7 19.3 19.8 26.3 28.4

14.9 24.3 26.2 41.6 47.5

3 7.9 i2.4 12.6 17.6 17.9

4 4.7 6.2 6.3 7.4 7.4

5 7.5 11.4 "11.6 15.5 15.9

10.0 17.S 18.2 28.9 30.8

7 4.8 6.2 6.3 7.3 7.4

8 8.2 14.2 15.6 24.5 27.1

AVE. 7.7 11. 3 11.6 lS.l lS.6

U ncompressed Mode Code Table
Image Pattern Code Word

1 1
01 01
001 001
0001 0001
00001 00001
00000 000001

Exits
000000IT

0 0000000IT
00 00000000 IT
000 0000000001 T
0000 0000000000IT

The exit codes signal when to resume normal coding. The
T denotes a tag bit which tells the color of the next run
(Black = 1, White = 0).

TABLE IV.-Compression Ratios for Standard Resolution Images (1728
pels x 1188 lin~s)

K=l K=2 (EOls) K=1l88 (no EOls)

~OC. 1-0 sro IBM MR IBM MR

13.7 lS.7 lS.7 21.2 21.4

14.9 18.6 19.2 31.7 34.3

3 7.9 9.9 9.9 lS.0 14.8

4 4.7 S.2 S.O S.9 S.6

S 7.S 9.1 9.1 12.7 12.6

10.0 13.4 13.6 24.4 2S.7

7 4.8 S.2 S.l S.9 S.7

8 8.2 10.8 11. 2 19.5 20.4

AVE. 7.7 9.1 9.0 12.2 12.0

COMPRESSION RESULTS

Eight documents of the line drawing and text type have
been used to compare and evaluate the performance of cod
ing schemes in CCITT Study Group XIV. Tables III and IV
show the compression ratios for the CCITT one-dimensional
standard (l-D STD) for each document at both resolutions.
The compression ratios for the IBM scheme witft error re
covery (K = 2 and 4) and for continuous two-dimensional
coding without EOLs (K = 1188 and 2376) are listed. The
CCITT two-dimensional (MR) code compression ratios are
also given.

ACKNOWLEDGMENT

The development of the IBM coding scheme was done in
collaboration with Dr. G. Goertzel.

REFERENCES

1. CCITTStudy Group XIV, "Report of the Meeting Held in Geneva, 14-
18 November 1977," Doc. 25-E, 33 (1977).

2. CCITT Study Group XIV-Temporary Document No. 39-E, Kyoto 7-15
November 1979.

3. Huang, T. S., "Coding of Two-Tone Images," IEEE Trans. on Comm.
COM-25, 1406 (1977).

4. Gorog, I., Heyman, P. M., Kim, H. K., and Lippman, M. D., "An Ex
perimental Low-cost Graphic Information Distribution Terminal," SID
Dig. Tech. Papers, 2, 14 (1971).

5. Huffman, D. A., "A Method for the Construction of Minimum-Redun
dancy Codes," Proc. IRE 40, 1098 (1952).

6. Shannon, C. E., "A Mathematical Theory of Communication," Bell Syst.
Tech. J., 27, 379 (1948).

7. Capon, J., "A Probabilistic Model for Runlength Coding of Pictures,"
IRE Trans. on Inf. Theo., IT-5, 157 (1959).

8. Takagi, M. and Tsuda, T., "A Highly Efficient Run-Length Coding
Scheme for .Facsimile Transmission," Electron Commun Jpn 58, 30
(1975).

9. Deutsch, S., "A Note on Some Statistics Concerning Typewritten or
Printed Material," IRE Trans. on Information Theory IT-3, 147 (1957).

10. Laemmel, A. E., "Coding Processes for Bandwidth Reduction in Picture
Transmission," Report R-248-51, PIB-187, Poly Inst of Brooklyn, N.Y.,
29 (1951).

11. Bahl, L. B., Barnea, D. I., and Kobayashi, H., Image Compaction Sys
tem, U.S. Patent 3,833,900 (1974).

12. Yamazaki, Y., Wakahara, Y., and Teramura, H., "Digital Facsimile
Equipment 'Quick-FAX' Using a New Redundancy Reduction Tech
nique," NTC '76, 6.2-1 (1976).

13. Musmann, H. G. and Preuss, D., "Comparison of Redundancy Reducing
Codes for Facsimile Transmission of Documents," IEEE Trans. on
Comm., COM-25, 1425 (1977).

14. Mitchell, J. L. and Goertzel, G., "Two-Dimensional Facsimile Coding
Scheme," ICC '79, 8.7.1 (1979).

15. CCITT Study Group XIV, IBM Europe, "Proposal for Two-Dimensional
Coding Scheme," Doc. 64-E, (1979).

16. CCITT Study Group XIV, Japan, "Proposal for Draft Recommendation
of Two-Dimensional Coding Scheme," Doc. 42-E, (1978).

17. CCITT Study Group XIV, IBM Europe, "Uncompressed Mode En
hancement to IBM Coding Scheme," Doc. 80-E, (1979).

Description and evaluation of a system for high-speed,
three-dimensional computed tomography of the body: the
dynamic- spatial reconstructor*

by RICHARD A. ROBB and BARRY K. GILBERT
Biodynamics Research Unit, Mayo Foundation
Rochester, Minnesota

INTRODUCTION

High temporal resolution, full three-dimensional imaging
of the heart and circulation is required for accurate basic
physiological studies of the structural-to-functional relation
ships of these organ systems, and for improved diagnostic
evaluation and treatment of patients with cardiac and/or cir
culatory disorders. Current diagnostic imaging techniques
and systems, including x-ray computed tomography (CT)
(1,2), do not provide accurate measurements of the true dy
namic changes in shape and dimensions of the intact heart
over its entire anatomic extent, or for accurate measurement
of the regional distribution of blood flow to, from, and within
the heart, or any other organ of the body.

The approach to these problems which we are developing
is that of high temporal resolution synchronous scanning of
large cylindrical volumes of the body, using mUltiple x-ray
sources and video fluoroscopic imaging techniques. A dy
namic spatial reconstruction system (the DSR) has been de
signed and implemented to provide the temporally and spa
tially coherent multiple cross sections required to obtain the
full three-dimensional anatomic and simultaneous hemody
namic information necessary for detailed quantitative analy
ses of regional function in any organ of the body, particularly
the heart, and for more accurate diagnostic assessment of
the localization, extent, and nature of disease and pathology
which affects the circulation.

The anticipated performance and promise of the DSR have
been extensively evaluated in simulation studies and by con
struction and application of a prototype system. Even though
the DSR is based on both the engineering and mathematical
principles of computed tomographic scanning, it is designed
to achieve dynamic volume scanning, in contrast to static
cross-sectional scanning~ and therefore the DSR presents
some unique problems by comparison to conventional CT
systems and techniques. It is the purpose of this paper to
address these problems and to describe approaches to their
solutions. This will be done by first providing a description

* This work was supported in part by grants HL-04664 and RR-OOOO7 from
the National Institute of Health.

of the DSR system, followed by discussion of potential DSR
problems and results from DSR performance evaluation
studies.

Description of DSR system

The overall DSR system consists of much more than just
the scanner. Figure 1 is a diagram of the overall DSR system,
including associated data recording, processing, computa
tion, and display facilities.

The DSR scanner has been extensively described (3,4,5).
Briefly, it consists of28 x-ray tubes equally spaced in a semi
circle and 28 set~ of image-intensifiers and video cameras
arranged in the opposing semicircle behind a curved flu
orescent screen. The entire gantry of 28 x-ray sources and

. associated imaging chains rotates continuously about the
patient, at 15 revolutions per minute (1.50 every <>h second),
providing a new set of 28 views every to: second and up to
240 equispaced views around 3600 in less than two seconds.
Up to 240 images of adjacent transverse sections less than
I-mm-thick are produced of a cylindrical scan volume up to
38 cm in transaxial diameter and 22 em in axial height. One
complete synchronous volume scan is accomplished in 0.01

. second by pUlsing each of the 28 x-ray sources in succession
for 0.34 milliseconds each. The x-ray exposure for a 28 view
scan is approximately 17 milliroentgens. These scans can be
repeated 60 times per second.

427

To obtain high temporal resolution images (60/sec), suc
cessive sets of 28 views can be used for reconstruction. To
obtain high spatial (-1 mm) and high density (-1 percent)
resolution images of non-moving structures, up to 240 in
dependent views can be used in the reconstruction. Desired
tradeoffs between temporal, spatial, and density resolution
can be achieved by selecting appropriate subsets of the total
projection data recorded. This capability will permit detailed
evaluation of the important relationships between temporal,
spatial, and contrast resolution in computed tomography of
the body, particularly relative to moving organs such as the
heart, lungs, and circulation. The total incident x-ray dose
for DSR scans is comparable to and in many cases less than

428 National Computer Conference, 1980

Figure I-Major components and data flow paths associated with DSR
system. (reproduced with permission from Robb et at. (10»:

the exposure received from clinically routine diagnostic x
ray procedures (3).

The DSR projection data is recorded on four video disc
systems and transferred to the computer via a specially de
signed high-speed computer interface-the HSI (6). Com
putation of the data is accomplished by a combination of
computer and high-speed parallel processing reconstruction
techniques (Le., algorithms implemented in special-purpose
hardware). The hardware reconstructor, presently being fab
ricated (7), will permit computation speeds of about 10 mil
liseconds per cross section, or about 2.4 seconds for each
volume comprised of 240 cross sections. Such rapid pro
cessing will be essential for effective practical use of the full
potentialities of the DSR.

Off-line multi-dimensional display and analysIs of the dy~
namic 3-D image data produced by the DSR scanner and
computer will also be necessary. In addition to multi-ori
ented section displays and 3-D graphic representations of
reconstructed volumes generated by the computer (8), a true
3-D display (illustrated at the right of Figure 1) is being de
veloped, based on the vibrating mirror principle (9).

The computer system configuration for the DSR, previ
ously described (10), is based on a ModComp CLASSIC
computer, and is interfaced to the HSI and a Floating Point

. Systems array processor. This system is dedicated to control
Qf the DSR scanner and to three-dimensional reconstruction
and display of the high volume of images produced by the
DSR. It is fully operational and ready to provide computa.:.
tional support for DSR-based projects.

Evaluation of DSR performance using mathematical
simulations and a prototype DSR system

The performance of the DSR has been evaluated using a
number of mathematical models and realistic computer sim
ulations of its scanning geometry, timing, and photon sta
tistics, and by extensive actual measurements of the physical
characteristics and operation of a prototype assembly of one
complete imaging chain of the DSR (x-ray tube, screen,
image intensifier, relay lenses, and video camera). Such ap
proaches are necessary since the capability and versatility
of the DSR for permitting different programmed scan pro
cedures in order to maximize either temporal, spatial, or
contrast resolution or to optimize the tradeoffs among these

parameters, depending on the objectives of the study, cannot
be tested until the DSR itself is fully operational.

The DSR scan procedures vary from conventional CT
scans in several ways. First, a cone beam of x-rays is used
in the DSR to iinage a relatively large axial volume of the
body by producing a two-dimensional projection image on
a fluorescent screen. In conventional CT systems, a pencil
beam or fan beam of x-rays is used to produce a one-di
mensional projection of a single transaxial slice through the
body. Therefore the image reconstruction algorithm used for
the DSR must account for divergence of the rays in the axial
direction as well as in the transaxial direction. Secondly,
when in the highest temporal resolution mode of scanning
(60 volumes/sec), the DSR scan geometry produces three
forms of limited projection data which are not encountered
in conventional slow (2-20 second or longer) CT scans. These
are: 1) relatively small number of views (28); 2) limited range
of view (162°); and 3) incomplete field of view (21.4 cm trans
axial diameter). Finally, demonstration of the capability for
producing acc'tfrate dynamic volume CT images with the
DSR is critically important.

This section describes mathematical simulation studies
and testing of an actual prototype system which have either
fostered direct solutions or initial approaches to these prob
lems, or have demonstrated that their effect is not signifi
cantly deleterious to the hoped-for results. In many cases
the simulation studies were validated using actual x-ray pro
jection data obtained from the prototype DSR imaging sys
tem. This prototype system of the DSR is called the SSDSR
(for Single Source Dynamic Spatial Reconstructor) and has
been described previously (11,12).

Cone beam vs. fan beam studies

A cone beam of x-rays is used in the DSR to produce
multiplanar (Le., two-dimensional) x-ray video projection
images for reconstruction of the volume of the body inter
posed in the x-ray beam. Although several investigators are
working on development of true cone beam algorithms
(13,14), no analytic closed form algorithm has yet been the
oretically derived for reconstruction using a conical x-ray
beam. As a result, current commercially available x-ray CT
scanners must collimate the source beam toa fan and forgo
the opportunity to collect projection data simultaneously for
many adjacent cross sections. However, another approach
is possible-assume the conical beam to be approximated
by a "stack" of fan beams in the axial direction.

In the DSR, the relatively large x-ray source-to-object
distance results in a small subtended angle in forming the
projection image. The x-ray sources are 203 cm from the
imaging screen and 145 cm from the center of the object to
be reconstructed. This produces a magnification of 1.4,
meaning that a cylindrical volume of the body 21.4 cm in
diameter and 21.4 cm high is projected onto a 30 cm x 30
cm region of the screen. The maximum divergence of the
rays above and below the central slice through this cylin
drical volume is only 4°. That is, the divergence is greatest
for transaxial slices through the volume at 10.7 cm above or
below the central slice; the divergence is less for planes

nearer the central slice. Therefore, the 240 adjacent hori
zontal video lines which comprise the projection image pro
duced by the DSR at any angle of view represent x-ray pro
jections of near-parallel sets of fan beams, especially within
a ± 8 cm region about the center, so that useful reconstruc
tions over the entire anatomic extent of organs like the heart
may be possible using conventional fan beam reconstruction
algorithms applied separately to the data obtained from each
adjacent video line in the projection image.

The reconstruction artifacts resulting from approximating
a cone beam x-ray source by a stack of fan beams are pres
ently undergoing investigation using three-dimensional
mathematically generated non-axisymmetric phantoms of
the human thorax, in conjunction with special computer pro
grams which simulate both the passage of a conically shaped
beam of x-rays through the phantom, and their absorption
by a two-dimensional array of x-ray detectors (15). The re
sulting computer-generated cone beam x-ray projection data
can be reconstructed with various reconstruction algorithms,
followed by comparison with cross sections of the mathe
matical phantom at the same anatomic levels. The actual
geometric and beam divergence characteristics of the DSR
have been employed in 'these experiments and evaluated at
the DSR computer facility (16).

The results of such a study are depicted in Figure 2. The
left and right columns of images are cross sections through
the mathematical phantom and their reconstruction by a fan
beam algorithm (17), respectively, above and through the
central plane of rays in the conical beam. Within the central
plane of rays, the fan beam reconstruction algorithm yields
geometrically and theoretically correct reconstructed cross
sections. It is theoretically incorrect to reconstruct projec
tion data generated via a conical beam of radiation using a
fan beam reconstruction algorithm. Nonetheless, a compar
ison of the fan beam reconstruction with the section through
the phantom at the same axial distance from the central plane
of rays indicates that the fan reconstruction and the section
through the phantom are quite similar. The assumption of
adjacent fan beams may not, therefore, introduce major
errors into reconstructions from the DSR cone beam data,
due to a conical beam divergence in the axial direction of
only 4°.

To further test this possibility, the SSDSR was arranged
exactly in DSR geometry and used to produce real cone
beam x-ray projections of the thorax of an experimental an
imal. The left panel in Figure 3 is an x-ray video projection
of a dog's thorax recorded at one angle of view during ro
tation in the SSDSR, and depicts 64 brightened video lines,
at different anatomic locations, spanning most of the volume
of the thorax. These lines were selected from a total of 240
lines for reconstruction of 64 cross sections over the axial
extent of the dog's chest. The video lines just above and
below each brightened level were also digitized and averaged
with the selected lines to produce cross sections. effectively
3 mm thick, each 3 mm apart.

The right panel in Figure 3 shows these 64 reconstructed
cross sections of the thorax. Each cross section contains
64 x 64 picture elements and was reconstructed from 60

The Dynamic Spatial Reconstructor 429

2cm
above CP

8.0 em
above CP

2.0 em
above CP

Centro! Piane
(C P)

Actual
Section

Fan 8eam
Reconstruction

Figure 2-(Left column) Actual cross sections through three-dimensional non
axisymmetric mathematical phantom of human thorax at various levels above
central plane of x-rays. (Right column) Fan beam reconstructions from 120
views around 3600 of same sections shown at right. Each section is generated
on a 127 x 127 pixel grid; each pixel is .28 x .28 cm. Reconstructions are not
plotted to exact scale of actual sections. "X-ray projections" were generated
from the 3-D phantom via computer program which simulates polyenergetic
conical x-ray beam. Some image artifacts are visible in upper right recon
struction, especially in left and right lung regions (dark regions near chest
wall), resulting from fan beam reconstruction of cone beam projection data
at extreme axial range of the cone beam. Other reconstructed levels are quite
accurate by comparison to actual image, indicating potential usefulness offan
beam algorithm for cone beam data generated by DSR over ± 8 cm axial

volume (reproduced with permission from Gilbert et aI., (16)).

equally spaced views over 360° at a total x-ray exposure of
36 mr. The spinal vertebrae, ribs as they course through the
plane of the cross section, the esophagus and bifurcated air
way, the epicardial surface of the heart, the pleural surfaces
of the lungs, and the diaphragm can all be visualized at the
appropriate levels. Some trapped air can be seen in the trans
verse colon in the lower cross sections. No x-ray contrast
material was injected into the dog to obtain these recon
structions, demonstrating that the photon statistics obtained
with this fluoroscopic-based CT system are adequate for
accurate 3-D reconstructions of the contents of the thorax.

Figure 4 is a computer-generated display of 56· separate,
parallel 3-mm-thick coronal sections through the thorax,
each 3 mm apart extending in the anterior-posterior direction
from the sternum (upper left) to the backbone (lower right).
Note the sections containing the cardiac catheters, the tra
chea, the esophagus, and the spinal column. These 3-mm
thick coronal sections of 64 x 64 picture elements were com-

430 National Computer Conference, 1980

Figure 3-(Left) X-ray video image of canine thorax recorded by SSDSR
system with brightened lines at 64 anatomic levels selected for reconstruction
of 64 cross sections of dog's chest. (Right) Sixty-four reconstructed cross

puted from the 64 reconstructed transverse sections of the
chest shown in Figure 3. Sagittal and oblique sections could
be similarly computed and displayed.

The multiple transaxial, axial, and oblique sections which
can be simultaneously obtained from a single cone beam
synchronous volume DSR scan provides the significant ca
pability for "mathematically sectioning or slicing" anyone
or all regions ofthe scanned volume in any desired direction,

Figure 4-Computer-generated display of 56 separate, 3-mm-thick coronal
sections through the thorax, extending from the sternum at the upper left to
the backbone at the lower right, computed from 64 simultaneously scanned
transverse sections shown in Figure 3 (reproduced with permission from Robb

et al. (5)),

sections of the thorax, each 3 mm thick, extending cephalocaudally from apex
of lungs, at the upper left, to base of lungs, at lower right (reproduced with
permission from Robb et aI., (5»,

and for "zooming in" on any area of particular interest for
detailed quantitative analysis. This capability might be called
"non-invasive computerized dissection," similar to the ca
pability of the surgeon or gross pathologist for examination
and characterization of body tissues. The important differ
ence, of course, is that the computerized scan, data pro
cessing, and display is non-destructive and painless, and
therefore could be performed on unanesthetized patients.

Limited projection data

In its highest temporal resolution mode of scantling (60
volumes/sec), the DSR will produce only 28 views over a
limited 1620 range. Furthermore, it will image a cylindrical
volume only 21.4 cm in diameter and 21.4 cm high, so that
objects larger than this size (most adult chests, for example)
will exceed the field of view. If lower temporal resolution
is acceptable, then all of these problems are eliminated be.:
cause of the continuous projection data recorded during ro
tation of the DSR about the body, recording up to 240 views
over 3600 in 2 seconds. Transaxial diameters greater than
21.4 cm can be obtained by appropriately combining adjacent
views. However, for imaging the heart, it may often be nec
essary to "stop-action" image at -lcr to is sec, resulting in
both a limited number of views over a range less than 1800

,

and a limited field of view in the projection data to be used
for dynamic reconstruction of the volume imaged. These two
problems (i.e., limited number/range of views and limited
field of view) have been studied by simulations and SSDSR
tests, and by applying techniques which reduce the artifacts
which they cause.

a) Limited number and range of views

Figure 5 shows four cross sections of a simulated human
thorax reconstructed from mathematical projection data gen
erated from a numerical model of the chest using DSR ge
ometry and photon statistics and a conventiomil fan beam
reconstruction algorithm (17). The model includes three sim
ulated circular lesions in the right lung, 2 cm, 1 cm, and 0.5
cm in diameter, respectively, and radiopaque contrast ma
terial in the heart chamber and a coronary artery. The re
constructed images contain 128 x 128 elements and were per
formed from 14, 28, 56, and 112 views over ranges of 156°,
162°, 165°, and 166.5°, respectively, to show the improve
ment in accuracy with increasing number of views. Further
increases in the number of views will produce less and less
improvement in accuracy once the number of views is ap
proximately the same as the number of pixels on a side in
the reconstruction image (18). Although the 112 view re
construction exhibits the best resolution, the 28 view re
construction is also geometrically accurate in spite of the
heavy ray-shaped artifacts. The slight artifact in the chest
wall at the bottom of each cross section is due to the limited
range of views, but does not present a significant problem
for study of the position and motion of the intrathoracic con
tents.

Figure 5-Reconstructed cross sections of simulated human thorax using DSR
geometry and photon statistics. Reconstructions were performed using pro
gressively increasing number of views, range of views, and scan times, as
would be accomplished in programmed DSR scan sequences as the gantry
rotates about the patient. Up to 240 views over 3600 could be obtained in less
than 2 seconds to further improve spatial and contrast resolution, if motion

is not significant (reproduced with permission from Robb et al. (10».

The Dynamic Spatial Reconstructor 431

Since the DSR takes n second to collect 112 views, the
temporal resolution in such images would not be as good as
the 28 view images determined from io second scans. How
ever, for imaging the lungs, this is an acceptable compromise
since relatively little movement would occur in n second
during breath-holding. And as the 112 view image suggests,
tumors smaller than 5 mm in diameter could be detected from
such DSR scans. Although motion would be detected better
in 28 view scans, spatial resolution of only 5 or 6 mm is
possible. No motion was assumed to have occurred in this
simulation; therefore, the heart borders, the 2 mm diameter
coronary artery, and chamber borders (note the 4 mm wide
serrations in the chamber border) also are quite accurately
reconstructed in the n sec, 112 view image. In a living pa
tient, however, motion blurring would tend to degrade this
accuracy, especially during the contractile and rapid filling
phases of the heart cycle, so that io sec, 28 view scans may
be necessary to capture the dynamics of the heartbeat during
the rapid phases of the cardiac cycle.

Figure 6 is similar to Figure 5 but the reconstructions were
performed from actual x-ray projection data of a dead dog's
thorax recorded with the SSDSR. Again exact DSR geom
etry and typical DSR radiation levels were used. The image
reconstructed from 28 views over 162° is geometrically ac
curate, but does contain density artifacts. In spite of the
limited 166.5° range of view, the 112 view reconstruction
exhibits both good spatial and good density resolution. Note
the catheters and chambers of the heart, the bifurcated air-

Figure 6-Four cross sections of dead dog's thorax reconstructed from dif
ferent sets of actual x-ray projection data recorded with the SSDSR to simulate
some of the same scan sequences which could be provided by the DSR (re-

produced with permission from Robb et al. (10)).

432 National Computer Conference, 1980

way, esophagus, and boney detail of the spinal vertabrae.
The DSR would be expected to produce images even better
than these, since it is technologically superior to the SSDSR
system in terms of geometric alignment and photon detection
efficiency.

b) Limited field of view

If "truncated" projection images resulting from a limited
field of view are used for reconstruction with conventional
CT algorithms, serious artifacts are produced. These arti
facts appear in the image in two general ways: 1) the regions
of the body which are not included in every projection are
geometrically distorted and a high density ring artifact ap
pears at the boundary of the region of the body contained
in eve],"y projection, and 2) the region of the body which is
contained in every projection, although geometrically ac
curate in the reconstruction, is inaccurate in density values.

Figure 7 shows a simulation study of the effects of incom
plete field of view on reconstruction of the thorax. The upper
left image of Figure 7 is the actual cross section of a simulated
36 cm lateral diameter human thorax, with x-ray contrast
material in a heart chamber. The upper right image simulates
a DSR reconstruction using 28 views over 1620

, assuming
that the complete profiles of the entire chest at every angle
of view are available. However, the bottom left panel shows
the reconstruction that would actually be obtained if the DSR
scan were performed in the high temporal resolution (60/sec)
mode to freeze heart motion, since only the central 21.4 cm
of the chest would be contained in every angle of view (i.e.,

28 Complefe
Section Profile Reco(J;;;truction

Figure 7-Comparison of reconstructions from truncated and mathematically
extended profile data of mathematically simulated 36 cm diameter thorax using
DSR geometry and high temporal resolution scans (60/sec) with limited 21.4

cm field of view (reproduced with permission from Robb et al. (10».

about 40 percent of the total profile data is lost, or 20 percent
on each end). The right-lower image is the reconstruction
obtained by mathematically extending all truncated profile
data back to ~6 cm, using a technique developed by Lewitt
(19) to extrapolate each truncated profile to zero in a smooth
way consistent with the data to estimate the missing ends
of the profile. Note the improvement in accuracy of density
values in the heart and lungs (even though there are ray
shaped artifacts' due to using only 28 views in the recon
struction); and note particularly the improvement in stand
ard detail of the spinal vertebrae.

Figure 8 illustrates the effect of using this technique on
actual truncated x-ray projection data. At the left of Figure
8 is a cross section of a dead dog's thorax, reconstructed
from 120 views over 3600 recorded with the SSDSR.· If 20
percent of the entire number of samples in each profile are
eliminated from each end of the profile (40 percent of total
data omitted), then the reconstruction appears as in the cen
ter panel. However, if the truncated projection data is ex
tended by the correction algorithm (19) (not by the actual
samples!) prior to reconstruction, then the image appears as
in the right-hand panel of Figure 8. The heavy ring artifact
is noticeably absent, the densities of the heart and lungs are'
more accurate, and some structures outside of the field of
view appear in the reconstruction, particularly the spinal
vertabrae and the apex of the heart. Therefore, this tech
nique promises to be very helpful in improving reconstruc
tions from DSR scans in the high temporal resolution mode
of scanning, where profiles may be truncated by 20 percent
to 40 percent of their actual complete extent, depending on
the size of the body scanned. In lower temporal resolution
modes, the entire profile width will be available.

Dynamic CT imaging

To evaluate the capability of the DSR to dynamically
image cross· sections of the heart 60 times per second, a re
alistic mathematical model and numerical simulation of the
thorax with dynamic geometric and densitometric variations
in the heart muscle and chambers during the cardiac cycle
was developed. The model was generated from detailed con
siderations and knowledge of myocardial mechanics ob
tained from indirect (e.g., EKG) and direct (angiography)
measurements of actual hearts (8). "

Figure8-Cross section of dead dog's thorax reconstructed from 120 x-ray
profiles recorded with the SSDSR, showing improvement in spatial and con
trast detail if truncated projection data is mathematically extended before

reconstruction (reproduced with permission from Robb et al. (10».

Sixty images were simulated at io- second intervals for a
duration of 1 second (1 cardiac cycle), and projection data
of the simulated thorax was mathematically generated for
each of these images based on DSR geometry and scan tim
ing. That is, 28 x-ray fan beam projections equally spaced
over 162° were generated in the computer for each of the 60
simulated images of the thorax, with each successive set of
28 views incremented by 1.5° to simulate rotation of the DSR
during each io- second time interval. Reconstructions were
then performed from these projection data to study the po
tential ability of the DSR to provide stop-action, high-rep
etition-rate imaging of cross sections of the heart.

Figure 9 shows reconstructions from these data compared
to the actual simulated cross sections at four different time
points in the simulated cardiac cycle. The reconstructed im
ages have not been smoothed, scaled, or otherwise pro
cessed. They represent the actual output of the reconstruction
algorithm. The reconstructions in the second and third rows
of Figure 9 contain 115 x 115 picture elements (pixels) and
were performed using only 28 views over 162°, the same
amount of data to be provided by the DSR in its highest
temporal resolution mode of scanning. This is much less data
than normally used in current conventional CT scanners (20);
nonetheless, the geometry of the actual model is accurately
reproduced in the reconstructions and no motion blurring is
apparent. Such geometric accuracy suggests that important
indices of myocardial function such as changes in wall thick
ness, muscle mass, and chamber volume could be accurately
measured and studied. The accuracy of densities in the re
construction is not as good, due primarily to the limited num-

Actual
Sectfon

28 ViO'w$,
1/60 sec

f?econs t r;,tC f ions

28 Vh:rwsJ

j/60 SJJC

Zoom

!! 2 Views~
1/15 sec

Recon stt"i..lCf ions

Figure 9-Actual section (top row) of simulated thorax with beating heart
filling with x-ray contrast material at four different points in cardiac cycle
compared with regular and "zoom" reconstructions (bottom four rows) from
simulated DSR scan data for these same phases of the cardiac cycle, using

28 views and 112 views collected over do second and 15 second,
, respectively.

The Dynamic Spatial Reconstructor 433

ber of views, as characterized by the relatively heavy ray
shaped artifacts emanating from the spine. However, even
though the absolute values of the densities are incorrect, the
relative changes in the heart are constant, suggesting that
certain indices of hemodynamic function such as appearance
and washout times of contrast material and relative my
ocardial perfusion ratios could be accurately studied. Dy
namic motion pictures of these reconstructions in compar
ison to the actual model provide further evidence of the
potential accuracy and usefulness of the DSR for dynamic
CT imaging.

The third row of reconstructions in Figure 9 illustrates the
results of a reconstruction technique which is advantageous
for cardiac studies with the DSR, namely, performing a
"zoom" reconstruction which includes only the region of
the chest containing the heart. Such reconstructions can be
obtained with a filtered back projection algorithm by back
projecting all profile samples only over a selected "target"
region (e.g., the heart) within the total scanned image (e.g.,
the thorax), and provide greater spatial resolution without
increased computational cost by comparison to reconstruc
tion of the entire region scanned if the same number of ele
ments is used in the reconstruction matrix. Each recon
structed image in the third row of Figure 9 contains 115 x 115
pixels, the same as in the second row, and was determined
from the same projection data as used for the reconstructions'
in the second row. However, the back-projection portion of
the algorithm (17) used to produce the reconstructions in the
second row was performed only over the central one-half of
the projection image region, resulting in approximately a
two fold increase in spatial resolution.

Appropriately combining sets of 28 views together is an
other important reconstruction technique which can be used
with the DSR for studying the tradeoffs between spatial and '
temporal resolution. As the DSR rotates at 15 rpm about the
patient, it records 28 new views of the heart every ~ th
second from successive I.SO increments of the gantry around
360°. Any selected set or combination of sets of thes~ 28
views can be retrospectively selected to reconstruct the
heart with varying temporal and spatial resolution. As shown
in rows two and three of Figure 9, 28 view sets can be used
to get the highest temporal resolution. of 60/second. How
ever, since the 28 x-ray sources are 6° apart on a 162° arc,
112 different angles of view are collected over an arc of166.5°
in a total of -15 sec before some x-ray source positions are
repeated. Reconstructions obtained from these 112 views
may provide greater spatial resolution than 28 view recon
structions, if significant motion does not occur during the
-15 second interval required to record the 112 views.

The fourth and fifth rows in Figure 9 illustnlte such-- i12
view, -Is second time interval reconstructions. The left-hand
image was reconstructed during the early systolic (ejection
of blood from chamber) phase of the heart cycle, where sig
nificant motion has occurred. This image is poor in quality
compared to the image which was reconstructed from the
same part of the cardiac cycle but from only 28 views re
corded in io- second. However, the 112 view reconstruc
tions at the other points in the cardiac cycle where less mo-

434 National Computer Conference, 1980

tion has occurred exhibit improved quality by comparison
to the corresponding images reconstructed. from only 28
views at the same points in the cardiac cycle. The coronary
arteries can be readily seen, particularly in the zoom images
on the bottom row. These variations in image quality reflect
the tradeoffs between temporal and spatial resolution where
motion is either significant or relatively small during the
n second scan interval.

The left-hand panel of Figure 10 is an x-ray video projec
tion of a beating heart in an intact living dog recorded with
the SSDSR at one instant in the cardiac cycle. The bright
ened horizonal line depicts one of approximately 80 levels
of the heart, extending from base to apex, which could be
selected for cross-sectional reconstruction of the heart dur
ing the cardiac cycle. During incremental rotation of the dog
in the SSDSR through 6° on every other heart beat, which
was controlled by the computer via a pacing electrode placed
in the right ventricle, respiration was suspended and x-ray
contrast material was continuously infused into the left ven
tricular chamber to achieve continuous beat-to-beat opaci
fication of the chamber during the rotational scan period.
The right-hand panel in Figure 10 shows eight different cross
sectional levels between the base and apex. of the heart which
were reconstructed at eight successive points throughout the
cardiac cycle, with each successive point in time separated

. by 50 msec. The 6th level from the top corresponds to the

Figure 10-(Left panel) X-ray video projection of live dog thorax recorded
with SSDSR at one angle of view during computer-controlled rotation, cardiac
pacing, and infusion of contrast material into left ventricular chamber. (Right
panel) Eight reconstructed levels (rows) at 8 time points (columns) throughout

level indicated by the brightened line superimposed on the
projection image at left.

The reconstructions in Figure 10 were -performed using the
zoom technique from only 28 views recorded over 162°, sim
,ilar to the amount of data to be obtained from the DSR in
its highest temporal resolution mode of scanning. However,
it was necessary to use gated scanning (i.e., a new view is
recorded on each successive heart beat, each of which is
assumed to be exactly reproduced) since the SSDSR does
not have the high-speed imaging capabilities of the DSR. Not
every view included the entire thorax, so the correction tech
nique for incomplete projection data (19) was used in the
reconstruction process. The left ventricular chamber and
epicardial surfaces of the heart can be seen in each succes
sive section during the heart beat. beginning with the con
tractile phases of the systolic period and ending with the
subsequent diastolic filling period. A catheter can be seen
in the first two levels (basal levels) and opacified coronary
arteries can be readily detected in the first four levels. The
change in shape and size of the left ventricular chamber is
particularly graphic in the lower-most four levels (apical
levels).

These images demonstrate the potential capability for and
value (21) of obtaining the dynamic cross-sectional s~ape
and dimensions of both the epi- and endocardial surfaces of
the intact working heart over the entire anatomic and tem-

the heart beat, beginning in space and time at the base of the heart (top row)
and at the onset of systole (left column), and proceeding to the apex of the
heart (bottom row) and end diastole (right column), respectively (reproduced
with permission from Robb et al. (10».

poral extents of the myocardial walls and cardiac cycles,
respectively; that is, dynamic volume imaging.

SUMMARY

High temporal resolution, full three-dimensional imaging
of the body, particularly the heart, lungs and circulation, is
required for accurate basic physiological studies of the struc
tural-to-functional relationships of body organ systems, and
for improved diagnostic evaluation and treatment of patients
inflicted with disorders of the vital life processes for which
these organ systems are responsible.

The SSDSR and DSR are the first known CT scanners to
provide simultaneous scanning of up to 240 cross sections,
that is, synchronous volume scanning. Consequently, the
full three-dimensional extent of relatively large organs such
as the heart can be captured in one scan procedure and stored
in computer memory. The reconstructed 3-D image can then
be mathematically (i.e., non-destructively) sectioned at any
angle and displayed as multi-oriented slices through the an
atomic volume. New radiographic images (reprojections) of
the total volume scanned, or any desired subregion of the
total volume scanned, can be form.ed without additional x
ray exposure, and displayed from any orientation with su
perimposed structures removed. Shaded surface displays of
selected organs and true 3-D volume displays which permit
operator interaction are also possible.

Many of the problems anticipated with the DSR have been
thoroughly studied and evaluated using realistic simulations
and actual data from a prototype DSR system-the SSDSR.
These studies indicate that successful approaches to prob
lems of cone beam geometry, low photon statistics, and lim
ited projection data are possible. Techniques are also being
developed in both software and hardware for easing the com
putationalload and for facilitating comprehensive display of
the data. The prospects for true dynamic volume imaging
have been extensively evaluated with the SSDSR, which has
demonstrated the powerful two new dimensions that the
DSR will bring to computed tomography of the body-high
temporal resolution and synchronous volume scanning. That
is, the DSR will provide true stop-action (Tlm sec) full three
dimensional imaging at a high repetition rate (60/sec) to make
possible heretofore impossible basic investigative and clin
ical studies of organ systems and their processes throughout
the body (22).

ACKNOWLEDGMENTS

The authors wish to acknowledge their colleagues in the
Biodynamics Research Unit at the Mayo Clinic and their
collaborators upon whose multidisciplinary talents and ef
forts these studies have been largely based. Particularly im
portant contributions came from Drs. E. L. Ritman and
L. D. Harris at Mayo and from Drs. Gabor T. Herman and
Robert M. Lewitt at SUNY/Buffalo. Thanks are extended
to those who helped prepare this manuscript, Marge C.

. Fynbo and Marge A. Engesser for typing and artwork, Leo

The Dynamic Spatial Reconstructor 435

O. Johnson for photography, and Mike J. Bozonie, Dennis
P. Hanson, and 'Larry T. Thorson for programming assist
ance.

REFERENCES

1. Alfidi, R. J., Macintyre, W. J., and Haager, J. R., "The effects ofbio
logical motion on CT resolution," American Journal of Roentgenology,
127:11-15, 1976.

2. Boyd, D. P., Korobin, M. T., and Moss, A., "Engineering status of com
puterized tomographic scanning," Optical Engineering, 16(1):37-44,1977.

3. Ritman, E. L., Robb, R. A., Johnson, S. A., Chevalier, P. A., Gilbert,
B. K., Greenleaf, J. F., Sturm, R. E., and Wood, E. H., "Quantitative
imaging ofthe structure aI;td function of the heart, lungs, and circulation,"
Mayo Clinic Proceedings', 53:3-11, 1978. t

4. Robb, R. A., Ritman, E. L., Gilbert, B. K., Kinsey, J. H., Harris, L.
D., and Wood, E. H., "The DSR: A high-speed three-dimensional x-ray
computed tomography system for Dynamic Spatial Reconstruction of the
heart and circulation," IEEE Transactions on Nuclear Science, NS-
26(2):2713-2717 (April) 1979.

5. Robb, R. A. and Ritman, E. L., "High-speed synchronous volume com
puted tomography of the heart," Radiology, 133(3):655-661, 1979.

6. Gilbert, B. K., Storma, M. T., Ballard, K. C., Hobrock, L. W., James,
C. E., and Wood, E. H., "A programmable dynamic memory allocation
system for input/output of digital data into standard computer memories
at 40 megasample/s," IEEE Transactions on Computers, C-25(1l):1101-
1109, 1976.

7. Gilbert, ~. K., Chu, A., Atkins, D. E., Swartzlander, Jr., E. E., and
Ritman, E. L., "Ultra high-speed transaxial image reconstruction of the
heart, lungs, and circulation via numerical approximation methods and
optimized processor architecture," Computers and Biomedical Research,
12: 17-38, 1979.

8. Harris, L. D., Robb, R. A., Yuen, T. S., and Ritman, E. L., "The display
and visualization of 3-D reconstructed anatomic morphology: Experience
with the thorax, heart, and coronary vasculature of dogs," Journal of
Computer Assisted Tomography, 3(4):439-446, 1979.

9. Traub, A. c., "A new three-dimensional display technique," Report
#M68-4 of the MITRE Corporation, Bedford, MA, 1968.

to. Robb, R. A., Lent, A. H., and Chu, A., "A computer-based system for
high-speed three-dimensional imaging of the heart and circulation: Eval
uation of performance by simulation and prototype," Proceedings of the
Thirteenth Hawaii International Conference on System Sciences, 3:384-
408, 1980.

II. Robb, R. A., Greenleaf, J. F., Ritman, E. L., Johnson, S. A., Sjostrand,
J. D., Herman, G. T., and Wood, E. H., "Three-dimensional visualization
of the intact thorax and contents: A technique for cross-sectional recon
struction for multiplanar x-ray views," Computers and Biomedical Re
search, 7:395-419, 1974.

12. Sturm, R. E., Ritman, E. L., Johnson, S. A., Wondrow, M. A., Erdman,
D.I., and Wood, E. H., "Prototype ofa single x-ray video imaging chain
designed for high temporal resolution computerized tomography by means
of an electronic scanning dynamic spatial reconstruction system," Pro
ceedings of the San Diego Biomedical Symposium, 15: 181-188, 1976.

13. Minerbo, G. N., "Convolutional reconstruction from cone beam projec
tion data," IEEE Transactions on Nuclear Science, NS-26(2):2682-2684
(April) 1979.

14. Altschuler, M. D., et aI., "Demonstration of a software package for the
reconstruction of the dynamically changing structure of the human heart
from cone beam x-ray projection," Technical Report No. MIP632, De
partment of Computer Science, SUNY/Buffalo.

15. Altschuler, M. D., Chang, T., and Chu, A., "Rapid computer generation
of three-dimensional phantoms and their cone beam x-ray projections,"
SPIE Application of Optical Instrumentation in Medicine VII, 173:287-
290, 1979.

16. Gilbert, B. K., Schwartau, W. K., Chu, A., Beistad, R. D.,and Krueger,
L. M., "Hardware implementation of arithmetically demanding image
reconstruction algorithms for x-ray computed tomography," IEEE Trans
actions on Pattern Analysis and Machine Intelligence (in press).

436 National Computer Conference, 1980

17. Herman, G. T., Lakshminarayanan, A. V., Naparstek, A., Ritman, E.
L., Robb, R. A., and Wood, E. H., "Rapid computerized tomography"
in Laudet, M., J. Anderson, and S. Begon, Medical Data Processing,
London, Taylor and Francis, Ltd., 1976, pp 581-598.

18. Shepp, L. A. and Logan, B. F., "The Fourier reconstruction of a head
section," IEEE Transactions on Nuclear Science, NS-21(3):21-43 (June)
1974.

19. Lewitt, R. M., "Processing of incomplete measurement data in computed
tomography," Medical Physics, 6(5):412-417, (October) 1979.

20. Boyd, D. P. "Status of diagnostic x-ray CT," IEEE Transactions on
Nuclear Science, NS-26(2):2836-2839 (April) 1979.

21. Robb, R. A., Harris, L. D., and Ritman, E. L., "Computerized x-ray
reconstruction tomography in stereometric analysis of cardiovascular
dynamics," Proceedings of the Society of Photo-Optical Instrumentation
Engineers, 89:69-82, 1976.

22. Wood, E. H., "New vistas for the study of structural and functional
dynamics of the heart, lungs, and circulation by non-invasive numerical
tomographic vivisection," Circulation, 56(4):506-520, 1977.

3-D Viewer for interpretation of multiple scan sections

by BRENT BAXTER
University of Utah Medical Center
Department of Radiology

1. INTRODUCTION

A new viewing device is being constructed which will allow
a physician to examine multiple scan sections simultane
ously in their proper orientation in all three dimensions. Test
images already produced on a laboratory prototype viewer
clearly show paralax and stereoscopic depth cues charac
teristic of a real three dimensional object. Our experience
viewing X-ray CT and ultrasound sections has shown that
certain anatomical and pathological features important in
cancer detection are more readily appreciated on the 3-D
viewer than on conventional planar imaging facilities such
as at T.V. monitor or film. The viewer can also form 3-D
graphical figures with lines oriented from left-to-right, top
to-bottom and front-to-back. By moving one's head, distant
lines appear to move relative to nearby lines, just as would
be expected.

An exciting application of this apparatus is in the guidance
of a specially constructed surgical instrument for brain bi
opsy of suspected tumors. Biopsy of small deep lesions can"
be a formidable procedure requiring prolonged anesthesia,
multiple "blind" needle insertions with occasional serious
complications from hemorrhage or loss of function. The
probability of these undesirable consequences can be min
imized by utilizing a special stereotaxic surgical instrument
guided by CT image data seen orr the viewing device. First,
a CT scan is made of the head with the stereotaxic frame
attached, in which both the suspected tumor and the frame
can be seen. Next a simulated probe is placed at the center
of the lesion and the probe track is positioned to avoid sen
sitive structures such as major blood vessels, etc. The biopsy
procedure is then performed using numerical coordinates
supplied by the computer for positioning the biopsy needle.
The advantage of this new technique is that it makes it pos
sible to reach deep lesions 2-3 mm in diameter without the
trauma of a large bone incision and without the uncertain
positioning of hand guided procedure. The combination of
accurate needle guidance and the ability to operate through
a small burr hole may make it possible in many cases to
obtain the biopsy specimen under local rather than generai
anesthesia.

2. 3-D VIBRATING MIRROR DISPLAYS

In 1961 Muirhead pointed out that a thin aluminized film
tightly stretched over a ring could be deformed pneumati-

437

cally to form a spherical mirror of reasonably high quality,
and that the curvature, either concave or convex (and hence
the focal length) could be controlled by changing the air pres
sure on the rear surface of the film. Sometime later Traub
(2,3) showed how the variable focal length associated with
a mirror of changing curvature could be used to construct
a 3-D display that provides both stereopsis and parallax
depth cues. The primary components of the system as it
applies to viewing CT and ultrasound B-scan images are
shown in Figure 1. Planar images, obtained in the usual way
from conventional CT and ultrasound apparatus, are placed
on the cathode ray tube in sequence beginning with the one
at the front of the display volume and so on through the set,
the entire sequence being repeated rapidly enough to avoid
flicker (about 30-40 times per second). If one were to simply
view the cathode ray tube directly, the superposition of the
planar images would discard information in the depth direc
tion obtained at such great cost by the CT scanner. The
purpose of the vibrating mirror is to spread these individual
images out in depth and thereby provide the observer with
the same kind of depth impression he would have if he could
look into a solid object that was both transparent and lu
minous. In this case, luminosity is a function of X-ray ab
sorption (CT number). Spreading the images out in depth is
accomplished by synchronizing the mirror vibrations with
the planar image display schedule in such a way that the
mirror is in its extreme convex position when the" plane near
est the observer is being displayed, and as the mirror cur
vature changes, successive images appear to emanate from
planes displayed in depth, behind the first. In this way, it
is possible to construct a display volume whose apparent
extent in the depth direction depends on the mirror',s am
plitude of vibration. If the process is repeated rapidly
enough, persistence effects in human vision create the
impression that all planar images appear continuously, each
one at a different distance from the observer, even though
each plane appears on the cathode ray tube screen for only
a small fraction of the total cycle.

Line drawings are produced in a different manner, by
means of a 3-D point plotting mechanism. Consider, for ex
ample, a single centrally located ·stationary spot of light on
the CRT screen. As the mirror vibrates, this spot of light is
spread out in depth creating the illusion of a line extending
along the central axis of the display volume. Additional lines
(of any arbitrary orientation) c~n. be created from rows of

438 National Computer Conference, 1980

CRT brightness
signal

CT or ultrasound
axial plane
image da ta

Image
__ ~ Data

Memory

,Digital image memory
(2'8 picture elements)

Observer

Control

Figure 1-A three dimensional virtual image is formed in the space behind
the deformable mirror as successive planes are displayed on the cathode ray
tube screen. Line drawings may be produced by flashing a series of adjacent

abutting points by ,flashing spots of light at the proper po
sition on the CRT screen at the proper instant in time. Lines
produced in this way are not constrained to lie in one or
more widely spaced planes, as described previously, but may
be drawn anywhere within the display volume.

Figure 2-Stereo prints may be made by photographing an entire series of
head scans displayed simultaneously on the 3-D viewer. The depth illusion
produced by viewing this pair with a stereoscope simulates the effect seen
by an observer from a single direction. Moving one's head while viewing the
image on the 3-D viewer produces additional depth cues not available on this

stereo pair.

Virtual images of
CRT screen corresponding
to various CT or ultrasound
planes

,...-_---11'..\... __ _

'Mirror I \

1\ " f'.
I I' , I '--

, I)::: I ,- -

\I/~

Deformable mirror
driven pneumatically
by a loudspeaker
mechanism

Control apparatus to
synchronize presentation
of image planes with
vibration of the varifocal
morror

spots on the CRT screen in synchronism with the mirror vibrations. Cycling
through the data rapidly (30-40 times per second) creates the illusion of a
stationary three' dimenSIonal virtual image.

3. EXPERIMENTAL RESULTS

Experiments conducted using a laboratory prototype
viewer have provided several interesting findings:

a) The eye/brain system seems to fill in the space between
virtual image sections producing an illusion of continuity in
depth. A CT scan series showing a dilated biliary duct system
appeared to be very realistic, with no clue to the fact that
the 3-D image was constructed from 8 image planes sepa
rated by approximately 1· cm. CT scans of the head also
appeared to be continuous in the depth direction except near
the skull when the display was viewed from off axis, where
it was possible to see the skull outlines on individual planes.
This subjective continuity effect was observed on a variety
of case material. Our CRT system has a short phosphor
decay time (30 microseconds) suggesting that the visual sys
tem rather than the display apparatus is responsible. This
unexpected finding is important because it reduces, and in
many cases eliminates, the need for interpolation between
virtual image planes. It is interesting to note that conven~
tional planar (2-D) digital imaging devices frequently require
interpolation facilities to prevent the appearance of a regular
pattern of dots or lines superimposed on the image even

3-D Viewer for Interpretation of MUltiple Scan Sections 439

Figure 3':'a

Figure 3-ln (a) four CT planes are superimposed showing how the structure
may be distinguished from isolated masses by taking advantage of correlations

when the grid points are closely spaced. TV raster lines are
an example of this type of artifact. The requirement for in..,
terpolation is described in relation to nuclear medicine im
ages by Baxter (4).

b) A second somewhat frustrating finding is the difficulty
encountered in producing good photographic reproductions
of the 3-D image for use in presentations. Unlike holograms,
which are usually made of solid objects, the 3-D image is
transparent, allowing an observer to see into the structure.
Depth cues obtained by changing the vantage point are im
portant for a realistic impressing of depth, yet we have ex
perienced difficulty reproducing this impression photograph
ically, with stereo film pairs (Figure 2) or in the form of a
movie. A CT head scan movie was made with the camera
in a fixed position, the mirror vibration being increased grad
ually, spreading the virtual images out in depth. Since the
movie was made from an oblique angle, it is possible to see
the gradual separation of skull outlines on successive planes
with increasing mirror vibration amplitude. Even so, the
depth effect is much more pronounced when the image is
seen first hand. One possibility we have not yet investigated
is the use of multiplex holograms as a means of reproducing
the illusion of depth seen first hand on the viewer. Goodman
(5) is investigating their use to display 3-D computer data.

c) 3-D Image Visualization: Figure 3 shows how the tree
like biliary system can be traced with the aid of correlated
features on adjacent planes, thus distinguishing it from iso
lated potentially cancerous masses. In liver studies where

. contrast material has been injected into the biliary system,
the treelike appearance is very striking and is reminiscent

Figure 3-b

between adjacent planes. In (b) this same data is shown in a conventional
planar format.

of an uprooted plant with the dirt shaken off. The same image
data viewed section by section is much more difficult to
visualize.

We expect that another important application of the
viewer will be in examining complex abdominal structures
where it is difficult to relate the various organs to one another
from sectional images viewed separately. .

4. APPLICATION: BRAIN BIOPSY GUIDANCE

A special surgical frame (6,7) has been used successfully
to reach small targets in a head phantom without the targets
being seen. The current technique requires the neurosurgeon
to select a target point on a CT section demonstrating the
lesion and also an entry point on a separate CT section thus
fixing the probe path and the biopsy site. The problem with
using conventional TV viewing devices is the difficulty in
visualizing the entire surgical field from separately viewed
CT sections. "

A pseudo 3-D line drawing computer graphics device* has
been used to display both anatomical image data and surgical
frame outlines; however, it is necessary to extract contours
representing bone, tumor, soft tissue structures, etc. before
the device can be used effectively. This contour extraction
step is subject to corruption by noise and it imposes an ad-

* Evans and Sutherland Picture System II.

440 National Computer Conference, 1980

ditional computational burden. Also, motion parallax depth
cues are absent.

The 3-D viewer overcomes these difficulties by providing
the neurosurgeon with a view of the entire CT scan series
upon which a stylized movable outline of his surgical in
strument is superimposed. By moving the simulated probe
into position of the 3-D image he can choose the path least
likely to cause complications. The computer then supplies the
numerical frame settings to be used in guiding the biopsy
needle. Figure 4 shows how this instrument is constructed.

5. CONCLUSION

The anatomical realism afforded by the 3-D viewer will
enable a physician to examine complex organ systems with
out the need to mentally superimpose multiple scan sections.

Figure 4-A prototype stereotaxic surgical frame of this type is attached to
the head during CT scanning and probe placement, assuring a fixed spatial
relationship between the CT image of the head and the frame. Vertical and
diagonal localizer bars are used to determine the location of the frame relative
to the CT image. A probe may be made to follow a manually placed simulated
probe track visible on a computer graphics display. In use the surgeon will
manipulate the simulated track with the resulting scale settings being supplied

by the computer.

We expect this feature to be useful in planning and perform
ing biopsy procedures in the brain for its greater reliability
and reduced risk to the patient as compared with current
methods.

REFERENCES

1. Muirhead, J. C. Rev. Sci. Inst. 31: 210, 1961.
2. Traub, A. c., Applied Optics 6: 1085, 1967.
3. Traub, A. C., U. S. Patent #3,493,290. .
4. Baxter, B. S., "Precision computer display techniques in nuclear medi

cine." Proc. 23, Internationa Symposium SPIE, San Diego, August, 1979.
5. Goodman, J. W., "Personal Communication." Department of Electrical

Engineering, Stanford University.
6. Brown, R. A., "A computerized tomography/computer graphics approach

to stereotaxic localization," 1. Neurosurg 50: 715-720, 1979.
7. Brown, R. A., "A head frame for use with CT body scanners," Invest.

Radiol 14: 300-304, 1979.

Absolute limits on image processing

by DAVID G. BROWN, ROBERT F. WAGNER, and MARY PASTEL ANDERSON
Medical Physics Branch, Division of Electronic Products
Bureau of Radiological Health; FDA
Rockville, Maryland

INTRODUCTION

The metrology of image processing for medical diagnostic
imaging systems can be developed from two different ap
proaches. One method involves the comparison of actual
clinical efficacy of one processing scheme versus another.
A paradigm for this approach is the ROC analysis technique
outlined by Metz1 and by Swets. 2 The second method, taking
as its starting point axioms of information theory proposed
by Shannon,3 calculates the performance of an ideal observer
from the system imaging parameters for some idealized im
aging task. Image processing can only improve the perform
ance of the human observer up to that of the ideal observer
in the limit of "ideal" processing. '

Consider the situation in computed tomography (CT) im
aging for which the detection of low contrast "lesions" is
often a problem of clinical interest. The series of images
shown in Figure 1 show a CT scan of a plastic phantom with
moderately low-contrast disc-shaped inserts. The image on
the left is from a normal scan, that in the center simulated
as though from a scan with a factor of 122 less dose, and
that on the right a grossly smoothed version of the center
image. Note that the larger disks are easily visualized (with
a greater than two orders of magnitude savings in patient
dose as dividend) but that the smaller disks are still hidden
in the mid-frequency components of the noise. Thus, by
being willing to give up information contained in the image
but not required for the task at hand, one may use a pro
cessed image made with a much lower dose. The question
being alluded to in this example is how to be able to tell, for
a particular detection task and presuming ideal image pro
cessing, how Iowa dose could be used for a CT scan.

THEORETICAL FORMULATION

The imaging system is regarded as a two component sys
tem, separated into detection and display stages. In the de
tection stage object information is encoded by the system.
As explained in an earlier paper, information theory con
cepts can be applied to this process to yield an information
transfer function for the system. In the conventional notation
~s developed by Shaw4 and extended by the authors,5,6 this
IS the spectral detective quantum efficiency (DQE(f)).

441

DQE(f) = DQE(O)MTFs 2(f)/MTF N 2(f)

where DQE(O) is the quotient of the number of noise equiv
alent quanta apparent in the image divided by the actual
number of quanta used in making the image, MTFs(f) is the
modulation transfer function of the total system, and MTF ~f)
is that portion of the MTF which acts upon the image noise.

In the case of computed tomography, for example, the
noise will be· acted upon by the reconstruction algorithm.
Assuming that MTFs is factorizable into algorithmic (MTFal)
and non-algorithmic (MTFna) components, one obtains !?

DQE(f) = DQE(O)MTFna 2(f)

where MTFna is due primarily to the finite focal spot size,
detector aperture and other geometrical factors.

As the information transfer function of the system,
DQE(f) describes the fidelity with which object information
at each spatial frequency is encoded by the detection stage
of the imaging system. Obviously, information not encoded
~annot be successfully displayed no matter what processing
IS employed. Thus, DQE(f) represents one absolute limit
on the potential for improvement in imaging performance by
means of such processing.

Except for the trivial case for which information over some
frequency domain is completely lost because MTF na(f) is
identically zero over that domain, an observer detection cri
terion is necessary for the calculation of limitations on ob
server performance, and our focus shifts to the display stage
of the system. As formulated by Wagner and others5.7 from
decision theoretic considerations, a signal to noise ratio cri
terion is the natural choice. The observer is assumed to scan
the image to determine the presence or absence of a known
signal s. By "scan" is meant the convolution of a template
(ideally s itselO with the image. Of course in the frequency
domain the convolution will be a multiplication, reSUlting in
considerable simplification. The ratio of peak signal to rms
noise or display signal-to-noise ratio (SNR) may now be
written

f f S MTFsMTF odfxdfy
S NR = ..p,......:..---------.~

[J f N MTFo 2dJxdfy r

442 National Computer Conference, 1980

Figure l-Low-contrast hole pattern as seen in (left) a normal CT scan, (cen
ter) a simulated low-dose CT scan, (right) a low pass filtered version of the

center scan.

where S is the signal spectrum (Fourier transform of the
object), N is the noise power spectrum, MTFs is the MTF
of the imaging system, and MTF 0 is that of the observer.

tection threshold is used for "SNR," if the system and ob
server MTF' s and shape of the system noise power spectrum
(N) are specified, and if the dose is given (to normalize N),
then a relationship holding at detection threshold between
two of the parameters characterizing the object being imaged
may be established. Figure 2 gives just such a relationship
for peak contrast and disc diameter for the detection of disc-

This equation may be used to generate families of curves
quantifying the performance of possible observers for any
given imaging system and detection task. For example, if k,
the signal-to-noise ratio in the image at the observer's de-

3.0,

~ .. c e 1.0
1..'

cf
'-'"" .. en

C
I.. .. 6 0.3

U

,0.177
0.14

•

~~ .
\J ,

Observations by GC
--- Fit to GC Observations (k - 7.0)

~~.
- - - - Fit to Processin'g and Observations ~

by PMJ (k= 5.5) ~
--- Territory for Image Processing ~

(k-4.0) ~~
GC Extrapolation 0

PMJ Observation x

0.1~------~--------~--------~--------~--------~
0.1 0.3 1.0 3.0 10.0 20.0 30.0

Diameter (mm)
Figure 2-Contrast-detail-dose diagrams for an EMI Mark I CT system.

shaped objects-commonly referred to as a contrast-detail
dose (CDD) diagram.

It has been shown that the optimal observer scans with
an aperture which prewhitens the noise and then matches
the "prewhitened" blurred signal,5,8

MTFo=S MTF)N

{Jf 2 2 } 112

SNR = S ~TF S dfxdfy (2)

The CDD's for this ideal observer are shown in Figure 2
for three different threshold signal-to-noise ratios. The sys
tem parameters used to generate the curves were obtained
from measurements described in Reference 5. The right-most
curve is fit to the experimental observations of Gerald
Cohen,9 yielding a k of 7. The middle curve is fit through,
observer performance data of Peter Joseph,1O who used
image processing to improve the detection of large, low con
trast objects. Finally, the left-most curve is drawn for k
equals 4, which is compatible with studies of optimal human
observer performanceY Thus, image processing could be
expected at most to result in the improvement of imaging
performance by a shift from the k=7 to k=4 curves, a non
negligible but limited range of improvement.

Absolute Limits on Image Processing 443

SUMMARY

By calculating the performance of an ideal imaging system
for a particular detection problem, a limit on the potential
benefit to be derived from image processing may be derived.
The CDD diagram formalism is one method for graphically
illustrating such a limit. Since dose varies as the square of
the signal-to-noise ratio, for CT we conclude that a dose
reduction of on the order of (7/4)2 or about a factor of 3 is
the gain which might be achieved through the use of optimal
image processing.

REFERENCES

1. Metz, C. E., Seminars in Nuclear Medicine, VIII, 283 (1978).
2. Swets, J. A., et aI., Science, 205,753 (24 August 1979).
3. Shannon, C. E., Proc. IRE, 37, 10 (1949).
4. Shaw, R., Rep. Prog. Phys., 41, 1103 (1978).
5. Wagner, R. F., Brown, D. G., and Pastel, Mary S., Medical Physics,

6(2), 83 (1979).
6. Brown, D. G., Anderson, Mary Pastel, and Wagner, R. F., Proc. SPIE,

(1979).
7. Wagner, R. F., Photog. Sci. Eng., 22, 41 (1978).
8. Hanson, K. M., Medical Physics, 6(5), 441 (1979).
9. Cohen, G., J. Comput. Assist. Tomogr., 3(2), 197 (1979).

10. Joseph, P. M., Radiology, (to be published).
11. Rose, A., in "Vision: Human and Electronic," (New York: Plenum,

1973).

Generalized methodology for the comparison of diagnostic
imaging instrumentation

by LEON KAUFMAN and DALE SHOSA
UCSF Radiologic Imaging Laboratory
So. San Francisco, California

INTRODUCTION.

Technology is providing exciting new ways to diagnose and
characterize disease in a non-invasive manner. The decrease
in morbidity and mortality that is realized by substituting
pneumoencephalography and cerebral angiography by x-ray
computed tomography (CT) and brain radionuclide imaging,
or coronary angiography by radionuclide ventriculography
and peIfusion studies, cannot be easily quantitated by cost
effectiveness studies. The dollar value of peace of mind,
patient dignity and comfort, avoidance of blindness or loss
of limb, stroke, etc., cannot be derived from system analysis.

What some see as an unhealthy proliferation of diagnostic
modalities has led to concern about excessive use. It can be
argued that the marketplace in the form of medical history
outcome, relative costs and patient acceptance, will even
tually lead to convergent practice in the choice of diagnostic
modalities. If such is the case, quantitative evaluation of
instrumentation becomes redundant. In reality it serves
many valuable purposes: a) at a minimum it provides a rea
sonable basis for quality control, b) it points the way toward
an understanding of the diagnostic process and consequent
possible improvements, c) it delineates the limits of a tech
nique, and d) it provides the rationale for the exploration of
improved techniques. This is only true if the instrumenteval
uation process is carried out in a competent manner. If not,
it can have effects totally opposite to those listed above.

It is important to keep in mind that the evaluation of a
new imaging technology in terms of the assumptions, pa
rameters and procedures that have been found adequate for
existing technology can yield misleading results. A case in
point is presented by nuclear imaging, where evaluation has
been based on considerations of instrument sensitivity and
modulation transfer function (MTF) (mainly for scintillation
cameras and scanners). For emission tomographic devices
characterization has been in terms of sensitivity and spatial
resolution (either point spread function, PSF, or line spread
function, LSF). The use of high contrast objects such as bar
patterns and point sources to measure contrast and/or res
olution as well as the assumptions of uniform scatter con
tributions to the output image (1), can lead to evaluations
of the instrument that are consistent only for the type of
object being used for that evaluation: The effects on low

445

contrast lesions due to structured backgrounds introduced
by complex sources and scattering material distributions,
long tails in the PSF, and texture introduced by the detectors
or processing algorithms, are not properly accounted for. I

Instead, photon detection efficiency becomes an over
weighted parameter. In fact, we have experimentally dem
onstrated that detector efficiency is not as important a pa
rameter as expected from traditional image evaluation
methods (2,3).

The growth in intradisciplinary imaging methods (Le.,
planar imaging, single-photon emission tomography and pos
itron tomography in nuclear medicine), as well as interdis
ciplinary modalities (nuclear, x-ray computed tomography
(4), and nuclear magnetic resonance, NMR (5), imaging) both
point toward the need for techniques that allow for a mean
ingful intradisciplinary comparison, and which can, concep
tually, be extended to interdisciplinary comparisons as well.

In a previous communication (6) we have adopted the Rose
model (7) to allow us to characterize an imaging instrument
by an estimate of the number of elements, T, that can be
resolved within an image. Thus, we write

NC2

T= F(! +C) (1)

where N is the number of discrete events forming the image,
k is the confidence factor, and C is the contrast, defined by
Rose as the signal-to-background ratio, with a value between
o and 1. The factor (1 + C) was added to take into account
the effects of noisy signal as well as noisy background (6).
For k=2 and k=3 we have a 97.7 and 99.8 percent confi
dence factor, respectively. Rose states that "the factor C2
is a consequence of the contrast C and the random character
of photon distributions; the factor k2 reflects both the random
character of the photon distribution and the need to avoid
false alarms" (7).

Contrast is defined in Rose's formulation as "a measure
of the signal as a function of the background brightness, that
is, C = MJ/B and O::S;C::s; 1" (7) where MJ is the difference in
intensity between the site of the lesion and background B;
In nuclear imaging one must sometimes consider the case
MJ/B> 1.

Analytically a false alarm occurs when an element in a
uniform background appears somewhat brighter or some-

446 National Computer Conference, 1980

what dimmer than its surroundings, where this difference is
due only to statistical fluctuations. On the other hand, in
diagnostic imaging the physician usually searches for pat
terns that involve more than one resolved element, or for
differences in intensity in certain parts of the field. Thus,
not every false alarm necessarily generates a false diagnosis.
In many other procedures (for instance, cardiac wall
motion studies), the delineation of an area is sought, and the
exact contrast difference between adjacent elements is less
significant. Based on these considerations, it would appear
that, depending on the type of study being performed, sat
isfactory diagnostic images can be obtained with values of
k between 2 and 3. The estimate is in need of corroboration
through systematic study, but does not affect the method
ology presented here.

Rose's formulation is particularly attractive in that it sep
arates the statistics of the image (represented by Nand k)
from the physics of the imaging process, which affects the
value of C in the output image. In this manner, the tradeoffs
between instrument sensitivity and the parameters that yield
contrast can be easily evaluated. Rose's formulation also
makes it explicit that contrast is independent of the number
of counts in the image, the latter only affecting the certainty
with which the contrast can be determined. Although very
basic, and supported experimentally (8), this concept is
sometimes overlooked in the evaluation of imaging instru
mentation. In nuclear medicine, this misunderstanding has
led to the concept that images are "statistics limited." As
a consequence, undue emphasis has been placed on instru
ment efficiency, to the detriment of consideration of other
important instrument characteristics which degrade per
formance (2). In x-ray computed tomography, this leads to
the belief that increased dose by itself can improve image
quality, where in fact it may only lead to better definition
of artifacts produced by beam hardening, motion, detector
instability, misalignments, etc.

The extension of Rose's model presented here is intended
to provide a framework within which these pitfalls are
avoided. Within the constraints that: a) it is understood that
signal-to-noise (the basis for Rose's 'model) is a necessary
but not sufficient criterion of visibility, and b) factors other
than optimal signal-to-noise can be legitimately used to
choose a particular diagnostic imaging modality, we dem
onstrate that meaningful quantitative comparisons of these
modalities can be obtained.

SUMMARY OF PRIOR WORK

Rather than to repeat here the detailed methodology used
in expanding Rose's model (7), we summarize the main re
sults. We considered the following sources of degradation
of the resolving power of an imaging system:

Spatial resolution

The finite area over which data from a point in the subject
is distributed in the output image produces a loss of observed

contrast. For a spherical lesion and an approximately Gaus
sian point spread function (PSF), the output contrast C can
be conveniently approximated (6) by the expression

(2)

where Co is the object contrast, FWHM is the full width at
half maximum of the Gaussian PSF and D is the. lesion di
ameter. Equation 2 is valid only for FWHM/D<1.5 (6).

Texture

If a uniform object is imaged, and the variability in re
sultant intensity with respect to the mean value is measured
for regions in the image with area a, one of three types of
distributions are generally found:

i) Normal distribution in value and in space, the value
being that which is expected dn the basis of counting
statistics only. This form of noise is the one treated
by Rose.

ii) Same distribution as in i above, but with a value that
exceeds by a noise magnification M that which is ex
pected from counting statistics. Noise of this kind is
introduced by the reconstruction algorithms used in
3-D reconstruction (9).

iii) Texture, where after correction for counting statistics
a remnant 13 is found that is not normally distributed
in value or in space. General consideration ofthis case
is difficult, but it can be approximated as follows: In
general the distribution of values for 13 can be ap
proximated by a normal distribution, as we have dem
onstrated for the scintillation camera. In addition,
even when 13 has a non-random distribution in space,
the location of a lesion is randomly distributed with
respect to background structure. Thus, for an ensem
ble of images, the effects of 13 can be approximated
by those of a random distribution.

The effect of texture can be included in ,Rose's formulation
in a number of ways (6). We have chosen to include it as an
explicit alteration of output contrast of the form

(3)

where 13 is the fractional value of the standard. deviation of
counts in a region of area a with respect to the counts in a
surrounding (background) region, these corrected for pure
counting statistics and M. Thus, in the presence of texture,
acquired quanta can be thought of as being partitioned into
two groups-one which produces increased detectability of
small structures and the other which serves to enhance the
visibility of interfering texture in the background. This is an
important effect, and in many situations typical of diagnostic
nuclear medicine, the images produced by scintillation cam
eras are as much "texture limited" as they are "statistics
limited," and increases in count density with the accom
panying increase in dose-time product will not yield com
mensurate increases in diagnostic efficacy.

Other sources of alteration of contrast

Image contrast is altered by effects other than finite spatial
resolution and texture.

In general, we can write

C= CaFF
I+Lf

where '2:,f is a sum of factors, examples of which are

(4)

i) SF, the scatter fraction as defined in Reference 1, with
one important· difference: Rather than being constant
over the image, it is used only as a local parameter,
defined in the immediate vicinity of the lesion. It can
be different even over the area of interest and the cho
sen background region (10).

ii) P, the accidentals overlap rate (also locally defined).
P is mostly important in coincidence imaging, but, as
demonstrated by Lewellen (11), also affects scintil
lation camera images obtained at high rates.

iii) E, the electronic noise normalized to real signal, a fac
tor that is not important in photon-counting instru
ments, but can be significant in devices that obtain
data by integration oflarge numbers of discrete events.

iv) CR, the collimator crosstalk, which can be large in
mUlti-peak and high-energy imaging, but is not trivial
even under more favorable conditions (12).

FF is the filling factor, introduced to take into account the
loss of contrast produced by the finite dimensions being sam
pled in a direction perpendicular to the image plane. In a
plan~r camera FF is the fraction of the signal that is gen
erated by the target as opposed to that generated by target
plus non-target tissues present in the projection (accounting,
of course, for attenuation effects). In a tomographic camera
FF is the ratio of lesion size (in the direction mentioned
above) to the slice thickness.

Combining Equations 2 and 4, we can write, for a spherical
lesion,

C= CaFF exp(-FWHWID2)

I+Lf
(5)

where the FWHM refers to the sharp part of the PSF, and
all parameters are considered in their local context. It is im
portant to note that the parameters SF, P, E, CR, etc., are
not generally independent of each other, as is often assumed.

DERIVED PARAMETERS

Effective spatial resolution

Equation 2 defines output contrast as a function of FWHM
for a well behaved PSF (i.e., Gaussian or nearly Gaussian
without appreciable tails).

If the sharp component of the PSF is accompanied by the
presence of tails due to, for instance, the acceptance of scato:
ter, or forced sharpening of resolution by image processing

Comparision of Diagnostic Imaging Instrumentation 447

or reconstruction algorithms, equivalence between output
contrast and PSF FWHM is lost.

To obtain a realistic measure of spatial resolution we can
define as an effective resolution the FWHMEff that yields the
measured contrast C for cylindrical or spherical lesions of
known diameter D assuming that the system is well behaved.
If the system is not well behaved FWHMEffWill not be iden
tical to the FWHM obtained from a point source. Thus, from
Equation 2, for a sphere,

FW HM Eff= D[ln(C jC)] 112 (6a)

It can similarly be shown (6) that for a cylinder

FWHMEff= .83DI[ln(C)Co-C)]1f2 (6b)

The attractiveness of this definition of resolution is that it
takes into account significant effects that are lost in the
measurement of high contrast sources, it unmasks manipu
lations of the image, and presents results within the context
of relevant diagnostic situations. An unattractive feature is
that no single number may characterize resolution, which
now becomes object-dependent. Unfortunately, reality does
not necessarily permit characterization of the instrument in
terms of simple parameters.

Needed sensitivity

For an instrument that obtains images by accumulating
serially or in parallel a number of discrete events, N in Equa
tion 1 can be expressed as

N=NoSt (7)

where No is the rate with which discrete events are generated
for the purpose of forming an image (disintegration rate in
nuclear imaging, x-ray tube output in x-ray CT, resonant
nuclei in NMR, etc.); S is the sensitivity of the system, given
as the fraction of all events that is incorporated in the output
image; and t is the imaging time. The value of S can be re
duced by dead time effects, which need be taken into ac
count.

For low contrast images, the sensitivity needed to obtain
a certain resolving power under a given set of imaging con
ditions is

(8)

where the number of resolved elements is T= Ala, A being
the area of interest and ·a defining the size of lesion being
sought. To the extent that the actual sensitivity S can be less
than Sn> the instrument becomes inadequate for the partic
ular imaging problem.

Imaging efficiency

If we define Sp as the sensitivity that a perfect instrument
(C=Co=object contrast) would need under the same im
aging conditions, the imaging efficiency (relative to that per-

448 National Computer Conference, 1980

fect instrument) is

S piS = (C 2 - PI3 2)(1 + C o)/C /M2(1 + C) (9)

This is an important parameter, since it allows us to obtain
an understanding of how far an instrument is operating from
its statistics-limited point for a particular imaging problem
and to accurately appreciate the gains that can accrue from
improvements in specific performance parameters.

Resolving power

Under conditions of adequate area over which background
can be estimated (6), Rose's formulation of resolving power
can be modified to take into account texture as follows

(10)

where for the moment we ignore M. Recalling once more
that T=A/a and N is defined over the area a, Equation 10
can be expressed as

(11)

The term A/N is the square of the normally distributed noise
in the image except for texture, as defined before, measured
for regions of area a. Thus, in a case where Nand Mare
not easily obtained (as with CT scanners, ultrasound or
NMR), we can write

a = P(noise 2)(1 + C)/(C 2-- PI3 2) (12)

keeping in mind that both the noise and 13 vary as a function
of a. Note also that the parameter C takes into account the
filling factor as well as any other sources of degradation of
contrast.

Equation 12 allows us to estimate the resolving power of
an instrument by choosing an area a t as test point, and ob
serving whether the measured parameters in an image reduce
to a result for Equation 12 such that a==:;a t. In that case, the
instrument can resolve lesions of area a with a confidence
k. The resolving limit is, of course, the case where a = at.
Alternatively, Equation 12 can be expressed in terms of k,

[

2 .] \/2

k= C/ (noise ~(1 + C) + 132 (13)

Thus, the output characteristics of the instrument are suf
ficient to compare its imaging performance to any other
modality operating on the same subject. For infinite counts
Equation 13 reduces to kxo = C/I3.

EXAMPLES OF COMPARISIONS

Intradisciplinary comparisons

Nuclear imaging, same radiopharmaceutical and same
modality (i.e., planar) with different instruments

As an example of the results of this methodology we will
compare a scintillation and high purity germanium camera
(13) in two planar imaging conditions.

a. A lesion of lcm diameter, with a 10:1 lesion to back
ground tissue lable, within a 19cm-diameter tissue sphere
surrounded by a 0.5cm-wide shell with a 5: 1 shell to back
ground tissue label. The lesion is at a 5cm depth, and is
imaged from a direction such that the distance between it
and the collimator is at a minimum. We will assume that the
background tissue contains 0.1 jJ..Ci/cm 3 of Tc-99m. This ex
ample attempts to represent a reasonable benchmark for
brain tumor imaging. The product C J"F is calculated to be
0.51. For the scintillation camera we will use the following
parameters: With a high resolution collimator FWHM = 6. 7mm
(6), SF-0.8 (14),13=0.025 (6), M= 1, CR=O.06 (12) and, at
low rates both P and the dead-time will be assumed to be
nil. The sensitivity, or product of detector efficiency times
the collimator acceptance is 4.8 cts/sec/jJ..Ci (13). The ex
pected output contrast C, calculated from Equation 5, will
be 0.175. For k=2, the factor (C 2-k213 2)=0.028.

For the HPGe camera with a high resolution collimator
FWHM=4mm, SF-O, 13=0, M= 1, CR=0.02, and the sen
sitivity is 2.5 cts/sec/jJ..Ci (13). The resultant contrast will
then be 0.426 and the term (C2-PI32)=0.182.

Under identical imaging conditions (T,k,N 0 and t equal),
the ratio of sensitivities needed by the two devices will be,
using Equation 8,

SSe = (C
2
-k

213 2
)Ge(1+C)se =54

SGe (C 2 - PI3 2)se(1 + C)Ge .

while the actual ratio is just 1.9. Thus, while the scintillation
camera is almost twice as sensitive as the HPGe camera,
under the given imaging conditions it needs 5.4 times more
counts than the HPGe camera to achieve equivalent signal
to. noise.

It can also be appreciated from Equation 9 that as a planar
imaging device the scintillation camera is operating with an
imaging efficiency of 14 percent, while the HPGe camera
reaches an imaging efficiency of 74 percent. Neither device
extracts all the available information, that is, neither is sta
tistics limited. We also ask whether either instrument can
achieve the signal to noise needed to resolve the lesion. For
the given example the effective peak activity over the lesion
is 1.32jJ..Ci, while it is 0.88jJ..Ci/cm 2 over the surrounding area.
If we take an area of interest of 3cm in diameter (7cm 2), it
will represent an effective activity of approximately 6jJ..Ci,
thus No=2.22x 10 5/sec. For k=2, t=400 sec and T=7cm 2/
0.78cm2=9, from Equation 8, Sn= 1.70 X 10- 5 • Since the ac
tual sensitivity for the scintillation camera is 4.8cts/sec/jJ..Ci
or 1.3 x 10-4

, this instrument can achieve the desired signal
to noise. For the HPGe camera S n = 3.2 X 10-6

, which is con
siderably smaller than the achieved value of 2.5 cts/sec/jJ..Ci
or 6.8 x 10-5

, and which makes this instrument also opera-
, tive under the given conditions.

b. The second example compares the peIformance of the
scintillation camera and HPGe camera for TI-201. In this
case we will simulate a cold lesion of lcm-diameter and 5cm
depth in an immediate lcm-thick area that is fully labeled
with 1.6jJ..Cilcm 2 of activity. In modeling this perfusion im
aging study in the heart we will neglect chest-wall back
ground and activity, we will consider only the myocardial

walls proximal to the camera face (5cm depth) and distal to
the camera (15cm depth). This far wall produces an effective
output equivalent to 0.12 J.LCi/cm 2, while the proximal wall
provides the main effective activity contribution ofO.68J.LCii
cm 2. Thus, the background immediate to the lesion has an
output of 0.80J.LCi/cm 2, while the lowest activity in the lesion
is O.12J.LCi/cm 2. This results in a peak contrast at the surface
of the subject that is given by C JF=0.85.

In a 300 sec gated study the accumulation time would be
t = 15 sec each at end systole and endiastole. For the scin
tillation camera this yields 450 cts in a 7cm 2-area over the
lesion, using a medium resolution collimator (13) and a 20
percent window (15). A HPGe camera with a medium res
olution collimator will accumulate twice as many counts
(13), using a narrow windpw encompassing the KOL1-KOL2

peaks of Tl-201. While the' spatial resolution of the HPGe
camera will be of the order of 5mm FWHM and SF -0.1, the
scintillation camera will be operating with a spatial resolution
of9.7mm FWHM (15) and SF-I. CR for both is almost zero
for the 70 keY photons. The contributions of the 135 keY
and 167 keY photons of Tl-201 cause part of the increase
in SF for the scintillation camera, but do not affect the image
when using the HPGe detectors. The resulting peak con
trasts, as calculated from Equation 5, will be 0.166 and 0.60
for the scintillation and HPGe cameras, respectively. As
demonstrated experimentally (10), for Tl-201 scatter intro
duces a background that is structured, with frequency com
ponents similar to those of interest. Consequently, a con
servative estimate is ~-0.05 for the scintillation camera,
while because of its scatter rejection and digital position
readout ~=O in the HPGe camera. From Equation 11 we can
see that for a confidence factor k = 2 the scintillation camera
can resolve a minimum area a = 4.1cm 2 (2.3cm-diameter)
under these conditions, much larger than the 0.8 cm2 of the
lesion. The HPGe camera can, on the other hand, resolve
a minimum area a=0.14cm 2 (O.4cm-diameter). Thus, while
the scintillation camera cannot provide the resolving power
necessary for this particular problem, the HPGe camera ca
pabilities exceed those needed to perform the task.

Nuclear imaging, different modalities (positron and
planar) and radiopharmaceutical

We compare the results of planar imaging for the brain
model above with what can be realized with a commercially
available positron camera using an optimal positron emitter,
the positron camera's parameters based on data of Reference
16. A comparison of this sort can be based on a number of
criteria. For instance, the parameters No and t need not be
the same for both cases, even thought it is tempting to per
form this comparison for t and No weighted so that the ra
diation dose delivered by both radiopharmaceuticals is
equivalent. For cameras that image a slice at a time, the time
t should be that used for examination of the full organ of
interest, in this case, the brain. Even so, it is also meaningful
to perform this comparison under conditions of "standard
practice." In fact, "standard practice" comparisons are
valid and valuable. For instance, the dose from the positron

Comparision of Diagnostic Imaging Instrumentation 449

emitter may be lower than that from the Tc-99m but larger
dosages may not be possible because of instrument satura
tion or limits on production set by cyclotron and labeling
parameters. More important, the dose-time product may
have become standarized by empirical observation that
image quality is not improved for larger dose-time products
(8). This indicates that an instrument is no longer operating
in a statistics-limited region. On the other hand, an improved
device may be able to take advantage of the quanta provided
by larger dosages or longer imaging times. When such is the
case, comparisons should be performed for the "optimal"
practical values of No and t. '

Using the quantities specified above for the brain model,
and Equation 13, we find that for the scintillation camera
used in a planar imaging mode k=4.5. Similarly, for the
HPGe camera k= 9.3. With these values as a benchmark, we
estimate k for a positron camera under conditions of "stand
ard practice" (16). We postulate a typical study with 106

counts over a 19cm-diameter field of view, with an average
. count density of 2820 cts over a lcm-diameter region. For

a reconstruction where the pixel size is matched to this di
ameter (355 pixels) we expect (17) the product Mx
Poisson noise to be approximately 0.1. This agrees with the
value measured for the positron camera (16) for objects of
19 cm-diameter and 106 counts, except that noise measure
ments were made for areas of the order of 3 x FWHM, or
4.5 cm-diameter. This would yield a granularity of the order
of 40 percent-cm if the granularity function is well behaved
(17). In estimating k for the brain model under discussion we
will use noise figures of 0.1 and 0.4 to provide a range for
the result. Using line sources the spatial resolution was
measured to be 1.57cm FWHMfor the sharp part of the LSF,
but the shape is not Gaussian and contains an appreciable
tail to the edge of the field of view, this tail due to the re
construction process and random events. Given that a cy
lindrical cold lesion of lcm-diameter appears in the output
image as containing approximately 82 percent of the average
counts found in the background (16), CICo=0.18. The ef
fective spatial resolution can be calculated from Equation 6b,
yielding FWHMEff= 1.86cm for 1 cm objects. Because Equa
tion 2 is not valid below 20 percent contrast modulation, the
value of CICo for a sphere has to be calculated from the exact
expression (6). A useful approximation in this case is to treat
the spherical lesion as a cylindrical one of lcm diameter and
1 cm height, with the axis orthogonal to the image plane.
Thus, the contrast modulation by effective spatial resolution
will be 0.18, the factor C JF= 3.60 and the output contrast
C=0.18CJF=0.65. Finally, while ~ was not determined
explicitly, it is most likely contained in the noise figures that
were measured. From Equation 13, k= 1.1 to 4.5: Although
the positron camera eliminates the effects of over- and un
derlying activity, its large slice thickness and poor spatial
resolution degrade contrast to the point that the modeled
1 cm lesion is better detected in a planar imaging mode.

Interdisciplinary comparisons

We will apply Equation 13 to the brain model used as a
benchmark in the prior analysis. Imaging performance will

450 National Computer Conference, 1980

be evaluated for a state-of-the-art x-ray CT scanner (GE
8800), and for two devices for which only data from pro
totypes exist: A HPGe single-photon emission computed
tomography (ECT) imager (18) and a nuclear magnetic res
onance (NMR) camera (5). The (unsupported) assumption
is made that larger devices would maintain.currently achieved
specifications. The CT scanner has a spatial resolution of
1.8mm FWHM and a granularity of 0.5 percent-mm for a
lcm slice-width (19). The NMR camera in its present format
has a spatial resolution of2 x 0.5mm FWand a slice thickness
of 8.4mm, with a granularity of 5 percent-mm at NMR in
tensity midrange.

The prototype of the HPGe ECT imager shows a spatial
resolution at depth of 4mm FWHM in the axial plane and
2mm FWHM in the longitudinal plane (slice thickness). The
sensitivity in this mode is 2.5 cts/sec/J.1Ci for Tc-99m. We
assume that a single camera is rotated about the subject, that
imaging is performed in 18 min, and that the mean absorption
path is 10cm of tissue. Based on these parameters, and as
suming a lesion content of 1 J.1Ci of Tc-99m, 680 counts will
be accumulated in the region of the lesion if 5 slices (each
2mm wide) are added. For a reconstruction performed over
a 20cm-diameter cylinder with a 2 x 2-mm2 pixel, M~ 10,
resulting in a noise = 0.4. As previously shown (6), ~ = O. For
a 10: 1 lesion to background tissue label, 68cts/cm 3 will be
found in the area contiguous with the lesion, thus noise = 1.2.
This is the value that is used in Equation 13.

The final question is that of Co for each modality. If 'We
assume that the lesion offers contrast of the type found be
tween fat and brain tissue, Co = 0.035 for CT (19), and Co = 1
for NMR. For the nuclear study Co = 9 and for a 4mmFWHM
resolution contrast is degraded to C/Co=0.85 for a lcm
sphere. Questions not addressed here are motion, placement
of the slice with respect to the object (we will use FF=0.7,
which results from felicitous placing), and dispersion in the
parameter Co. While the latter two are amenable to analysis,
the effects of motion can only be considered in the context
of the imaging problem. CT is seriously affected but is the
fastest of the modalities. In NMR as developed at UCSF
(5), motion will tend to produce a shift in the image. A blur
is expected in the nuclear image. With these considerations
in mind, and setting ~=O, we find that k(CT) = 37 for an
object of 1 cm-diameter, k(NMR) = 84 and k(ECT) = 1.6, the
low value due mainly to noise.

DISCUSSION

Rose's model has been extended to deal with the principal
sources of noise found in diagnostic imaging. The model
provides an understanding of the effects on the output image
of the physical parameters of the object/instrument system.
It also permits an analysis of performance that is based on
the characteristics of the output image only. Comparisons
among different modalities can be made for any desirable
source configuration, thus freeing the results from the fal
lacies that are incurred when unrealistic objects such as bar
patterns are used to evaluate a device. An apparent weak
ness of the model is that it does not yield a single figure of

merit or performance index to characterize an instrument.
Although pleasant, the belief that such an imaging number
or universal curve of performance can be generated is sim
plistic within the context of the complexity of the diagnostic
problem.

The model is limited to consideration of signal-to-noise
only. It neglects factors such as the type of information pro
vided, availability, convenience, reliability of operation of
the instrument, physician and patient acceptance, cost, etc.
Consequently (and fortunately) it does not pretend to have
utility in selecting a certain modality for a given diagnostic
study. Rather, we believe that this kind of analysis has utility
in allowing us to understand the effects of the physical and
engineering characteristics of the object/instrument system
on the characteristics of the output image. It also has utility
in helping to determine what pa;ameters are of importance
and need to be improved in future instrumentation. For in
stance, even the simple examples presented here, using rel
atively large benchmark lesions, point toward the impor
tance of spatial resolution in diagnostic applications.

Finally, the model allows for quantitation of the potential
of anyone modality for obtaining information from the sub
ject. Only when an instrument is working at its true "sta
tistics limited" level can we say that no further improve
ments are possible in a particular imaging situation.

ACKNOWLEDGMENTS

These investigations were supported in part by USPHS
NIH Training Grant CA09158 from the NCI, by a grant from
the Radiology Research and Education Foundation, and by
NSF Grant APR 73-03161 A01. The authors are grateful for
valuable input provided by Dr. F. Soussaline, Dr. R. S.
Hattner and Dr. D. P. Boyd.

REFERENCES

1. Atkins, F. B. et aI., "Dependence of Optimum Baseline Setting on Scatter
Fraction and Detector Response Function," in Medical Radionuclide Im
aging I, IAEA, Vienna, (1977) p. 101.

2. Kaufman, L., "Nuclear Medicine Imaging," in Medical Imaging Tech
niques, Edited by K Preston et aI., Plenum Publishing Co (1979) p. 263.

3. Kaufman, L. and Hattner, R. S., "Comparison of Medical Imaging Mod
alities: Clinical Realization and Engineering Potential of Nuclear Imag
ing," SPIE 206, 27, 1979.

4. Boyd, D. P., "Status of Diagnostic X-Ray CT: 1979," IEEE Trans. Nucl.
Sci., NS-26: 2836, 1979.

5. Crooks, L. c., et aI., "Tomography of Hydrogen With NMR, and the
Potential for Imaging Other Body Constituents," SPIE 206, 120, 1979.

6. Shosa, D. and Kaufman, L., "Methodology for Evaluation of Diagnostic
Imaging Instrumentation," (submitted for publication).

7. Rose, A., "Vision: Human and Electronic," Plenum Press (1974)
Chapter 1.

8. Patton, D. D., "Controllable Parameters in Nuclear Medicine Images,"
SPIE 127:60, 1977.

9. Budinger, T. F., et aI., "Emission Computer Assisted Tomography With
Single-Photon and Positron Annihilation Photon Emitters," J.C.A.T.
1:131, 1977.

10. Narahara, K. A., et aI., "Myocardial Imaging With Tl-201," J. Nucl.
Med. 18:781, 1978.

11. Lewellen, T. K., et aI., "A Field Procedure For Quantitative Assessment
of Gamma Cameras," presented at the Second Annual Western Regional

Meeting, Society of Nuclear Medicine, Las Vegas, Nevada, October 21-
23, 1977.

12. Swann, S. J., et ai, "Optimized Collimators for Scintillation Cameras,"
J. Nucl. Med. 17:50, 1976.

13. Kaufman, L., et aI., "Imaging Characteristics of a Small Germanium
Camera," Invest. Radiol. 13:223, 1978.

14. Hoffer, P. B., et aI., "Measurement of Scatter Fractions in Liver and
Brain Scans Performed With a Gamma Camera," J. Nucl. Med. (Abstract)
16:535, 1975.

15. Hines, H. H., et aI., "Spatial Resolution for TI-201 as a function of
Window Width, " presented at the 4th Annual Western Regional Meeting,
Society of Nuclear Medicine, Monterey, California, October 19-21,1979.

Comparision of Diagnostic Imaging Instrumentation 451

16. Soussaline, F., et aI., "Potentials of Quantitive Methods in Positron
Emission Tomograpy," preprint, CEA, Service Hospitalier Frederic Jo
liot, Orsay, France.

17. Hanson, K. A. and Boyd, D. P., "The Characteristics of Computed Tom
ographic Reconstruction Noise and Their Effect on Detectability," IEEE
Trans. Nucl. Sci. NS-25: 160, 1978.

18. Ortendahl, D. A., et aI., "High Resolution Emission (:omputed Tom
ography With a Small Germanium Camera," IEEE Trans. Nucl. Sci. (in
press).

19. Boyd, D. P., Private Communication, October 1979, San Francisco, Cal
ifornia.

Balancing processor shares of scheduling classes through
controlled allocation of memory

by K. V. SASTRY
Sperry Univac
Roseville, Minnesota

INTRODUCTION

In a paged, virtual memory computer system used by several
differen.t classes of users simultaneously, it is reasonable to
expect that each class will demand certain service rates.
Service rates for a particular class can be affected by having
each class use its share of (a specified percentage) Instruc
tion Processor (IP) time at regular intervals. There are also
two other important resources in the system-main memory
and the 10 system. The service rate of a class is. very much
dependent upon the availability of (or lack of) these two
resources even if a processor is dedicated to a class. On the
other hand, a specified IP share can be achieved by using
an "unfairly large" portion of main storage for an "unfairly
large" population of processes in the READY state. Al
though it may be favorable to do so for a particular class,
it may, in fact, prevent the other classes from achieving their
processor shares because of lack of enough storage.

Problem statement

The problem then is threefold-

1. How do we ensure that a proper set of processes in
each class is in the READY state so that the IP share
for each class is satisfied?

2. How do we ensure that main storage is available to
contain the proper set of processes mentioned in (1)?
In other words, how do we map the requirement for
residence of the proper set into availability of main
storage? This question is especially pertinent in a class
oriented scheduling scheme.

3. What measures do we take to ensure that the direction
of resource distribution is from those classes that are
meeting or exceeding their IP shares through' 'unfairly
large" allocation of resources or "unfairly large" pop
ulation of processes, to those classes that are not sat
isfying their IP shares?

453

DETERMINATION OF THE MULTIPROGRAMMING
SET

The multiprogramming set is that set of processes waiting
for IP or 10 Service and having main storage allocated. In
the algorithms described below, the multiprogramming set
will be determined based upon the expected storage require
ments of a process before it is rescheduled. We will here use
a memory management policy based upon the concept of
locality of page referencing [1]. In a paged virtual memory
system the main storage requirements of a process can be
represented by its working set [1 ,2]. It is defined to be the
set of distinct pages referenced by a process in the last time
interval T.

We will identify [3] three states for a process to be in.
These are as follows;

ACTIVE-processes whose working sets are in main stor
age and are ready to be dispatched, except when they are
waiting for page fault to be resolved or a data resource to
be released. A process in this state is dispatched until its
quantum runs out, or a force-deactivate occurs.
STANDBY-a set of processes eligible to be dispatched.
BLOCKED-a set of processes waiting on an external
condition; e.g., a tape mount or a terminal input.

We will also assume that the system is a pagiJg machine
with virtual memory. Movement of processes into the AC
TIVE set is caused and controlled by the memory balance
(or imbalance) condition defined below.

Let C be the total number of scheduling classes in the
system. Also, let the scheduling characteristic of class i be
denoted by (m,p,ni where mj is the memory requirement of
processes in class i, Pi and Ti are the IP and 10 system share
which class i requires in order to satisfy the required rate
of progress and response time averaged over all processes
in the class. The memory balance condition is denoted by:

454 National Computer Conference, 1980

where M is the total main storage size usable by all classes
and m i is the total working set requirement of all processes
active in class i.

Classical working set theory [1] says that a process can
be placed on the ACTIVE state if there is enough free storage
available to contain its estimated working set.

Let We,j be the estimated working set size of a process at
the time it is moved into the ACTIVE state. Let the current
(actual) working set size of a process be denoted by Wa,j'

At the time a process is placed in the ACTIVE set, then

Let us assume that f number of processes are placed in the
ACTIVE state in a particular class to cause processor bal
ance and satisfy processor share of that class. Let us also
assume that the memory balance condition permits us to do
this, i.e.,

where (FL) is the size of the free list of page frames.
The underlying assumption here is that these f processes

that are newly placed in the ACTIVE set will execute soon
enough to cause:

During all the time that it takes these f processes to build
(or rebuild) their working sets there are

~ We,j- ~ Wa,j
j j

number of free page frames that are taken. Nearly all the
current virtual memory systems use this approach. Perhaps
that is why the force-deactivate function is used very infre
quently in those systems.

This is not an efficient approach for a class-oriented sched
uling system. All the actually-free-but-unavailable page
frames are unavailable for other classes to be used in order
to satisfy their IP shares. To this end, a more pragmatic
approach is proposed which is based on the notion of "let
there be some virtual overcommitment of memory," that is, '
we activate more processes than whose estimated working
sets will fit in memory. A consequential notion is "let there
be some inter-class thrashing."

How do we know how many more processes to activate
than the memory balance condition permits?

The concept of expected working set accumulation

The rate of progress of a class in real time depends upon
the processor share of the class. The rate of progress of a
process in a class depends upon the dynamic execution char
acteristics of the process when it was last placed in the
STANDBY set. Nevertheless, such a process is going to
page-fault until it builds its working set. This is particularly
true of a newly created process. The initial storage allocation
to such a process or the criteria used for memory balance
to activate such a process should depend upon the fraction

of the estimated working set that the process can actually
acquire before one of the following happens:

1. The process is quantum-timed-out.
2. The class is quantum-timed-out.
3. Free page frames are made available by the paging al

gorithm working on some process.

The probability of one of the above happening-in particular
(3)-is indeed high. The reasoning is as follows.

Let e be the number of processes in the ACTIVE state
in class i at the time a process is selected to be moved into
the ACTIVE state;

ej be the mean execution interval of process j in the class;
t be the average service time of a page fault;
qi be the remaining quantum time of class i;
qi,j be the remaining quantum time of process j in class i;
j be the process we are trying to ~elect to activate;
Pi be the IP share of class i as a fraction of unity;
[be the current class;
Qi be the total quantum for class i.

Assume for the moment that e = 0; then the minimum real
time, T, required for the process to acquire its estimated
working set We,j depends upon the following different con
ditions. Let w=we,j-Wa,j

1. If W.t~ql' then T= W.t
2. Ifw.t>ql, let w.t=kQ/and n be the largest integer such

that n<k.
(i) For k~l
The mi~imum real time that must elapse before W pages
are acquired is increased by the dispatching time al
located to classes other than [. Depending on the mon
itoring granularity, this time can be computed as a func
tion of the IP share and the class quantum of class [.
For every unit of time allocated to class [, all other
classes are allocated (1- p])lpl units of time, so that a
uniform rate of progress is achieved for all the classes.
Hence

(ii) For k> 1
The elapsed real time consists again of two compo
nents. The first is the dispatching time allocated to all
other classes for each full quantum of class [, which
is (1- pJlpiQ]. The total elapsed time for each Qlof
class [is then

(1- Pi) Q + Q = QI
. I I, ,

Pi Pi

By definition class [receives n such Q/s. The second
component is the remaining fraction of QI that must
elapse to satisfy a total Class virtual time of W.t. There
fore

nQI
T= - +(k-n)QI

PI

Balancing Processor Shares Through Controlled Allocation of Memory 455

However, the above formulas should be modified if
t'>0. On each page fault, the process is blocked until
the fault is resolved. Some other process in the class
is dispatched until it faults and so on. For the purpose
of analysis let us assume a simple round robin dispatch
ing algorithm among the processes in class i that are
READY for IP service. For each execution interval ej

that elapses, the class virtual time that elapses is the
sum of aU e/s. The modified time, T', is therefore re
lated to T as follows:

The contention now is that the actual storage allocation
for a process being activated should be related to the
ratio of the minimum time to acquire the estimated
working set if there were no other classes to the real
time it takes to acquire the same working set. Taking
also into account the remaining quantum time for the
process in question then, the actual storage allocation
should be:

min(w.t,ql,J
Wa,j= T' We,j

This scheme will not only insure an equitable distri
bution of available storage to the processes in the class,
it will also allocate only enough storage that the process
can actually use.

AN INTER-CLASS ALGORITHM FOR CORRECTING
MEMORY OVERCOMMITMENT

Memory overcommitment occurs when a process in the
multiprogramming set page-faults and there are no free page
frames available. In keeping up with the working set concept
of memory management free page frames must be made
available by deactivating one of the processes in the mul
tiprogramming set. While there may be several processes
qualified to be the deactivation candidates, we must ensure
that the deactivation of a process occurs in a proper class.

It was previously pointed out that we do not want a class
to achieve its IP share by merely having an "unfairly large"
population of processes in the ACTIVE state. On the same
token, we do not want a class to overcommit memory to
itself thus preventing other classes from achieving their pro
cessor shares due to lack of storage.

To this end, let us introduce a parameter called the con
currency factor. The concurrency factor J: for a class i is
defined as the average number of processes that the site ad
ministrator or the subsystem designer deems necessary to
be in the ACTIVE state such that a specified processor share
and response time for that class can be achieved. For the
same reason that it is possible to specify processor shares,
it should be possible to specify concurrency factors.

Let Pi' Ti , /; be the processor share, page traffic rate and
concurrency factor respectively specified for class i.

Also let P;', T;', J:', be the current processor share, page

traffic rate and concurrency factor respectively achieved by
class i.

Algorithm

I,
On memory overcommitment due to a page fault in class

1) Ifp/<PI
then (i) If f/ <II

then select class j such that
(a)[P/ -Pj] is maximum

(a.i) and f/>jj
(a.2) Ifhowever jj' <jj for allj then select class with
max[p/ -Pj]

(b) Ifp/<pj allj
then (b.i) select class j with max[jj' -jj]

(b.2) IJjj'<jj, allj
then (b.2.1) select class with max[1j' -1j]

(b.2.2) If, however, 1j' <1j
for allj, then select class with min[jj' - jj]

(ii) ifJ/>h
then select class j such that
(a) [P/ :""'pJ is maximum

(a.i) and jj'>jj
(a.2) IJhowever jj' <jj for allj then select class with
max[p/ -Pj]

(b) If p/ <Pj allj
then (b.i) select class j with max[jj' - jj]
(b .2) If jj' <jj, all j

then select class I.
2) Ifp/>PI

then (i) If J/ <II
then select class j such that
(a) [p/ - pJ is maximum

(a.i) and jj'>jj
(a.2) Ifhowever jj' <jj for allj then select class with
max[p/ -Pj]

(b) If p/<Pj allj=l=I
then select class I

(ii) Ifh'>h
then select class j such that
(a) [p/ -Pj] is maximum

(a.i) and jj'>jj
(a.2) IJjj'<jj allj4=I

then select class I.
(b) If P/<Pj allj=l=I

then select class I

Note that in the above algorithm, we are in general trusting
thep's more than thef's. It is only whenp'<p that we are
choosing a class with a maximum f-deviation. While a class
may maliciously specify large f, all classes together cannot
specify more than 100 percent of the available IP time. Thus,
the p's are inherently more trustworthy than the f's. Since
the deviations in the IP shares are corrected through ad
justment of the f' (prime)s, we have a situation that is in-

456 National Computer Conference, 1980

herently self correcting. Thus, while the scheduler will select
the class to force-deactivate a process from, it is up to the
class or subsystem scheduler to select the process to force
deactivate.

CONCLUSIONS

In a multi-application environment consideration must be
given to user processing requirements in addition to opti
mization of resource utilization. These processing require
ments can be specified to the system in terms of percentages
ofIP, 10 and memory resources, for each class of users. The
system in turn will translate these requirements into sched
uling parameters and monitor the progress made by each
class in achieving its stated goal. We have developed algo
rithms to achieve these goals by first activating a process to
satisfy a memory balance condition based on only the ex
pected use of memory before this process is scheduled again.
Secondly, when an imbalance occurs in the use of resources
by the classes, a class and a process within the class is se
lected to be deactivated from the system based upon the
degree and type of imbalance in resource use. Thus the al-

gorithm is inherently self correcting and provides a dynam
ically adjusted path to the solution. Although the algorithms
are developed for a paged, virtual memory system, they can
be applied to non-paged systems as well with somewhat
longer degree of imbalance in resource use. The equations
to compute the expected use of main storage can be made
more accurate by using distributions of quantum times for
classes and more complex IP service disciplines.

REFERENCES

1. Denning, P. J., "The Working Set Model for Program Behavior," CACM,
Vol. 2, No.5, May 1968, pp. 323-333.

2. Denning, P~ J. and Schwartz, S. c., "Properties of the Working Set
Model," CACM, March 1972, pp. 191-198.

3. Sastry, K. V., "Process Management in a Paging Machine," COMPSAC
'79, November 5-8, 1979, Proceedings pp. 198-204.

4. Rodriquez, J., Rossell, "The Design, Implementation, and Evaluation of
a Working Set Dispatcher," CACM, April 1973, pp. 247-253.

5. Ellison, C. M., "The Utah Tenex Scheduler," Proceedings of the IEEE,
Vol. 63, No.6, June 1975, pp. 940-945.

6. Bernstein, A. J. and Sharp, J. c., "A Policy-Driven Scheduler for aTime
Sharing System," Communications of the ACM, Vol. 14, No.2, Feb. 1971,
pp. 74-78.

7. Private Correspondence with G. E. Newton and J. R. Jordan.

Management in Data
Processing

This group of sessions is directed to
ward management in data processing and
consists of three presentation discussion
sessions and two panel sessions. The ses
sions have been selected for their appro
priateness to today's problems in data pro
cessing management.

The first part of "Change Management"
. deals with the problems associated with

the preparation and planning required to
implement a data processing system (new
or renew) and how to cope with the
change. The second part will discuss the
advances women have made in data pro
cessing management and their roles in
change management.

Potpourri, for want of a better title, will

John C. Biddle
Area Director

be a panel discussion concerning computing careers and education: deciding exactly what
you want to do in life and where you want to do it, and related topics.

"Computer Aided Systems Integration" will be a panel discussing the reality, dilemma,
or myth of this topic. The panel will include such notables as Samuel C. Phillips of TRW,
Dan Roman from George Washington University, and Albert Rubenstein from North
western University. This panel hopes to be catalytic and focus industry-wide attention to
the task of identifying, processing, and displaying "System Integration."

"Management" will focus on two presentations. The first will be concerned with new
applications for data entry and will discuss the various aspects and techniques of on-line
data entry and how these effect management. This portion will range far afield from the
collection of inventory data in a supermarket to the latest techniques in voice input. The
second portion of this session will be directed toward the future management concerns
regarding office automation. Attention will be further focused on methods to make top
management aware of the new technologies in word processing and how to sell the idea.

"Management Performance" is a session in conjunction with the half-day workshop and
is a must for the workshop participants. It will deal with why managers succeed, among
other topics. Attendance should not be limited to workshop participants, however.

457

Applications of exemplary programming

by WJLLIAM S. FAUGHT
The Rcmd Corporation
Santa Monica, California

INTRODUCTION

Is there an easy way for a computer user to create new soft
ware?

One of the main obstacles to effective computer usage is
the difficulty of developing software to perform a new task.
Computer users, once they discover or identify a task, are
faced with the difficult job of software specification and de
velopment. The current sequence of task analysis, program
requirement specification, coding, and debugging has four
bottlenecks: (1) if the user is not a programmer, he must find
one; (2) the programmer must translate his mental model of
the task into an algorithm; (3) the programmer must translate
the algorithm into appropriate programming language state
ments; (4) the programmer must specify and debug the de
tails of the algorithm, such as initial specifications, branch
conditions, and terminating conditions.

In this paper, we discuss programming by example, and
show how it can be useful in solving the above problems in
three applications: (1) as a software generator for non-pro
grammers in a specific domain; (2) as a specification tech
nique for programmers (DWIT); and (3) as a specific soft
ware tool for program development (AUDIT).

We first give a brief overview of the EP paradigm and the
EP system. We then describe three application areas in
which programming by example could help solve software
specification problems. Next, we characterize the class of
tasks for which programming by example is suitable. Finally,
we analyze how programming by example helps solve soft
ware specification problems in general.

The EP paradigm

In the EP project, we have turned the normal programming
sequence around. Instead of specifying an algorithm, a pro
gram, and an example for debugging, the programmer spe~
ifies an example, and the EP system infers the algorithm and
the program; i.e., the programmer specifies the program only
by giving an example of the desired sequence of actions the
program is to perform. The idea is that the user shows EP
how to do a task by performing the task himself.

The paradigm is as follows: The user performs some task
on a computer, e.g., transferring a file from computer to
computer, retrieving information from a data base, or au-

459

diting a data file. EP watches over the user's shoulder, cre
ating a trace of the interaction between the user and the
system he is using. When the task is done, EP constructs
an algorithm or model of the interaction. Part of this con
struction may involve questions to the user or advice from
the user. EP then constructs a program from the model and
stores it in a library for subsequent use.

As EP watches, it builds a trace or protocol of the inter
action. The trace is a verbatim description of the interaction.
EP stores the trace to use with an editing facility for cor
recting mistakes in the protocol. All advice from the user
also enters the trace.

From the trace, EP constructs a model of the interaction.
The model can be thought of in two ways: as a generalization
of the trace or as an interpretation (or explanation) of the
user's actions. For example, if the trace contains a sequence
of repetitive actions, the corresponding structure in the
model might be a FOR or WHILE loop. User advice both
directs the model construction and constrains the space of
potential explanations. EP can either generate an agent (a
program) in a particular language to perform the task, or
interpret the model directly to perform the task. EP stores
the trace, model, and agent in a library for later use.

We plan to extend the current EP system so that models
(and agents) can be modified with multiple examples of pro
tocols. In that case, the user provides additional protocols
in two ways: (1) the user performs an entirely new protocol,
creating a new trace and model, and then tells EP to con
solidate the two examples into a single model; (2) the user
performs the old model in a "careful" mode, verifying each
action before EP performs it; when a change is required, the
user takes over from EP in performing the task; EP then
consolidates this new (partial) protocol with the old trace
and model.

EP can also aid the user in performing repetitive tasks. If
EP is watching the user perform a sequence of steps in a
repetitive task, the user need only perform enough steps until
EP can construct a model for the repetition (perhaps lacking
an exit condition). The user can then ask EP to perform the
remainder of the sequenq-:, optionally verifying each step
as it is performed.

The EP paradigm has two implicit assumptions. The first
is the requirement for a performance language. The user
must demonstrate the task to EP by performing the task in-

460 National Computer Conference, 1980

teractively in real time on a computer. Most operating sys
tem tasks on interactive computers have a language and fa
cility for doing this. Interpreted languages such as interactive
INTERLISP also provide this capability.

The second assumption involves the user's expertise. EP
will be designed and used differently depending upon the
user's programming expertise. There is an implicit assump
tion that the user will be able to verify the resulting model
or agent if EP presents it to him in a suitable form. This will
be true for an expert user, and the expert can give EP so
phisticated advice to write complex programs. However, the
non-expert user may only be able to specify the task by per
forming it.. An algorithmic or other formal representation
may be foreign to him. EP may have to present the novice
user's actions to him at a high level because it cannot rely
on user advice or verification.

USER INTERACTIVE TASKS

User-interactive tasks are those in which a person uses
a computer operating system and its applications programs
directly to accomplish some tasks. Several examples are:

1. computer network tasks
a. transferring files
b. logging in to remote systems to read mail

2. operating systems tasks
a. file maintenance

3. data base retrievals
a. periodic retrieval of time-oriented information

4. edit macros in one- and two-dimensional editors
5. tutorials.

There is a need for writing programs to free computer users
from these tasks. The tasks tend to be repetitive and detail
prone. Computer users tend to be inefficient at such tasks.
Further, these tasks are labor demanding: The computer user
must (typically) wait for the computer to complete each step
before typing in the next action. Delays can take several
seconds up to a minute. Meanwhile, the user's attention is
held in limbo: No other tasks can be started because of the
unpredictability of the computer's response, but the re
sponse can be delayed enough to lose the user's attention
and increase the likelihood of his errors.

The characteristics of these tasks make it difficult tojustify
writing a separate program for each task. The tasks tend to
be (relatively) fast-changing. A manager may want infor
mation on accounts receivable from Utah for one month and
Nevada the next. Or a systems maintainer may have different
features he wishes to exercise each day, but the features
change each month. The tasks also tend to be person-specific.
Each person has his particular data base item to retrieve, or
remote site to retrieve mail from, or edit macros to write.
Finally, most of the tasks· involve complicated, detailed
input/output specifications to interact with the various com
puter systems. It would be difficult to justify writing (and
rewriting) programs for such tasks, and most programmers
would dislike writing such programs.

EP, however, seems ideally suited for creating software
, for these tasks. With EP, users can create their own software

without a separate specification loop. The EP paradigm as
sumes that the user will be task-intelligent and program
naive: The user knows how to do the task, but does not
know how to manipulate programming constructs and code
to build a program. With EP, the user simply shows an ex
ample of his task; EP builds the program. He then has a set
of personalized agents for accomplishing his tasks. Further,
tasks with simple control structures are easy to demonstrate.
The programs needed to accomplish the tasks tend to be
relatively simple, consisting of straight-line code, branches,
loops, and variable instantiation. There are few complex
control structures necessary like parsers or production sys
tems. (Note that the user would find it difficult to demon
strate such control structures to EP.)

An additional bonus to the EP paradigm in this application
is the notion of capturing expertise. The user may not know
how to accomplish a task, so he may ask an expert for ad··
vice. The expert or the expert and the user together can then
perform the task with EP watching and create an agent to do
the task. Later, the user has the expertise "captured" in the
agent-the agent can perform the task itself. Additionally,
the expert may be the user himself. The user may have had
to consult a manual to perform some seldom-performed task.
By constructing an agent, perhaps with comments to himself
included, the user can capture his temporary expertise in the
agent and free himself from remembering the details.

The current EP system has several features to aid users
in these applications. The first is a library ofthe user's agents
(programs) for storing and retrieving agents that the user
created. The second is a "text" feature. The user can insert
text comments into the agent for documentation. These com
ments are typed to the user as the agent is running, describing
the agent's actions. Finally, EP has a simple knowledge base
of information about the various systems that EP's users
interact with. This knowledge base is a source of heuristics
for inferring branch conditions and loop boundaries.

Problems we anticipate in providing users with an EP soft
ware capability center on software maintenance. Users may
create software with little documentation and distribute the
software to non-expert users. Also, application systems may
change and require the agent to be updated. EP has several
features which help alleviate the problem. First, the user can
watch EP interact with the applications programs or system
and can see where EP's agent is in error. Second is the text
feature described above for putting documentation in the
agent. Finally, the agent can be executed in a "careful"
mode which asks the user for confirmation of EP messages
to the system before it sends them to the system. The user
can stop any invalid action before it occurs.

, DWIT (Do What I wanT)

Since the advent of programming languages, computer
programmers have searched for ways to rid themselves of
the compile-Ioad-excute sequence which kept them distant
from their programs. Interpreted languages and interactive

debuggers redirected the programmer's efforts from dealing
with an entire program to developing a single function. IN
TERLISP, an interactive version of LISP, is an example of
an intensive effort to provide the programmer with a
"friendly" environment in which to implement his ideas in
programs. Its facilities include an interactive editor, the
BREAK package for interactive debugging, the DWI1v:f (Do
What I Mean) facility for correcting the user's errors in llsing
the system, and a programmer's assistant for UNDOing and
REDOing the programmer's actions by retaining a history
of them (Teitelman, 1969). The main purpose of these facil
ities is to get the programmer "closer" to the program
closer in terms of developing the program interactively,
rather than in batch mode.

However, none of these systems allows the user to de
velop the program completely interactively. There is still a
vestige of the compile-load-execute sequence at some level.
For example, in INTERLISP, the programmer must still
specify an entire function before any (semantic) debugging
can take place. The user is consigned to a sequence of de
veloping an algorithm, writing the function with the editor,
constructing a test environment, and running the function
to debug it.

Programming by example provides a way to reduce this
distance by allowing the programmer the ultimate interac
tion-at the program statement level. The programmer types
to an interactive system with an interpreted programming
language (e.g., INTERLISP). The user types each program
statement to the program interpreter with appropriate ar
guments. The program specification system watches what
the user types and creates an agent to perform the same
function. When the user is done with the task, the agent is
translated into the programming language and stored in the
user's core image.

The important feature of the paradigm is that the user de
bugs each program statement as he types it in. The user
verifies that the statement did what he intended as the in
terpreter executes the statement. When the user is done with
the function, he is assured that it is bug-free, at least for the
example he used (which is likely to be generic to the task).
(N ote. that the user must be a competent programmer in the
performance language).

To program a function, the user simply types the program
statements to the interpreter with example arguments. By
doing so, he shows D WIT both the program's data structures
and the control flow. DWIT stores the data structures in a
variable list. The user's task is to transform the initial var
iable list, consisting of the input parameters and (implicitly)
all global variables, into results to be returned as the value
ofthe function or to set global variables to. Control structure
is demonstrated by the sequence of actions that the user
takes. At the simplest level, the paradigm can be thought of
as an extended macro feature with registers (the variable list)
and with the ability to infer branching and looping control
structures.

Although most of the function's actions can be shown by
example, DWIT has a few commands to ease both DWIT's
and the user'sjob. The user can demonstrate data structures
precisely by his input statements. Control structures, how-

Applications of Exemplary Programming 461

ever, require a few aids due to their implicit nature. The
problem is that the user can do some actions in his mind that
do not appear in the protocoL Conditions are the prime ex
ample. If DWIT were clever enough, it could infer the con
ditions and ask the user for verification. For simple cases,
this would suffice. For complex cases, however, the user
needs a way to tell DWIT the proper condition. The user
does this with a special command, telling DWIT the branch
point and the condition.

The second type of command helps the user with repetitive
examples. The purpose is to require the user to type in a
particular control path only once. When the path is to be
repeated, the user can specify where to start in the path, and
DWIT will continue execution from there. Options such as
a "careful" mode and stopping after each loop constrain the
execution.

In addition to providing instant debugging of his program
statements, this paradigm aids the user in several ways.
First, the user has an example at hand to prompt his actions.
By seeing his actions performed in the example, he is
prompted to perform the next action. Second, the user has
a trace of the example's execution path that provides a his
tory of what action has taken place. Finally, many times the
user can type in just part of the action he wants to take place
and DWIT can complete it.

DWIT can be given additional programming heuristics to
aid the user. First, DWIT could infer some conditions at
branch points, based on the syntax of program statements.
Second, DWIT could know the parameter types of each
function and could attempt to correct the user's statements,
e.g., correcting the order of function parameters based on
the parameters' types. Third, DWIT could generate some
functions on its own. The user could type "LOCATE
<expr>" where <expr> is a performance language expres
sion that the current variable contains. DWIT would then
locate the occurrence of <expr> and generate the function
which the user could have typed to extract <expr> from the
current variable.

The user's protocol provides two byproducts: documen
tation and a test case. The examples at each step can be
inserted into the generated function as comments. Also, the
initial arguments and the final returned result(s) can provide
global documentation as to the calling sequence and returned
value of the function. The protocol also serves as a test case
for future modifications. These modifications can be tested
on the example for one test of the function's correctness.

A prototype version of a feature similar to DWIT (called
the Mind Channel) has been implemented in the current ver
sion of EP. Two questions remain: What types of functions
are most suitable to development with DWIT, and how can
DWIT provide enough documentation and flexibility so that
large-scale systems can be developed incrementally. We will
return to these questions later.

AUDIT - A PROGRAM GENERATOR FOR DATA
FILE AUDITING

Two features of programming by example are useful for
a program generator. One feature is instant verification of

462 National Computer Conference, 1980

program actions. Basically, the user attempts to do an action,
sees its effects, and instantly verifies its correctness. A sec
ond feature is the specification system's attempt to do part
of the specifying. The user may type an input and an output
and ask the system to synthesize the intervening function.

We will argue that this type of cooperation provides a
useful shortcut to program specification in certain domains.
Two types of shortcuts are possible. The first concerns data
structures. The specification system can deduce data formats
from examples supplied by the user. The second shortcut
is in control structure. Ifthe users executes a partial program
that he has developed, he need not fill in little-used branches
until (and unless) he actually needs them.

The domain we will consider is data auditing. In this do
main, the user has one or more data files that he wants to
verify for accuracy or peruse for special cases. The file may
originate from an errorful source and require format check
ing. Or the user may wish to compute a frequency distri
bution of the values appearing in various fields' or verify that
the values are within acceptable ranges. Statisticians typi
cally perform several such audits on their data files before
performing statistical analyses.

The current method for data auditing is to write a separate
program for each type of audit, using either a general purpose
language like SAIL or PL/I or a special purpose auditing
language like BRIGHT (Goldberg, 1978). The user defines
the structure of the file, records within the file, and fields
within the records. He then specifies the fields he wants
audited, their locations, the expected ranges, and whether
he wants a distribution of values. He then runs the program
and examines the output, which is in a tabular form.

Specification by example provides an alternate method for
data auditing. (The hypothetical specification system will be
called AUDIT.) The first task is to specify the format of the
data. The user reads in the first few lines or records of the
file (using an interpreted performance language). AUDIT
attempts to parse the records and creates a parse description
which defines the format. This is an interactive task, with
AUDIT making hypotheses and the user confirming or de
nying them. The user could name the fields for easy refer
ence.

The user then tells AUDIT what he wants done with par
ticular fields, e.g., whether to distribute the values or verify
a range. As AUDIT reads through the data file, it looks for
incorrect data formats (according to its parse) and out-of
bound values. The user has the option of stopping AUDIT
whenever an error condition 'is found, or having AUDIT re
cord the error and continue.

AUDIT's main feature is that it does most of the detailed
calculations for field specification. Initially, it counts col
umns or parses fields for its first set of assumptions. As it
reads more examples, it parses them, looking for format er
rors. If the user asserts that the record is correct, AUDIT
automatically extends its assumptions about the field defi
nitions.

The other important feature is that the user can interac
tively develop programs for manipulating the fields. The user
could create a program to select records satisfying particular

conditions from one file and write them onto another. He
can also edit the file, making the same correction on each
record, or reformat the file. AUDIT saves the user effort in
that it continues auditing data until new data is found. The
program will stop whenever it encounters an unknown con
dition and ask the user to construct the proper branch con
dition and path.

ISSUES OF SPECIFICATION BY EXAMPLE

We can analyze the utility of specification by example in
several ways: by the advantages to the user over other soft
ware specification methods, by the classes of programs ame
nable to demonstrating examples, and by comparing this
method to other program synthesis research.

Software specification problems

In general, programming by example can help solve soft
ware specification problems in a number of ways.

First, programming by example makes specification easier
because the user can demonstrate a task rather than specify
an algorithm. The user's model may not be represented in
an algorithm; he may know the task only by performing it.
For example, the task representation may be in kinesthetic
memory (Arnold, 1960), or in "sequential action patterns"
(Faught, 1978). Even if a person learned to do a task from
an algorithmic specification, his representation of the .task
may eventually be "compiled" into a performance-oriented
representation (Dennett, 1969).

Also, in demonstrating a task, the user can depend upon
context and perceptual cues from a real-time example. The
example provides context by putting the world in a familiar
and complete state, whereby the user can specify the next
step. Further, it may be easier to specify what action should
be taken in one particular case than to generalize over sev
eral cases. One attempt to accommodate this difficulty has
been the development of production system languages (e.g.,
RITA (Anderson & Gillogly, 1976)) that enable their users
to specify actions in IF-THEN rules.

Second, programming by example makes specification
more accurate than coding in a programming language. The
trace provides an example that the model must a priori ac
count for. If this trace is correct (which may be easier for
the user to verify than an algorithm) then the model must
be correct for at least one example. Also, the user gets im
mediate verification of the correctness of his input to the
system. If it is wrong, he can correct it on the spot and
eliminate this source of bugs. Finally, the specification sys
tem will decide on implementation details (to some extent).
If the user can perform the task on the system, the synthe
sized program can, at the minimum, perform the task in the
same way. The program also has the option of performing
some of the actions internally, rather than as side effects.
The user, however, must decide how to perform the task
given the real-time interactive languages available to him on
the system.

Third, programming by example makes program specifi
cation less tedious. The motivation behind the paradigm is
to acquire a program specification with the simplest and
minimum input from the user. To that end, the specification
system can use its accumulated knowledge to infer the spec
ification from a minimal set of traces in two ways:

1. The system can use its knowledge of programming con
structs to flesh out partial descriptions. For example, when
the system detects a repetitive sequence of actions, it will
hypothesize a loop. It constructs the body of the loop, as
would a programmer building an algorithm. It then attempts
to fill in the initial and exit conditions, using its knowledge
base of programming constructs and the trace. The point is
that the specification system does the hand simulation to
generate the conditions, not the user.

2. The specification system can use its knowledge of the
domain to supply tests for error conditions and error cor
rection procedures, conditions that will probably never be
demonstrated.

Finally, programming by example eliminates one aspect
of debugging and provides one form of documentation for
the program. Since the model must account for the trace,
the user is assured that in at least one case the resulting
program is correct. Debugging is moved to the level of pro
gram modification. The user's task is to extend the model
to account for more tasks or more cases. However, he still
retains the original trace to test, so that later changes must
be compatible with the earlier example. These saved traces
also provide a form of documentation in terms of an example
created by the userand hopefully suggestive of the purpose
of the program.

Classes of programs amenable to programming by
example

The basis of programming by example is the completeness
of the user's task example. The user must be able to dem
onstrate the task in a step-by-step sequence of actions on
the target system. Thus, tasks which require complex control
structures, such as context-free parsers and language trans
lators, would be impossible to demonstrate. The control
structure should also be natural or easy for the user to show.
This probably eliminates target programs that have a control
structure like a command interpreter or a production system.
However, with an extension to allow the user to suggest
control structures such as command interpreters, the spec
ification system could direct the user's demonstration and
learn the control structure under its own guidance. Thus,
the set of programs most amenable to programming by ex
ample should be sequential, for the most part, with simple
looping and branching.

The paradigm is also dependent upon the user having some
performance language available to perform the task. Thus,
tasks that require special purpose languages that have no
interpreter, such as programming in assembler language, are
not suitable.

As discussed above, user-interactive tasks seem ideally

Applications of Exemplary Programming 463 .

. suited to software specification by example. Users need pro
grams to free themselves of repetitive, detailed interactions
with applications programs. Yet writing such programs can
not be justified due to their fast-changing specifications.
Because the user is most in tune with his needs and is closest
to the problem definition, an EP-like facility can provide the
user with a library of individualized software. Examples of
such tasks are: computer network accessing, operating sys
tems interactions, file auditing and maintenance, data base
retrievals, editing macros, and tutorials.

One limitation of EP's application may be the limits of the
performance language. In this case, EP may have to provide
the user with its own performance language, such as DWIT
and AUDIT.

Tasks that are rich in input/output interaction allow the
specification system to do much of the user's work in for
matting the data such as in AUDIT. Also, these tasks are
easy to show because most of the algorithm is side effects,
and therefore can be demonstrated in the performance lan
guage, such as pure functions in DWIT.

Certain task characteristics inhibit software specification
by example. For instance, some tasks requiring special 110,
such as two-dimensional text editors and other graphics, are
especially difficult for the specification system to understand
because the user's actions may depend upon the context of
the screen. The general solution to this would require the
system to simulate the screen internally; the screen then
becomes the context for the user's actions. The same prob
lem occurs with standard screen or terminal conventions.
For example, backspaces are handled differently by most
systems. In order for a specification system to understand
their effects, it must simulate the effect of the backspace on
each system. Of course, this applies to all of the other editing
commands on each system.

Report generation and business data processing in general
would necessitate additional features to a specification sys
tem because of the complexity of the task specification. To
keep from having to show an impossibly long trace, the task
must be broken into functions. The system would then need
additional bookkeeping facilities to help the user merge the
program pieces.

For some tasks, such as matrix multiplication and sorting,
it is easier to describe the algorithm than to demonstrate,
step-by-step, the execution path of the required action se
quence. For these tasks, demonstrating an example would
be inappropriate.

Other program synthesis research

Programming by example computations has been exten
sively studied (cf. Bauer, 1975; Bierman et aI., 1975; and
Bierman & Krishnaswamy, 1976). Bierman's system, the
autoprogrammer, is an excellent example of the scratchpad
concept. The programmer tries out a line of (assembly lan
guage) program by typing it to the autoprogrammer inter
preter and interactively debugs the line. The autoprogram
mer then constructs a complete listing of the code. EPis also

464 National Computer Conference, 1980

related to the QBE system developed by IBM for data base
retrieval. This system retrieves information based on ex
amples of the type of information desired (Girdonsky and
Neudecker, 1976).

We have extended the concept of programming by ex
ample in several ways. First, we have outlined the specific
assumptions about the relative advantages of examples to
other program specification media. Second, we have shown
ways that the specification task can be shortened by using
a knowledge base of domain and programming knowledge
to fill in implicit branches and loops. Third, we have defined
the characteristics of tasks that make the EP paradigm ame
nable. Finally, we have defined several prototype systems
to serve particular known needs and analyzed how those
needs can be met.

The main difference between EP and other automatic pro
gramming projects is how the user specifies a task. In EP,
the user shows an example by performing the task live on
a computer (as opposed to simulating what the system
"would have said"). In Balzer's SAFE project (Balzer, 1978)
and Heidorn's automatic business programming work (Hei
dorn, 1976), task specification is in natural language. In
Manna and Waldinger's project (Manna & Waldinger, 1978),
task specification is a series of input/output specifications
that the user provides-a type of simulation. Finally, in
Green's PSI project (Green, 1977), the main emphasis is on
incremental program specification by mUltiple means, in
cluding natural language and example. As with Waldinger,
the example is not live; the user must provide both input and
output specification.

Another difference is in task domain. EP attempts to mesh
with current computer technology to provide a useful tool
for computer users. Therefore w~ have focused on typical
interactive tasks, such as operating system, network, and
file maintenance interactions. .

Finally, EP attempts to provide an immediate software
tool, but one which can be incrementally improved as more
AI techniques are developed. Therefore, we have attempted
to find techniques in which EP can use as much information
as it has but require as little information as possible to be
viable. This characteristic will make EP readily available for
new domains.

ACKNOWLEDGMENTS

This work has benefited substantially from comments and
suggestions by Don Waterman, Phil Klahr, and Steve Tep
per. The research reported here has been supported, in part,
by the Defense Advanced Research Projects Agency under
contract MDA903-78-C-0029.

REFERENCES

Arnold, M. B., Emotion and personality, New York; Columbia University
Press, 1960.

Anderson, R. H. and Gillogly, J. J., "Rand Intelligent Terminal Agent (RI
TA): Design Philosophy," Rand Report R-1809-ARPA, The Rand Cor
poration, Santa Monica, California, February 1976.

Balzer, R., Goldman, N., and Wile, D., "Informality in program specifica
tions," AFIPS-NCC Conference Proceedings, 1978.

Bauer, Michael A., "A basis for the acquisition of procedures from proto
cols," DAI Research Report No. 10, Department of Artificial Intelli
gence, University of Edinburgh, 1975.

Biermann, Alan W., Baum, R.I., and Petry, F. E., "Speeding up the synthesis
of programs from traces," IEEE Transactions on Computers, Vol. C-24,
No.2,1975.

Biermann, Alan W.and Krishnaswamy, R., "Constructing programs from
example computations," IEEE Transactions on Software Engineering,
Vol. SE-2, No.3, 1976.

Dennett, D. C., Content and consciousness, New York; The Humanities
Press, 1969.

Faught, William S., Motivation and intensionality in a computer simulation
model of paranoia, Basel: Birkhaeuser Verlag, 1978.

Girdonsky, M. and Neudecker, R., "Making the Computer Easier to Use,"
IBM Research Highlights, November 1976.

Goldberg, R. N., "BRIGHT User's Manual," Department of Computer Sci
ence, Rutgers University, May 1978.

Green, C., "A summary ofthe PSI program synthesis system," Proceedings
of the Fifth International Joint Conference on Artificial Intelligence,
1977.

Heidorn, G. E., "Automatic programming through natural language dialogue:
A survey," Journal of Research and Development, Vol. 20, No.4, 1976.

Manna, Zohar and Waldinger, Richard, "The DEDuctive ALgorithm Ur-Syn
thesizer," AFIPS-NCC Conference Proceedings, 1978.

Teitelman, W., "Toward a programming laboratory," International Joint
Conference on Artificial Intelligence, May 1969.

Waterman, Donald A., "Rule-directed interactive transaction agents: An ap
proach to knowledge acquisition," Report R-2171-ARPA, Rand Corpo
ration, Santa Monica, California, 1978.

Microprocessor software engineer.ing training: a case study

by CHRISTINE L. BRA UN
SofIech, Inc.
Waltham, Massachusetts

INTRODUCTION

The rapid growth of the computer software field has resulted
in a problem that is beginning to threaten that growth-a
critical scarcity of skilled software engineers, trained in mod
ern software engineering practices and able to function ef
fectively in a real working environment. In response to this
need, industrial training, through public courses, in-house
programs, and audio-visual packages, has become one of the
fastest-growing areas of the computer field. However, such
programs frequently fail to provide the depth of training that
is really required to produce skilled software engineers, and
are often too general-purpose to address the particular needs
of the company procuring the program.

lIT Defense Communications Division (lTTDCD) rec
ognized this shortage of skilled professionals and realized
that a serious commitment to training would be required.
They determined that their needs could best be met through
an in;.house course, tailored to the ITTDCD working envi
ronment and designed to train existing scientists and engi
neers to the point where they could function effectively in
that environment.

IITDCD, together with SofTech, Inc., conceived a course
to accomplish this objective, to be designed and presented
by SofTech. The course was planned to run for nine weeks,
covering all phases of a software project as it is conducted
at IITDCD, from analysis, through design, coding, and test
ing, and was oriented toward microprocessor software de
velopment, in keeping with ITTDCD's application require
ments. Modern software engineering practices were to be
incorporated and emphasized throughout. Because ITTDCD
produces software in a DoD environment, military standards
for development and documentation were to be introduced
and employed. A major aspect of the course was to be a
single running class project, to be followed through the entire
software life cycle as it was presented in the course, thus
simulating the actual working environment that the students
would experience after the course.

This paper describes the curriculum developed for the
course and presents our experiences in conducting it for the
first time. The discussion emphasizes the attempts to parallel
the actual working experience, and points out the many
counterparts to "real life" that in fact occurred during the
program.

465

OVERVIEW

The students

The course was initially presented to a group of ten sci
entists and engineers, all of whom had chosen to take the
course and indicated a desire to transfer to a software en
gineering position afterward. All students had some famil
iarity with computer architecture, and all had previously
been exposed to programming, typically at the level of one
college FORTRAN course. Thus the course was geared to
ward students with this background.

The engineering background of the class permitted a rel
atively sophisticated presentation of certain topics, such as
the hardware-software interactions and tradeoffs during sys
tem analysis, the microprocessor architecture, etc. It also
led to selection of a class project more readily understood
by engineers. This mix of hardware engineering background
with training in modern software engineering is expected to
produce individuals uniquely qualified for microprocessor
software engineering applications. .

Curriculum

The nine week program is organized into four high level
subject areas called "modules." These are:

• Functional Analysis
• Top Level Design
• Detailed Design
• Microprocessor Coding and Testing

Each module is further subdivided into one or more "units"
of one week or less, each addressing a particular course
topic. Figure 1 presents the curriculum outline, and Figure
2, is a timeline showing the phasing of the various units.

The Functional Analysis and Top-Level Design modules
present only an introduction to these topics, reflecting the
goal of the course to produce software developers rather
than analysts. However, it is essential that a programmer
understand the relationship of his activity to that of the sys
tems analysts and designers, who define the requirements
he must meet and the interfaces he must observe. The intent

466 National Computer Conference, 1980

Module 1 - Functional Analysis

Unit 1.1 - Introduction to Analysis

Module 2 - Top Level Design

Unit 2.1 - Introduction to Design

Module 3 - Detailed pesign

Unit 3.1 - PASCAL as a POL

Unit 3.2 - Structured Programming

Unit 3.3 - Documentation, Testing, and Debugging

Unit 3.4 - Design Reviews and Structured
Walkthroughs

Unit 3.5 - Host Computer Facilities

Unit 3.6 - Detailed Design Lab·

Module 4 - Microprocessor Coding and Testing

Unit 4.1 - Microprocessor Architecture and
I nstruction Set

Unit 4.2 - Advanced Coding Techniques

Unit 4.3 - Microprocessor Development Facilities

Unit 4.4 - Microprocessor Lab Exercise

Figure I-Curriculum outline.

of the first week of the course is to establish an understanding
of the purpose and importance of these activities, and to
explain their relationship to the detailed design and devel
opment activities.

The Detailed Design module forms the heart of the training
program, introducing modern software engineering practices
as well as the military standards for software development
and documentation. It teaches the skills and thought pro
cesses that lead to the development of modular, well-engi
neered software, providing significant hands-on design ex
perience. Egoless programming and peer interaction are
emphasized.

Module 4, Microprocessor Coding and Testing, teaches
the actual assembly language programming of the target
microprocessor. Students develop and debug programs on
a host-based system providing an assembler, linkage editor,
and instruction simulator for the target computer. Emphasis
is placed on mapping design into assembly code in a way

that preserves program structure and modularity. Assembly
level debugging techniques are also presented.

Presentation approach

The course runs for 6 hours per day (in two 3-hour ses
sions) five days per week. It combines lectures, exercises,
and lab sessions to permit students to gain direct experience
with new concepts. Where practical exercises and labs are
oriented toward the overall class project, to simulate the
various aspects of a real-life project. The lecture format com
bines slide presentations with more informal blackboard
walkthroughs, and encourages class participation and inter
action at all times.

To permit evaluation and enhancement of the program for
further use at ITTDCD, the first presentation of the course
has been recorded on videotape. Students also completed
weekly unit evaluation forms to provide an input to this pro
cess. A report evaluating the first presentation and recom
mending revisions and enhancements is to be prepared by
SoITech. for use by ITTDCD in planning further training
activity.

MILITARY STANDARDS

A major requirement for a software engineer in lTTDCD's
development environment is an understanding of military
software development and documentation standards-ex
perience that must be acquired on the job by many new em
ployees. The training program introduces this concept from
the start, explaining the requirements at each phase of the
software life-cycle. The particular standard followed in the
course is the Navy's MIL-STD-1679,3 a new standard that
will be applicable in much ofITTDCD's future business. The
course briefly describes other military standards and com
pares and contrasts them to 1679.

MIL-STD-1679 specifies various practices to be employed
in software development, and .also dictates a particular se
quence of documentation to be produced. During the course
the students prepare (or are given) several of the standard
documents for the class project system. Documents not ac
tually developed in the course are explained in detail. Other
requirements, e.g., coding standards, are practiced as the

. I I WEEKI 1

1.1 Analysis

, I
3.1 PASCAL 3.2 Structured

I 5

3.3 Documt!ntation. 3.4 Reviews 3.6 Detailed 4.1 Arch. and 4.2 Advanced 4.4 Lab
Exercise

2.1 Top-Level
Design

as POL Programming T('!>lin~l. and
DdJu9fJin9 Walkthroughs

\3.5 Host Computer Facilitit's

Figure 2-Course timeline.

Design Inst. Set Coding
Lab Techniques

I 4.3 Microprocessor Development Facilities

class develops software. The military standards for project
reviews, quality assurance, and configuration management
are also explained and practiced. Students are also taught
to read and interpret Contract Data Requirements Lists
(CDRLs) and Data Item Descriptions (DIDs).

THE DEVELOPMENT SYSTEM

The host development system introduced in the course is
the PDP-II170 under the UNIX* operating system, a host
used on several ITT projects. Running under UNIX is the
Change Control Library Facility (CCLF),4 a program sup
port and configuration control tool developed by Soffech
urider separate contract to ITTDCD.

The target microprocessor taught is the Intel 8080. Stu
dents develop 8080 programs on the PDP-I 1170 using the
XAS8 Assemble~ and Linkage Editor, 6 both de ·/eloped by
Soffech under separate contract to ITTDCD. Programs are
debugged using the Stand Alone Emulator Package (SAEP), 1

an 8080 instruction simulator developed for ITT by BDM
Corporation.

THE CLASS PROJECT

The project implemented as the major exercise in the
course is the Auto Tune Antenna System (ATAS), a hypo
thetical microprocessor-based system that involves pro
cessing representative of actual ITTDCD applications. ATAS
is s system that automatically tunes a submarine antenna to
a desired transmission frequency and maintains tuning, re
lieving the radio operator of the need to continually monitor
and adjust the tuning. (A submarine antenna's tuning is af
fected by the action of the waves against the antenna.) Figure
3 illustrates the ATAS operator's console, and Figure 4
shows the system 110 interfaces.

The basic functions of the ATAS software are:

1) Initialize the system to its start'state (lamp settings,
tap position, etc.).

2) Read the frequency keyed in by the operator and check
it for validity. (The keyboard is checked for possible
input at every Real Time Clock interrupt. A SELECT
keyin indicates the start of the frequency select mode,
and an EXECUTE keyin indicates that frequency keyin
is complete.)

3) Coarse tune the antenna to the selected frequency, by
interpolation into an in-core table of frequencies and
corresponding tap positions. Enable RF after coarse
tuning is accomplished.

4) Monitor tuning by regularly (every 10 Real Time Clock
interrupts) sampling the Voltage Standing Wave Ratio
(VSWR) and taking corrective action if it is outside
accepted limits for a certain number of measurement
intervals. (Corrective action involves moving the tap
to minimize the VSWR.) If acceptable tuning cannot

* UNIX is a trademark of Bell Laboratories.

Microprocessor Software Engineering Training 467

AUTO TUNE ANTENNA SYSTEM
OPERATOR CONTROL PANEL

OPERATING FREQUENCY

o Enter o Entry Error

Power
On

select 0 xecute r.D.,
rreq. Jb

Ofr

TUNING STATUS

o In Tune 0coarse fR\ Out of
Tuned \2J Tune

G) RF On

o VSWR 0 Can't
Out of Tune
Limits

Figure 3-ATAS operator control panel

be obtained, the status lamps are set to indicate this,
the RF is disabled, and tuning is discontinued. (At any
time, the operator can depress SELECT and select a
new frequency.)

The AT AS system introduces numerous programming
concepts, including:

• interrupt handling
• foreground/background processing
• data aggregates (frequency-tap position table)
• mathematics (interpolation)
• complex flow of control (tuning adjustment)

The system is specified with a limited amount of RAM and
ROM, and students are given budgets for their various sub
programs. This is a realistic design constraint for micropro
cessor software, and encourages students to coordinate and
make tradeoffs during implementation.

THE COURSE EXPERIENCE

The following subsections narrate our week-by-week ex
perience in presenting the course for the first time.

Week i-functional analysis and top level design

The course began with a review of computers and pro
gramming, in order to ensure a common starting point for
discussion. This review included a description of various
support software tools, such as operating systems, compil
ers, assemblers, linkage editors, and simulators.

The presentation of analysis and top-level design was then
introduced by a discussion of the concept of total system
(hardware and software) development. The role of a system
engineering organization was presented, and the process of
functional allocation between hardware and software was
addressed. The class informally worked through the analysis
of some example microprocessor-based systems (automobile

468 National Computer Conference, 1980

MEMORY

INSTRUCTIONS +
--->'--- DATA *

..--_--...lIt-____

\ CPU

COMMANDS ~

~~VICES~ ____________ -r ____________ ~.-__________ ~~ ____________ ,D~A_TA_~~ ________ ~ ____________ ~

KEYBOARD
INTERFACE

STATUS
PANEL

INTERFACE

TRANSMITTER
STATUS

INTERFACE

TRANSMITTER
CONTROL

INTERFACE

VSWR
SENSOR

INTERFACE

TAP
MOTOR

CONTROL

TOP
POSITION
SENSOR

TRANSMITTER

REAL WORLD

VSWR
BRIDGE

Figure 4-ATAS 110 interfaces.

cruise control, elevator controller). The ATAS system was
then introduced, and aspects of the analysis of this system
(performed by the instructor staff functioning as "system
engineering") were presented.

Discussion then turned to the phases in the software de
velopment life cycle (analysis, top level design, detailed de
sign, implementation, test and maintenance), and MIL-STD-
1679 was introduced by describing the requirements it im
poses on each phase. Students were given the ATAS Pro
gram Performance Specification (PPS) that the instructors
had prepared, and were taught how to interpret and work
from a PPS, and how to interact with systems engineering
regarding problems or questions on the PPS. Further em
phasis was then given to the role of the Military Standard,
and to the other requirements it imposes on the analysis and
top-level design phases.

The week also included an overview of various method
ologies supporting analysis and top-level design, including
SoITech's 'Structured Analysis and Design Technique
(SADT@),** PSL/PSA, Structured Systems Analysis, HIPO,
Jackson Design, and Warnier/Orr Design.

Finally, the class established a document library to be used
for the AT AS project, and was introduced to the concept
of the author-librarian-reader review cycle.

Week 2-Pascal as a PDL

Because the target computer for the course was to be pro
grammed in assembly language, it was considered particu-

"'''' SADT@ is a trademark of SofTech, Inc.

larly important that students be exposed to a modern high
level language containing structured programming con
structs for use as an initial design mechanism. Pascal was
selected for this purpose, and was taught as a Program De
sign Language, stressing concepts rather than perfect syn
tax. As students generally had little programming experience
prior to this, this week was oriented toward "how to design
programs," with Pascal as the language for design. Top down
design was emphasized throughout the week, with several
examples of problem decomposition (e.g., Eight Queens2

).

Programming exercises and examples were, in many in
stances, designed to present concepts needed in the AT AS
exercise (e.g., mUltiplication by shifting and adding). This
week allowed substantial time for students to work on ex
ercises reinforcing the lecture material, and to discuss them
afterward.

As a by-product of this unit, students learned to read and
work with both BNF grammars and syntax diagrams. Also,
though it had not been planned, student interest prompted
some discussion of rudimentary compiler theory. The stu
dents' hardware background seemed to make them partic
ularly aware of the apparent difficulty of this process.

Week 3-structured programming

This unit began introducing more formal aspects of struc
tured programming, and continued the teaching of the pro
gramming process begun in Week 2. The theory of structured

. programming was presented, .and the basic set of control
structures was discussed. One exercise was the restructur
ing of an intentionally unstructured flowchart that appeared

in the AT AS PPS to describe the tuning adjustment algo
rithm. Structuring a program into a collection of function
ally simple subroutines was also emphasized.

Various descriptive techniques for developing and ex
pressing design were presented. These included the Data
Structure Diagram for describing data structures, and the
Calling Hierarchy for illustrating program decomposition.
The Finite State Machine concept was introduced as a design
technique, and its applicability to describing the states (fre
quency select, fine tuning, etc.) of the ATAS system was
noted.

In the examples and exercises used during the week, new
programming techniques and concepts were introduced.
These included various data structures (linked lists, trees);
searching and sorting algorithms, etc. Students would later
select among these in designing the data structure and lookup
algorithm for the AT AS coarse tune function.

Week 4-documentation, testing, and debugging; UNIX

This week involved two course units-approximately half
was devoted to documentation, testing, and debugging, and
half to an introduction to the UNIX system. The lecture
material concentrated on the requirements of MIL-STD-1679
that had not been covered in Week 1. In addition to the other
required project documentation, the week included lectures
on project management requirements, configuration man
agement, and software quality assurance. Students devel
oped both a System Operator's Manual and a Test Plan for
the AT AS system. Both documents were produced by de
veloping an outline through class interaction and then as
signing a section to each student. Though this resulted in
rather unusual first drafts, it is comparable to the way doc
uments are often produced in the real world. It was also the
only realistic way to have the class produce actual docu
mentation, as individuals could not be expected to produce
entire documents. The students also developed a Software
Trouble Report form to be used during AT AS development.

The testing and debugging material included both a dis
cussion of current approaches to software development test
ing and debugging, as well as presentation ofMIL-STD-1679
requirements for formal acceptance testing. It included a
detailed discussion of testing under simulation, as this was
the way ATAS (like many real microprocessor-based sys
tems) would be tested.

The UNIX classes and labs concentrated on the basics of
the UNIX file system and text editor, but provided an over
view of more sophisticated features such as parameterized
command files. The students used the UNIX editor and run
off (nroff) to produce their ATAS System Operator's Manual
and Test Plan documents. Each typed in his section, and the
instructor provided the title page and ran off the final doc
ument.

Week 5-reviews and walkthroughs; CCLF

Week 5 was also shared with the Host Computer Facilities
unit. The Reviews and Walkthroughs unit introduced various

Microprocessor Software Engineering Training 469

concepts relating to egoless programming and peer review,
including code reading and structured walkthroughs. The
objectives, mechanics, and behavioral aspects of these were
discussed, and exercises in each were conducted. Walk
throughs were held for both AT AS documents produced in
Week 4, and each resulted in action items that were sub
sequently performed to produce revised documents. In fact,
review of the System Operator's Manual led to a question
about the correctness of the PPS in regard to the meaning
of one of the status lamps. The instructor pointed out that
it was necessary to go back to system engineering for a de
cision, and the class put in a call to the "system engineer"
back at Soffech.

The lab sessions this week presented the Change Control
Library Facility (CCLF), which would be used to maintain
PDL and program components for the AT AS project. Stu
dents learned to create and manipulate Software Configu
ration Trees, the basic structure used to organize and control
development within the CCLF framework.

Week 6-detailed design lab

This was a lab week with no formal instruction, devoted
to development of detailed PDL design for the ATAS proj
ect. The instructor staff developed a Program Design Spec
ification (PDS) documenting the top-level design to be fol
lowed. The PDS decomposes the system into twelve
subprograms and two libraries of common subroutines (math
routines and 110 routines), and fully documents their func
tions and interfaces.

The class was divided into two teams, each of which would
develop a complete AT AS system. This was done for the
following reasons:

• It seemed to be (and proved to be) about the right
amount of work per person.

• It made the number of interfaces mote manageable.
• Students had an opportunity for more self-management

and real teamwork, as the instructor could not always
be involved.

Teams elected chief programmers, who would generally be
responsible for keeping the team organized (the instructor
distributed "chief programmer job descriptions"). Individ
ual assignments were determined by the teams, with input
from the instructor as to the difficulty of the various sub
programs.

The teams then separated to begin design. They were en
couraged to produce early written design kits for review by
other members of their team, and by the instructor. Designs
were then refined based on comments. After this, each team
held a walkthrough. The chief programmer served as the
moderator, and the instructor recorded action items but oth
erwise generally attempted to maintain a low profile. After
the walkthroughs, designs were updated again.

Throughout the week, students used the CCLF to create
Configuration Trees of their PDL, eventually producing a
tree with their final system PDL. The tree would then be

470 National Computer Conference, 1980

expanded to include parallel nodes for source, object, etc.
durit:lg Module 4.

This week was particularly well-received by the students,
and provided an excellent illustration of the values of thor
ough early design and peer interaction. With little real help
from the instructor (other than nudges in the right direction)
students went from faulty individual designs that they had
little confidence in, to complete system designs that they
were very sure of and that were in fact virtually faultless.

Week 7-microprocessor architecture and instruction set

Week 7 began the introduction of the target microproces
sor, the Intel 8080. It combined a detailed presentation of
the microprocessor's register and bus structure and its in
struction set with an introduction to the microprocessor de
velopment facilities. As soon as the assembly language was
introduced, students began using the assembler, link editor,
and loader to run simple exercises.

TheXAS8 ~ssembler does not process conventional Intel
8080 assembly language-it recognizes a more expression- '
oriented instruction syntax and provides the control struc
tures needed for structured programming, such as IF-THEN
ELSE and DO WHILE. (The assembler generates appro
priate tests and jumps.) Thus the students were taught to
develop structured assembly language programs using the
same principles they had learned with Pascal.

Week 8-advanced coding techniques

A major topic in Week 8 was mapping of Pascal (PDL)
constructs to 8080 assembly language. This is particularly
relevant in considering the mapping of more complex data
structures and techniques for accessing them. This week also
introduced coding' 'tricks" and time and space saving tech~
niques, along with a discussion of when tricks should be
avoided because of an adverse effect on program under
standability.

Another subject addressed in Week 8 was the need for
coding conventions in system development. Conventions for
the ATAS project (e.g., subprogram linkage, register usage)
were established and documented.

During Week 8.students began to use the lab sessions to
convert their AT AS PDL to assembly language, mostly con
centrating on getting the code to assemble correctly rather
than on executing it.

Week 9-microprocessor lab exercise

This week was devoted to completion of the AT AS proj
ect. Students completed coding, and code-read one an
other's SUbprograms. They then used the instruction simu
lator to perform unit and integration testing in accordance
with the test plan they developed in Week 4. During this
week teams were encouraged to work with one another so
that a team that had developed a working version of a par
ticular subprogram could help a team that had not. This pro-

vided an opportunity to point out the benefit of defining sub
program interfaces clearly and them observing the
specification, as one person's version of a subprogram could
be directly substitutedfor the other's.

A final output of this week was a Program Description
Document for each team's design.

CONCLUSIONS

As the course is just concluding as this paper is being
written, it is not yet possible to evaluate the performance
of the students as software engineers. However, our expe
riences in presenting the course have made us very optimistic
about this. A substantial amount of material was covered.
and absorbed by the students. In addition, the emphasis on
military standards, on real project experience, and on de
velopment tools actually used at ITTDCD, has equipped
these students with skills that most new computer science
graduates lack.

ITTDCD intends to follow up the course by observing and
evaluating its success at producing effective software engi
neers.lfthe outcome is positive, the course will be presented
to additional groups of students. As indicated previously,
the course evaluation report prepared by Soffech will rec
ommend possible modifications based on the initial experi
ence.

The modular nature of the course makes some modifica
tions quite straightforward. For example:

• An introductory module c6uld be added for students
with no prior programming background.

• Most of Module 3 could be used stand-alone to teach
modern programming practices to students who are al
ready programmers.

• A different course project could be substituted.
• Another military standard could be substituted.
• A different target computer could be substituted.
• A different host development facility could be substi

tuted.

Thus the present course material forms a baseline that can
easily be tailored to fit ITTDCD's changing needs in the fu
ture.

ACKNOWLEDGEMENT

The course described in this paper was conceived and
designed by G. Sampson and Gen. J. Robbins of ITTDCD,
and by Dr. R. S. Eanes, Dr. C. McGowan, Dr. L. Weissman,
Dr. S. Shrier, andR. Thall of Soffech.

REFERENCES

1. BDM Corporation, User's Manual for Stand Alone Emulator Package/
Environment Simulator: Phase 0, BDM/W-78-295-TR, 10 August 1978.

2. Dijkstra, Edsger W., "Notes on Structured Programming" in Structured
Programming, Dijkstra, E. W., Dahl, O.-J., and Hoare, C. A. R., Aca
demic Press, New York, 1972, pp. 72-82.

3. MIL-STD-1679 (Navy), Military Standard-Weapon Systems Software
Development, 1 December 1978.

Microprocessor Software Engineering Training 471

4. Soffech, Inc., ULCS Program Change Control Library Facility User's
Manual, 1038-56.1, 20 November 1978.

5. Soffech, Inc., ULCS Program XAS8 Macro Assembler User's Manual,
1038-40F, 18 September 1978.

6. Soffech, Inc., XAS8 Link Editor User's Manual, 1038-48F, 18 September
1978.

Development of a microprocessor support facility for large
organizations

by BRUCE E. STOCK
Boeing Aerospace Company
Seattle, Washington

and

MIGUEL A. ULLOA
Tektronix, Incorporated
Beaverton, Oregon

INTRODUCTION

Microprocessor technology has grown in a decade from sim
ple 4-bit controllers to complex 32-bit architectures which
rival the performance of mainframe computers. Applications
of microprocessors today range from military and aerospace
programs to consumer products and toys. The rapid growth
of this field has resulted in many different types of micro
processors, based on several different technologies, being
offered by a number of different manufacturers. Each of
these man,ufacturers, and several independent companies as
well, also provide support tools to aid in the development
and checkout of microprocessor-based products. Evaluation
kits, development systems, analyzers, high level languages,
and software simulators are but a few of the available aids
permitting more rapid design, integration, and debugging of
systems incorporating microprocessors.

The growth in the number of support tools along with the
differences in cost and capability of these tools have created
a new set of problems for both management and engineering.
It has become difficult to select a set of tools which will
provide a level of support appropriate to the complexity of
the work being done, while minimizing the cost of these re
sources. Additionally, the training of personnel, service and
maintenance of the tools, and the eventual obsolescence of
the resources provided are important issues. The problem
is especially acute in large organizations where hundreds of
engineers may be involved in the design of a wide variety
of microprocessor-based products.

In this paper we will briefly examine the types of support
tools available and the suitability of these tools to certain
types of development, and finally will focus on a centralized
concept suited to large scale development.

MICROPROCESSOR DEVELOPMENT SUPPORT
TOOLS

There is a great variety of hardware and software tools to
support the development of microprocessor-based products.

473

These tools range widely in their cost, complexity, and ca
pabilities. Low-cost evaluation and learning aids are avail
able to familiarize designers or inexperienced users with
particular microprocessors. 1,2 Development systems ranging
from a few thousand to over forty thousand dollars come in
different forms and with many options to support various
development phases.3,4 Development systems from individ
ual chip manufacturers provide support for one or more of
that vendor's family of chips. On the other hand, "univer
sal" systems can support several microprocessors from dif
ferent manufacturers.5 To support software development,
operating systems, editors, assemblers, compilers, linkers,
and debugging tools are provided.6 ,7 For hardware and soft
ware integration, support for in-circuit emulation, memory
mapping, and real-time analysis is available. 8 ,9.10,11 To eval
uate microprocessors and do software development on mini
or large computers, cross-software and simulators are pro
vided by software houses and timesharing networks. 12 These
and other tools are outlined in Figure 1.

Despite the variety of support tools, in general only the
most popular microprocessors (or those out in the market
for some time) are supported by several of these tools. Other
chips, including newly introduced ones, are supported only
in a limited form. For example, some microprocessors sup
ported by cross-software or low-cost design aids are not sup
ported by development systems or in-circuit emulation. In
cases like this, in-house design of special test tools must be
considered or other microprocessor choices evaluated. 13

Another aspect of present support tools to be considered
is their suitability and effectiveness in different types of
microprocessor development. As a general rule, users of
microprocessors are involved in either one-time develop
ment, periodic new design, or continuous heavy develop
ment. Simple in-house-designed test tools, low cost devel
opment systems, and cross-software are often suitable for
one-time developments because of their low capital invest
ment. When periodic designs with few engineers are in
volved, then a good-quality development system capable of
supporting several microprocessors can be quite cost-effec-

474 National Computer Conference, 1980

Evaluation/selection tools

• Evaluation kits, design aids, teaching tools

• Nicroprocessor development systerns

• Cross-software. simulators

Software development Tools

• Hicroprocessor develi)pment systems

• Operating systems, file managers

• Ed itors assemblers, compi ler s, interpre ters

• Linkers, library generators

Simulators, debuggers. cross-sof twa re

lIardwa re developr.1ent tools

• Test and measurement tools (e.g. oscilloscopes, data generators,

pulse generators)

• Logic analyzers, microprocessor analyzers

Software/hardware integration tools

I n-ci rcui t emula tors

I/O simulators

• Nemory mapping; real-time analyzers

• PRml programmers

Product ion support tools

• Diagnostic software

• Nicroprocessor development syste,"s

Special-purpose autor.1ated test equipment

Figure I-Microprocessor support tools.

tive. However, if the task requires several engineers, then
a multi-user development system or timesharing cross-soft
ware support may be more appropriate than purchasing mul
tiple stand-alone systems.

When multiple developments involve many engineers and
a variety of microprocessors, the support tools as currently
provided do not offer an integrated, cost-effective answer
to a large organization. Neither multiple stand-alone devel
opment systems, nor multi-user development systems, nor
cross-software by themselves can satifactorily answer the
major concerns of management with regard to the effective
utilization and sharing of resources.

LARGE SCALE MICROPROCESSOR DEVELOPMENT

Large organizations doing extensive microprocessor-based
product development have a number of possible alternatives
to provide development support. Five basic approaches to
be discussed below are stand-alone development systems,
stand-alone systems with timesharing, timesharing with re
mote emulation, multi-user stand-alone development sys
tems, and centralized development facilities. Which ap
proach, or combination of these approaches, will best suit
a particular organization, will depend on the organization's
present facilities and on its structure and monetary con
straints, among other things.

Stand-alone development systems

In this approach, each project or group uses as many in
dividual development systems as is required by the com
plexity of the task. Each project thus has immediate access
to the resources it needs, which include the development
system plus the necessary peripheral equipment and test and
measurement tools. There are disadvantages with this ap
proach. First, the number of development systems and the
total cost increases rapidly as the number of projects in
creases. Second, resources such as line printers and storage
units are duplicated many times, usually without full utili
zation. And third, knowledge, experience, and software are
not easily shared between groups or projects.

Stand-alone systems with timesharing

Here the stand-alone alternative is augmented by using
either an in-house timesharing system or one of the national
networks to provide additional software development and
checkout capability. This approach is suitable for improving
software development support without duplication of re
sources and for including microprocessors not supported by
development systems. This is a viable alternative for orga
nizations already committed to a large number of stand-alone
systems; for other organizations, the next two alternatives
can be more cost-effective. A disadvantage of timesharing
is of course the decline in user response time as the system
becomes heavily loaded.

Timesharing with remote emulation

With the availability of in-circuit emulation as a peripheral
device, it has become possible to avoid the stand-alone de
velopment system completely. In this approach, a multi-user
computer is connected with emulator systems such as Tek
tronix 8001 Microprocessor LabsY Complete software de
velopment is done on the computer and object code is then
transferred to the emulator via telephone lines or dedicated
wire. Hardware/software integration is thus available with
emulation, memory mapping, and real-time analysis.

This alternative provides several benefits: resource du
plication is minimized while providing extensive access to
the development tools; commonality of development meth
ods, tools, and procedures is enchanced; and software li
braries can be shared among engineers. One difficulty of this
approach is the necessity to provide fast, error-free transfer
of developed code to the emulation stations.

Multi-user stand-alone systems

Within the last year, stand-alone development systems
which support as many as 6 or 8 simultaneous users have
become available. 15 Such systems provide the advantages of
mUltiple stand-alone systems while minimizing the duplica
tion of resources such as mass storage and line printers.

A Microprocessor Support Facility for Large Organizations 475

These advantages may be offset, however, by problems such
as limited line printer capacity, lack of spooling capability,
limited storage space, and degradation of user response time.

Centralized development facilities

All the tools necessary for development of microproces
sor-based products can be integrated into a physically cen
tralized facility and made available to a large user community
as a shared resource, so that microprocessor support is
shared and controlled in much the same way as data pro
cessing facilities are shared and controlled through computer
centers.

The central facility will normally consist of a medium-size
or large multi-user computer, mass-storage devices, periph
eral equipment, one-line terminals, and hardware/software
integration systems. Communication lines for remote access
can also be provided. The mainframe computer .should in
clude a powerful operating system and standard software
utilities plus cross-assemblers, compilers, and simulators to
support a variety of microprocessors from different manu
facturers. For hardware development and hardware/soft
ware integration, the center should have general purpose test
equipment, in-circuit emulators, I/O simulators, and PROM
programming tools.

In addition to support tools, the center should have an
operating staff to provide the following support services:
user access control and accountability; user assistance and
problem resolution; configuration management and control;
system software revision and enhancement; maintenance
coordination and consumable resoVrce stocking; coordina
tion of new user training courses and information; and in
tegration of new software and hardware tools to support the
changing technology.

The centralized approach provides all the benefits of using
timesharing with remote emulation plus additional benefits
not realized with any of the other alternatives. In addition
to minimizing resource duplication and providing common
ality of tools and methods, the center offers other advan
tages: knowledge, information, and software can be easily
shared among all groups and projects; utilization of hardware
and software tools is kept at a high level; maintenance and
service of tools is the concern of the support staff alone
rather than of separate departments; and training for new
users is readily available.

The major disadvantage of a centralized facility is its high
initial cost but this is offset by maximizing the utilization
and productivity of the capital investment in resources. An
other disadvantage is the possible decline in system response
time when high user demand occurs.

Of the alternatives presented above, using stand-alone
development systems is currently one of the most, if not the
most, popular approaches followed by both small and large
organizations. However, this is the alternative that can least
realize all the benefits of centralization, while at the same
time it requires the highest overall capital investment. There
fore, it is imperative for large organizations to weigh these
alternatives carefully. Boeing Aerospace Company has done

just this, and the result of its analysis has been the imple
mentation of the Microprocessor Development Support Cen
ter.

MICROPROCESSOR DESIGN SUPPORT CENTER
IMPLEMENTATION

System overview

In early 1978 work was begun to design and implement a
development facility at the Boeing plant at Kent, Washing
ton, near Seattle. Called the Microprocessor Design Support
Center (MDSC), the facility was to provide support to any
company project doing microprocessor-based design. The
goal of the center's designers was to provide a facility which
would: accommodate a large number of users; support a wide
spectrum of microprocessors; maximize the usage of re
sources provided; minimize training and retraining time; use
off-the-shelf hardware and software to the maximum extent;
and adapt to newer and more complex microprocessors with
a minimum of modification.

A centralized design based on a larger minicomputer was
selected as the best approach to meeting these goals. This
approach was made feasible by the availability of cross-soft
ware (cross-assemblers, linking loaders, simulators, etc.)
and in-circuit emulation as a peripheral device.

The center is divided into three adjacent areas: a machine
room housing the central computer and its related periph
erals; a software development room containing CRT ter
minals in a quiet environment; and an integration room con
taining the in-circuit emulators, 110 Simulator, and PROM
Programmer. Functionally, the computer is the hub of the
system, with all other devices acting as peripherals to it.

The MDSC currently provides support for the following
microprocessors: 8080, 8085, 8048, 8086, 6800, 6802, 650X,
F-8, 3870, 1802, Z-80, 2650, TMS and SBP9900, Z8000, and
68000. Complete hardware and software support is not avail
able for each, but some support, either software or hardware
or both, is available for all of the chips named. An in-house
development is under way to provide a compiler targetable
to several microprocessors. The center also provides soft
ware support for bit-slice microprocessor development via
a meta assembler on the central computer. A Control Store
Simulator is being acquired which will permit download of
assembled microcode to the users' bit-slice prototype as well
as debug and trace capabilities.

Computer

The primary requirement for the central computer and its
immediate peripherals is to support a timesharing environ
ment with a large number of simultaneous users while pro
viding a reasonable response time to each user. To satisfy
this requirement, a PDP 11170 has been selected and
equipped with a megabyte of local storage, 356 megabytes
of rotating storage, 48 RS-232 ports, and a DMA channel.
The installation also contains the usual magnetic tape, line

476 National Computer Conference, 1980

printer and card reader peripherals. A rack mounted modem
set with 16 channels (12 currently active) is mounted within
the main computer cabinetry to give dial-in users access to
the system.

Software

The top level of software on the facility is the operating
system. This package permits the computer operator to con
figure the system and allocate resources and priorities to
tasks. At the user level, it provides access to all of the in
stalled utilities of the system.

The MDSC operating system is the Interactive Application
System (lAS) provided by the computer's manufacturer.
This system is well suited to the MDSC environment in that
it provides concurrent running of realtime, timesharing, and
batch jobs. This capability permits a user at a terminal to
submit a long assembly or other job to the batch stream and
then continue to edit or debug other modules while it is being
processed. Concurrently, another user may be exercising a
real time 110 simulation task. The operating system provides
access to an editor, file management utilities, word pro
cessing software, compilers, cross software, and a library
of user generated code modules. In addition there are three
major in-house designed programs on the system: an Emu
lator driver, an 110 simulator driver, and a PROM program
mer driver. The Emulator driver permits interactive com
munications with the in-circuit emulators, transfer of
developed code to and from the prototypes and several en
hancements to the basic command structure of the emulator.
The 110 simulation driver provides an interactive control
package which permits a user to generate data bases or data
streams, to output them with selectable rates and protocols
to his prototype, and to collect and display the response to
them by his prototype. The structure of the program also
permits closing the loop to provide a limited environmental
simulation; that is, the responses from the prototype may
be used to modify or generate the data stream going to the
prototype. The PROM programmer driver permits computer
control of the entire PROM programming and verification
process, thereby minimizing the opportunity for human
error. In addition, utilities are provided to partition object
code modules of arbitrary word width and length into ROM
sized modules, and to provide object output media in formats
compatible with production-line programming equipment.

Emulation

Perhaps the greatest single aid to microprocessor integra
tion and checkout is the technique of in-circuit emulation.
An in-circuit emulator provides for control of and visibility
into the execution of the user's software on the actual pro
totype hardware. By plugging into the CPU socket, the em
ulator affords these advantages without any special interface
wiring or hardware required in the prototype.

Ideally, an in-circuit emulator would provide a perfect rep
lica of the operation of the emulated chip. In practice, how-

ever, in-circuit emulators tend to suffer from one or more
faults, such as:

Extra delay

The use of buffers on most, if not all, of the probe pins
and the inevitable delays due to extra cable length between
the emulator and the prototype causes some timing differ
ences. These are usually quite minor and only become sig
nificant for the fastest chips when employed in designs with
tigh t timing.

Non-realtime operation

Some timing and interaction problems only manifest them
selves when the prototype is running at the full design speed.
Other designs may in fact not run at all in less than realtime
because certain critical tasks cannot be serviced quickly
enough. Some emulators have internal delays which require
wait states to be added to the microprocessor's cycles. These
wait states perturb critical timing tasks and mask marginal
access time problems. Other emulators may permit the pro
totype to run at full speed, but are then unable to provide
any insight into what is happening in the prototype (i.e., no
trace information).

Designed-in differences

Since the emulator must perform additional tasks in the
course of its operation (such as pausing and dumping register
contents to a CRT) which the actual microprocessor will not
have to cope with, the emulator designer must make some
decisions as to what will be presented to the prototype CPU
interface during these operations. Depending upon how
these questions are answered, the prototype may experience
a loss of refresh signals, unexpected pulses on control lines,
unexpected tri-stating oflines, or other unwanted anomalies.

Expropriations

The design of the in-circuit emulator can result in its re
quiring part of the prototype memory or 110 address space.
In other cases, a major interrupt line (such as the non-mask
able interrupt) may be used by the emulator, requiring the
user to work around the difficulty in his prototype.

Different fan-in/fan-out

The use of TTL buffers at the probe causes different fan
in/fan-out characteristics from the actual MOS, CMOS or
bipolar processor. This can result in learning late in the in
tegration cycle that the prototype functions perfectly with
the probe in, but not with the actual microprocessor.

The MDSC has selected the Tektronix 8001 Microproces
sor Development Aid 14 for use as its standard in-circuit em-

A Microprocessor Support Facility for Large Organizations 477

ulator. The 8001 is designed specifically to be used in con
junction with a host system which provides software
generation capability. It is possible to configure the 8001 to
emulate any of several different microprocessors by inserting
appropriate emulator-board/probe units. By using a common
emulator mainframe such as the 8001, it is possible for a user
who has been working with an 8085 based design, for ex
at;nple, to move on to a Z80 project with his entire emulator
command repertoire and debug strategy intact, representing
a, significant reduction in retraining. It is also possible to
move optional equipment resources (extra memory, Real
Time Trace Modules, etc.) from one user who does not need
them to another who does.

With this configuration, the 8001 is integrated into a
"super development system." A user at a terminal on this
expanded system can model system performance using a
High Level Language, perform trade studies and run bench
marks on several different microprocessors using the sim
ulators, and prepare trade study and program document"a
tion. He can then generate software for any"of several
different microprocessors, down load it to an 8001, and ex
ercise his prototype with that software. At any time he can
return to the Edit/Assemble mode to correct errors, and con
tinue with the modified code. This process is repeated until
the prototype is functioning correctly. The software is then
committed to ROM, the microprocessor chip is replaced in
its socket, and the prototype is released for validation/ver
ification.

PROM programming

A centralized developmental laboratory such as the MDSC
does a considerable amount of PROM programming in sup
port of the integration effort. To accommodate the wide va
riety of devices used, a System 19 Programmer made by the
DATA I/O Corporation of Issaquah, Washington, was se
lected. This unit accommodates a large number of pro
grammable devices via plug-in personality modules and has
a well developed RS-232 interface to a host computer. The
remote control capability via this interface permits the op
eration of the programmer to be controlled by an interactive
software package on the host computer.

The wide variety of devices which can be programmed by
the System 19 exceeds the capability of the facilities pro
vided on stand-alone microprocessor development systems.
Further, a large number of down-load data formats can be
accommodated, such as Binary, Intel, Tektronix-hexadec
imal, ASCII, and others.

I/O simulation

The MDSC provides an I/O simulation device called the
Adaptive Interface Unit (AIU) which is installed at a specific
integration station. The purpose of the AIU is to provide the
user with a generalized hardware interface to his prototype
over which user-defined stimuli may be provided and the
prototype's responses can be obtained and evaluated. Used

in conjunction with in-circuit emulation, 110 simulation pro
vides an effective means of verifying correct prototype op
eration prior to leaving the lab. The characteristics of the
AIU/user interface are as follows:

High speed parallel I/O

A 32-bit-wide input channel and a 32-bit-wide output chan
nel are provided with local buffering of 4K words on each
channel. Transfer rates to 1 megaword per second can be
accommodated with user-clocked, AID-clocked or hand
shake data transfer protocols. Differential TTL drivers and
receivers are provided, although special drivers or receivers
can be provided on a standard plugin card.

Low speed parallel I/O

A 16-bit-wide input channel and a 16-bit-wide output chan
nel are provided with rates to 1000 words per second. In
addition to strobed and handshake protocols, there are
modes which provide for output of a predefined data stream
at predefined intervals and input of data with associated time
tags. Differential TTL drivers and receivers are provided.

Serial I/O

Serial data at rates up to 10 megabits per second can be
accommodated with or without embedded sync patterns.
User clocking or internal clocking of data can be accom
modated.

Obviously the AID cannot be directly connected to all the
different prototypes that come into the MDSC. However,
a level of generality has been designed into the AID/user
interface which permits interfacing most equipment with no
additional hardware.

Special test equipment

The MDSC maintains a set of special test units which are
used to verify the operation of the emulator probes. They
are used whenever a malfunction cannot be immediately
isolated to either the prototype or the emulator hardware.
Each test unit is built around a single board microcomputer
to which is added a power supply, LED displays and a small
amount of additional discrete logic. The function of the box
is to verify correct operation of the emulator probe to a cer
tain level of confidence. This is done by executing a ROM
resident program which requires correct operation of the
emulator address, data, and control lines in order to run suc
cessfully. The test units provide a necessary standard of
operational reference and act as a test device to verify em
ulator performance before initial use or at any time there
after, if a malfunction of the emulator is suspected.

478 National Computer Conference, 1980

Costs

The total cost of procured hardware and software for the
basic MDSC configuration was $411,736. This figure in
cludes the cost of the computer and its peripherals emulation
hardware, cross software, modems, terminals and PROM
programming equipment. It does not include the cost of the
AIU, in-house-designed software, and general purpose test
equipment. There are now commercially available versions
of some of the software that was designed in-house (The
Emulator driver and the PROM programmer driver). Pur
chase of this software would have brought the overall cost
up to approximately $417,000. In its current form the MDSC
is supporting over 130 active user accounts, representing 25
different project groups.

SUMMARY

Given the ever increasing use of micr6processors and the
dynamic nature of the state of the art, there is a need to
optimize developmental and support strategies so that cap
ital investment, retraining of personnel, and obsolescence
of equipment are minimized. Computer facilities have been
centralized to advantage in many organizations to provide
a range of resources to a large user community. Similarly,
development tools for microprocessor support can be cen
tralized to advantage.

Boeing's Microprocessor pesign Support Center has
proven to be a cost-effective Way to provide integrated mi
croprocessor development reslources in a large-scale appli
cations environment. The centralized facility resulted in sig
nificant savings when compared to the estimated $649,000
cost of acquiring decentralized stand-alone systems. In ad
dition, there are substantial benefits in efficiency, adapta-

bility to the changing technology, easier and less costly train
ing and, in general, more time available for direct product
development.

REFERENCES

1. Ogdin, Carol A., "Microcomputer Support Aids," Mini- Micro Systems,
February 1978, pp. 35-44.

2. Derman, Samuel, "Low-cost design aids keep pace with growing micro
processor field," Electronic Design 25, December 6, 1976, pp. 30-36.

3. "Microcomputers, Part 2: The Development System," Digital Design,
January 1978, pp. 40-50.

4. Snigier Paul, "Microprocessor development systems - which one is
'best'?" EDN, March 5, 1977, pp. 68-78.

5. Clark, Tom, "High End Microcomputer Development Tools," WESCON
77, Session 3, September 19-21.

6. Bass, Charlie and Brown, Dean, "A Perspective on Microcomputer Soft
ware," Proceedings o/the IEEE, Vol. 64, No.6, June 1976, pp. 905-909.

7. Watson, Irene M., "Comparison of Commercially Available Software
Tools for Microprocessor Programming," Proceedings 0/ the IEEE, Vol.
64, No.6, June 1976, pp. 910-920.

8. Clark, Tom, "Troubleshooting Microprocessor-Based Systems," Digital
Design, February 1978.

9. Francis, Robert, "Real-Time Test Methods for MPU-Based Products,"
Electronic Test, March 1979, pp. 42-46.

10. Francis, Robert and Teitzel, Robin "Real-Time Proto-type Analysis as
a Microprocessor Design Aid," Computer Design, December 1978, pp.
65-73.

11. Gladstone, Bruce, "Ease painlessly into Microcomputer operation with
in-circuit emulation," EDN, September 20, 1977 pp. 89-97.

12. Rooney Michael, "Economical Development of Microprocessor Soft
ware," EASCON 77, 26-1A.

13. Moyer, W. W., "Designing a Microcomputer Test Unit," Digital Design,
May 1978.

14. 8001 Microprocessor Lab System Users Manual, Part 070- 2464-00, Tek
tronix, Inc., Box 500, Beaverton, OR 97077.

15. Gladstone, Bruce and Page, Paul, "Distributed processing slashes de
velopment system's cost," Electronics, August 17,1978, pp. 89-94(1979,
pp. 32-40).

Future management cO,ncerns regarding office automation

by GARY D. BEAMER
Pacific Northwest Forest and Range Experiment Station
U. S. Department of Agriculture, Forest Service
Portland, Oregon

The last few years I have become less interested in the ven
dor shows and I began wondering why? As I thought about
going to a show a year ago I went through the usual process
of mentally listing my chores and setting priorities. Well, the
usual did not happen. I found that the most pressing activity
was management awarness. I was already armed with knowl
edge of tools and correct procedures for procurement, but
I had not adequately staffed management. They were not
ready to buy. Why was I running off to another show then?
I didn't. I set about putting together some ideas to help me
reach management, not with the intention of pushing them
into an undesirable situation, but searching for a way to gain
their understanding. I am still working on it, and here are
some of my thoughts.

First let's take a look at the last few years and see what
has happened to date. Here are some interesting facts taken
from IBM's "Data Processor," September 1979 issue:*

Twenty-five years ago it cost $1.26 to do 100,000 multiplications
by computer. Today it costs less than a penny. If the cost of
other things had gone down the way computing costs have,
you'd be able to buy: sirloin steak for about 9¢ a pound, a good
suit for $6.49, a four bedroom house for $3,500, a standard size
car for $200, an around-the-world airline trip for $3.

A magnetic bubble memory device had been built by scientists
that can store the equivalent of about 100 pages of the Manhattan
telephone directory (25 million bits of information) in an area
only one inch square. The magnetic bubbles are only a millionth
of a meter, or 1125,000 of an inch in diameter.

In 1953, one million bytes of information could be stored in
about 400 cubic feet of space at a cost of $250,000. An IBM
processor can store the same amount of information in 3/1 OOths
of a cubic foot, a space about the same size as a paperback
book. The rental cost for the storage is about $430.

If technology and productivity in other industries had pro
gressed at the same rate as computer-technology, an around
the-world airline flight would take 24 minutes, and a standard
size car would get 550 miles per gallon.

Just how fast is fast? Well

If you could take a three foot step every nanosecond (billionth

* Vol. 22, No.4, September 1979, published by Data Processing Division,
IBM.

479

of a second), in one second you could walk around the world
23 times. The IBM 4341 has switching speeds of 3 to 5 nano
seconds, and circuits have been developed that can switch in
13 picoseconds (trillionths of a second).

In one second, an IBM 3033 Attached Processor can execute
5.5 million instructions. In that time, the 3033 AP could receive
inquires from 180 airline reservation clerks, check on whether
seats are available and start information back to the clerks. In
some 20 years the work computers can do in a second has in
creased almost 27 times, and the cost per instruction has de
clined to 1I37th of what it was.

What do we do with all of these fast and powerful things?
Do they fit within our needs today? Can we really use these
gadgets to help us with our daily chores? How do they fit
with our goals? Productivity is a major concern to us all,
improving productivity is what these gadgets are all about!

Let's assume we have grown to tolerate these little beasts
and have reluctantly agreed that we need these new tools
to improve our productivity. What will happen in the next
decade then? Do we want to use them? Will we learn to use
them?

The experience we have gained in the last few years work
ing with computer technology has given us new insights.
These insights can be described as ideas learned through
mistakes and innovations in using word and data processing
devices in conjunction with communication devices. This
innovative use of word processing (text editing/processing),
data processing, and telecommunications networks is bring
ing about the awarness of "OFFICE IN FORMATION SYS
TEMS" concepts. Following is a disclIssion of how I per
ceive this OIS concept.

The purpose of OIS is threefold: to increase productivity,
to provide job enrichment for secretarial, clerical, and tech
nical staffs, and to provide professional staffs with improved
information tools and processes (decision support systems).

With the introduction of OIS an organization can:

1. Increase office output with the same staff
2. Maintain previous level of service with reduced staffs
3. Improve control of voluminous data entry, correspond

ence, and miscellaneous typing and
4. Provide fast turnaround in generating large, complex

manuscripts

480 National Computer Conference, 1980

Our purpose would be realized if we would: (1) move ma·
chines as close to the authors (data and word originators)
as possible, (2) merge word processing, data processing, and
telecommunications into one activity called, "office infor
mation systems," and (3) integrate "office information sys
tems" into the normal work process.

The ultimate, of course, is the integration of computer and
communications technologies with "new" management
ideas. This means not just automating present processes but
using the full range of tools to meet the overall goals of the
organization. How to do this is the management concern I
am addressing here.

Before we get into this management concern let's talk
about some tools. Just what kind of tools or systems could
help us improve productivity? There are several vendors
who market systems with the ability to do some of the chores
mentioned above. Some of these systems are adequate for
the learning process, but the greatest flexibility for meeting
long term goals will come from maintaining vendor inde
pendence as much as possible and thinking broader in con
cept. Here is an example:

A local cable bus network:** What is it?

A local network for interconnecting diverse computers
and terminals. The cable bus uses standard CATV coaxial
cable and components laid out in a tree-like structure within
a building or campus. Equipment at the site would be con
nected to the network. This equipment could include ter
minals, plotters, data collection equipment, word proces
sors, the office telephone system, an inter-office video
system, and a link to several computers across the United
States. Software needed to interface the terminals and other
devices will be housed in small, specially designed micro
computers.

What do you do with a cable bus network?

Production typing
Electronic mail
Data entry
Data editing and reformating
Sorting
Mathematical computing
Programming (applications development)
Data storage and retrieval
Text editing
Data terminal (low and/or high speed)

~ Telephone communications

"'''' Wood, David. 1978. Cable Bus Networks for Information Handling. Mitre
Corporation, McLean Va. (a working paper.)

Video conferencing, both within a physical structure and to
other parts of the organization.

Let us dream for a minute. If we (any organization) install
a Cable Bus Network, what might we do with it? We could
use it and associated gadgets to arrange travel right at our
desk without involving a clerk. We might even eliminate the
need for the trip by activating our video conferencing device.
We could get information from the same video device on the
current activities of any part of the organization. We could
check on the most current activities in process in the Senate
or House. We could prepare an electronic message for cor
porate headquarters and have it routed to the appropriate
manager for action on the same day. We could prepare a
contract for advertisement by modifying a like contract re
trieved from our stored library, having it reviewed via elec
tronic mail_by all the parties involved, and at the same time
have the approvals appended. We could check the status of
our budget either by account or in total. I could dream on
and on, but with these tools installed and with practice using
them, the dream could become a reality.

What about the management concern regarding these de
vices? With all of these new tools costing less and doing
more, it appears that there should be fewer problems. Isn't
this going to solve our problems rather than create them?

Pretend for a bit that you are the manager. With the above
tools in mind, sit back and think out loud a minute. "We
will give the staff some nice gadgets to increase production.
We can expect our typing to be perfect and on time, we can
have our airline tickets printed at our own office, we can get
the AP news at the touch of a button, and we can visit with
the branch managers on the video conference system without
traveling. Well, there are just all sorts of things we can do!"

Wait a darn minute! What about all of the turnover we
have had the last few years? Are we going to be able to find
enough people to run these nice, fancy machines? It seems
like I hear that swan song every time I visit with a manager.
What is the answer? We need to look at the use of this new
technology with the intent of creating meaningful work, and
we will have to change our way of doing business. That is
the "new management" I am referring to. How do I do this
you say? We need to implement Carlisle's Office Automation
of the fifth kind:t

Here we have the integration of computer and communications
technologies with "new management" policy. This is where the
payoff is-not in merely "pushing information around faster"
but in using the full range of tools to meet the overall goals of
the organization.

The situation, as I see it today, is that we are saturated
with new tools and really have a problem knowing how and
what to do with all the devices available to us. We just
haven't learned how to manage them. Here is a quote (by
Bill Lippold) that helps explain.

t Dunn, Nina, The Office of the Future. Part I., reprinted from Computer
Decisions, pp. 16-20,26, July, 1979.

Future Management Concerns Regarding Office Automation 481

Collecting numbers, running them through a computer, and
coming out with the fact that so many machines and so many
operators are needed is a mistake. It works in the factory but
not in the office culture, which has its own traditions and rules
of right and wrong. In the factory people are automated. In the
office, it is the principal who needs to be automated. It has to
be understood how many dollars in savings are not being re
alized when the executive does not want to give up a secretary.
These subtle attitudes and relationships are not quantified in a
computer. Furthermore, studies do not always give an accurate
picture of equipment needs. Applications are always different
than they are perceived to be, once the equipment is installed,
the needs change in accordance with new expectations. Appli
cations come out of the woodwork. tt

As we encouuunter a new chore, we add it to our list and
attempt to complete it as we have chores in the past. An
example: We have a need for more typing, so we get another
word processor or typewriter much the same way we did
before. We do not sit down and take a broad look at our
entire chore list and ask ourselves, "What can we do with
our chores that may help our total workload?" "How can
we share or redistribute them?" We just seem to look at the
new job and analyze it out of context. If we take a look at
the whole list of administrative chores in an organization
with a new set of values and at the same time toss out the
mind-set we are currently using to evaluate this list, then
maybe we could see how to proceed with this new task,
using new tools and methods to accomplish it.

How do new values relate to new ways of working?

Here is an excerpt from an interview by Kristin Anundsen,
Editor, Management Review with Michael Phillips, business
manager, consultant, and author of Seven Laws of Money.
This article is entitled, "Management in the Briarpatch: An
Alternative to the 'SYSTEM'."*

What, exactly is the Briarpatch Society?

It's a community of people who are trying to build a network
of new business and work environments that relate to the
values of our generation-values that are significantly different
from our parents'. These values have to do with learning,
sharing, and a belief in "right livelihood." The key is "right
livelihood," the concept that there is something unique and
special each person can contribute, and that the kind of work
people do should relate to these special contributions. These
are values that conventional business management hasn't had
to deal with thus far but will soon have to face.

Why?

What we used to call the "counterculture" has already made
an impact on society. The spread of Eastern disciplines, from
yoga to transcendental meditation, is one force that is making
radical changes in many people's lives. These people are re-

tt Lippold, Bill, "Word Processing World," from Word Processing Systems,
Geyer-McAllister Publications, Inc., 1979
* Excerpted from Anundsen, Kristin (ed.), "Management in the Briarpatch:
An Alternative to 'The System,' " Management Review, February 1975.

evaluating their personal goals and ways of living, and they
will want new ways of working.

How do new values relate to new ways of working, and to the
Briarpatch in particular?

In the Briarpatch, we're experimenting with new management
styles. So far, management in the Briarpatch is based on three
principles: failing young, learning how the world works, and
learning to share. Underlying all three of these is the value
of openness. The Seven Laws of Money deals with how to
be more open about money. Now we're evolving a kind of
management that deals with how to be more honest and open
with each other.

How is this openness expressed?

Well, for example, the auto repair shops we run have their
financial statements posted on the wall, right next to the cost
of parts and supplies. Also, the wages of everyone in Briar
patch organizations are public information-in fact, all the in
formation about our corporations is available to all the mem
bers and all the customers. We feel we have to be able to
justify the wage structure and resource allocation of the com
panies, to anyone who asks.

Our assumption is that everyone can learn managerial skills
if they have enough information and experience. So we freely
give each other all the information we can. Since our ac
counting is posted and open to everyone, the person who
makes out a sales receipt, and the customer also, can see how
that receipt relates to the final balance sheet.

Let's discuss those three basic principles, beginning with "fail
ing young. "

We start with the assumption that failure is desirable, since
it's a learning experience. For every "success" in life there
are 10 failures-and that means 10 times as many opportun
ities to learn. If failure is accepted, people are more willing
to try. And if they try and fail, they evaluate the consequences
of their own behavior more effectively and they understand
responsibility better. Of course, when you have the attitude
that failure is acceptable-even desirable-fewer things be
come "failure."

What about "learning how the world works"?

People who are open and growing are looking at all parts of
their lives, including work, as a chance to learn about the
work around them. Day-to-day business decision making is
a great ·chance to learn, because the consequences of deci
sions are often very tangible.

To us, the best decision makers are not the ones who come
up with most brilliant, rational solutions, but the ones who
are able to look at the alternatives and then make "nonra
tional" judgments, inaorporating an understanding tqat isn't
inherent in the situation or the information at hand. The realm
oflogic and rational thought comprises only 2 percent of "how
the world works." If someone makes a successful decision,
it's not because he got the 2 percent right, but because he
was making some accurate judgment in the remaining 98 per
cent.

And how do you get to the stage of using that 98 percent ef
fectively?

By sharing-which is the third principle. To share, you have

482 National Computer Conference, 1980

to accept what other people offer you, in a broad sense. When
you have really been able to open yourself to other people's
experiences and perceptions, you're sharing. It takes time to
learn to trust other people's experiences, but when you can
you make better decisions.

We have several reasons to take this new look at ourselves:
staffing, money, job enrichment, EEO, civil rights, energy
conservation, physical space problems, and others. If we
integrate these concerns with new technology and new man
agement ideas, we will begin to improve productivity. This
seems to be the same as preparing a meal. We take some
food and put it together in many different ways to come up
with the finished product called a meal. We may use some
old familiar items, add to them some new health food sup
plements, include the use of a microwave oven and have a
nutritious meal in less time. All this with less energy and less
time. Perhaps, more importantly, the preparation of this
meal was a shared activity.

Why is it so difficult to look at the use of this new tech
nology in a holistic way? Why is this such a concern? Why
is it a problem? Well, change is painful! It is not easy and
it takes time, a lot of time and interest. Who has the least
amount of time to spend on it? The manager. Who has the
most fear about learning how to operate new, complex tools?

The manager. People who are eager to change are those hun
gry and in pain, not managers who have reached a level of
comfort.

How do we get there from here? How do we so it? Maybe
by using a combination of tools that are available today.
Some folks are already using some of them, but I'm talking
about integrating these new gadgets into the whole office.
Many folks in a given office would use these devices-not
just clerks. Very simply, chores would be divided differently
and each person would have access to appropriate tools to
accomplish these tasks. We just don't have time for repet
itive typing, rough drafts, and running work through a string
of people. This can be started in a rather nonthreatening way
by first using people who are interested in new technology
and by employee attrition with astute recruitment. Once this
is established, technology can be introduced where most
needed. The key to this concept is not pushing new tech
nology or technological systems or processes. Rather it is
encouraging, fostering, and rewarding, any changes in em
ployee behavior that better utilize existing or imminent (po
tential) technologies, systems, or processes. The focus
should be on managers and specialists.

It is important to loo~ at the use of this new technology
with the intent of creating meaningful work. We must be
conscious of our old values and develop new ones as we
learn to integrate these devices into our lives.

Office Automation

Electronic Mail offers advantages to
companies and organizations today and
will play an integral part in the develop
ment of and evolution toward the' 'Office
of the Future." Four prominent individ
uals will speak about the state-of-the-art
in electronic mail development. A balance
of viewpoints will focus on computer mes
sage systems, combined voice and text
message systems, facsimile, and the dis
tributed electronic mail station. Function
ality and cost effectiveness of current sys
tems will be described, and future trends
will be discussed.

483

Walter E. Ulrich
Area Director

Introduction to electronic mail

by WALTER E. ULRICH
Walter E. Ulrich Consulting
Houston, Texas

ELECTRONIC MAIL

Electronic Mail is the forwarding of message content by
electronic means, and is normally associated with commu
nications between people. In the case of traditional postal
service (as opposed to Electronic Mail), the document is
physically delivered to its destination using transportation
methods. In electronic mail, the content of the message is
transformed into electrical signals and forwarded over com
munication channels for at least some portion of its journey.

Examples of electronic transmission include traditional
teletype services, store and forward computer message sys
tems (CMS), and facsimile.

MOTIVATION

There are two basic motivations for implementing Elec
tronic Mail Systems: 1) to provide a quick, efficient, and
inexpensive method for sending and receiving messages; and
2) to increase the productivity of the office (or "knowledge")
worker. I will briefly touch upon each one and qualify the
market potential.

Efficient message systems

The cost of a first class letter is now 15¢ and is projected
to more than double by 1985. I Mail service is not universally
acclaimed either for its speed or dependability. The cost of
a TWX/Telex message is in the $1.50 price range. A long
distance three minute telephone call that is dialed direct from
Houston to Los Angeles costs $1.24 and one from New York
to Los Angeles costs $1.46. A computer message service can
now send that same message for between 25¢ and 50¢, and
provide some new services as well. An internal CMS can
send a message for less than a nickel where there is high
message traffic.

Facsimile systems provide for the electronic reproduction
of the page at the receiving end. For less than the price of
a computer terminal, there are systems that will transmit a
page over the telephone network in 2 or 3 minutes. This is
especially convenient where graphics are involved or where
the sender is transmitting a document that is already phys
ically available.

485

Office automation

During a recent lO-year period, the productivity of office
workers has Improved only slightly against nearly a doubling
of productivity for the factory worker. The production
worker is supported by eight (8) times the capital investment
of the clerical employee.2

Businesses are becoming more complex and need more
and more information. The increasing need for office sup
port, the low level of capital employed to assist the knowl
edge worker, the increasing wage and -salary spiral, and the
improving productivity and price performance of computer/
communications are together a potent force. These factors
justify the implementation and use of sophisticated elec
tronic mail and word processing systems in many organi
zations today.

The market

Companies see a major opportunity in supplying this mar
ket. As cost decreases and functionality increases, Elec
tronic Mail becomes an attractive substitute to traditional
methods. Even a small part of 50 million TWX/Telex mes
sages, 60 billion pieces of first class mail, and 250 billion
(or more) telephone calls is a lot of traffic.

It is predicted that the number of messages sent via com
puter message systems will grow from 40 million in 1979 to
275 million in 1982.3 I believe this projection to be conserv
ative. Over 80,000 facsimile units were to be shipped in 1979,
at a value in excess of $200 million-a 65 percent increase
over the previous year.4 Communicating multi-function ter
minals and communicating word processors (combined) will
grow from some 33,500 units at the end of 1979 to close to
380,000 units in use by year end 1983.5 While it is difficult
to make accurate long term forecasts for such new products,
the market potential by any measure is tremendous.

ELECTRONIC MAIL COMPONENTS

Electronic Mail is a very broad topic which includes many
alternatives and approaches. Messages can be text, docu
ments, graphics, voice, or video. Underlying transmission
methods range from cable to fibres to satellite to microwave

486 National Computer Conference, 1980

transmission. Intermediate carriers provide value-added ser
vices. User interface methods range from document inser
tion to dumb keyboards and printers to highly "intelligent"
terminals.

This introduction is limited to a historical look at the tele
type and an introduction of four aspects of Electronic Mail:
computer message systems, a combined message switch/
PBX system, facsimile, and a distributed approach to mes
sage communications. These four are chosen because they
are important, interesting, and representative of the kind of

. developments taking place in this field.

The teletype

The telegraph was invented by Samuel Morse in 1844, and
the teletype was introduced in this country in 1917. Teletype
services provide for the entry of message text from a key
board. A physical circuit is established, and the text is trans
mitted from the sender to the recipient, typically at 6.6 or
10 characters per second (cps). There are presently some
150,000 or more TWX/Telex terminals in the United States
and throughout North America.

Traditional teletype services provide for immediate mes;. "
sage delivery. As a byte of information is sent, it is trans
mitted to the recipient across a physical connection instan
taneously. In most cases, using paper tape or a buffered
terminal, the message is keyed in first and then sent as a
continuous stream of bytes. The device at the far end must
be ready to receive the message or it cannot be sent. Fur
thermore, the only record of the transmission is the billing
information and the physical hard copy.

Computer message systems (CMS)

In computer message systems, the message is entered by
the sender and stored in digital form by a computer for sub
sequent delivery to one or more recipients. Because these
message systems are computer based, there is an opportu
nity for providing a wide variety of additional services.

Typical CMS messages are initiated from a keyboard for
eventual output on a CRT display or on paper. That is, many
of these messages are originated at one terminal for delivery
to one or more other terminals. Actually, the messages are
first transmitted to the CMS computer(s) and then on to the
recipient(s). Typical transmission media include hardwiring
(for a local device), leased and dial-up telephone lines, value
added (packet) networks, and teletype networks.

Sophisticated message preparation features might be in
cluded. Text editing commands assist the user to modify the
message before it is sent.

As text is entered, the incoming bytes are stored in digital
form. CMS will maintain a copy of a message as it is being
entered into the system. Typically, a copy is also stored in
auxiliary storage (disk) at least until its delivery to the re
cipient(s). On some CMS, that message may be around for
a long time.

In some systems, a message can only be sent to one ad-

dressee. Similar restrictions are found with traditional tele
type services, facsimile, and the telephone system. Send
ing the message to multiple recipients requires multiple
message entry. Fortunately, this is not the case for most
CMS.

In many CMS, there are convenient facilities for sending
a message to a small number of individual recipients, to spe
cific groups by using their "group name," or to all users
(called a broadcast message). Senders can sometimes gen
erate their own "group name" files, and can mix and match
addresses for any particular message.

Filing provisions of CMS sometimes include (1) archival
of some or all messages, (2) filing of messages into user
created files (like subject files), and (3) filing of prepared
text. In some systems, access to these files can be separately ,
controlled. Retrieval features refer to the user's ability to
get at these files and to review and scan the message of
interest. For example, a user might want to review all mes
sages on a certain subject sent between certain dates.

Special files might also be maintained. Examples might
include an electronic "out basket" for each sender giving
the delivery status of all messages sent; an electronic "in
basket" giving the recipient a list of all outstanding incoming
messages; and a list identifying each special file that a user
may have created.

Some systems are location-oriented; that is, the "recipi
ent" is a terminal. This is similar to the teletype network.
Other systems are addressee-oriented; that is the recipient
is a person or group of people.

Addressee-oriented CMS are classified as "Mailbox" sys
tems. The message, when sent, is flagged by the CMS as
"pending" until delivered to the recipient. When the recip
ient accesses the CMS from any point, the recipient identifies
himself to the system. At that point, the message becomes
available. In other words, the message is stored in the ad
dressee's electronic "Mailbox" until it is called for.

Computerized communication exchange

Start with a programmable computerized business tele
phone system (PABX). Such a system might provide some .
or all of the following features to a business customer: con
ference calls, call holding, call forwarding, chain calling,
answer any station and other night service features, secre
tarial hunt, paging access, call recording, traffic measuring
and storage, optimal and alternate call routing, and lots
more.

At the heart of such a system is a computer. A logical
growth of this computerized system is to include message
switching (or CMS) software as part of the computerized
telephone system. Terminals could be conveniently plugged
in wherever there are telephone jacks, or even through a
plug in the telephone instrument itself. Terminals at remote
locations would access the system through the telephone
network using a modem or acoustic coupler. The concept
of sharing the same facilities for voice and message com
munications is interesting and can provide certain econ-

omies; the further integration of these communications of
fers some exciting possibilities.

Facsimile

While there was some earlier work, the "classical" fac
simile system was developed by William Sawyer in 1875.
Facsimile works by identifying whether each point on the
page is dark or light, and transferring the information across
a telephone line. The receiving device will either mark the
equivalent point on a blank page or leave it white. Since
there may be many points per page, depending on the res
olution of the unit, a lot or" information is sent.

The usefulness of facsimile for business was increased
substantially with the introduction of a low-priced, plain
paper, desk top facsimile unit in 1966.6 It interfaced to the
telephone network with an acoustic coupler and was rela
tively easy to use. The transmission would take as long as
6 minutes per page.

Facsimile units are classified on the basis of transmission
speed. Group I units, like the one introduced in 1966, are
analog devices that transmit a page in 4 to 6 minutes. Group
II apparatus employ bandwidth compression techniques to
achieve transmission times of2 to 3 minutes per page. Group
III hardware reduces the information transmitted, usually
by digital techniques, and sends a page in a minute or less
over normal telephone lines.

The tradeoff with facsimile choices are cost versus trans
mission time and cost versus ease of use. High speed devices
are more expensive, but reduce telephone charges and length
of operator attention per page. Ease of use features (like
automatic page feeders) also add to cost. Key considerations
include the volume of documents, location of intended re
cipients, type of equipment in use by intended recipients
(compatibility), and kind of documents.

High bandwidth communication links offer even faster fac
simile transmission. To utilize spare capacity on broadband
satellite channels, one vendor will be offering a one second
(3600 pages/hr) facsimile device. It is envisioned that the
documents would be inserted and stored in digital form and
forwarded in batches when the links were not being utilized
for other forms of communications. Multiple copies would
only be transmitted once,· and the system would make the
added copies.7

DISTRIBUTED APPROACH TO ELECTRONIC MAIL

In early Electronic Mail systems, the user dealt with a
simple facsimile transceiver or a dumb terminal. There was
no intelligence at the user location. The routing and delivery
was handled by the telephone network or a central computer.

The decreasing cost and increasing functionality of com
puter hardware has made it possible to distribute intelligence
to the user. Integral processors make it possible to perform
complex compression algorithms in digital facsimile devices.
In computer message systems, intelligent terminals make for
powerful message stations. Complex text editing features

Intro~uction to Electronic Mail 487

can be included in the terminal, and messages can be batched
or even held until after hours. In both cases, the local pro
cessor makes it possible to optimize the utilization of com
munication bandwidth.

Distributed data processing, however, offers more advan
tages than just compression schemes and batch message
preparation (data entry). In a truly distributed environment,
the central mail functions are shared by a hierarchy of pro
cessors. Scratch pad notes and drafts are stored at the users
mail station. Intraoffice mail is collected at the on-site mes
sage exchange, or even shared between the local mail sta
tions. Interoffice mail is handled by regional or centralized
message exchanges.

As time goes on, the local message station has evolved
from a simple message (data) entry device to a sophisticated
word processor. Graphics will be added~ A facsimile input
device will be induded, perildps with optical character rec
ognition (OCR) ability. Eventually digital voice and freeze
frame video interfaces will further broaden the communi
cation alternatives available locally to the user. Ultimately,
why not holographic images providing full color three di
mensional face to face meetings-complete in every way
except for the handshake.

ELECTRONIC MAIL: THE STATE OF THE ART

The four speakers at this session will write on and discuss
these topics in depth. Their organizations are noted and have
been active in one or more aspects of Electronic Mail de
velopment.

Computer Corporation of America (CCA) is the designer
and developer of the COMET computer message system.
COMET is one of the first systems of its kind to be com
mercialiy marketed as a stand-alone in-house electronic mail
system. CCA has also done some interesting basic research
in the Distributed Database area and is active in storage tech
nologies.

ROLM Corporation is a progressive supplier of comput
erized business telephone systems (PABX), and last year
announced its Rolm Electronic Mail System (REMS). REMS
is a computer message system that can be integrated into
their P ABX product. This eliminates the need for local mo
dems and provides for a sharing of voice and message fa
cilities.

Qwip Systems, a division of Exxon Enterprises, has been
very effective in marketing its low cost Qwip and Qwip II
facsimile units. Funded by Exxon, Qwip has grown rapidly
since 1974 and will have an estimated 50,000 units (25 percent
of all units) in place by the end of 1979.8 And they expect
to garner an even greater share in 1980.

Datapoint Corporation has been successful in a number
of areas related to Electronic Mail including distributed data
processing and communicating intelligent terminals. The
focus of the company is clearly on the "office of the future."
The facilities for Electronic Mail are in place and its impor
tance in tomorrow's office is certain. Datapoint offers a num
ber of computer-based telephone related products as well.

These papers, like Electronic Mail, cover a broad area.

488 National Computer Conference, 1980

Yet, the fundamental goal is the same: to increase the ef
fectiveness of human and business communication~. And
these diverse approaches will come together. Electronic Mail
is the prototype for and will be the archetypal examples of
the convergence of computers and' communications.

REFERENCES

1. Becky Barna, "Why Electronic Mail Now," Computer Decisions (Sep
tember 1978), 38.

2. L. Duane Kirkpatrick, at The Diebold Research Group: Working Session
78-9.

3. Howard Anderson, "What is Electronic Mail," Telecommunications (No
vember 1978), 46.

4. Wayne L. Rhodes, Jr. "Facsimile-New Life for an Old Idea," Infosys
tems (September 1979), 42.

5. Dale Kutnick, "Communicating Word Processors," Telecommunications
(November 1978), 50.

6. Barry Schreiber, "Facsimile in the Future-Where Does it Fit?" Tele
communications (May 1978), 77.

7. Mel Mandell, "One Second Fax via Satellite," Computer Decisions (April
1979),30.

8. Wayne L. Rhodes, "Facsimile-New Life for an Old Idea," Infosystems
(September 1979), 52.

Implementation considerations in electronic mail

by WALTER E. ULRICH
Walter E. Ulrich Consulting
Houston, Texas

WHAT IS ELECTRONIC MAIL?

Electronic Mail is the transmission of text or a document by
electronic means. Examples of Electronic Mail Systems
(EMS) include traditional teletype services, facsimile, and
computer message systems (CMS).

All such systems must be able to accept input, transmit
the message, and output the information. In addition, a num
ber of other facilities might be provided in areas like message
preparation, filing and retrieval, addressing and distribution,
accounting and control, coordination and content pro
cessing, and others.l See the companion paper in this pro
ceeding for more information on Electronic Mail features. 2

DESIGN CONSIDERATIONS

The selection of transmission media, data base method
ology, hardware, and other design criteria are subordinate
to meeting the end user requirements. It is necessary to de
fine these objectives first, and then select the right combi
nation of technologies to implement the EMS.

Basic objective

Certainly an EMS must accomplish its mission-the
timely delivery of the message to one or more recipients.
During research in the general business marketplace the fol
lowing objectives were identified as general requirements. 3

1. Low cost-due to the decision process, the justifica
tion of such system requires tangible benefits and trans
mission economies.

2. Reliability-the system must be available when needed,
and must deliver the message accurately and depend
ably.

3. Ease of use-the system must be human engineered
with its operator and user in mind, and be responsive
in real time to operator action.

4. Control-there must be a provision to monitor and con
trol usage.

S. Terminal independence-compatibility with as broad
a range of user interface devices is desirable.

489

6. Security-privacy and security measures must protect
the physical facilities and guard against· unauthorized
entry or access of the system through communication
channels.

Some important characteristics should be also considered
during the design phase. The potential for rapid growth in
both message volumes and geographic dispersion must be
planned for. Furthermore, the system must be flexible
enough to change with the dynamic business requirements
and growing sophistication of the users.

Organizational issues

In many organizations the impetus for Electronic Mail will
originate with the communication's manager. In that case,
the system is likely to be a TWX/Telex replacement; it will
be designed to minimize common carrier costs. In others,
the office services function will assume the responsibility;
the goal is likely to be reducing clerical costs and improving
secretarial productivity.

In other cases, the management information system func
tion will start the ball rolling. EMS is an entirely different
discipline than data processing and needs to be approached
with different technologies and orientation. At the same
time, a progressive management information systems de
partment that has fully mastered data communications and
understands the business needs of the company can leverage
on these abilities quite successfully.

The companies with the greatest chance of success have
merged these various responsibilities together. Information
(computer and office) is a precious asset and communica
tions (data and non-data) is the key to its effective use. Com
puter and communication techniques of all types are no
longer distinct; but are converging. This is a fortunate phe
nomena offering real benefits, and alert organizations will
change to take advantage of it.

In implementing Electronic Mail, it is necessary to analyze
the real needs of the organization and its people. Senior
management must also be involved.4 However, I think it is
all too easy to get into "the managers must have a terminal"
syndrome. That is an extremely complex psychological and
motivational area that very few companies are equipped to

490 National Computer Conference, 1980

tackle now. Good, useful systems can be put together with
out going that far. The right terminal will sit on the boss's
desk soon enough; but take modest steps to get there.

Communications media

The choice of transmission media include hard wiring for
local terminals, the dial-up telephone network, leased lines,
Dataphone Digital Services (DDS), specialized common car
riers a~d value-added networks (VANs), and shared high
bandwIdth networks. Except for hardwiring, these alterna
tives will require either modems or data service units at the
CMS and at (or within) the terminal equipment.

Direct Distance Dialing (DDD) provides access every
where, but is expensive for calls placed during business
hours. Wide Area Telephone Service (WATS) can reduce
DDD toll charges at certain volume levels. Foreign Ex
change and leased lines provide economies between sites
that. exchange a steady stream of traffic. Compatibility fea
tures, code conversion, and error checking must be per
formed by the CMS and the terminal equipment. The spe
cialized common carriers can provide added transmission
economies and some specialized services between certain
cities, and some of these are ideal for facsimile users.5

Value-added networks, like TELENET and TYMNET
offer a number of useful services. They provide for com~
patibility for a large number of different terminals. That
means, the network will handle the code, transmission
speed, and terminal characteristics (for example, ASCII, 300
baud asynchronous, 200 millisecond carriage return delay,
full duplex terminal) of a variety of devices and present the
data stream in a uniform way to the CMS. They provide
error checking within the network (from the node of access
to th~ node of delivery). Perhaps most importantly, VANs
provIde for the sharing (multiplexing) of higher speed trans
mission facilities, providing significant economies.

TYMNET, described as a "terminal oriented" network
by the inventor,6 has 450 nodes and is a local telephone call
away from 175 cities in the United States,7 and services 30
. foreign locations. TELENET, initially based on ARPANET
technology, presently services over 90 cities. Based on the
culmination of the GTE merger, TELENET plans to expand
to 138 cities, and will implement SDLC in selected loca
tions.8

. AT&T's Advanced Communication Service (ACS) prom
Ised to offer the most extensive range of V AN services if it
ever gets off the ground-and there is no technical reason
why it should not. While AT&T has recently withdrawn this
petition, I believe it will eventually develop and offer a sim
ilar service.

In a few years, high bandwidth transmission paths will
become available at low costs. Companies with high volume
requirements will use these "pipelines" for most commu
nications. One network will carry voice, data, message, and
perhaps some form of video communications. In these cases,
Electronic Mail should be designed to fit right in.

Data structure

A CMS data base has special properties. One message may
be sent to many recipients. The data structure should min
imize the number of copies of a message. Pointers to the
message contents become associated with senders and re
cipients to minimize storage and maintenance overhead. The
same is true for user names and other data. As functionality
increases, each element of data is associated in interlocking
ways.

List processing can get pretty complicated even in a simple
situation. Let's assume that the system lists, for the sender,
mail that has not been read by its recipient(s) in an "out
basket," and has an "in basket" so that a recipient can check
his incoming mail and choose when to read it. When a user
"sends" a message, the sender is linked to the message, and
the message is linked to the recipients. All users are linked
to their in baskets and out baskets. The message is likewise
linked. When a recipient reads the message, for example,
the sender is identified. Furthermore, the recipient's in bas
ket and (by following the links) the sender's out basket is
updated to reflect the message is read.

Users are sending and receiving messages all the time.
There are sure to be conflicts in updating these linked lists.
The system must have methods for resolving these conflicts
and contention.

Because of the reliability issue, it is essential that all mes
sages are backed up. In a system with moderate function
ality, furthermore, the linked lists must be able to be rebuilt.
In high volume systems that cannot be taken out of service
the development of a back-up and recovery procedure wili
compound the complexity of the data base.

Let's add one final, very real consideration that would be
of utmost importance in developing a large scale intercom- .
pany public service. Because ofvoiume or response or other
reasons, it is necessary to distribute the processors and the
data base. The question of distributed data base requires a
conference of its own. There is a lot of good research being
done, but I do not believe that this problem has been sat
isfactorily resolved, much less applied to a functionally rich
CMS .

Data base sophistication compounds exponentially with
functionality. For even a moderate system, the data base
structure requires extensive list processing, multiple access
protection, and sophisticated back-up and recovery meth
ods. Before some systems are fully successful, the distrib
uted data base problems must be solved.

Hardware

Minicomputers should be carefully considered as the de
livery vehicle for a store and forward Computer Message
System. A CMS is a special purpose system supporting mul
tiple simultaneous users with uneven data rates, experienc
ing frequent interrupts, and requiring specialized list struc
tures and string manipUlation. It has been my experience .

that general purpose operating systems and timesharing sys
tems are not well suited for CMS development.

Minicomputer performance makes it practical to develop
powerful message systems today. Minicomputer prices jus
tify devoting the computer(s) to that application. Micropro
cessors, as part of intelligent terminals, make it possible to
prepare the text locally; communication line charges can be
saved by batching completed messages and transmitting
them as a group. Microprocessors will become increasingly
important for unloading the minicomputer of specialized
communications functions. Ultimately, most functions will
be performed by discrete microprocessors organized as mod
ules of a Multi-Processor System.

In the case of facsimile, the basic tradeoffs are hardware
cost versus transmission speed. Selected properly, a more
expensive unit will reduce communication line charges per
page and increase operator productivity.

Other issues

There are a number of other problems unique to the CMS
environment.

1. N ames-The recipient addresses should be easy to re
member and appealing to human users. If possible, the
users should be able to get the right address without
having to search for it. In a large company, try devel
oping a friendly scheme that prevents a message from
going to the wrong Dave Smith. And what about the
directory problem for Stuart instead of Stewart?IO

2. Undelivered Messages-Provision must be made for
messages that are sent to an addressee, but the ad
dressee chooses not to read the message. What happens
when a message is sent, but the recipient's user name
is deleted before the recipient reads the message?

3. Interrupted Transmission-When a recipient chooses
to "read" a message or group of messages, the CMS
will put all the characters in an output buffer and flag
the message as having been delivered. When the trans
mission is through a V AN, the network itself will accept
and buffer characters. However, the recipient may be
just seeing the first characters at 30 cps. If the trans
mission is interrupted (line failure, accidental discon
nect) the characters that are on the way will be lost.

4. Custom Tailoring-For a large system, some users will
need specialized services. Examples might be a special
screen format, or a different protocol, or more detailed
billing, or customized identification. Certain kinds of
"execution files" and user programmed "partitions"
might be considered. ACS plans to provide these kinds
of options.

5. Legal and Regulatory-There is an extensive body of
national and international regulation on the electronic
switching of messages. Domestic EMS operated by a
company on its own hardware for its own use is' un
regulated. Otherwise, it is best to check both existing
and pending legislation.

Implementation Considerations in Electronic Mail 491

IMPLEMENTATION

Depending on the scope of your EMS, implementing Elec
tronic Mail can be a big job. Careful analysis and planning
are an essential prerequisite. A number of specialized tech
nical, organizational, management, and business skills will
be brought into play. Good project management and trouble I

shooting skills are a must. The panelists at this session will
offer their own experiences in implementing Electronic Mail.

Computer Decisions magazine has editorial offices in Ro
chelle Park, New Jersey; Sunnyvale, California; Bethesda,
Maryland; and Lockport, Illinois. They are experimenting
with a well-known vendor supplied computer message ser
vice. They are a small organization, and their experience and
those of other users is recounted.

Chrysler Corporation has had its share of problems, and
has cut expenses in a number of ways. However, a pro
gressive project in Electronic Mail and communications con
tinues to be funded because of important benefits. The status
and progress of this project is reported.

Texas Instruments is a company known for technological
innovation. Using their own hardware, TI has been aggres
sively developing and implementing an internal Electronic
Mail system. The evolution of this system and its benefits
worldwide are discussed.

The airlines have been pioneering users of communication
technologies for years-the early work in reservation sys
tems is a well-known example. Texas International Airlines
has been increasing its Electronic Mail usage including fac
simile, computer message systems, and a post office inter
face. Their thrust, current status, and future expectations
are described.

Electronic Mail is alive and well in the real world. Com
panies are implementing this technology and achieving the
benefits of decreased cost, increased responsiveness, and
better utilization of resources. EMS is one of the challenges
of the '80s. It greatly enhances the value of the information
assets and improves the timeliness of effective decision-mak
ing. That is a real competitive advantage, and translates sur
prisingly soon into improved margins, larger market share,
and greater profitability.

REFERENCES

1. Electronic Message Systems: The Technolof.(ical. Market, and Regulatory
Prospects, FCC Contract Number 0236 (Kalba Bowen Associates: April
1978), 14-22.

2. Ulrich, Walter, "An Introduction to Electronic Mail," NCC'80 Conference
Record (AFIPS: May 1980).

3. Ulrich, Walter, "onTyme, A Computer Message System," NTC
'77 Conference Record (IEEE: December 1977), 21 :5-2,3.

4. Dunn, Nina, "The Office of the Future-Part II," Computer Decisions
(August 1979), 68.

5. "Electronic Mail: New Transmission Services Help Promote Its Growth,"
Communication News, November 1978.

6. Tymes, LaRoy, "TYMNET-A Terminal Oriented Communication Net
work," Spring Joint Computer Conference Proceedings (AFIPS: May
1971).

492 National Computer Conference, 1980

7. Harcharik, Bob, "The International Spread of Packet-Switcl;ling Net-'
works," Telecommunications (September 1979), 103.

8. "Telenet Cites Plans Hinging on Merger," Computerworld (April 23,
1979),38.

9. AT&T, Petition to the Federal Communication Commission, July 10,
1978.

10. Feinler, Elizabeth, "The Identification Data Base in a Networking En
vironment," NTC '77 Conference Record, 21:3.

Experiences of an electronic mail vendor

by JEFFREY B. HOLDEN
Computer Corporation oj America
Cambridge, Massachusetts

Computer Message Systems (CMS) are a relatively new phe
nomenon (5-6 years) and are the result of work done in the
Time Sharing Services industry, computer networks, and
Advanced Research Projects Agency R&D activities. Com
puter Message Systems use the computer as an integral com
ponent of human communication.

U sing a computer terminal, the CMS performs or aids in
message creation and distribution, electronic filing and re
trieval, and message reading.

Computer Message Systems are a unique form of elec
tronic mail because their use results in the direct linking of
two or more people wishing to communicate. Up till now
there were three means of such direct communication: face
to face meetings, the mails, and the telephone.

It is interesting to note that two of these so-called "direct
communications means" (mail and phones) have been so
corrupted in the business world with administrative over
head that it seems rarely plausible to use the term direct
(witness the secretary opening/copying and distributing mail
and placing phone calls for the manager). Noting this, let's
review some specific problems with these three traditional
means of direct communication :(in particular telephonic
communication) and relate them to CMS.

THE PROBLEM OF LOCATION

If I want to communicate with Mr. X by phone, mail, or
meet with him, I have to locate him somewhere on the face
of the earth. This is often very hard to do and, as the modern
business environment becomes more and more mobile, it
becomes harder and harder. Where in the world is Mr. X?

If the time is during normal business hours, one assumes
he is at his desk. But is he really? A lot of the time, it turns
out, he is not. He is in a meeting down the hall, he is in the
men's room, he is in transit to another office, or perhaps he
is not in the building at all. He may be sick, out to lunch,
making a customer call, in a car, an airplane, or the Lord
know where.

Furthermore, I may want to talk to Mr. X outside of work
ing hours. This is even harder. He may be at home, at rel
atives, out to dinner, or at the movies. One thing is for sure.
In today's fast-paced world, Mr. X is very hard to find.

493

THE PROBLEM OF INTERRUPTION

But our problems have only begun. Suppose I know where
Mr. X is, that he has a phone nearby, and that the phone
is not busy. What makes anyone think Mr. X will be willing
to be interrupted? The chances are that he will not, and I
can't say I blame him. I do the same. A lot of the time I'm
in a meeting, because I'm doing some work that I would like
to continue doing. (Of course, for me even to say I'm in a
meeting requires an interruption in my work.) j

So what happens? I call Mr. X and leave word. He calls
back and leaves word. I call him back and leave word. He
calls back, etc. (This game is called Telephone Tag.) I have
known cases where this has literally gone on for weeks. By
the time I got through to the other person, I had forgotten
what I wanted to tell him.

Let me give you some statistics of my own use of the
phone. I did a study and discovered that, ofthe calls I placed,
only 26 percent of them went through on the first try. T1;lis
means that on the average I have to place almost four calls
in order to get a single one completed successfully.

What were the problems? All kinds. In 38 percent of the
unsuccessful cases, the person being called refused to be
interrupted. In another 38 percent of the cases, the number
didn't answer (most of these were internal calls). In 14 per
cent of the cases, the called number was busy, and the re
maining 10 percent represent miscellaneous problems such
as the line being lost before the called party answered.

Altogether, a great deal of aggravation.

THE PROBLEM OF TIME ZONES

So far we have been assuming we are communicating
within the same time zone. But what if we're on the East
Coast calling the West Coast? Let's assume that business
executives work 9 to 12 and 1 to 5, five days per week. That
means that at best, a manager is in his office 35· hours per
week. But if two managers are on opposite coasts, they are
simultaneously in their offices, at best, only 15 hours per
week. As we have seen, it's hard enough to reach anyone
on the phone given 35 hours to try in. When the window is
reduced to 15 hours, the problem is roughly doubled.

494 National Computer Conference, 1980

And what happens if we're in New York trying to com
municate with Tokyo? Now the "telephone window" has
shrunk to zero. There is simply no time at all during working
hours that one manager can hope to reach another.

THE PROBLEM OF RECORDS

When you use the phone, there is no record of who said
what to whom when. For many business purposes, this
makes the call virtually useless. In my own case, I have long
ago gotten into the habit, after all but the most trivial calls,
of picking up my dictating machine and dictating the sub
stance of the call. The dictation belt goes to my secretary,
who types it out, and eventually sends me the typescript.
I then scan the typescript, make corrections if necessary,
and put it in for filing.

In short, one phone call generates a dictation task and an
editing task for me, as well as a typing task, a duplication
task, and a filing task for my secretary.

THE ONE-TO-MANY PROBLEM

In the business world, one person often wants to com
municate with many people. Yes, it is possible to set up a
conference call on the phone. But it's so hard to set up and
it's so unsatisfactory that it's very rarely done in practice.
Typically, if a business man wants to communicate with a
group, he gives up on the phone and has a meeting or writes
a memo.

THE PROBLEM OF INFORMATION DENSITY

The phone shares a problem with all speech communi
cation: the information density of speech is very low. Gen
erally, the electronic transmission of speech requires about
60,000 bits per second. These 60,000 bits of speech carry
about the same information as 15 characters of written text.
(Try it-in one second you can read out loud a passage of
about 15 characters).

But you can transmit 15 characters directly as text by
transmitting only 120 bits of information, rather than 60,000
bits of speech. If you insist on transmitting speech you are
transmitting 500 times too many bits. And all these bits have
to be paid for. In a very fundamental sense, speech is an
uneconomic medium of communication.

THE PROBLEM OF LONG-WINDEDNESS

My final problem is that the conventions of our society
require us to be long-winded on the phone. One must inquire
about the other person's health, or the health of his family.
How're the kids, George? There is the obligatory discussion
of meteorological conditions. Pretty chilly out today, wouldn't
you say? When I measure the length of my own phone calls,
I was surprised to find that my average call took 4.8 minutes.

It is almost impossible to get someone on the phone and

say, "This is Jeff, your plan is approved," and hang up. That
would only take 3 seconds instead of 4.8 minutes. But our
social conventions won't allow it.

THE COMPUTER MESSAGE SYSTEMS

Let's now turn our attention to CMS. CMS do not require
you to locate anyone. They never interrupt. Time zones
don't matter. All communications are automatically re
corded and filed. One message can go to multiple recipients.
Computer Message Systems are based on transmission of
text, which has high information density, rather than trans
mission of speech, which has low information density. Mes
sages are short rather than long-winded.

In fact, now I believe one can appreciate this definition
of CMS. "Computer Message Systems are a means to com
municate and record communication in a timely manner
without locating or interrupting the recipient and without
undue administration."

I concur with some "experts" who predict a doubling of
the CMS business in the U.S. over the next 3 years. During
that time, most major corporations and government agencies
will have accomplished some pilot evaluations of CMS and
some will even begin full scale implementation. Interest
ingly, the real movers in this market may be in the secondary
tier organizations where a bolder attitude prevails.

In the longer term, CMS may earn their places as an as
sumed means of managerial communication, once again es
tablishing control of person to person communication in the
rightful place of the individual doing the communicating.

Prior to this happening, though, there is the necessity to
address certain real or imagined problems with CMS.

The organizational concern

The first of these problems is how does the Computer
Message System fit in the organization. Or, who is in charge
here?

This, of course, leads us to the debating candidates.
MIS-Telecommunication services-and administrative

services. Certainly there are strong cases for all three but
in the end I doubt that it really matters. What does matter
is a corporate level of commitment (in terms of funds and
moral support) to whoever is assigned the responsibility. Be
yond this is the overpowering requirement that CMS be
understood as a service entity allotted nearly. no margin of
error. The key to success is response to demand. A rule to
heed is that the Computer Message System is only as good
to the user as his last experience with it. Note that the lack
of this response to demand has been the very downfall of
the mails such that today nothing important happens by way
of the mail. Would you bet your job on a USPS delivery?

The cost concern

A second immediate problem we are all faced with is the
cost justification hurdle. Anytime anybody needs to kill any
thing this is the mode of attack.

Before venturing on a path to establish an air tight cost
justification model for eMS, I maintain it is important to
establish relative affordability.

So let's compare some unit costs:

First, let's compare the COMET Computer Message System
and the telephone. A three minute telephone call from Boston
to L.A. during business hours costs $2.44 plus tax, while a
measured 16-line message to be composed, edited, filed, trans
mitted-and in L.A. read and filed-costs $1.07 using the
COMET Service Rates.

Next, let's compare COMET and a memo or letter. According
to Dartnell Institute, the cost of producing a single business
letter is $4.47; others say the cost is as much as $18.00.

Finally, let's compare COMET and TWX. A recent review of
a company's TWX service indicates that what costs $20,000 a
month in TWX services would cost only $13,000 using COMET.

These cost comparisons provide proof of affordability; how
ever, it should be noted that when one considers eMS value
added services, the case becomes even clearer. Still, we have
to go beyond merely comparing costs and, for this, let me
suggest various "Justification Scenarios" which may serve
to be more important as they point to individual productivity
improvements.

One is span of control, the idea being that the number of
managers or supervisors could be reduced and the work re
main constant. A second area involves reducing the extent
of interruption thereby increasing the amount and value of
work. Another scenario could be based on reducing sup
porting shadow functions around communications. An op
portunity in some applications centers around the speed with
which information is transferred. Finally, but perhaps most
importantly, is time savings.

Let us use the last of these (time savings) and follow the
scenario for possible cost justification.

In my view, the primary cost benefit of Electronic Mail
is in the executive time which is saved. What is the cost of
managerial time? Take a $50,000 a year manager. Add 30
percent overhead and assume he worked 1800 hours per
year. It then turns out he costs his employer $0.60 per min
ute, or just one cent per second.

What are the costs of Electronic Mail? You can subscribe
to an Electronic Mail Service (use of a time-shared central
computer that runs the Electronic Mail program) for $60 per
month, and you can rent a terminal for $90 per month.
Hence, you are in business for $150 per month per subscrib
er. If a company buys an in-house Electronic Mail system,
including terminals, and shares the terminals among a rea
sonable number of people, the cost can drop as low as $20
per month per subscriber.

But let us use $150 as an upper bound. Now, if our hy
pothetical executive can save just 12.5 minutes per working
day through the use of Electronic Mail, he will pay for his
use of the Electronic Mail service. If we are talking of an
in-house system, 12.5 minutes per day will pay for his use
of the system many times over.

In fact, it is my impression that an Electronic Mail system

Experiences of an Electronic Mail Vendor 495

saves a manager not merely 12.5 minutes per day, but many
times that amount. Take my own case. On an average work
ing day I deal with 24 messages (I receive 14 and send 10).
The time spent in doing that is 16.4 minutes. If, instead of
using Electronic Mail, I used the phone for these 24 mes
sages, considering that my average phone call takes 4.8 min
utes, I would be spending 1.9 hours on the phone. I would
therefore waste about 1.6 hours per day. For our hypothet
ical manager, this would cost $58 per working day. Overthe
course of a month, he would recover the cost of his use of
an Electronic Mail service seven times over. If we are talking
of an in-house system, he would recover the cost fifty times
over.

(The costs of Electronic Mail discussed above have not
included toll charges for telecommunications-Telenet and
Tymnet. In comparing the cost of Electronic Mail with the
cost of the phone, we can consider that toll charges are
roughly equal in the two cases. If anything, since Electronic
Mail interactions are so much shorter than phone calls, the
comparison would probably widen the gap in favor of Elec
tronic Mail.

It should be pointed out that our cost analysis so far has
taken account only of the manager's time in reading and
writing messages as compared with talking on the phone. It
has given no weight to the fact that, on the average, each
phone call has to be placed four tim~s, to the fact that if the
executive wishes to have a record of the phone call he has
to dictate or write it out, to the fact that Electronic Mail
does not disrupt him many times a day, to the fact that he
has no time zone problem, etc. If we took these additional
matters into consideration, the cost advantage would be even
greater.

But ultimately, cost savings may not be the real point.
Perhaps the key is that the typical manager is overworked,
always short oftime, and constantly hassled. Electronic Mail
provides relief: It makes him more efficient by organizing
his communications and allowing him to be master of his
own time. I would be very surprised if Electronic Mail did
not become the communication standard for the business
person in the next decade. It's simply a better way to live.

The human behavior concern

A third issue of present concern is that of human behavior.
Past experience has taught us a lot. Although there is plenty
of room for improvement, many vendors are skilled at em
ploying human engineering and growing numbers of users
effect change through understanding and involvement.

Some particular human behavior problems eMS encoun
ter are: the satisfaction curve, command language and typ
ing.

The satisfaction dip, also termed buyer remorse, occurs
when there is initial excitement surrounding this brand new
thing, followed by a realization of the limitations of the sys
tem (disappointment) and, finally, a rise to a stable realistic
satisfaction level.

The user command language problem is the responsibility
ofthe vendor or designer. Failure to underestimate the needs

496 National Computer Conference, 1980

for simplicity of language, friendly response, and natural or
expected flow surely dooms the CMS.

Finally, is there a problem in typing? Surprisingly little.
One executive states he would be absolutely incapable of
typing a business letter, but has no trouble with Electronic
Mail. Why is that? I think there are three reasons. First, the
messages are short (if I want to send a long one, I ask my
secretary to type it for me from her terminal. But for ordinary
messages, it's much quicker for me to do it myselO. Second,
the system helps by providing editing facilities that make it
easy to correct errors. Third, for some reason that I don't
fully understand, it doesn't bother me to send out a message
with a couple of typos. (By contrast, I would not tolerate
a memo to go out over my name with even a single error.)
Evidently the psychology of the Electronic Mailer user
makes him very relaxed about such cosmetic issues ..

The technology concern

The final issue of concern I will address is that of the
technology necessary to support CMS. Many of the tech
nological pieces are obviously ready (witness progress in the
terminal arena, packet networks, and the general cost per
formance trends of hardware). But underlying these obvious
accomplishments is the realization that providing Computer
Message System capabilities to a group of 1000 is one thing;
for 100,000 quite another. At the latter user population level,
the true technical challenges surface and they are concen
trated in solving traditional data base problems.

As an illustration of the type of problems, let us note that
when the user population exceeds 100,000 names, the prob
ability of a name ambiguity for an addressee is over 70 per
cent. In contrast, below 1,000 addressees, the problem
hardly exists.

To provide CMS for these large popUlations requires so
phisticated new software techniques applied to the areas of
distributed data bases which afford reliability, response, and
reduced communication costs.

And, of course, the thousands of users of a CMS will be
generating thousands of messages for storage and retrieval.
It is encouraging to note that these supporting technological
building blocks (that is, a distributed data base system and
large scale storage and retrieval capacity) have been accom
plished on the ARPANET System. The latter is a system
called Datacomputer which encompasses 3.2 trillion bits of
storage (this is equivalent to 1500 IBM 3350's) and allows
users to store and retrieve messages by any word or com
bination in the header or text. The former is a system entitled
SDD-l, which is the first working distributed data base man
agement system in the world.

CMS SUCCESS STORIES

Nevertheless, CMS is beginning to make its mark, and to
illustrate this, I will outline some CMS user experiences and
glean sensitive factors for implementation consideration.

The first case is a Fortune 100 company that produces
minicomputer systems and peripherals. They have an in-

house Computer Message System that consists of a PDP 111
70 with 300 megabytes of on-line storage supporting over 700
users via 29 lines. For historical background; this Computer
Message System has been in operation since January of 1978.
For the active users of this system, the average number of
daily logins is three, while average daily time logged in is
25 minutes. The user population profile is heavily wei_ghted
toward managers and professionals. Use of this Computer
Message System includes broadcasting of information, in
formation inquiry/response, task assignments, follow-up on
task assignments, requests for action, status reports, meeting
agendas and/or minutes, follow-up on conversations, and
informal discussion of issues. As a result of its use there has
been a decrease in the number of phone calls as well as the
number of interoffice memos, while the number of meetings
remained the same. Finally, the users have noted a produc
tivity increase.

Our second success story is a Fortune 100 conglomerate
in the communication and electronics industry using CCA's
COMET time-shared service. This system consists of backed
up 11140's with 250 megabytes of on-line storage. This ac
count has been active since April, 1979. It places the number
of subscribers at 150 while the activity level is again placed
at 2-310gins per user per day. The user profile chart indicates
that managers and executives comprise 75 percent of the
total user population, with salesmen at 10 percent, techni
cians. at 5 percent, and office and clerical workers at 10 per
cent. The uses of this Computer Message System include
broadcasting of information, information inquiry/response,
task assignments, follow-up on task assignments, requests
for action, status reports, meeting agendas and/or minutes,
follow-up on conversations, and informal discussion of is
sues. The results of its use show, once again, a decrease in
the number of phone calls as well as the number of interoffice
memos, while the number of meetings remained the same,
and the users' productivity increased.

A third success story is that of a multinational oil firm also
using the COMET service. The account history indicates
that the Computer Message System has been in use in this
area since March, 1978 with the number of subscribers at
50 and the activity level at 1-210gins per users per day. The
user profile, again, is weighted heavily in favor of managers
and technicians, with managers at 43 percent, engineers at
4 percent, technicians at 40 percent, and office and clerical
workers at 13 percent. The account applications for the Com
puter Message System have been in personnel (labor ne
gotiations), finance, project control and inventory control.
The results are consistent with a decrease in the number of
phone calls, a decrease in the number of interoffice memos,
with the number of meetings remaining the same and user
productivity increasing.

Common characteristics of all these success stories are:
a high level of management use and support-the CMS is
solving a real communication need, a critical mass has been
achieved, and there has been a reasonable time of experi
ence.

The bottom line lessons for anyone implementing CMS
are to obtain top level buy-in, use a real application, use the
complete application (mass), and give it enough time.

In conclusion I will leave you with this. You have seen
and heard and discussed Electronic Mail (EM), and I hope
we can keep focused on the importance of all this. It is im
portant for us as a nation in the face of a lagging economy
and this fact is centered around the need for office produc
tivity improvement. It is important for your organization
because EM will allow it to run better and leaner, capt,ure

Experiences of an Electronic Mail Vendor 497

more market share, run higher profits, hire more capable
people. This is especially true for those organizations that
recognize the opportunity and seize it.

Finally, it is important for you and me because a more
successful economy means better more plentiful goods, and
improved company performance means better pay and ben
efits. Do not underestimate the value Electronic Mail can
play in your life.

Electronic message system as a function in the integrated
electronic office

by HAROLD E. O'KELLEY
Datapoint Corporation
San Antonio, Texas

INTRODUCTION

The fully integrated electronic office is composed of six
fundamental elements, or functions:

Dispersed Data Processing
Communications Management
Word Processing
Electronic Message System
Individual Computing
Information Storage and Retrieval

In order to evaluate trends in what some industry people
call "electronic mail" it is necessary to first define each of
the functions of the evolving electronic office, of which han
dling internal messages is only one factor. For too long we
have approached problems in the office on a piecemeal basis,
i.e., solving problems one at a time, and independently of
the other.

Technology is furnishing totally new concepts for prob
lem solving and we see a rise in thinking at a systems level,
rather than thinking. in terms of independent machines or
functions.

Dispersed data processing

In its simplest form, dispersed data processing is hardware
and software that allow the local user, no matter what his
organizational level, to program his own machine. That is
the key: He can program his own machine. This then implies
that the user is free from the traditional centralized host
processing environment. Yet, even with that freedom he
maintains the ability to communicate with other computers.
The dispersed computer can operate-besides as a stand
alone machine-as part of an integral network as a host to
even smaller dispersed equipment and terminals.

An important factor, the software technology-the ability
to have an easy-to-use, programmable system-is a key ele
ment in labeling a product as a distributed processing prod
uct. The distribution of dispersed processing equipment and
its utility in the electronic office can be either functional or

499

geographic. Communications, therefore, is a necessary in
tegral part of distributed processing and office functions.

Traditionally, the functions of early dispersed data pro
cessing were primarily (1) intelligent data entry or the very
efficient single-point of entry data capture; (2) batch pro
cessing of that data and the preparation of local reports; (3)
shared processor, the clustered terminal approach or busi
ness time sharing; and (4) interactive processing. Of course,
(5) stand-alone processing includes both telecom to the host
or stand-alone without telecom to the host. As we move to
advanced dispersed data processing, we are using a general
purpose computer that does all of the above principally
through software changes.

Dispersed data processing has provided us with these
small in size, but powerful, computers. We can apply the
same techniques used in DDP multi-function systems.

IBM has recognized that dispersed or distributed pro
cessing is important in the commercial end-user environment
and has endorsed the concept. So every other manufacturer
of small computers is making a valid attempt to relate his
product line to this environment to handle office functions.

Communications management

Over the years, most large organizations have built up
larger, more comprehensive telecommunications systems.
These systems have grown because management realizes
that good telephone communications are an essential ele
ment for the smooth functioning of their businesses. But as
these systems have grown, so have the costs of telecom
munications services. Higher rates, especially the frequent
increases in long distance telephone rates, have raised tel
ephone costs to one of the largest items in the corporate
budget.

But while telecommunications costs have increased, the
ability of management to control this expense has not kept
pace. The heart of this problem is that the basic information
to make intelligent management decisions isjust unavailable.
Telephone systems, whether telephone company-operated
or privately owned, have not included features that provide
information for telephone management and control.

500 National Computer Conference, 1980

Today, newer computer-controlled telephone systems
provide many new features and services, but there is still
little product innovation and far too few alternatives from
the telephone company for management to take effective
action to solve telecommunications problems.

The same computers that drive DDP systems can be har
nessed to control voice telecommunications. Software changes
leverage hardware investment into a truly multi-functional
system. Management has additional new tools as additional
functional concepts are developed and systems design brings
more total integration.

For example, the same computer engine from a dispersed
processing system powers a Long Distance Control System
for control and management of outbound long-distance tel
ephone communications. Only an intelligent switching sub
system and turn-key software are added to produce a system
that requires no user programming and can be utilized with
any standard PBX or Centrex telephone system, to control
DDD and all types of WATS, Foreign Exchange, Tie Lines
and other telephone facilities and optimize call placement.
Even remote locations can be centrally controlled with the
same efficiency.

In urban areas with local message-unit charges, a similar
system can also handle local traffic with complete user
charge-back capability, and becomes a Station Message De
tail Recorder.

For incoming calls, the same engine again drives a fully
featured Automatic Call Distributor for uniform distribution
of incoming calls into agent groups such as reservation or
claims services, classified ad placement, order taking, etc.

With the commonality of processors, peripherals and soft
ware, these communications management and dispersed
data processing applications can be handled with ease.

Word processing

Word processing today is generally performed either at a
clerk's desk in a compact stand-alone electronic typewriter
or CRT with memory, or in a pooled l,ocation where multiple
electronic typewriters or CRTs share a larger memory fa
cility and perhaps a higher quality/speed printer.

Now, if the same general purpose computer that powers
the other office functions and systems also drives the word
processor, we can begin to share and exchange files and use
the communications facility to handle the intra-company
transfer of files, data, correspondence, messages, etc. The
personnel data base 'can supply data on people, locations,
departments to add to the communications data base for tel
ephone numbers. With data files, word processing, and com
munications management we have the beginnings of handling
internal mail electronically and automatically, all within the
same system.

Electronic message system

In the fully integrated electronic office, ifl you have data
processing, control of the telephone system' for both voice

and data, and word processing, then the mail or message
function becomes almost a technology by-product. All the
elements are there; why not implement it?

'The optimum advantage this level of systems integration
has is that data need be input into the system only once
. . . at anyone of the multi-function stations-and it be
comes a resource to the total system with no further inter
vention. The output of anyone functional part becomes the
input to any and all others. All functional parts of the in
tegrated system "talk" to all other functional parts, yet can
"sign-off' and be independent at the user's command.

Individual computing

Individual computing is the placing of the full power of
a company's computer and all information in its common
data base at the fingertips of every executive, administrator
and clerical worker in its offices, with necessary security
protections, of course. This, too, is a by-product of the fully
integrated electronic office.

Each individual's work station becomes his personal ac
cess to the system for sending and receiving messages, re
searching and evaluating data, and a myriad of other systems
functions.

Information storage and retrieval

Information storage and retrieval is inherently part of all
the other functions of the fully integrated electronic office.
This function manages the files and serves as the intelligent
library resource for the entire system.

Utopian?

Perhaps all this discussion of the logical way the electronic
office can be assembled sounds utopian. It is not. This sys
tem exists in its fully integrated form and its unique archi
tecture has been proven over years of research, development
and in-place commercial use.

The technology and architecture that permits full integra
tion of disparate functions into a common system is called
attached processing. Attached processing offers as its basic
premise the idea that a computer system can be designed to
accommodate the specific and varied needs of a business
rather than the business tailor its demands to the require
ments of the computer. The tangible product of the attached
processipg concept is Datapoint's ARC nt System (The Att
ached Resource Computer). This is an extremely effi
cient and adaptable, though totally integrated, computing
facility which links together an arbitrary number of func
tionally dispersed smaller computers by means of a high
speed electronic pathway, or bus, and a fully compatible
library of systems software. One major difference then in
what we have been doing in the past, which may be consid
ered geographically dispersed data processing, is the arrival
of true functionally dispersed processing.

Functionally dispersed as it is, each user of the ARC sys-

tern has complete and immediate access to all system com
ponents-the data processing units, common data base fa
cilities, and various peripheral devices-no matter where
they may be physically located in the system. By the same
token, the ARC system can sustain many different types of
applications-data entry, batch and transaction processing,
data base inquiry, data communications, and of course, word
processing and electronic message functions-in the most
efficient manner possible. A wide variety of business tasks
can be performed simultaneously on the same computer sys
tem using the common resources of the system with no one
user bound by the activities of another.

An attractive feature, and key element of the ARC system,
is its modular architecture. This system can grow both in
terms of power and the task to be performed as the business
it's serving grows. Whenever more processing power or
faster data access times are necessary, an additional pro
cessor or two may be easily attached to the existing system.
Should additional data storage space be called for, more disk
drives can be attached to the common system data base.
Impressively, this sort of system reconfiguration and ex
pansion can be accomplished while the system remains in
operation and does not necessitate changes in the existing
application programs for operating systems software.

The Datapoint ARC system avoids many of the pitfalls
tha~ are normally associated with more conventional com
puter systems. Unlike the traditional computer architecture,
the ARC system does not require re-programming or com
puter-upgrade investments each time more processing power
or a larger database is called for. Likewise, the ARC system,
capable of supporting a variety of functionally dispersed
tasks with one common database, is not dependent upon the
relatively slow telephone communications or physical media
transfers that are normally used to link separate databases
in multiple-computer configurations. Rather, the transfer of
data is accomplished at extremely high speeds over the ARC
system interprocessor bus and is always completely trans
parent to system users.

ARC systems, whether small or large, incorporate three
basic components: applications processors, file processors,
and an interprocessor bus. Applications processors, an al
most unlimited number of which may be contained within the
system, are dedicated to performing batch or transaction
processing tasks either in single or multi-user modes. Freed
from the time-consuming data storage and retrieval tasks,
these processors operate at extremely high speeds to get
more actual data entry and data processing work done. File
processors, on the other hand, are dedicated to the man
agement of data and data storage units. Because this is their
only task, they can locate and deliver remotely stored data
to the applications processors as fast or faster through soft
ware techniques than this data could be retrieved from local
disk storage areas.

The ARC system interprocessor bus includes a number
of hardware and software components, all of which are used
to connect applications processors and file processors into
one totally integrated computer system. An essential hard
ware component of the system interprocessor bus is the in-

Electronic Message System in the Electronic Office 501

expensive coaxial cable which physically connects all the
other components of the bus. Another component of the in
terprocessor bus is the Resource Interface Module, or RIM,
a special purpose data transfer module which connects di
rectly to the processor input and output bus. The RIM pro
vides a unique address for the processor and ARC system
and allows data to be transferred over the system bus at
exceptionally high speeds. The ARC system RIMs, in turn,
are linked to the system interprocessor bus by means of pas
sive or active hubs. A total of 256 processors canjoin a single
ARC node.

ARC systems may be comprised of as many or as few
resource units, processors and peripherals as a business re
quires, and any number of possible configurations. This is
possible because the growth and the shape of the ARC sys
tem is determined solely on the basis of each company's own
functional requirements and not on the basis of conventional
computer architecture. Since the ARC system architecture
does not employ a central controlling host computer, failure
of any individual processor in the system will not bring all
operations to a halt.

Should an ARC system unit have to be taken off-line, op
erations will continue without interruption and all other sys
tem components function just as before. If a file processor
goes down, for instance, its disk units can be transferred
readily to another file processor or even to an application
processor that has ample data storage capabilities. Appli
cations processors, printers, and other system peripherals
can also be interchanged quite easily in the event of a failure.

Should the need arise, access to data in the ARC system
can be restricted under several types of security controls.
For example, with the built-in security provisions of the
ARC system, any user may designate portions of the com
mon database as "Restricted." Data can also be restricted
by locally attaching disk volumes to a systems applications
processor. These directly attached disk drives are com
pletely private and can be accessed only by the applications
processor to which they are attached.

Another important feature of the ARC system architecture
is the optional capability it provides to interface to large
central mainframes. By means of the Datapoint Direct Chan
nel Interface Option (DCIO), an IBM 360 or 370 is permitted
to participate in the ARC system by attaching to the inter
processor bus. Acting as any other applications processor
within the ARC environment, the IBM 370 can utilize data
stored in the common database to execute a variety of main
frame application programs running in any language. The
most recently announced feature of the ARC system includes
the addition of the INFOSWITCH communications man
agement system to manage voice communications on the
ARC system. Truly, then, this is the realization, the merging
of disparate functions.

I think we all agree that the market direction in the 1980s
is to the electronic office. However, the office is the only
business function that has not been significantly affected by
automation and it will require a great deal of technology and
an attention to human interface to mask that technology to
achieve market acceptance.

502 National Computer Conference, 1980

Some of the technological trends which we have observed
are the convergence of computer and communications tech
nology. As we demonstrated in our ARC system, data pro
cessing, voice communications and data communications are
available today in a single computer system. Continued ev
olution of semiconductor technology, microprocessor, LSI
and VSLI devices will offer cost improvements. Lasers will
have a major impact on printing and imaging. Fiber optics
will help reduce the cost of terminal and computer interfaces.
Computer graphics will be in evidence as the requirements
for sophisticated output as MIS evolve. Of course, under
lying all these hardware technologies will be increasingly so
phisticated software and programming techniques. The re-

suIt, then, is that over the next few decades the office of the
future will become the office of today, or the fully integrated
electronic office.

Electronic mail, or electronic message systems, will re
quire an inordinate amount of overhead if they are installed
as stand-alone functions. The other option is that they only
do a portion of the function, with no pretense of integration
into the total office. I believe, however, that through proper
integration of these office functions into a common system
electronic message systems included-the maximum effi
ciencies, effectiveness, flexibilities and productivity gains
will be realized.

The growing use of electronic mail by airlines

by JAMES C. GOODLETT
Texas International Airlines
Houston, Texas

INTRODUCTION

Electronic mail is one of several computer-based applications
which is rapidly becoming a fundamental part of business
life. Technology has supplied the data processing and com
munications industries with the necessary tools to enable
them to make the transition from the mailman to direct elec
tronic message delivery.

"Electronic mail is defined as person-to-person commu
nication of messages, using electronic means for capture,
transmission and delivery of information. The information
is communicated visually, including text and graphics-all
the forms of information that can be communicated in letters
via physical mail services. The messages can be displayed
on a screen or a hard copy form can be generated. "1 As
noted from the above definition, the scope of electronic mail
is very broad; however, even this definition is not encom
passing enough to include the automatic generation of mes
sages being triggered by computer functions.

This paper describes several uses of electronic mail in the
airline industry as an example of the importance and di
versification of its employment. Likely hindrances to further
advances are discussed along with some projection for the
future.

HISTORY

The nature of an airline operation requires the rapid move
ment of considerable quantities and diverse forms of infor
mation. An airline passenger cannot only book space on a
flight, he can also call for special food, special services like
wheelchairs, book space in a hotel of his choice, reserve a
rental car and request that his ticket be sent to him in the
mail or available at the airport at a convenient self-ticketing
device. The reservation can be for the airline called or for
space on a combination of airlines. Each of these special
services requires messages to be sent for confirmation and
status.

The operation of a flight also involves considerable co
ordination and message movement. Flight crews must have
numerous pieces of information including: (a) a release from
a FAA Certified dispatcher, (b) a flight plan showing route,
fuel, aircraft type, and alternate airports, (c) a takeoff anal
ysis for the specific flight and load, and Cd) weather infor-

503

mation covering the origin and destination stations and the
path in between. Station personnel gather, coordinate, and
disseminate various necessary data relative to a flight such
as: (a) aircraft time of arrival and departure, (b) passenger
and freight data, and (c) weight and balance calculations.

Due to the need for current information, airlines have tra
ditionally been heavy users of voice telephone services.
These telephone services, however, did not capture the in
formation for historical or analytical purposes. They gen
erally lacked timeliness and proved to be inefficient as the
message still had to be written down and usually copied for
use by crew, station and General Office personnel.

Similarly, messages regarding needed aircraft repairs
(called "squawks") along with requests for and movement
of materials and tools were handled by phone with similar
results. With the rapidly increasing size and complexity of
airline fleets, the FAA instituted requirements for accurate
historical records of all actions relative to the operation of
an aircraft.

The first computerized airline reservations systems be
came operational in the late 1950's. By the mid 1960's several
airlines developed stored message or "Passenger Name Rec
ord" systems. The most widely acclaimed of these was the
American Airlines "SABRE" system employing state of the
art IBM 7090 computers and the telecommunications net
works using the IBM 1006 Interchange discipline which be
came known as the "SABRE" code. * Delta Airlines' DEL
TAMATIC and Pan American Airlines' PANAMAC Systems
followed soon afterward. These systems and their successors
(primarily the IBM Programmed Airlines Reservations Sys
tem or PARS) were important in that they required message
switching capabilities to service the quantities and diverse
locations required. To service the message delivery need,
the airlines used either the simplistic message switching sys
tem in PARS or developed independent systems such as the
Univac 1108 system at United, the Univac 494 systems at
Eastern and Northwest Orient, and the GE Datanet 30 sys
tem at Braniff. Essentially all the airlines supplemented these
systems with teletype-oriented systems for operational
traffic, servicing maintenance and flight operations.

* This code, also known as the Airline Line Code (ALe), is a 6-bit code, using
a synchroneous discipline with dual synchronizing characters at the start fol
lowed by addressing information, a variable length data field, an End of Mes
sage character and a Cylic Check Character. This code is used by all but two
of the major U.S. Scheduled Carriers and numerous international carriers.

504 National Computer Conference, 1980

Some of the above messages were originally handled
through company pouches. Technically, physical delivery
was possible for all correspondence; however, to be effec
tively utilized, information about passenger and aircraft
movement required much more rapid delivery. The use of
110 Baud, 5 level Baudot codes spread throughout the in
dustry and TWX and TELEX were extensively used be
tween airlines. Papertape transmission and capture was used
for the inter-station and inter-airline movement of data.

With the massive expansion in leased line networks and
the high costs associated with these services, the United
States Airlines formed a nonprofit organization, Aeronau
tical Radio, Inc. (ARINC)* * to lease circuits at quantity dis
counts from the phone companies. Along with considerable
demand for data services, the airlines 'are very large users
of circuits for voice transmission principally servicing their
reservations offices. The domestic carriers as a whole are
second only to the U. S. Military in the use of common carrier
communications services. Individual carriers like United and
American with over 500,000 circuit miles each of leased lines
for both voice and data would spend an estimated 46 percent
more without the discounts available through ARINC.

The following section gives a sampling of several areas of
current employment of electronic mail. The generation and
transmission of messages has been an integral part of most
real-time systems developed over the last decade to service
such departments as Flight Operations and Maintenance and
Engineering. A clear differentiation has been difficult be
tween "mail," whether manual or electronic, and the mes
sage associated with computer stored on-line data bases with
real-time access. Somewhat surprisingly the Flight Operat
ing Systems and the Maintenance and Engineering Systems
built by the airlines are amazingly diverse from an equipment
and network standpoint. Functionally they are very similar
especially in their need for message delivery services.

The prime purpose of a Flight Operating System is to track
and control the movement of aircraft. A FAA licensed dis
patcher is responsible for developing key information rela
tive to the flight of a plane between two cities. He must also
communicate this information to the station, flight person
nel, and in some cases the FAA; copies of developed ma
terial must be saved for potential historical review. Weather
needs to be reviewed for flight origin, destination, and en
route conditions. Alerts from the Weather Services at Suit
land, Maryland and Kansas City, Kansas centers, from pilot
reports, and station observations are sent to the origin sta
tion after review by the dispatcher. A flight plan is calculated
using weather, origin/destination characteristics and condi
tions, aircraft particulars, flight speed and altitude, and fuel
weight and amount. The basic flight plan must be filed with
the FAA and a detailed plan must be sent to the origin sta
tion. Before electronic mail a standard flight plan was filed
with the FAA and flight and station personnel. A standard
profile was, by its very nature, general and conservative,
leading to poor estimates of flight times and fuel burn. In-

** ARINC has the world's largest private line network servicing over 140
customers with more than 5 million circuit miles.

creased optimization of the scheduling and use of aircraft,
crews, and fuel has become possible by being able to send
current information about weather and aircraft.

The management of aircraft movement is another area
heavily serviced by electronic message transmission. Re
ported data are used for crew payroll, flight status, and ac
cumulating the hours of aircraft flying. Traditionally, sta
tions have used the teletype systems to inform downline
stations and dispatchers of the out, off, on, and in times
associated with aircraft movement. Summaries of these
times by flight number were then sent by company mail to
HDQ for analysis and storage. These same times are also
recorded on Flight Logs which are kept on board the aircraft
until a flight is completed. The Flight Logs are then placed
in company pouches for delivery to HDQ. Flight Operating
Systems have automated the retention and distribution of
this essential information. U.S. Air has taken the additional
step to incorporate this function into their integrated Crew
Management data base system, taking advantage of current
EDP technology to improve the access and management of
the data. By real-time recording and automatic distribution,
the urgency of the delivery of the Flight Logs has been re
duced considerably and the station record delivery has been
eliminated. A further enhancement has been the employment
of on-board micro-processors (MPU) which have sensors
allowing the collection of the needed out, off, on, and in
times. Ground stations at the serviced airports are sent the
accumulated messages over a VHF radio channel reserved
for airline use. The ground receivers have a verify and retry
capability allowing the checking and retransmission of mes
sages, increasing the probability of accurate receipt of the
aircraft movement information. The messages are then trans
mitted through the ARINC network to the industry Elec
tronic Switching System in Elk Grove, Illinois and then on
to the airline responsible for the original transmission. Air
lines like Texas International and Piedmont use these mes
sages in place of station generated messages. The benefits
of the ARINC Addressing and Recording System (ACARS)
are speed, accuracy, and improved employee productivity.
Specifically, the ACARS system reduces the workload in the
cockpit, at the stations, and in flight dispatch. The ACARS
data can be input through communications interfaces into
computers for payroll, aircraft flight time accumulation, and
on-time performance reporting.

In the last decade several airlines have invested consid
erable resources in the development of integrated data base
systems for the Maintenance and Engineering Divisions.
Some of the more complete systems have respective costs
as reflected at (a) Swissair-250 man years of effort, (b) AI
italia-140 man years, (c) Republic-IOO man years, and (d)
U.S. Air-80 man years. United is currently developing a
system estimated to require more than 600 man years to com
plete. Republic Airlines and U.S. Air started work on their
systems in the early 1970's. While numerous other airlines
have on-line systems and are using data base concepts, the
above two systems are further along in their development
of fully integrated systems in the United States. These sys
tems are similar to large manufacturing and inventory control

systems modified for the specific requirements of the air
lines. Instead of multi-hour or even overnight delays in
knowing the status of repairs and inventories, messages are
sent to the schedule planners, shop foremen, inventory spe
cialists and into the data base system allowing further reports
and analyses to be accomplished. Automatic and demand
messages are generated to order new parts when needed.

Through electronic message delivery more accurate and
timely inventory control in the remote stations is achievable.
Status of incoming aircraft relative to needed repairs, allow
ing improved scheduling of the work force and improved
decision making to identify the best location for the repair
can be accomplished. By replacing the manual process of
scheduling aircraft repairs at each individual station with
automatic preparation of schedules, work optimization and
improved availability of the fleet can be achieved. Messages
are sent to report available manpower and the estimated use
of parts. Location of the aircraft and estimated time of arrival
are obtained from the Flight Operating System. Reports are
then transmitted to the affected stations showing the sched
ules and requesting movement and location of the necessary
parts.

The Maintenance and Engineering Division is broken into
several departments, each of which is a heavy user of elec
tronic message transmission. One such department is Pur
chasing and Receiving which evaluates materials to be pur
chased, selects vendors, orders equipment and services, and
takes receipt of purchased goods. Advancements in message
delivery have resulted in lower inventory levels. Recently
some of the larger suppliers of aircraft equipment have pro
vided the ability for purchasers to access their data baseS
for stock levels, time to manufacture, and cost. Using ter
minals linked to their system, the entire cycle of phone calls
and mail orders has been drastically reduced. Boeing,
McDonnell Douglas, and Pratt and Whitney are three sup
pliers which offer such services to their customers. The
overall benefits have been reduced manpower for handling
orders, faster turn-around times, and fewer mistakes and
misunderstandings.

By use of terminals attached to the integrated system, the
processing and tracking of orders and receipts has resulted
in the elimination of considerable amounts of paperwork and
physical (vs. electronic) information delivery. When a ship
ment of goods is received, the receiving clerk updates the
open order file for status, making available the pertinent in
formation in the system. With this information the system
can initiate payment, identify the storage locations for the
material, and debit the budget of the requester. Also letters
can be generated if the shipment is incorrect or not complete.

A message is transmitted to update the data base during
the actual receipt process. Key information is then imme
diately available including the date of order, expected cost
broken down by component for handling partial shipments
and invoices, location material should be sent to, who placed
the order, an'd budget assignment.

An important aspect of these integrated systems with ac
cess to message switching is the ability to use a given item
of data to service multiple needs. This has the direct benefit

The Growing Use of Electronic Mail by Airlines 505

of consistency and manageability. A specific example of the
above is the flight movement data from the ACARS system
which has the following multiple uses:

a) for flight dispatch-for the tracking and controlling of
aircraft movement,

b) for collecting time of use-for aircraft maintenance,
c) for crew payroll,
d) for on-time performance reporting,
e) for aircraft performance analysis,
t) for notification of down-line stations regarding flight

progress.

The most recent innovations in message send/receive have
increased the computer's role in the process and reduced the
manual intervention of recording the times and typing out
many of the messages. The direct benefit is reduced man
power, along with more accurate and timely receipt and
availability of the data.

Engineering orders are directives to maintenance to make
modifications to aircraft and include the detailed instructions
to accomplish the modification. Detailed records are re
quired relative to these Engineering Orders. In addition, the
aircraft manuals must be updated to reflect the current status
of each aircraft. Copies of the updated manuals are then
printed and distributed to all affected groups including re
mote maintenance locations. For urgent transmission, fac
simile equipment is employed. Improved techniques in dig
itizing and transmitting material directly from a page or
picture has allowed more maintenance to be performed in
remote locations and still fulfill the requirement of having
a current copy of the reference manual on hand. Facsimile
processing times have fallen over the last 10 years from
around 30 ininutes per page to less than 1 minute per page.
U sing a combination of facsimile and the integrated on-line
system with text editing and storage, changes can be incor
porated directly into the computer system, accessed by
scheduling, and referenced by the maintenance foreman and
mechanic. The paperwork and time delays for the old system
have thus been effectively reduced to a minimum. Even the
report of the Engineering Order accomplishment is directly
input, thus being available for immediate review and anal
ysis.

RESERV ATIONS

The capabilities of general airline reservations are rela
tively well known; thus, only a few examples are given to
demonstrate some of the lesser known applications of re
servations message transmission. Eastern Airlines devel
oped a computer system to which most airlines subscribe,
and submit descriptions of unclaimed bags, allowing the air
lines to enter descriptions of the lost items and query the
. data base for likely matches. These queries are routed to
Eastern by means of the ARINC network. If the item is lo
cated, the involved carrier is sent a confirmation message
giving item location and contact point. Messages are then
sent to make arrangements for delivery of the items to the
desired locatiori.

506 National Computer Conference, 1980

For years airlines have printed tickets in commercial ac
counts and travel agencies. These were generated by agents
sending teletype messages with ticket information to the in
dustry standard TTY Model 28 RO printer in the account
location. In 1972, United developed the "Teleticketing"2
capability to send tickets directly from the computer to a
customer's printer at preselected times. Advances in auto
matic dialing and connect technology by terminal and com
munications equipment vendors allowed this cost effective
service to be implemented. An aborted extension of this was
developed by United and Braniff to send messages (tickets)
to local Post Offices who would then mail the tickets to re
questers. Technically the application was sound; however,
objections by travel agencies and some control difficulties
resulted in this application of electronic mail being shelved.

The biggest single expansion in the reservations services
has been the development of travel agency services by sev
eral airlines. American and United currently dominate this
offering which now includes the co-hosting of these services
for other airlines on the American and United systems. Bas
ically, the service includes the traditional reservations fea
tures; however, it now has been enhanced to handle itiner
aries, invoicing, and special reports. These systems provide
a very cost effective shortcut to the traditional method of
calling an airline's reservations office, handwriting tickets
at the travel agency, performing credit checks, sending the
credit card receipts to the credit card company for payment,
and the eventual payment of the airlines in response to their
invoicing. Today direct links between travel agencies, the
airlines and the credit card companies are an early example
of the merger of Electronics Funds Transfer with Electronic
Mail.

PROBLEMS

The airlines have been aggressive in the use of telecom
munication networks for reservations, real-time processing
of maintenance and engineering and flight operations mes
sages, and for corporate message transmission. Millions of
dollars worth of terminals and communications equipment
are currently installed using the very efficient but limited
ALC line discipline. t With the continued rapid introduction
of new applications which go far beyond the original design
specification of the networks and hardware, severe restric
tions and costly redundancy are being experienced.

Computer and communications equipment reliability needs
to be improved. Availability of 99.5 percent is still very dif
ficult to achieve even at the central site. With the expanded
networks automated detection, control and repair of the cir
cuits is essential. A 95 to 98 percent availability using com
mon carrier facilities is still a challenge, requiring sophisti
cated and expensive test equipment to assist the vendor in
problem diagnosis.

Data security is becoming increasingly important. The
preponderance of data being delivered across airline com-

t Limited to 64 characters due to the 6-bit structure_ of the code.

munication networks is easily susceptible to compromise.
As further use is made of these networks for vital company
information and financial transactions, data will need to be
protected. The use of the current line disciplines will se
verely hamper this protection. Accompanying security is the
need for improved message assurance. Recent developments
in computer vendor offerings will need to be employed to
improve the consistent quality of the delivered product.

The airlines have been slow to upgrade to the new vendor
network architectures like the IBM System Network Ar
chitecture/ DEC Network Architecture4 or the Communi
cations Industry X.25 recommendation.5 The slowness can
again be directly attributable to the high replacement costs
and the lost efficiency for some of the systems with the high
est performance requirements. Clearly, experience in past
development will help for the future; however, due to the
generally individual development of functions, and the sol
idly entrenched standards, integration and control of up
grading will be a sizable challenge.

FUTURE

The airline industry was an early user of Electronic Mail.
It has been building on its base of applications and experi
ence. Looking at the new technology coming from the R&D
labs of the computer and communications industries gives
a view of future capabilities. Fiber Optics and Satellites com
bined with increased use of LSI and VLSI chip technology,
along with advances in bubble memories, will make available
larger data paths with increased intelligence. Public Net
works offering packet switching services such as TELENET
and TYMNET will gain users, saving the trouble and ex
pense of dedicated networks. Common carrier offerings like
DDS and ACS will make access and use of networks easier
and cheaper. The airlines are just now moving up into the
use of broadband channels such as their recent introduction
of 56KB circuits. The airline industry requirement for real
time availability of information will force the continued ex
pansion of the use of message switching.

This author believes the next phase of activity will be in
further integration and interconnection of computer system
data bases allowing more automatic generation of messages
to service the operating divisions. With improved quality of
digitizing techniques, facsimile processing for legal and ad
ministrative purposes will expand. Today's use of facsimile
for sending contracts, personnel resumes, and technical
manuals will also increase.

Unified networks are sure to be more heavily employed.
The X.25 and SNA standards will be increasingly used. Ap
plications will be modified to further reduce the manual in
tervention required today. Finally the increased logic ca
pabilities of the computer and communications equipment
are sure to be major contributors to the coming improve
ments.

Little has been said about the importance of the man-ma
chine interface. The best offerings of new development can
not be effective without taking into careful consideration the
user. Today the preponderance of credit card, check-in,

boarding, and departure information is input manually. The
use of concepts like Point of Sale is a needed enhancement.
The accumulation of station data is also a manual process.
Distributed Data Processing systems will be further em
ployed to minimize the effect of communications failures and
increase the computing power available for airport auto
mation.

CONCLUSION

The airline industry is among the leaders in the use of
electronic mail technology and concepts. The benefits have
been rapidly realized, resulting in improved manpower ef
ficiency, reduced aircraft inventories, improved availability
of aircraft, and improved passenger handling.

The impediments to the employment of the rapidly im
proving technology are significant and costly. Timing will
be dependent on when the return of investment for the new
capabilities is sufficient to warrant the multimillion dollar

The Growing Use of Electronic Mail by Airlines 507

investment. The pace is apt to be slow relative to the addition
of new applications; however, with further improvements
in communication front end processors and distributed pro
cessing power, the ability to gradually upgrade the networks
is possible and will undoubtedly take place.

REFERENCES

1. Frost & Sullivan Limited, "The Electronic Mail Market in Europe," 106
Fulton Street, New York City, USA, Report #E312.

2. J. C. Goodlett, "The UPARS Network-An Extensive Network Servicing
Several Diverse Applications," Proceedings of The European Computing
Conference, London, September 1975.

3. J. H. McFadyen, "Systems Network Architecture: An Overview," IBM
Systems lournal15, No. 1,4-23, 1976.

4. G. E. Conant and S. Wecker, "DNA, an Architecture for Heterogeneous
Computer Networks," Proceedings of the Third International Conference
on Computer Communications, Toronto, 618-625, 1976.

5. Public Data Networks, CCITT Sixth Plenary Assembly, Geneva, Septem
ber 27-0ctober 8, 1976, International Telecommunications Union. Geneva,
Switzerland, Orange Book, VIII. 2 and supplements, 1977.

Metamorphosis: facsimile communications, electronic mail
and office productivity

by JOHN E. COCHRAN
QWIP Systems,
Division of Exxon Enterprises Inc.

Information is a fundamental resource that can be leveraged
to meet the demands of the imperative for productivity im
provements in our offices.

Information is the primary element of ideas and creativity.
New ideas, analyses, creativity, and synergy are the corner
stones of improved planning and problem solving They
are the foundations of consideration of more and unique
alternatives, and they are the prerequisites for better deci
sions.

More accurate, more complete, more comphrehensive in
formation, developed and delivered more expeditiously and
more efficiently to the real users of it, is the highest pay-off
ingredient for better management.

Better management ... of time, people, money, facili
ties, tools, energy ... is our hope for improving produc
tivity in our offices during the eighties.

The office worker has finally gained the majority of the
total United States labor force. Secretaries, executives,
professionals, managers, administrators, all create, use and
communicate information. These workers make more than
100 billion telephone calls, and they produce 72 billion doc
uments, while maintaining another 300 billion, each year.
And, these volumes are growing at a rate of 20 percent an
nually. The problem of productivity in our offices is not
caused by insufficient production of information. Indeed,
you and I are usually overwhelmed by the volume of it.

The forty-five million or so American workers who use
information are constrained not by the amount of it, but
either by the timely availability of it, the facility for deliv
ering it to the right users of it, and by the prioritization of
it so that it can be useful within the limits of our human
abilities to manage it as a valuable resource.

How frequently have you and I said the following

"If I had only known those numbers when I made that
decision"

or
"Why didn't you bring those facts to my attention when
I needed them"

and
"Gosh, I remember now that you told me that, but I
had other things on my mind and I just didn't remember
what you'd said." ...

509

The information explosion in our country has become so
much a part of our lives that managers now spend 95 percent,
and professionals 63 percent, of their time communicating
it in written and oral form. 1

But what are we doing to support these people who rep
resent one of the greatest opportunities to improve the vital

, productivity problem in our country?
Productivity in the office has risen just four percent over

the past decade, compared to a 90 percent improvement in
industrial productivity. Increases in farm productivity are
legend.

However, the average American farmer is supported by
$54,000 worth of capital equipment and the average factory
worker by $31,000. On the other hand, the office worker
. . . remember, now in the majority of our work force
. .. is supported by only $2,300 worth of capital equip
ment. 2

I'm sure some of you have heard these kinds of numbers
before, and since it's not new news, you may be saying,
"So what?"

My point is simple;

Our country has an economic problem called produc
tivity. It can be measured in our expense budgets and
tracked by the escalating inflation rate. Our big target
for improving productivity is the office. Once inside the
office, our bullseye is the manager and the professional
... not the secretary or the clerk. Our real target is
the decision maker, the influencer and the creator. Our
goal must be to supply these people with their most im
portant tools. Certainly, their single most important tool
is information. They cannot manage without it.

As the facsimile industry leader and spokesperson, we at
QWIP Systems believe facsimile communications offers a
significant solution to the productivity problem. We believe
that facsimile communications is the most efficient way to
move information to its real point of need so that it can be
utilized by people to make more informed, more timely,
hence, better, decisions. In this country alone, almost a
quarter million workers have discovered facsimile to be a
prerequisite of the management process. 3 And they represent
only the tip' of the iceberg.

510 National Computer Conference, 1980

Facsimile communications has been around for over 135
years. 4 However, the real market, and the one with the great
est promise for improving information utilization, did not
begin to develop until the 1960's.

The first users of facsimile products during the modern
era generally had a highly applications oriented need for
transmitting graphic information like charts, photographs,
advertising copy and the like. It was obvious that since fac
simile re-created the image of an original document, it was
inherently the most accurate way to communicate infor
mation. Also, since it produced a hard copy reproduction
of the original document, the information that was com
municated had lasting value ... it could be filed, copied,
manipulated, recalled and annotated.

This inherent value was perceived by entrepreneurs and
major businesses alike, and in the late 1960's firms such as
Xerox, and new companies, like Graphic Sciences, entered
the market.

By 1974, several firms were in the market, including 3M,
with the Japanese giant Matsushita for a partner, and a new
venture of Exxon Enterprises Inc., called QWIP Systems.
A new term had emerged as a descriptor of a market subset,
termed convenience facsimile. 5

Indeed, by the mid-70's, it was obvious that facsimile com
munications had gained industry stature, and that customer
usage, while still applications driven, was becoming less spe
cialized. Facsimile products were being used to communi
cate textual information as well as graphical, and had the
capacity for doing both on the same document. No other com
munications medium could cost effectively do this for con
venience use. Facsimile products were being moved out of
the laboratory and specialty areas and mailrooms, and into
the offices. Thousands of users began locating the equipment
on desks and credenzas when they could obtain products
that were attractive enough to fit into their "human space."

By the late 1970's, three distinct market segments had
established themselves within the facsimile industry. QWIP
Systems had taken possession of the low end of the market
with its 4,6 minute highly portable products, while racing
with Xerox, Graphic Sciences, now a division of Burroughs,
and 3M in the medium speed, 2,3 minute market segment.

In addition, several companies had created a third, high
speed, market segment with the launch of several new prod
ucts capable of transmitting documents in a minute or less.

Today, buyers can purchase the low speed machines for
$500 to $2,000, the medium speed machines range in price
from just under $2,000 to $8,000. And the new high speed,
one minute and subminute machines are the very expensive
darlings of our industry, cost as much as $15,000.

It is our belief, at QWIP Systems, that the low speed mar
ket has matured, with a domestic population of just over
160,000 units installed. The medium speed segment of our
market appears to be the one with the greatest growth po
tential during the next five to ten years. Vendor congestion
and competition in the high speed segment, the high price
of the units, and the significant problem of general lack of
communications compatibility between different brands, ap
pear to be limiting factors to us in this segment during the
next few years.

In order for facsimile products to meet the information

needs of tOday's business managers, they must communi
cate. Different vendors must adhere to the international fac
simile standards established by the International Telegraph
and Telephone Consultative Committee (CCITT), such as
those published for the Group II machines, which we at
QWIP Systems have adopted for our medium speed prod
ucts. The adoption of these standards in product design is
. a fundamental responsibility that is shared by all manufac-
turers of facsimile products in order to satisfy the needs, in
fact, the demands, of our customers. In our opinion, the
utilization of dissimilar protocols in some facsimile products
has limited the natural, even more rapid expansion of our
market, that could have otherwise been experienced.

Our market projections in the various segments I have
described lead us to expect that the installed base of the low
speed units will grow from 160,000 at the beginning of this
year, to about 175,000 at the beginning of 1985. The medium
speed unit base will grow from about 25,000 units to well
over 300,000 during the same time period, and we expect the
high speed machines to grow from just under 10,000 units
to about 30,000. * We at QWIP Systems also feel, however,
that these are very conser'Vative projections.

Indeed, the advent of new lower cost technology, new
intelligent communications networks, and more human en
gineered facsimile products, coupled with government and
industry's dramatic requirement for white collar productivity
improvement, could literally explode these projections.

Our industry's challenge, then, will continue to be the
effective management of our growth, the delivery of reliable
products . . . and the provision of excellent service to our
customers.

Before I leave this area of the market, I do want to briefly
mention two very important facsimile aftermarkets that are
occasionally overlooked. In our business, the common car
riers and the specialized common carriers find facsimile net
work services to be lucrative. ,Our rule of thumb is to project
that each installed facsimile machine will generate its value
in communications services revenue each year. The after
market for consumable materials, supplies and service is the
second most significant area for revenue, mostly accruing
to the facsimile manufacturers. In fact, we estimate that by
1985, industry revenues from materials, supplies and service
will approximate twenty percent of the annual machine rev
enues from outright sales and rentals. **

Now, let's spend the rest of our time together discussing
the probable evolution of our industry, and its impact on
electronic mail.

Facsimile in the next four to five years will take advantage
of new technology as well as enhancements that are devel
oped in the convenience facsimile machines similar to those
in existence today. The convenience facsimile market will
continue its rapid growth and, in addition, there will be an
emergence of multi-functional products which will merge
facsimile with other automated office functions.

Let us now examine the' basic technologies involved in
facsimile and some of the general trends occurring in these

* Estimates based on Market Projections, QWIP Systems, Division Exxon
Enterprises Inc.
** Estimates based upon projections of QWIP Systems, Division of Exxon
Enterprises Inc.

Facsimile Communications, Electronic Mail and Productivity 511

areas:
Scanning is the process of analyzing the copy into a serial

stream of light intensity variations, which in turn are con
verted into voltage variations.

Traditionally, the process has used electromechanical and
electrooptical devices; however, the trend is toward solid
state, laser and fiber optics. Recent developments such as
photodiode arrays and charge coupled devices (CCD's) will
pave the way for high speed scanning, improved reliability
and lower production costs while being compact, stable and
quick to respond.6

Printing is the process in which the transmitted image is
reconstructed by converting the receive voltage variations
into marks on the paper. Some of the more recent devel
opments in non-impact printing include laser printing, pre
cision matrix printing, ink jet, and improved thermal print
ing, which will enable high quality images on bond-like
paper. These processes offer speed capabilities that range
from 10 characters per minute to 45,000 lines per minute.7

Advanced machines will be capable of making multiple cop
ies upon receiving remote commands. Many transmitted
documents are business forms which consist of fixed formats
and variable information. Future machines will make use of
an electronic overlay technique which will enable users to .
transmit the variable information only, thus reducing com
munications time and cost. 7

Storage: The storage requirement for a typical page with
a resolution of 96 x 96 lines per inch requires a capacity of
one million bits. Data compression can reduce this require
ment to approximately 140,000 bits. Typical storage costs
have ranged from approximately 0.001 cent per bit to 0.7
cent per bit, depending upon technologies employed, and
are expected to drop. This trend in cost reduction will enable
practical store and forward systems. New solid-state mem
ories, such as magnetic bubble memories, are beginning to
become attractive in some office product applications as a
result of their ability to store large amounts of information
in a non-volatile mode.

Optical/Laser memories are capable of very high storage
densities but are still only capable of intermediate speeds
and they are somewhat limited to permanent archival-type
storage applications.

Electronic Controls: The constant effort of electronic com-
. ponent manufacturers toward the design of standardized
off-the-shelf building blocks such as LSI chips, memories,
microprocessors, interface chips, peripheral chips, etc., has
permitted lower product design and development costs.

Electron beam or x-ray lithography will improve the man
ufacturing process, thus permitting a further increase in gate
density per chip. This will result in more powerful localized
processors, thus permitting more functions at the terminal
at lower costs.s

Communications: The public switched network has been
the prime communication link for facsimile and electronic
mail. Analog transmission in two minutes is now common
place. Improvements in modem technology have enabled
digital transmission at 4,800 bits per second. Up to 9,600 bits
per second on the switched network is now possible; how
ever, the cost of these modems has been substantial. LSI
technology as well as a recently announced analog micro-

processor is expected to drastically reduce the cost of signal
processing and the equalization functions of these modems. 9

The cost of digital facsimile products will drop, making dig
ital devices practical at the point of need.

In addition, specialized common carriers and value added
networks such as ITT's FAXPAK, Xerox' X-Ten and SBS,
utilizing different technologies such as satellite communi
cations and packet switching, will make higher speeds avail
able at competitive costs. The advent of CCITT standards,
such as the recently approved Group III facsimile standard
in Kyoto, Japan, will insure compatibility on an international
basis among various vendors' equipment.

The above technological trends coupled with a market
demand for more office automation will result in the exis
tence of two families of products; the convenience facsimile
terminal and the multi-functional office terminal. The con
venience fax terminal will continue to offer more and im
proved features and yet will remain within a price range
which permits cost effective applications.

According to certain market analysts, in addition to the
convenience facsimile device, the multi-functional terminal,
which is compatible with existing machines, will emerge.
This terminal will be capable of resolution in excess' of 300
lines per inch, producing correspondence quality copy. The
unit will also interface with other communicating office prod
ucts such as word processors, TWX/Telex, and electronic
date processing devices; thus making this a shared scanner
printer with both text and graphic capability. The terminal
will provide local photocopying and will have storage and
retrieval capabilities, as well. JO Some of today's products
such as the IBM 6670, Xerox 9700, Wang IP41L and Toshiba
L2017 already have the capability to perform several of these
functions. For example, the IBM 6670 utilizes a laser printer,
has mUltiple copy capability, can transmit and receive over
ordinary phone lines, and will interface to the IBM 370 EDP
system and the IBM Mag Card II typewriter. Although the
6670 does not currently perform graphics nor can it accept
facsimile input, II it is apparent due to its laser scan type
printing that graphic capability could be easily added.

When evaluating products, this new breed of facsimile
device (multi-functional terminal) could become a key com
ponent in the electronic office. Facsimile is the only product
having the ability to communicate both graphics and text,
making possible the transmission and hard copy generation
of an infinite variety of data. This data can originate from
original documents, EDP systems, word processors or other
facsimile terminals. The device will minimize communica
tion cost by permitting after hours transmission of data
through the use of an autodialer and a store and forward
option, as well as allowing for the utilization of value added
networks which also permit communication with non-com
patible equipment. In addition, the unit will provide con
venience copying from a hard copy original.

The system, of course, will include the use of remote low
cost portable facsimile terminals. This integrated system
should begin to find market acceptance later during the 80's.

I've already characterized our industry's history and pro
vided an overview of what is to come.

We have seen the change, and expansion, from highly

512 National Computer Conference, 1980

specialized products and customer applications to this new
era of so-called convenience facsimile. We've watched the
transition of products from low speed to faster speeds, and
we've touched on the customer demand, and subsequent
supply, of products that are designed to provide more com
munications compatibility with dissimilar brands.

I believe the next few years will be no different from what
has now become commonplace . . . more changes .. ,
at a faster rate. We call it industry metamorphosis.

To illustrate my point, let's evaluate buyer motives that
should find expression in new products and services during
the next few years. The first, and most obvious, that I've.
already introduced to you, is the imperative for improved·
office productivity.

New facsimile products must then be provided that offer
convenience, ease of use, automated paper handling, micro
processor machine control, and automated telephone man
agement and utilization. These new products must be de
signed to solve the real productivity problem ... they must
target the information they communicate to the real point
of need-the manager and the professional. These new
products must be so cleverly designed that they fit within
the price parameters of the purchasing decision· makers, so
they can be demonstrated to be cost justifiable for the white
collar worker's personal use. And they must be attractive
enough to fit into the personal work space of the people who
use them.

Facsimile products, then, will be friendly and easy to use.
They will be transparent to the user and they will be cost
justifiable to the buyer. In many cases, they will expedite
information delivery to the real user, rather than to the mail
room attendant or the clerk who is often positioned be
tween the communicators ... who, because of their posi
tioning, tend to delay an reprioritize the delivery of time
critical messages.

The next few years of our business will be characterized
by more general customer use. Our studies at QWIP Systems
have indicated that in the past about 90 percent of all fac
simile use was applications specific and a like percentage of
use was for intra-company communication. Our customers
are now beginning to tell us that they need to communicate
with their customers, their business associates and their sup
pliers. And they want products that can be used to send
letters, order entry documents and graphs, without as much
emphasis on special uses. Communications compatibility
with a wide variety of competitive products is now an es
sential rather than an added feature.

Now, what role does facsimile play in the emerging elec
tronic mail-electronic office-marketplace? I feel we need
to revisit the fundamental reason for the emergence of this
new market, and the basis of this report The prereq
uisite for white collar productivity improvement . . . to
complete our perspective and to answer the question. Here
tofore, the most attention for instituting office automation
to improve productivity has been in the product areas of
"word processing" and "machine dictation." Studies show
that typing productivity can be improved by orders of mag
nitude from 200 to 500 percent by word processing systems,
and author composition can be improved by 30 to 50 percent

through the use of machine dictation, although user resist
ance has retarded the exploitation of dictation as a real pro
ductivity improver ..
. When evaluating the overall distribution of labor costs in

American businesses, the secretary-typist represents only
about 6 percent of the total. On the other hand, non-clerical
labor costs are about 66 percent of the total.

I am not belittling the development of word processing
products as productivity problem solvers-their outstanding
results in the typing area speak for themselves. The real
opportunity for leverage, though, according to the noted
analyst, James Bair,1 and we agree, is in the support of the
manager and professional. To illustrate, United States busi
ness costs for secretary-typist labor exceeds $4.4 billion,
contrasted to non-clerical labor costs of about $250 billion.
The leverage then can be demonstrated on the basis oflabor
costs alone.

As I stated in my opening remarks, most of what managers
and professionals do each day is communicate information.
Bair has . estimated that electronic mail has the potential of
saving managers and professionals about 2 hours a day by
improving the way they communicate, by making commu
nications more efficient, and he has projected that the re
sulting increase in productivity could save U.S. business up
to $62 billion a year. His treatment, while academic and per
haps optimistic, is nevertheless interesting . . . and ap
pears to be valid.

We believe that facsimile products, as ubiquitous elec
tronic mail communicators, offer outstanding benefits to the
electronic mail customer. First, original documents, whether
graphic or text based, can be transmitted. Second, once
transmitted their messages have lasting value and can be
copied, filed, annotated and redistributed with ease. Next,
original documents can be communicated without the need
for expensive reformatting. And, last, facsimile products can
be inexpensive. Ours are, and they fit into the work station
without intrusion.

Yes, we are all a part of the metamorphosis of our indus
tries, the office environment and the evolution toward a
more productive place in which to work. Those who succeed
in this changing market will demonstrate flexibility, aware
ness of the importance of communications and will recognize
the real targets for their products. They will have developed
products that are responsive to market needs, yet they will
boldly drive their markets with a keen sense of leadership.
They will have assembled marketing and engineering orga
nizations that are capable of customizing systems and net
works of their products, even including those of their com
petitors, if necessary, to meet customer demands.

They will p.ave made the connection between information
and those who must have it, use it, and make decisions based
on it.

REFERENCES

1. James H. Bair, "Communication in the Office of the Future: Where the
Real Pay Off May Be," Submitted to the International Computer Com
munications Conference, Kyoto, Japan, August 1978.

Facsimile Communications, Electronic Mail and Productivity 513

2. Morris Edwards, "Automated Office Adds Muscle to White Collar Pro
ductivity Drive," Communications News, May 1979.

3. QWIP Systems, Division of Exxon Enterprises Inc., Proprietary Data.
4. Daniel M. Costigan, Fax, The Principles and Practice of Facsimile Com

munication, Chilton Book Co., 1971.
5. Facsimile markets, International Resource Development, Inc., April

1979.
6. IDC Report, "Fax Marketing Forecast," March 1979.
7. Elizabeth A. Hughes, "A Printer Primer," Computing, Inc .. Fall 1979.

8. Rajchman, J., Science 195, 1223 (1977).
9. Robert H. Cushman, "The Promise of Analog Microprocessors; Low

Cost Digital Signal Handling," EDN, January 5, 1980.
10. The Yankee Group, The Second Annual Symposium on Implementing

Advanced Office Information Systems, June 10, 1979.
11. Robert Conrad, "Intelligent Copiers and Image Printers for the Office of

the Future," Strategic Business Services, 1979.
12: Bolt, Beranek & Newman Inc., Communication Technology Forecast

Report 4037, January 1979.

Texas Instruments computer communication network.
and its support for the automated office

by JOHN W. WHITE
Texas Instruments Incorporated
DalJas, Texas

This paper will give an overview of the Texas Instruments
Incorporated worldwide computer/communications network
(as of November 1979) and specifically emphasize-its support
for electronic mailing, electronic filing, and network con
nected word processing capability.

TEXAS INSTRUMENTS THE COMPANY

Texas Instruments is a multi-national corporation with
forty-eight major plant sites in eighteen countries. The map
of the world shown in Figure 1 depicts the major manufac
turing sites and the year of initiation of operation at each of
these locations.

Texas Instruments is a diversified'company with the Semi
conductor Group offering micro-electronic systems, inte
grated circuits, micro-processors, and memory systems; the
Digital Systems Group offering mini-computers, terminals,
and distributed processing systems; Consumer Group offer
ing digital watches, calculators, and electronic learning aids;
Metallurgical and Electrical Products Group offering preci
sion metals and electrical control products; Equipment
Group manufacturing defense systems such as missiles, laser
guided bombs, and high precision radar systems; Geophys
ical Exploration Group providing petroleum exploration ser
vices, both land based and marine; and the TI Supply Com
pany, a distribution arm for the products manufactured by
the other divisions of the company.

Texas Instruments is a growth company as shown in Fig
ure 2. In 1946 when the laboratory and manufacturing di
vision of TI's founding company, Geophysical Service In
corporated, was established, net sales billed were $3 million.·
In 1978 net sales billed were over $2.5 billion. Some
of the TI's major products which have helped TI's growth
were the introduction of the first commercial silicon tran
sistor in 1954, the single chip micro-computer or calculator
on a chip in 1971, the bubble memory device in 1977, and
the 64K dynamic random access memory in 1978. One of
TI's newest innovations, announced just this year, is the 64K
E-PROM which should prove to be another major product
to add to this list.

515

INFORMATION SYSTEMS AND SERVICES

The Information Systems and Services organization of TI
is chartered to provide computer systems and communica
tions capability to TI worldwide. The Information Services
organization operates the Corporate Information Center in
Dallas, operates the Voice and Data Communications Net
work and is responsible for the advancement of this com
puter/communications network.

The Information Systems organization has responsibility
for working with user groups to define, develop, and main
tain applications systems supporting engineering, manufac
turing, marketing, and the corporate control functions.

To get a better perspective of this Information Systems
and Services organization I would like to describe briefly the
computer/communications network that offers these ser
vices. First we will look at the central computer center that
supports this organization, the Corporate Information Cen
ter (CIC).

Corporate information center

The Corporate Information Center is located in Dallas,
Texas, and it is driven by six IBM 3033 mainframes. These
computers have access to over three hundred twenty disk
drives and eighty tape drives. They operate in a loosely cou
pled multiprocessor environment under JES3. In order to
provide the high degree of reliability that is necessary to
support the corporation, software and hardware is fully
tested on an IBM 3031 in a VM environment prior to being
placed into production.

As shown in Figure 3, two hundred seventy-five remote
job entry terminals are interfaced to CIC and have access to
batch processing capability on all six of these large main
frames via the JES3 job entry system. There are over eight
thousand inquiry terminals that have access to the inquiry
terminal network processing under IMS on two of these
CPU's. These two IMS CPU's interconnect via channel-to
channel adapters through the Multiple Systems Coupling fea
ture of the Information Management System. Many ofthese
terminals also have access to the TSO time sharing system
which also runs on two separate processors in this complex.

516 National Computer Conference, 1980

Figure I

Data communications network

Two hundred seventy-five remote job entry terminals,
8000 inquiry terminals, and 135 distributed processors are
connected to the Corporate Information Center and to each
other through a worldwide data communication network
shown in Figure 4. The international network is made up of
high speed trunk lines managed by communications proces
sors with service emanating from our computer center in
Dallas. A 50 kilobit line between Dallas and Singapore serves
the plant sites in Singapore, Malaysia, Taiwan, Australia,
and the Philippines. A 19.2 kilobit connection between Dallas
and Tokyo serves the TI plant sites in Japan. To Europe,
we have three 50 kilobit lines plus multiple 9600 baud lines
which are used for voice communication and as emergency
backup for the 50 kilobit links. Central America and South
America are served with 9600 baud circuits to EI Salvador

and Panama with low speed lines (teletype) to Argentina and
Brazil.

The TI International Network is managed by a packet
switching system based on TI's 980 computer. The proces
sors that manage this network are referred to as TICOG (TI
.Communications Grid) processors shown schematically in
Figure 5. This network allows the mUltiplexing of multiple
devices and functions over a single communication line by
supporting remote job entry terminals and distributed pro
cessors as well as direct interface for inquiry terminals. Al
ternate routing provides improved reliability of the com
munications network. Failure of a link within the network
is detected within twenty seconds and traffic on that link is
routed through the appropriate alternate route. By utilizing
a continuous-transmit/selective-retransmit protocol we get
a four to one improvement in line utilization over conven
tional protocols on satellite links. Priority queueing for the

Texas Instruments Computer Communication Network 517

interactive functions (IMS and TSO) minimizes the impact
of communication delays within the network.

Distributed computing

In order to provide the improved reliability, improved re
sponsiveness, and the lower cost of specific processing func
tions, this network is supported by 135 full function distrib
uted processors supporting applications such as order entry,
purchasing, receiving, material control, work in process,
automated warehousing, and material accountability. These
distributed processors primarily provide real time interactive
interfaces for high performance functions.

The current network supports basically a Jhree level com
puter hierarchy with the CIC representing Level I majormain
frame capability, and distributed processors at Levels III
and IV. We are planning for a computer network as shown

in Figure 6 giving us a four level computer hierarchy with
IBM mainframes at Levels I and II and TI 990 mini-com
puters at Levels II, III, and IV within that hierarchy.

Level I systems will provide corporate consolidation and
globally accessible data bases. Level II will be site proces
sors supporting an individual site and possibly very near
access areas such as field sales offices. Level III supports
small sites and also functional areas such as a manufacturing
line or an inventory control point within a large manufac
turing operation. These Level III systems will also be used
as the primary processor in field sales offices for order entry,
finished goods, inventory control and financial systems sup
port. Level IV systems will be used as interactive work sta
tions for engineering design functions and as word processor
work stations which will be discussed later in this paper.

The current TI network supports over 135 distributed pro
cessors that are connected to the TI master network: This
collection of distributed processors is growing rapidly at the

HIGHLIGHTS OF 11 GROWTH SINCE 1946
NET SALES BILLED MILLIONS OF $

2600
2400
2200
2000
1800
1600
1400
1200
1000

~

800
600
400
200

II

SII.
R.
n.
P.
O.
N.
M.
L
K.
J.
l.
H.
G.
F.
E.
D.
C.
B.
A.
"

'Pi

II II II II II II II II II II II II II II E
D'1US: 11 6U4KURAUMII; ,U'SpUEADK ,D SUpEUUU .. U U U U II

'J '17: PLUG·IN CALCULATOR SOFTWARE

rRJ'~
'17: BUBBLE MEMORY + TERMINAl
'16: 3D SEISMIC DATA PRODUCTION
'75: COMPATIBLE MICRO/MINICOMPUTER FAMILY
'15: ElECTRONIC WATCHES INTRODUCED
'72: CALCULATOR PRODUCTS INTRODUCED pi II '71: SINGlE CHIP MICROCOMPUTER INTRODUCED ==
'71: MINICOMPUTERS AND TERMINAlS r~ '65: CLAD METAL FOR U.S. COINS r~~fj
'63: NEW DIGITAL SEISMIC EXPlORATION rJ I;)
'S9: METALS. CONTROLS CORP. MERGER
'58: INTEGRATED CIRCUIT INVENTED rA '54: 1st COMMERCIAL SILICON TRANSISTOR MrJ '54: 1st COMMERCIAL POCKET RADIO K .ill
'53: LISTED ON N.Y. STOCK EXCHANGE LrJ '52: ENTERED SEMICONDUCTOR BUSINESS ::::::!'

r,.t • • '51: PRESENT COMPANY NAME ADOPTED
~ . • '46: GS. lAB AND MFG. DlV. FORMED

II Jl.!J~ -..
Ii- .• •• I

(, H III':; :iiiiii :iii
B C 0 E F G ~ II II

--:::;;;.. IIII o
1946 ' 49 '52 '55 '58 '61 '64 '61 '10 '13 '16 '18

Figure 2

518 National Computer Conference, 1980

Figure 3

present time and is expected to accelerate in growth as more
comprehensive functionality is developed for these distrib
uted processors.

THE AUTOMATED OFFICE

This section will discuss how this network provides sup
port for the automated office functions of word processing,
electronic mailing, and electronic filing.

Electronic mailing

The electronic mailing function at TI is supported by a
system referred to as MSG which has been in service since
1971. MSG is used for document preparation, storage; dis-

tribution, and redistribution of message text. It supports a
broadcast capability allowing a single message to be sent to
multiple locations. It offers security for storage, access, and
distribution and supports a direct interface to the public telex
network. One feature :of the MSG system which is now prov
ing quite effective is the ability to insert messages into the
MSG distribution system from other application systems.
This is possible since the MSG system runs under our full
function IMS system and therefore has realtime access to
all inquiry terminals within the TI network.

These application systems insert messages into the MSG
system to indicate such events as the completion of batch
processing cycles and the subsequent availability of reports
from these management systems. MSG also supports the
capability for individual electronic post office boxes so that
one can manage personal messages and get access to these
personal messages from any point within the network. Mes-

Texas Instruments Computer Communication Network 519

. sages within the MSG system are retained in an on-line queue
for approximately ten days before being purged.

Figure 7 shows the number of MSG transactions per day
increasing from ten thousand per day in year-end 1977 to an
average of twenty thousand a day in August 1979. The cost
per copy has decreased throughout this time period due to
improved cost effectiveness of computer and communica
tions capability offering the service and economy of scale
benefits that accrue from increased shared usage.

The MSG system is used by a wide variety of TI personnel
including engineers, secretaries, planners, managers, con
trollers, and even ships at sea. Our geophysical exploration
business has a fleet of marine exploration vessels which com
municate via Marisat to the CIC and therefore have access
to the MSG system as well as other management systems
within the Corporate Informatiop Center.

Electronic filing

The primary system that is used with TI for electronic
filing is referred to as TIOLR (TI On-Line Reporting).

TIOLR was originally conceived solely as a cost effective
alternative to printing. This system was designed as a hi
erarchical reporting structure accessible on-line by any ter
minal in the network and therefore offered additional ca
pabilities. Some of the current applications are computer
generated reports, electronic newspaper, reference infor
mation, systems documentation, and it is also used as an
input mechanism for data collection functions.

The basic element of the on-line reporting system is the
page with size set at a maximum of 66 lines by 132 characters.
Figure 8 portrays the data structure which allows for a large
number of reports, forty generations of each report, and 5600

Figure 4

520 National Computer Conference, 1980

Figure 5

chapters per generation, sections per chapter and pages per
section.

TIOLR is used for electronic filing and on-line reference
allowing users to view one page at a time on a video screen
with individual page addressability. Chapter, section, and
page flipping with large page scrolling on a small screen is
supported by function keys. Reports can be created, up
dated, and displayed on-line. Batch capability can be used
for creation, update, and volume printing from this on-line
file. Information security is offered at the report, generation,
and page levels for separate read and update authority.

The TI On-Line Reporting capability was introduced in
the third quarter of 1977 and its volume has increased dra
matically especially during 1979 as its use became prevalent
throughout TI. Figure 9 shows that the number of reports
that are currently stored on-line is somewhat over 6000 and
the amount of data stored is approximately four million

bytes. Cost per transaction has reduced from 3.9¢ in 1977
to 3¢ by year-end 1979.

Word processing

Word processing at TI is served through a TI internally
manufactured word processor that is used for document
preparation and filing. This system is connected to the TI
Communication Network either by acoustic coupled dial
up or by a direct dedicated connection.

The TI word processor is a TI 990 based mini-computer
with full page CRT, and letter quality printer as depicted in
Figure 10. The word processor supports two work stations,
each with a dedicated user floppy disk. The system may
function in a standalone mode or connect via the computer/
communications link to other word processors, distributed

Texas Instruments Computer Communication Network 521

processors, or to the Corporate Information Center. The
communications interface utilizes a floppy disk to stage in
formation to and from the network. This allows communi
cations to operate in a background mode, freeing the word
processor work station for foreground text preparation in
parallel with communications.

When operating in the standalone mode the user can per
form text editing, local document storage and retrieval from
the floppy disk and printing from the floppy disk. By con
necting the word processor to the network, additional func
tions are provided including: interactive terminal emulation
for access to either IMS or TSO, and background communi
cations for direct electronic mailing and remote electronic
filing via the MSG and TIOLR systems.

There are currently 202 word processors in TI's network.

IMPLEMENTATION FACTORS

TI has established corporate growth goals of 3 billion dol
lars in annual sales in the late 1970's and 10 billion dollars
in annual sales in the late 1980's, as shown in Figure 11.

This growth thrust has stimulated the development of the
TI worldwide communications network and its hierarchy of
logic and memory. The communications network is an es
sential ingredient for implementation of affordable multina
tional integrated management systems, including those used
for electronic mailing and filing.

As a result of this thrust, the TI Distributed Processing
Network has grown significantly since year-end 1977 when
we had 39 distributed processors connected to the network.
Figure 12 shows this growth. By year-end 1978 we had 70

Figure 6

522 National Computer Conference, 1980

Figure 7

distributed processors connected to the network and as of
November 1979 there were 135 network connected distrib
uted computers.

In 1978 we saw a significant growth in our terminal pop
ulation, more than doubling our total installed base. The
percentage growth rate of terminals has decelerated in 1979,
however we will install more terminals in 1979 than were
installed in 1978. Network accessibility by a relatively dense
terminal population is a key element of success of electronic
mailing and filing.

In summary, the technology needs for the success of elec
tronic mailing and filing are: 1) an inexpensive communi
cations network (packet switching internationally in TI's
case) which is accessible to a large number of users, 2) multi
system access from each terminal in the network, and, 3)

word processors which are compatible with general purpose
terminals. At TI we have developed each of these.

THE BENEFITS

At TI we have seen a number of benefits from using the
three key office automation systems.

The MSG electronic mailing system is used by the sec
retaries to transmit messages while continuing to perform
text editing in the foreground. This reduces copying time,
messengering time, and improves the speed of communi
cation.

Benefits to the manager and professional from MSG elec-

Texas Instruments Computer Communication Network 523

tronic mailing include the sp~ed of communications and the
privacy that the electronic mailbox offers. One of the key
contributions is the synchronization of communications
worldwide. The system allows one to place a written copy
of a document into a manager's in-basket wherever he is
located worldwide allowing him to review it in his prime time
which may not coincide with the sender's prime time. The
recipient can then respond utilizing the same mechanism.
The system queues and allows resend or rereceipt of mes
sages while security prevents the transmitting of messages
for which you are not the owner.

Benefits of TIOLR electronic filing for the secretary are
the reduction of copying and messengering time. It also ex
pands the word processor file size and makes the information
created by word processors immediately and globally ac
cessible to other users within the network. It reduces pre
sentation cycle time by making the prepared documents im-

mediately available to all parties that are involved in the
presentation preparation.

Benefits to the manager or professional are worldwide in
formation availability and its timely distribution. Compatible
versions of this system are available on both CIC and the
TI Distributed Processors including support for online data
transfer between Central and Distributed TIOLR files.

Benefits of the word processors are that they can transmit
documents through TI's computer-communications net
work, act as an inquiry terminal and word processor at a
secretary's work station, and significantly improve typing
productivity.

SUMMARY

In summary, at TI we are now performing text manage
ment including local preparation via the word processor,

Figure 8

524 National Computer Conference, 1980

TEXAS INSTRUMENTS
INCORPORATED

TI USE OF ELECTRONIC MAILING AND FILING
MSG VOLUME AND COST

YEAR END YEAR END AUGUST
1977 1918 1919 - - -

NUMBER OF MSG TRANSACTIONS 10,500 16,300 19,800
PER DAY

0

CHARACTERS'ER MESSAGE 444 437 442

RECIPIENTS PER MESSAGE 3 4 4

COST PER COpy RECEIVED $.08 $.06 $.05

Figure 9

distribution via our MSG electronic mailing system, and gen
eralized filing capability for storage and access via the TI
On-Line Reporting system.

These capabilities are integrated with a full function com
puter-communications network in order to take advantage
of our existing network. The word processors have been
network connected in order to maximize the productivity

. gains for secretarial and clerical staff that utilize the word
processor for local document preparation.

We are extending these word processing capabilities to
our distributed processing systems in order to further max
imize the benefits of an integrated word processing/data pro
cessing computer-communications network.

With the tools that we currently have in place we have
realized significant productivity gains, however as these
functional capabilities are enhanced and further deployed
the benefits continue to accrue.

Texas Instruments Computer Communication Network 525

Figure 10

526 National Computer Conference, 1980

Figure 11

INQUIRY TERMINALS

NETWORKED DISTRIBUTED PROCESSORS

COMMUNICATIONS PROCESSORS (TICOG)

STANDALONE DISTRIBUTED PROCESSORS
(ESTIMATED)

YIE 77

2400

39

19

3000

Figure 12-Information systems and services; TI distributed processing
network growth.

YIE 78 NOV.79

4900 8083

70 135

28 32

5000 7500

Implementing electronic mail in a telephone system: more
than just talk

by GERALD TOMANEK
ROLM Corporation
Santa Clara, California

INTRODUCTION

For most of us, the office of the future is a vague concept.
We can see some dim shapes through the mists which look
like they might be the place we want to be in a few years,
but there is no obvious road from here to there. It would
help to define our goal so that we can know whether or not
we have arrived at the right place once we have gotten some
where, and it would help even more to know whether or not
we are getting closer to it as we move forward. Then we
could pick one of the paths that seems to lead in the right
direction.

We are tempted to define the office of the future as a col
lection of hardware, software or procedures, but I believe
it is really a label we give to a result we devoutly wish for:
increased white collar productivity. We have many support
systems today which look like paths toward that goal: data,
text, image and the most pervasive information support sys
tem in the office, the telephone system. Each of our enter
prises will find a different road to our own future office, a
path that becomes clearer step by step as we proceed. For
that reason, today's planning and purchasing decisions for
these information systems must allow for this evolutionary,
learning process. Flexibility, growth capacity, standard in
terfaces-these are the key words for the systems of today
that can become the systems of the future.

In this piece, I will illustrate one of the growth paths by
describing the evolution of a digital telephone system into
an integrated voice and text information system. A specific
type of electronic mail can now be provided from the tele
phone system to give the office workers a more complete
information system, aimed at increasing their productivity.
It also illustrates the potential future role of the digital tel
ephone system as the brain and central nervous system of
the office of the future. And it brings forward some of the
organizational impact that will accompany the move into the
future.

WHITE COLLAR PRODUCTIVITY: THE NEED FOR
NEW TOOLS

The office of the 1980's needs some new tools. The evi
dence is expressed in an increasingly familiar litany:

527

- White collar payroll has grown to more than 50 percent
of total payroll.

-However, the productivity of white collar workers is
increasing scarcely at all, up a mere 4 percent over a
ten year period.

The search for solutions to this growing problem begins
with an analysis of office worker occupations and the time
spent in key activities. * Sixty-six percent of white collar
payroll dollars (not headcount) goes to managers, adminis
trators and professionals (engineers, for example), 6 percent
to secretaries and 28 percent to other clerical support work
ers. The first class of workers spends most of its time in
information communication activities: gathering, sharing,
creating and processing information in many ways. For a top
executive, 95 percent of the day can be spent in these ac
tivities; for a design engineer, perhaps only 50 percent. But
for this class as a whole, an average 75 percent of the day
is spent reading, writing, making phone calls, going to meet
ings, preparing for meetings, even teleconferencing.

If most of the white collar payroll goes to workers who
spend most of their time on information communications
activities, the obvious place to look for increased produc
tivity is the information support systems for these workers.
Today we find word processing, the most advanced tech
nology in the office, serving the secretarial workers, not
helping a manager get significantly more done in a day. But
it has given us a taste of what technology can do for us. The
office of the 1980's must feature more information support
systems, and they must be aimed primarily at the managers
and professionals.

AN ELECTRONIC MESSAGE SYSTEM (EMS)

One of the new information systems which can be intro
duced to the office for increased productivity is variously
called an electronic message system, electronic mailbox or
computer based message system. This system allows users

* The figures cited are from "Communication in the Office of the Future:
Where the Real Payoff May Be," James H. Bair, Business Communications
Review, Jan.-Feb. 1979.

528 National Computer Conference, 1980

to send and receive message communications (those brief,
informal and usually perishable intra-company communi
cations) electronically. Messages are created, read and oth
erwise manipulated on terminals, which may be printers or
paperless CRT's. After creation, messages are stored on
online media for retrieval by the addressee. A central com
puter provides information control and processing functions
for users of the system.

In practice, an electronic mailbox is used just as a physical
mailbox. The user checks for new input a couple of times
a day, discards or answers the messages, and creates new
messages for other workers who use the system. Occasion
ally, he or she may want to forward a message to another
worker for their information.

If terminals are conveniently located, an electronic mes
sage system can substitute for some of the phone calls to
and from an office worker. All of those calls which are one
way ("Monday's staff meeting is cancelled") or which don't
require an immediate response (' 'Can we meet Thursday at
1O:00?") can be handled by an electronic mailbox. Twenty
to thirty percent of all intra-company calls may be of this
nature. An EMS saves time otherwise spent in telephone
tag, chasing back and forth to complete the communication.

It also saves the time wasted when a phone call interrupts
your dictation and you have to rewind your thinking, and
the time wasted while another party searches for informa
tion. See Figure 1.

Electronic messages also substitute for some of the paper
flow in the office. Because they are delivered to the elec
tronic mailbox instantly, there is no expense for intra-com
pany mail, copying costs, delivery costs, or postage. And
instant delivery means no wasted effort due to the late arrival
of an important message. It also means an increased feeling
of teamwork among the participants, when all team members
can be equally well informed, even if geographically spread
out. The benefits compound if users are in multiple time
zones, or travel frequently.

The elements needed to implement a successful electronic
message system are:

-Input/output-Terminals should be convenient to the
users, installed in or near their work area.

-Processor-Operation by many users at once is nec
essary, especially in larger offices. Response time must
be short, on the order of 1 second or less, but the ter
minal input rate is small bursts at long intervals.

THE PAY OFF - TIME SAVED
FOR OFFICE WORKERS

8 HOUR DAY POTENTIAL TIME SAVED

2 HOURS
NON-COMMUNICATIONS

ACTIVITIES

6 HOURS
COMMUNICA TIONS

ACTIVITIES

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I ,

SOURCE: SRI INTERNATIONAL
Figure I-The payoff-time saved for office workers.

30 MINUTES
BUSY - REDIAL

OUT - CALL BACK
NO ANSWER

60 MINUTES
WAITING

INTERRUPTION -
START OVER

10 MINUTES
NOTE TAKING

10 MINUTES
CHANGE MEDIA

Implementing Electronic Mail in a Telephone System 529

-Storage-For perishable messages, there must be enough
online storage for several days' traffic. Many installa
tions have found that the average user generates three
500 character messages a day, and that three days of
storage is generally adequate. Each site and application
has different requirements which alter these guidelines.

-Hard copy-Provision for hard copy is essential, al
though printers can be centralized or shared since their
use is less frequent than CRT's.

-Simplicity-The system must be simple to operate by
office workers with no technical or computer systems
background; and it must provide prompting or assist
ance when necessary, since usage will be infrequent
- once or twice a day with occasional lapses of several
weeks.

-Remote access-Users who are not on site must be able
to use the system to achieve the full benefits.

-Security-Mailboxes must be protected from access by
other people.

-System management tools-The system manager must
have statistics on usage and errors to effectively plan
and control.

IMPLEMENTING AN EMS IN A TELEPHONE
SYSTEM

There are many ways to implement an electronic message
system. A mainframe or minicomputer can be programmed

to operate an electronic mailbox, and packaged software is
available for this purpose. Time-sharing services also offer
this capability. In 1979, ROLM Corp. announced a new way,
integrating an electronic mailbox system with a telephone
system, the ROLM CBX (Computerized Branch Exchange).
This was called REMS, for ROLM Electronic Message Sys
tem. See Figure 2.

The ROLM CBX is a computer controlled digital switch.
To switch telephones, as a PABX, the analog signals are
converted to digital form by pulse code modulation, and
connected by a time division multiplex bus. The TDM bus
is, of course, indifferent to whether the digits being switched
originated from telephones or business equipment such as
terminals.

To interface terminals to the TDM network, ROLM de
veloped an RS232 interface for its electronic telephone set,
the ETS 100 TM. See Figure 3. This telephone set has a pair
of wires connecting its analog voice signal to the switch, and
another pair carrying data to and from the switch for sig
nalling and supervision. With the addition of the terminal
interface, terminal data is combined with signalling data, and
the result is an integrated voice and data communication
system using common telephone wiring without modems.
Furthermore, the addition of the data interface does not de
tract from telephone service, an important point since even
in the office of the future, voice will remain a major form
of communication. Telephone and terminal may be used in-

SYSTEM DIAGRAM

e
STATIONe SETS

Figure 2-System diagram.

CRT

STORAGE

o
PRINTER

530 National Computer Conference, 1980

MESSAGE TERMINAL PLUGS INTO
ETS-100

DATI:
TO:
fROM:
CC:
SUBJICT:

TERMINAL

RS232
ASCII

VOICE
DATA
POWER

Figure 3-Message terminal plugs into ETS-IOO.

dependently, simultaneously without affecting each other's
performance.

The processor to operate REMS 'was easily found. The
CBX is run by a 16 bit minicomputer, and a CBX can be
configured to have redundant processors, one maintained on
standby processor with the electronic message system soft
if the primary processor should fail. By programming this
standby processor with the electronic messagge system soft
ware, ROLM integrated REMS in the CBX. Data from a
general class of ASCII, non-buffered terminals goes to the
CBX over telephone wiring, onto the TDM bus where sev
eral simultaneous users can be accessing the system running
in the standby processor.

Storage of up to 1 MB for messages is provided on floppy
disks. For average use, this storage is adequate for 200 users.
Hard copy can be produced at a printer nearest the author
or recipient of a message on command, and REMS allows
the use of CRT's with integral or daisy chained printers for
further hard copy options.

Remote access to REMS is possible via dial up line using
a terminal and modem. A modem at the CBX allows the

remote terminal to be connected to the REMS processor,
and thereby use REMS identically to all on-site terminals.

REMS can deliver messages to remote terminals, too,
using the modem at the CBX. With this capability, a com
plete store and forward message system can be constructed.

The commands to operate REMS are simple English lan
guage words (SEND, READ, PRINT, etc.) which require
no typing skill to peck out. Prompting is available, HELP
can be requested, and error messages are provided so that
even infrequent users can operate the system. Proficient
users can elect to use an abbreviated set of commands, but
drop back to the basic level if necessary.

Security is provided by password access which can be
changed by the user from the terminal. Indeed, an electronic
mailbox is more secure than the typical inbox. In addition,
remote terminals in open areas can be configured not to print
a message but rather a notice that a message is waiting to
be read.

Finally, REMS provides the system manager with statis
tics on system usage, memory, and errors for planning and
control.

THE ADVANTAGE OF AN EMS IN A TELEPHONE
SYSTEM

The advantages of integrating an EMS in a CBX are both
economic and enhanced performance. The most obvious
advantages are the elimination of modems and special wir
ing, a single vendor for both voice and message systems,
and usually the lower cost of the total system. Since the
CBX purchase is justified on the basis of cost reductions in
voice communications alone, typically 33 percent, REMS
can be viewed as an incremental expansion of the CBX,
costing less than a separate stand-alone system.

Integrating REMS in the CBX provides features and per
formance which a stand-alone system could not offer without
considerably more expense. For example, a message alert
can be provided to the user through the telephone system,
notifying him that a new message has arrived in his mailbox
via a display on his electronic telephone, or potentially in
other ways. Message delivery can take advantage oftheleast
cost route selection which the CBX can perform for all out
going calls. And users gain a great deal of flexibility by using
the telephone wiring. Terminals can be added easily, and
relocated without expensive rewiring.

FUTURE DEVELOPMENT

The future of REMS will depend on users' experiences
with it. Along the evolutionary path to the office of the fu
ture, as users discover what they like and dislike, the system
will develop accordingly. Software will be modified and
hardware added in the likely direction of more functionality
at the terminal, more network options, interfaces or inte
gration with other systems, more storage, or specific appli
cations such as nurses' stations.

REMS illustrates the potential future development of in
formation systems integrated in a CBX in several ways. The

Implementing Electronic Mail in a Telephone System 531

use of the telephone wiring as an office central nervous sys
tem can certainly be applied to many applications, and the
switching, concentrating and information processing func
tions of the CBX can be extended to provide many infor
mation services to the office workers.

ORGANIZATIONAL IMPACT

The impact on the organization has to be considered when
any move toward the future office is evaluated. Unfortu
nately, many proposed solutions require significant changes,
such as giving up secretaries or changing job descriptions,
to deliver their benefits. Consequently, they are slow to be
accepted.

An EMS requires no significant organizational change to
deliver its benefits. For the information services manager
looking for an opportunity to begin moving toward the future
office, an EMS is a non-threatening supplement to the ex
isting information systems, but it provides an opportunity
to introduce office workers to terminals, electronic mail,
store and forward systems and electronic filing and retrieval.

A company should be prepared to recognize and reward
the office workers who succeed in using the new tools to
produce more results. Most firms are unlikely to layoff their
managers and professionals, even if new systems succeed
in freeing time in the day. The additional results that these
people can produce with that time have far more impact on
the bottom line than payroll cost reduction, but the orga
nizational climate has to favor that behavior.

An interesting organizational impact of an EMS is the op
portunity it provides for a firm's information services man
agers to work together. The voice communications and office
automation managers can use the installation of an EMS to
establish common goals and objectives, develop specifica
tions, and learn to work as a team to deliver the new system
to their users. The future office will come that much nearer
as they combine their imaginations and talents.

An office form flow model

by IVOR LADD and D. C. TSICHRITZIS
University of Toronto
Toronto, Ontario

INTRODUCTION

Offices are data processing systems involving complex man
machine interactions. In traditional offices, machines have
played a passive role. They aid in organizing, preparing,
copying, storing, transmitting, analyzing and transforming
data, but operations are initiated and directed by people.
Replacing machines by computer systems for word pro
cessing, phototypesetting, database management and elec
tronic mail may increase the efficiency of the offices, but it
does not change their passive role. In automated offices,
computer systems will be designed to play a more active
role. Many well-defined routine operations can be initiated
and directed by computer systems. People can then con
centrate on more challenging t~sks.

The effectiveness of automated offices depends largely on
the success of formally describing and analyzing the well
defined portions of traditional offices. The need for formal
descriptive and analytic tools gives rise to the study offormal
models of offices.4 The diverse aspects of offices lead to
different modeling approaches. The models of Ellis and Zis
man3

,9 focused on the description, precddence and synchro
nization of tasks or activities within an office. The model of
Tsichritzis8 focused on the description and analysis of the
office structure and components. The form flow model pre
sented in this paper follows the latter approach.

The form flow model (FFM) regards an office as a network
of stations through which forms flow. Forms are structured
data. Stations are processing units. The network coordinates
the routing of forms between stations. Thus forms originate
in some initial stations of the network, flow from station to
station where they are processed, and terminate in some final
stations.

Consider Figure 1, an example of a simplified loan pro
cessing office. It consists of five stations: a receptionist (R),
a processing clerk (PC) and his manager (PM), and a credit
clerk (CC) and his manager (CM). R is given all the loan
application forms. He considers those with invalid contents
to be rejected overall and sends the rest to PC. PC first sends
those from low income applicants to PM for approval. Then
he sends the remaining forms and the forms returned by
PM to CC. CC first sends those of large loans to CM for
approval. Then he considers the remaining forms and the
forms returned by CM to be approved overall. PM and CM
either approve or reject the forms they receive. They return

533

the approved forms to PC and CC respectively and they con
sider the rejected forms to be rejected overall.

DEFINITION

Each form in the form flow model contains fields for hold
ing data values. An individual form (instance) carries three
components «'T,'K,'C»: its form type ('T-the kind of
fields it contains), its form key ('K-a permanent unique
identifier) and its form contents ('c-the field values).

Each station (s;) in the form flow model has a set of in
trays (T/i) and a set of out trays (To;) where forms are de
posited. The task of a station is to take a form «' T,' K " c»
from an in tray (xeT/i), apply an operation selection func
tion associated with the in tray (rx: {('T"K"C)}~T 0;) to
determine to which out tray (yuange(r x» the form is to be
transferred, perform an operation associated with the in
tray-out tray pair (a~y: {('T"K"C)}~{('T"K"C')})' and
deposit the transformed form «'T,'K,'C'» in that out tray
(y). A flow arc «x,y)eEA ;) exists between an in tray (x) and
an out tray (y) if it is potentially possible for the operation
selection function associated with that in tray to select that
out tray (yuange(r x». Since each operation flow arc rep
resents an operation, depending on the analysis, costs
(times, weights, capabilities, etc.) may be associated with
the flow arcs (EA = U;EA ;). It may be desirable to abstract
out operation selection functions by estimating the frequen
cies of selecting the different flow arcs in the network.

The network in the form flow model designates a subset
of all in trays (T/=U;T/i) as initial trays (T,,{;;]/) where
forms originate in the network. The network also designates
a subset of all out trays (T () = U ; To;) as final trays
(T wkT 0) where forms terminate in the network. The task
of the network is to take a form «' T,' K " c» from a non
final out tray (yeT 0 - T w), apply a routing selection function
associated with the out tray (r,,: {('T"K"C)}~T/) to deter
mine to which in tray (xuange(ry» the form i's to be trans
ferred, and deposit the form in that in tray (x). A flow arc
«y,x)EEc) exists between a non-final out tray (y) and an in
tray (x) if it is potentially possible for the routing selection
function associated with that out tray to select that in tray
(xerange(r y ». Since each routing flow arc represents a com
munications link between two stations, depending on the
analysis, costs may be associated with the flow arcs. It may

534 National Computer Conference, 1980

0 ·8 ·8
A

MW 1IAPPro~ ~,g·llpp,ov. p
p

Income Loan r Invalid
Contents 0

v

8 8
e
d

Rejected

Figure I-Loan processing office.

be convenient to abstract out the costs by absorbing them
in the operation flow arcs. Routing selection functions can
in fact be modeled by operation selection functions (see ap
pendix). Furthermore, it may be desirable to abstract out
routing selection functions by estimating the frequencies of
selecting the different flow arcs in the network.

By the above definition of the form flow model, forms are
conserved in the network. They are neither created nor de
stroyed, only transformed. Hence the model is a true flow
network.

Consider Figure 2, an equivalent of Figure 1. The in trays,
out trays, operation flow arcs and routing flow arcs are ex
plicitly shown here. Consider Figure 3, a simpler but func
tionally equivalent version of Figure 2. It will be used to
illustrate subsequent analyses. Here, PM sends the forms
he approves directly to CC instead of through PC. eM does
not return forms to CC, but considers them to be approved
or rejected overall himself. This simplification is an indica
tion of the optimization which can be obtained from the form
flow model, but which needs to be formalized.

The form flow model and equivalent models having only
operation or routing selection functions are formally defined
in the appendix.

-+--~
V

• In Tray

o Out Tray

Invalid
Contents

Rejected

Figure 2-FFM of loan processing office.

A
P
P
r
o

e
d

----I--~---~ V V
Invalid
Contents

Low

Rejected

Figure 3-FFM of simpler loan processing office.

RESTRICTIONS

A

P
P
r

e
d

A number of restrictions can be placed on the form flow
model to simplify it. The first restriction is for the network
to be deterministic. This means that the sequence of oper
ations performed on a form from its initial state to its final
state should result in a deterministic transformation of the
form contents. Note that this does not mean that the se
quence of operations, the operation and routing selection
functions, or the operations themselves must be determin
istic. As long as sequences of operations can be partitioned
into equivalence classes and any non-determinisms do not
cause sequences to cross equivalence classes, then an over
all deterministic behavior can be defined. It is desirable to
allow the routing selection functions to be non-deterministic.
In a situation where two or more stations (for example, typ
ists) perform essentially the same operations, it may not
matter to which of the stations a form is routed. Hence one
of the stations should be selected non-deterministically. In
another situation where two operations are commutative or
independent, it may not matter which of the operations is
performed first. Hence the performance of the operations
should be possible in either order non-deterministically.
There are fewer realistic situations where non-deterministic
operation selection functions and operations are desired and
where the non-determinism cannot be limited to the routing
selection functions. However, deterministic operation se
lection functions and operations may be so complicated that
they can only be treated reasonably as being non-determin
istic. In any case, for the sake of simplicity, only the routing
selection functions are assumed to be non-deterministic.

The second restriction is for the network to be isolated
from all factors external to it. This means that all external
factors are ignored. External data are not referenced unless
they are explicitly included in the contents of an inputed
form. External actions are not triggered except by indicating
the actions in the contents of an outputed form. Further
more, to make analysis more tractable, operation and routing
selection functions and operations are assumed to be isolated
from each other and the current state of the network (how
many forms are in the network? where? etc.). However, it
is often desirable to allow routing selection functions to be

non-isolated from the state of the network. In a situation
where a form may be routed to either of two equivalent sta
tions, one optimizing heuristic is to route the form to the less
busy station. To do this, the particular routing selection func
tion must be aware of the state of the relevant stations.

The third restriction is for the network to be memoryless.
This means that the stations cannot record form contents for
future reference. Stations are allowed to have memory and
to record the contents of a form as it passes through them,
but they are also required to erase all data recorded from
that form after it is outputed from the network.

With the above three restrictions on the form flow model,
the network is deterministic, isolated and memoryless and
is thus a function of form contents. Moreover, as stations
are transformations on form contents, the network can then
be mapped into a station and the form flow model becomes
hierarchically decomposable. Consequently, a complicated
form flow model can be partitioned. Each sub-network can
be analyzed separately and then mapped into a station. Fi
nally, the mapped stations can be reassembled into a simpler
network for analysis.

GRAPH THEORETIC ANALYSIS

For the graph theoretic approach, the form flow network
can be considered as a directed graph of in trays and out
trays and flow arcs (G(T,E»). A flow path is a sequence of
incident flow arcs leading from an initial tray to a final tray.
Each flow path defines a sequence of stations. Each flow path
also defines a sequence of operations. However, the se
quence of operations may violate the consistency constraints
on the selection functions and operations. Hence a flow path
may never be followed by a form in actual processing. As it
is often desirable to suppress the details of the selection func
tions and operations, one of the goals of this analysis is to
achieve as close a correspondence as possible between the
flow paths and the paths which may be followed by a form
in actual processing (followable flow paths), or in other
words to avoid having flow paths which are not followed.
The use of mUltiple in and out trays in stations can help to
some extent to attain this goal. In Figure 2, all flow paths
can be followed. Figure 4 may be made equivalent to Figure

Invalid
Contents

Rejected

Figure 4-FFM with loops.

A
p
p

e
d

An Office Form Flow Model 535

2 with appropriate selection functions which restrict certain
flow paths such as the repetitions of the loops between PC
and PM and between CC and CM. Thus, for the sake of
simplicity, it will be assumed that the flow paths in all figures
except Figures 1 and 4 c,m be followed.

With the concept of followable flow paths arises the re
lated concept of an infinite sequence of low arcs leading from
an initial tray. If an infinite sequence exists and is followable,
then a form can be trapped forever in the network. This
situation usually indicates an error in the formulation of the
network and is to be avoided. An infinite sequence in a finite
network implies a loop of flow arcs. Hence, in a network
where all flow paths are followable, the existence of a loop
indicates an error. In a network where all flow paths are not
necessarily followable, the existence of a loop indicates an
error only if there is no upper bound on the length of the
followable flow paths.

The flow paths in a network can be enumerated with a
depth first search (DFS) algorithm. At the same time, the
frequency and average processing time of following each
flow path can be computed given the frequency and average
processing time of following each flow arc. Let q(x,y) where
(x,y)EE and t(x,y) where (x,y)EE A be the frequency and av
erage processing times of following the arc (x,y). Let

p(x,y) = q(x,y)/ ~ q(x,y)
y'eTa

(x,y')eE

The following algorithm performs the computation.

DFS(x, seq, time, freq)
{ if(n:seq)

foundJoop;
VYET Oa(x,y)EEA

{ seq' ~seq,(x,y);
time' ~time + t(x,y);
freq' ~freq' x p(x ,y);

If(yET ,J
print seq', time', freq';

else Vx'ETIa(y,X')EE c
DFS(x', seq', time', freq' x p(x,y));

VXET",
DFS(x,<f>,O,I);

Consider Figure 5 an equivalent of Figure 3 for graph the
oretic analysis. Frequency and time parameters were esti
mated to reflect a reasonable situation. Applying the DFS
algorithm to it produced the following:

Flow Path

R1PC1CC1
R1PC1CC2CM1
R1PC1CC2CM2
R1PC2PM1CC1
R1PC2PM1CC2CMl
R1PC2PM1CC2CM2
R1PC2PM2
R2

Time Frequency

5
14
13
12
21
20

8

.2160

.0270

.0270

.2520

.0315

.0315

.3150

.1

536 National Computer Conference, 1980

e, p(e), w(e)

Figure 5-FFM for graph theoretic analysis.

As there may be many flow paths in a network, it is often
convenient to group them into equivalence classes. Then,
characteristics can be discussed in terms of a small number
of classes as opposed to a large number of flow paths, Dif
ferent notions of equivalence classes can be defined,

One notion of equivalence classes is grouping by initial
tray-final tray pairs. This emphasizes the input-output as
pects of the network as a whole and is useful for mapping
the network into a single station. In Figure 5, the classes
are: (rejected by R), (rejected by PM), (rejected by CM),
(approved by CC), and (approved by CM), The class (ap
proved by CC) combines the flow paths R,PC,CC, and
R,PC2PM,CC" the class (approved by CM) combines the
flow paths R,PC,CC2CM, and R,PC2PM,CC2CM" and so
on.

The second notion of equivalence classes is grouping by
the sequence of stations. This emphasizes the flow aspects
of the network through the stations and is useful for ana
lyzing the characteristics of the stations, For the example
in Figure 6, the classes are: (R), (R,PC,PM), (R,PC,CC),
(R,PC,PM,CC), (R,PC,CC,CM) and (R,PC,PM,CC,CM).
The class (R,PC,CC,CM) combines the flow paths
R,PC,CC2CM, and R,PC,CC2CM2 and the class
(R,PC,PM,CC,CM) combines the flow paths
R,PC 2PM,CC2CM, and R,PC2PM,CC2CM2.

c=100

p(x,y), w(x,y) ,

Figure 6-FFM for commodity flow analysis.

The third notion of equivalence classes is grouping by the
equivalence classes of the sequences of operations. This
emphasizes the processing aspects of the network and is
useful for determining the transformations of form contents.
For the example in Figure 6, the classes are: (rejected by R),
(rejected by PM), (rejected by CM), (approved by CC), (ap
proved by CM), (approved by PM-approved by CC), (ap
proved by PM-approved by CM) and (approved by PM
rejected by CM). Here the flow paths correspond one-to-one
with the classes for each every flow arc corresponds to a
unique operation.

COMMODITY FLOW ANALYSIS

For the commodity flow approach, the form flow network
can be considered as a commodity flow network (CFN). It
can then be augmented to analyze its capacity in terms of
maximum flow. 5 A source node (s) from which arcs are di
rected to all the initial trays and a sink node (t) to which arcs
are directed from all the final trays are added. Formally,
CFN(N,E) is constructed from FFM as follows.

N= TU{s,t}.

E= FFM(E)U{(s,x) IXET a}U{(y,t) IYET w}.

A flow in CFN is a function f: E~(O,oo) satisfying the fol
lowing constraints.

VeEE,f(e)~O.

VXEN, . ~ f(P,x) - ~ f(x,q)
pEN3

(P,x)EE

{

- V(f)
= ; V(f)

qEN3
(x,q)EE

if x=s,
if x = t,
otherwise.

The problem is to maximize V(f) subject to constraints on
the capacities of the stations. Each station (s i) is assigned
a value (c i) indicating the maximum number of work units
it can perform per unit of time. Each operation flow arc
«x,Y)EEAi&xET/i) in the station is assigned a weight (w(x,y))
indicating the number of work units associated with the work
done by taking the arc. Then the constraint can be added:

Vi, ~ wee) xf(e)~c i'
eEFFM(EA;)

As this type of constraint is not considered in classical so
lution techniques for maximum flow problems, the network
must be solved by linear programming techniques,2 for ex
ample the simplex method.

Consider Figure 6, an equivalent of Figures 3 and 5. The
capacity parameters from Figure 5 were used. Solving this
network gave a maximum flow of 100 units. However, this
flow is dominated by rejections by R and is not meaningful.
It is necessary to include a constraint on the frequency of
taking each arc. Furthermore, as forms from different initial
trays may compete for flow through a station, it may be
necessary to include also a constraint on the frequency of

input to each initial tray. Let q(x,y) where (x,y)E:FFM(E)U
{(s,x) IXETa} be the frequency of taking arc(x,y). Let

p(x,q) = q(x,y)/ ~ q(x,y').

Then the constraint is

y'E!V.a

(x,y')eE

V(x,Y)EFFM(E)U{(s,x) IXET ,xl, [(x,y) =p(x,y) x ~ [(n,x).
neNa

(n,x)eE

Solving the network with this constraint gave a maximum
flow of 28.86 units. For each station Sj, the value W j =
~eEFFM(EAi) w(e) xf(e) gives the amount of work done by the
station. The ratio w)c j gives the utilization of the station.
For the maximum flow, the values were:

station Wj wJCj

R 28.86 . 29
PC 44.15 .44
PM lOO.OO 1.00
CC 47.27 .47
CM 32.07 .32

This shows that PM is the bottleneck.

QUEUING NETWORK ANALYSIS

For the queuing network approach, the form flow network
can be considered as a queuing network to analyze its per
formance in terms of equilibrium behavior. For this pur
pose, the FFMc (see appendix), an equivalent model of the
form flow network, will be used. The FFMc has only the
routing selection functions and its stations comprise two
parts, one for routing, the other for operations. It may be
viewed as a multi-class open queuing system. Each form
becomes a job. Each station becomes a server with a single
queue corresponding to its set of in trays. Each operation
in a station is associated with a different job class. To par
ameterize the system, a scheduling discipline for each sta
tion, a service time distribution for each operation and an .
interarrival time distribution for each initial tray must be
specified. Furthermore, the routing frequencies which cor
respond to the frequencies of taking the routing flow arcs
must be given. Since allowing state-dependent routing fre
quencies corresponds to allowing nonisolated routing selec
tion functions, for the sake of simplicity, routing frequencies
are assumed to be state-independent.

Formally,

S = FFMc(S) are the servers;
C=EACUEAA are the classes;
D:S~{scheduling discipline};
X:C~{service time distribution};
A:T a~{interarrival time distribution};
Q:Er(O,oo) are the routing frequencies.

The remaining parameters can be computed.

An Office Form Flow Model 537

A C: S x C~{interarrival time distribution} are the inter
arrival time distributions to particular classes and are
defined by:

A (
.) = {A(X) if c=(x,x')EE A C&XET 00

C I,C 0 otherwise.

P(y,x) = Q(Y,x)/ ~ Q(Y,x')
x'eTa

(y,x')eEc

where (y,x)EE c are the routing probabilities.
Pc: S x C X S' X C'~[O, 1] are the class transition probabili
ties and are defined by:

P (
. ., ') {P(Y,X') if c=(x,y)&c'=(x',y')&(y,x')EE c ,

c I,C,1 ,C = 0 otherwise.

To simplify the system, the routing servers ({SC I sCEFFM(S)})
can be assumed to operate in zero time and not to need
scheduling disciplines and service time distributions .

The queuing network can be solved exactly by analytic
techniques provided some further assumptions and restric
tions are made.7 Otherwise approximation techniques or
simulation must be used. Three assumptions are necessary
to have an exact solution: one-step behavior, server hom
ogeneity and routing homogeneity. One-step behavior
means that the only observable changes in a system result
from single jobs either entering the system, flowing from one
server to another, or leaving the system. Server homogeneity
means that the service time distributions of a server may
depend only on the state of its queue. Both these assump
tions are reasonable for an office. Routing homogeneity
means that the routing frequencies may depend only on the
total number of jobs currently in the system. This assumption
is satisfied by the above specification of constant routing
frequencies.

Although an exact solution is possible with the above as
sumptions, a fast solution technique) is known only for cases
with certain combinations of the three parameters: interar
rival time distribution, scheduling discipline and service time
distribution. The interarrival time distributions are restricted
to be exponential.. The scheduling disciplines are restricted
to be FCFS (first come first served), PS (processor sharing
simultaneously among all jobs in the queue), NQ (no
queuing-the server supplies as many processors running
at the full rate as there are jobs in the queue), or PLCFS
(pre-emptive last come first served). If the scheduling dis
cipline for a server is FCFS, then all service time distribu
tions for the server are restricted to be identically exponen
tial. If the scheduling discipline for a server is PS, NQ, or
PLCFS, then each service time distribution for the server
is restricted to having a rational Laplace transform. The
above restrictions are severe and not entirely satisfactory
since in an office, FCFS with different service time distri
butions or HOL (head of line~FCFS for each class with
non-pre-emptive priority among different classes) seem more
realistic. Nevertheless, to solve a queuing network at pres
ent, the restrictions must be imposed.

Consider Figure 7, an equivalent of Figures 3, 5 and 6.
The parameters were taken Figure 6 to reflect near saturation

/

538 National Computer Conference, 1980

>..=26

o time

o time o time JL= 10. 5

Figure 7-FFM for queuing network analysis.

condition as computed with maximum flow analysis. The
interarrival time distribution is exponential with parameter
A. The scheduling discipline for each server s is FCFS and
the service time distributions for the server are exponential
with parameter us. The results of solving the network are
given below.

Server Throughput Mean Queue Length Utilization

R 28.0 .39 .28
PC 25.2 .75 .43
PM 17.6 31.50 .97
CC 16.4 .85 .46
CM 3.3 .45 .31

Note that the utilizations here correspond closely to the val
'ues w;le i for maximum flow analysis.

CONCLUDING REMARKS

We are still developing the form flow modell. The types
of analyses discussed above can be extended~ The semantics
of equivalence classes of flow paths and other graph prop
erties need further investigation. Solution techniques for
commodity flow and queuing networks as applied to form
flow networks need extensions to less restrictive cases and
improvements in speed.

New types of analyses can be studied. The problem of
optimization is appealing. Suitable restructuring rules need
to be formalized and cost functions need to be defined. Then,
algorithms may be developed to derive optimal or semi-op
timal models.

The problem of coordination is also interesting and useful.
Coordination means requiring certain forms to be processed
together. Thus, forms must be allowed to wait in a station
for other related forms before they are processed. Coordi
nation is typically modeled with Petri Nets.6 These models,
however, do not deal with performance measures. Combin
ing coordination with performance considerations produces
a very difficult problem.

ACKNOWLEDGMENTS

We are indebted to J. Kornatowski for helping to improve
this paper.

REFERENCES

1. Baskett, F., Chandy, K., Muntz, R., and Palacios, F., "Open, Closed
& Mixed Networks of Queues with Different Classes of Customers,"
JACM 22 (1975), pp. 248-260.

2. Dantzig, G., "Linear Programming & Extensions," Princeton University
Press, Princeton, 1963. .

3. Ellis, C., "Information Control Nets: A Mathematical Model of Office
Information Flow," ACM Proc. Conf. SimuLation, Modeling & Measure
ment of Computer Systems, August 1979.

4. Ellis, C. and Nutt, G., "Computer Science & Office Information Sys
tems," Xerox Palo Alto Research Center, June 1979.

5. Ford, Jr., L. and Fulkerson, D., "Flows in Networks," Princeton Uni
versity Press, Princeton, 1962.

6. Peterson, J., "Petri Nets," ACM Computing Surveys 9 (1977), pp. 223-
252.

7. "Special Issue on Queuing Network Models of Computer System Per
formance," ACM Computing Surveys, September 1978.

8. Tsichritzis, D., "Form Flow Models," Technical Report CSRG-lOl,
University of Toronto, 1979.

9. Zisman, M., "Representation, Specification and Automation of Office
Procedures," Ph.D. Thesis, Wharton School, University of Pennsylvania,
1977.

APPENDIX

The FFM can be summarized formally. A form (instance)
is a tuple <tT,tK,tC> where

tT€ZT, the form types;
t K€Z K, the form keys;
tc€Zc, the form contents.

An FFM is a tuple (S, T,R,A) where

S = {s i} is the set of stations;
T= T! = UiT/i)UT o(= UiT Oi) is the set of in trays and out

trays;
T o.~T I is the set of initial trays;
T w~T 0 is the set of final trays;

R = {rxlx€TI&(x€T/i~~(r x: {(t T'~K' ~c>}~
T Oi»}U{" ylYET 0- Tw&ry :{<~T,tK,tC)}~ TI}
is the set of operation and routing selection functions;

A ={a XY I xETI&yuange(r x)&a XY : {(tT'~K'~C>}
~{<~T,tK,tC')}} is the set of operations.

Furthermore, for convenience:

E=EA(= UiEAi)UEc is the set of flow arcs with
EAi= {(x,y) Ix€T/i&yuange(r x)},
Ec={(y,x)ly€T 0- T w&x€range(r y)}.

A number of constraints are required to maintain consist
ency. For the trays,

Vi=l=j, TJinTlj=</>, TojnToj =</>;
Vi, TJi=l=</>;
Ta*</>, T",=I=</>.

To ensure all operations and routing are consistent,

VXET/, V<~ T'~ K ,~C>, Y = r x«~T '~K'~C»~<~T'~K ,~c>
Edomain(a xy);

VXET[, (yEfange(r x)&yiT ",~range(axy)bdomain(r y);

VYETo-T"" V<~T)~K'~C)' x=rY«~T'~K'~C»~
< ~ T'~ K'~ C)Edomairi(r x).

It is assumed that if <~T'~K'~C> is inputed to initial tray x,
then <~T'~K,~C>Edomain(rx). To ensure all trays are con
nected properly,

VXET/, range(r x) =1= </>;
VXET/-Ta,3YETo -T",3XEfange(ry);
VYET 0 - T"" range(r y) =1= </>;
Vi, VYET OJ, 3XETJi 3 YErange(r x).

In the form flow model, both operation and routing selection
functions are allowed. It is possible to derive equivalent
models having only the operation or routing selection func
tions. In these models, each station is split into two parts,
one part for operations, the other for routing.

The model having only the operation selection functions
(FFMA) can be derived from FFM as follows.

S={sAlsAEFFM(S)}U{sClsCEFFM(S)} is the set of sta
tions with. SA being the operation part and s C being the
routing part.

T= T/(= UjTJjA)UT/C(= UjTJiC)
UT OA(= UjT o/)UT oC(= UjT or) where

TJiA ={XIXEFFM(TJi)};
TJic={YIYEFFM(T OJ)};
T o/={YIYEFFM(T oJ};
T Ojc={e=(Y,x)leEFFM(Ed&YEFFM(T oJ}

U{e=(y,y) IYEFFM(T Ill)}.
T a = {XIXET/&XEFFM(T a)}.
T",={e=(Y,y)leET oC&YEFFM(T",)}.

R ={r xI3i3XET//&FFM(r x)«~ T'~K ,~C»y~~r x
«~T'~K'~C» = YET o/}U{r y 13i3YETJi C&
(yEFFM(T ",~~r i*) = (y,y)=eET or)&
(yiFFM(T ",~~FFM(r y)«~ T'~K ,~C» =x~~ry
«~T'~K'~C» = (y,x)=eET or)}·

A ={a xv IXET/&YEfange(rx)&a XY = FFM(a xy)}
U{iixy IXET/C&YEfange(r x)} where id(*) is the identity
operation.

E=EAA(= UjEA/)UEA C(= UjEAr)UE c where
EA/ = {(x,y) IXET//&YEfange(r x)};
EAr = {(x,y) IXETJjC&YEfange(rx)};

Ec={(y,Y')13~YET o/&y'ETJjC&FFM(y) =FFM(y')}
U{(e,x)le=(Y,x')Ef oC - T",&XET/&FFM(x) = FFM(x')}.

An Office Form Flow Model 539

Note that here Ec must be defined explicitly. The usual con
sistency constraints apply. The model having only the rout
ing selection functions (FFMc) can be derived from FFM
as follows.

S ={sCISCEFFM(S)}U{SA ISAEFFM(S)}.
T= T[C(= UjTJjC)UT/A(= UjTJjA)

UT OC(= UjT OiC)UT OA(= UjT 0/)
where

TJjc ={x IXEFFM(TJj)};
TJjA = {e=(x,y) I eEFFM(EAj)};
T Oic={xlxEFFM(TJj)};
T 0/ ={e=(x,y)leEFFM(EAj)}.

Ta ={XIXET/C&XEFFM(T a)}.
T",={e=(x,y)leET OA&YEFFM(T",)}.
R ={r x13i3XET OiC&FFM(r x)«~n~K'~C»

=y~~rX«~T'~K'~C» = (X,y)
, =eET/iA}U{R e 13 i3e
=(x,Y)ETo/ - T ",&FFM(r y)«~ T,'K "C»
=x'~r eC<'T'~K'~C» =x'ET/C}.

A = {idxx' 13i3XET/iC&FFM(XET/i) = FFM(x' ETJj)}
U{a ee' 13i3eET /iA&FFM(eEE A;)
= FFM(e' EE Ai)&aee , = FFM(a e)}.

E=EA C(= UjEAjC)UEAA(= UjEA/)UEc where
EAiC = {(x,x') 13i3XETJjC&x' ET OiC&FFM(XETJj)

= FFM(x'ETJj)};
EA/ = {(e,e') 13i3eET//&e'ETo/&FFM(eEEAi)

= FFM(e'EEAJ};
Ec={(Y,x) lyEToAU(ToC - T",)&xEfange(r y)}.

Note here that EA C and EAA must be defined explicitly. The
usual consistency constraints apply.

Figure 8 is an FFMc derived from Figure 3.

e =e-o

Invalid
Contents

Rejected

Large
Loan

Figure 8-FFMc of simpler loan processing office.

A
P
P
r

v
e
d

Design principles of an office specification language*

by MICHAEL HAMMER and JAY S. KUNIN
Massachusetts Institute of Technology
Cambridge, Massachusetts

INTRODUCTION

Office automation, interpreted most generally, is the utili
zation of technology to improve the productivity and quality
of office work. This concept encompasses a wide range of
devices, technologies, tools, and systems. One of its most
powerful instances is the notion of an automated office in
formation system. This is a software-intensive, computer
based system that seeks to support (and where appropriate,
to automate) an entire office procedure, rather than simply
to improve the performance of individual office tasks. How
ever, there is a major impediment to the realization of such
systems: because of their application-oriented and office
specific character, they are extremely costly to construct.
One of the major reasons for this cost is that office systems
analysts lack any tools or methodologies to employ in the
process of determining and expressing the requirements of
an automated office system. An office specifi"cation language
is used to describe in a natural yet precise fashion the op
eration of an office system; its use can improve the process
of constructing the system in a number of ways. In this
paper, we set forth an approach to the design of office spec
ification languages and present an overview of the major
concepts in OSL, one such language that we are developing.

OFFICE SYSTEM IMPLEMENTATION.

Any system or tool that is sufficiently general to be em
ployed without modification in a wide range of office con
texts cannot, by definition, be oriented toward the particular
needs of a specific office. Such a system addresses a lowest
common denominator of office work; thus, its impact on of
fice work and office productivity will inherently be limited.
It is only by taking a holistic approach to the activities in
an office, by identifying and understanding the office func
tions performed and the processes conducted to realize
them, and by designing and implementing a system to sup
port them, that major improvements in office productivity
will be realized. 1 A key concept here is one of an office
procedure, an overall framework that provides an organi
zation and order for the individual activities performed in

* This research was supported in part by Exxon Enterprises, Inc.

541

the office. An automated office information system seeks to
improve the execution of office procedures, by improving
the performance of specific parts of the procedure· and by
creating an environment for the integration and control of
the procedure as a whole.

An automated office system is an integrated and inter
connected collection of components under the supervision
of an intelligent control program. These components may be
mechanized tools designed to support people in performing
unstructured office tasks, or they may be automated sub
systems that by means of preprogrammed instructions ex
ecute routine and highly structured office tasks. (This dis
tinction between automation and mechanization is
fundamental for appreciating the potential of office systems
in improving the realization of office work.2) By substituting
machine labor for human labor where appropriate, and by
addressing the entire office rather than just isolated tasks
within it, such an office information system represents the
paradigm that must be followed to realize the full potential
of the new office technology.

However, there is a fundamental problem with this ap
proach to office automation: it is the issue of building office
specific information systems in a cost-effective fashion. No
two offices operate in the same way or follow exactly the
same procedures; therefore, the paradigm of installing off
the-shelf generic products into an office environment is no
longer appropriate when attempting to realize functionally
oriented office systems. Instead, a system development ef
fort is required, in which the operations of the office in ques
tion are analyzed, its needs assessed, and a custom system
designed and implemented for it. The last stage of this pro
cess will entail the construction of software that is specific
to the particular office in question. This software will em
body knowledge of the office's operation; it will automate
selected clerical tasks, control the assorted devices em
ployed in the system, and serve as the intelligence that or
ganizes and orders the steps of the office procedure as a
whole. This software is clearly specific to the office in ques
tion. In other words, custom software must be produced for
each office information system.

The difficulty with this approach to office automation is,
of course, the fact that it is very expensive to produce office
information systems in this way. The process outlined above
calls for highly trained personnel (systems analysts and pro
grammers) who must exercise ingenuity in analyzing the

542 National Computer Conference, 1980

operation of the office in question, defining its needs, and
designing and then implementing a system. Moreover, ex
perience has repeatedly shown that complex software sys
tems produced by conventional means tend to be error
prone, costly to construct, and difficult to change. If we are
to be successful in building and installing custom office sys
tems on a wide scale, we must seek new means to produce
them.

Let us look more closely at the process of office system
construction, and at the problems with it. It is possible to
identify four stages in this activity: analysis, specification,
design, and implementation. In the first stage, the current
operations of the office are studied and their shortcomings
identified, and the general capabilities of the automated sys
tem to be built are defined; in the next, precise specifications
of this system are produced. These are the tasks of the office
systems analyst. The programmer then designs the structure
of a system that will meet these specifications and finally
reduces them to code. The major sources of difficulty in this
process lie with the analyst's activities rather than the pro
grammer's. The programmer need only to seek to implement
a system that meets the specifications given him; the analyst
has the responsibility of constructing these specifications.
His is a challenging and creative job; yet the analyst lacks
any useful methodologies or tools to employ in analyzing an
office or specifying a system for it. His task as a whole lacks
structure; there are few guidelines or principles for him to
employ.

One parti"cular problem the analyst faces is that he has no
effective notation or language in which to express himself.
Many errors in software systems arise from the fact that the
original specifications for the system are unclear, incorrect,
or incomplete; this derives from the fact that they are poorly
expressed in a language unsuitable for the purpose. Cur
rently, an office analyst will use English to describe the cur
rent operation of an office as well as to specify the desired
fun~tionality of an automated system that is to be built.
Although rich and expressive, English, like all natural lan
guages, is imprecise and ambiguous and consequently not
useful for the accurate specification" of systems. Specifica
tions must bridge the gap between the analyst (who is ori
ented toward application constructs and office needs) and
the programmer (who is concerned with the design and im
plementation of software systems). This gap is the breeding
ground for ineffective communications, expense, and error.

OFFICE SPECIFICATION LANGUAGES

We believe that many of the problems discussed above
can be significantly mitigated by providing the analyst with
a problem-oriented office specification language. This is a
formal language for describing in high-level and machine
independent terms the operation of an office system (either
manual or automated). It may be thought of as a notation
in terms of which an office system analyst can express him
self, both for describing an existing office operation and for
specifying the operation of an automated system to be built

by the programmer. A specification language is a formal lan
guage, with rigorously defined syntax and semantics. Thus,
any description expressed in it is unambiguous and open to
a single interpretation. Furthermore, the primitives of a high
level language are based on the natural structures and vo
cabulary of office work so that the language user can express
himself in terms natural to the problem domain. Such a lan
guage can serve as an effective means for specifying in a
precise, natural, and understandable way the operation of
an office system.

We envision a variety of potential uses for such a language.
The principal one is as a communications mechanism be
tween office systems analyst and programmer. Because of
its formality and precision, specifications expressed in the
language can be clearly understood and interpreted by the
programmer who must use them as the basis for his system
implementation effort. The use of this language will enable
an office systems analyst to describe more precisely to a
programmer the system that is to be constructed; this im
proved communication can have a major and positive impact
on the systems thus produced, improving their quality and
lowering their cost. The use of such a language facilitates
the jobs of both the analyst and the programmer. Because
of the high level of the language, the analyst will be able to
readily express himself in terms familiar to him while sup
pressing irrelevant detail. Second, the language can impose
a structure on the entire process of office analysis and system
specification. By providing the analyst with high-level prim
itives in terms of which he is to express a system, a spec
ification language effectively gives him a set of templates
with which he is encouraged to analyze office operations.
Thus, the analyst is presented not just with a set of discon
nected language features but with an approach to their em
ployment, a perspective on office operation that provides
a conceptual framework in terms of which to analyze and
describe office operations. Finally, there are several uses of
such a language that are not directly related to the process
of constructing automated office systems. A formal speci
fication language for office procedures can serve as a very
effective mechanism for expressing precise and complete
descriptions of the existing manual office operation. In cur
rent practice, English is the language employed in systems
and procedures manuals; however, as is well-known, these
manuals are usually incomplete, difficult to read, and ob
solete. Well organized and precise specifications in a high
level language can be used as a reference for office workers
in many office environments. Related uses are for the train
ing of new employees, and for the recording of organizational
history in a way that survives the coming and going of in
dividual office personnel. The formal specifications of an
office procedure can also be SUbjected to various analytic
techniques in an effort to identify bottlenecks and problem
areas in its operation; this can highlight those areas of the
procedure most in need of rationalization and redesign,
whether or not in the context of an automation effort.

Obviously, the mode in which an office specification lan
guage is used depends in part on the application for which
it is being employed. However, in general, we expect that

Design Principles of an Office Specification Language 543

specifications will be written by a trained office systems
analyst who has been instructed in the use of the language.
This person will not necessarily be a computer expert; he
may be a manager, a staff professional, a secretarial or cler
ical worker, or a specialist dedicated to this task. He must
possess two important skills: a deep understanding of office
work, and an ability to analyze and describe office operation
in a systematic fashion.

We believe that the use of the language will be ongoing
but intermittent. That is, at some point the initial description
of an existing or proposed office system will be expressed
in the language, and on a regular basis this description will
be updated to reflect changing circumstances and evolving
needs. However, we do not believe that specifications will
be modified on an ad hoc basis by individual office workers.
While there will be few writers of specifications, we expect
there to be a large population of people who will want to
read specifications expressed in the language. Readers of
office specifications will incl1Jde office workers who will
consult them in order to determine aspects of procedures
with which they are not familiar; office trainees in the pro
cess of learning the office operation; office managers seeking
ways in which the operations of the office can be improved;
and programmers who will be called upon to translate such
specifications into operating programs.

As suggested above, we believe that this language will be
used both for prescriptive and descriptive purposes; that is,
to describe an existing office operation as well as a new and
proposed one. In fact, such uses are often demanded in the
context of an evolving office system. An analyst must first
construct a description of the system as it is currently con
figured and use that as a basis for developing specifications
of a new and improved system. It is rarely feasible to institute
a revolutionary change in the process of an automation effort
and to dramatically restructure an entire office operation;
rather, the new office system must evolve from the old one.
Consequently, at some suitable level of abstraction, the
specifications of the new system should be virtually identical
to those of the old one. It is only at the level of mechanism
and implementation that the two become distinguishable.
Thus, it is appropriate that the specification language be
multi-tiered, with the topmost level expressing the imple
mentation-independent structure of the office and only the
more detailed level serving to identify the particular way in
which the general structure is being instantiated.

AN APPROACH TO SPECIFICATION LANGUAGE
DESIGN

We are engaged in an ongoing effort to develop such an
office specification language (known as OSL) for use in ana
lyzing, describing, and implementing office systems.· Based
on the foregoing perspective on the use and utility of such
a language we have developed the following approach and
design criteria that we are employing in this effort.

1. The language must be formal and well defined; that is,

it will have a limited vocabulary of constructs that can
be combined only in specific ways. As a result, it will
be possible to determine in an automatic fashion
whether a particular specification in the language is
legal and meaningful. Furthermore, any legal specifi
cation will admit of only one interpretation. These
properties of formally defined languages avoid many
of the difficulties associated with English and other
natural languages.

2. The language must be highly readable; it should be
possible for an individual with a very small amount of
training to be able to read and understand specifications
expressed in OSLo This criterion is motivated by the
fact that there will be a large readership for OSL spec
ifications, most of whom will not be specialists in the
language. There are several consequences of this re
quirement. First, it dictates that the constructs of OSL
be natural and problem-oriented rather than general
and abstract. That is, the dictions of the language
should reflect the natural semantics of offices and office
work; the language primitives should directly corre
spond to office activities and structures so that the de
scription of an office procedure will be couched in
terms meaningful to those familiar with office work.
Furthermore, every specification expressed in the lan
guage should have a manifest and understandable over
all organization and structure. That is, not only should
individual atoms of the language be easy to compre
hend, but a description of an office procedure as a
whole should be organized in a way that enables people
to comprehend it easily.

3. The language should support the process of writing
descriptions by incorporating a standard and natural
logical structure for office specifications. We believe
that the way to aid someone seeking to write specifi
cations in a language is not by providing him with a
minimal set of general and flexible linguistic features.
While it may be easy to learn the meaning and capa
bility of each one of these constructs, the entire burden
of combining them into a complete specification is then
thrust upon the user. A language that is easy to learn
is often difficult to use for all but the most trivial of
applications. Consequently, we think it appropriate
that OSL possess a rather more complex and intricate
inherent structure, which may require more effort to
learn but which should greatly enhance its usability.
In other words, the user of OSL will start out with a
preconceived notion of the general structure of the
specifications he will produce; his task is to match the
particulars of the office in question to the canonical
structure. As a consequence, associated with OSL will
be a methodology for conducting office analyses and
writing specifications, which is based on the same con
ceptualization of office work embedded in the lan
guage.

4. The language should be high-level and nonprocedural.
The specification of an office procedure in OSL will
be expressed at a level of abstraction corresponding to

544 National Computer Conference, 1980

the functionality and purpose of the procedure, rather
than in terms of the low level task structure used to
implement it. The focus will be on what the procedure
does, rather than on the details of how it does it.

5. Specifications expressed in the language must be mod
ifiable. Office procedures are highly dynamic; they
continually evolve to meet unanticipated situations and
new requirements. The specifications for an office sys
tem must consequently evolve in an incremental fash
ion to reflect these new developments; if they are not
readily modifiable, they will inevitably become obso
lete and unused. Moreover, modular and modifiable
specifications can result in more maintainable software
systems. If the software system reflects the structure
of the specifications, then as the specifications change,
the implementation can often be modified in corre
sponding and limited ways.

The overall goal of our design effort is to develop a lan
guage in which office systems analysts can readily construct
highly readable specifications that are clear, unambiguous
'and natural descriptions of office procedures. These speci
fications should uncover and highlight the basic structure of
the procedure rather than focus on the details involved in
its implementation. Our approach is a functional one; that
is, we do not find it feasible or even desirable to attempt to
capture in a specification all of the mechanisms associated
with an office procedure. First, any such "complete" spec
ification will be overwhelming in its size and complexity.
Second, it is unlikely that an office system analyst (in any
finite amount of time) will be able to uncover all possible
variations of the procedure. And, third, the implementation
details of an office procedure continually evolve as office
workers develop new techniques to solve old problems or
face previously unencountered difficulties. Consequently,
we have not sought to achieve any elusive "completeness."
Instead, a description couched in OSL will focus on the pur
pose of the procedure, rather than on its mechanics. This
is accomplished by including in the language primitives that
express the goals of office activities in application terms. In
order to achieve this end, it is necessary to sacrifice com
pleteness in another way as well. We do not expect that OSL
will be appropriate for describing all conceivable office pro
cedures. OSL embodies a particular perspective and ap
proach to office work and its description which, we believe,
matches a large number of office procedures, although cer
tainly not all of them. Our goal is to make OSL extremely
usable for a large class of applications, rather than minimally
adequate for the universal class of applications. We have
sought to optimize the design so that what OSL does, it does
very well; we are devotees of the 80/20 rule. Whether or not
we achieve this goal and whether or not the class of appli
cations for which OSL is appropriate will be large enough
to justify this decision, only extensive experience with the
language will answer.

The fundamental premise underlying the design of OSL
is that there is a high degree of commonality of structure and
activity among procedures in different offices. In other

words, we believe that there are fundamental semantic struc
tures in the office application domain that recur in many
different contexts. This commonality can be exploited by
identifying the structures that are repeatedly used in natural
descriptions of different office procedures and embedding
them in a formal language. The user of the language will then
find that it provides him with just those problem-oriented
features that he wishes to use; he will not have to build up
a description of an office procedure from lower-level and
more general constructs. Consequently, the design of an
office specification language must be based on an extensive
familiarity with the application environment.

The first (and an ongoing) aspect of the OSL design effort
has been to conduct many case studies of office procedures
in different environments. We have conducted analyses of
a large number of operational and administrative offices, of
several different kinds, within a variety of organizations. It
is by analyzing and abstracting from these descriptions that
we have identified the fundamental constructs of OSLo
Based on these analyses, we have concluded that most office
procedures are fundamentally simple processes that are
often obscured by implementation details and disorganized
exception handling. However, when it is eventually uncov
ered, the basic structure of the office procedure is often rel
atively easy to comprehend and describe, given the appro
priate set of primitives. The "complexity" of office procedures
is often an artifact; the goal of OSL is to manage and even
avoid this complexity.

The following summarizes the principal characteristics of
OSLo

1. A specification expressed in OSL takes a holistic view
of office activities; it is not based on a description of
the processing performed on individual forms passing
through an office nor around the activities of individual
office workers. Rather, it expresses an integrated view
of the office activities as a whole, with the focus on the
end being achieved rather than the means being em
ployed to achieve it.

2. OSL descriptions are expressed in terms of application
oriented constructs, eliminating as far as possible any
detail that is not germane to the application itself but
that results only from the fact that the specification is
be~ng expressed in a formal language.

3. OSL specifications are highly structured in a canonical
way. OSL imposes a uniform format on the description
of every office procedure. Furthermore, this descrip
tion is modular, so that it is possible to develop an
understanding of individual parts of it and to compre
hend its overall structure without working through all
the details. This modularity is accomplished in two
ways. First, the language employs techniques of suc
cessive refinement so that the procedure can be ex
pressed and understood at mUltiple levels of abstrac
tion. Second, because of their importance in office
procedures, the descriptions of exceptions arid special
cases are not incorporated directly into the main line

Design Principles of an Office Specification Language 545

of the procedure, but are attached to it in specific and
predetermined ways.

4. OSL embodies the most common specialized con
structs used to describe office procedures. While this
does lead to growth in the number of language features,
with some attendant increase in its complexity, it also
leads to shorter and more understandable specifica
tions. The intent of the procedure is evident from its
surface, since it is being expressed directly rather than
coded in terms of general and abstract facilities.

5. OSL makes extensive use of declarative specification
techniques. That is, as much knowledge of the pro
cedure and its operation as possible is embedded not
in a description of activities to be performed, but as
constraints and restrictions on the data values or doc
uments associated with the procedure. This leads to
greatly simplified procedural descriptions as well as
specifications that are easier to change (because of the
locality of this information).

Below we shall see how these general principles and cri
teria have been addressed by the current version of the lan
guage.

AN OVERVIEW OF OSL

The major premises discussed above have had a major
influence on the development of OSL and are reflected in
its philosophy and features. A holistic view of office spec
ification is central to the structure of the language. While
OSL recognizes the importance of forms and people as in
dividual units of office activity, it does not structure a pro
cedure description around them; its orientation is toward the
objects in an office. Objects in this context are the entities
that are the focus of office activities and that form the basis
for a description of office functions; the office as a whole
is described in terms of the evolving history of its objects.
OSL provides canonical high-level office-oriented con
structs for the specification of both data and control struc
tures. Such constructs provide a framework for the orga
nization and presentation of a specification and also act as
a guide to the analyst in structuring his task. This framework
in turn provides for the readability and naturalness of expres
sion necessary for using OSL in documentation and training.
Finally, OSL provides a built-in structure for all specifica
tions; the office description as a whole has a standard format,
and each of its components can be decomposed in a uniform
way.

We shall now describe in some detail the structure of the
initial version of OSLo In this discussion, we will employ as
an example the Office of Sponsored Programs (OSP) at MIT,
whose major functions are to expedite the submission of re
search proposals and the negotiation of contracts, and to
monitor the resulting grants and contracts to ensure com
pliance with internal policies and contractual requirements.

An office specification in OSL consists of two major com
ponents: a description of the application domain with which

the office is concerned, and specifications of the procedures
performed in the office. The former provides a context for
the description of the procedures. It effectively expresses
a model of the world of the office; it describes the objects
on which the office is focused, the organizational context
of the office, the documents and forms that the office pro
cesses, and the information that it needs to utilize. In the
case of the OSP, this contextual information describes a
world consisting of proposals, contracts, funding agencies,
researchers, laboratory directors, and the like. The descrip
tion is couched in terms of a variant of the SDM,3 a data
modeling mechanism originally developed for describing the
information content of databases. The key feature of the
SDM is that it models 'an application rather than data; thus
the specification includes a direct description of the office
and its environment. This enables the specification to dis
tinguish substance from artifact; a procedure can access in
formation it requires by directly referring to the appropriate
attribute of an entity, without caring whether that infor
mation is captured on a form, in a database, or elsewhere.
This "schema" thus naturally expresses the static semantics
of the office in terms with which a reader is likely to be
familiar.

The description of the office environment is expressed in
terms of entities and their attributes, inter-entity relation
ships, and entity collections. Associated with the description
of an office entity is the definition of those documents related
to it (for example, a proposal document is associated with
each proposal entity), as well as constraints on the a~tributes
of the entity and on its processing (for example, that the
principal investigator of a contract must be a faculty member
or that if human subjects are to be used in the research then
approval must be obtained from an appropriate university
committee). By associating constraints with objects and doc
uments, the description of context becomes more meaningful
and the specification of the procedures becomes simpler and
more modular. Specialized entity and relationship types
(such as people, agreements, schedules, logs, supervision,
and the like) are provided, since they recur frequently and
they possess special semantics. Included in this environ
mental specification is a description of the offices in the or
ganization and the lines of communication and authority that
connect them. Such an organizational description is partic
ularly valuable when a function is realized by means of re
lated procedures executed in different offices. The local of
fice context describes the people in the office, their roles,
responsibilities and authority, as well as the files maintained
in the office. The environmental description also identifies
the primary objects of the office. These are the entities that
are the major focus of the office activities and around which
the descriptions ofthe procedures are organized. In the OSP,
the primary objects are proposals and contracts.

The dynamics of the office are captured in the specifica
tion of its procedures, the activities it performs in the de
scribed context. Just as an appropriately-designed data
model can serve as the basis for natural descriptions of the
environment, so too a simple but powerful model of office
activities can be applied to procedural specification. To this

546 National Computer Conference, 1980

end, OSL incorporates a canonical set of structures for pro
cess description that are based on three concepts: an orien
tation around objects; hierarchically structured and modular
descriptions; and an emphasis on the identification of ex
ceptions.

Fundamentally, every OSL procedure is concerned with
processing and/or managing a primary object. Based upon
such an object orientation, we find that a large number of
office activities can be described in terms of a fairly simple
three-stage model representing the' 'life cycle" of an object:
an initiating procedure, an administrative procedure and
a terminating procedure. The primary object has three ver
sions, which correspond to the three stages of the procedure.

An initiating procedure manages an initiator object. This
is an "active" procedure; it "pushes" the initiator through
a series of operations to an end point, at which time the
administrative procedure is triggered. In the OSP, the ini
tiator is a contract proposal, and the initiating procedure is
concerned with obtaining institutional approval for the pro
posal and negotiation with the proposed sponsor. At the
conclusion of the initiating procedure (which may include
se~eral iterations of the proposal submission process), the
proposal is either rejected, terminating the overall proce
dure, or accepted, invoking an administrative procedure.

An administrative procedure manages a (set of) resource
objects. It is concerned with maintaining the status of the
resource and verifying and recording all activities that are
applied to it. In the OSP, the resource is a contract; the
process involves assuring that the spending restrictions and
reporting requirements of the contract are honored.

The final stage of the "life cycle" of an object is termi
nation. When the resource is no longer of interest, the ad
ministrative process triggers a termination procedure, which
produces an archive object. This is another "active" pro
cedure, although in many cases it is relatively uncompli
cated. An archive object simply represents any information
that must be available after the termination of the procedure
and destruction of the resource.

We have thus defined two classes of procedures: admin
istrative and active. An administrative procedure is specified
by means of a formatted description' that identifies periodic
inputs and outputs and how they are to be handled (progress
reports and accounting reports in OSP) and nonperiodic,
but expected, events, together with the processing required
to handle them (e.g., purchase authorizations).

Active procedures are specified somewhat differently. An
active procedure can be viewed as the application of a set
of activities (' 'verbs' ') to an object by a responsible agent
("subject"). The control structure for specifying the order
in which activities are to be applied is formalized in the fol
lowing manner:

The procedure is described in terms of states, events, and
activities. States are stages in the execution of the procedure
at which no further processing can be done until the occur
rence of some event. An event is an autonomous occurrence
that is beyond the control of the agent responsible for the
procedure (e.g., the receipt of a document, the arrival of a
specific date and time). When the procedure is in a given
state, it is waiting for the occurrence of one of a designated

set of events; when one of these events occurs, a corre
sponding activity is executed, at the conclusion of which
the procedure is left in some other state. A state machine
like formalism can be used to express these relationships and
determine the overall control structure of the procedure. For
example, one state of the OSP initiating procedure corre
sponds to a situation in which a proposal has been sent to
the legal office for review; when an appropriate event (re
ceipt of a response from the legal office) occurs, the proposal
can be further processed by OSP preparatory to its submis
sion to the proposed sponsor.

Activities are the specific actions performed in the course
of a procedure; the description of an activity, like that of a
procedure as a whole, is hierarchical and modular. At the
top level of specification, activities are specified with a min
imum of detail; this is provided in the lower levels of de
scription. This hierarchical structure supports the modifi
cation of activity descriptions; it also allows for both
descriptive and prescriptive (normative) specifications of
any given office situation. We anticipate that the top-level
specification will express the goal of the activity; the detail
may represent either the results of the analysis (description)
or the specification of an implementation (prescription).

At the base of the activity hierarchy is a set of activity
primitives, each of which is a fundamental office operation.
For example, the primitive "select" is used to describe a
decision in which a subset of available resources will be cho
sen. (The "allocate" primitive indicates the opposite situ
ation.) Note that even at the primitive level, we seek to de
scribe function, rather than implementation. Thus, "select"
may be performed in various ways; we may have an algo
rithm for implementing it (e.g., to select the highest-scoring
applicant), or it may be inherently judgmental (e.g., to select
a site for a new plant). This flexibility in describing activities
is desirable in a tool for analysis and documentation.

One of the key aspects of our formulation is its approach
to exception handling. As we have discussed, special cases
and exceptions are often the source of the perceived com
plexity of many office procedures. By organizing the de
scription of exceptions, we provide a means of making the
overall specification more organized and readable.

We take a hierarchical approach to the specification of
exceptions. Each level of procedure and activity description
has an associated list of exceptions. These are classified in
terms of the nature of the events that give rise to them; in
stances include violation of timing constraints, invalid data
values, unavailable personnel, and activity-specific errors
(e.g., an inadequate set of resources from which to make a
stipulated selection). The responses to the exceptions are
also frequently drawn from a canonical set. The descriptions
of the exceptional situations and the responses to them are
separated from the mainline procedure to enhance the latter's
readability.

RELATED WORK
We note that our usage of the concept of a specification

language differs from that typically employed in the com
puter science literature.4 The common usage refers to a gen-

Design Principles of an Office Specification Language 547

eral-purpose facility for describing the behavior of individual
modules of an arbitrary large software system. By contrast,
our perspective is domain-specific and implementation-in
dependent. However, some earlier work has been done in
areas related to our effort, generally in the context of busi
ness information system design. The Time Automated Grid5

and Accurately Defined Systems6 languages are designed for
describing file processing applications; the latter is primarily
a documentation tool. The Business Definition Language7

is also aimed at highly-structured data processing tasks. The
Problem Specification LanguageS is a more general language
for defining information system requirements. Although a
number of ideas useful for the specification of office systems
can be derived from these languages, it is clear that their
scope is inadequate for the flexible, interactive, and semi
structured nature of the systems that we are addressing.

Recently, several attempts have been made to design lan
guages specifically for the office domain. Barber and Hewitt9

are using a form of the Actor formalism \0 to specify the ac
tivities of office workers and the communications among
them, primarily in an effort to find means of symbolically
proving, simulating and modifying office procedures. IBM's
System for Business Automation Programming Language!!
is based upon the Query-by-example relational database
query languageY The user programs in a forms-oriented
graphical environment; primitives in the language include
database access, forms editing and control, and similar func
tions. The Xerox PARC Officetalk system!3 uses a similar
forms-oriented interface and programming-by-example par
adigm, although it also allows the writing of procedural de
scriptions of forms processing with a small set of filing, com
munications, and forms editing primitives.

A major problem with all these languages is that they do
not deal directly with office function. They are oriented to
ward the tasks'of individual office workers; the focus is on
current task structure, rather than fundamental function. As
a result, the utility of these languages for high-level speci
fication is limited.

The Office Procedure Specification Language2 does deal
more directly with office functions. It primarily allows the
description of documents and communications patterns. Prim
itives are at the level of document definition and move
ment; more complex processing is expressed by programs
written in a general-purpose programming language. The
structure and syntax of the language are tightly coupled to
an augmented Petri Net formalism, a general representation
scheme for asynchronous, concurrent processes. The major
shortcoming of this approach, which it shares with all of the
above office description languages, is that it lacks any con
structs at a level.higher than "send message" or "file doc
ument." Nor do any ofthese languages result in highly struc
tured or readable specifications.

SUMMARY

We have presented the basic concepts of an office speci
fication language and identified the principles on which the
design of the OSL design effort is continuing. A first version
of the language has been specified, and it is being applied
to a number of test cases. Experience with the use of the
language will indicate needed changes; we expect that this
iterative approach will lead to a highly effective language.
We have also begun exploring the design of an OSL pro
cessing system, which would seek to automatically generate
an office information system from its OSL description.

ACKNOWLEDGMENTS

We would like to acknowledge the valuable suggestions
of our colleagues Marvin Sirbu and Sandor Schoichet.

REFERENCES

1. Hammer, M. and Zisman, M., "Design and Implementation of Office
Information Systems," Proc. NYU Symposium on Automated Office
Systems, New York University Graduate School of Business Adminis
tration, May 1979, pp. 13-24.

2. Zisman, M. D., Representation, Specification and Automation of Office
Procedures, Ph.D. Dissertation, The Wharton School, University of
Pennsylvania, 1977.

3. McLeod, D. J., A Semantic Data Model and Its Associated User
Interface, Ph.D. Dissertation, MIT, Department of Electrical Engineering
& Computer Science, August 1978.

4. Liskov, B. and Berzins, V., "An Appraisal of Program Specifications,"
T. Wegner (ed.), Research Directions in Software Technology, MIT
Press, 1979.

5. IBM, "The Time Automated Grid System (TAG): Sales and Systems
Guide," Publication GY20-0358-1, IBM, May 1971.

6. Lynch, H. J., "ADS: A Technique in System Documentation," Data
base, Vol. 1, No. I, Spring 1969.

7. Hammer, Michael, Howe, W. Gerry, Kruskal, Vincent J., and Wla
dawsky, Irving, "A Very High Level Programming Language for Data
Processing Applications," CACM, Vol. 20, No. 11, November 1977.

8. Teichroew, D., "Problem Statement Analysis: Requirements for the
PSA," J. D. Couger and R. W. Knapp (eds.), System Analysis Tech
niques, John Wiley and Sons, 1974.

9. Barber, G. and Hewitt, c., "Towards the Development of Office
mantics," Draft, October 1979.

10. Hewitt, c., "Viewing Control Structures as Patterns of Passing Mes
sages," Memo 410, MIT Artificial Intelligence Laboratory, December
1976.

11. Zloof, M. M. and de Jong, S. P., "The System for Business Automation
(SBA): Programming Language," CACM. Vol. 20, No.6, June 1977.

12. Zloof, M. M., "Query-by-example," Proc. NCC, AFIPS, 1975.
13. Newman, W., "Studies of Office Procedures and Information Flow,"

Internal Memo, Office Research Group, Xerox Palo Alto Research Cen
ter, May 1976.

Automated workflow control: A key to office productivity

by L. S. BAUMANN and R. D. COOP
Electronic Office Research Project, Sperry Univac
Roseville, Minnesota

INTRODUCTION

Until the mid nineteenth century, labor in the United States
and the rest of the world was primarily manual in nature.
Productivity improvements were obtained by improving
workflow or decreasing wages. After the start of the indus
trial revolution, a third variable affecting productivity arose.
Mechanization (later to be called automation with the intro
duction of the computer) allowed product output per worker
to be greatly increased. Mechanization was applied to those
work tasks which were well structured and easily imple
mentable. These areas were primarily the farm and factory
manual labor activities which were very expensive in terms
of manpower. Production increased sharply and continues
to make steady improvement even today.

One class of worker (the so-called white collar worker)
was left out of this revolution. Because of the basic lack of
structure in white collar work, mechanization was limited
primarily to clerical and secretary-typist areas. However,
even with this lack of mechanization the productivity of the
white collar workforce kept pace with factory and farm pro
ductivity until the mid twentieth century. By that time, au
tomation had developed to such an extent in factory oper
ations that a divergence began to appear between factory
and white collar productivity. For example, during the pe
riod from 1965 to 1975, factory productivity [1] in the U.S.
electronics industry increased by 3.6 percent per year com- '
pared to 2.9 percent per year for the white collar workforce.
Obviously, the overall worker productivity was retarded by
the lag in white collar productivity.

Recent studies [2,5,6,7,8,11] indicate that productivity in
the office is based on the utilization of principals (managers
and professionals). Productivity logs are due primarily to the
elimination of support to principals over the last several
years and to lower work expectations. Looking at the pro
ductivity log we find that the time lost in work interchange
is the chief non-production cost. An attack on work inter
change, management control of work, and support respon
siveness can pay considerable dividends in improved office
productivity. To begin this attack, we must first get a better
understanding of the nature of office work. Our second step
will be to create a mathematical model of a general office
process which clearly shows workflow control as an isolat
able and mechanizable process. On the basis of this devel-

549

opment of workflow control within the model, we briefly
describe the elements of workflow control. Mechanization
of these elements will improve office productivity.

THE NATURE OF OFFICE WORK

What constitutes a business office? This question is easily
answered at the macro level. An office [2,10] consists of
people interacting in an environment to carry out the mission
of a business. The environment provides the resources used
to aid the interaction among people. The human interface
(to environment or through environment to other workers)
fully characterizes the work at each step in office processes.
The workings of the interface and the worker's psychological
relationship to the interface define discrete stages in the
work process.

The concept of "process" is not as clear as it seems. A
process is an on-going activity in which data or materials
flow in and out. A snapshot in time' shows each datum or
material element in a different stage of process completion.
If we break a major process or activity into individual sub
processes, we find in a snapshot that different combinations
of these individual subprocesses are operating on different
datum or material elements.

If we examine an office organization, we find a hierarchy
of management personnel controlling the office workers.
Slicing into this hierarchy at any point, we find a manager
(at an appropriate hierarchical rank) and working personnel
(who also may be management personnel or office workers).
The manager has an office mission which is carried out by
making work assignments to the working personnel. The
working personnel report on the status of the assigned work
to the manager providing feedback for his evaluation and '
decision making. The work assignment is a high level pro
cess, hereafter called an ojJke process. Office process defi
nitions vary from office to office, and from point to point
in the organizational hierarchy.

An office process operates on information over time. At
any instant we find working personnel carrying out concur
rent single worker processes. Moving the snapshot in time
introduces the sequentialityof worker activity, which gives
us the basis for creating our model. This segmentation pro
cess is carried out on the office process to isolate each in-

550 National Computer Conference, 1980

dividual single worker process (hereafter called a personal
process).

Figure 1 part A shows an office process partitioned into
m time slices. Each time slice is a concurrent multiworker
work profile which can be partitioned into concurrent pro
cesses for each worker, as shown in part B. Part C shows
the concurrent single worker processes partitioned into
unique personal processes. The personal process may be
carried out at a manual or electronic office station, as shown
in part D. The worker can perform his personal processes
at either a manual office station or a partially mechanized
electronic office station. In the latter case, each personal
process must be separated into manual and mechanized sub
processes.

The ability to perform any personal process manually or
with mechanization is very important in an automated office.
Loss of processed information is intolerable. Since any elec
tronic aid can fail, the process must be able to continue
manually. Thus the manual and electronic personal process
models must be similar, and allow easy transition from one
to the other at any point in the process. Recovery actions

tm
/ ~

/ ~
/ /

/ ~
/ //

/ /
~/ ______ -L ____________ ~'~

tz ,__01.----------,
. t1 ~~----------------~

Concurrent Multiworker
Work Profile

A) Time Slicing the Office Process

Worker
k

Personal Process 2

required in this transition are non-productive and therefore
must be minimized.

Personal processes consist of subprocess transformations
and information/topological states. Manual office activity
(see upper part of Figure 1 part D) involves a workspace,
files, and worker topology and . subprocess transformations
carried out by the worker. When we begin to mechanize the
topology expands (see lower part of Figure 1 part D) and we
must break up the process transformations. The manual sub
process involves a manual workspace, manual files, and
worker topology with subprocess transformations carried out
by the worker. This is very similar to manual office activity.
In addition, mechanization requires a mechanized subpro
cess involving a mechanized workspace, mechanized files,
and Electronic Data Processing (EDP) topology with sub
process transformations carried out by EDP.

The transformation of information in a personal process
can have two forms: structured and unstructured [12,13].

A structured transform is a process transformation which
is computable within the processing and storage resources
of the available Electronic Data Processing (EDP). Unstruc-

Worker Worker Worker
1 2 3

Worker
k

B) Worker Isolation in the Work Profile

Manual
Office
Station

~ c:=JOI
Worker

3
Personal Process nk

Electronic
Office
Station

C) Personal Process Partitioning of Single Worker Concurrent Work

Mechanized Subprocesses
(Transform

D) Personal Process Modeling
Figure I-Segmentation and modeling of the office process.

Automated Workflow Control: Key to Office Productivity 551

tured transforms are those which are not computable by the
available EDP technology and must remain relegated to the
worker. The workspace acts as the interface between these
two classes of transformations and is the topological location
of the resultant process transformation. An interesting
sidelight is the topological division of files into manual and
EDP classes because of the transformation division. The
mechanized office is a true distributed processing system
even if the EDP is centralized.

MODELING OFFICE WORK

Our next objective is to construct a model of office work
which defines the concept of workflow control. To accom
plish this end we will return to Figure 1 and create a math
ematical formulation. Zisman [4] has shown that office pro
cesses have a knowledge domain and a process (action)
domain. The knowledge domain controls the activity in the
process domain. A model of a process can be considered a
computable ordered graph P[Q x C] where

P is a Petri Net [14],
Q is the knowledge domain state set,
C is the process domain state set, and
Q x C is the cartesian product.

We can begin the creation of a model for office work by
examining Figure 1 part D. We can model the manual office
personal process as:

P ;[Q x C] for i = 1,2, ... ,k workers

An electronic office personal process is broken into two sub
processes; a manual subprocess model:

P/[Q x C] for j= 1,2, ... ,k' workers

and a mechanized model:

P/'[Q x C] for j= 1,2, ... ,k' workers

Looking at Figure 1 part C, we can see that concurrent per
sonal processes are possible for each worker's timeslice.
This concurrency can be represented as the union over n'
electronic office personal processes and n manual 'personal
processes:

U nj' {Pja'} U un; {P}
0< = 1 P ja" 13 = 1 ;~

Moving to Figure 1 part B, we see that a work profile
consists of concurrent multiworker activity which may be
represented as the union over all workers:

U k unj' {Pja'} U Uk Un; {P}
j=1 0<=1 P ja" ;=1 13=1 ;~

In Figure 1 part A, the work profiles are sequenced over
m time slices. We will represent this sequencing as operation
S which selects the appropriate work" profile models. This

operation may be represented as:

Office Process

=S~", [UJ~, U,:/i" {~;::} U U7{;, U'ih, {P,,}]
This formulation is greatly simplified if we use the properties
of Petri Nets and recognize that the concurrency/sequen
tiality of the personal processes can be formulated by a
model in the knowledge domain guide by process domain
production rules (see Zisman [4]).

The office process formulation becomes a set of graphs:

Office Process

1 ~;,~~]xC] I
Pjs'[Q xC]
Pjt"[Qx C)

i= 1,2, ... ,k
j= 1,2,. .. ,k'

for r= 1,2, ... ,(n 1 + n2 + ... + n m)

s= 1,2, ... ,(n ,' +n2' + ... +n m ')

t= 1,2, ... ,(n 1 + n 2 + ... + n m ')

where Pc is the sequentiality/concurrency knowledge model.
Pecan be further subdivided into a graph Pc' representing
the office manager knowledge operation and Pc" represent
ing the actual control of workflow. This yields our final
model:

I Pc' I P"
Office Process = . P;', for all i, j, r, s, and t.

P Js

p."
Jt

We assume that the human worker is a consolidated graph
(P j and P;) for all rand s. We also assume that I unique
mechanized subprocesses (P a", (]" = 1,2, ... ,1) make up the
Pjt" concurrent subprocesses. Figure 2 shows the final office
process model with a manager Pc' , mUltiple manual workers
(P;, i= 1,2, ... ,k), multiple mechanized workers (P/,
j= 1,2, ... ,k'), mUltiple mechanized subprocesses (P a",
(]"= 1,2, ... ,1), and a workflow control system (P c").

~r

Manual
Worker

Pk

Figure 2-Physical representation of office process model.

552 National Computer Conference, 1980

THE ELEMENTS OF WORKFLOW CONTROL

On the basis of the previous development of workflow
control (which demonstrates existence and isolatability)
within the model, we now examine the basic concepts and
elements of workflow control to demonstrate its mechaniz
ability. Consider an office as a room containing people and
facilities (mechanisms, desks, chairs, pencils, paper, files,
lighting, heat, etc.). What is characteristic of this office with
out regard to specific work? The office is both the control
tower and the service station for a business. By assembling
and analyzing information, it exercises control over distri
bution, production, procurement, and finance. By assuming
responsibility for correspondence and other forms of com
munications, accounting, duplicating, filing, etc., it fulfills
its service function. The office mission defines the respon
sibilities of the office in control and service areas of the busi
ness. Management is the coordinating factor which brings
together the elements of an office in a harmonious unit to
accomplish the office mission. Offi<;e management coordi
nates (1) personnel, (2) methods, and (3) facilities within the
office. An office organization is created to define the job
and job relationships of each office employee. This organi
zation is hierarchical with management personnel at the top
and office workers (professional and support personnel) at
the bottom. Because of problems created in horizontal in
formation flow through a vertical hierarchical organization,
a set of office procedures defines the methodology of infor
mation flow. An office procedure does not provide methods
for any specific work activity; but rather, provides methods
for general information movement without regard to a spe
cific work assignment. Once we have a mission, organization
and procedures; we still are not in business. We must have
a people/facilities assignment. Facilities must be assigned
for employee use. A one-to-one correspondence is not nec
essary, as many people may use one machine (i.e. a self
service duplicator) or many facilities may be assigned one
individual (i.e. multiple file cabinets). Associated with fa
cilities assignment is the office layout. Layout is the allo
cation of space to departments and individuals. Finally, we
must create exo-office interfaces and procedures. Since the
office acts as the control and service hub of a business,
methods must be established for communication outside the
office. Some communications may stay with a business (of
fice to factory communication) and some may move outside
a business (business to business correspondence). Because
of the sensitivity of this information flow, approvals within
the hierarchical office organization are needed.

Our next question is: What is characteristic of this office
with regard to specific work? We have a framework within
which work can be completed, but we haven't established
any specific work to be done or how it is to be controlled.
Workflow is the movement of specific work through the
framework created by an office mission,.office organization,
office procedures, people/facilities assignment, and exo-of
flce interfaces and procedures. The framework is not suffi
cient to fully characterize workflow control. One of the func
tions of management in an office is to define work activities
consistent with the office mission. This function is work del-

inition. Once a specific work activity is decided upon work
assignments are given to the principals involved. The work
assignment requires knowledge of the specific work orga
nization (principals and support) for carrying out the work -
activity. The work assignment initiates work activities. The
work activity is broken by the principals into a prescribed
set of office processes. Each informational datum associated
with the work is associated with a stage of completion in
each office process. As the datum moves through the office
process, it progresses from process stage to process stage.
This progression is called work staging. Within each work
stage, work activity must progress in a timely fashion. In'
addition, the stages must progress for each datum in a timely
fashion. This relationship of time to work staging and activ
ities in a stage is called work scheduling. Work does not
always progress as planned. Corrective actions must be
taken during many work activities to bring the activity in
line with management expectations. This corrective function
is called work enforcement. Timely control and management
of work require a complete knowledge of the status of the
work activity. To obtain this knowledge, work measurement
is required. Measures are set up to gauge work progress and
to compare with pre-established work criteria.

OFFICE MODEL/ELEMENT RELATIONSHIPS

The workflow control model (Pc") is a Petri Net [4,12]
constructed in the knowledge domain (Q) of knowledge
states, state transitions, marking tokens, and process domain
production rules. To make the elements of workflow control
useful, we must be able to define each element in terms of
the constituents of the P c" model. In order to create these
definitions, we must first develop a definition of the work
information data which are manipUlated in process domain

Office Manager

PC: Q, ~Q
......

............ ,.,,/q

>< // q

Worirflow Control Model-""

PC: cr-: ".:Q " / '\.)r/q " / ,
'/ ,
'/

/ / '" \ </> = production rule // "q ,
/ '"

/ ", / '\.
Process Model)I' " ,

P:QxC -QxC
/ /'1 I 1/

I
/1 , 1/

/ I , I I
I / / , /,

< qin. </>in. Din> JL < qout. </>out. Dout >

Figure 3-Model interconnections.

Automated Workflow Control: Key to Office Productivity 553

(Q x C) by the manual workers (Pi), mechanized workers
(P/), and mechanized subprocesses (P,/,). The elements of
the cartesian cross product (Q x C) are triplets (q,<t>,D)
where:

q is the knowledge domain state of the datum. This state
answers the "what" and "when" questions about the
documentation.

<t> is the location-owner state (file, workstation, worker,
etc.) of this datum. This state answers the "who" and
"where" questions about the documentation.

D is the documentation of this datum.

The resultant knowledge state (qout) in the workflow control
model (Pc") provides the input state (q in) in the process
models (P;), (P/), and (P ,/,). This input process state
(qin,<t>in) references the documentation triplets (qin,<t>in,D in)
for processing. The resultant process state (q out,<t> out) of a
process model relates to the model processed documentation
triplet (q out ,<t>out,D out). The resultant process state (q out) of
a process model provides the input state (qin) in the work
flow control model. The resultant process state (<t> out) of a
process model provides a production rule (<t>in) in the work-

flow control model. This construction can be visualized as
shown in Figure 3.

Our next step is to conceptualize the Pc" workflow control
model as a series of models constructed around each of the
elements of workflow control. The models will be:

P ,-Office Mission
P 2-0ffice Organization
P 3-0ffice Procedures
P 4-People/Facilities Assignment
P 5-Exo-Office Interfaces & Procedures
P 6-Work Definition
P 7-Work Organization
Ps-Work Assignment
P 9-Work Staging
P 10 - Work Scheduling
P ,,-Work Enforcement
P '2-Work Measurement

To complete our construction of P c" we need another model
Po which relates the workflow control elements together.
The Pc" model would become:

P/'={P i }, ;=0,1, ... ,12

q to Office I Offi.;char. 1-- - - - - - WorkCharacterizatio;Ei;;nts - - - - - - -I
Manager p·c --* I Elements I I

I t15 I I'
Changel I I

r---T I
: 1
: I
: 1

: I
~c~~~e+
I

q from Office: I
Manager P'c I

, I

fr t11 ;tt1
I , I I

-L-t--------L-... -----+ --------+

Figure 4-First layer (Po) of workflow control model (P/).

554 National Computer Conference, 1980

The first layer, Po, of this new construction is shown in
Figure 4. This model is a basic Petri Net with states PI
through P 12' These states act as triggers to initiate the cor
responding lower level layer. For example, state Pi in the
Po net triggers the Pi net. Completion of the Pi net activates
the transition following the Pi state in the Po net. The solid
lines indicate transition paths on the Po net and the dashed
lines indicate paths in the lower level Pi' i= 1,2, ... ,12 nets.

Consider the right hand side of the Po net. The exchanges
with the Process Models are shown. Work Enforcement,
P II, is continually active and issues process initiation and
change information (q) to the Process Models. Changes are
determined when deviations are. noted by Work Measure
ment, P 12' Work Measurement compares the fixed work
schedule with q, <I> data received from the Process Models.
Major deviations from plan are relayed to the Office Manager
and changes can be made at the P 6, P 7, P 8, P 9, or P 10 layers
as determined by input from the Office Manager.

Looking at the left hand side of the Po net, we see the
exchanges with the Office Manager, P (". The input from the
Office Manager may start a work activity, via transition t I ,

or change office characterizations, via PI' P 2, P 3, P 4, or
P 5 layers, or select changes in work characterizations, via
the P 6, P 7, P 8, P 9, and P 10 layers. The output to the Office
Manager consists of state information q from each of the Pc"
layers.

The variation in office structures is incorporated in the
office characterization processes P I through P 5' These pro
cesses may be viewed as control structure processors which
convert office characterization statements into office struc
ture states for use by the work characterization processes
P 6 through P 12' Work characterization processes P 6 through
P 10 provide the decomposition of a work activity selected
by the Office Manager into specifically scheduled personal
processes to be carried out by workers and process mech
anizations. Work characterizations processes P II and P 12

provide direct control of workers and mechanized processes .
on a continuous basis.

CONCLUSION

This paper has demonstrated that workflow control exists
as an isolatable and mechanizable subprocess in every office .

process. An office process model was created which isolates
workflow control from the individual personal processes
which constitute the office process. The workflow control
mechanization provides for efficient work interchange and
allows for interactive management control of work. Personal
process mechanization improves support responsiveness.
Based on the previous studies, this mechanization of work
flow control and selected personal processes will improve
office productivity significantly.

The models developed in this paper consider only a single
control span within the office organizational hierarchy. Mul
tiple spans of control in the hierarchy are obtained by in
terconnection of the independent workflow control models,
and decomposing work definition in accordance with orga
nizational charters. Matrix organizational structures are ac
commodated by partitioning the definition of office manager
into functional manager and project manager constituents.

BIBLIOGRAPHY

I. Statistical Abstract of the United States, 1977.
2. Lodahl, T. M., et aI., Providing Management Support in the Automated

Office, Corporate Systems, June 1979.
3. Steinfatt, T. M., Human Communication, Bobbs-Merrill Educational

Publishing, 1977.
4. Zisman, M. D., Representation, Specification, and Automation of Office

Procedures, Wharton School Working Paper 77-09~04.
5. Wetzler, R., "Operational Analysis-A Team Approach to Productivity

Improvement," Bests Review, March 1978.
6. Mintzberg, H., "The Manager's Job: Folklore and Fact," Harvard Busi

ness Review, July-August 1975.
7. Blair, J., "Productivity Assessment of Office Information Systems Tech

nology," Trends and Applications, 1978 Distributed Processing Confer
ence.

8. Aiken, W. and Lewis, J., Office Work Measurement, Handbook of Busi
ness Administration, McGraw-Hili Book Company, 1970.

9. Zisman, M., "Office Automation: Revolution or Evolution," Sloan Man-
agement Review, Spring 1978.

10. Steely, J., "When Management is Automated," Datamation, April 1978.
II. Gibson, R., "Increasing Employee Productivity," AMACON, 1976.
12. Kaplan, M. and Schwartz, S., Human Judgement and Decision Process

in Applied Settings, Academic Press, 1977.
13. Ness, D., A Family of Systems which Process Semi-Structurallnfor

mation, Wharton School Working Paper 75-06-08.
14. Peterson, J., "Petri Nets," Association of Computing Machinery-Com

puting Surveys, September 1977.

Streamlining office procedures-An analysis using the
information control net model

by CAROLYN L. COOK
Xerox Palo Alto Research Center
Palo Alto, California

INTRODUCTION

The purpose of this paper is to· acquaint the reader with a
model for office procedures, the Information Control Net
model, and a particular type of transformation that can be
performed on an Information Control Net (lCN) model,
streamlining. The ICN formalism is intended to aid office
managers and office analysts in describing and evaluating
procedures. Streamlining is a technique for reducing the ICN
model of a procedure to a model of the necessary information
flow and elementary information,.processing of the proce
dure. Streamlining highlights the origin and destination of
information in a procedure and allows the modeler to vary
the route the information takes. Streamlining an ICN model
of a procedure illuminates information-processing needs,
activity by activity, in a way that may be useful for evalu
ating or changing the original procedure.

The model described here is based on a theory of Infor
mation Control Nets, which are directed graphs of proce
dures. 1 Information Control Nets (lCNs) partition the struc
ture of a procedure and the information used in a procedure.
This distinguishes I CN s' from the traditional flowchart
models of procedures in which communication was not ex
plicitly represented. ICNs have nodes corresponding to ac
tivities that comprise a procedure and nodes corresponding
to repositories (databases) used during a procedure. To' il
lustrate an ICN model and the technique for streamlining,
an leN model of an office procedure in a savings bank is
presented here as an example.

Using an ICN model

The ICN formalism is a tool for describing office proce
dures. An ICN model is an instrument for evaluating and·
constructing alternative procedures. An ICN model enables
the evaluation of the control structure, or organization of
activities,'and the information struct.ure, or communication
and use of information, in a procedure. An office analyst
interested in the control structure of a procedure could look
at an ICN model and see, for example, the activities that
comprise a loop, and the branches of a procedure that follow
a decision. An IC~ model also shows the opportunities for

555

executing activities in parallel. An analyst interested in the
information structure of a procedure could see the infor
mation requirements of specific activities, and patterns of
access of office databases. The analyst could also see com- .
munications patterns, both within and among offices. After
transforming an ICN model via streamlining, an analyst may
view these same characteristics of the streamlined proce
dure, which emphasizes information requirements, and not
the logistics of how the requirements have been met.

Probabilities may be used to label control flow arcs when
a procedure includes choice nodes (decisions or or-splits).
Execution time may be added to the model as an attribute
of activities. Handling probabilities and execution times is
not dealt with in this paper, although they are within the
scope ,of the model.

An ICN model also provides a framework for analyzing
office procedures. For example, an ICN model would allow
an office manager to consider the appropriateness of differ
ent media for office communications based on inter- and
intra-departmental communications patterns. Or the man
ager could compare a paper system to an electronic system.
Alternative procedures may be suggested by streamlining an
ICN model; one large form may be divided into two smaller
forms, each with a different route. While the ICN model
presented here gives a static description of a procedure, an
ICN model can also be the basis for dynamic simulations to
allow computer-aided, interactive analysis of offices. 2.3.4

Like any model, an ICN model cannot reflect everything
that happens in an office. An ICN model does not reflect the
intent of a procedure. An ICN model does not indicate spe
cific optimizations of a procedure. Despite these limitations,
the model captures the organization of a procedure and the
patterns of information usage in the office well.

The basic representation of an ICN model is a diagram of
an office procedure. The diagrams can be understood and
verified by dfficeworkers because the notation lends itself
to intuitive analysis. The diagrammatic model is based on
a formal mathematical ICN model. Because an ICN model
focuses on relationships among activities and information in
a procedure, these relationships can be viewed independent
of how the activities are executed and what the content of
the information communicated is.

As a procedural notation, an ICN model allows an office

556 National Computer Conference, 1980

analyst to collect and compare descriptions of the same pro
cedure. The analyst may construct a diagram which can be
compared either to the office manager's overview of the
procedure or to each officeworker's perception of the pro
cedure. With this model, inconsistencies in the abstract for
mulation of the procedure as well as between different in
terpretations of the procedure are more readily discernible.
Alternative procedures can be shown to the officeworkers
and office manager to discuss and evaluate.

Streamlining

There are many possible permutations of a streamlined
ICN model. Different permutations result from using differ
ent mapping schemes to relabel repositories (databases).
After a mapping scheme has been selected, the streamlining
transformation produces a streamlined ICN model of the
original procedure. 5 For example, one mapping scheme for
repositories is to aggregate them into fewer repositories of
differing type; archives, references, log books. This mapping
scheme encourages the modeler to look at generic activities.
Another mapping scheme is separation of repositories into
many more specialized ones. This mapping scheme corre
sponds to the unbinding of forms and files and encourages
the modeler to treat different types of information on one
form differently. The streamlined ICN model is not intended
to be installed in an office, rather, it is meant to suggest ways
to restructure the original procedure.

CONSTRUCTING AN ICN MODEL

An ICN model of an office procedure can be expressed
as a graph or diagram. A procedure is represented as a set
of activities embedded in a control structure, which shows
the temporal ordering of activities. Activities are left unin
terpreted in the model; the modeler represents how activities
fit into the control structure of the procedure, but does not
represent how they are executed. Graphically overlaid on
the control structure diagram is the corresponding infor
mation structure diagram. The information structure shows
the use of forms, files, and databases where information is
stored during the procedure. Control structure or control
flow is diagrammed in bold-faced lines; communication or
information flow is diagrammed in light-faced lines. There
are data labels associated with each of the information flow
lines. The basic notation used in ICN models is bold-faced
arcs and circles for the control structure, and light-faced arcs
and polygons for the information structure.

The information and control structures of a procedure as
represented in an ICN model may be implemented in a va
riety of ways. Information-handling may be implemented
electronically as well as with paper forms and verbal com
munication. The execution of activities may be implemented
by a group of officeworkers or entirely by one officeworker.
The implementation of the procedure (how it is done, when,
and by whom) is not expressed in an ICN model. Rather,

different implementations may be evaluated within the
framework of an ICN model.

Elements of the leN model

Activities

A procedure is modeled as a set of activities executed in
a specified order. There is nothing inherent in the ICN for
malism that dictates the level of detail of a task represented
by an activity. Activities represent discrete operations (for
example, office tasks) and have as attributes a descriptive
label, a place in the control structure, a set of repositories
(databases) which it may access, and information input(s)
and output(s). An activity may be called elementary if it
accesses at most one permanent repository.

Repositories

A repository in an leN model denotes a storage site of
information communicated between activities. Repositories
are used to denote documents, files, forms, record books,
scratch paper, and people's heads. The label for a repository
corresponds to the physical presence of information at a stor
age site. The representation of storage sites is somewhat ab-

TABLE I-Legend

Control Flow Arc

Activity

Decision Node ("or" - split)

"Or" - join

" And" - split

"And" - join

Information Flow Arc

External Permanent Repository

Internal Permanent Repository

Temporary Repository

Common Temporary Repository

Departmental Boundaries

p S Data Labels

Streamlining Office Procedures 557

~~M~ _____________ _

w~---------------------------------/ ~HC1:!..A~~ ___ _

ACCOUNTING

stract, files containing forms are modeled as a single reposi
tory for the information on the forms, and not a repository
within a repository. There are four kinds of repositories in
the ICN formalism. External permanent repositories rep
resent a class not to be restructured or coalesced, for ex
ample, a person, or the Wall Street Journal. Internal pe.r
manent repositories represent permanent office records and
databases, for example, a record of customer accounts. They
may be accessed outside the scope of one procedure. Tem
porary repositories represent working files containing infor-

Figure 1.

mation of topical interest or immediate usefulness, e.g., a
piece of scratch paper containing a number, or a telephone
message to return a call. Common temporary repositories
represent the merger of all temporary repositories, such that
information stored into anyone of them may subsequently
be retrieved from any other one. Common temporary re
positories have some of the characteristics of multi-access
electronic databases, a useful concept for office information
system design. In the ICN notation, external permanent re
positories are represented by diamonds; internal permanent

TABLE II-Directory of Activities

Activity
Number Activity Description

1
2
3
4
5
6
7
8
9

10

11
12
13

14

15

Write Request
Produce Proof
Decide Whether Proof is Adequate
Amend Proof
Produce Final Design of Proof
Designate Proof DeSign as Final
Approve Proof
Copy Proof
Fill Out Form Preparation Sheet
File 1 Copy Form Preparation Sheet

& 1 Copy Proof
Print Forms
Place Forms in Open Stock
Distribute 2 Sample Forms

& 1 Copy Form Preparation Sheet
File 1 Sample Form

& 1 Part Form Preparation Sheet
Make Up Inventory Card

Activity
Number Activity Description

16 Fill Out Supply Request Form
1 7 File 1 Part Supply Request & 1 Sample Form
18 Authorize Supply Request Form
19 Log Supply Request Form
20 Fill Request
21 File 1 Copy Supply Request Form
22 Sign Supply Request Form
23 Decrement I nventory by

Quantity of Forms Delivered
24 Calculate Chargeback Costs
25 Post Charges Against

Originator's Budget Center
26 File Supply Request Form

Decision Decision Desc ription

a Decision to Accept Proof
a 1 Decision Branch if Accepted
a2 Decision Branch if not Accepted
a' Or-juncture, reuniting branches a1 and a2

558 National Computer Conference, 1980

Figure 2.

repositories by squares; temporary repositories by triangles;
and common temporary repositories by shaded triangles.

Control flow arcs

Control flow arcs represent the precedence constraints
among activities. The beginning of a procedure is repre
sented by a bold-faced arc leading into an initial activity
(some procedures may have more than one). The termination
of a procedure is represented by a bold-faced arc extending
from a terminal activity. A control flow arc between two
activities denotes that the first must be completed before the
second can begin.

Two procedural characteristics that can be represented
easily in an ICN model are parallelism and choice. In some
procedures there are cases of no precedence constraints
among a set of activities; the activities may be executed in
any order or simultaneously. The modeler might like to re
flect this freedom of control flow in an ICN model.

And-splits and and-joins to reflect parallelism

Parallelism in a procedure may be represented by inserting
a juncture (a black dot) connecting mUltiple arcs. When an
activity preceding an and-split (a black dot) has been com
pleted, any or all of the activities immediately following the

TABLE III-Directory of Repositories

Repository
Number Repository Description

External Permanent RepOSitories

B Banker

Internal Permanent Repositories

P 1 Systems File
P2 Print Shop File
P3 Purchasing File
P4 Open Stock
P5 Inventory
P6 Supply Log
P7 Banking Supplies
P8 Stock Room File
pg Cost Data

P 10 Accounting Records

Repository
Number Repository Description

Temporary Repositories

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13

Request for' New Form
Decision About Proof
Proof File
Internal Systems File
Form Preparation Sheet
Printed Forms File
Stock Room In-Box
Stock Room Out-Box
Internal Systems File
Supply Request Form
Banking In-Box
Purchasing In-Box
Purchasing Out-Box

Data
Labels

i
r
p
a
p'
d
x
s
f
n
k
0

y
z
@
$
10

In

TABLE IV -Directory of Data Labels

Information

idea to request new form
request for new form
proof
amendments to proof
final proof
decision about proof
approval of proof
specifications for form
form
number of forms printed
number of forms ordered
order for forms
authorization for supply request form
signature from banking
cost per form
cost of forms
old inventory of form
new inventory of form

and-split may be initiated. An and-join (also a black dot) may
also be used to join control flow arcs to denote that all of
the activities preceding the and-join must be completed be
fore the next activity can be started. The passing of control
beyond the and-join must wait for the longest or slowest
branch.

Decisions, or-splits, and or-joins

To represent alternative branches or loops with the ICN
formalism, the alternative branches of activities are modeled
following a hollow.dot in the control structure. This hollow
dot represents an or-split, which is a very simple activity.
An or-split represents a branch point where the determinants
of which branch is followed are (or may be modeled as being)
probabilistic and nondeterministic. Occasionally in a pro
cedure, a decision is made to determine which of several

, alternative branches will be followed. A decision is a special
case of or-split, where the choice among alternative branches
depends on information from the activity preceding the or
split. Decisions are labeled, as are the several arcs that di
verge from them (e.g. <X labels a decision, al and a2 identify
two branches following a). Control flow arcs converge at an
or-join. An or-join is used as a shorthand to denote identical
segments of a procedure which follow different branches.
The activity following an or-join may have been preceded
by any of the activities immediately preceding the or-join.

Streamlining Office Procedures 559

Information flow arcs

Communication and data storage and retrieval in a pro
cedure are represented by informationjlow arcs (light-faced
arcs) between the activities which generate or use the in
formation, and the repositories where information is stored
between activities. The information flow arcs in an ICN
model reflect possible routes of information flow rather than
necessary ones. All information used or produced by the
activities is represented in the ICN formalism as data labels.
These labels designate the information transferred between
activities and repositories. A directory of data labels and the
information they represent must be generated by the modeler
for each ICN model.

Each piece of information can be considered to have a
source activity (point of origin or retrieval) and a sink activity
(point of use or storage) in the procedure. Some information
may have multiple sources and multiple sinks. Between its
source(s) and sink(s), information may be stored into and
retrieved from temporary repositories by any number of ac':'"
tivities.

Departmental boundaries

An ICN diagram can be drawn so the placement of activ
ities corresponds to some particular characteristic of the
activities. For example, activities may be grouped in hori
zontal bands corresponding to the departments of a com
pany, or to individual office workers in an office. In the ex
ample developed in this paper, departmental boundaries
were represented by dashed lines. Each activity fell into one
of six departments and was drawn within the horizontal band
corresponding to that department. An ICN diagram could
also be drawn so the placement of activities corresponded
to the time required to execute them, with vertical bands
denoting the elapsed time from the start of a procedure to
the end of it. The modeling of elapsed time is not discussed
in this paper.

Data requirements for the leN model

The first requirement in discerning what information is
relevant is an understanding of the procedure to be modeled.
When the scope of a procedure has been determined, model
construction involves a judgment about the level of speci
ficity for the activities. The judgment is not so much "At
what level of detail does this procedure exist?" but" At what
level of detail do we want to look at this procedure?" The
decision may be based on the level at which a manager is
willing to restructure the procedure, or the level of detail
that provides a view of as much communication between
two offices as possible.

The information best represented by an ICN model is an
operational description of what each officeworker or de
partment does and what information is used or produced in
the course of the procedure. Knowing who in the office is
responsible for which activities and where the activities are

560 National Computer Conference, 1980

executed permits more sophisticated interpretation of an
ICN model. Knowing the tasks that comprise each activity
gives the modeler additional insight to choose the most use
fullevel of detail for his/her purposes. A modeler hopes for
information of this type: "When a person calls to request
a new form, I write down his name, department, and the
kind of form he has in mind. I ask if any form we already
have resembles the one he wants. The designer likes to know
this. Then I make an appointment for a forms designer to
meet with him to sketch out a prototype. So I keep the ap
pointment books of all of the forms designers. '.'

It is most important to note the exact information needed
for each activity, the databases used, the order in which
things are done and, when discernible, the reason for that
order. It is useful to note the media used for all communi
cations, the method of handling errors and special cases in
an activity, and the choices or decisions made by the office
worker. Measurements of the time typically devoted to
each activity and the probabilities that a decision will result
in one alternative or another can be evaluated in the frame
work of an ICN model. An interesting source of information
is a list of the problems encountered by office workers in
carrying out an activity. These may suggest areas where
analysis will be particularly helpful.

The methodology for constructing an ICN model has been
to observe an office, define a procedure to be modeled, and
interview the officeworkers responsible for that procedure.
After a diagrammatic model has been produced from the
collective interviews, it can be checked for self-consistency,
and shown to the officeworkers and office manager for ver
ification. The process is iterative rather than sequential; an
incomplete or inconsistent diagram would require further
interviewing and observation, and that in turn would result
in another diagram.

A characteristic of ICN models that requires some delib
eration is the modeler's definition of the scope of the pro
cedure. Identifying the procedure to be modeled is a choice
the modeler must make early in the construction of the
model, and has significant implicatio'ns for the level of detail
captured by activities, repositories, and data labels. The
modeler's discretion is exercised early and the wisdom of
his/her choice is realized later, which suggests that several
iterations of model-building should be expected.

EXAMPLE: A PROCEDURE TO GENERATE NEW
FORMS

Overview of the new forms generation procedure

The procedure selected for this modeling exercise is one
followed by a savings bank to design new forms on demand
and make them available for internal use. The data describing
this procedure had been gathered for another study, and
suited an ICN model well. Some assumptions were made
about the new forms generation procedure for purposes of
expediting research when the data were ambiguous or ab
sent. A detailed description is available of the original pro-

cedure and the assumptions made to construct this ICN
model.6

The new forms generation procedure is carried out mainly
by the Systems Department of the bank, although six de
partments are involved in the procedure [Figures 1,2, Tables
I,II,III,IV]. The procedure is initiated when a functional
department of the bank finds the need for a form, and no
existing form seems adequate. Each instance of the proce
dure starts with a request from some department desiring a
new form to a member of the Systems Department.

After a prototype form has been designed by the Systems
Department and approved by the requestor, the Systems
Department arranges to have the new forms printed at the
Print Shop. After the new forms are printed, they are sent
to a Stock Room where some remain as open stock and some
are sent to the original requestor (in response to the initial
request for a new form). The mechanism for sending the
newly printed forms to the requestor appears to be a special
case of a routine supply request. The Systems Department
fills out a request form on behalf of the requestor, then pro
cesses that request form as they would one for any stocked
item. The Accounting and Purchasing Departments are no
tified of the request and response. The Purchasing Depart
ment calculates the expense to the requestor of new forms
printed and both departments make the appropriate changes
to inventory and accounting records.

Construction of an ICN model of the procedure

The construction of an ICN model is an iterative process.
The activities represented in an ICN model describe the pro
cedure from start to finish. While there need not be a discrete
activity for each task, each task must be associated with
some activity. All data used by an activity are modeled as
being read from a repository, and all data produced by an
activity are modeled as being stored in a repository. Infor
mation is not sent directly from one activity to another,
rather it is stored in a repository where it can be accessed
by one or more activities. Data stored in a repository can
be read from that repository more than once and by more
than one activity. Unless otherwise stated, the process of
reading information from a repository is non-destructive;
information is retrieved for activities as if only copies can
be retrieved.

The first task in constructing an ICN model was to identify
the activities that made up the procedure and to establish
the precedence relationships among them. Each time con
secutive activities took place in different departments, in
formation was sent from one department to the other.
"Send" and "receive" activities are not modeled explicitly.
An information flow arc between an activity and a repository
indicates that information has been sent or received. When
activities were ordered for no apparent reason, the order was
preserved. However, when activities were executed in par
allel or in either order, they were modeled as concurrent
using the and-split and and-join notation.

The activities were diagrammed in a two-dimensional
space where, along the horizontal axis, activities to the left

generally precede activities to the right, and along the ver
tical axis, each activity fell into one of six bands correspond
ing to the six functional departments. [Figure 1] Repositories
and information flow lines appear in the style of an overlay,
and their location on the ICN diagram was chosen for prox
imity to the activities using the data. Therefore, the location
of repositories and information flow lines does not corre
spond to the functional department where the information
is stored. The physical existence of information is treated
abstractly in an ICN model. Information is modeled with no .
indication of medium. Rather, information is modeled to re
flect content, via data labels; local or global relevance, ac
cording to whether it is stored in a temporary or permanent
repository; and usage, according to its creation, storage, and
usage by the activities comprising the procedure. Other at
tributes of the information structure must be interpreted
from the model.

STREAMLINING

An ICN model allows the office analyst to explore the
consequences of changing the information and control struc
ture of an office procedure. An ICN model may be subject
to several transformations, of which streamlining is only one.
A streamlined ICN model is the simplest representation of
the points of origin, or sources and the uses or destinations,
or sinks. The order of activities in the streamlined model is
not changed. However, activities which neither produce nor
require information (the middlemen activities, as it were) are
not represented in the streamlined ICN model. An ICN
model may also be subject to restructuring transformations
which suggest ways of altering the procedural policy or re
defining the domain of an office or department. Finally, an
ICN model may be subject to automation transformations,
wholly or partially, which suggest ways of executing a pro
cedure in the environment of a computer-based office in
formation system (OIS). An OIS may offer such capabilities
as access to electronic databases, message systems, text
editors (word processors), inventory control systems, in
quiry systems, computer-aided forms fill-out, programs for
data analysis, and decision support systems. A discussion
of the restructuring and automation transformations is be-
yond the scope of this paper. .

Purpose

The purpose of streamlining is to provide an office analyst
with different views of a procedure; views of how infor
mation is processed in the course of the procedure. By look
ing at the information-processing needs, an analyst can
evaluate alternative ways to meet those needs by changing
the information-handling characteristics of the original pro
cedure. Streamlining reduces an ICN model to the basic
communication and information requirements of an office
procedure. Streamlining highlights the information-pro
cessing needs of a procedure by identifying the activities
where information is originally created or retrieved and fi-

Streamlining Office Procedures 561

nally used or stored. Streamlining also allows variations in
the information-handling characteristics by eliminating the
activities where information is simply distributed rather than
processed, and by coalescing activities whenever possible.
The implementation of local communication is hidden in a
streamlined ICN model, to give a more abstract and simpler
view of where information is produced and where it is used.
Communication is represented by effectively short-circuiting
the information paths from creation to use.

Method

The streamlining transformation produces a streamlined
ICN model of the original procedure according to a reposi
tory mapping scheme. Streamlining is achieved by select
ing a mapping scheme for repositories, then coalescing ac
tivities. Repository mapping frees the modeler from
representing the organization of forms and files as they exist
in the office.

Different permutations of streamlined ICN models result
from using different mapping schemes to relabel repositories.
The repository mapping scheme discussed here aggregates
repositories according to type; archives, inventory records,
cost information, and the common temporary repository.
(External permanent repositories are never aggregated.) By
collapsing all temporary repositories into one, an office an
alyst can focus on the sources and sinks of information in
dependent of the path between them. This mapping scheme
encourages the modeler to look at generic activities. An al
ternative mapping scheme is to separate repositories into
many more specialized ones. This mapping scheme corre
sponds to the unbinding of forms and files and encourages
the modeler to treat different types of information on one
form differently.

Identifying sources and sinks of information

Activities are sources and sinks with respect to particular
pieces of information (datum). A datum (designated by a
data label) may have two types of source. one type of source
is an activity where the datum is created. These may be
identified in an ICN model as every activity for which the
datum appears on an information flow arc as the output of
that activity, and was not present on an information flow arc
which was the input of that activity. Another type of source
is an activity where the datum was retrieved from a per
manent repository and had not been stored in that permanent
repository earlier in the procedure.

A datum may have more than one source. One circum
stance of mUltiple sources occurs if there is more than one
alternative path in the control structure from source to sink.
The activity which is a source for a datum is designated not
only by an activity number or label, but also by a specific
path through the control structure from source to sink. Al
ternative paths through the control structure are identified
by the labels following a decision activity (aI, (2).

A datum may have four types of sink in an office proce-

562 National Computer Conference, 1980

dure. It may have a sink in every activity where it was used
to create a new datum. It may have a sink in every activity
where it was used to make a decision. It may have a sink
in every activity where it was stored in a permanent reposi
tory. It may have a sink in every activity where it was used
as a key to retrieve other information. The fourth type of
sink (a datum used as a key) requires a special notation, and
is commonly denoted by an information flow arc with two
small parallel lines intersecting it.

Each datum may be thought to have pairs of sources and
sinks. In the case of multiple sources, care must be taken
to match each sink with its proper source. Source and sink
pairs may be identified in an ICN diagram by a continuous
sequence of information flow arcs from the source activity
to the sink activity, through repositories and intermediate
activities.

Eliminating and coalescing activities

An activity is unnecessary for information-processing if
it neither stores information permanently, nor creates new
information, nor uses information as a key to access other
information, nor determines a decision. Unnecessary activ
ities may be eliminated in streamlining. Activities which per
form redundan,t storing of information in one repository may
be eliminated during streamlining. Once information is
stored, it need not be stored again. Likewise, activities stor
ing information irt a temporary repository may be eliminated
if the information is not subsequently retrieved from the tem
porary repository. If information has been stored in a tem
porary repository, and is subsequently read from a perma
nent repository, the retrieval activity in the streamlined
model is transformed into a similar activity that retrieves the
information from the temporary repository. The basis of this
rule is that it is inefficient to retrieve information from a
permanent repository when it was previously accessible in
a temporary repository.

Activities may be coalesced after the unnecessary activ
ities have been eliminated. Activities may be coalesced as
long as they remain elementary activities (accessing no more
than one permanent repository), and as long as no prece
dence constraints are violated. Activities may not be coa
lesced if they fall on different branches following an or-split.
The branches may be streamlined independent of one an
other, and the entire procedure following an or-split may be
replicated for each branch (rather than re-joined with an or
join) to view the branches following a decision node more
distinctly. Old decision activities are mapped into identical
new decision activities. A deCision activity may not be co
alesced with any other activity.

The fundamental information requirements preserved by
streamlining relate an activity which is the source of a piece
of information (by either creating the information or retriev
ing it from a permanent repository) to one of the sinks of
that piece of information (because it has been either used
or stored by the second activity). Because an ICN model
may contain or-joins, there is sometimes more than one path
to an activity. To uniquely identify an activity following an

or-join, the path to that activity is denoted by the label of
the control branch following a decision activity (al,a2).

There are two determinants of the control structure (or
precedence constraints) among activities. One is information
requirements; the information produced in one activity must
be available to the activities that require it (this condition
will be specified more formally). The other determinant of
the control structure is embedded in the procedure as a pro
cedural technique. It may reflect corporate policy, local
managerial preference, or office lore. This information is
captured in the original ICN model of a procedure, and is
generally preserved in the manipUlations of an ICN model.

The streamlined leN model

The streamlined model [Figure 3] was produced by map
ping repositories and applying the rules for coalescing ac
tivities described above. The repository mapping scheme
used to streamline the model of the new forms generation
procedure [Table V] resulted in the elimination and coa
lescing of activities, or corresponding activity mapping
scheme [Table VI]. Note that information stored in one com
mon temporary repository may subsequently be retrieved
from any other common temporary repository.

TABLE V -Repository Mapping Scheme

Pe rmanent Reposito ries

P1 --) A Archive
P2 --) A Archive
P3 --) A Archive
P4 --) 0 Open Stock
P5 --) I Inventory
P6 --) A Archive
P7 --) S Supply
P8 --) A Archive
P9 --) C Cost data
P10 --) R Records - accounting

Tempora ry Repositories

T1 --) T T9 --) T
T2 --) T T10 --) T
T3 --) T T11--) T
T4 --) T T12 --) T
T5 - ..) T T13 --) T
T6 --) T T14 --) T
T7 --) T T15 --) T
T8 --) T

The original 26 activities were streamlined to 12 elemen
tary activities. Three activities were eliminated because they
were neither sources nor sinks for any information (activities
8, 13, and 21). Of the remaining 23 activities, the greatest
coalescing occurred in activities 4* and 6*, where the final
proof design was submitted to the Print Shop. There was

Streamlining Office Procedures 563

Figure 3.

moderate coalescing of the activities involving the transla
tion of the idea for a new form to the proof (activity 1 *), and
the approval and recording of the supply request form (ac
tivity 17*).

After information i is used to create p and d (activity 1 *),
the new forms generation procedure may follow one of two

TABLE VI-Activity Mapping Scheme

New Old New Old
Aetivit~ Aetivit~ Aetivit~ Aetivit~
Number Number Aetivit~ Dese ription Number Number Aetivit~ Dese ription

1* {-- 1 Write Request 12* {-- 12 Place Forms in Open Stock
1* {-- 2 Produce Proof null {-- 13 Distribute 2 Sample Forms & 1 Copy
1* {-- 3 Decide Whether Proof is Adequate Form Preparation Sheet
a {-- a Decision Node (will branch to a1 or (2) 14* {-- 14 File 1 Sample Form & 1 Part
4* {-- 4 Amend Proof Form Preparation Sheet
4* {-- 5 Produce Final Design of Proof 15* {-- 15 Make Up Inventory Card
6* {-- 6 Designate Proof Design as Final 15* {-- 16 Fill Out Supply Request Form
4* {-- 7 (a1 branch) Approve Proof 17* {-- 17 File 1 Part Supply Request
6* <-- 7 (a2 branch) Approve Proof & 1 Sample Form

null {-- 8 (a1 branch) Copy Proof 17* {-- 18 Authorize Supply Request Form
null {-- 8 (a2 branch) Copy Proof 17* {-- 19 Log Supply Request Form
4* {-- 9 (a 1 branch) Fill Out Form 20* {-- 20 Fill Request

Preparation Sheet null {-- 21 File 1 Copy Supply Request Form
6* {-- 9 (a2 branch) Fill Out Form 20* {-- 22 Sign Supply Request Form

Preparation Sheet 23* {-- 23 Decrement Inventory by
4* {-- 10 (a1 branch) File 1 Copy Each Quantity of Forms Delivered

Form Preparation Sheet & Proof 24* {-- 24 Calculate Chargeback Costs
6* {-- 10 (a2 branch) File 1 Copy Each 25* {-- 25 Post Charges. Against Originator's

Form Preparation Sheet & Proof Budget Center
4* {-- 11 (a1 branch) Print Forms 26* {-- 26 File Supply Request Form
6* {-- 11 (a2 branch) Print Forms

564 National Computer Conference, 1980

paths (<xl or <x2). The two paths appear to be identical in the
streamlined ICN model, and the choice of paths appears to
be of no consequence to the rest of the procedure. The par
allel structure of activities 12*, 14*, and 15* reflect the order
independence of two filing activities and one information
processing activity (activity 15*) where the supply request
form and inventory card (0 and 10) are produced. After the
supply request form is approved by both the Purchasing
Department (activity 17*) and the requestor's department
(activity 20*), inventory records are decremented. Only after
the forms have been printed and delivered, and the records
of five departments document production and delivery, is
the cost calculated (activity 24*), charged (activity 25*), and
recorded finally by the Purchasing Department (activity
26*).

ANALYSIS AND CONCLUSIONS

Analysis of the original ICN model

Part of the value of an ICN model is the global perspective
it can give. Of the six department managers who supervise
the new forms generation procedure, only a few ofthem may
understand the entire procedure. The department managers
may not be aware of how many times the proof, the form
being generated, and the supply request form are stored or
retrieved (14, 15, and 16 times respectively). It is important
that these three documents be designed to be understood
quickly and processed with a minimum of errors. Commu
nication between the requestor's department and the Sys
tems Department is relatively intense in the first ten activ
ities. This may suggest to the office analyst an opportunity
to improve the procedure.

A glance at the ICN diagram of the new forms generation
procedure [Figure 2] shows that most information is stored
in and retrieved from temporary repositories in the earlier
part of the procedure. This trend changes toward the middle
of the procedure; information is more often retrieved from
temporary repositories and stored in permanent repositories.
Activities in the latter part of the procedure form a record
for the early part.

Of the 26 activities in the new forms generation procedure,
in only one instance are three consecutive activities in one
department (activities 3, 6, and 7, Figure O. This indicates
that forms processing for this procedure is widely distrib
uted. Because control is transferred so freely from one de
partment to another, the procedure is potentially difficult to
manage. This may explain why some activities are executed
in sequence when the information is available for them to
be executed concurrently. For example, after activity 11,
activities 12, 13, 14, 15, and 16 could be executed concur
rently. Activities 19,20, and 21 are also candidates for con
current execution, as are activities 23 and 24, and activities
25 and 26.

There appears to be redundant storage of information in
internal permanent repositories. [Figure 2] For example, s
(the specifications for the form) is stored in PI, P2, and P3,
and 0 (the supply request form) is stored in PI, P3, P6, P8,

and PIO. This redundancy might be a deliberate technique
to minimize errors or expedite error-handling. An ICN dia
gram encourages managers to consider such characteristics
of a procedure.

A two-dimensional matrix can be drawn from an ICN dia
gram with the originators of information (by department)
along one axis and the recipients or users of information
along the other axis. Using a matrix of this type, an office
analyst can see the patterns of communication between and
within departments. In spite of the interdepartmental nature
of the procedure, it appears that more communication takes
place within departments than between them. Most remark
able for interdepartmental communication in this procedure
are the Banking Department, the Systems Department, and
the Purchasing Department. Most interdepartmental com
munication occurs between the Banking and Systems De
partments and the Banking and Purchasing Departments.
With this information, the bank might decide to install an
experimental electronic message system in either the Sys
tems or Purchasing Departments.

Viewing the ICN model [Figure 2], an office analyst may
come up with alternative communications media to be used
in the early part of the procedure (activities 1 through 9),
such as an aid for designing forms that is portable. A portable
design tool might save time, reduce the probability of re-

, designing the proof (traversing path <x2), and encourage bet
ter design of forms.

Analysis of the streamlined ICN model

In the streamlined ICN model, concurrency in the control
structure of the procedure seems more obvious. [Figure 3]
Looking at the basic information structure, the only per
manent repository that has to be accessed as an information
source is "C" (formerly P9, the cost data used by the Ac
counting Department). All other permanent repositories are
information sinks; they are used for storage, primarily filing.
An analyst may conclude that many of these filing activities
(especially activities 12*, 14*,25*, and 26*) may be executed
more leisurely than activity 24*. Activities 12* and 14* ap
pear to be filing activities of a housekeeping nature in the
Stock Room and the Purchasing Department. Of the three
parallel branches following <x' (an or-join), the control path
including activities 15* and 17* appears to be more critical
to the completion of the procedure than either of the con
current paths. In activities 15* and 17, * two documents are
created, the supply request form 0 and the inventory card
10 • Both of these documents are necessary to the procedure.

The constraints that activity 12* must be completed before
activity 20* is started, and activity 14* completed before
activity 24* is started exist apparently for ease of manage
ment, since there is no informational requirement for their
order. If it were necessary to rush through the procedure,
these filing activities could be delayed. However, if the office
manager's objective were to reduce the execution time of
the procedure, the communication media for temporary re
positories might be most important to optimize.

Conclusions

The streamlining transformation is potentially valuable to
an office manager responsible for managing lengthy or com
plicated procedures. A streamlined ICN model provides a
compact survey of a procedure, and the model can be in
terpreted partially by inspection. An ICN model also is a
framework for more sophisticated interpretation according
to the manager's needs and interests. An ICN model may
enhance a procedures manual by showing the relationships
among activities in a notation which is more consistent than
a verbal description and is easier to check for completeness.
An ICN model is also a useful representation of a procedure
to purchasing agents and division managers who may be in
terested in evaluating the need for office equipment and pro
posing changes in the policy underlying the office proce
dures.

ACKNOWLEDGMENTS

The research reported here is part of an office modeling
and simulation project being conducted in the Office Re
search Group, Xerox Palo Alto Research Center. The ICN
model described herein was developed by members of the
Office Research Group and the Analysis Research Group at
P.A.R.C.

Streamlining Office Procedures 565

The author wishes to acknowledge her indebtedness to
members of the Office Research Group and J. F. Rulifson
for their criticism and guidance in this endeavor. In partic
ular, Clarence Ellis has patiently advised the author and
consulted with her in matters of great detail as well as great
abstraction. It is my pleasure to thank these people for pro
viding a stimulating working environment.

REFERENCES

I. Ellis, Clarence A., "Information Control Nets," Proceedings of the ACM
Conference on Simulation. Measurement. and Modeling, Boulder, Colo
rado, August 1979.

2. Nutt, G. J., "Backtalk; An office environment simulator," 1979 Inter
national Communications Conference, Boston, Massachusetts, June 1979.

3. Nutt, G. J., "Modeling Office Information Systems," talk given at com
puter science seminar, University of California-Davis, Livermore, Cali
fornia, December 6, 1979.

4. Nutt, G. J., "An Experimental Distributed Modeling System," Xerox Palo
Alto Research Center, to appear, 1980.

5. Ellis, Clarence, Gibbons, Robert, and Morris, Peter, "Office Streamlin
ing," Institut de Recherche d'Informatique et d'Automatique, Proceed
ings of the International Workshop of Integrated Offices, Versailles,
France, November 1979.

6. Cook, Carolyn L., "Streamlining Office Procedure," SSL-79-1O, Xerox·
Palo Alto Research Center, in press.

7. Ellis, Clarence, Morris, Peter, and Smith, Stephen, "The Santa Clara BiII
ing Office Study," Xerox ARG ~echnical Report No. 78-2, June 1978.

Office Automation in the
Executive Suite: Successes and
Strategies

Real automation in the office will en
hance, rather than replace, today's ad
ministrative and communication systems.
The critical involvement of top-level ex
ecutives as users' of these new systems
requires a "human approach" to design
and implementation that challenges tra
ditional assumptions ofDP, MIS, WP and
Telecommunications.

This session brings together three ex
ecutives who personally use office auto
mation to manage their organizations.
They will describe the strategies which
have enabled successful implementation
of radical new forms of office communi-
cations and information systems and will

James Carlisle
Area Director

compare several approaches to the important issues of cost justification, information se
curity, user interface design and inter-system compatibility.

Each speaker will describe how he uses office automation and the benefits his organi
zation has experienced.

567

Provisions for flexibility in the Linkoping office information
system (LOIS)*

by ERIK SANDEWALL, GORAN HEKTOR, ANDERS STROM, CLAES STROMBERG,
OLA STROMFORS, HENRIK SORENSEN and JAAK URMI
Linkoping University
Linkoping, Sweden

1. CHARACTERISTIC PROPERTIES OF THE LOIS
SYSTEM

The Linkoping Office Information System (LOIS) is an in
tegrated system of facilities for text preparation, data base
management, communication by computer, and miscella
neous other services. It is an experimental research system,
which is used by researchers and secretaries in our own re
search group.

A significant consideration in the design of this system
was how to provide very large flexibility, so that each user
could have his or her customized variant of the system,
without imposing an unrealistic burden of programming on
either the users or a system group. Two complementary
ways were recognized for achieving that flexibility:

>Adaptation by the user: the system could include novel
facilities which, like modelling clay, allow the user to
adapt them to fit his/her needs;

>Application development tools: there could be tools
which enable a trained person to tailor facilities very
easily, for individual users or groups of users.

Such tools should be easy to use, so that only moderate
training is necessary, but there is no requirement that every
user should be able to use them.

Both of these approaches have their merit, and both have
been used in the LOIS system. The advantage of adaptation
by the user should be clear; and application development
tools are appropriate not only for harder tasks, but also for
facilities which involve several users, i.e., what we shall call
information-flow facilities below.

Another aspect of flexibility was that the standard services
in the system should be easily interfaceable, so that they can
be run together. This is a demand on the programming tech
niques that are used in building the LOIS system.

A second major purpose in building the system has been
to experiment with unconventional terminal equipment. In
particular, we have set up a low-cost device for output using

* This research has been sponsored by the Swedish Board of Technical De
velopment '(STU) under contracts Dnr 77-4420, 77-4380b, and 78-4165.

569

arbitrary fonts (boldface, italic, larger fonts for headlines,
foreign alphabets, etc.) using a high-resolution electrostatic
plotter, and built software for supporting that medium.

The following sections will describe these various aspects
of the system in more detail. Thus the intended purpose of
the paper is not to discuss the general-purpose facilities in
office information systems. A number of significant and well
known system development efforts (for example at Stanford
Research Institute, IBM Research Centers, and the Univer
sity of Pennsylvania (Ref. 1)) have set the standard for such
systems.

Before we proceed, we should however give a short sum
mary of the services in the system, as seen from the indi
vidual user. LOIS recognizes three major ways of structuring
information:

text, i.e. ordinary, continuous text in natural language
(English, ,Swedish, etc.);
data, where information is organized as a table and/or as
a form containing different fields or slots which may con
tain items of information;
notes, which is an intermediate form between text and
data. A note is a short text which is associated with ad
ditional information organized as a data record. In prac
tical usage, a note may be a message sent from one user
to one or more other users, containing the text of the
message plus information about sender, receiver(s), date,
topic, etc. In another usage, the note may be one person's
notes about the contents of a book, with associated in
formation about author, title, and classification.

From another perspective, users will recognize some fa
cilities as local, i.e., only one user is involved when they are
used, for example for personal data bases, and other facilities
which are shared, i.e., they involve the user in communi
cation with other users, for example computer mail.

2. TEXT PROCESSING FACILITIES FOR FONTS

The LOIS system uses the common strategy of having
general-purpose text editors and separate formatting ("run-

570 National Computer Conference, 1980

off') programs. Besides supporting some conventional out
put media such as a Diablo printer, it also has a font printout
system based on a Versatec electrostatic plotter. This system
is able to produce output that approximates ordinary print
ing, with facilities for several fonts, such as italic font (cur
sive), larger and bold-face letters for major headings, etc.
Different characters in a font may have different widths. It
is possible to define fonts for other alphabets or for special
signs, and use them freely mixed with the regular text. In
particular, mathematical text as well as many kinds of figures
may be produced in this fashion.

However, the graphic quality of this system is not fully
commensurate with regular printing using typesetting. In
particular, italic letters often appear a little unsteady if you
look at them closely. We still believe that this quality is suf
ficient for many purposes. When compared to a photo
typesetter, this equipment has the disadvantage of lower
graphic quality, but also several advantages:

-the system is cheap enough that you ~an afford to have
it within easy reach of each user;

-fonts may be created or modified at the site;
-the same device may also be used for vector plotting

and grey-scale pictures (facsimile).

2. Text processing facilities for fonts.

ThE' LOIS system uses the common strategy of having general-pu~pose text
editors and separate formatting ("runoff") programs. Besides supporting some
conventional output media such as a Diablo pnnter, it also has a font printout
system based on a Versatec electrostatic plotter. This system is able to produce
output that approximates ordinary pnnting, with facilIties for several fonts, such
as italic font (cursive), larger and bold-face letters for major headings, etc.
Different characters in a font may have different width. It is possible to define
fonts for other alphabets or for special sIgns, and use them freely mixed with
the regular text. In particular, mathematical text as well as many kinds of
figures may be p~oduced in this fashion.

Figure I-Sample printout from the Font System.

Technically, this system consists of a domestic LYS-16
16-bit small computer (soon to be replaced by an LSI-ll
computer) combined with a Versatec graphic printer. The
Versatec is an electrostatic raster printer with a resolution
of 200 points per inch (8 points per millimeter). The L YS-16
contains software which will accept bit-pattern definitions
of the characters in one or more fonts, and print a given file
using these bit patterns for each character. The combined
LYS-16 plus Versatec system may be viewed as an "intel
ligent printer."

The font system has been modeled on a similar system at
the MIT and Stanford Artificial Intelligence Laboratories,
which however use a Xerox Graphic Printer (XGP) instead
of the Versatec printer. The resolution is almost exactly the
same .. On comparison, our system seems to give less con
trast, but also less noise, and prints at a lower speed (prob
ably mostly due to a slower processor).

Formatting

The formatting for the font printout system is done using
CRAWL, a locally built formatter which besides the support

of fonts, also has a number of other non-standard facilities:

>automatic hyphenation (more necessary for Swedish
text than for English text since Swedish makes frequent
use of long, composite words-like German);

>the formatter co-exists with a Lisp programming system,
which means that commands in the source text can call
arbitrary Lisp functions for specific purposes. This gives
the same advantages as having a macro facility in the
formatter (as is used in, e.g., the Unix system, Ref. 2),
but with the significant difference that a full program
ming language provides services such as data base ac
cess, availability of a program library, and easy interface
with other programs, which a macro system which only
serves the formatter cannot be expected to provide.

A text formatter embedded in the programming language
SAIL at the Stanford Artificial Intelligence Laboratory, of
fers similar advantages.

Preparation of fonts

In the font printout system, each letter in each font is
defined by a pattern of many small points. An ordinary small
letter in a common font is about 15 points high, for example.
The definitions of the point patterns of the characters in all
fonts are stored on the central DEC-20 computer, and sent
to the font printout device when needed.

The work of building up new fonts may require a consid
erable effort. Through the generosity of the M.I.T. A. I.
group, we have a copy of their fairly large font library, which
could be used after a routine shift of representation. How
ever, we also have a need to modify old fonts (for example
to create'the Swedish letters with diacritics), and to create
entirely new fonts for specific purposes.

Two tools have been built for these purposes, afont editor
and a font generator.

The font editor

The font editor is a tool for defining and changing the
point-by-point definition of fonts. The font editor is in itself
a program, but it requires a specialized terminal, which has
been built by the Electrical Engineering department at our
university. The system allows the user to edit one character
at a time, and to view the character in two versions on the
terminal's display screen, namely both a blown-up version
where each point is clearly discernible, and a realistic version
which looks like and gives the same impression as the char
acter will have on paper (only magnified by about a factor
of two). The editor allows the user to add and delete indi
vidual points or rows of points by hitting keys on the key
board, and to see the effects of each change immediately.

The font editor has been very useful, both for modifying
MIT fonts to contain Swedish characters, and for building
up fonts of, e.g., mathematical symbols.

The font generator

Although the font editor greatly facilitates the task of
building up a font, doing so still requires a lot of work. Some
times it is routine work, namely if letters of the same general
shape are desired in several different versions, with different
height, different boldness, roman or italic, with or without
serif, etc. For such situations, we have developed a font
generator, which generates fonts automatically from given
specifications.

The font generating program takes two kinds of inputs.
One input is the desired specification for the new font, i.e.,
values for the desired height of big and small letters, a mea
sure ofthe desired boldness, etc. This input is specified anew
each time the program is run.

The other input consists of structural descriptions of the
characters in an alphabet, saying, e.g., that a capital "L" is
a vertical line with a shorter horizontal line extending to the
right from the base of the vertical line. These descriptions
are expressed in a formal language, and are semi-constant,
in the sense that the description of the Latin alphabet can
be used repeatedly for different dimensions, but also if some
other symbol set is desired (such as mathematical symbols)
it is well defined how to write the structural descriptions of
them also.

A program for the same purpose written by Knuth at Stan
ford uses mathematical functions (splines) to describe the
curvature of the letters. Our system builds up letters from
pre-defined segments, which can be designed by a combi
nation of manual design and automatic generation. This is
particularly useful for bit-matrix output devices whose res
olution is almost discernible for the eye, since the effects
of direct discretization of continuous functions may then be
disturbing.

In addition, there are a number of smaller service pro
grams for operating on fonts, such as a program for rotating
the characters in a font by 90 degrees, and a program for
rotating each page in a text file correspondingly.

3. STRUCTURED DATA FACILITIES

A significant part of the routines in an office environment
deal with structured data rather than free text. The struc
tured data facilities in the LOIS system, which aim to sup
port this need, are organized around a screen-oriented data
editor called IFORM. This system allows the user to view
structured data on his display screen, organized into forms,
i.e., fixed layouts containing certain fixed textfields and other
fields, data fields, which can be filled with the desired data.
Just like a text editor is used both for entering text and for
changing existing texts, the IFORM data editor is used both
for entering, viewing, and changing structured data.

Typical uses of the data editor in an office environment
may be to maintain an address register, a register of reports
and memoranda, a register of allocation of offices, or a reg
ister of equipment used in the group.

The basic idea in the IFORM system is of course available
also in some commercial systems on the market, but IFORM

Provisions for Flexibility in LOIS 571

contains some facilities which are not usually found, in par
ticular:

>programmability: each data field may be associated with
procedures in a number of different "slots" for defining
specialized rules about how to interpret input into a field,
check restrictions on the proposed input, print out the .
contents of a field on the screen, obtain consequences
(side-effects) from new values, etc.

>tables within a form: a form may contain a table which
consists of a number of occurrences of a sub-record.
This is useful for example when the form for a person
contains a table of the trips he has made during the year,
indicating the date, purpose, and destination of each,
displayed with one line for each trip and one column for
each field. Single-key editor commands allow manipu
lation of these sub-records, e.g., insertion and deletion
of sub-records in the sequence.

To support this data handling facility, there are a number
of other tools, in particular:

Data base with exchangeable acceSs methods

The forms supported by IFORM are a standard interface
for the user, through which he or she can access a number
of different data bases, potentially even on several com
puters of different kinds. (This is in accordance with the
proposals of the CODASYL End User Facility task group,
and this idea has been articulated and extended within our
cjllaboratory by Erland Jungert). IFORM is therefore orga
nized so that access to the data base goes through a number
of access routines associated with an access method. Ad
ditional access methods may relatively easily be added.

The ability to exchange access methods for the data base
is in fact useful for two reasons:

>for interfacing IFORM to a new data base;
>for using one access method during development of an

application and in its prototype stage, and another ac
cess method during production use of the same system.

The layout editor

IFORM uses a form description, i.e .. a structure which
describes the desired layout on the screen: which fields are
used, what are their X-Y coordinates, etc. The layout editor
is an interactive tool for building up and modifying such
forms.

4. ·NOTES AND COMMUNICATION

The third information structure in the LOIS system, notes,
are objects whi~h consist of a short segment of free text,
combined with ai number of properties, each of which is a
keyword and a corresponding value. The following is an

572 National Computer Conference, 1980

example of a note which a user may have during or right
after a telephone call:

T ALKWITH: Larsson
DATE: 1978-10-24
TOPIC: Holiday season, Vacations, Production
TEXT: Unusually many people are using remaining vacation
days for extra vacation around Christmas. Production of
bicycle chains will be particularly delayed.

The following is an example of a note which describes a
computer terminal used in a research group:

TYPE: Hackmatic 1521
INVENTORY-NUMBER: 410
LOCATION: NB-156
CONNECTED-TO: DEC-20, PDP-lIC
TEXT: This unit has required repeated service with various
faults and seems to be flaky. Erasure of one line at a time
does not work and seems to be permanently unfixable.

The POST subsystem in LOIS maintains for each user a
database of notes, and enables the user to retrieve notes with
given properties, to add new notes, to modify the properties
of existing notes, and to call an ordinary text editor for mod
ifying the textual content of a note. This information struc
ture can be utilized for a number of different purposes, as
suggested by the examples.

The POST system should really be viewed as a data base
system which is able to also contain textual objects. It al
ready provides non-trivial search facilities in this data base,
and interfaces to other data base handling facilities, such as
IFORM in the LOIS system, seems straightforward.

The present POST system encourages the texts to be
short, but it is a straightforward extension to also allow
notes whose text parts are conventional, larger text files for
manuscripts. A system like POST might then be used as a
more powerful substitute for the conventional file directory,
and would allow the user to store arbitrary information about
his files in the POST data base. This design would also give
the user full data base capabilities for administering his
, 'directory. "

One particular use of notes isJor communication between
users, where each message is well expressed as a note, with
properties indicating the names of sender(s) and receiver(s) of
the message, the date the message was sent, the topic and
other classification of the message, etc., and where the es
sential content of the message is conveyed in the free-text
part, at least for simple messages. The POST system includes
a message-passing facility, so that each user can send and
receive messages, and the general-purpose data base facil
ities of POST can be used for administering incoming and
outgoing mail.

Notice that the properties associated with the note are not
only used for "system" purposes in the mail system, such as
administrating the names of sender and receiver. They are
also used by the sender and the receiver for representing
information which classifies or otherwise describes the con-

tent, purpose, or use of the message. In particular, the re
ceiver may change the values of properties, or add new prop
erties, to messages that he has received. Also, it is
sometimes very useful to represent some or all of the con
tents of the transferred message as values of properties,
rather than in the free-text section.

One example of the use of such structured messages is
the following: a message about a seminar may represent the
name of the lecturer, the topic, the date, time, and location
as separate properties. This greatly facilitates interfacing the
message sending system to other facilities, such as a com
puter based calendar, or a system for generating summaries
of recent activities.

The idea to base a computer mail facility on a data base
handler for information organized as notes, appears to be a
very powerful one. It provides a good basis for other com
municative facilities, which may be more structured than
simple mail sending, for example a computer conferencing
system (which we have programmed but not yet put in op
eration), or for computer based decision making.

As the name indicates, the POST system started as a mail
system, and its usefulness for storing one user's private in
formation was recognized and exploited only gradually. The
ability to organize one's personal information as a large col
lection of notes, and to have a full data base facility for
keeping the notes organized, are only starting to be ex
ploited, and we believe that several additional uses of this
structure will be found as the system is used.

5. APPLICATION DEVELOPMENT TOOLS FOR
INFORMATION -FLOW FACILITIES

The office environment contains many routines where a
"packet" of information circulates between several "stations" .
For example, a purchase order is initiated by one person,
and passes stations for approval, for selecting the vendor,
for receiving and checking the goods, and for paying the bill.
Each such application can be characterized as a flow of in
formation packets, which follow certain paths; which some
times are delayed awaiting some external event; which ac
cumulate and give off information during their path through
the organization; and which require human intervention at
many of the stations,

As seen from the human user, these information flows are
used for routine communication within the organization. In
paper-based communication, one often prefers to use forms
for this purpose, and in a computer-based system one would
also desire fixed layouts (forms) rather than the free format
of computer mail. For information flow with very high vol
ume, for example in banks, this has of course been realized
since a long time, but we are concerned with tools for low
volume information flow which must be supported locally.

Each information-flow application will involve several
users, and symmetrically, one user will often be involved
with several different information flows. In a hospital for
example, the head nurse of a ward will be involved with at

least the following flows:

>patient registers, undergoes treatment, and leaves;
>' 'purchase" orders for laboratory analyses for patients

in the ward;
>scheduling of working hours for different categories of

personel in the ward;

and so forth. The entire office information system should
therefore have a matrix structure with "users" in one dimen
sion and "information-flow applications" in the other.

There is a significant structural difference between de
velopment time and usage time, then. When the system is
used, each user wants to have his system as an entity, and
to be able to switch easily between his part of each of the
applications. In particular, he wants to be able to transfer
data easily between the messages in different information
flows. But when an application is developed, it is essential
that all the work stations for that application are developed
together.

Such information-flow applications are supported in the
LOIS system by a combination of two measures. First, the
software in the usage-time systems that are run by the in
dividual users, have a well-defined structure so that addi
tional facilities can be inserted automatically. Second, the
LOIS system includes a modelling language and an appli
cation development tool which allow its user to build a de
scription of an information-flow application in problem-ori
ented terms, and generate the appropriate contributions to
the relevant usage-time system automatically.

The description of an application consists of three parts:

>a description of the information flow as such, showing
the successive operations (initialization, additional data
entry, delay, copying, etc.) which happen along the way;

>a record declaration which describes the structure of the
information packets that travel in the flow;

>a form description which defines the appearance of this
record on screens and paper. This description is entered
and maintained using the IFORM sub-system that was
described above.

In addition, there is one master description of the organi
zational structure, which is used as a common reference by
all information-flow models, and which relates them to the
usage-time systems.

This application development tool is somewhat interesting
from the point of view of programming methodology: usually
a programming system handles entities ("programs") which
contain the specification, or a part of the specification, for
one executing process in the computer system. In our case,
the application development system contains specifications
for a set of coordinated processes, which are to be run by
different users and often at different times, and which are
. all generated from the application description.

A more detailed description of this system has been given
in Ref. 3. A system with some similarities has been developed
by Hammer et al. (Ref. 4).

Provisions for Flexibility in LOIS 573

6. DIRECTORY SERVICES

Many parts of the LOIS system require that the system
maintains directory information, i.e., information about in
formation stored in the system. Examples of directory in
formation are:

>catalogues of the text files and data files maintained in
the system;

>classification information for notes;
>structure descriptions ("declarations") for the data files

maintained using IFORM, including information about
the intended content of each data field.

In addition, there is directory information which is essen
tial for the proper functioning of the system, but which is
or at least should be invisible to the user, such as:

>information about the different versions of a text file
which appear in the course of successive operations
(formatting, transcription to another alphabet, transfor
mation to the printout conventions of a particular output
device, etc.);

>information about the access method used for a data file
maintained by IFORM's data facility.

One basic design decision in LOIS has been that all such
directory information should be maintained in the data base
of the system, so that it can be accessed and used by the
standard software facilities in the system, and by a gradually
growing set of application programs. At present the following
services are provided:

>classification of data entities in an application-oriented
hierarchical system, so that entities may be classified,
e.g., with respect to what part of the owner's responsi
bilities they are used for. Such a structure is necessary
when the number of text files and data files in the system
increases: simple mnemonic naming of each file individ
ually is not sufficient for structuring this body of infor
mation;

>documentation of program modules, user systems, etc.;
>automatically performing certain routine operations on

text files, such as formatting and similar transformations
before printout. This facility is viewed as a first step
toward a system which "knows" about what routine
data processing is needed in the application environ
ment, and performs the appropriate operations at ap
propriate times. There are many similarities between this
concept, and the modelling of information flow between
users described in the previous section.

7. ARCHITECTURAL CONSIDERATIONS FOR
FLEXIBILITY

New users are introduced to the LOIS system by learning
about the basic facilities, for operating on texts, structured

574 National Computer Conference, 1980

data, and notes. But these sub-systems may be modified and
recombined in many ways, and we expect that such mod
ifications shall be done each time the system is used in a
new environment or for a new class of tasks. It is not in
tended that every user should be able to modify the system,
but it is intended that modifications can be done very close
to the environment where they are going to be used, and
preferably by one user of the system.

This flexibility of the system has been exercised to some
extent within our environment, although additional experi
ments remain to be done. Several programming techniques
are used to achieve flexibility and adaptability:

Use of a residential programming system

A residential programming system can be viewed as a data
base system which is able to contain programs in its data
base, and which contains an interpreter for programs that
are stored there. Such systems provide unusual possibilities
for program structuring, since programs and data can be in
tegrated. This is useful for example for all programs that
decode a repertoire of commands, and take appropriate ac
tion for each of the commands. There are many examples
of such programs in office applications, for example editors
and formatting programs for free text.

Another advantage of residential programming systems is
that programs can be gradually modified and extended, even
during an interactive session. This makes it easier to main
tain a system as a collection of modules, which are loaded
when needed.

Rich parameter structures

Several of the programs are directed by parameters which
are represented as LISP list structures, which allows a rich
and easily manipulated parameter language. Examples of
use:

>the IFORM data editor is parameterized with respect to
layouts. The layout description specifies the location,
content, etc., of each field. The non-trivial facilities in
IFORM, such as for supporting embedded sequences of
sub-records, depend strongly on this parameter struc
ture;

>the character description language used by the font gen
erator, DRAW, is an example of a rich parameter lan
guage.

The use of a residential programming system facilitates
the use of rich parameter structures, since programs and
parameters are stored in an integrated fashion in the pro
gramming system's data base.

Superroutines, i.e., programs with handles

Parameter structures are usually set up so that the param
eters and/or the object data may contain the names of LISP

functions, which are called when the data are processed.
This technique assumes of course equivalence between pro
grams and data. Some examples of its use are:

>the layout descriptions used by IFORM contain handles
where calls to arbitrary (LISP) functions may be in
serted, for specifying specialized printout formats, read
in functions, checking functions, or other aspects of the
system's processing;

>the POST sub-system allows messages and other notes
to have a property which names a (LISP) function which
is called when the note is processed. In this fashion it
is possible to arrange that messages are processed au
tomatically on reception, without need for manual in
tervention by the nominal receiver of the message. For
example, a user may send out a query to a group of other
users, where each query requires the recipient to answer
a number of questions· (represented as properties) and
return the questionnaire, and where the initiator may set
up a program which receives and summarizes the re
turns.

>the CRAWL text formatter is designed so that the source
file may contain calls to arbitrary (LISP) programs,
which are executed when the call is encountered, and
which, e.g., may generate a part of the desired printout
(e.g., may make data base access and generate a table
of structured data).

Extendible command sets

Several of the sub-systems contain specialized command
languages, either for interactive use or for use in source files
(in CRAWL). Usually they have been set up so that addi
tional commands can be defined as LISP code in a modular
fashion, and so that definitions for additional commands may
be loaded into a sub-system even in the course of an inter
active session. This technique makes it possible to keep the
basic system small and simple. Instead of proliferating it with
a large repertoire of special-purpose commands, the spe
cialized commands are kept as separate modules and loaded
into the system when needed.

>the IFORM data editor may be extended with new com
mands which are specialized for application-oriented
situations. For example, if IFORM is used to maintain
information about patients in a hospital ward, one may
have specific commands which are used when a patient
enters or leaves the ward, and which initiate the oper
ations (such as transfer of information to and from an
archive) which are required at this event;

>the layout editor which supports IFORM may similarly
be extended with specialized commands, for example
for introducing new kinds of fields. As one example,
when the IFORM system was adapted to supporting
VIEWDATA terminals, special commands were defined
for inserting color shifts into the layout description.

Message passing between programming systems

For each user, or group of users with similar needs, there
is a version of the residential programmi~g system which has
been loaded with the programs, parameter structures, and
other data which that user needs. Orthogonally to this set
of user systems, there is also a set of development systems,
namely one for each information-flow application, and one
for each general facility (such as the formatter). The con
tributions which are made from development systems to user
systems are transferred by a kind of message passing. The

, "systems" in this sense are therefore viewed as independent
entities with local autonomy.

C ombinability

Another characteristic property of the system is that dif
ferent modules can be made to interface with each other,
using either "subroutine" calls or data transfer as the in
terface. This property of the system is made possible by a
combination of two circumstances, namely (1) the flexibility
properties which have just been described, and (2) the "call
ability" properties through all levels of software in the sys
tem we are using. This latter property is based on the TOPS-
20 operating system, which for example makes it easy to let
one process call another process recursively, including the
operating system; but it is also due to the Interlisp system,
which forwards these properties of the operating system to
the programmer on the Lisp level.

The callability property has of course also been followed
up within the LOIS system itself, where various sub-systems
have been set up so that they can be operated both by direct
user commands during an interaction, and as subroutines
which are called from other programs.

Some examples of this comb inability property in LOIS
are:

>the note handling system may call the text editors re
cursively, for operating on the textual content of a note.
The same applies for the data editor;

>the data editor has been equipped with a command which
generates messages automatically using information in
the data base, and calls POST for having them sent out
to recipients. This is useful, e.g., for sending out re
minders automatically according to criteria in the data
base, such as a reminder to return a borrowed book when
the time is out;

>the text formatter CRA WL goes into a dialogue with the
user when a syntax error in the input file is detected,
allows the user to correct the error, and then proceeds
through the same source file with no need to start over
from the beginning of the file;

>through the ability to define reception procedures for
messages, it becomes possible to arrange that the con
tents of structured, incoming messages are gradually
accumulated to the data base, where they can later be
inspected using POST or IFORM

Provisions for Flexibility in LOIS 575

Additional services

A few other programs have been written besides the basic
facilities and their derivatives, in particular:

>a personal calendar, with facilities for displaying and
editing the current state of the calendar, and for booking
a common meeting-time for several users of the system;

>a personal agenda, i.e., a program which maintains a
structured list of assignments that the user intends to
perform, and provides support for editing this agenda.

8. IMPLEMENTATION TECHNIQUES AND
EXPERIENCE

The LOIS system has throughout been intended as an ex
perimental system, developed as a research project. The
system has been designed so that it could be used within the
group (for testing and for feedback on the design) but has
not been intended for wider use. We therefore assigned high
priority on the ability to modify and extend the system in
the course of the project. For these reasons, and since we
had access to a sufficiently large and powerful computer, we
made the essential design decisions to let most part of the
system operate on the DEC-20, and to write most parts of
the system using the programming system INTERLISP.
(Remaining parts have been written in assembler or Simula.)

At the same time, we also wanted to distribute some of
the functions in the systems to separate and smaller pro
cessors. The locally built L YS-16 computer was used for this
purpose.

In this final section, some aspects of this software strategy
will be discussed.

Workspace systems vs. conventional systems

Traditional computer programs operate with one or more
files as input, similarly for output, and perhaps some inter
action with a user. However, the INTERLISP system (like
other LISP systems, and like APL systems) are organized
so that the user will conduct an interactive session talking
to a system which maintains a workspace for the duration
ofthe session. This property is very significant for debugging
and general maintenance of programs. It does not have to
be used for the application situation, since one can write
LISP functions which have the traditional file-in, file-out
organization, but it is possible to use it for the application
situation as well.

In LOIS, both approaches have been used. Some pro
grams, such as DRAW and CRAWL, are essentially file-in,
file-out, although with some possibilities for the user to ini
tialize variables, etc., at the beginning of the session. Others,
particularly POST and IFORM, rely heavily on LISP's work
space structure.

As a consequence, two different methods for maintaining
structured data are both used:

576 National Computer Conference, 1980

>a block of data (for example, one or a few "relations,"
or assignments of a number of "properties" to a number
of" objects' ') may be stored as text files between sessions,
and loaded into the data base when needed during a
session. If data are changed, a new text file has to be
produced, but this need only happen at the end of the
session, or occasionally during the session but then only
for reasons of backup and reliability. This method will
be called residential storage of the data base;

> alternatively , data elements (such as individual records
in a relation, or property assignments to one "object")
may be stored primarily as a segmented disk file even
during the interaction session. Each data element is read
into the workspace when it is needed, and if changed,
the change is immediately performed on the disk file.
This method will be called external storage of the data
base.

Residential storage is the classical modus operandi in a
LISP environment, and is very strongly supported by the
INTERLISP system itself, which therefore is to be viewed,
among other things, as a database system in the present con
text. External storage is sometimes advantageous, particu
larly when relatively little processing is performed on each
data element, and when data and their updates are to be seen
simultaneously by several users.

Other useful properties of the INTERLISP system

Some other properties of the INTERLISP programming
system which were significant for the development of this
system, are:

>the very advanced support for program development
activities: administration of programs, debugging, etc.;

>the possibility to store parameter structures in the built
in data base (within the LISP workspace) and obtain
services for the maintenance of this data base;

>systems-programming facilities,. such as easy interface
to assembler code and to operating-system calls.

The major negative property of the system has been the
relatively long time required to learn it. Since the language
and the programming system is intended as a tool for the
professional programmer, its high power must be paid by a
relatively long learning time.

Performance

Since the intended purpose of the present project has been
to develop an experimental system, which could be easily
modified, but which also could be used within our group,
the question of how much emphasis we should place on per
formance has recurred in the course of the project. Better
performance can be 'achieved at the cost of more work and
(often) a less transparent program. In particular, the use of
LISP for major parts of the system represents a very high

priority for ease of development and maintenance, perhaps
with a danger of slow performance.

Have we then obtained performance problems as a result
of this strategy? This depends on how you look at it. Like
most time-sharing systems in research environments, our
computer system is sometimes badly overloaded, and the
continued development work on parts of LOIS is not the
least of reasons. However, if one judges the response times
and general behavior of the LOIS system as seen by a user
at times when the system is reasonably loaded (i.e., not
thrashing), it seems that all major parts of the system are
sufficiently quick for their intended purpose. The parts
where response times are critical are the ones which have
been programmed in assembler, and they form a relatively
small part of the total software. The other parts, which have
been written in LISP, are characterized either by a small
amount of processing (although often of considerable com
plexity), especially in IFORM, or by a semi-batch mode of
usage where longer execution times are tolerated especially
if advantages of flexibility are offered instead.

This point may be illustrated with some figures. The
CRAWL text formatter, entirely written in LISP, is . about
ten times as slow as the RUNOFF system, written in as
sembler. One should then remember that:

>CRA WL provides certain additional services, such as
variable-width fonts;

>no attempt has been made to optimize CRAWL. A pre
liminary survey of what can be done indicates that there
are several simple things one can do in the innermost
loops, using short assembler routines;

>the timings were made using the regular INTERLISP
compiler; the block compiler could be used to speed it
up.

In some cases, the first version of a program turned out
to be too slow and had to be rewritten to gain speed. This
only happened for a few, small programs (such as the low
level mail receiving program) and may to a large extent have
been due to the programmer"s short experience of LISP pro
gramming.

Continued strategy

In summary, we believe that the chosen implementation
strategy has been a good one. Our continued strategy will
be to develop additional facilities in LISP, and gradually im
prove the efficiency of existing facilities by a number of
measures:

>optimizing within the LISP context;
>transfer by semi-automatic means to another program

ming language (for programs which do not need all of
LISP's facilities);

>transfer to smaller and cheaper processors for dedicated
purposes, where CPU requirements may become less of
an issue.

ACKNOWLEDGMENTS

Many members of our group have helped with good ideas
and constructive critique, in particular Jim Goodwin, Erland
Jungert, John Walters, and Jerker Wilander, and Peter Fritz
son and Dan Stromberg who also participated in the pro
gramming.

The variable-font printout system relies on several kinds
of hardware built at the Electrical Engineering department
of our university and in the Lysator society: the LYS-16
computer, the T2 special-purpose graphic terminal used for
editing fonts, and others. In particular, we are grateful to
Olov Fahlander for building the T2 and to Robert Forchhei
mer for a continuous interchange of ideas and information.

The project owes gratitude for the body of ideas and the
software that we have inherited from the MIT Artificial

Provisions for Flexibility in LOIS 577

Intelligence Laboratory, from Xerox Palo Alto Research
Center, and from Bolt, Beranek and Newman, Inc. in Cam
bridge, Mass.

REFERENCES

1. Morgan, H. L. ,Office Automation Project. Proceedings of the 1976 NCC
Conference.

2. Kernighan, B. W. et aI., Unix Time-Sharing System: Document Prepa
ration. The Bell System Technical Journal, Vol. 57, No.6, Part 2, July
August 1978.

3. Sandewall, E., A Description Language and Pilot-System Executive for
Information-Transport Systems. Proceedings of the Fifth International
Conference on Very Large Data Bases, Rio de Janeiro, 1979.

4. Hammer, M. et aI., A Very High Level Programming Language for Data
Processing Applications. Comm. of the ACM, Vol. 20, No. I I, Nov. 1977.

Security and Privacy of Data
Flows

The development of transnational com
puter-communication systems and the as
sociated flows of computer data across in
ternational borders have created a number
of issues and problems: privacy and se
curity of personal data, non-tariff restric
tions, concerns over potential erosion of
national sovereignty, protectionism, and
so forth. These developments are impor
tant to the data processing community in
the United States since restrictions may
be placed on the systems it develops and
the data processing services it offers in
ternationally. This session will address the
issues involved in general, then concen
trate on privacy protection problems, and
finally explore a specific, new problem

Rein Turn
Area Director

area-privacy rights of business, industry and other organizations regarding data about
themselves.

579

Privacy protection and transborder data flows

by REIN TURN
California State University, Northridge
Northridge, California

INTRODUCTION

In the last decade there has been a dramatic increase in the
growth of internationally operated computer-communication
systems. In these systems, in essentially a single continuous
operation, data are transmitted from terminals to computers
in networks that may span several countries or several con
tinents, the requested processing is performed, and results
are returned. In other cases, data files are maintained on
line in international, remotely accessible networks. These
networks are operated by vendors of remote computing and/
or information services, industry associations, or private
corporations (especially the so-called multinational corpo
rations). Some of the data transmitted in these systems are
personal data about individuals.

The world-wide availability of computer-communication
and remote computing services has created a "trade" in
these services, complete with competition between domestic
and foreign vendors, taxes and duties, and regulations that
appear to prefer domestic services. However, to date the
data flows have been unbalanced. Raw data are flowing to
very few highly industrialized countries where most of the
international data processing service vendors and head
quarters of multinational corporations are located. From
these countries the processed data flow back to the origi
nating countries. Many of the latter are the industrially less
developed countries in the Third World. This situation has
generated considerable concern in the originating countries
over their excessive dependence on foreign data processing
services, and over the lack of development or loss of busi
ness of their domestic data processing industry. 1-4 More de
tailed analyses of the underlying issues can be found in re
cent literature. 5

-
7 In general, a potential response in these

countries may be to place restrictions on transborder data
flows on the basis of the type and content of the data in
volved.

Privacy protection laws enacted in a number of European
countries may provide one mechanism for restricting data
flows. Privacy protection (also called "data protection" in
Europe) emerged as a concern in early 1960s when auto
mation of personal data record-keeping systems gained mo
mentum. It was realized that automated systems are vul
nerable to threats and subject to misuse on a scale that is
significantly greater than in manually maintained record-

581

keeping systems, and that individuals should be provided
with certain privacy rights-legally enforceable protection
against unfair practices in collection, storage, processing,
use, and dissemination of personal data about them. Begin
ning in early 1970s the United States, Canada, and seven
European countries have enacted a variety of privacy pro
tection laws,8 and draft international agreements have been
formulated. 9-12 These laws and agreements, and theirimpacts
on transborder data flows, are discussed in the following
sections.

NATIONAL PRIVACY LAWS

Despite the differing perceptions of the problems and dif
fering political and legal systems and traditions, the enacted
privacy laws tend to grant individuals a remarkably similar
set of privacy rights. A principal reason for this is that, from
the beginning, privacy protection studies, discussions, de
bates and draft laws became widely known internationally.
Thus, as the various countries tackled the problem and de
veloped new concepts, others paid close attention and at
tempted to adopt these in ways that reflected their own sit
uations. For example, the early developments (in 1969) in
the Land Hessen of the Federal Republic of Germany, 13 the
studies in Canadal4 and in United Kingdom, 15 and the Swed
ish Data Act of 1973 were widely studied.

Subsequently, a Code of Fair Information Practices was
formulated in the United States 16 and international agree
ments on basic principles were reached in Council of Eu
rope.9 ,10 Later the Code was refined and expanded by the
U.S. Privacy Protection Study Commission 17 and the inter
national efforts in Europe 1 1,12 to include the following prin
ciples that are applicable to both the public sector (govern
ment) and the private sector's business, industry, and other
organizations:

• Openness-there must be no personal data record
keeping systems whose very existence is secret, and
there must be a policy of openness about any organi
zation's record-keeping policies, practices, and sys
tems.

• Individual access-there must be a way for individuals
to find out what personal data about them are on record
and how they are used, an~ to examine those data.

582 National Computer Conference, 1980

• Individual participation-there must be a way for in
dividuals to correct or amend records of personal data
about themselves.

• Collection limitation-there must be limits on the types
of personal data that organizations may collect about
individuals, and restrictions on the manner in which
they collect these data.

• Use limitation-there must be a way for individuals to
prevent personal data about themselves collected for
one purpose from being used for other purposes without
their knowledge or consent.

• Disclosure limitation-there must be limits on external
disclosures of information about individuals which rec
ord-keeping organizations may make, and there must
be legally enforceable confidentiality obligations of rec
ord-keeping organizations with respect to the use and
disclosure of personal data.

• Information management-any record-keeping orga
nization creating, maintaining, using or disseminating
records of identifiable personal data must implement
data management policies and practices which assure
that the collection, maintenance, use, and dissemination
of these data is ncessary and lawful, that the data them
selves are current and accurate, and that precautions
are taken to prevent their misuse.

• Accountability-record-keeping organizations must be
accountable for their personal data record-keeping pol
icies, pr.actices, and systems.

There are other dimensions of privacy protection, how
ever, where there are considerable differences in national
laws, especially between those in Europe and in the United
States. Important dimensions are: the scope of applicability
and coverage (government, private sector, both, or certain
subsections of either); data subjects covered (individuals,
legal persons, or both); types of systems covered (auto
mated, manual, or both); and types of enforcement author
ities and mechanisms. These aspects of the present privacy
protection laws are briefly summari.2:ed below:

• United States. In the public sector, the Privacy Act of i

1974 covers the automated and manual systems oper
ated by the federal government, and protects the pri
vacy of citizens and aliens admitted for permanent res
idence. Enforcement is through self-compliance and
courts. The Office of Management and Budget has an
oversight role. At states' level, privacy laws have been
enacted in twelve states. They apply to automated and
manual record-keeping systems under states' control,
protect all residents, and are enforced in ways appli
cable to all laws in a given state. In the private sector,
laws have been enacted to cover certain areas, such as
credit reporting (Fair Credit Reporting Act of 1969),
education (Family Education Rights and Privacy Act of
1974), and financial institutions (Right of Financial Pri
vacy Act of 1978). These cover manual and automated
systems, all individuals, and are enforced by agencies
traditionally assigned legal oversight roles in these

areas. Bills are pending in Congress to expand privacy
protection to other areas of the private sector, such as
employment records, health care, and insurance indus
try.

• Sweden. The Data Act (1973, amended in 1977) covers
automated record-keeping systems in both the public
and the private sectors. Covered are all residents. En
forcement is through the Data Inspection Board. Per
mission is required to export personal data. Other pro
visions of the Act reflect the record-keeping environment
in Sweden: most of the record-keeping systems are au
tomated, each citizen is assigned a unique personal
identification number that can be used to link various
records on an individual into a complete dossier, and
Sweden is a very open society where, for example, the
income and taxes of the citizens are published by the
government for open distribution.

• Federal Republic of Germany. The Federal Data Pro
tection Act (1977) covers automated and certain manual
record-keeping systems in the public and private sec
tors. All residents are protected. Law is enforced by the
Federal Commissioner for Data Protection. There are
provisions for limiting disclosure to foreign organiza
tions.

• Canada. A section of the Canadian Human Rights Act
(1977) applies to automated and manual· systems of the
federal government. Protected are citizens and aliens
admitted for permanent residence. Enforcement is ef
fected through the office of the Privacy Commissioner.
Certain TDF cases require Commissioner's approval.
In the provinces' level, fair information practices laws
are in force in several provinces. In the private sector,
privacy protection is applied in certain areas (such as
credit reporting).

• France. The Act on Data Processing, Data Files and
Individual Liberties (1978) covers automated systems
and certain manual files in the public and the private
sectors. All residents are covered. Enforcement is by
the National Data Processing and Liberties Commis
sion. Permission is required for transborder transfers
of personal data.

• Norway. The Act Relating to Personal Data Registers
(1978) covers automated systems in both the public and
the private sectors. Protection is provided to individ
uals, and to associations or foundations. The law is en
forced by the Data Surveillance Service. Permission is
required for transmission of personal data abroad.

• Denmark. The Public Authorities' Registers Act (1978)
covers government agencies that maintain automated
records on residents. It is enforced by the Data Sur
veillance Authority. License is required for TDF. In the
private sector, the Private Registers Etc. Act (1978)
applies to automated systems in the private sector and
protects individuals and institutions, associations and
business enterprises. It is enforced by the Data Sur
veillance Authority. No TDF provisions are made in
this law.

• Austria. The Federal Act on the Protection of Personal

Data (1978) covers automated record-keeping systems
in both public and private sectors. It protects individuals
and legal persons or associations. Enforced by Data
Protection Commission and Council. TDF provisions
include a requirement to obtain permission to export
data, and to process data on foreign persons in Austria.

• Luxembourg. The Law Governing the Use of Name
Linked Data in Data Processing (1978) covers auto
mated systems in public and private sectors, and pro
tects individuals and legal persons. It is enforced by
existing governmental authorities. In TDF situations,
if the data access point is in Luxembourg, the law ap
plies.

In addition, privacy protection laws are pending in Bel
gium, the Netherlands, and Portugal. Privacy protection re
quirements have been incorporated in the constitutions in
Austria, Belgium, Portugal, and Spain. Still other countries
are in study phases that are expected to produce privacy
protection legislation in the near future (e.g., Finland, Japan,
Switzerland, and United Kingdom). It is important to note
the tendency in the more recent national privacy laws (Nor
way, Denmark, Austria, and Luxembourg) to extend privacy
protection to legal persons. That is, corporations, associa
tions, and other organizations are granted the same rights
regarding data about them as are given to individuals. Im
plications of these extensions are far-reaching. 18 For exam
ple, if transborder data flows were restricted under privacy
protection provisions of national laws, much greater pro
portion of data flows would be covered if legal persons were
included.

INTERNATIONAL HARMONIZATION

The similarities and the differences among national pri
vacy protection laws can become important practical matters
to governments and organizations in the private sector when
transborder data flows are being considered. On one hand
there is the problem of comparisons of various features in
national laws in order to determine which laws are" stronger, "
on the other hand there is the problem to participants in
trans border data flows of complying with different imple
mentations of the same requirements. Thus, there is a gen
eral agreement that it is desirable to standardize and "har
monize" the basic privacy protection provisions in the laws
of various communities of nations. In response to this, two
organizations in Europe have produced draft documents
the Council of Europe (located in Strasbourg, France) and
the Organization of Economic Cooperation and Develop
ment (located in Paris, France). The former is an organi
'zation of 21 Western European countries. OECD also in
cludes non-European countries, such as the United States,
Japan, Canada, Australia, and New Zealand.

The Council of Europe has drafted a Convention for the
Protection of Individuals with Regard to Automatic Pro-

Privacy Protection and Transborder Data Flows 583

cessing of Personal Data II in order to establish the following:

• A minimum set of privacy protection principles and
rights to be adopted by all signatory countries (countries
that are not members of the Council of Europe will be
invited to join).

• Obligation of signatory countries to grant basic privacy
rights to all individuals, regardless of nationality or res
idence.

• Cooperation and exchange of information between na
tional data protection authorities in supervising com
pliance with privacy protection laws in international
settings.

• Administrative mechanisms to handle disputes over ju
risdiction when implementing national privacy protec
tion requirements to handle TDF situations.

The Convention would commit the signatory countries to
enact privacy protection laws based on the principles listed
in the previous section. It provides a privacy protection
"floor" acceptable to the signatory countries in the sense
that they would consider any country that has enacted and
is enforcing these principles to be providing "sufficient" pri
vacy protection. Then personal data could be transmitted
to such a country from other signatory countries without loss
of basic privacy protection. The Convention is to cover au
tomated record-keeping systems in public and private sec
tors. Protection is afforded to individuals, but could be ex
tended to cover also manual systems and/or legal persons
by any signatory country. However, presumably, the lack
of such extensions in a signatory country's privacy laws
would not be considered a sufficient reason for restricting
transborder data flows to this country by signatory countries
that do have these provisions.

A parallel effort toward standardization and harmoniza
tion of privacy protection principles, rights, and require
ments in the form of a set of Guidelines Governing the Pro
tection of Transborder Data Flow of Personal Datal2 has
been completed by the OECD. The Guidelines are to be vol
untary (not a legally binding treaty) on the OECD member
countries that accept them, but they are regarded as "mor
ally bound" to comply fully. The United States is expected
to participate.

The OECD Guidelines are based on the philosophy that
there are economic and social benefits to all participants in
transborder data flows, and that it is very undesirable to
establish unjustified barriers to TDF. Their purpose is to
provide an interim standard until more formal treaties such
as the Council of Europe's Convention are adopted. Again,
the expectation is that there would be no need to restrict
personal data flows between countries that have accepted
and are implementing the Guidelines' principles and require
ments. For this purpose, the Guidelines are similar to the
Council of Europe's draft Convention. That is, they are de
signed to be applicable to both the public and the private
sectors, and to manual as well as automated systems. The
protected data subjects are defined to be individuals (phys
ical persons).

584 National Computer Conference, 1980

Regarding transborder data flows, the Guidelines urge the
participating countries to observe the following:

• Take into account the implications on other signatory
countries of domestic processing and re-export of per
sonal data, particularly when this may result in circum
vention or violation of national privacy laws of other
signatory countries.

• Take all reasonable and appropriate steps to ensure that
transborder flows of personal data, including transit
only data, are uninterrupted and secure.

• Refrain from restricting trans border data flows of per
sonal data between themselves and other countries ex
cept when these do not yet substantially observe the
Guidelines.

• Refrain from developing laws, policies and practices in
the name of the protection of privacy and individual
liberties which, by exceeding requirements for these,
are inconsistent with free transborder flow of personal
data.

• Insure that their procedures for TDF of personal data
and for protection of individual liberties are simple and
compatible with those of other signatory countries.

• Work toward development of principles, national and
international, to govern the determination of applicable
laws in the case of TDF of personal data.

In addition to the Guidelines which are expected to be
ready for adoption relatively soon (e.g., in 1980), OECD will
examine the question of restrictions on TDF of data not re
lated to individuals, such as data on legal persons, national
economy and resources, and so forth. Further, to address
the non-privacy issues in TDF briefly mentioned in the In
troduction, the OECD is proposing that its member countries
consider adopting a "Trans border Data Flow Pledge" for
a limited time period, affirming their agreement to:

• A void adopting national policies of restricting imports
of data processing services or taking any actions to re
strict TDF between the participating countires;

• Refrain from discriminating against imported data pro-
cessing or telecommunications services; .

• A void taking measures to place supplemental taxes on
imported information and data processing services.

• Cooperate in setting up an international legal framework
covering various aspects of TDF;

• Consult with each other on implementation of the pledge
in accordance with international obligations, and taking
into account the special needs of developing countries.

At this writing, none of the above international initiatives
have been adopted by respective policy making bodies.
There is little question, however, that they would be very
useful in setting up a proper framework for handling the
numerous TDF ssues.

IMPLICATIONS ON TRANSBORDER DATA FLOWS

Businesses and industry in the United States, especially
the multinational corporations and vendors of remote com
puting and information services, have a strong interest and
dependence in unrestricted transborder data flows. Until the
international agreements have been firmed and accepted by
a significantly large number of countries, including the
United States, the national privacy protection laws of the
European countries could be used to justify placing restric
tions on data flows from these countries to the United States.

Privacy protection in the context of transborder data flows
deals with extending any privacy rights that individuals may
have in their "home country" to any "host country" where
personal data about them may be processed, stored or used.
The purpose is to assure that:

• Individuals could continue to exercise their home coun
try privacy rights regardless of the physical location of
the personal data about them.

• Record-keeping organizations in the home country
could not export personal data abroad in order to evade
privacy protection requirements in the home country.
That is, they should not be able to establish data havens
abroad, nor make use of any existing oneS.

• Personal data maintained abroad would be protected
from unauthorized use or dissemination by parties in
the host country, and from deterioration of quality (ac
curacy, completeness, currency) while abroad or in
transit.

• Individuals would have privacy rights vis-a-vis personal
data about them collected directly in the home country
by foreign organizations, or collected while they are
abroad.

In general, reaching these goals requires that privacy pro
tection laws in the host country provide protection to foreign
nationals, special agreements exist to permit foreign nation
als to exercise their privacy rights in host countries (e.g.,
the international initiatives discussed in the previous sec
tion), and contracts or licenses bind involved organizations
in the host country to abide by data confidentiality, security
and quality requirements. If agreements cannot be made to
the satisfaction of a home country's privacy protection au
thorities, these may apply the TDF clauses in their privacy
laws to restrict personal data transmissions to countries that
have weaker privacy protection laws. .

The results of comparisons of the privacy protection af
forded in the United States versus protection afforded in
Europe as based strictly on privacy protection laws now in
force are likely to indicate that privacy protection in the
United States is less comprehensive in the following ways:

• The scope of coverage is narrower since both the public
and private sectors are incompletely covered in the
United States - even though the federal government
is covered by the Privacy Act of 1974, only twelve states

have enacted fair information practices laws. In the pri
vate sector, only consumer credit, educational institu
tions, and financial institutions are covered. European
privacy laws cover both sectors quite completely.

• The Privacy Act provides privacy protection explicitly
only to citizens of the United States and aliens admitted
for permanent residence. Thus, foreign nationals other
than specified above are not covered. European privacy
protection laws appear to make no distinction regarding
nationality or citizenship.

• No central, independent privacy protection authority
exists in the United States to enforce compliance with
privacy protection laws. Under the Privacy Act, Office
of Management and Budget has a nominal role of co
ordinating compliance, and the President makes an an
nual report on compliance to the Congress. Compliance
with federal privacy laws that apply to the private sector
is with agencies that normally regulate the areas in
volved (e.g., the Federal Trade Commission, the Fed
eral Reserve System, and the Department of Educa
tion). This distributed authority contrasts with the
strong, central data protection authorities in Europe.

However, comparisons of privacy protection laws are
likely to give a misleading picture of the general level of
privacy protection in the United States. The scope of the
U.S. privacy laws is broader since they cover also manual
record-keeping systems. Private sector privacy laws apply
to all residents. The state fair information practices laws are
only a small fraction of privacy protection activities in states.
More generally, the Constitution of the United States, and
those of the individual states, place strong emphasis on
openness in governmental decision making processes, and
establish an atmosphere of concern for individual rights. The
lack of a central privacy protection authority is, itself, an
illustration of the American aversion to concentrating power
in government agencies. Practices such as a universal iden
tification number for each citizen or publishing the earnings
and income of all citizens, as presently exist in Sweden,
would not be acceptable to Americans. Finally, to reduce
the incompleteness of coverage in the private sector, bills
were introduced in 1979 to establish fair information prac
tices and place limits on use of personal information in the

. maintenance of medical records, financial information, in
surance records, and research records.

The differences in scope of coverage of the national pri
vacy protection laws have resulted from differing philoso
phies of regulation. The European countries have adopted
an "omnibus" approach that applies the same set of re
quirements (usually with some exceptions) uniformly to the
government and all parts of the private sector. In United
States and Canada, where federal system of government is
strongly established, based on considerable separations in
powers and jurisdiction, a sectoral approach has been taken
- separate laws are enacted (or existing laws are amended)
to provide privacy protection in specific parts of the public
and private sectors. Each approach has its merits and draw-

Privacy Protection and Transborder Data Flows 585

backs. Omnibus legislation establishes uniform require
ments, but cannot handle easily any specific situations. Sec
toral legislation is easier to enact and permits flexibility in
handling exceptions, but is likely to result in scattering of
privacy protection requirements throughout the entire legal
code.

In view of the above discussion, it is important for the
U.S. enterprises involved in TDF and desiring to continue,
to find means to convince the privacy protection authorities
in the countries they operate of their commitment to privacy
protection principles, and their willingness and ability to
provide privacy protection at levels that match the require
ments in the respective countries. The specific measures
taken depend on the nature of the enterprise and its TDF
activities, the nature of data involved and processing per
formed, any uses made of the data by the organization, and
the laws in force. in the home country. An effective approach
appears to be the voluntary compliance and implementation
of privacy protection requirements that apply to the private
sector area involved (e.g., adoption of the recommendations
ofthe U.S. Privacy Protection Study Commission that apply
to the area17

), as well as adoption of the principles of the
OECD Guidelines.

Voluntary compliance has been urged by the Privacy Pro
tection Study Commission, by the President of the United
States at the introduction of his privacy protection initiatives
in the Spring of 1979 (with special emphasis on voluntary
compliance regarding employment and commercial credit
granting records), and by industry and business groups, such
as the Chamber of Commerce of the United States l9 and the
Business Roundtable. 20 In addition, codes of conduct or eth
ics have been suggested as one avenue toward effective vol
untary compliance with privacy protection principles and
requirements in national as well as TDF contexts. On an
industry association level, codes of conduct and effective
sanctions for noncompliance could discourage organizations
from using personal data contrary to privacy protection prin
ciples. On the employee level, such codes could discourage
improper handling of personal data, especially the personal
data on foreign nationals. However, at this time codes of
conduct or ethics are not sufficiently strong to be depended
upon for satisfying privacy protection requirements.

Compliance with privacy protection requirements can in
volve substantial changes21 in operating procedures, record
keeping systems and practices, personnel requirements and
training, and substantial costs. 22 Thus, there are few incen
tives for voluntary compliance without any other compelling
reasons, such as continued participation in TDF activities.
While a number of large firms have adopted voluntary pri
vacyprotection programs (usually regarding employment
records) others appear to be delaying. For example, a recent
survey of the top 500 corporations in the United States (with
145 respondents) showed that most of the respondents have
not informed their employees of dissemination of their rec
ords to credit agencies, and over 80 percent do not allow
their employees access to medical information about them
used in employment-related decisions. 12 Some foreign pri
vacy protection authorities have already cited these results

586 National Computer Conference, 1980

as evidence that there is little intent by U. S. enterprises to
abide by voluntary guidelines proposed by OECD.

Despite the present difficulties in understanding how vol
untary compliance could be achieved to satisfy privacy pro
tection authorities in other countries that the privacy rights
of their nationals will not be reduced when their personal
data are in the United States; voluntary compliance is an al
ternative that could be implemented quickly and in ways that
adapt readily to the specific requirements in any particular
transborder data flow case. Efforts must be continued to
develop an effective approach and implementation mecha
nisms.

CONCLUDING REMARKS

Transborder data flows among certain industrial countries
are increasing, but most of the data processing is done in
only a few countries, especially in the United States. This
is viewed by countries where data flows originate as not in
their national interests. At the same time, concerns over
human rights have led to the enactment of privacy protection
laws in numerous countries in Europe, and in the United
States, with many other countries likely to follow. At the
present time, the enacted or proposed privacy laws in Eu
rope are more comprehensive than U.S. laws, and can pro
vide a rationale for restricting transmissions of personal data
to the United States. One mechanism that U.S. enterprises
involved in trans border data flows can use to reduce the
potential for restrictions is to adopt the OECD guidelines
voluntarily until governmental or legislative initiatives in the
United Stateshave reduced the present discrepancies.

ACKNOWLEDGMENTS

This paper is based, in part, on the report by AFIPS Panel
on Transborder Data Flows5

•
8 which the author edited as

chairperson of the Panel. Major contributors to the report
were panel members Roger N. Allen, George I. Davida, Eric
J. Novotny, Susan H. Nycum, David M. Rappaport, Alex
ander D. Roth, Phillip A. T~nkhoff, and Willis H. Ware.

REFERENCES

1. The Vulnerability of Computerized Society, Ministry of Defense, Stock
holm, Sweden, 1978.

2. Clyne, J. V. (Chrmn.), Telecommunications and Canada, Consultative
Committee on the Implications of Telecommunications for Canadian Sov
ereignty, Ottawa, March 1979.

3. Nora, S. and A. Mine, Report on the Computerization of Society, Board
of Financial Examiners, Paris, France, 1976.

4. "SPIN Conference Resolutions," IBI Newsletter, No. 27, IBI, Rome,
Italy, 1978.

5. Turn, R (Chrmn.), Transborder Data Flows: Concerns in Privacy Pro
tection and Free Flow of Information, Vol. 1, AFIPS Panel on Trans
border Data Flow, Washington, DC, December 1979.

6. Allen, R N., "Overview of Transborder Data Flow Issues," Computer
Sciences Corporation, El Segundo, CA, November 1979.

7. Langhorne, R. W., "Private Enterprise Concerns About Data Protection
and Transborder Data Regulation," Data Regulation: European and
Third World Realities, Online Conferences, Ltd., Uxbridge, England,
November 1978, pp. 135-158.

8. Turn, R. (Chrmn.), Transborder Data Flows, Vol. 2., Supporting Ma
terials, AFIPS Panel on Transborder Data Flow, Washington, D.C., De
cember 1979.

9. On the Protection of Privacy of Individuals Vis-A-Vis Electronic Data
Banks in the Private Sector, Resolution (73)22, Council of Europe, Stras-
bourg, France, 1973. ,

10. On the Protection of Privacy of Individuals Vis-A-Vis Electronic Data
Banks in the Public Sector, Resolution (74)29, Council of Europe, Stras
bourg, France, 1974.

11. Draft Convention for the Protection of Individuals With Regard to Au
tomatic Processing of Personal Data, Council of Europe, Strasbourg,
France, May 1979.

12. Draft Guidelines Governing Protection of Privacy and Transborder Flows
of Personal Data, OECD, Paris, France, June 1979.

13. Hondius, F. W., Emerging Data Protection in Europe, North-Holland
Publishing Co., Amsterdam, 1975.

14. Privacy and Computers, Department of Communications/Department of
Justice, Information Canada, Ottawa, Canada, 1972.

15. Younger, K. (Chrmn.), Report of the Committee on Privacy, Cmnd. 5012,
Her Majesty's Stationery Office, London, 1972.

16. Ware, W. H. (Chrmn.), Records, Computers, and the Rights of Citizens,
Secretary's Advisory Committee on Automated Personal Data Systems,
Department of Health, Education and Welfare, Washington, D.C., July
1973.

17. Linowes, D. F. (Chrmn.), Personal Privacy in an Information Society,
Privacy Protection Study Commission, Washington, D.C., July 1977.

18. Nycum, S. H., "Issues in Legal Person Privacy," AFIPS Conference
Proceedings, Volume. 49, 1980 NCC, AFIPS Press, Washington, D.C.,
1980 (this volume).

19. Personal Information Privacy, U. S. Chamber of Commerce, Washing
ton, D.C., June 23, 1978.

20. Fair Information Practices - A Time for Action, Business Rountable,
New York, December 1978.

21. Turn, R., "Privacy and Security in Transnational Data Processing Sys
tems," AFIPS Conference Proceedings, Vol. 48, 1979 NCe, AFIPS
Press, Montvale, NJ, June 1979, pp. 283-291.

22. Turn, R, "Privacy Protection Costs in Record-Keeping Systems," In
formation and Privacy, September 1979, pp. 298-302.

Transborder data flow: legal persons in
privacy protection legislation

by SUSAN H. NYCUM and SUSAN COURTNEY-SAUNDERS
Chickering & Gregory
San Francisco, California

SYNOPSIS

In view of current proposals to establish treaties and privacy
protection guidelines on transborder data flows, it has be
come necessary that the United States adopt a position on
whether "legal person" be included in such treaties and
guidelines. The following discussion attempts to evaluate the
various arguments and concludes that the United States,
based upon its own definition of privacy, regulation of' 'legal
persons," and economic and foreign policy, must maintain
that "legal person" be excluded from privacy guidelines.

DISCUSSION

A. Introduction

Inclusion of "legal persons" in regulation of privacy with
regard to transborder data flow encompasses sociological,
political, economic and philosophical issues. Review of the
issue of protection of individual privacy is not enough. While
certain nations seek control of transborder data flow through
access to its use, process and content, other nations desire
to foster an atmosphere of free enterprise and competition
by permitting business to remain relatively free of govern
mental or private intrusion.

Including "legal persons," or natural persons and busi
ness entities, in privacy protection may inhibit the free flow
of data and free exercise of competition. If business entities
are included in privacy protection, any business files would
be open to inspection and correction by any individual or
other business mentioned in those files. As a result, cus
tomers, potential customers, competitors, and suppliers
would have the opportunity to inspect the files of the par
ticular business. Such disclosure may be so harmful to busi
ness that it cannot function effectively in that country. 1

On the other hand, privacy rights may actually be further
protected if business entities are entitled to inspect data con
cerning them. This may be the case when an individual's
privacy interest is so identified with a business entity's in
terests that the individual's privacy can be more fully pro
tected through disclosure of business records to him. Also,

587

certain countries have political, economic or social reasons
for including legal persons in their privacy legislation, not
the least of which is to exclude competition presented by
the foreign data industry.

The United States must consider its own policies on pri
vacy regulation and international commerce and other coun
tries' concerns in order to protect its own individual, cor
porate and national interests and to harmonize them with
interests of other nations.

This paper will first outline current definitions of "legal
persons," existing privacy protection legislation covering
transborder data flow (hereinafter TDF), and current pro
posals for treaties and guidelines on privacy regulations and
TDF.

Next, arguments for and against inclusion of "legal per
sons" in privacy protection will be presented.

Finally, the considerations the United States must address
on this issue, and the recommendations it might make, will
be discussed.

B. Existing and proposed privacy protection in TDF
regulation

1. Definition of "legal persons"

In order to examine the inclusion of "legal persons" in
TDF privacy protection, a single definition must be agreed
upon.

Under the Internal Revenue Code, a "person" is an indi
vidual, trust, estate, partnership, association, company or
corporation.2 Under the New Bankruptcy Act, "person"
includes an individual, partnership or corporation. 3 Al
though the Freedom of Information Act defines "person"
as including "an individual, partnership,corporation, as
sociation, or public or private organization other than an
agencY,"4 the Privacy Act limits its protection to "individ
uals" or "a citizen of the United States or an alien lawfully
admitted for permanent residence."5 The Right to Financial
Privacy Actprovides access to financial records by any "in
dividual or a partnership of five or fewer individuals."6

Authorities on TDF regulation have stated that a "legal

588 National Computer Conference, 1980

person" does not have to be a legal entity, but can be any
group of persons7 or any business enterprise.s

If "legal persons" are to be included in the group pro
tected by TDF privacy regulation, then the definition of
"persons," based on the above authorities, would probably
be natural persons, groups of persons, and any business en
tity including a sole proprietorship, corporation or partner
ship. For purposes of this report, "legal persons" will signify
all the above entities except natural persons in order to dis
tinguish regulation solely of natural persons from regulation
of both natural and business persons.

2. Current privacy protection legislation

a. Sweden: the Swedish data bank statute of May 11,
1973 (1973:289)

The Swedish Data Bank Statute is the earliest regulation
of TDF and privacy. It requires all domestic and foreign data
banks containing personal information to be licensed by the
Data Protection Board before they begin operation in or with
Sweden. A registration list containing the information stored
or transmitted on persons must be given to the Board. The
protection extends only to private persons, who may request
from the Board any information in the list concerning them.
Section 1, 16. Thus, Sweden does not include legal persons
in its privacy legislation.

b. West German republic: federal data protection act,
1977

This Act provides for a private data administrator at each
. business storing data on individuals. This administrator de

cides what categories of privileged information are to be
stored and what processing to use. Section 29. Also the Act
provides for disclosure by the government of data held on
individuals. Sections 7-21. The German Act covers only
physical persons. Section 2(1).

c. Canada: human rights act, 1977, part IV: protection
of personal information, house of commons, 2nd
session, 30th parliament, 25 Eliz. II, bill C-25

This bill provides only individuals, and not legal persons,
with the right to obtain, examine and correct records con
cerning them held by or for the Canadian Government. Part
IV, Section 49, 52.

d. France: act no. 78-17 of 6 January 1978 concerning
computerized indexes and the protection of the
liberties '

The French Act requires that any entity desiring to estab
lish a data bank must obtain an authorization from the N a-

tional Commission for Data Processing and the Liberties.
Chapter III, Art. 14. Also, any data bank must be open for
inspection and correction only to individuals. Chapter I, Art.
4; Chapter V.

e. Norway: personal data registers act of 1978

This Act requires that data banks obtain permission from
the King in order to establish personal data registers. Chap
ter 4, Section 9. The "personal information" covered by the
legislation includes' 'information ... traceable to identifiable
individuals, associations or foundations. " Chapter I, Section
1. Thus, those Norwegian "persons" protected include both
individuals and business entities.

f. Denmark: bill on private registers 1978

The Danish Bill requires data banks to register with the
Register Board prior to communication to any third party
in Denmark. Chapter 3, section 14. Legal persons are in
cluded in this privacy protection because" [a]ny systematic
collection and registration of information on the financial
conditions of persons, associations or undertakings" may
take place only in accordance with the act. Chapter 1, Sec
tion 1. The act provides that any' 'person" may inspect any
information about themselves held by any registered entity.
Chapter 2, Section 7.

g. Austria: act on data protection, 1978

The Austrian Act requires private data banks to register
with and obtain a license from the Federal Minister, includ
ing data transmitted abroad unless the receiving country has
a data protection law similar to the Austrian law. Chapter
II, Section 9; Chapter V, Section 25. The act includes legal
persons by defining "personal data" as "information, in
cluding personal identification marks, relating to a natural
person or a juristic person or a 'personal company' in the
sense of commercial law." Chapter I, Section 2.

h. Luxembourg: act regulating personal data use in data
processing, March 1979

This Bill requires any data bank using a Luxembourg data
processing means and containing personal data to obtain
authorization by a competent minister and registration with
a general directory. Chapter 2, Section 4,5. The Bill defines
persons as "any natural person ... [e]ach corporate body
under Luxembourg law, from time of constitution, (or) any
other corporate body registered in a Luxembourg Public
Administration or a Social Security establishment register. "
Chapter 1, Art 2. All "persons" have the right to inspect
and correct data contained in any data bank registered with
the National Directory. Chapter 5, Art. 19,20.

i. United States of America: freedom of information
act, 5 U.S.C. §552 (1974) and the privacy act 5,
U .S.C. §552a. (1974)

The Freedom of Information Act (FOIA) provides the
mechanism for any "person," including an individual, part
nership, corporation, association, or public or private or
ganization, to be provided, upon request, with any non-ex
empt record held by a government agency about any
"person, "9 except information that would, if disclosed, vi
olate national security, trade secrets or other confidential
business information, attorney-client privilege, or, balancing
the interest served by the exemption (e.g., privacy) against
the public interest served by disclosure, information on in
dividuals may be withheld. 5 U.S~C. §552(b)(1-7).

The Privacy Act permits any "individual" or citizen of
the United States or an alien lawfully admitted for permanent
residence to inspect records only when held by any govern
ment agency. It also prohibits disclosure by a government
agency of any record of an individual without the written
consent of the individual if the record constitutes a clearly
unwarranted invasion of personal privacy, such as medical
files. The FOIA's balancing to determine the exemption from
disclosure for individual data is not present in the Privacy
Act, which provides for a clearer restriction on disclosure.
5 U.S.C. §552a(b), §552(b)(6).

Neither act provides for disclosure of information by pri
vate entities to either natural or legal persons. Bills are pend
ing in the Congress which would extend such coverage to
the private sector.

Privacy protection extends to providing the right to ex
amine records held by private entities, however, under the
Right to Financial Privacy Act, 12 U.S.C. §401, et seq.,
which permits individuals or partnerships of five or less to
inspect information on them held by any public or private
financial institution, and the Fair Credit Reporting Act, 15
U.S.C. §1681, et seq., which permits individual consumers
to inspect credit reports held by a consumer reporting
agency.

3. Current and proposed TDF international treaties and
guidelines

a. The council of Europe

The 20-member Council of Europe (CaE) expects to ratify
its treaty on data protection, including privacy protection,
by 1980. The U.S. will have the opportunity to be a signatory
along with Japan, Canada and Australia. Whether the U.S.
signs the treaty or not, it will be affected. \0

The purpose of the CaE treaty is to establish common
rules among nations on the rights of the individual when an
automated record on the individual is gathered, processed,
and transmitted across borders. The treaty must consider
and reconcile the issues involved: protection of the rights
of the individual, preservation of the free flow of informa-

Legal Persons in Privacy Protection Legislation 589

tion, and recognition of the supremacy of national law and
variations in legal systems. II It will represent only minimum
rules and each nation can expand the scope of protection. 12

The current treaty draft does not cover data on legal per
sons. I3 However, the drafters are trying to provide a mech
anism for cooperation between those nations including legal
persons and those excluding them. Frits Hondius, Division
head of CaE in Strasbourg, France, indicates that the "legal
persons" issue has not yet been resolved by the CaE:
"Where a legal person should be able to claim the same
protection as a natural data subject is a controversial ques
tion that needs careful study." 14

b. The OECD

The U.S. is participating in the drafting of guidelines for
the cooperation on TDF issues by the Organization for
Economic Cooperation and Development (OECD).

The OECD has omitted from its third draft a section pro
viding that its guidelines would not restrict any nation from
applying privacy protection beyond natural persons "to
groups of persons, associations, corporations or any other
bodies whether or not such bodies possess legal personal
ity. "15 Its current intention is therefore to exclude "legal
persons" from privacy protection, replacing that clause
with:

"3. These Guidelines should not be interpreted as preventing
the application of different protective measures to different cat
egories of personal data depending upon their nature and the
context in which they are collected, stored, used or disclosed.
Furthermore, nothing in ihese Guidelines shouLd be interpreted
as preventing countries from appLying them onLy to the auto
matic processing of personaL data. "16

c. OECD vs. CaE: the need for uniformity

While the CaE concentrates on the issue of protecting
individual rights, the OECD is looking at the total economic,
cultural, and social impact of regulating all kinds of. data
flow. Both the CaE, in treaty form, and OECD, in guideline
form, recognize the importance of uniform data flow regu
lation among countries. However, a treaty affords a much
higher level of protection to data subjects than guidelines.
Because European countries already have data protection
laws in force, the guidelines stage may have already passed.
According to Hondius, "Common guidelines are a useful
first step for legal cooperation between states," but since
laws are already in force in many countries, "a legally bind
ing treaty is necessary ... in order to solve conflicts of ju
risdiction. "17

To date, privacy protection legislation differs in scope of
coverage, data subjects and enforcement. For example, the
U.S. and Canadian Privacy Acts only compel public entities
to disclose information held on individuals, while all the
other countries with such regulations also compel disclosure
by private entities. While Norway, Denmark, Austria and

590 National Computer Conference, 1980

Luxembourg include legal persons in their privacy legisla
tion, the other countries with privacy legislation do not.
While some countries enforce their legislation through pri
vate agents at each data bank, others require state licensing
or an authorization. Thjs diversity leads to more costly data
processing for foreign data companies because they are re
quired to constantly investigate and comply with varied leg
islation. This will inhibit multinational data transport. In
addition, diverse legislation could also require transmission
only to those countries with reciprocal protection laws, as
in the Luxembourg Act. 18 The only way to alleviate these
problems is to establish ground rules for emerging interna
tional data networks through guidelines or treaties with the
goal of setting up "an international regime of well-defined,
preventive rules ... for the feeding, operation, and use of
international data networks to guarantee maximum safety
of the systems not only from a physical point of view but
also from an information quality point of view. "19

C. Arguments on for and against including "legal
persons" in privacy protection

1. For inclusion

The primary reason for privacy protection is to assure the
individual an opportunity to limit, inspect and correct per
sonal information recorded in any data bank. Thus, Swedish
legislation contains special controls over information on an
individual's political or religious views, whether they have
received social welfare or have been treated for alcoholism. 20

The concern is that privacy may be violated by accumulation
of information and dissemination where the individual does
not want it to gO.21 The proponents of inclusion argue that
this individual privacy right can only be preserved if privacy
legislation is extended to legal persons.

Luxembourg's new privacy protection legislation states
that inclusion is a matter of avoiding discrimination which
would result from treating individual and corporate financial
information differently:

"It is within the context of this new individual right that must
be placed the issue of the citizens protection area. The opinion
of the Commission is that a new discrimination must not be
created by refusing above listed rights to corporate bodies. This
would mean institutionalization of a gap. It is customary for
financial establishments to keep information on their customers
credit rating. In the event that an inaccurate information would
be stored in a banking establishment, the commercial firm which '
is the bank's customer must, as the case may be, have the right
to request correction of data whose inaccuracy has been ver
ified. Could this right to correction be refused to certain cate
gories of persons? The Commission does not think so. This is
why it approved the government draft which is widening the
scope of the law to natural persons and corporate bodies. "22

The French first considered inclusion of legal persons be
cause it would provide small firms with the opportunity to
find out what big firms knew about them: "Originally, both
business and government were favorable to this inclusion

... the French employer's association ... believed it would
allow firms to find out what data the government and other
state institutions held on them.' '23

Another reason for including legal persons which specif
ically addresses individual privacy is that in some cases the
interests of a natural person can be so intertwined with the
interest of a legal person that the natural person's rights can
only be fully protected if legal persons are also covered.24

For example, information concerning a small business' fi
nancial situation may reveal the personal financial situation
of its president. Also, there is a sense of unfairness in the
idea that an individual craftsperson is protected but if he
incorporates, he is not. 25

Beyond simply preserving privacy, the data protection leg
islation tends to control the political and economic side ef
fects of data transport. 26 Nations concerned with preserving
national sovereignty, developing their 0\yn data processing
industry, and controlling cultural influences have and will
consider privacy protection legislation, with the inclusion
of legal persons, as a means of protecting these interests.

Sovereignty and economic concerns focus on who controls
data flow. At present, data flow has a lopsided nature. Mul
tinational computer services and the telecommunication in
dustry are primarily located in one place, the United States.
Countries interested in developing their own domestic com
puter services face stiff foreign competition because im
porting information and services is less expensive than de
veloping local industry. Also, national sovereignty may be
threatened when foreign control of data exists because na
tions fear being cut off from such data. 27 Finally, this tech
nological and economic dependence by smaller countries
creates cultural conflicts over the influx of foreign media
data, in some cases causing rejection of technology or dis
ruption of social order. 28

Developing nations are also concerned that the multina
tionals centered in the U. S. create a serious unemployment
problem because data processing takes jobs from the mini
mally skilled workers in their countries. Any contrary ar
gument that the new industry creates jobs must be careful
to distinguish the new, skilled labor jobs created by multi
nationals providing countries with processed data from the
unskilled jobs lost through their replacement by mechani
zation.29

Another economic concern of developing nations is the
competition the foreign data industry has on their state
owned Postal, Telephone and Telegraph (PTT) administra
tions. The issue is that foreign private networks divert their
revenues.30

All the above economic and political concerns lead nations
to consider legislation to prevent these problems. Including
legal persons in privacy protection is one way to alleviate
some of the problems by regulating the foreign data pro
cessing industry to the point of either removing it altogether
from their country or severely limiting its influence.

2. Against inclusion

Focusing on the foremost reason for privacy legislation,
individual privacy, the proponents of excluding "legal per-

sons" from privacy protection argue that privacy by defi
nition cannot be an attribute of a "legal person" because
the nature of individual privacy interests differs from those
of business entities. Since privacy legislation concerns itself
primarily with the accumulation of personal social data, such
as religious and political affiliations, the reasons for protec
tion cannot extend to legal persons, whose data is financial
or proprietary. Also, legal persons' "privacy interest" is
already fully protected by confidentiality and trade secret
legislation.31

A special fear associated with privacy protection which
includes "legal persons" is that the skillful use of access
rights can distort competition.32 If the right of access is ex
tended to legal persons, it would mean that competitors
could find out what was on file and divulge proprietary in
formation. 33

To the countries which are against inclusion, more control
of "legal persons" would not encourage individual freedom
from intrusion, but would, on the contrary, be the first step
in stifling personal privacy by increasing state control of in
formation transmitted in or out of a nation by the private
sector,34 and would ultimately signify government control
of commerce and trade,35 resulting in lower productivity and
slower development of the data processing industry. 36

Another concern is the cost of privacy legislation that in
cludes legal persons. Because European countries have and
will, even in the face of the minimum COE treaty proposal,
enact inconsistent privacy protection laws, multinational
TDF companies must spend revenues to determine if their
existing and planned record-keeping procedures are lawful. 37

Also, it is argued that smaller countries have the most to
gain from unfettered movement of information across their
borders. Since none of the smaller countries is technologi
cally self-sufficient, those that restrict free flow will impede
their own economic growth.38

Finally, inclusion oflegal persons may create "Data Ha
vens" by excluding companies from countries with TDF reg
ulations. Those countries with no laws restricting the use of
data would acquire the data banks causing a loss of control
of domestic information and revenues in regulated coun
tries.39

D. U.S. position on "legal persons": economic and
foreign policy compel exclusion

1. U.S. privacy right and business entities

Because the right to privacy developed in the United
States excludes corporations, the U.S. would be supporting
a policy contrary to its own on privacy if it supported inclu
sion of "legal persons." The legal right to privacy was most
clearly articulated in Roe v. Wade, 410 U.S. 113 (1972):

" ... the Court has recognized that a right to personal privacy,
or a guarantee of certain areas or zones of privacy, does exist
under the Constitution These decisions make it clear that
only personal rights that can be deemed 'fundamental' or 'im
plicit in the concept of ordered liberty' ... (such as) activities

Legal Persons in Privacy Protection Legislation 591

relating to marriage, ... procreating ... contraception, ...
family relationships, ... and child rearing and education." 410
U.S., at 152-153.

In United States v. Morton Salt Co., 338 U.S. 632,652,
70 S.Ct. 357, 94 L.Ed. 401 (1950), the Supreme Court ruled
that corporations have no privacy right equal to individuals
and therefore could not resist an FTC subpoena on invasion
of privacy grounds:

"[C]orporations can claim no equality with individuals in the
enjoyment of a right to privacy. [Citations omitted]. They are
endowed with public attributes. They have a collective impact
upon society from which they derive the privilege of acting as
artificial entities."

The Privacy Act prohibits disclosure of personal records
by government agencies on "individuals," U.S. citizens or
aliens with permanent residence, except to that individual,
and does not provide business entities with the same pro
tection. 5 U.S.C. §552a. Business entities are covered by the
FOIA, but not under the "privacy" umbrella. The FOIA
requires any government agency to disclose to anyone in
formation held on natural and legal persons except where
disclosure would reveal trade secrets or confidential busi
ness information. 5 U.S.C. §552(b)(4). This exception to
disclosure has been interpreted to cover not only trade se
crets, but "any commercial or financial information ... ifits
disclosure is likely ... to cause substantial harm to the com
petitive . position of the person from whom the information
was obtained." National Parks & Conservation Assn. v.
Morton, 498 F.2d 765,770 (U.S.C.A., D.C. 1974).

Further, trade secrets and commercial or financial infor
mation which is privileged or confidential may not be dis
closed by any employee of the U.S. in trade negotiations
under the Federal Advisory Committee Act, 19 U.S.C.
2155(g)(1)(A), and disclosure of such information by any
government employee subjects him to a fine or imprison
ment. 18 U.S.c. §1905.

If the U.S. were to recommend inclusion of legal persons
in privacy protection, information would be available which
is now exempt from disclosure because of the harm disclo
sure would do to competition. This would contradict the fed
eral position as stated in the FOIA and Federal Advisory
Committee Act that business' trade secrets and confidential
information must not be disclosed, and would expand pri
vacy protection expressly limited to individuals in the Pri-··
vacy Act to include legal persons.

The U.S. has limited the scope of privacy protection leg
islation, by considering the use and nature of the information
and how that use and nature corresponds with the U.S. right
of privacy. Specific concerns, such as governmental intru
sion, which is prevented by the Privacy Act and the FOIA,
and financial records, which are available to individuals and
small companies which would be most harmed by a secret
blacklist, are addressed. But a broad, sweeping control of
information in order to protect the right of privacy does not
exist. If the U.S. is to be consistent with its domestic privacy
protection in its international recommendations, it must use

592 National Computer Conference, 1980

this sectional approach, examining the use and nature ofthe
information before recommending control over it.

Part of this recommendation, however, must be that legal
persons be excluded from privacy regulation to avoid per
mitting inspection of confidential business information harm
ful to competition.

2. U.S. foreign policy: free enterprise, private
participation and cooperation

The U.S. position found in legislation on foreign economic
policy further demonstrates that its support of inclusion of
legal persons in privacy legislation would be inappropriate.

Congressional policy on international development re
quires respect for individual civil and economic freedom. 22
U.S.C. §2151(a). Foreign policy goals must include:

"(3) the encouragement of development processes in which in
dividual, civil and economic rights are respected and enhanced;
and

(4) the integration of the developing countries into an open and
equitable internal economic system." 22 U .S.C. §2151(a)(3)(4).

Also, free enterprise is explicitly a part of the U. S. foreign
policy:

"(a) The Congress of the United States recognizes the vital role
of free enterprise in achieving rising levels of production and
standards of living essential to economic progress and devel
opment. Accordingly, it is declared to be the policy of the United
States to encourage the efforts of other countries to increase
the flow of international trade, to foster private initiative and
competition . .. to discourage monopolistic practices, to im
prove the technical efficiency of their industry, agriculture, and
commerce, and to strengthen free labor unions;' and to encour
age the contribution of United States enterprise toward eco
nomic strength of less developed friendly countries." 22 U .S.C.
§235I(a). (Emphasis added.)

By agreeing to include legal persons in privacy legislation
the U.S. would violate its articulated foreign policy goals
because it would thereby support the suppression of free
flow of trade and private enterprises.

E. U.S. recommendation: omit legal persons from privacy
protection

Clearly, the U.S. interest is in preserving the free flow of
data. The U.S. must also encourage a unified TDF policy
which considers all the issues, including the economics, sov
ereignty and independence, of other countries. In view of
U.S. domestic privacy legislation, which provides privacy
protection only for data categories posing great risks to in
dividual privacy, and its foreign policy, which encourages
free flow of data and free enterprise, the U.S. should urge
that legal persons be excluded from privacy protection.

FOOTNOTES

1. Donaghue and Longsworth, Transborder Data Flow, Paper pre
sented at Computer Security and Privacy Symposium, Scotts
dale, Arizona (1978) at 24, col. 2.

2. Internal Revenue Code: IRC §7701(a)(1).
3. 11 U .S.c. § 101 (30).
4. 5 U.S.C. §551 (2).
5. 5 U.S.C. §552a(2).
6. 12 U .S.c. §3401 (4).
7. Pantages, Europe Moves Toward Controlled Data Flow, Data

mation, Nov. 1, 1978, at 82, col. 1; Second Draft Guidelines
Governing the Protection of Privacy in Relation to Transborder
Data Flow of Personal Data, by OECD, Feb., 1979, at 8, per
mitting guidelines to include:

"Groups of persons, associations, corporations or any other
bodies whether or not such bodies possess legal personality. "
(Omitted in 3rd draft but quoted here to demonstrate a com
mon definition of "legal persons.")

8. Donaghue and Longsworth, supra at 24.
9. 5 U,S.c. §551(1), (2), §552.

10. Pantages, supra at 80, col. I.
11. 3.1 Council of Europe Resolution (74) 29 On the Protection of

Privacy of Individuals Vis-a-Vis Electronic Data Banks in the
Public Sector, which states:

" ... the adoption of common principles in this field can con
tribute towards a solution of these problems in the member
states and can help to prevent the creation of unjustified div
ergencies between the laws of the member states." Id., at 1.

12. Pantages, supra, at 80, col. 1.
13. Id., at 82, col. 1; Council of Europe Resolution, supra:

"For the purposes of this resolution, personal information
means information relating to individuals (physical
persons) ... " /d. at 1.

14. Pantages, supra, at 82, col. 1.
15. Second Draft Guidelines, OECD, supra, at 8.
16. Third Draft Guidelines, OECD, April 17, 1979, at 3.
17. Pantages, supra, at 81, col. 1.
18. Luxembourg Bill Regulating Personal Data Use in Data Pro

cessing, March, 1979 Chapter 2, sec. 1, art. 5(2); P. Hirsh, Eu
rope's Privacy Laws-Fear of Inconsistency, Datamation, Feb.,
1979, at 85, col. 3.

19. Hirsh, supra, at 85, col. 3, quoting Hans Peter Gassman, on the
architects of the OECD draft guidelines.

20. Swedish Data Bank Statute (1978:289) of May 11, 1973, §4.
21. Canadian Department of Communications and Department of

Justice, Privacy & Computers, Task Force Report, Ottawa, 1972
at 1, 14.

22. Luxembourg Bill, supra, Report at 8.
23. Transnational Data Report on New French Laws on Information

Processing and Freedom, at 3.

24. A.F.I.P.S. Panel on Transborder Data Flow, April 10, 1979
Notes of Meeting at 1.3(A).

25. R. Turn, Notes on Legal Persons, April, 1979, at 5.
26. E. J. Novotny, Economic Aspects of Transnational Data Flows,

Insert to Chapter 5, AFIPS TBDF Panel Report, May, 1979 at
1; France's Minister of Justice, Louis Joinet, emphasizes the
importance of trade aspects of TDF:

"Information is power and economic information is economic
power. Information has an economic value, and the ability to
store and process certain types of data may well give one
country political and technological advantage over other coun
tries. This, in turn, may lead to a loss of national sovereignty
through supranational data flows." Donaghue and Long
sworth, supra, at 23.

27. A.F.I.P.S. Panel on Transborder Data Flows, Overview ofTDF
Issues, W.O.3, May 1979, at 3-7; Novotny, supra, at 5.

Legal Persons in Privacy Protection Legislation 593

28. A.F.LP.S. Panel, W.O.3, supra, at 3; J. Eger, Transborder Data
Flow, Datamation, Nov. 15, 1978, at 50, col. 3.

29. F. Lamond, Europeans Blame Computers, Datamation, Nov.
1, 1978, at 107, col. 3; Novotny, supra, at 7.

30. Novotny, supra, at 5.
31. R. Turn, supra, quoting Joinet at 5.
32. Id.
33. Transnational Data Report on New French Law, supra, at 3.
34. Hirsh, supra, at 85, col. 3; Novotny, supra, at 2.
35. Donaghue and Longsworth, supra, at 24.
36. Datamation, Canada's Economic Concerns, Nov. 1, 1978, at 67,

col. 3. Duties on foreign computer equipment bought by Ca
nadian companies make domestic development of data pro
cessing expertise too expensive, so the Canadian computer in
dustry is against government protection intended to limit U.S.
competition.

37. Hirsh, supra, at 85, col. 3.
38. Id., at 87, col. 2.
39. Eger, Transborder Data Flow, Datamation, Nov. 1, 1978, at 52,

col. 2.

Simulation

Simulation is one of the oldest application areas for computers .. Traditional users of sim
ulation include the aerospace, military/defense, process control, industrial control, and
energy industries. Newer users of simulation include corporate management, private and
governmental planning agencies, and small businessmen. The NCC sessions describe ad
vances in traditional areas such as process control as well as new applications such as the
modeling of computer software, decision support systems for business management, fu
tures planning, and small business decisionmaking. A particularly significant growth area
is the use of simulation to explore the effects of decisions and alternative futures. This
area is represented by sessions on decision support systems, cross-impact models, and
small business applications.

The simulation of complex engineering systems has long been a major application of
computers. Tremendous activity has occurred in flight simulation, the.analysis of aerospace
and military systems, the modeling of chemical and physical processes, and the design of
power plants, reactors, and other large, complex systems. This activity is continuing and
is being affected by new computing techniques, new computer languages, and new software
packages. The session on "Advances in Process Control" investigates the effects of new
hardware, software, and methodology on the process control industry. The paper by Gor
don and Robinson on "Using preliminary Ada in a process control application" describes
the use of the U.S. Department of Defense standard language ADA in process control.
The paper by Sagues on "Computer aided heat penetration tests for the food canning
industry" describes the use of small minicomputers in test automation.

Meanwhile, computers themselves have created new modeling problems. The modeling
of computer performance is a well established application area. The modeling of computer
software, a newer area of interest, is being explored in a panel session entitled "Software
Models: History, Current Status, and Future Directions." Topics of concern will include
reliability and quality assurance models, model validation, and the needs of the software
community.

Among the more intriguing applications of simulation is its use in predicting the future
course of events or at least exploring the effects of alternative decisions or alternative time
histories. This use becomes particularly important in a time of rapid change and great
uncertainty. Decision support systems provide top management with the ability to explore
the effects of decisions with a reasonable expenditure of time and money. User-oriented
planning languages allow rapid formulation of problems in a comprehensible form. The
panel session on "Decision Support Systems" describes the effective use of decision sup
port systems, the advantages of modern planning languages, and the importance of decision
support systems in data processing organizations.

The session entitled "Simulation-A Planning Tool" describes the use of cross-impact
models in long-range planning. Cross-impact models are based on the effects of events on
each other-that is, whether the occurrence of a particular event increases or decreases
the probability of the occurrence of other events and by how much. The most fully
developed cross-impact model is the INTERAX world model developed by the University
of Southern California's Center for Futures Research. This session will include an overview
of cross-impact models and a description of the INTERAX model, emphasizing its goals.
methods, and uses. The paper by Rosenthal entitled "A cross-impact simulation forecast
of the data processing industry" describes the use of the INTERAX model in simulating
the evolution of the emerging data processing industry.

New and less expensive computers allow the use of simulation in areas where it was
formerly too expensive. Small business is a primary example, since minicomputers and
microcomputers now provide low-cost computing power in an area with the same basic
problems as larger businesses. Typical applications of simulation will be explored in a
session entitled "Simulation in Small Business." Topics to be explored include strategic
systems modeling, investment analysis, business forecasting, and the presentation and
analysis of simulation results.

595

Lance A. Leventhal·
Area Director

Using preliminary Ada in a process control application

by M. E. GORDON and W. B. ROBINSON
The Foxboro Company
Foxboro, Massachusetts

INTRODUCTION

This section contains background information on the Ada
language definition process, an introduction to features of
Ada, and an overview of the Model Controller Operating
System (MCOS), which was coded in Ada. More detailed
information on Ada can be found in The Ada Language
Reference Manual,) The Ada Language Rationale,2 and
Programming with Ada. 3

An Ada introduction

Background

Ada is the programming language being developed under
the auspices of the Department of Defense. The language
development has extended over a period of several years,
from requirements specification (Strawman, Woodenman,
Tinman, Ironman, Steelman) to language definition. Accom
panying the language development is the specification of a
language support environment (Sandman, Pebbleman,
Stoneman), which is progressing closely after Ada itself.

Ada is being considered as a standard language for process
control by the Long Term Programming Languages (L TPL)
Committee of the Purdue Workshop and the European L TPL
Committee. Both ANSI and ISO standardization efforts are
being initiated.

Currently in a formative stage, Ada is undergoing revisions
in response to a Test and Evaluation (T&E) of the language.
The programming project described in this paper was un
dertaken as part of the T &E review, and is based on the
preliminary Ada language definition of June 1979. Since
there are, as yet, no Ada compilers available, the evaluation
is static. However, the Ada features described below are
intrinsic to the conceptual model of the language and are
unlikely to change.

This section will discuss how Ada language features sup
port the modern language concepts of: (1) data abstraction,
(2) modularity, (3) encapsulation, (4) concurrent program
ming, (5) machine independence, and (6) orthogonality and
extensibility.

In later sections, it will be shown how such language fea
tures may be applied to a typical programming problem in
a process control systems application.

597

Data abstraction

Data abstraction is supported in Ada by programmer-de
finable data types. Type declarations collect knowledge of
common properties of objects in one place, thereby facili
tating software maintenance. The principal advantage is
greater software reliability, because the programmer's code
is closer to the expression and solution of the applications
problem.

Ada's strong typing is based on name equivalence, rather
than structural equivalence. No implicit type conversions
are allowed. Explicit conversions can be used in some cases,
for instance, in converting numeric types. In other cases,
Ada provides the UNSAFE_CONVERSION function as an
escape hatch.

For programmers accustomed to creating variables on-the
fly (as in FORTRAN), Ada's requirements for declaration
of variables and types may seem overly restrictive at first.
With proper use of Ada's data facilities, however, the ben
efits far outweigh the constraints.

Modularity and program structure

Modularity is supported not only by traditional subpro
grams (procedures and functions), but also by Ada modules
(packages and tasks). Although the overall structure of an
Ada program follows the conventional block structure of
ALGOL 60, it differs in that modules may be separately com
piled and arbitrarily included at various levels of the program
hierarchy. Ada offers control over visibility and scope
through restricted clauses, which may override inheritance
rules of module nesting. Importing is done by program unit
name, not by object name.

Encapsulation

Package modules are the cornerstone of the language.
Through them, encapsulation of data with their associated
operations is possible. Other uses of packages are grouping
related procedures together and forming a collection of re
lated types and data objects.

Packages consist of a specification part and an optional
package body. The specification part of a package contains

598 National Computer Conference, 1980

the logical interface (e.g., type declarations, procedure spec
ifications) which other modules and subprograms mayac
cess. The package body contains the implementation of the
operations specified in the visible part. The package body
is a mechanism for information-hiding, that is, concealing
implementation details from the users of the package.

Ada's separate (but not independent) compilation rein
forces the realization of encapsulation via modularization.
Compilation checks between compilation units are the same
as those within a unit. Therefore, it is not necessary to wait
until link time to discover most interface errors. This check
ing will be accomplished through a library management sys
tem, which is a requirement of the Ada support environment.

Concurrent programming

Tasks, similar to packages in format, are the means for
implementing concurrent processes. Unique to the Ada task
ing mechanism is the rendezvous concept, which serves the
dual functions of synchronization and communication in a
parallel processing environment. Three controversial fea
tures related to Ada's tasking are scheduling, interrupt han
dling, and access to shared data. They are likely to change
in the final language definition.

~achine independence

Machine independence is the ultimate goal of a high-level
language such as Ada. Ada language features, as described
above, allow the systems programmer and, later, the main
tenance programmer to operate at a level which is closer to
the system specification than is possible with older languages
like FORTRAN (developed in 1954). Actual machine-de
pendent code may be kept to a minimum. The result is a
more reliable, robust software system that is easier to de
velop a.nd maintain, consistent with the conventional wis
dom of software engineering.

Orthogonality and extensibility

Ada offers language primitives and rules for combining
them (orthogonality4) to build specialized structures and
functions. This principle of orthogonality and the related
principle of extensibility are demonstrated by the I/O pack
ages, which are written in Ada. Although lacking some key
features (e.g., variable-length strings, bit types), Ada pro
vides the tools to create them. This is a critical requirement
for a systems implementation language.

Such freedom in a language exacts a price, that price being
the responsibility for a programming discipline. When prop
erly used, Ada can be a powerful tool for both systems and
applications software development. However, without the
appropriate programming methodology, the benefits of Ada
are easily lost. For example, arbitrary use of the exit state
ment to create unstructured loop constructs would be a mis
use of the language.

In the following sections, it will be shown how Ada may
be applied properly to an embedded operating system for
process control. In particular, the remaining discussion will
illustrate how Ada influences all stages of the software de
velopment process, from initial design to final implementa
tion.

The model controller operating system

The model controller is a system that allows digital im
plementation of multiloop control systems based on tradi
tional (analog) control diagrams. It was conceived as a typ
ical example of a small, real-time system providing these
main features: (1) communications interface to host com
puters, (2) control algorithms and control database based on
block diagrams, and (3) interface to process input/output
components. Each of these is discussed in detail later.

The Model Controller Operating System (MCOS) supports
these features with the multi-tasking facilities provided by
Ada. Figure 1 shows a simplified sketch of the model con
troller.

One approach to reliability in digital control systems is
redundancy. In the model controller, this is reflected in the
dual-controller, dual-port, dual-link architecture.· In the
event of a failure of any main system component, the backup
component is automatically activated. The process database
is regularly (every control cycle) transferred to the backup,
or tracking, controller via the shared data buffer. With ap
propriate checks against contaminating its database, the
tracking controller is prepared to take control with a very
recent database copy. The two controllers also share access
to the process I/O bus. The hardware redundancy is com
plemented by a software redundancy: both controllers have
their own copy of the MCOS software, which will be de
scribed in the following sections.

The communications link allows host computers to con
figure or to change the configuration of the control database,
to read or write particular values in the database, and to
monitor or change the status of each of the controllers.

The process I/O bus, which can be accessed by only one
controller at a time, allows the controllers to read or write
analog and digital input/output devices.

COMMUNICATIONS LINK TO HOST COMPUTERS

PORT PORT
1 1

H SHARED 1-DATA
MAIN BUFFER BACKUP

CONTROLLER CONTROLLER

PORT I PO~lT
2

SHARED PROCESS 1/0 BUS

REDUNDANT COMMUNICATIONS LINK

Figure I-Model controller.

U sing Preliminary Ada in a Process Control Application 599

Overview of the operation sequence

At every quarter second clock interrupt, each controller
begins by checking its mode. Typically one is on control,
the other tracking. The lead controller processes all control
blocks in the following manner: All process I/O compo
nents are read, conditioned, and stored in a table.

For each block: (1) appropriate parameters (such as meas
urement or set point) are updated; (2) the algorithm for each
block is executed; (3) if needed, an output is sent from the
block to the appropriate component.

After all blocks are processed, the database is written into
the buffer.

The tracking controller copies the data buffer into its own
database.

At any time, the system might receive an interrupt on the
communications channel. Typical communications mes
sages supported are: (1) secure/release, (2) read/write da
tabase, and (3) read/write controller status.

When neither the control processing nor the communi
cations task is active, a security task executes, monitoring
the health of the system.

SYSTEM DESIGN WITH ADA

This section contains discussions of some of the design
decisions made and relates them to the facilities of Ada for
modularization and for representation of data. The design
issues are: (1) modularity and program structure, (2) data
structures 'and representations, (3) exception handling, (4)
scheduling, and (5) interrupt handling.

Modularity and program structure

The overall program structure of the Model Controller
Operating System (MCOS) is illustrated in Figure 2a. The
main procedure contains the module specifications of the
three primary tasks: communications, executive, and se
curity. The function of the main procedure is to initiate the
three tasks. The code for the main procedure is straight for
ward, as shown in Figure 2b.

Each task body is a separate compilation unit. By sepa
rating the task body from its specification, implementation
details Imay be changed without necessitating a recompila
tion of the main procedure (assuming the interface remains
the same). Ada's separate compilation facility was used ex
tensively in the design .of MCOS, to take advantage of the
logical interface-physical implementation separation. This

EXECUTIVE COMMUNICATIONS SECURITY
TASK TASK TASK

Figure 2a-Main procedure contains specifications of the three primary tasks.

PROCEDURE MAIN.!§.

END MAIN;

TASK COMMUNICATIONS;

TASK EXECUTIVE;

TASK SECURITY;

mKBODY COMMUNICATIONS IS SEPARATE;
~§QQY EXECUTIVE IS SEPARATE;
~BODY SECURITY IS SEPARATE;

INITIATE COMMUNICATIONS, EXECUTIVE, SECURITY;

Figure 2b-Main procedure of MCOS.

facility supports top-down design in that the logical inter
faces may be defined first, with the implementation stubs
developed later. Another advantage of the separation prin
ciple is that it streamlines the code, improving the readability
of Ada program units.

Within each task body, the specifications for its internal
packages are local, while their bodies are separate. The tasks
and their primary functions are: (1) communications task:
handle port interrupts; (2) executive task: process control
blocks (if main controller) or track the database (if backup
controller); and (3) security task: perform various software
checks during any idle time.

The communications and executive tasks are discussed
more fully in later sections.

The final two main modules of MCOS are packages. The
database package and status_manager package are separate
compilation units in the MeOS program library, and are in
dependent of the overall block structure. The purpose of the
status_manager package is to encapsulate global type and
data declarations with their associated operations. The da
tabase package, on the other hand, contains related types
and objects for global use and a synchronizing semaphore
task. The two packages are' self-sufficient in that they see
no other units in the program library. Other progr~m units
which require access to the global data make it visible by
including the package name in a visibility list. Therefore,
importing of global data is done on a module basis, rather
than on a single variable basis. The global packages may be
imported at any level of the block structure hierarchy.

As demonstrated in Figure 3c, good programming practice
dictates explicit import lists of objects to be listed in com
ments. Without such information, the code is virtually un
readable, since it is not apparent which data objects are being
referenced. Rather than burden the programmer (who may
be inconsistent! and/or error-prone), such information could
be generated automatically by the compiler or text editor.

It must be noted that the MCOS program structure pre
sented here was achieved through several iterations. Be
cause of the novel interplay between traditional block struc
ture and separately compiled modules, classic rules-of
thumb for structured design were not directly applicable.
Ada is a language without a history and, consequently, with-

600 National Computer Conference, 1980

out a refined programming methodology. Proper use of Ada
features was discovered partly through trial-and-error. A
good program structure for MCOS was achieved by follow
ing certain guidelines: (1) control visibility as much as pos
sible by using traditional block structure; (2) within the gen
eral block structure of the program, textually include only
the module specifications; use stubs for module bodies,
which should be developed and compiled separately; (3) re
serve use of separately compiled modules for global library
packages; (4) whenever feasible, compile the specification
part and the implementation part separately to reduce re
compilation dependencies.

Data structures and representations

To quote Wirth,5 "The choice of (abstract) representation
of data is often a fairly difficult one, and it is not uniquely
determined by the facilities available. It must always be
taken in light of the operations to be performed on the data."
In our model system, there are several instances where· the
choice of abstract representation was complicated by the
fact that two different tasks required access to the same data
objects. In another instance, to be described later, the strong
type restraints of Ada had to be circumvented to allow a
more flexible approach to handling raw data for input and
output.

The largest data object, the array of control blocks, is
considered in detail below. The design of data structures
proceeded in parallel with the overall module design.

Shared data

The critical issue here is the need to provide adequate pro
tection of the database, which can be accessed by both the
communications task and the control executive task.

In MCOS, total encapsulation of the database was rejected
for two reasons: first and foremost, the number of trans
actions using the database is prohibitively large, and using
specialized interfaces would degrade performance. In par
ticular, the communications task has a 10 millisecond time
out period and thus cannot be delayed too long by control
processing. Secondly, a small dedicated system does not
require the level of protection encapSUlation offers. The
communications task performs sufficient validity checks to
protect the database in transactions with host computers.

Although encapSUlation of the database was rejected,
mutually exclusive access to the database must be provided
so that consistent data is used by the tasks sharing access.
The simplest solution, and the one finally used, employs
Ada's generic semaphore task to create a critical region,
during which only one task can access the database. It may
be that this solution is too inefficient, in which case an equiv
alent solution would have to be implemented in machine
code.

By way of contrast, the package status_manager, de
scribed below, is an example of the use of the package struc
ture for encapsulating data objects and the operations per-

formed on them. The brief duration of the exclusive read/
write access to the status registers makes encapsulation fea
sible.

Physical representations of data objects

Since the object machine for the Model Controller Op
erating System is predicated as having a small memory,
space issues are important. Often a record has several com
ponents. To allow the compiler to assign the storage for these
may use more storage than is desirable. Ada provides several

, representation facilities for records l (Chapter 13): One can
specify the number of bits to be used representing objects
of a given type, specify that the compiler is to use packing,
or specify actual word and bit layouts for components of a
record. All of these facilities were used in the MCOS ex
ercise.

Exception handling

In any real-time system, security and robustness are es
sential. Exceptional conditions, such as overflow during a
calculation, should not cause a system crash, but must be
handled in a meaningful way so the system can recover and
continue processing. Ada provides an exception handling
facility which appears to be adequate, although sometimes
cumbersome 1(11). Examples of the use of exception handlers
are given in later sections.

Scheduling

The strategy for scheduling the tasks and procedures in
a real-time system must be carefully thought out and care
fully implemented. In the MCOS, the communications task
must execute immediately upon receipt of an interrupt.
Other scheduling requirements are somewhat "softer."
However, it is in the area of scheduling that Ada seems to
have the greatest weakness. According to the LRMI (9.8),
"The language does not specify when a scheduling decision
is made; for example, a round-robin time-sliced strategy is
acceptable." There is a language-defined priority attribute
for tasks which can be used in scheduling decisions. How
ever, there seems to be little in the language to facilitate the
design and implementation of a scheduling algorithm.

MCOS requires a scheduler with the foilowing properties:
(1) the scheduler is to be invoked when a new task enters
the ready queue, in particular when an entry call or interrupt
occurs; (2) when the scheduler is invoked, ready queues are
examined and tasks with the higher priorities are executed
first.

Interrupt Handling

Interrupt handling is another area where Ada, as currently
defined, falls far short of the mark. This is a critical area for
real-time applications, such as process control, in which cer-

Using Preliminary Ada in a Process Control Application 601

tain hardware interrupts demand immediate, and uninter
rupted, service. In MCOS, for example, a communications
interrupt requires that the message be processed and a reply
sent within 10 msec, otherwise a timeout occurs, putting the
controller on standby. Unfortunately, there is no way to
guarantee dedicated resources to a high-priority interrupt in
Ada.

Ada does not distinguish between hardware interrupts and
software signaling between tasks. An interrupt is mapped
onto a rendezvous entry, via a representation specification.
Yet, there is no way to indicate the urgency of an interrupt
on the entry queue. Task priorities only determine which of
several tasks waiting on the ready queue will be. serviced
next. However, entry queues are handled strictly on a first
in, first-out basis.

The Ada language design team has recognized the inad
equacy of the current interrupt handling mechanism. It is
expected that the problem will be rectified in the final lan
guage definition (June 1980). Therefore, in the MCOS pro
gramming exercise, the communications interrupt was coded
in Ada for illustration purposes, with no assertion of cor
rectness.

ADA IMPLEMENTATION OF MCOS

This section provides a more detailed view of some of the
issues that were raised earlier. In particular, using Ada in
the actual implementation of MCOS is discussed with regard
t'? the database, control processing, and communications
processing.

The database

Control blocks

The primary function of the model controller is performed
through the control blocks and their corresponding algo
rithms. In a typical process control application, several types
of control algorithms, such as proportional-integral-deriva
tive (pid), lead-lag (llag) , etc., would be used. MCOS has
the pid, Hag, nonlinear (nonl), and digital input (din) algo
rithms as a suitable cross-section. Each system, however,
can have 'up to 32 control blocks, of which an arbitrary num
ber can be pid, an arbitrary number can be llag, and so on.

In a particular control scheme, blocks can be intercon
nected, can obtain inputs from process 110 devices, and can
generate outputs for process 110 devices. A sample config
uration is shown. in Figure 3a. Because of this intercon
nectability, blocks are processed in sequence. In general, a
block will obtain inputs only from blocks that have been
processed before it. This ordering stems from the traditional
digital implementation of continuous analog control.

A standard assembly language or FORTRAN implemen
tation of such a system would have to treat the 32 blocks
as a massive array of words of undifferentiated type, and
the layout of parameters within different block types would
be contained in an external document, presumably a system

Figure 3a-A sample control scheme.

specification. Hence, the meaning of a particular word in the
database would be obscured and opportunities for errors by
both original writers and later maintainers is increased.

With the tools of Ada or any other sufficiently typed lan
guage, such a situation can be avoided, and the form and
meaning of the database items can be given explicitly in the
program itself. Variant records were chosen to represent the
control blocks. (A variant record is a record with choice of
alternative substructures based on the value of a discrimi
nant component! (3.7).). Two rules which affect the utility
of variant records are: the discriminant can be changed only
during a complete record assignment; and the same com
ponent name cannot be used in different variant parts. Both
rules caused some difficulties, as will be discussed later.

An enumeration list of block types is the discriminant com
ponent for the variant record type. This has the declaration:

type block.-name is (nuILblock, pid, nonl, din, Hag);

The other components common to all blocks were the block
status word, the name fields, the options word, and the block
parameter. These required separate type declarations and
representation specifications as well. In specifying the var
iants, it was necessary to identify common types that apply
to the components of the different blocks. The four major
types were value, logical, value-pointer, and logical-pointer.
Each is a record in its own right, with a representation spec
ifying one word of storage. For instance,

type value is
record

fronLpointer:BOOLEAN;
value_is_bad:BOOLEAN;
counts: normalized_counts;

end record;
for value use

record
fronLpointer: at O*WORD range O .. 0;
valuejs_bad: at O*WORD range 2 .. 2;
counts: at O*WORD range 3 .. 15;

end record;

Examples of components in a pid block which are of type
value are the measurement, set point, and output. On the
other hand, in the din block, the measurement and output
are of biLpattern type, and there is no set point. Hence it
was necessary to place these components in the variant part
of the control block.

602 National Computer Conference, 1980

The final problem was to choose a naming scheme that
allowed easy use of the control blocks in the algorithms.
Separately named components would have led to tedious
implementation of the algorithms. Instead, like parameters
were grouped into arrays by type, with each array indexed
by an appropriate enumeration type. For instance,

type pidlist is (meas, remote_sp, feedback, halim, lalim,
hdlim, ldlim, holim, lolim, bias, pband, rate, integral,
setpoint, output, absdb, devdb, outdb, kl,
filtered_me as , integraL balance);

type llaglist is (meas. dynamic_gain, time I , bias, output);

Note that these lists overload literals, such as meas, and
hence, when ambiguities arise, care must be taken in using
them, for instance by writing "pidJist(meas)" explicitly.

Finally the data object block is declared in the database
package by ,

block: array 0 .. 32) of controLblock;

While the development of these types proceeded in top-down
fashion, Ada has the unfortunate and annoying restriction
that the type declarations must be presented in bottom-up
order. This is a hindrance to both writers and readers of a
program.

Status manager package

MCOS contains status registers to indicate certain con
ditions of the system hardware/software. The logical rep
resentation of the status flags and the specifications of the
available operations are encapsulated in the visible part of
the status_manager package. The physical representation of
the registers (Boolean arrays), as well as the implementation
of their corresponding access routines, are concealed in the
package body. The status_manager package is global to
MCOS. Its visible part provides a simple interface for ac
cessing the status registers.

Within the package body, the implementation of the var
ious access routines differ in the level of protection afforded
to the status registers. Protection mechanisms are provided
only as dictated by the functional requirements. For ex
ample, since writing to the controller status register is ac
complished via hardware command registers, no extra pro
tection is needed. On the other hand, since the unit status
register is directly read/write accessible, a high degree of
protection is desirable. A server task provides this protec
tion. Here the rendezvous is used to prevent simultaneous
access to the unit status register by parallel tasks:

package body status_manager is
. task body protecLstatus_reg is

begin
loop

accept seLstatus (flag: uniLstaLiisLchange;
new_stat: Boolean) do

uniLstaLreg (flag) : = new_stat;

end seLstatus;
end loop;

end protecLstatus_reg;
begin

initiate protecLstatus_reg;
end status_manager;

Note that the initiate statement of the server task is placed
in a begin block at the bottom of the package body. Task
initiation occurs when the package body is elaborated at run
time.

Since Ada does not prevent simultaneous access to shared
data by parallel tasks, it is the programmer's responsibility
to ensure the proper level of protection by controlling access
via the rendezvous or semaphore. Ada provides protective
mechanisms, but does not enforce their use. For system re
liability in a parallel processing environment, therefore, good
programming discipline is required. Without it; system se
curity is threatened.

Control processing

The controller executive

The controller executive is a task that executes in parallel
with the communications task. The executive accepts a clock
interrupt to begin the control cycle and determines the con
troller's current mode (e.g., standby, control, etc.). A con
troller that is tracking reads the database buffer. A controller
in standby simply exits. When the controller is in control
mode or initializing mode, it runs a sample control algorithm
and compares the output to a known result. If this checks,
it proceeds to control block processing. Otherwise it takes
itself off control and exits. The executive code is given in
Figure 3b.

The control package

The procedure do_controLprocessing is in the module
controLpackage and is called from the task executive. It
handles block initialization and regular control processing
in a uniform manner. Since blocks can be taken off control
by a host computer, this must be checked by reading the
appropriate block status bit. The control package is hierar
chical in organization since no parallel processing occurs
within it.

Two difficulties encountered in control processing in
volved type conversions and exception handling. We discuss
these in detail below.

Process I/O components

In the MCOS there are 100 input/output components, each
of which can be one of several types. The first attempt at
representing the components used an array of variant rec
ords. However, physical limitations required using the iden-

U sing Preliminary Ada in a Process Control Application 603

RESTRICTED (MAIN, STATUS_MANAGER)
iEPARATE TASK OOQY EXECUTIVE~
'SE MAIN, STATUS_MANAGER;

- EXECUTIVE HAS THE FOLLOWING IMPORT LIST OF OBJECTS.
- READ BUFFER AND WRITE_BUFFER ARE IMPORTED FROM DATA_BUFFER_MANAGER
- SET STATUS AND THE LITERALS OK AND COMP _CHK_BAD ARE IMPORTED
- FROM THE STATUS_MANAGER.

TYPE PROCESSOR_MODE ~ (~~~~~~~:OogE~; STANDBY _MODE,INIT _MODE,

SUBTYPE ZERO_ONE_OR_ TWO.!! INTEGER RANGE O •. 2;

~ CLOCK_INTERRUPT;

IN IT _COUNT: ZERO_ONE_OR_ TWO;
CONTROLLER_MODE: PROCESSOR_MODE: = STANDBY _MODE;

~Ai~ED::s~-!~r6~~o~~~~~T~~ACCESS TO THE DATA BUFFER,
- WHICH IS USED TO TRANSFER THE DATA BASE FROM THE "ON"
- CONTROLLER TO THE TRACKING CONTROLLER.

ENTRY READ GRANT, WRITE GRANT; -HARDWARE INTERRUPTS
'E'i\iTRY READ-BUFFER; -CALLED BY THE TRACKING CONTROLLER
EriiTFiY WRITE BUFFER; - CALLED BY THE "ON" CONTROLLER

END DATA_BUFFER_MANAGER;

~CONTROL_PACKAGE]i
FUNCTION SAMPLE PID TEST OK RETURN BOOLEAN;
PROCEDiThE DO_CONTROL_PROCESSING (lNITIALIZATIONS_REQUIRED:

IN OUT ZERO_ONE_OR_TWO);
PROCEDURE MODE_CHECK(MODE: IN OUT PROCESSOR_MODE;

INIT _COUNT: m ZERO_ONE_OR_ TWO);

- THESE ARE THE THREE VISIBLE ENTRY POINTS INTO THE CONTROL
- PROCESSING PACKAGE. THESE SUBROUTINES ARE CALLED FROM THE TASK
- EXECUTIVE AND FROM NO OTHER.
Em;
FOR HALF _SECOND_CLOCK USE ~ 16:ffc;

PACKAGE BODY CONTROL_PACKAGE ~ SEPARATE;

~BODY DATA_BUFFER_MANAGER !§.,SEPARATE;

BEGIN
IrilfCcOUNT:=2; -ALL BLOCKS ARE INITIALIZED TWICE

-AT STARTUP

END LOOP;

~ CLOCK_INTERRUPT;
SET _WATCHDOG_ TIMER; -THIS REQUIRES ASSEMBLER LANGUAGE CODE
MODE_CHECK (CONTROLLER_MODE,INIT_COUNT);
CASE CONTROLLER MODE OF
--wHEN TRACKING -MODE ;;;::;;
~D_BUFFER;
WHEN STANDBY MODE=>

NULL; -
WHEN INIT _MODE:CONTROL_MODE =>

!£ SAMPLE_PID_ TEST _OK THEN
DO_CONTROL_PROCESSTfiiG1TNIT _COUNT);
IF IN IT COUNT = 0 THEN
""WRITE-_BUFFER; --
END IF;

ELSESE'CSTATUS (OK, FALSE);
SET_STATUS (COMP _CHK_BAD, TRUE);

END IF;
END CASE;-

EXCEPTION - A GENERAL EXCEPTION HANDLER TO SET THE CONTROLLER
- TO STANDBY IF AN ERROR IS PROPAGATED FROM A
- LOWER LEVEL.

WHEN OTHERS =>
---SET:SfATUS (OK, FALSE);

CONTROLLER_MODE:=STANDBY _MODE;
END~;

Figure 3b-Executive task body.

tification field (id) as a flag to indicate absence of an input.
This is incompatible with the use of the id as a discriminant.
Hence, the use of variant records was rejected.

The solution adopted was to treat each 110 component as
a (non-variant) record with two fields:

type pio_data is
record

id: pio_type;
twelve_bits: boolean_array 0 .. 12);

end record;

Now the id field can be revised independently of the
. twelve bit value. Moreover, in the case of the digital com-

ponents, slice assignments can be used to get the information
into the appropriate block components. But what happens
when the twelve bits must be treated as an integer? Here the
package UNSAFE_PROGRAMMING comes into play. It
provides a generic facility for converting between otherwise
incompatible types; for instance, for converting an object
of type pio_data to an INTEGER occupying a 16-bit word.

The following representation ensures that each pio_data
value occupies one word.

for type pio_data use
record

id: at O*WORD range 0 .. 3;
twelve_bits: at O*WORD range 4 .. 15;

end record;

Now UNSAFE_CONVERSION can be used to translate
the single word of pio_data type to a single word of IN
TEGER type. This requires the instantiation/s function
data_to_int is new UNSAFE_CONVERSION (pio_data;
INTEGER); temp_data: pio_data; followed by the conver
sion statements temp_data (no_data, pio_data.
twelve_bits); raw _count: = data_to_int (temp_data);

Numeric computation and error handling

During the processing of the control blocks, some of the
algorithms require numeric computations. Because of the
real-time nature of the controller, any error conditions that
could arise must be handled in such a way that the system
does not halt. This section contains a discussion of the error
handlers used in designing the MCOS algorithm set.

Suppose we have three variables given by the deClaration

x, Y, Z: INTEGER range 0.04000;

followed by three assignment statements, where it is as
sumed that the expressions on the right-hand side yield IN
TEGER values:

begin;
X: = expression_I;
Y: = expression_2;

f21 Z: = expression_3;
end;

If one of the expressions has a valid INTEGER value out
side the range 0 .. 4000, 'the RANGE_ERROR condition is
raised. At this point the program checks whether a handler
has been included within the block. If so, the action specified
in the handler is taken. If not, the search for a handler con
tinues in the next outer scope. In the scope given even if
we include an exception handler, the program will resume
execution not at the next statement following the one raising
the exception, but at the statement following the end of the
block. Thus, in general, it is not possible to resume execution
from the point of error .

In some problems, such as signal conditioning, one wishes

604 National Computer Conference, 1980

to clamp the value that is out of range. In that case, the
following seems cleanest for eliminating the RANGE_ERROR
exception.

X:= MAX (MIN (expression_l,4000), 0);
Y: = MAX (MIN (expression_2,4000), 0);
Z: = MAX (MIN (expression_3,4000), 0);

However, this will be valid only so long as the expressions
on the right are valid INTEGER values. If one of them is
not, an OVERFLOW or a DIVIDE_ERROR exception oc
curs in the expression evaluation. DIVIDE_ERROR can be
avoided by testing the denominator beforehand. This leaves
but two possibilities for OVERFLOW: (1) write the expres
sion as a function within which error handlers are imple
mented; or (2) enclose each statement in a block with an
exception handler, as in this block:

begin
X: = expression_I;
exception
- -no matter what goes wrong, clamp
when OVERFLOW = >
X: = 4000;

end;
-etc-

Both of the techniques were useful. In some circumstances
it was possible to determine a pnon that only
RANGE_ERROR could occur and then the explicit clamp
ing was used. In other cases, the special scope was inserted
to localize the error handling.

Communications processing

The model controller may receive communications inter
rupts at any time from either port. In MCOS, the commu
nications task functions at the highest priority level to serv
ice such interrupts. As discussed in a previous section, the
Ada mechanism for interrupt handling is inadequate, and is
in the process of being revised by the language design team.
By handling the communications interrupts in preliminary
Ada, there is no way to guarantee that they will receive the
immediate and dedicated attention that is demanded.

In addition to handling port interrupts, the communica
tions task consists of the following units: (0
message_buffer _manager package encapsulates the input
and output buffers together with the access routine, mes
sage_handler; (2) message_handler routine decodes the in
coming message and calls the appropriate subroutine to proc
ess the message and send the reply; (3) erroccounter_manager
package contains the hardware registers (which record the
occurrence of transmission errors), and corresponding soft
ware access routines.

Hardware dependencies

The communications process is, perhaps, the most diffi
cult to design and program because of the many direct con-

nections between software and hardware. There are certain
circumstances which require a machine code insertion in the
Ada program to ,provide a high-level interface between the
hardware and the rest of the software implementation. One
advantage to Ada is that it permits such machine-dependent
code to interface with the high-level code, isolating and
minimizing the degree of machine dependencies. For ex
ample, a machine code routine is required to reset the watch
dog timer to avoid a timeout.

Decoding messages

The communications messages which are implemented in
MCOS are grouped into three categories: station messages,
task messages, and process 110 messages. MCOS responds
to, messages received from the host computer, but does not
initiate them. Station messages involve retrieving status in
formation about the controller, and getting/resetting trans
mission error counters. Task messages allow the host to
switch the controller into tracking or standby modes. Pro
cess 110 messages get/set values in the database of control
blocks.

Each message has a specific command code which indi
cates the content of the message. The command codes are
implemented by a representation specification for elements
of an enumeration type, where elements of the type are as
signed internal codes corresponding to values of command
codes, as shown in Figures 3c and 3d. Ada supports the
principle of separation of logical properties from physical
properties. However, in the case of an enumeration type,
the ordering of elements in the logical specification must
correspond to the ascending numerical values assigned in
the representation specification. Yet, despite this depend
ency, Ada enforces a textual separation in that all associated
representation specifications must follow the logical speci
fications in the declarative part.

The incoming message buffer is an array of bytes. The first
part of the message containing the command code must be
decoded before the rest of the message can be processed.
The decoding was implemented in MCOS via
UNSAFE_CONVERSION of the appropriate bytes)nto the
command code enumeration type. When a case is done on
the command code, illegal codes are caught by the when
others alternative.

Processing messages

Legal commands are processed by their respective sub
routines, whose stubs are internal to the message_handler
procedure. The procedures themselves are separately com-

TYPE COMMAND ~

(GET_STATUS, GET _ERROR_CTRS, READ_DATA_STANDARD,
RESET ERROR CTRS, STANDBY, STARTUP, SELECT,
SECURE_RELEASE, SET _RESET_HOLD);

Figure 3c-Logical specification of command enumeration type (ordering of
elements is determined by ordering in Figure 3b).

U sing Preliminary Ada in a Process Control Application 605

FOR COMMAND USE

(GET_STATUS => 16 : 030001,
GET _ERROR_CTRS => 16 : 080002,
READ_DATA_STANDARD => 16 : 080003,
RESET _ERROR_CTRS => 16 : 180002,
STANDBY => 16 : 190301,
STARTUP => 16 : 190302,
SELECT => 16 : 190303,
SECURE_RELEASE => 16 : 190401,
SET _RESET _HOLD => 16 : 190402);

Figure 3d-Representation specification for command enumeration type
(ascending order of internal codes determines ordering in Figure 3a).

piled subunits (to disconnect the logical interface from the
actual implementation). Except for the read_data_standard
message, the message processing routines are relatively triv
ial. They perform their functions via the access routines pro
vided in the status_manager package and the
error_counter_manager package. Unsafe conversions are
used, as necessary, to convert from Boolean arrays to the
byte array of the out-going message buffer (and vice versa).
A common routine, valid_reply, is used to set the appro
priate return codes and transmit the reply by a hardware
implemented starCio routine.

The read_data_standard requests certain components
from control blocks of the database. Rather than performing
UNSAFE_CONVERSION on a record-component basis
(which would require a large case statement to distinguish
variant record parts), the conversion is done on a block-by
block basis, accessing the requested components by relative
physical location in the block. (A table-lookup provides the
necessary information.) Bypassing the strong typing of the
logical representation of the control block database greatly
simplified the procedure code (a 75 percent reduction in the
number of statements required). The protection afforded by
Ada's strong typing is superfluous in response transmission,
since the output buffer is simply an array of bytes.

SUMMARY AND CONCLUSIONS

As applied to a typical process control problem, the Model
Controller Operating System, preliminary Ada sometimes
helped and at other times hindered the program development
process.

Hindrances

The major deficiencies of preliminary Ada for real-time
applications are the lack of a well-defined scheduler and the
inadequacy of the mechanism for interrupt handling. The
Ada language design team has acknowledged these prob
lems, and, hopefully, will rectify them in the final language
design. Otherwise, such functions will require a machine
code implementation.

A related problem is synchronizing access to shared data
in time-critical applications. Implementing mutual exclusion

using the rendezvous construct is awkward and inefficient
as compared to other synchronization primitives such as spin
locks.6

Another hindrance to program development is the required
bottom-up textual presentation of information. This is ex
hibited by the restriction of no forward referencing in spec
ifications. Although easier for compiler implementation, lin
ear elaboration of declarations is not easier for either writers
or readers of Ada programs. A textual presentation reflecting
the top-down design process would be preferable.

Also detracting from the readability of Ada programs is
the lack of explicit import lists of objects. Import lists are
not required, yet without them program maintenance is ham
pered. To avoid the excessive burden on program devel
opers, the import lists could be automatically generated by
compilers or text editors.

Helps

The major advantage of programming in Ada is the support
provided by packages for encapsulation and information
hiding. The grouping of logically related data objects, types,
and/or associated procedures greatly enhances the logical
program structure. For instance, levels of protection of
shared data objects may be implemented in the package
body, concealing details from the users of the package.

Ada's separate compilation facility was used extensively
to support modularization and enhance program structure.
Separation of logical interface from physical implementation
is a positive influence on program development.

Ada's strong typing is a definite plus. High level data def
initions improve the readability of the code. In this regard,
enumeration types ate particularly useful.

A necessary companion to strong typing is the ability to
escape it when a different view of the object is required,
such as in decoding a message buffer. This is neatly provided
by Ada's UNSAFE_CONVERSION function.
UNSAFE_CONVERSION identifies those areas of the pro
gram where the safety checks of strong typing are tempor
arily suspended. Without this feature, a greater proportion
of the program would have required machine code imple
mentation. A related aid to systems programming in Ada is
the coupling of logical to physical representations via the
representation specification.

Issues in programming methodology

During the design and coding of MCOS, some 'uncertain
ties about Ada were raised. They were eventually resolved
as the authors gained experience with the language, and
through consultations with various persons more closely
connected with the Ada language development. *

Issues identified during the MCOS exercise were: (1) the

* In this regard, the authors would like to acknowledge John Barnes,. Dennis
Cornhill, Mark Davis, Robert Firth, John Goodenough, Oliver Roubine, and
Peter Wegner.

606 National Computer Conference, 1980

interplay between traditional block structure and separately
compiled modules,' and how it affects program structure;
(2) using visibility restrictions to advantage; (3) separate
compilation of specification and implementation parts to re
duce recompilation dependencies; (4) exception handling;
and (5) dependency of logical representation on physical rep
resentation.

A programming methodology for Ada is required. A user's
guide (an Ada cookbook) would facilitate program devel
opment. Due to the mixing of standard features with novel
ones, the best Ada solution for a particular problem often
cannot be ascertained. Current reference documentation 1.2

is inadequate.

Conclusion

Without a doubt, systems programming is facilitated by
using Ada, as compared to a full assembly language imple
mentation. As with any high level language, a small pro-

portion (5-10 percent) of the program will require assembly
language, either to maximize efficiency or to interface with
hardware. Ada provides an interface to assembly code. Yet,
due to the power of the language, machine-dependent code
may be kept to a minimum.

REFERENCES

I. "Preliminary Ada Reference Manual." SIGPLAN Notices, Vol. 14 (6),
June 1979, Part A.

2. "Rationale for the Design of the Ada Programming Language," SIGPLAN
Notices, Vol. 14 (6), June 1979, Part B.

3. Wegner, P., Programming with Ada-An Introduction by Means afGrad
uated Examples, New Jersey, Prentice-Hall, 1980.

4. Tannenbaum, A. S., "A Tutorial on ALGOL 68," ACM Computing Sur
veys, Vol. 8 (2), June 1978, pp. 155-190.

5. Wirth, N., Algorithms & Data Structures = Programs, New Jersey, Pren
tice-Hail, 1976.

6. Evans, A., Morgan, C., Roberts, E., and Clarke, E., "The Impact of
Multiprocessor Technology on High-level Language Design," BBN Report
No. 4188, September 1979.

Computer aided heat penetration tests for the food canning
industry

by PAUL SAGUES
University of California
Berkeley, California
and
The National Food Processors Association
Berkeley, California

INTRODUCTION

If food is to be preserved without refrigeration, drying, or
curing of some form, then it must be thermally' 'processed. "
The result of processing is a commercially sterile product
usually in a hermetically sealed container. Although food
may be rendered sterile before it is packaged (the aseptic
process), we will focus on the more common practice in
which the product is sterilized after it is packaged. We will
use the word "can" to represent both the container and the
operation of sealing the container even though the words
"glass jar" or "composite pouch" may be substituted for
the container in most cases.

The antagonists in this scenario are various microorga
nisms. Spoilage organisms release gasses" swell containers,
or produce putrefactive substances or toXiins. One such or
ganism, Clostridium botulinum, produces a toxin which is
among the most deadly found in nature. This one species
has spawned research through this century on questions re
lating to the ability of various microorganisms to survive
thermal processes, and the ability of food processors to cal
culate acceptable levels of sterility.

PROCESS CALCULATIONS

Introduction

The evolution of process calculations is interesting but
sufficiently relevant to merit only brief mention. Early work
ers 1 realized that the rate at which microorganisms died (le
thal rate) is a function of the can temperature, time, the or
ganism's "heartiness," and the nature of the product. The
ideal process was described by a lethal rate curve (time vs
lethal rate) whose area (total lethality) was unity. The strat
egy was modified in order that different organisms, products,
and initial conditions could be represented. The modification
involved introduction of an integral of lethality called the
'F value,' a measure of the time necessary to destroy a given
number of organisms at a given temperature. (See Figure 1.)

607

In the first part of this century, Ball and others3 recognized
that a heating can may be described by a first order differ
ential equation of the form'

de e
dt T

where e is temperature difference between the retort and
container interior and T is a time constant which is deter
mined by heat transfer parameters of convection, conduc
tion, and effective specific heat of the product. This "time
constant" is sometimes a function of time as in the case
when a product heats by convection, absorbs the convective
fluid, and then heats by conduction. In these cases, though,
Ball chose a piecewise solution to avoid the process of in
tegration. "[Determining the integral of lethality] by plotting
the lethality curve and determining the area beneath it is a
slow and tedious process."3

Current methods

Three major methods are used to evaluate the integral of
lethality. The first is the once tedious process of integration. 2

Although direct integration of lethal rate is well suited to
computer data acquisition systems, we will-for reasons to
be explained-direct our attention to the third method. The
second major method of determining lethality4 is the nom
ograph method which was well suited for use in the days of
log tables.

The third method, Ball's solution to the determination of
lethality (known as the formula method)5 involves approx
imating the can heating curve as an exponential and plotting
the log of temperature. The slope of the heating curve can
be used in two ways. First, if the initial and process tem
peratures of the product are known and if the process time
is known, then the F value may be computed. Second, the
slope of the heating curve and the F value measure of the
lethality can be used to determine the required process time.

From time and temperature records, processing authori
ties determine (usually post hoc) whether a given process

608 National Computer Conference, 1980

Q),
o

Q!

~.6

- ~.4
o
I.

Q)
-oJ

~.2

Fo=9.74

I ,
I
I
\
\

'-
1~

Tim~ (Minutes)

Lethal Rate Curve

Figure 1-Typical lethal rate curve.

accumulated sufficient lethality to insure that the product
is commercially sterile. The second use of the heating curve
slope described above-applying lethality and temperature
to determine process time-is used by processing authorities
to establish the minimum initial temperature, process time,
and process temperature for a given product. The food pro
ccessor of low acid canned foods is legally obligated to meet
the minimum calculated process parameters.

Heat penetration tests

The usefulness of any method of determi~ing lethality is
based upon the assumption that the can temperature may be
determined; Theoreticians are tempted to model the system
and determine the integral of the heating curve through sim
ulation, but in the food industry the determination is em
pirical. The name given to the empirical method is a heat
penetration test. A thermocouple is introduced through the
can wall of the product in a location previously determfned
to be the slowest heating zone in the can. The product is
then heated at process temperature until the can is within
about IC (2F) of retort temperature. The thermocouple's
output is recorded on various devices such as a mechanical
strip chart recorder. The collected data is reduced manually.
The slope of the heating curve is found graphically, and a
lag factor relating to establishment of process temperature
is determined. Various computer programs determine pro
cess times from the hand entered data.6 Heat penetration data
is used by processing authorities to establish scheduled re
tort processes for low acid canned foods in the United States.
For this reason, any effort to introduce current computer
and control technology into the food canning industry should
begin by carefully examining the heat penetration test in
order that newly developed real-time process calculations
will agree with proven empirical techniques.

CURRENT RESEARCH

Motivating forces today

Four factors have led us to believe that more effective
thermal process monitoring and control is needed. First,
energy conservation is not only a moral imperative but an
economic necessity. Process steam requirements of the food
processing industry are considerable. The Federal Govern
ment estimates that 4.8 percent of the total U.S. energy con
sumption is directed to the processing of food. 7 Second, the
world market demands that productivity be increased and
product waste be reduced. Third, producers and consumers
strive for products which are processed more consistently.
And fourth, impressive advances in microprocessor tech
nology have at last offered realistic solutions to the problem
of real-time data acquisition and control of thermal pro
cesses.

Goals of this research effort

In light of the above four factors, we might ask, "Since
technology exists to assemble hardware capable of real-time
control, why not start building machines?" The answer has
to do with the nature of government and industry. Both are
fortunately conservative in accepting fundamental changes
in an area sO close to every person's well being.

We do not wish to re-invent food processing calculations.
Rather, we would like to learn how to extend the capabilities
of present mathematical methods of determining the integral
of lethality. Our immediate goal in this effort, therefore, is
to define what constitutes valid data acquisition by perform
ing benchmark tests against accepted standard heat pene
tration methods. Because the majority of existing data is
expressed in terms of heating curve slopes, we have chosen
to begin by emulating data reduction by the formula method.
Once confidence is gained that real-time mathematical so
lutions can adequately describe the proven graphical meth
ods, our sights will shift to control of thermal processes. The
tool around which our research effort is centered is a mi
croprocessor based computer located in the process envi
ronment.

Design of the computer system

Background

The National Food Processors Association (formerly the
National Canners Association) Western Research Labora
tory in Berkeley, California contains extensive bacteriolog
ical, chemical, and process research groups. Included within
the facility is a pilot process plant which has simulators for
most major thermal process methods. The facility has a Dig
ital Equipment Corporation (DEC) PDP-I 1134 minicomputer
operating under RSX-IIM multiuser real-time operating sys
tem.

Heat Penetration Tests for the Food Canning Industry 609

Many considerations dictated the choice of a process level
computer. The system was to be capable of communicating
with the PDP-11134 in order to have access to mass storage
and data reduction and graphics programs. The system was
to be operated by process engineers whose primary interest
is food processing not computers. The system was to be
sufficiently flexible that the user could define sampling pa
rameters as well as display format. And finally, the process
computer was to be sufficiently robust to stand up to the
pilot plant environment. The choice for a process level com
puter was a DEC LSI-1112 microcomputer which is located
in the pilot plant and is connected by a 60m serial line to the
PDP-II. The microcomputer is equipped with analog sam
pling hardware and has a cathode ray operator's terminal.
The process computer has no mass storage and therefore no
moving parts to foul in a hostile environment.

Software

One rationale for chosing the LSI-1112 is that it executes
essentially the same instruction set as the PDP-11134. All
software may therefore be developed on the PDP-11134 and
down-line loaded to the LSI-1112. In actual operation, the
LSI -1112 boots to a terminal emulator and the operator logs
on the host computer. The operator then runs a supervisor
program in the host which signals the LSI-lll2 to accept a
task image. A task image contains an operating system, real
time sampling routines, and calculation program.

Process computer operating system

The LSI-lll2 operating system was written in house in
assembly language to provide (1) reliable message transmis
sion and reception with the host, (2) a memory mapped video
for the display of real-time data in a format determined by
the user, (3) operator input/output capability with either the
LSI-lll2 or host, and (4) provision for use of a high level
language to perform real time calculations. Error checked
packets are sent and received by the LSI-1112 for the purpose
of transmitting data, formatting the memory mapped video,
passing sample rate parameters, and interacting with the
user. The LSI-lll2 operating system resides in a library in
the PDP-11134 and is built into a task before being down
loaded to the LSI-lll2. The read only memories in the LSI-
1112, therefore, need not be 'updated if the operating system
or programs are changed.

Process computer capabilities

Presently, Fortran is the high level language operating in
the LSI -1112. The function of the Fortran program is depicted
in a state transition diagramS in Figure 2. Fortran's ability
to compute and manipulate multidimensional arrays with
reasonable ease is exploited as it linearizes sampled data,
organizes packets bound for the host, and structures infor-

Down load
from host
complete

No pending I/O
No packets require
transmission
or shuffling

Uodate Memory
Image of Operator

Console USing
RelaUonal Operators

CALCULATE

Screen im age
is accurate

Calculations
complete

Figure 2-State transition diagram of process level computer main program.

mation for the user. Process calculations described by Ball
in 1923 as tedious are performed by Fortran routines.

A central construct of the mi'crocomputer operating sys
tem is a dynamically changing section of memory which eas
ily can be mapped to most cathode ray terminals. The mem
ory map is defined as a set of operations on several arrays
managed by the high level language. These arrays include
real-time values, thus through the use of simple, interactive
commands from a "display language," the user can build a
video image comprising strings or real-time values in such
a manner as to tailor the system to his or her liking. The
display language has been an important consideration since
we wish the system to evolve into a tool which is of a form
we cannot presently define precisely.

In our continuing effort to make this system simple to use
and yet flexible, we have incorporated a command file struc- .
ture which allows each user to maintain a file of non-pro
cedural commands. When this file is executed, the process
computer is configured to perform a specific test for a spe
cific type of product. New display formats may be built and
sampling strategies tested by operators who are not com
puter professionals.

610 National Computer Conference, 1980

Sampling system

Industry standard type "T" thermocouple pairs are our
thermal-electric transducers. One junction of the pair is in
troduced into the process vessel or can while the second
(reference) junction is maintained at OC in an ice point ref
erence (Omega TRC). The low level signals are multiplexed
by flying capacitor isolators to a differential amplifier of gain
1000. A successive approximation analog to digital converter
produces a 12 bit digital representation of the voltage.

Precision and accuracy

The mercury thermometer remains the secondary standard
in the food industry. To obtain our goal of reproducing re
sults obtained with existing heat penetration methods, we
must know that at least the precision of our sampling system
is acceptable to processing authorities. Our preliminary find
ings appear to confirm Roop and Badenhop' s results9 that
accuracy is limited by precision, and precision is 0.094C
(0; 17F). Extensive stability testing will be required to sub
stantiate these claims, but initial findings indicate that our
12 bit conversion scheme will yield sufficient precision for
thermal processing of food.

Sampling strategy

Two major goals were defined during the design of the
data acquisition system. First, a sufficient number of data
points were to be recorded-in a manner readable both by
a computer and a human-that the log of a heat penetration
test may be plotted manually and yield results at least as
precise as allowed by the current manual method. Second,
no more data was to be recorded than is necessary to rep
resent a process to· the limit of the precision of the instru
ments used in the test.

In' order to meet these goals, we have designed a data
compression sampling routine whose sampling parameters
may be tailored by the user. Our system nominally samples
at ten millisecond intervals and applies criteria based upon
both rate of change of the input signal and the precision with
which the accumulated lethality may be represented. The
sampling technique appears well suited to heat penetration
tests which may be as short as several minutes or as long
as several hours.

Preliminary results

Our process computer system became operational a short
time ago and at this writing only a few heat penetration tests
have been run. We are very pleased with the performance
of our system in these tests. Initial analysis of the results
indicates that the information content of the data is signifi
cantly higher than the currently used method. Rigorous side
by-side tests will occupy our time in the near future.

In one test we placed 225g (80z) of dry, white beans in

each of two 16 ounce cans and filled the cans with water.
The cans were fitted with an Ecklund type' 'T" thermocou
ple located 1.9cm (0.75in) above the bottom of the can. The
cans were sealed and placed vertically in a still retort. The
cans were processed at 115.69C (240.25F) for 44 minutes.
Three signals were recorded. The thermocouples of both
cans and a retort temperature thermocouple were logged for
120 minutes. Data was transmitted to the PDP-11134 and
stored on a flexible disk. About twelve hundred data points
were recorded in our test. Figure 3 shows the relation be
tween retort temperature and cantemperature. (Graphs pre
sented were drawn using the flexible disk data files by the
program "GD" written by Professor D. M. Auslander of the
University of California, Berkeley).

We chose to process dry beans out of curiosity. As men
tioned above, a product which heats by convection and then
changes such that the convective fluid is no longer present
exhibits a "broken" heating curve. The beans absorb the
water and heat by conduction which is a slower mode of heat
transfer in this case. This type of curve is not a favorite
among those reducing data since the location of the transition
is often ambiguous. We decided to begin with a mixed mode
product and hoped to see a broken curve when the data was
plotted on a logrithmic scale.

The can temperature data of Figure 3 is plotted in Figure
4 on axes scaled in industry standard form for a heat pen
etration test. The resulting plot indicates that we can resolve
the broken curve transition area with precision which ex
ceeds that obtained using current techniques. We have seen
far less ideal curves produced by computer simulation which
indicates that our next goal of interpreting data in real time
may not pose problems which tax our analytical ability. Even
the cooling curve-the portion of Figure 4 to the right of the
maximum-is noise free and continuous. Cooling curves are
often ignored in process calculations although the area be
neath them contributes to the integral of lethality. Our pre-

r'\
lL..
v

250~------------------------------~

r;:::=

30

:\
\

\
\

\
\\ CENTER CAN

TEMPERATURE

\J

60

Time Afier Sieam On (Mlnuies)

Heat Penetration Test
Retort and Can Temperature

Figure 3-Heat penetration test results.

120

Heat Penetration Tests for the Food Canning Industry 611

Q.
e • t-

C o
u

Q.
e • t-

......

~ j
241u'~------~'------~'L-·. ______ ~I------~I

~ 0 30 60 90 1 20
..J

Time Ayler Sleam On (Minules)

-Heai Peneiraiion Tesi
Broken Heaiing Curve and Cool ing Curve

Figure 4-Heat penetration test results: standard form.

liminary results strongly indicate that we can fufill our re
search goals.

CONCLUSION

American food processors are to be commended for their
impressive record of providing pathogen-free products to the
consumer. to Much of the credit must be given to those who
have developed the empirical methods of predicting what
constitutes an acceptable error bound for the probability of
destroying a population of microorganisms. But technology
has progressed to the point where processors will soon be
able to increase their quality assurance and at the same time
reduce thermal energy demand, increase productivity, and
improve the nutritive properties of their product.

Our goal is to follow in the path of the empiricists by em
ulating their techniques. Such a tack will allow us to build
tools which may then evolve with advances in technology.
These tools will not be built by computer scientists alone,
or by food processors alone, or by control engineers alone.

Success will come through careful cooperation. Our research
is in an early stage. The majority of our effort thus far has
been spent defining and designing what will become an ev
eryday tool. We look forward to an extended testing phase.
But feasibility, of applying current technology to the food
processing industry is already evident.

ACKNOWLEDGEMENTS

The author wishes to thank the staff of the National Food
Processors Association for their patience and understanding.
Specifically, Doug Sasseen, Larry Lewis, Rick Kimball, and
Jay Unverferth have done all in their power to make this
project a success.

The guidance and inspiration of Professor D. M. Auslan
der is especially appreciated.

BIBLIOGRAPHY

1 Prescott, S. C. and Underwood, W. L. "Microorganisms and Sterilizing
Processes in the Canning Industry," Techno!. Quarterly, Vol. 10, No.1
(1897).

2 Bigelow, W. D., Bohart, G. S., Richardson, A. C., and Ball, C. 0., "Heat
Penetration in Processing Canned Foods," National Canners Association,
Bulletin 16L (1920).

3 Ball, C. 0., "Thermal Process Time for Canned Food," Bulletin of Na
tional Research Council, Vol. 7, Part 1, No. 37 (October 1923).

4 National Canners Association (compiled by), Laboratory Manualfor Food
Canners and Processors, Vol. 1. Westport, Conn., A VI Publishing (1968).

5 Ball, C. O. and Olson, F. C., Sterilization in Food Technology, New York,
McGraw-Hill (1957).

6 Sasseen, D. M., "Interactive Plotting of Heat Penetration Test Data,"
National Food Processors Association (1979) (in press).

7 FEA, Energy use in the Food System, Office of Industrial Programs, Fed
eral Energy Administration, U.S. Government Printing Office, Washing
ton, D.C. (1976).

8 Auslander, D. M., Dornfeld, D., and Sagues, P., "Software for Micro
processor Control of Mechanical Equipment," Proceedings 1979 Joint
Automatic Control Conference, Denver, Colorado, June 1979.

9 Roop, Richard A., and Badenhop, Arthur F., "A Computer-Thermocou
ple Interfacing System for Time-Temperature Data Collection for Thermal
Food Processes," Journal of Food Processing EnRineering, Vol. 4, No.
2 (1979-1980).

10 U.S. Department of Health, Education, and Welfare. Public Health Ser
vice, "Botulism in the U.S. 1899-1973." DHEW Publication No. (CDC)74-
8279 (1974).

A cross-impact simulation forecast of the data processing
industry

by PAUL HERBERT ROSENTHAL
Gottfried Consultants Inc.
Los Angeles, California

This paper describes the application of the USC Center of
Future Research's Cross-Impact Model to the simulation of
the evolution of an emerging industry. The Data Processing
Industry (DP) and its emerging Network and Decentralized
Systems sub-industries are used to illustrate the application
of the model. This application of the USC cross-impact fore
casting model to the simulation of the evolution of an emerg
ing industry and its component parts will constitute its first
micro-economic application.

During recent data processing forecasting projects, it be
came apparent that a model describing the behavior of com
plex emerging industries was needed to facilitate forecasting
the structure of such industries as data processing, calcu
lators, solar energy and copiers. The author, therefore, em
barked on applying the methodology of the Interactive
Cross-Impact Model to demand analysis of s,uch technology
based emerging industries using the DP industry asa case
study.

The objective of this paper is, therefore, to present a meth
odology for forecasting and analyzing the effect of technol
ogy innovations and policy interventions on the growth and
structure of an emerging industry, such as Data Processing.
The Network Information Services and the Decentralized
Systems sub-industries were chosen as illustrative of the
class of technology-based emerging industries, since they are
currently at a crossroads in their development due to the
emergence of new competing and enabling communications
and mini-computer technologies and services. More detail
on the model and methods can be found in A Cross-Impact
Simluation of an Emerging Industry: A Case Study of Data
Processing (Rosenthal, 1979).

EMERGING INDUSTRY STRUCTURE

The model described defines three levels of emerging in
dustries: the independent new industry, the primary industry
segment-offering new services, and the subindustry seg
ment-offering new production methodology for supplying
an existing service.

613

Independent industry

The independent or total industry level is illustrated by
the Data Processing Industry. It would have been considered
by Lynn (1966) a "new" industry and its evolution would
be measured by its total sales growth or its change in GNP
percentage.

Primary industry segments

The primary industry segment level is illustrated by Cen
tralized Data Processing Services, Decentralized Data Pro..;
cessing Services, and the Networked Services Industries.
This level is characterized by product differentiation. For
example, to the user these industries offer different services
and products for use in different applications. For the tech
nologist, these industries are simply varying delivery vehi
cles using varying mixtures of the same or different tech
nologies.

Subindustry segments

The subindustries level is illustrated by the Network In
formation Services (NIS) Industry and its competitive, in
ternally provided Dedicated Networked Systems Industry.
This level is characterized by multiple delivery or techno
logical approaches to providing the same product.

It is this level that much of the technological change lit
erature approaches. For example, Gold, Pierce, and Roseg
ger (1975), in their paper on "Diffusion of Major Techno
logical Innovations," measure the proportion of total output
accounted for by fourteen major production process inno
vations in the Iron and Steel Industry.

Both this level and the primary industry segment level are
measured in the model by share of market and by penetration
rate (rate of change of market share). This approach cancels
out the effects of total industry growth.

614 National Computer Conference, 1980

THE CROSS-IMPACT FORECASTING PROCESS

The cross-impact forecasting system consists of: a generic
simulation system that operates in either scenario or statis
tical mode, a user-provided application model, and a data
base of input parameters and output variables.

Data base contents

The data base consists of an input parameter file defined
and completed by the user and FORTRAN COMMON tables
defined by the generic cross-impact system.

The input parameter file created by the user contains the
following information for the emerging industry model:

a. Event Probabilities-cumulative innovation event
probabilities. These probabilities are normally derived
through interviews with experts.

b. Cost Performance Trends-nominal cost/performance
indexes derived from technology and technology dif
fusion equations.

c. Event/Event Impacts-event-on-event odds multi
pliers and delay/decay time periods that determine a
period of applicability. These values are also derived
from experts' interviews.

d. Event/Trend Impacts-event-on-trend mUltipliers and
delay/decay time periods that determine the length of
time an innovation takes to impact product cost/per
formance. These values are determined from forecasts
and technology diffusion equations.

e. Elasticity/Substitutability Coefficients-a series of pa
rameters determining the impact level of cost/perform
ance on total industry growth and industry segment
market shares. Their values are derived by tuning the
model to historic data or to short-term forecasts.

f. Initial Industry Structure-A series of initial values for
the current size of the industry. These values are de
rived from historic data.

g. Names-names are given for eyents, trends, and out
put variables for clarity of output reports.

The output variable tables are used during computations
to store intermediate values and are formatted and printed
on the output reports. Data is maintained for the three levels
of emerging industries: independent total industry, primary
industry segments, and subindustry segments. The data
maintained for each level includes:

a. Current Dollar Sales-dollar sales in current dollars for
each time period of the simulation.

b. Real Dollar Sales-dollar sales for each time period in
real dollars using the initial year of simulation as the
base year.

c. Growth Rate-percent growth rate for each time period
of real dollar sales.

d. Market Share-market share of segment for each time
period.

e. Technology Index-the value for each time period of
its cost/performance trend associated with the segment.
This value is the nominal value adjusted by the impact
of innovation (event) occurrences.

f. Penetration Rate-the rate of change of market share
for each time period of the segment.

Scenario mode simulation

Figure 1 outlines the structure of scenario mode simula
tion. Each interaction with the forecasting system defines
and performs a single simulation forecasting run covering
the time period of the forecast. The process consists of the
following five steps.

Define industry model

This step involves the creation of the input data base and
an initial interactive intervention defining the simulation pe
riod and the initial random number seed.

Initialize industry variables

This step consists of an emerging industry FORTRAN
application program that moves initial values from the input
file to the variable tables.

START

DEFINE INDUSTRY MODEL INTERACTIVE INTERVENTION
- Industry Structure -Modify Innovation Impacts
- Innovation Impacts - Modify nominal trends 4-
- Nominal Trends -Modify industry parameters
- Indus tryParameters

!
INITIALIZE
INDUSTRY PARAMETER TABLES (INPUT)
VARIABLES -Event probabili tIes

(t=O) -Cost/performance trends

~
-Event/event multipliers
-Event/event delay/decays
-Event/trend multipliers
- Even t/ trend delay/ decays
-Elastici ty /substi tutab il i ty

coefficients
-Variable/event/trend names

CROSS- D1PACT GENERIC MODEL ~ Compute adjusted trend
values from nominal values VARIABLE TABLES (OUTPUT)
and event occurrence impact

-Total industry values

•
- Indus try segment values
-Sub-industry segment values

EMERGING INDUSTRY MODEL
Compute variable values
from adj us ted trends and
prior period variable
values

~
CROSS- IMPACT GENERIC MODEL
PrInt resul ts and test
for last period .

~. ;. LAST PER IOD

Figure I-Scenario mode simulation.

Cross-impact generic model

This step is performed by a large and complex generic
cross-impact FORTRAN program. A Monte Carlo simulation
methodology is used to determine event occurrence based
on accumulative event occurrence probabilities. When an
event (an innovation or policy intervention) occurs, odds
multipliers are used to modify other event probabilities and
multipliers are used to modify cost/performance trends. The
impact of an event occurrence can be spread over several
periods through its use of delay and decay coefficients. A
later step is also pelformed by the same program consisting
of output printing of scenario results and a test for last time
period.

Emerging industry model

This step is performed by an emerging industry FOR
TRAN application program that computes variable values
based on adjusted trends and prior period variable values.

Interactive intervention

This generic cross-impact FORTRAN program allows in
teractive modification of probabilities , input trends, and non
structural emerging industry parameters such as elasticities
and substitutability coefficients. The program will not change
the number of events, trends, or variables.

Statistics mode simulation

Figure 2 outlines the structure of statistics mode simula
tion. Each interaction with the forecasting system causes
multiple scenario simulations to be run, each utilizing a dif
ferent set of random numbers to generate event occurrences.

At the completion of each scenario, sums and sums of
square are accumulated for use in computing means and
standard deviations of trend values. Means are also com
puted for event occurrence frequency and segment variable
values including current dollars, real dollars, growth rate,
market share, technology index, and penetration rate.

INDUSTRY STRUCTURE

A straightforward, two-level tree emerging industry struc
ture is utilized as shown. in Figure 3.

The total Industry is defined as the sum of its segments
each characterized by highly differentiated product or ser
vice types. The share of market of each industry segment
is assumed to be based primarily on the cost/performance
of their products with moderate substitutability over time.

The simulation model is used to trace the sudden emerg
ence of a new subindustry product or service within one of
the industry segments because of substantially improved
product cost/performance. The parent segment then ex-

Simulation Forecast of Data Processing Industry 615

DEFINE STATISTICS RUN

-Input simulation period Cn)
-Input number of iterations

.. IN ITIALI ZE INDUSTRY I
.... ---4,.1'1 V ARI AB LE S

I
SCENARIO SIMULATION

Perform an n period
scenario simulation
run

SUMMARIZE STATISTICS
Summarize results of
scenario run

1

I

NO f LAST "'\ YES ...
-----"'tTTERAT ION-"

STATISTICAL OUTPUT
Print means and
variances of
resul ts

Figure 2-Statistics mode simulation.

TOTAL

INDUSTRY

COMPETITIVE SUB-INDUSTRIES

Figure 3-Definition of industry structure.

616 National Computer Conference, 1980

pands, creating expanded research and development activ
ities in the related industry segments, which may then pro
duce innovations increasing the cost/performance of related
products.

As an example of this type of industry evolution, the data
processing industry structure in Figure 4 will be used.

Note that the Data Processing Industry is defined not by
sales of components or services (such as minicomputers,
printers, leased lines, or software packages), but instead by
end user deliverable systems which meet specific informa
tion processing needs. Because of this structural approach,
technological innovations in components and services, such
as micro-electronics and .communication services, will dif
ferentially impact all industry segments with one segment
often receiving the primary benefit.

MARKET STRUCTURE

The emerging industry application model was incorpo
rated into the USC generic cross-impact model program, and
the elasticities tuned to fit 1975 through 1983 traditionally
derived Data Processing Industry forecasts.

The equation used for total industry demand was:

St=St=o(1 +rr(1 +T]YTt- Tt=o)
where S t = total industry constant dollar sales at period t.

r = basic annual real growth rate of the economy
(a value of .035 was used for the data processing
industry simulations).

T= weighted mean technology index of cost/per
formance trends.

T] = technology/demand elasticity coefficient (simu
lations used a value of .015 for the data pro
cessing industry.)

The demand equation can be derived as the product of
three factors: initial industry size, real GNP correlate, and
emerging technology correlate.

S r(constant dollar sales) = S o(IIiitial Industry Size)
x flreal GNP) x g(cost/performance)

A long-term view of GNP growth is used for the second
term of the demand equation.

flreal GNP) = (1 + r) r

Total Industry Data Processing Industry

1. Parent Segment Network Systems

A. Emerging Sub-Industry Network Information

Services

B. Competitive Sub-Industry Dedicated Networked

2. Related Segment

3. Rela ted Segment

Systems

Central ized Systems

Decentralized Systems

Figure 4-IIlustrative market structure.

The traditionally high correlation between GNP and in
dustry demand is widely used in forecasting (Spencer and
Siegelman, 1964, page 150). Its use in the demand equation
accounts for growth due to an expanding total economy.

The emerging technology term is derived from the simplest
functional form of a declining marginal utility curve (Tintner,
1965, page 54).

dS
-=aT- b where o<h<1
dT

Solving the differential equation and substituting for initial
conditions at t = 0, gives the basic production/demand func
tion used.

S = nTd + 1 where d= - h + 1 implying o<d<1

The last step in the derivation is the determination of the
exponent (d) of the technology term T. The mid-point of the
range for the exponent (.5) was used as an initial value, as
did Wahi (1972). Based on the close fit of the derivative of
the simulation result curves to the calibration data, no later
adjustment was made.

The equation used for determining market share at both
the primary industry level (product differentiation level) and
at the sub-industry segment level (technology or delivery
system differentiation level) was:

M,,'~M',,_,(0+(1 +0) iiJ
where M i,1 = market share of ith industry segment during

period t.
0= substitutability coefficient

if 0 = 0 there is complete substitutability, no product
differentiation. If 0 = 1 there is no substituta
bility, isolated markets. (The data processing
industry simulation used values of .25 and .15
for the primary and subindustry levels.)

The industry segments used were:

i = 1 All Network Services (sum of i = 4 and 5)
i = 2 Centralized Services
i = 3 Decentralized Services
i = 4 Network Information Services
i = 5 Dedicated Network Services

These econometric demand functions are similar in format
to the equations used in numerous management simulations
games; see, for example, the Yale University game (Shubik,
1964) and the IBM game (Wahi, 1972).

The simulation model was used to produce a fifteen-year
forecasting run of the data processing industry from 1975
through 1990. Three types of simulation runs were per
formed.

Nominal scenario

A nominal scenario was run utilizing existing variable
inter-relationships, nominal trends, and excluded the impact

of future events. This run operated the simulator model in
the same deterministic format as traditional short- and me
dium-term simulation models and excluded the long-range
forecasting cross-impact elements.

Stochastic scenario

A stochastic scenario was run utilizing cross-impact prob
abilities and impacts. This run used Monte Carlo methods
to approximate the impact of occurrence of abrupt events
and changes.

Alternate policy scenarios

Several alternate stochastic scenarios were run incorpo
rating the specialized policy event, "White Collar Unioni
zation Expansion." These runs demonstrated the method
ology for using the simulator model for studying the impact
of potential policy interventions.

The deterministic forecast tracked a composite forecast
combining such diverse groups as: Frost and Sullivan
(ComputerWorld, January, 1977), INFORUM research proj
ect (Almon et al., 1974) and Quantum Sciences Corporation
(MAPTEK, 1975). The stochastic simulation forecasts tracked
the International Data Corporation (IDC) forecasts (Fortune,
March, 1977).

OPINION SURVEY INPUT DATA

A survey was performed of several 'experts' in the data
processing industry who specialize in technology forecast
ing. The experts were requested to supply the following sub
jective estimates:

a. Cumulative probability of innovation/regulation event
occurrences (assuming non-occurrence of the other
events).

b. Event-on-event cross-impact coefficients.
c. Event-on-trend impact coefficients and delay/decay

periods.

Figure 5, "Event-on-Event Impact Structure," shows the

Figure 5-Event-on-event impact structure.

Simulation Forecast of Data Processing Industry 617

structure of the event-on-event odds modifiers derived from
the opinion survey and used in the Data Processing Industry
simulation.

The impact of the occurrence of an innovation or policy
event on the value of a cost/performance trend is multipli
cative in nature. The results of the opinion survey produced
the structure shown in Figure 6.

RESULTS OF THE SIMULATIONS

The model produces annual real dollar and current dollar
figures for each segment of the emerging industry. The fol
lowing table (Table I) presents the 1990 forecasted constant
dollar results for the nominal and stochastic scenarios.

TABLE I.-Forecasted 1990 Data Processing Industry Sales (in billions of
1975 dollars)

T:l2 e Service Nominal Scenario Stochastic Scenario

Centralized 24 23

Decentralized 16 16

NIS 28

Dedicated Network 10 12
Total DP Industry $55 $79

The introduction of the innovation occurrences signifi
cantly expanded the market while changing its structure.

The detailed results of the simulation forecasts are shown
in Figures 7, 8, and 9. These charts include stochastic sim
ulation results, nominal simulation results, calibration fore
casts, and the IDC fortune forecast. The charts indicate that
IDC appears to include some level of new technological in
novations impact in their five-year and over forecasts.

The Primary Industry Segment Forecast Chart illustrates
an unexpected trend resulting from the cross-impact pat
terns. By 1990, the growth of the data communication-ori
ented industry segments can be expected to reduce central
ized and decentralized stochastic forecasts to the same level
or less than the nominal forecasts.

TABLE H.-Alternate Scenario Results (assumed policy intervention)

1990 1990

Stat.istical Alternate Percent
Results Results Reduction

Total DP Industry $214M $194M -9.3%

Networked Systems 106M 97M -8.5%

Centralized Systems 64M 56M -12.5%

Decentralized Systems 45M 41M -8.9%

N. I. S. Segment 78M 68M -12.8%

Dedicat'~d Segment 28M 29M +3.6%

618 National Computer Conference, 1980

. IMPACT
'LEVEL

DEDICATED
NETWORK

~ COST/PErRF.
TREND

5

SHARED
NETWORK

COST/PERF.
TREND .

4

MINI
COMRJ'TER

COST/PERF.
TREND

3

Figure 6-Event-on-trend impact structure.

MICRO
LOGIC

INNOVATION

MAX I
COMPUTER

COST/PERF.
TREND

2

COMPUTER
ARCHITECTURE

INNOVATION

DATA
COMMUNICATION

COST/PERF.
TREND

1

TABLE I11.-Total DP Industry Forecasts (in 1975 billions of dollars)

1980 1983
Model Results $ ERROR $ ERROR

Nominal Scenario 50.0 1% 69.9 1% of compromise
Stochastic Scenario 53.9 6% 78.8 1% of IDC

Validation Data

Composite Forecasts 50.5 69.5 (11.2% growth rate)
IDC Forecasts >50 78 (15.6% growth rate)

CURRENT
DOLLARS

(000,000)

200

100
/

/

/
/

/
/

/
/

STOCHASTIC MODEL
NOMINAL MODEL

o IDC FORECASTS

Figure 7-Total data processing industry forecasts.

ALTERNATE FUTURES FORECASTS

Researchers and planners are often interested in a fore
casted industry profile based on the occurrence of selected
exogenous events. Such simulations use the impact coeffi
cients of technical and policy event occurrences on cost/per
formance trends. Typical exogenous events include govern
mental policy interventions or union activism. An illustrative
simulation was performed that used "White Collar Unioni
zation Expansion" as an exogenous event.

The alternate simulation modified industry segment growth
in Table II.

All segments and industries other than Dedicated Net
worked Systems were reduced by approximately 10 percent,
losing almost one-third of their gain over the Nominal Sim
ulation. Since the Dedicated Segment lost sales late in the
simulation when stochastic event occurrence was intro-

Simulation Forecast of Data Processing Industry 619

CURRENT
DOLLAi(S

(000,000)

120 -
110

100

90

80

70

60

50

40

30

20

10

o
1975

Centralized

Netlvorked

Decentralized

1980 1985

I
I

STOCHASTIC
HODEL

DE1ERM I N I STI C
MODEL

1990

Figure 8-Primary segment forecasts.

duced, the reduction in their impact due to the policy var
iable would be expected to give the gain shown in the sim
ulation.

ACCURACY OF FORECASTS

The forecasts produced by simulation are compared to the
independently obtained composite forecasts in Table III.

IMPLICATIONS OF DP INDUSTRY FORECAST

The results of the DP Industry forecast are summarized
in Table IV and show the forecasted growth rates of each
industry segment. These growth rates were derived from the
constant dollar expenditure forecasts summarized in Table
V.

The figures are based on the results of the stochastic sim
ulation. The expenditure data has been adjusted to 1980 dol
lars from the 1975 dollar figures used in the prior calcula
tions.

620 National Computer Conference, 1980

CURRENT DOLLARS
(000,000)

70

I
I
I
I
I

60 - DeJica teJ Services' I

-- - NIS

50

40

30

20

10

o
1975 1980 1985

, ,
I
I
I

1990

Stochastic
Model

Figure 9-Data communication sub-industry segment forecasts.

Trend summary

The results shown in Tables IV and V indicate that the
1980' s will be a period of rapid growth for the data processing
industry with real growth running at least twice that of the
total economy. The early 1980's will see rapid growth for
decentralized minicomputer-based systems as well as for

TABLE IV.-Forecasted Growth Rates

Total DP Industry

Centralized Services
Decentralized Services

Networked Services

NIS
Dedicated

Annual Compounded Real

Dollar Growth Rates

1980-1985 1985-1990

6 -1/ 2 % 8%

2% -2%

18% 7%

8% 20%

27% 32%

0% 3%

TABLE V.-Forecasted Constant Dollar Expenditures (in billions of 1980
dollars)

Total DP Industry
Centralized Services
Decentralized Services
Networked Services

NIS
Dedicated

Annual Real Dollar Internal
and External EXEenditures
1980 1985 1990

$54 $74 $109
32 36 32

7 16 23
15 22 54

10 40
12 12 14

NIS services, while the late 1980's will see a continuation of
the NIS growth but a significant slowing in the growth of
decentralized systems.

While real dollar sales of the DP Industry will grow at 6
percent to 8 percent during the decade, its largest and oldest
segment, centralized large-scale computer-based systems,
will remain constant in size during that period. Approxi
mately two-thirds ofDP growth will be accounted for by NIS
expansion with the remaining one-third accounted for by
expanding decentralized systems.

These DP Industry forecasts, although surprise-free in the
sense that no unusual trends developed, did generate some
unexpected results and contributed to an understanding of
the dynamics of DP Industry growth. The forecasts indicate
that the growth of network services during the 1970's
through dedicated networks will, during the 1980's, switch
to shared network utilization via NIS-type services. The next
decade, therefore, should see a rapid growth of Value Added
Network carriers that offer shared data communication ser
vices, permitting electronic mail and data base access.

The forecast also unexpectedly showed a slowdown in the
erosion of centralized data processing services. The 1970's
were a decade of rapid transfer of centralized batch appli
cations to decentralized and networked services. Thi's ero
sion will slow, and centralized services will grow slightly
during the 1980's as expected improvements in large-scale
computer productivity make integrated management infor
mation systems practical for most firms.

Also unexpectedly, minicomputer-based decentralized
services growth will slow to the industry average by the mid-
1980's. This indicates that increasingly the minicomputer
vendors must, within the next several years, look to net
work-oriented products (not computational products) if they
wish to maintain their rapid growth.

Impact on management

The primary impact of the continued expansion of decen
tralized information systems over the next five years will be
the ability of small and satellite organizations to automate
such day-to-day applications as: order entry, inventory con-

trol, billing, and office automation. The productivity of the
small firm or office will be improved and the current trend
toward managerial decentralization should continue into the
mid-1980's.

The primary impact of the rapid and continuing growth of
NIS through the 1980's will be the growth of integrated sys
tems linking vendors, suppliers, remote offices, and homes
(Diebold, 1977). This trend should start to reverse the man
agerial decentralization trend of the mid-1980's as corporate
management and staff link their decentralized systems
through NIS. They will then demand compatability and si
multaneously achieve the capability for day-to-day moni
toring and control of remote operations. In summary, during
the 1980's, electronic communication and storage of infor
mation will be less expensive than paper-based systems,
expanding the pace of white-collar automation. This direc
tion is well summarized by Charles P. Lecht (1977, page
178).

While it may yet be possible to argue that if you destroyed all
the computers in existence today it wouldn't seriously affect
your life, it seems equally obvious that by the early 1980's we
would be drowning in paperwork. Progress would necessarily
retreat without the powerful computer systems and networks
upon which a service-oriented society is-we would say ines
capably-dependent.

The expanding computer/communication environment
forecasted will, therefore, expand the impact of data pro
cessing on the economy. Management must plan for this
expanding role of Information Automation, and assure its
profitable use.

BIBLIOGRAPHY

AFIPS, Information Processing in the United States: A Quantitative Sum-'
mary. Montvale, NJ: AFIPS Press, 1976.

Almon, C., Buckler, M. B., Horwitz, L. M., and Reimbold, T. C., 1985:
Interindustry Forecasts of the American Economy, Lexington, Mass.:
D. C. Heath and Company, 1974.

Simulation Forecast of Data Processing Industry 621

Alter, S. The Computational Mathematics of Time-Dependent Cross-Impact
Modeling. M26, Center for Futures Research, University of Southern
California, October 1976.

Alter, S. "The Evaluation of Generic Cross-Impact Models," Futures 2, April
1979, pp. 132-149.

Armstrong, J. S. Long-Range Forecasting: from Crystal Ball to Computer,
New York: John Wiley, & Sons, 1978.

Chow, Gregory C. "Technological Change and the Demand for Computers, "
The American Economic Review. 57 (5), December 1967, pp. 1117-1130.

Diebold Research Program, The, The Implications of Converging Computer
and Communications Technology. M40, New York: The Diebold Group,
Inc., August 1977.

Dolotta, Bernstein, Dickson, France, Rosenblatt, Smith, and Steel. Data
Processing in 1980-1985, New York: John Wiley & Sons, 1976.

Duval, A., Fontela, E., and Gabus, A., Cross-lmpact-A Handbook on Con
cepts and Applications, Geneva: Battelle, 1974.

Frost and Sullivan, Inc., "Time-sharing Seen Losing Ground as Service
Choice," Computer World XI (3), January 17, 1977, p. 47.

Gold, B., Pierce, W. S., and Rosegger, G., "Diffusion of Major Technological
Innovations," in B. Gold (Ed.). Technological Change: Economics,
Management, and Environment, New York: Pergamon Press, 1975.

International Data Corporation, "Distributed Processing/Data Communica
tions," Fortune, March 1977, pp. 31-82.

Lecht, C. P., The Waves of Change: A Techno-Economic Analysis of the
Data Processing Industry, New York: Advanced Computer Techniques
Corp., 1977.

Lynn, Frank., "An Investigation of the Rate of Development and Diffusion
of Technology in Our Modern Industrial Society," Report of the National
Commission on Technology, Automation, and Economic Progress, Ap
pendix Volume II, Washington, D.C., 1966.

MAPTEK Strategy Report. San Jose, CA: Quantum Sciences Corporation,
December 1975.

McCarter, P. M., "Where is the Industry Going," Datamation 23 (2), Feb-.
mary 1977, pp. 63-65.

Rosenthal, P. H., A Cross-Impact Simulation of an Emerging Industry, Un
published dissertation, University of Southern California: Los Angeles,
1979.

Shubik, M., A Business Game for Teaching and Research, New Haven, CT:
Cowl'es Foundation, Yale University, 1964.

Spencer, M. H. and Siegelman, L., Managerial Economics, Homewood, IL:
Richard D. Irwin, Inc., 1964.

Tintner, G., Econometrics, New York: John Wiley & Sons, In~., 1952.
Turn, R., Computers in the 1980's, New York: Columbia University Press,

1974.
Wahi, P. N., "A General Management Business Simulation in APL," IBM

Systems Journal 11 (2),1972, pp. 169-180.
Withington, F. G., "IBM's Future Large Computers," Datamation 24 (7),

July 1978, pp. 115-120.

Organization of the TRAC processor-memory subsystem*

by R. N. KAPUR, U. V. PREMKUMAR and G. J. LIPOVSKI
University of Texas
Austin, Texas

INTRODUCTION

TRAC integrates a sufficient number of architecturally
unique features to justify the development of micropro
grammed processor and memory modules. This paper con
tains a discussion of the issues considered in the design and
implementation of these modules.

In this section a list of design objectives and constraints
that guided the system designers is given. The rest of the
paper is divided into two major sections: functional speci
fication and implementation. The functional specifications
are derived from overall system design objectives and the
constraints imposed by sibling subsystems. The implemen
tation section focuses on the more important realization is
sues and presents specific solutions based upon these con
siderations.

A concluding section contains a status report on the hard
ware development and a short subsection on the testing
methodology used while fabricating the modules. The ap
pendix contains specification of registers in the memory and
processor modules. In addition, it describes the microword
format and explains some of the microinstructions.

Design objectives

Varistructure and reconfigurability6 are the cornerstones
of the TRAC system. Reconfigurability has major repercus
sions on the switch design. Varistructurability affects pro
cessor design. Under varistructurability an n-byte operand
can be processed by one or more byte-wide processors (Fig
ure 1). The opcode that directs these operations must be
independent of the physical structure of the machine. There
fore the processor must contain status information for guid
ing the microcode that realizes the opcode. Additionally, if
the processing of an element is spread over a number of
processors, control of data transfer between processors is
necessary (e.g. carry propagation for addition as in byte slice
processors).

TRAC provides support for SISD and SIMD3 modes of
operation. SIMD operation implies that all the constituent
processors must be in lockstep from operation to operation.
I/O and other operations whose time of execution is non-

* This research is supported under NSF Grant MCS77-15968

623

determinate violate this condition by operating in a 'semi
synchronized' mode. Here the command is issued at the
same instant to all the processors in an ensemble. Thereafter
the processors go out of lockstep at the microcode level.
When all the processors complete the operation, they must
be synchronized to come back into lockstep.

The provision of hardware support for virtual memory
management removes a major run time burden from oper
ating systems. Paging strategies based on page usage counts
can be realized using replicated hardware: parallel searching
can then provide better performance than software table
lookup and update techniques.

Lastly, the flexibility of a multiple processor system is
closely related to the generality of the underlying commu
nication subsystem [1]. However, this subsystem is tradi
tionally the most expensive component of a multiprocessor
system. Channels must therefore be developed that fit into
the existing subsystem with minimal incremental cost and
no degradation in performance of the original subsystem.

Design constraints

In keeping with the philosophy of avoiding nonarchitec
tural pitfalls, this machine has been fabricated using standard
SSI and MSI TTL components wherever feasible. The de
sign, however, is LSI compatible using the following criteria:

1. The entire system is fabricated from four types of sub
systems: processor, switch, primary memory and self
managing secondary memory. (The last two subsys
tems are also referred to as MIO modules.)

2. Each subsystem is made as intelligent as possible
within the restriction of the gates/chip criterion.

3. Pinout restrictions have been strictly adhered to: the
processor and memory modules interface to the rest of
the system through an 8 bit port per module. Less than
10 additional lines are needed per module for power,
ground and control signals.

FUNCTIONAL SPECIFICATION AND FUNCTION
DISTRIBUTION

This section begins with a subsection specifying various
functions that have to be realized by the processor-memory

624 National Computer Conference, 1980

CARRY CARRY CARRY

~ lQ'tdbJ q P2 I P1 I PO jJ I p3 I P? I Pl I po

b2
b3

n=l n=2 n=3 n=4

PROCESSORS

Figure 1-4 byte operand processing on n-byte wide machine.

subsystem. These functions include the basic functions pro
vided in a conventional computer system as well as the un
conventional features needed to implement a reconfigurable,
varistructured architecture which supports virtual memory
and interprocessor communications. The second subsection
describes the distribution of these logical functions among
differe~t modules comprising the processor-memory sub
system.

Functional specification

The processor-memory subsystem of TRAC realizes a
multitude of logical functions to achieve a flexible and pow
erful mUltiprocessor system. These functions may broadly
be divided into two classes: the conventional operations ex
pected in a single sequential processor system and the ad
ditional operations required to support a mUltiple processor
system.

A conventional system consists of an arithmetic and logic
unit, a set of fast access registers, primary memory, sec
ondary memory, input/output ~nits, a collection of opera
tional status information, datapaths, control and sequencing
logic. Further, most modern systems provide interrupt han
dling, some virtual memory support and supervisory mode
of operation.

In addition, the TRAC system provides the followingfunc
tions to support variable structure and multiple modes of
operation: processor linkage via instruction and shared
memory trees, interprocessor communication through packet
transmission and reception. These functions lead to addi
tional operational and structural status information, data
paths, control and sequencing logic.

Function distribution

The banyan network provides efficient interconnection
between its apex and base nodes. By placing resource mod
ules at both ends, the delays of propagation are reduced.
Further, processing functions are different from memory and
110 operations. The number of distinct modules in a multiple
processor system should be small. Thus, most of the func
tions have been divided between three modules, the Pro
cessor Module (PM) and the MIO modules. The names only
indicate the primary functions and each module realizes sev
eral additional functions. A processor module may be con
nected to several MIO modules by a data tree on the switch.6

Such a connection facilitates the execution of a 1 byte-wide

SISD task by providing a dedicated data and control linkage
between the processor and the MIO modules. Several such
connections may be used to support the execution of multi
byte SISD and SIMD tasks by connecting the processor
modules via an instruction tree.

A 1 byte-wide SISD task environment consists of a single
processor and several MIO modules. The processor controls
and accesses the primary memory and the self managing
secondary memory via the connection provided by the data
tree. The functions associated with the primary memory
module are first explained. The TRAC address space is di
vided into four separate functional spaces: OS, DS, CS, and
PS. Associated with each space are two pointer registers for
memory access within that space. A primary memory mod
ule has 4K bytes of primary memory divided into four phys
iCal pages of lK each. Each physical page may be assigned
to any logical page in any functional space. Each primary
memory module maintains a copy of the eight pointer reg
isters and these are consistently updated. Additional hard
ware is provided to evaluate and retain page usage to aid in
page replacement policy implementation. The architecture
provides a flexible and efficient distributed memory system
consisting of functionally independent modules with minimal
interactions. The self managing secondary memory (SMSM)
module provides virtual memory backup and segmented file
110. It is based on the concepts described in [2]-further
description of this module is beyond the scope of this paper.

Each processor module can operate either independently
or as part of a set of processors. It has a byte sliced Register
Arithmetic-Logic-Unit (RAL U) and associated operational
status; for example, the condition codes and interrupt status.
The processor uses microprogram control and sequencing.
The basic clock and associated phases are derived from the
master system clock.9

Additional functions provided in the processor and MIO
modules to support multiple modes of operation are dis
cussed next. The instructions tree provides a broadcast bus
and a GPC tree among a set of processors. Though the pri
mary function of the broadcast bus is opcode transmission,
it is used in other data transfers also. The GPC tree provides
a flexible mechanism for processor linkage: it is used for
selective grouping of the processors into subsets (each sub
set processes a different element), collection and distribution
of status, processor synchronization and prioritization for
shared memory access; the original function of OPC trees
of linking processor carries for multibyte operations is re
tained. Variable structure is implemented by partitioning the
set of processors into groups and breaking linkage at appro
priate processors. Relevant structural status is stored in each
processor for an efficient realization of this scheme. A set
of processors may share an MIO module via a shared mem
ory tree. An MIO module may be identified as a shared

. module and includes status information to specify owner
ship. A processor may be connected to more than one shared
MIO, and a 'coloring' scheme is used to avoid deadlocks in
shared module access. Thus a programmer can distinguish
between several shared trees by assigning different 'colors'
to them.9

Interprocessor communicationS is another major function
provided in the TRAC system for a flexible and compre- .
hensive interaction among different processors. Each pro
cessor is given a physical address and any processor can
send a packet to any other processor. The sending processor
instructs a specified MIO module within its data tree to send
a packet and provides the necessary parameters. The packet
transmission logic and dispatch buffers are associated with
the MIO module, whereas the packet reception logic and
reception buffers are associated with the processor. There
are two separate channels for two types of communications.
These channels are called the mapping and interrupting chan
nels with respect to their primary use.

IMPLEMENTATION ISSUES

We can now describe the primary memory module and the
processor module implementation details. The description
will bedone at a block diagram level; specific IC details have
only been included where they have materially influenced
the design.

The primary memory module

The primary memory module decodes and executes micro
orders that a processor module broadcasts on a data tree
(Figure 2). The micro order is issued in switch phase Os2 of
a system cycle; the data from the resultant operation is trans
mitted in Os3 and Os4 of the next cycle (Figure 3). Associative
addressing within modules determines exactly which module
performs the operation. The next micro order from the pro
cessor is transmitted before the data transmission-this
overlap pipeline is used to mask delays that are introduced
by the switch.

Primary memory micro orders can be broadly divided into
two classes:

1. Pointer memory instructions-these instructions are
used in accessing memory and modifying pointers (e.g.
IRT: pre-auto-increment read using T pointer).

responding
module

-. -. _e conmand
-----data

responding
module

Figure 2-Processor memory operation.

Organization of TRAC Processor Memory Subsystem 625

major cycle 1
switch clock ~sO.l ~s2 ~s3.4 ~sO.l ~s2 ~s3.4

processor

switch

memory

command execution and data
----- .. data read

- - - - - ... data write

Figure 3-Processor memory operation timing.

2. Status instructions-these instructions are used for
'loading and storing status information (e.g. WPST:
write page status using T).

Each TRAC primary memory module contains four pages;
a page contains lK (1024) 8 bit bytes. Each page has an
associated space type-page number register (SPNR-8b), page
usage counter (PUC-4b), and a page status byte (PSB-4b).
An 8 x 16b pointer register file in each module stores pointers
used for addressing. Additional registers associated with a
module are module color (MCR-3b), module status (MSW-
5b), and task status word (TSW-3b). A packet buffer (PBO
... PB3-4 x 8b) is provided in each module for assembling
packets.

The appendix contains a detailed description of the pri
mary memory registers and their functions.

Once a micro order is received by the modules in a data
tree the sequence of operations in each module is as follows:
the controller extracts the contents of an appropriate pointer
register into the arithmetic unit where the address is modified
as required. This address is transferred to the associative
addressing section that contains four page number registers
and four comparators. Ifno match occurs in any of the mod
ules, the processor module is interrupted via a separate line
that follows the data tree. If a match does occur in anyone
of the modules it transmits a 'no interrupt' to the processor
module; this signal overrides the 'interrupt' signal from the
other modules. The selected module now sends/receives the
relevant data.

The timing of this operation sequence is as follows: the
address manipulations are performed during 0s3 and 0s4 after
the command is received. The effective address is generated
just before 0s0. After an access delay that can last through
0s0, 0s1 and 0s2, data is available to be placed on the switch
at the beginning of 0s3. It is transmitted through the switch
during 0s3 and 0s4 and arrives at its destination before the
end of 0s4 (Figure 3).

Two additional 'nonmemory' operations can be performed'
by a primary memory module:

1. It can be used as the source for interprocessor packets:
a packet assembly buffer and packet generator bits are
provided for this. '

2. When it is used as the root of a shared tree it performs

626 National Computer Conference, 1980

functions pertaining to shared tree colors-these op
erations are of relevance in providing deadlock free
access to a shared resource.

Figure 4 illustrates the structure of a primary memory
module. The block labelled 'switch interface' is a scaled
down version of a switch node [9].

The processor module

This section deals with the block level organization of the
TRAC processor module. As described earlier, this module
realizes both the conventional and unconventional features
of the TRAC system associated with the processor. Figure
4 shows a schematic diagram of the block level description.
The module is essentially made up of a RALU, status, packet
buffer, control store, sequencer and several control units.

The TRAC architecture allows a powerful and flexible tn
struction set and the implementation is realized mostly
through LSI a.nd MSI components. Thus, microprogram con
trol is best suited for its design. Here the microprogrammer's
view of the system.is presented and no effort is made to
explain the hardware details. Owing to the limitation of
space, only the essential features of the micro architecture
are presented.

The RALU contains two 2901 bit-slice processors linked
together through carry look ahead logic. The registers of the
2901 are used by the microprogram and are generally invis
ible to the maching language program. This is necessary to
allow a virtual machine that can accommodate variable word
widths requiring different 'heights.' Six of the 17 internal
registers are used as microprogram accumulator and working
registers. Four of the registers are used as counters and the

SWITCH INTERFACE

.+ ,
CONTROLLER ~RITHMETIC
1. Clock UNIT ADDR.
Decoder • ... POINTER

2. Control FILE
PROMS

I •
STATUS ASSOCIATIVE

~
WORDS

~
ADDRESSING
HARDWARE ~

• I-t- MEMORY ARRAY

Ia

~H PACKET r BUFFER
"--

Figure 4-Structure of the memory module.

remaining to hold constants. The counters are used to govern
multiprecision, vector and loop operations. The constants
are usually structural parameters specifying the variable
structure and may be loaded under user control. The micro
code permits the programming to load and store these reg
isters from the data bus, do arithmetic and logical operations
and move data among the registers. The microcode is de
signed to realize all the RALU functions needed to efficiently
implement the TRAC instructions set. the RALU operation
may be conditionally executed under microcode control, i.e.
it may be suppressed or enabled depending on some status
bits. This enables selective masking of processing in specific
processors and is useful in multiprecision and vector oper
ations. It is possible to choose one out of several alternative
RAL U operations by substituting some bits from the instruc
tion opcode into the micro order. Thus it is possible to im
plement several machine instructions essentially with the
same microcode.

The TRAC system is a memory to memory architecture.
The processor accesses operands (or fragments of operands),
operates on them and replaces the result in the memory.
Though the memory may be distributed, its location is trans
parent to the processor and appears as a centralized unit.
The processor sends a memory command specifying a ser
vice: for example, read from or write in a specific location
in a space, pointed by an address register. There exist in
herent delay in the network as well as in the memory, and
the request is serviced a cycle after the request. This results
in a one step pipeline between the processor and the mem
ory. The microcode should take this one cycle delay into
account in the implementation of microalgorithms.

The complexity of TRAC architecture, specifically the
variable structure and multiple mode of operation, lead to
substantial status information that needs to be kept in the
processor for efficient execution of microalgorithms. The
status information may be broadly divided into two classes:
operational status and structural status. The operational sta
tus is dynamic and includes element condition codes, vector
condition codes and processor condition codes and interrupt
status bits. The vector condition codes and element condi
tion codes are programmer visible and are used by branching
and masking instructions. The processor condition codes are
the dynamic status bits used by the· microprogrammer in
conditional execution of RALU operations, accumulation
of temporary Boolean variables and conditional sequencing
of microinstructions. The interrupt status bits are used to
interrupt the microprogram on page faults, packet arrivals
or I/O interrupts. The structural status is relatively static and
is indirectly influenced by the instructions that specify the
structure of the system. For example, the processors carry
flags to indicate where the carry linkage is to be broken in
the chain of processors within a task. There are status bits
to determine which processors operate on least/most signif
icant bytes of an operand (or an operand fragment). Further,
a specific processor may be identified as a task head and be
given special responsibilities. Other status bits are used to
mask specific processor operations in specific cycles under
microprogram control.

The GPC tree is described in [5]. A set of processors can
use the GPC tree connection to realize multiprecision and
SIMD operations. In multiprecision operations, the GPCtree
is used as a carry lookahead linkage and this permits rea
sonably fast arithmetic and shift operations. The structural
status is used to break the carry linkage at appropriate pro
cessors within the ordered set. In SIMD operation, the GPC
tree is used to collect and distribute status information
among processors. For example, a branch condition may be
collected in the task head and transmitted to all the proces
sors, so that all the processors choose the same microword
in the succeeding cycle. Further, the GPC tree is used to
resynchronize a set of processors after the completion of an
asynchronous operation as in mapping packet communica
tion [8]. The GPC tree is also used to resolve contention and
permit mutually exclusive access to shared memory [8].

The packet reception unit is essentially an independent
unit and consists of packet buffers to store incoming packets
and generate a prioritized packet arrival interrupt. The
packet buffers may be addressed and loaded in the memory
under microprogram control. Separate buffers are present
for mapping and interrupting packets. The mapping channel
is used primarily for data redistribution within the domains
of several processors. The interrupting channel is used for
signaling and messages. The bus control unit controls the
communication on the data bus by specifying at most one
source and possibly many destinations.

The micro sequencer consists of two 2911 sequencers and
associated PROMs and selectors. A system cycle consists
of a single memory cycle and two processor cycles. These
processor cycles are called phases A and B. The microwords
for phases A and B have successive even/odd addresses.

Figure 5-Structure of the processor module.

Organization of TRAC Processor Memory Subsystem 627

Thus the micro sequencer provides the most significant eight
bits of the microword address and the least significant bit
is derived from the phase status. This provides up to 512
microwords for the control store. It is possible to have spe
cific micro sequences that implement interrupt service etc.,
that can be stored in the higher address space in a lK long
control store. The microword is four bytes long and its spe
cific format is given in the appendix. The sequencer is pro
vided with several useful sequence control commands.
These include, continuing to the next micro instruction,
jumping conditionally or unconditionally to a specific ad
dress, setting loops, calls to subroutines and returning from
them. Thus the micro sequencer provides a full repertoire
of useful control structures. .

The processor controls the SMSM in a manner similar to
that of primary memory. Some of the MIO modules are
equipped with SMSM subsystems and accept secondary
memory commands from the processor and respond with
service. The interaction between processor and SMSM is
asynchronous and uses handshaking. During I/O openltions,
the processor performs the DMA function and is dedicated
to that process. The processor accepts interrupts from the
SMSM and has means for reading its status through micro
program control.

CONCLUSION

The processor and memory modules have been fabricated
with standard SSI, MSI and some LSI parts. A microcom
puter system with dual floppy discs was used as the heart
of the development and testing system.

We have developed a microcode assembler from the very
versatile macroassembler on our system. A 144 bit wide
110 port was fabricated to interface the subsystem under test
to the computer. Hardware was exercised by software mod
ules that emulated those sections of hardware that were not
yet ready. The software/hardware boundary was moved
back as additional hardware was developed until the entire
subsystem was complete.

REFERENCES

1. Agerwala, T. K. M., and Lint, B. J., "An overview of communication
issues in the design and analysis of parallel algorithms," <submitted for
publication) .

2. DeMartinis, M. et aI., "A Self Managing Secondary Memory," Proc 2nd
Ann Symp on Comput Archi, 1973.

3. Flynn, M. J., "Very high speed computing systems," Proc. of the IEEE,
54, pp. 1901-9. .

4. Lipovski, G. J., "A varistructured array of microprocessors," IEEE
Trans on Comput., vol c-26/2, Feb. 1977.

5. _, "Optical Linkages for Interconnecting Integrated Circuits," Proc.
of the NCC, 1977.

6. Lipovski, G. J., and Tripathi, A. V. R., "A varistructured reconfigurable
array computer," Proc Parallel Processing Con/., 1977.

7. Sejnowski, M. c., et aI., "An overview of TRAC, " Proc. of the NCC,
Vol. 49, 1980.

8. Premkumar, U. V., et aI., "Interprocessor communication in TRAC,"
Proc. 1st Inti Conf on Distributed Comput Systems, 1979.

9. Premkumar, U. V. et aI., "Design and Implementation of the Banyan
Interconnection Network in TRAC," Proc. of the NCC, Vol. 49, 1980.

628 National Computer Conference, 1980

APPENDIX

Primary memory registers

The page registers are organized as follows:

1. SPNR [0 .. 7]-space type page number register
1. O .. 5: page number of IK page
2. 6 .. 7: space type

1. 00 Program space
2. 01 Control space
3. 10 Data space
4. 11 Operand space

2 .. PUSW [0 .. 7]: Page usage/status word.
1. [0 .. 3]: Usage count.

This counter records the reference frequency for
a page. It is zeroed when a page is loaded and is
incremented on every n accesses to that page. This
counter saturates at 1111 binary.

2. [4 .. 7]: Status
1. 4: Read Write/Read only
2. 5: Supervisor User/Supervisor only
3. 6: Clean/Dirty: indicates if a page has been writ

ten into
4. 7: Locked/Free: indicates whether a page is tied

into primary memory for the duration of the task.

The module register organization is as follows:

1. Pointer register file
This file contains the eight pointers used for memory

addressing: T,N,X,Y,D,S,P, and W.
2. MCSW [0 .. 7]-Module color and status word

1. [0 .. 2]: color
These bits are used in shared memory acquisition.

2. [3 .. 7]: Status
These bits are module related and are different

from module to module.
1. 0: Shared/Local module .
2. 1: Owned/Unowned module (valid for shared

module only)
3. 2: APG/ APG / - identifies asynchronous packet

generating module
4. 3: SPG/SPG'-identifies synchronous packet

generating module
5. 7: MPI: Module pointers invalid-this bit indi

cates whether the pointer registers in a module
are valid. If this bit is true only loads to registers
are permitted for that module. Once all registers
are loaded this bit is automatically made false.

3. TSW [0 .. 2]-task status word.
These bits are task related and are identical in all

modules in a task.
1. 0: Supervisor/User mode
2. 1: W/W* mode: in the W mode, W points into PS.

in the W* mode, W points into OS.
3. 2: Primary/secondary access: this bit is for perform

ing primary memory operations

Processor registers

RALU registers

1. AO-Accumulator
2. A 1-Auxiliary Register
3. A2-A5-Working Registers
4. SC-Slice Count
5. SCI-Slice Count Initial value
6. BCH-Band Count High byte
7. BCL-Band Count Low byte
8. BIH-Band count Initial value High byte
9. BIL-Band count Initial value Low byte

10. LC-Loop Count
11. N-Number of processors in a group
12. PN-Processor Number
13. GN-Group Number
14. BN-Byte Number

Status registers

1. ECC-Element Condition Codes
2. VCC-Vector Condition Codes
3. PSWO-Processor Status Word 0
4. PSWI-Processor Status Word 1
5. PSW2-Processor Status Word 2

Packet registers

1. SPRO-SPR3-Synchronous Packet Registers
2. APRO-ARPI1-Asynchronous Packet Registers

TRAC microinstruction specification

The TRAC system is being designed to operate at a 1 MHz
system clock, i.e. a 1 microsec system cycle. A system cycle
consists of two processor cycles, phases A and B. The mi
croinstruction formats are somewhat different for the two
phases and are as given below in Figure 6.

TRAC control store consists of IK microwords of 4 bytes
each. The TRAC instruction set utilizes the low order 512
words of the control store. The high order 512 words are
reserved for special micro sequences used in interrupt service
etc. The phase A and phase B" microwords occur in succes
sive even-odd locations. Thus the sequencer provides only

Phase A

Figure 6-Microword format.

the high order eight bits of the next microword address. The
least significant bit is derived from the current phase. Thus
the control transfers can be made only to the even numbered
address locations.

The first field specifies the RALU operation, the second
field specifies a condition on which the RALU operation is
enabled. In phase A, the third field contains a command to
the primary memory, the SMSM or both. In phase B, the
same field contains a constant which may be used as a jump
address. The fourth field consists,ofthe status command that
selects which status is to be updated. The fifth field is for
bus control and determines which unit drives the data bus.
The sixth field is interpreted as the control command to the

Organization of TRAC Processor Memory Subsystem 629

OPC link in phase A and as the sequencer command in phase
B.

There are two busses in the processor, the data bus and
the constant bus, both of which are eight bits wide. The data
bus may be driven by RALU, the switch, the status registers,
the packet registers or the constant bus. The data bus is
accessible to the RALU, the switch, the status registers, the
packet registers and the instruction register. The constant
bus is driven by the control store or the mapping ROM and
it is possible to substitute the least significant three bits from
the instruction register. The constant bus is accessible to the
data bus and the microsequencer. It is also used as an ex
tended command code in certain operations.

An overview of the Texas ReconfigurabJe Array Computer*

by MATTHEW C. SEJNOWSKI, EDWIN T. UPCHURCH, RAJAN N. KAPUR,
DANIEL P. S. C,HARLU and O. JACK LIPOVSKI
University of Texas at Austin
Austin, Texas

1.0 OVERVIEW

This paper presents an overview ofTRAC and then discusses
the system's suitability for some promising applications:
Monte Carlo techniques, numerical solutions to linear sys
tems, and data base applications.

1.1 Introduction

The Texas Reconfigurable Array Computer (TRAC) is an
experimental computer system currently being built at the
University of Texas at Austin. It is a multiprocessor system
intended to utilize existing microprocessor technology and
yet provide performance that promises to be superior to cur
rent state-of-the-art processor capabilities. The uniqueness
and the potential capabilities of TRAC arise from its inter
connection network; a dynamically reconfigurable banyan
network.! The banyan network serves to partition and to
configure the processor, 'memory and 1/0 resources of the
system into different architectural organizations as de
manded for efficient application formulation and solution.
Although it was originally formulated as a high capacity sci
entific computer, it has been shown to perform well in both
numerical and non-numerical applications.

A high-performance microprocessor-based system has
some definite advantages over other large-scale computer
designs. Chip count tends to be low, and microprocessors
are very competitive in the "cost per computing power"
sense, and should continue to be increasingly cost-effective
in the future. Therefore, an obvious possibility for high-per
formance design is to include in the system as many micro
processors as needed to achieve the performance level de
sired. A major stumbling block in such a multi-processor
system has been the nature of the interconnection network.
In fact, the interconnection network may be much more ex
pensive and complex than the rest of system.

It is well-known how a program can be run on a set of
processors such that the data operated on consist of multiple
precision vector elements with the entire vector accessed
simultaneously. This is done by connecting n processors to
each of n independent memories with common address

* This research is supported under NSF Grant MCS77-15968.

631

space, so that a given address across the memories contains
one vector. Each CPU then processes one piece of the vector
in parallel with all the others. Carry logic is used to inter
connect processors acting upon different fragments of the
same vector element, to achieve multi-precision arithmetic.
For example, Figure 1 shows a system that operates on 2-
element vectors where each element is 3 bytes long (each
processor handles one byte).

The major drawback to such a machine is its lack offlex
ibility. The machine is essentially "hardwired" to operate
on a specific type of data. When other data types are op
erated upon, gross inefficiencies result; the machine either
ends up underpowered, overpowered, or just poorly config
ured for the task (for example, using the machine in Figure
1 to process 7-element vectors of 8 bits per element is clearly
inefficient).

A logical way to improve the situation is to introduce
switches into the bus structure, under control of software.
One general way of doing this is the crossbar arrangement
as shown in Figure 2. 2 Now the machine can be dynamically
configured to adapt itself to the needs of the task. The big
disadvantage here is that the number of switches required
is proportional to the square of the number of resources in
the system. For large systems (for example, a IOOO-processor
system), the switch count is then prohibitively large.

The TRAC system being built is a form of switched net
work in which the number of switches required goes up as
n * log n with respect to the number of resources to connect.
The major unique features of the TRAC computer are space
sharing, reconfigurability, varistructuring, inter-task com
munication ability and the fact that its design makes it a
virtual machine to the user. Space sharing implies that in
dependent or interacting tasks can all be running simulta
neously on the same computer, as opposed to the time shar
ing where tasks must await their allotted time-slot to
execute. Reconfigurability is the ability of TRAC to dynam
ically partition its processors and resources (primary and
secondary memories, 1/0 devices) under software control
to obtain optimal utilization and minimal waste for the set
oftasks to be run. Within a partition, TRAC is varistructured'
in that regardless of the data structure requirements for the
task, any data width or architecture may be used; flexible
microcode makes the exact processor configuration trans
parent to the software for the task. The machine is virtual

632 National Computer Conference, 1980

p~p~p p ..,c P

M M M M M M

P = processors J 8-bit

M = memories

c = carry linkages
Figure I-A two-element 24-bit/element vector computer.

in that user programs can be oblivious of the specific set of
memory and processor modules used. Memories have space
page registers which allow them to be combined in any way
to form address spaces. An extension of the virtual nature
of the machine is TRAC's modularity. Without changing
operating system software, resources and processors can be
added on to the system in a building-block fashion to expand
the machine to meet the needs of the user.

We now review the concepts which TRAC uses to achieve
these goals. It is important to realize that these concepts are
each more general in potential than in their realization in
TRAC. They are currently the topics of extensive research
by TRAC personnel at the University of Texas.

1.2 Concepts

The most fundamental concept in the system is the use of
an SW -banyan network3 to interconnect the set of processors

p p p p 0 0 0

M----~~--~~----~--~#_-------

M----~~--~#_----~--_4fl_-------

M-----4~--~H---~~--_4#_-------

M----~~--~~----~--~#--------

o
o

o

o
o

o

Figure 2-Crossbar network.

000

with the set of resources. A banyan is represented by a graph
in which nodes are divided into ,three types: apex, base and
intermediate nodes. In TRAC, apex nodes represent pro
cessors, base nodes represent memory or 110 or combined
memory-liD resources and other nodes represent switch
nodes. It has the property that there is a unique path between
any apex (processor) and base (resource) node pair through
the intermediate nodes (switches). Furthermore, the graph
may be regular in that all apex nodes look alike, all inter
mediate nodes look alike, and all base nodes are either mem
ory nodes or 110 nodes or combined memory I/O nodes.
Note the potential for mass production of the components;
in fact, only four types of LSI IC's would be needed to build
a very large and powerful computer. The intermediate nodes
have a fixed number of arcs going toward apex nodes
("spread") and going toward base nodes ("fanout"). Figure
3 shows a typical SW banyan network. A characteristic of
SW-banyans is that each level of intermediate nodes has O(n)
nodes, and there are O(log n) levels, hence O(n*log n)
switches.

Each switch in the network is capable of interconnecting
an incoming arc to any subset of the outgoing arcs and vice
versa. Initializing the switches is done in hardware and is
transparent·to user programs.

For a given task, three types of subtrees can be established
using the sw.itch nodes 1: data trees, instruction trees, and

.,;;r
APEX

I

I

P

1
I

M

P

M

P
I

I

1

M

P

I\'\. /'1
IBASEI
I 1

P
I
I
I

M M

P - Processors

I
I
I

M

P

M - Memories & I/O Devices

• - Switches

I
I

M

P

Figure 3-A typical SW-banyan.

P

PREAD = 2

FANOUT = 2

M

shared memory trees. Physically these are actually trees, but
once formed they logically and electrically perform as bus
ses. The data tree is used as a data bus to connect a processor
with appropriate memory modules. The instruction tree is
used as an instruction bus to broadcast instructions to a set
of processors performing the same task (SIMD mode).
Shared memory trees connect a set of processors to a single
memory module for the purpose of sharing data; parts of the
shared memory tree are used to extend a data bus from time
to time in order to share a memory. The operation of these
subtrees is shown later. Figure 4 shows examples of these
trees. Following the paths of instruction trees and shared
memory trees is a GPC (generate-propagate-carry) bus used
to interconnect processors all working on the same multi
precision data element. The GPC bus is also used for syn
chronization of processors, distributing status information
and arbitration over control of shared memories.

In addition to the primary memories, TRAC has self-man
aging secondary memory (SMSM).4 These modules are in-

I
I

I
- Data Subtree connecting PI with

MI " M21 M3" M4

- Instruction Broadcast Tree
connecting PI with Pg

- Also Shared Memory Tree
allowing PI and Pg to share Mg

Figure 4-Subtree examples.

Overview of TRAC 633

cluded in the system network as resources. They are low
cost, medium speed memory devices which may initially be
implemented using CCD's, bubble memory or MOS RAM
technology. The data within the SMSM is organized as seg
ments and accessed by means of segment labels, making it
act like an associative memory over the labels only. Since
the directory structure is implemented in hardware, the bur
den of locating specific sets of data is taken from the soft
ware. A key use of SMSM's in the TRAC architecture is to
virtualize the memory. If a processor accesses memory data
which is not currently in one of the memory modules at
tached to the processor, the SMSM is used to page out cur
rent data in one of the modules, and then read in the desired
page of data into the now-free memory module.

The concept of index registers located in memory nodes
is used in TRAC. Instead of having processors supply a com
plete address and data bus to all resources (which would
have to be replicated on each arc of the SW-banyan), a
smaller 8-bit bus is used. References to locations in memory
modules are made by specifying one of the index registers
which reside on the memory modules themselves. This tech
nique allows a short (8-bit) macro-instruction to be sent
through the switches rather than a longer (16-bit) address.
This includes the program counter and data stack pointers,
as well as other special-purpose registers. The modules also
have built-in hardware to increment or decrement the reg
isters. Thus, in straight-line code, there is never any need,
for example, for a processor to take part in the incrementing
of the program counter (other than instructing the memory
module to do so). Stack operations, also, typically require
only incrementing and decrementing operations on the stack
pointers.

Now that we have touched upon the concepts in use by
TRAC, we describe the prototype implementation now in
progress at the University of Texas at Austin and the con
figuration of architectures for tasks and task execution.

1.3 Operation

The TRAC system will initially consist of a four-level SW
banyan network with a fanout of 3 and spread of 2 (this
amounts to 211 switch nodes). The network will connect 16
processors to 81 memory-liD nodes. The base nodes will all
(except for the switch control node and the port to external
computer systems) have uniform interfaces which may sup
port a memory module (of 4K byte capacity), an SMSM of
64K bytes or both. The banyan arcs consist of 23 signals,
8 of which are the data bus and three the carry-Iookahead
logic.

Given a set of tasks to run on TRAC, sets of resources
can be allocated to each of the tasks in such a way that the
partitions all are independent of one another. Thus the tasks
"space share" the machine; see Figure 5. Each task has
exclusive control of its resources and does not have to con
tend with other machines for the use of these resources. In
addition, while the tasks are running, the system is dynam
ically reconfigurable, allowing specialized task structures to
be created on demand.

634 National Computer Conference, 1980

(Parti tion ing)

(Resu! ting
Rea!
Machines)

P-P

I I
M M

P-P-P-P-P-P

I I I I I I
M M M M MIlO

Figure 5-Partitioning and space sharing of resources.

P-P

I I
liD M

Each processor in the TRAC system operates with 8-bit
operands. To achieve parallelism in processing multi-pre
cision data, TRAC uses multiple processors. First we con
sider processing vectors of v elements of p bytes precision
per element, using v*p processors (later we show how less
processors can be used by "folding" the array and/or its
elements). Since all the processors will perform nearly the
same operation on their respective bytes of a vector simul
taneously, an instruction tree connects all processors to
gether during an instruction-fetch cycle. The task's code thus
needs to exist in only one of the processor's memory spaces.
That memory fetches an instruction, then broadcasts the in
struction through the data bus and over the instruction bus
in one memory cycle to all the other processors in the par
tition. Figure 6 shows an example of a subcomputer that
processes 2-element vectors, 16 bits per element. Note that
the instruction subtree is totally independent of the data sub
tree. The GPC bus included in the instruction subtree pro
vides carry-Iookahead capability as well as other synchro
nization functions as described above.

Thus the entire array can be accessed simultaneously. In
many cases, the number of available processors is limited,
or the size of the vector is too large to allow completely
parallel processing of the elements. This is where TRAC's
varistructured capability comes into play.5 When a task is
to be loaded and run, it passes information to the scheduler
for TRAC concerning the type of data structure the task uses
as well as a the urgency of the task (the more urgent a task
is, the more processors it is allocated). The scheduler ar
bitrates between all the tasks and performs a partitioning of
processors and resources in order to best satisfy all the tasks'
needs.

When a task is allocated a number of processors fewer
than the full width of its vector elements, the elements are
"folded" into the available memory width. For example,
Figure 7 shows to different ways in which a 4-element vector
with 2-byte elements can be packed into the memory mod
ules of 6 processors (naturally, if 8 processors are available,
the packing would be much more straightforward). The mi
crocode in the processors makes the packing algorithm trans
parent to the user; for example, adding two vectors together
would be accomplished by the same machine-language in
struction regardless of which of the two alternative packings
shown in Figure 7 is used.

More generally, logical vectors can be packed into a fixed

VI VI VI VI
(I) (I) (I) (I)

"0 ::e:: "0 ::e:: "0J "0J
£: £: N £: ~ £: N
tIlod: tIlod: tIlod: tIlod:
.I: .I: .I: .I:

A = (AI~A2) (AIM ' AIL~A2N ' A2L)

(16-bit values) (all 8-bit values)

~Data Trees (4 independent trees shown)

~Instruction Broadcast Tree

Carry Flow shown by arrows
Figure 6-A subcomputer that handles 2-element vectors, 2 bytes per

vector.

memory width (as . specified by the number of processors
allocated for the task) as shown in Figure 8. In the figure,
each horizontal row of data is capable of being accessed
simultaneously by the microcode; a reference to a vector at
the machine language level translates to sequentially ac
cessing each of the rows of the memory. The processors

+-A;
-E- A4
4!:-At . · · · ffi

:3 M4 ffi:~ M6
~0 ...

Figure 7-Two possible memory arrangements for 4-element vectors, 2-
byte elements, in 6 memory modules.

address
space

1

PI P2 Pk Pk+I
,--- ---- - -- .. ,---I 1

1 I I
1 Al I I A2
1 I I
L ___ __.J L ___

,-- - -l
I I
I AJ I
I I L __ --- --- __..J

Figure 8-Varistructured processing of multi-byte precision
vectors.

Pn

once again perform identical operations; furthermore, they
repeat the identical operations at each row of memory until
the entire segment is accessed. The only differences are
when handling most-significant or least-significant bytes; the
processor microcodes handle these automatically.

A data tree always has a processor at its root and one or
more of the resources at its leaves. It is important to realize
that though the interconnections are electrically tree-struc
tured, it is used as a conventional bus through which the
memories at the leaves of the tree are logically all mapped
into the root processor's memory space which is always one
byte wide, and potentially 64K bytes long. Each of the mem
ory modules is 4K bytes long, and is divided into four lK
pages, each of which has an onboard page register telling
where the page fits into the processor's memory space. The
four pages may be dedicated separately as any of program
space (instruction space), control space (which contains a
stack for descriptor and control information), operand space
(containing a task data stack) data space (containing task
global data).6 Each of the four data spaces have associated
with them two pointer registers as previously discussed.

An instruction tree is, orientation-wise, upside-down with
respect to the data tree. Its root is a dummy (i.e. unused)
memory module, while all its . leaves are processor nodes.
Anything sent over this tree by one of the processors is
broadcast to all attached processors in order to implement
SIMD mode processing. The carry tree is the same struc
turally as the instruction tree. However, as discussed earlier,
by forcing the generate and propagate to zero, the propa
gation of carry signals can be broken up allowing vector
parallelism.

A third type of subtree, the shared memory tree, allows
multiple processors to be simultaneously connected to a
memory module. A shared memory tree is identical in form
to an instruction tree. Attached processors may all be part
of the same task or may be from different tasks. At any
particular point in time, only one processor can have access
to the memory. Arbitration for access rights to the memory
are done round-robin style using the carry lookahead as a
priority circuit, so that no processor can lock out other pro
cessors from access to the memory indefinitely. Shared
memory provides a good means of communicating large
amounts of intertask or intratask data.

Overview of TRAC 635

Another means of processor-processor communication is
packet switching.7 Packet segments travel from memory
node to processor node by hopping between adjoining switch
nodes, one hop per memory cycle, independently of any
trees that might be set up. The packet transmissions occur
as a background activity so that they do not interfere with
other activity. Destination information contained in the
packets route the packet through the nodes. Packets may
be explicitly sent and received through TRAC machine lan
guage or implicitly sent as part of certain microcoded in
structions.

Since registers residing within the processors are of fixed
width, but data can in general be of any width, TRAC ma
chine language instructions that perform data manipulation
do not explicitly involve processor registers (such as load
and store accumulator instructions found on many other
machines). Instead, the instructions tend to be the memory
memory type. Stack operations are supported, with the on
memory index registers used as stack pointers. For example,
the add instruction takes the top two elements on the stack
and replaces them with their vector sum, adjusting stack
pointers accordingly.

TRAC subsystems can be architectured to implement each
of the types of parallel execution structures described in the
literature.s In one type of asynchronous parallelism (MIMD),
a task may, at some point in its execution, fork into multiple
subtasks operating independently of one another. Once the
fork occurs, subtasks may have to communicate data and
status information with other subtasks. Another occurrence
of asynchronous parallelism is the concept of task pipe lining .
In this scheme, a subtask operates on a set of input data and
produces a set of output data. This output is then used as
input to the next subtask in the chain, which likewise pro
duces output. All processes operate asynchronously except
for the necessary synchronization of inputs and outputs. A
third form of asynchronous parallelism is the data-flow con
cept; extending the concept of operators to subroutines and
functions (which are subtasks), a subtask is allowed to run
only when all of its input parameters are present (the pa
rameters may be outputs from other subtasks).

Asynchronous parallelism is easily achieved in the TRAC
system. Because of the ability of subtasks to have com
pletely separate and independent sets of processors and re
sources (space sharing), asynchronism and non-interference
is assured. Several methods of inter-subtask communication
are available, including shared memory modules, packet
switching, and dynamic reconfiguration to physically trans
fer memory modules between subtasks.

Another mode of parallelism is vector parallelism, as dis
cussed earlier. We have seen that the varistructured nature
of TRAC allows it to intrinsically support this mode.

Synchronous parallelism includes situations in which sub
tasks may have different instruction flows, but must all op
erate such that simultaneous events are well-defined. For
example, the addition of floating-point values might employ
two subtasks; one to handle the mantissa and one to handle
the exponent. If the mantissa subtask shifts the mantissa,
the other subtask must simultaneously increment the ex
ponent. Other examples include matrix inversions and string

636 National Computer Conference, 1980

or set searches. In the TRAC system, tasks running on dif
ferent processors can be in synchronization with each other
if care is taken by the system programmer to control task
startup and interrupts. Inter-subtask communication could
be implemented through shared memories.

The TRAC interconnection network also implements par
allelism in data movement as well as computation. The many
paths from apex and base nodes represent potentially active
data paths for memory and instruction fetches. The use of
the network for packet movement in its phases of inactivity
for bus service offers a potentially vast bandwidth for asyn
chronous data movement.

2.0 APPLICATIONS

We now examine some typical application areas which
could take advantage ofTRAC's architecture. Each of these
applications demonstrate the power of TRAC to support
several forms of parallel execution, to be configured for a
given application and to reconfigure during the phases of
execution of an application and to utilize high-volume data
transfers through the network. A crucial role for TRAC will
be to serve as a focus for the analysis of applications and
algorithms for parallel formulations. The existence of a sys
tem which can serve as an experimental facility for execution
of parallel algorithms should be a strong stimulus for this
significant problem area.

2.1 Iterative solutions of linear systems

We will describe the configuration of systems for the so
lution of large sparse linear systems of the type

(1) Au=b
where
A is an Nx N coefficient matrix,
u is N element vector,
b is a known N element vector and
N is of the order of 10**3 to 10**6.

Such systems are frequently encountered in the numerical
solution of partial differential equations arising from prob
lems in areas such as oil recovery, nuclear reactor design,
scientific weather prediction and many others. Partial dif
ferential equations (PDEs) can be converted into simulta
neous linear equations using finite element methods or finite
difference methods. 9 The conversion method, as well as the
nature of the physical system described by the PDEs influ
ences the structure of the matrix A. 10 Two types of proce
dures used to solve large sparse linear systems are direct
methods and iterative methods. In general for large systems,
iterative methods require less storage and may require fewer
arithmetic operations than direct methods.

Iterative methods work by breaking up the system into
subsystems. A number of different groupings are feasible:
point row-wise, wavefront, sub matrix etc. Let us consider
some block iterative methods. Here the matrix A is parti-

-

A1.1 A1.2 A1,3 A1,4 U1 81

A2.1 A2.2 A2,3 A2,4 lJ2 82

A3.1 A3.2 A3,3 A4.3 1)3 83

A4,1 A4.2 A4.3 A4,4 1I4 84

Figure 9-Linear system Au = b block partitioned with q = 4.

tioned into submatrices A(i,j) (Figure 9); the resulting sub
systems are solved and the results are merged. The subsys
tems are often selected such that their solution is trivial, e.g.
the submatrices may be lower triangular; if this is not the
case other techniques can be used. This is repeated until
some stopping criterion is fulfilled.

In the Jacobi method, one solves g subsystems during each
iteration as follows: .

(2) A(i,i)*Ui(n+ 1)= -'J.,A(i,})*Ui(n)+Bi for all}.NE.i
}= l,q
where
A(i,}): sub matrix i,}
Ui(n): solution sub vector i at nth iteration,
Bi: sub vector B.

For a dense matrix or a sparse matrix without structure,
for subsystem i to compute Ui(n + 1) it must have all U}(n)
where}.NE.i. Thus g - 1 transfers are required for computing
a sub vector and q*(q -1) transfers are required in computing
the result vector per iteration. However, a knowledge of the
structure of matrix A can be used to reduce the number of
transfers.

Consider the data flow graph of the iterations (Figure 10)
each node in the graph represents the solution of a subsys
tem; the directed arcs represent data transfers from a sub
system to another subsystem. Data must be present on all
the input arcs at a subsystem before that solution can pro
ceed. In this case q subsystems at the nth iteration must be
solved before any of the solutions at the (n + 1)th iteration
can proceed. Again, a knowledge of the structure of matrix
A can be used to permit those subsystems to proceed, whose
input arcs are full.

Consider the case where each subsystem is assigned to a
partition. Each partition can operate in one of 3 modes:

1. Computation mode: Intrapartition computation. This
can involve intrapartition synchronous packet trans
mission, e.g., as in a matrix multiply.

2. Communicating mode: Receiving/transmitting data from!
to another partition.

3. Idle: Not (1) or (2).

n.th iteration

(n+l}.th iteration

(n+2}.th iteration

Figure to-Data flow graph for Jacobi method.

The current version of TRAC does not support the
overlapped operation .of (1) and (2) although there is no in
trinsic reason in the TRAC architecture which will prevent
its extension to this further dimension of parallel execution.

For the Jacobi method the computation for an iteration
of subsystem solution is according to equation (2). This com
putation can be performed using a matrix mUltiply and a
vector add.

The Gauss Seidel method (which is structurally similar to
several other methods) is a better technique on the basis of
convergence criteria; it requires the solution of q subsystems
of the form:

(3) AU,;). Ui(n + 1) = - 'i,A (i,j)* Uj(n + 1)
j= l,i-l
- 'i,A(i,j)*Uj(n) + Bi
j=i+ l,q

The corresponding data flow graph is shown in Figure 11.
The dependencies in this graph indicate that only one node
can be active at a given time. Prepaging techniques based
on II can be realized using structures similar to that shown
in Figure 12. This can result in up to 50 percent reduction
in processing time.

An analysis of the dataflow within each node indicates
that all the inputs are not necessary for the operation of the
node to commence (Figure 13)! We can still assign a sub
system per partition, but by permitting each subsystem to
proceed when it has sufficient input data, utilization is ~n
hanced (Figure 14). This can give up to a (q -1) fold im
provement on a q partition (with one subsystem per parti
tion) system. We are currently studying these and other
structures.

Figure II-Data flow graph for Gauss Seidel method.

Overview of TRAC 637

compute Processors

LM:Local Memory S:Shared Memory SMSM:Secondary memory

Figure I2-Structure for prepaged Gauss Seidel method.

2.2 Monte Carlo method

The Monte Carlo method consists of constructing a prob
abilistic model of a problem in which the problem solution
is a statistical parameter of the model that is determined by
repeated, independent random sampling. As with any st~
tistical process, a large number of trials must be made m
order to obtain accurate results. This method generally con
verges slowly as lI(SQRT n) where n is the number of trials
performed (convergence acceleration techniques are known
but are not included in this discussion). Because of this slow
convergence, the Monte Carlo method is seldom used if the
problem is amenable to other numerical techniques. A major
advantage of this method however in terms of parallel pro
cessing, is that the solution at each point can be estimated
independently (in parallel) and the method can easily be ex
tended to higher dimensional problems with linear increase
in computational complexity.

The Monte Carlo method was selected for evaluation on
TRAC for the following reasons:

1. it is computationally intense;
2. it contains considerable inherent asynchronous paral

lelism;
3. its algorithms tend to be simple;
4. the method is useful in numerical applications.

638 National Computer Conference, 1980

Initially a very simple numerical integration problem to
find the area of a unit circle is used to benchmark TRAC.
This problem, though extremely simple, contains the essen
tial elements of the Monte Carlo technique. First, the math
ematical problem is described, then an organization to com
pute the results that exploits as much inherent parallelism
as possible is given. Finally, a mapping of this task structure
onto TRAC is discussed including the potential performance
of the system.

The mathematical model of the problem is shown in Figure
15 where the area has been normalized to the unit square for
convenience. Generally speaking, one can describe a prob
abilistic model ofthe problem in which "darts" (represented
by pseudo-random number pairs) are thrown at the square
and the area of the circle determined by counting the number
of times a dart hits inside the circle (successes) compared
to the total number of throws. The area of the circle is then
given by:

AREA = HITS/TOTAL THROWS.

As more and more "darts" are thrown the area of the circle
is determined more accurately. Of course, the problem can
be reduced by symmetry to consideration of the first quad
rant only and the resulting area multiplied by four. Mathe
matically two independent sequences of random variables Xi
and Yi are generated. The points (Xi, yo are tested to see if
they lie within the circle by determining if Xi**2 + Yi**2< 1.

The steps of the algorithm can logically be partitioned
between two task types which can run independently. Tasks

• : Computing e : Computed

o : to be computed

Figure 13-Dataflow within subsystem solution for Gauss Seidel
method.

88~8
: ! ! 1
!-_ - 1.--_ !. ___ .1

4 subsystem configuration with
shared memory

4 subsystem conflquration with
packet commun I cati on

time

P: Partition LM: Local Memory s: Shared Memory

t compute ______ communicate

Figure 14-Timing for Gauss Seidel method solution.

of type A perform the calculations of the individual trials,
and determine if the trial was a success (hit) or a failure.
Tasks of type B check the prescribed convergence criteria
and terminate the whole process when satisfied. Generally
one would like to have a large number of type A tasks running
in parallel and a single type B task checking their results.

The steps of tasks A and B are outlined as follows:

Task A

begin
generate pseudo-random number pair (Xi, Yi)

if Xi**2 + Yi**2 < 1
success: = success + 1

total: = total + 1
end

Task B

begin
newarea: = success/total

end

if (newarea - oldarea)<e stop.
oldarea = newarea

y

~-------------+--------------;---------x
1

-1

Figure I5-Monte Carlo integration.

A conceptual TRAC configuration is shown in Figure 16.
Identical machines Al,A2, ... An would be configured and
operate asynchronously reporting the results of their exper
iments by packets sent to task B. Task B would monitor the
convergence and determine when to terminate the pro
cessing. Although this process organization fits the problem
well and offers a potential reduction in processing time by
very nearly lin there are two problems:

1. Counter bottleneck. If n is very large (as one would
hope for a full-scale TRAC machine), task B may be
come a bottleneck due to the large number of packets
received from the A tasks. A possible solution is illus
trated in Figure 17 in which a small number of addi
tional B processes are introduced forming a tree to re
duce the message traffic to each Bi. When a total
counter in a Bi task overflows the next higher counter
is updated. The updating process could be skewed to
avoid bursts of updates caused by the A tasks running
very nearly in lock step.

2. Parallel pseudo-random number generation. It was as
sumed that each task Ai generates its own pseudo-ran
dom numbers (PRN). This is a non-trivial assumption,
since one must be sure that the parallel sequences of
PRN are independent. A method has been developed

test)

independent trials)

Figure I6-Centralized testing.

Overview of TRAC 639

Figure I7-Distributed testing.

to guarantee that the sequences are independent. This
method assumes a PRN sequence in which one has
confidence. Given this sequence generated by a mul
tiplicative PRN algorithm then each Ai is assigned a
seed from the assumed PRN sequence (see Figure 18).
An offset constant, c, is used by each Ai to generate
its next PRN. More details and extensions of this
method are found inl2. Once the n seeds, Xi and care
computed and sent to the corresponding Ai tasks, each
task can generate its PRN's in parallel independent of
the other tasks.

2.3 Database management

The design and implementation of special machine archi
tectures for database management has been receiving in
creasing attention in recent years. A major reason for this

Assume: A pseudo-random number generator
of the form

Xm+l = (a x m)b

Process: Each Ai given seed XI generates

the PRN sequence XI' Xn+l, S2n+i'

~ach PRN used by Ai Is determined
as follows:

next PRN = (c(last PRN»b

a prime number used to generate
seeds

b modulo base
c multiplicative constant offset,

c = (anXi)b
n: number of parallel tasks A
Xi: seed used by process Ai

Figure I8-Parallel pseudo-random number generation.

640 National Computer Conference, 1980

interest is the rapidly growing size of databases and the high
frequency of query processing. Hsiao 13 in his description of
data utilities, suggests a future database capacity require
ment of over 10**12 bytes and a peak query frequency of
a million requests/second.

A number of different approaches have been taken to
ward solving the very large database processing problem. 14

,

15,16 Reconfigurable machines are becoming feasible primar
ily due to the appearance of low cost microprocessors. The
flexibility of such machines may permit a synthesis of the
previously described database machine approaches with the
addition,al capability for highly efficient concurrent query
processing through configuration to match individual or
groups of queries. In effect, special purpose sub-computers
can be created to process each query and a number of these
machines can run concurrently.

2.3.1 Approach

One approach suitable for the hierarchical data base man
agement system is to consider TRAC as a potential backend
machine to process indices to a large data file. The database
data file will reside on a general purpose host system on a
conventional mass storage device with secondary index files
(inverted file and record association file) being searched and
updated in the the backend, and implemented so as to take
advantage of the backend's novel architectural features. A,
key file consisting of a key type, keys and a trace (logical
identifier) for each record occurrence in the database is main
tained on the backend. Traces described by LowenthaP7 are
tuples which represent record occurrences and the logical
positioning of a record in a hierarchically structured data
base. Operations on the key file are functionally equivalent
to operations on an inverted file. This file may be segmented
by key type and paged into fast access SMSM memories4

and searched to determine a set of traces which are then
passed along to a set operation pipeline where they are com
bined with other trace sets to generate a response set for
complex queries. Queries may be represented in a disjunc
tive form:

A(1).op.A(2).op . . " .A(i) op. A(n)

where each AU) represents conjunctions of relational expres
sions defined on key items and values within a single record
type and" .op." represents a set operation, such as union,
intersection and difference. For example, consider the
query:

Find name SMITH where salary is greater than $20,000
and location is Austin.

Where name, salary and location are key items. Suppose
each of these keys are on separate key files, then

A(1): (name, = ,SMITH)
A(2): (salary,> ,20000)
A(3): (location, = ,Austin)

and the query is of the form:

(name, = ,SMITH) .and. (salary,> ,20000) .and. (loca
tion, = ,Austin).

Processors are configured to search the corresponding key
file for each of the A(i)'s. The A(i)'s have been constructed
as simple operations so that a single pass through the file is
sufficient to determine the response set. As a result of these
searches, the average data traffic through the pipeline is
greatly reduced.

A principal focus of this investigation is the development
of efficient algorithms for sorting and set operations on in
dices. Efficient set operation algori~hms are necessary to
combine trace sets to determine the response for complex
queries. Sorting is required to arrange the key file by trace
value so that each trace set entering the pipeline will be
sorted to facilitate set operations for individual queries. Sort
ing could be performed during slack periods or during up
dating sessions and could use the large number of processors
that would be available at that time. Separating the sorting
from individual query processing eliminates much redundant
sorting.

While other architectures also offer potential for very large
data base management, the inherent parallel but flexible
TRAC structure promises to be a viable alternative to, or
a useful addition to, those other techniques.

2.3.2 System configuration

Based on the approach described in the previous section
the backend system is configured into multiple pipelines of
the type shown in Figure 19. For the set operation stages
it is assumed that in general the size of the trace sets will
be large relative to the memory available for individual pipe
lines. Furthermore, traces will only be available page by page
from the search stage. Under these constraints a pipeline
approach is valid. It is expected that on the average several
hundred pipelines could exist simultaneously on a machine
with 6000 or more processing elements. Note that this is an
average figure and the peak query concurrency could be
higher.

High input bandwidth to the pipeline is required to avoid
a possible I/O bottleneck. The approach taken is to page the
key file, segmented by key type, from secondary memory
to high speed SMSM. These· memories output continuously,
and the data can be read by attaching processors dynamically
to the desired bytes of the key. Figure 20 shows an example
input. The key portion and trace are read in parallel by the
attached processors. Key bytes are compared with a com
parand register slice in each processor, and if the query

~
~-7

CONFIGURAHLE " SE'r '--'>. rUTPUT I
INTFLLIGENT (----~7 OPERATIONS-:/
~mMORIES

Figure 19-5ystem functional pipeline.

Overview of TRAC 641

III ijjf 11"""1111

Search Key (25 bytes) TRACE (10 bytes)

carry linkage

Figure 20-Pipeline input.

condition is satisfied, the associated trace is pushed into
RAM buffers attached to the proper pipeline. More than one
processor can be attached at the same time to a byte of
memory so that a number of pipelines can be serviced con
currently by the same input module.

There is also the possibility. of overlapping or time sharing
stages of the pipeline. For example, set intersection may
result in diminished output while set union will result in in
creased output. The flow through the network, therefore
may not be smooth resulting in idle time that could be shared
with other processes. Resources can be released as the pipe
line begins to empty.

The interesting possibility of performance improvement
through query lookahead and Boolean tree height reduction
for optimizing the configuration and scheduling of the query
pipelines is under investigation. Algorithms discussed by
Kuck[18] and Ramamoorthy[19] for tree height reduction in
arithmetic expressions may be applicable in this context.

3.0 CONCLUSIONS

TRAC offers the potential for a great amount of parallel
ism. We are studying the approaches to best utilize the com
puter, and preliminary results are positive. This paper sum
marized the architecture and its uses. The following papers
on TRAC in these proceedings show more detail on how the
hardware is built. Though not presented in. depth in these
proceedings, a joint effort between the University of Texas
Electrical Engineering Department and the Computer Sci
ence Department has yielded extensive research and devel
opment in the areas of operating systems, system simulation
and other software areas.

4.0 ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge J. C.
Browne, M. M. Malek, H. L. Taylor and the members of
the TRAC team whose extensive works are reflected in this
paper.

BIBLIOGRAPHY

1. Lipovski, G. J. and Tripathi, A., "A Reconfigurable Varistructure Array
Processor," Proc. of the 1977 International Conference on Parallel Pro
cessing, August 1977, pp. 165-174.

2. Wulf, W. A. and Bell, C. G., "C.mmp-A Multi-Miniprocessor," AFIPS
Proceedings, Vol. 41, FJCC, 1972, pp. 122-131.

3. Goke, R. and Lipovski, G. J., "Banyan Networks for Partitioning on
Multiprocessor Systems," Proceedings of the First Annual Symposium
on Computer Architecture, 1973, pp. 21-30.

4. Lipovski, G. J., Su, S. Y., and Watson, J. K., "A Self-Managing Sec
ondary Memory System," Proceedings of the Third Annual Symposium
on Computer Architecture, January 1976.

5. Premkumar, U. V., "TRAC: Principles of Operation," Technical Report
TRAC-3, University of Texas at Austin, January 15, 1979.

6. Smullen, J. R., "Memory Management of TRAC," Technical Report
TRAC-2, University of Texas at Austin, May 1979.

7. Tripathi, A. R. and Lipovski, G. J., "Packet Switching in Banyan Net
works," Symposium on Computer Architecture, 1979 .

. 8. DeGroot, R. D., "Introduction to the Architecture of TRAC," Technical
Report TRAC-I, University of Texas at Austin, January 1977.

9. ,"oung, D. M. and Gregory, T., A Survey of Numerical Mathematics,
Vol. II, Academic Press, 1972.

10. Young, D. M., Iterative Techniques in Numerical Analysis, Academic
Press, 1971.

11. Trivedi, K. S., "An Analysis of Prepaging," CS-1977-7, Department of
Computer Science, Duke University, August 1977.

12. Upchurch, E. T. and Lipovski, G. J., "Parallel Pseudorandom Number
Generation and Monte Carlo Methods on TRAC," TRAC Technical Re
port, in preparation.

13. Hsiao, D. X. and Madnick, D. K., "Data Base Machine Architecture in
the Context of Information Technology Revolution," Proceedings, Third
Very Large Database Conference, October 1977.

14. Berra, P. B., "Recent Developments in Data Base and Information Re
trieval Hardware and Architecture," COMPSAC, November 1978, pp.
698-703.

15. Dewitt, D. J., "DIRECT- A Multiprocessor Organization Supporting
Relational Data Base Management Systems." Proc'C'c'ciinRs of the Fifth
Symposium on Computer ArchitecturC', April 1976.

16. Lipovski, G. J., "Architectural Features of CASSM: A Context Ad
dressed Segment Sequential Memory." p/'(lc·('('difl~.I' (~r the Fifth Annual
Symposium on Computer Architecture, April 197H. pp. 31-38.

17. Lowenthal, E. I., "A Functional Approach to the Design ofStorageStruc
tures for Generalized Data Management Systems," Ph.D. Dissertation,
Computer Science Department. University of Texas at Austin, August
1971.

18. Kuck, D. J., et aI., "On the Number of Operations Simultaneously Ex
ecutable in FORTRAN-like Programs and their Resulting Speedup,"
IEEE Transactions on Computers, December 1972, pp. 1293-1310.

19. Ramamoorthy, C. V., et al.. "Compilation Techniques for Recognition
of Parallel Processable Tasks in Arithmetic Expressions," IEEE Trans
actions on Computers, November 1973, pp. 986-998.

Design and implementation of· the banyan interconnection
network in TRAC*

by U. V. PREMKUMAR, R. KAPUR, M. MALEK, G. J. LIPOVSKI, and P. HORNE
University of Texas
Austin, Texas

1.0 INTRODUCTION

Over the past few years, owing to technological break
throughs in building cheap, reliable and powerful micropro
cessors and relatively cheap LSI memories, interconnection
networks have become the major hardware cost in design
and implementation of the multiprocessor systems. This sit
uation occurs from the fact that many more functions may
be expected from the interconnection network (switch) than
the establishment of simple bus connections. Even if only
the communication links were considered, the complexity
of some networks make their implementation prohibitive.
An example of such a network is a crossbar whose com
plexity is 0(n**2) where n represents a number of resources
which may be connected to another set of n resources. This
switch provides a separate connection between each pair of
resources (Figure 1). It has been empirically shown that im
plementation of a crossbar switch for a large n is very dif
ficult and with a state-of-the-art technology practically in
feasible for n>50.

In a multiprocessor system, the interconnection network
is an expensive but essential component. The switch, which
is central to the design of TRAC architecture, has been de
signed to achieve maximum capability within the limitations
of LSI technology (low pin count and large gate count per
chip).

Among several interconnection networks proposed in lit
erature [1-14], banyans seem to be one of the most general
classes and it has been proven that the majority of existing
networks are special cases of banyans [7,13]. We might ob
serve that several special cases of banyans have been de
scribed in, the literature. A cross-point switch is a regular
banyan of height l, and a if,s,l) SW-banyan can be defined

'as [recursions on an / by s cross-point. An Omega network
[5,6] is anf=2, s=2 SW-banyan, a perfect shuffle [11] is a
homomorphic reduction (i.e. the [layers are folded into each
other) of an /=2, s=2 SW-banyan, and the fast Fourier
transform interconnection structure is anf= 2, s = 2 SW-ban
yan.

While cross-point switches are indeed banyans, they are
among the least efficient banyans and other banyan switches

* This research is supported by RADC F30602-78-C-0099.

643

have better cost performance. Their complexity as a function
of resources to' be connected grows in proportion to n log
n. Banyans can be easily controlled, they are flexible, and
adaptable to specific applications by proper selection of the
fanout and spread-parameters of the switch.

Preliminary theoretical analysis and simulation indicate
favorable performance and small probability of blockage.
The TRAC system has a banyan switch with / = 3, s = 2 and
l = 4 (Figure 2) as the interconnection network and provides
a reconfigurable and varistructured architecture that sup
ports SIMD and MIMD modes of operation.

2.0 SWITCH PERFORMANCE

Requirements imposed on the interconnection network for
a reconfigurable machine may be very diverse. Reconfigur
able systems naturally imply feasibility of multiple modes
of operation which in effect stipulates arbitrary configura
tions of the system where processors, memories and I/O's
can be connected in several ways, e.g. one processor to
many memories (data trees), one memory to several pro
cessors (instruction or shared memory trees). Trees may be
looked upon as communication busses connecting a given
set of resources for SISD or SIMD operation. Then~ may be
several tree structures in the system at the same time. All
setups should be controlled externally because individual
control of each switching element is expensive and compli
cated. Varistructured systems should be capable of multi
precision arithmetic. This implics provision of busses for
high speed carry propagation betwecn an array of processors
which process a single multiprccision word.

Shared memories must have arbitration circuits in order
to ensure access to a shared memory by one processor at
a time. Additional priority selection logic has to be designed
for selecting a single processor from a set of candidate pro
cessors which are capable of connecting a specified set of
memories. Similar circuits should provide for memory se
lection when a set of processors requires connection over
a common memory.

A switching structure may perform several other functions
such as synchronization of processor and memory cycles
and packet switching. All of the above functions have been

644 National Computer Conference, 1980

Figure 1-4 x 4 crossbar.

designed in the TRAC system and their implementation will
be discussed later. We should also point out that besides the
functions which we have mentioned earlier, we also expect
a switching network to be cost-effective, capable of operat
ing at high speeds, modular, expandable and fail-soft or fault
tolerant.

Since complexity of banyan networks is O(n log n), it
makes them definitely more cost-efficient than cross-points
(for n> = 10). The majority of useful interconnection net
works have complexity equal to or greater than banyans.

Delay, which has a direct impact on speed of operation,
is an implementation criterion and is technology dependent.
Its growth rate is O(log n)- as in the majority of multistage
networks. Practically every multistage network may be con
structed from a set of the same switching elements, therefore
modularity is evident. A well designed system should have
an expandable switch so that it would be possible to attach
additional resources if required without discarding or com
pletely rewiring the original switch.

Fail-softness implies that an interconnection network
should be formed from fault independent units in order to
protect a system from catastrophical failure. If part of the
switch fails, the switch should be capable of connecting most
of the resources, bypassing the failed part.

Fault tolerance is a highly desirable feature in ultrareliable
systems where the probability of failure should be minimized
and a system should always be capable of performing at
maximum possible capacity. To ensure this, the system

Figure 2-s=2,f=3, /=4 SW-Banyan network.

should have fast, automatic procedures for error detection
and standby switching elements to replace the faulty ones.

Considering the above listed switch requirements and per
formance criteria, banyans seem to be very promising. These
networks permit economical partitioning of resources in
large modular systems into a wide variety of subsystems.
They further provide cost-effective mechanisms for sharing
of resources and for communication among subsystems. In
herent fail-softness capability, LSI compatibility and the
existence of fast control algorithms which can be largely
performed by distributed logic within the network are also
important attributes of banyans.

3.0 FUNCTIONAL DESCRIPTION OF THE TRAC
INTERCONNECTION NETWORK

The interconnection network or switch is the fundamental
component of the TRAC architecture and provides a mul
titude of functions that support a reconfigurable, varistruc
tured multiprocessor system with multiple modes of oper
ation. In this section, we present some of the primary
functions realized by the network and how they can be used
for a wide variety of applications. The switch permits effi
cient means of setting up a spectrum of configurations. The
network also supports a comprehensive communication
among the processors via packet communication.

The TRAC interconnection network is a multistage net
work connecting a set ,of processors to a set of memories
and/or I/O devices (MIO modules). The network consists of
multiple levels and operates under the control of a system
clock. The clock cycle is made up of several phases intended
for different functions. The network supports bidirectional

DATA
BUS

GR

DD

DI

SWCMD

A
CLOCK B

C

TABLE I.

120n5' 120n5 240n5 240n5 240n5
1'0 1'1 1'2 ,,3 1'4

Enable I & S tree5 Copy S ->- I Destroy r&D
(Clock) Tree~

clear AC clear S S + I, set AC
FFS FFS shape priority circuit

mi ss i ng page
data bus direction interrupt false

missing page
available data bus direction i nterruDt

ava i I ab Ie setup carry
data bus direction

di reet ion

carry di rection carry (default) direction

sync I async
pkts IDkts memcommd data

Set I, D, & S FFS avai lable

Set I, D, & S FFS avai lable

Data Tree den i a I d i st. interrpt

Data Tree den i a I

carry ci rcui t priority circuit

" sync pk t async pkt
rcques t request

clock for I, D. & S H. setup reset

0 I 0 I 0 I I
0 I I I 0
I I 0 0 0

"5
lL
lL
V
lL
/'
./
/'
./
L
/'
/'
lL
lL
V

0
0
0

Design and Implementation of Banyan Network in TRAC 645

buss connections among processors and MIOs. These con
nections may be quickly established with the use of hardware
algorithms executed by hardware in the network via an ex
ternal switch controller. In a given memory cycle, the switch
acts like a set of (tree-shaped) wire-OR buses for half the
cycle, and like a packet switching store-and-foreward net
work in the other half of the cycle. This is done utilizing the
time slot in the system cycle during which bus connections
are not needed owing to the inherent memory access delays.
Thus packet switching is implemented at relatively small
additional cost.

The first subsection describes a variety of tree connections
the switch is capable of configuring and their primary uses.
The second subsection deals with the packet movement and
resulting communication. The last subsection is devoted to
the description of switch control.

3.1 Tree connections

The banyan switch is capable of setting up three basic tree
structures, the data tree, the instruction tree and the shared
memory tree [15]. A data tree connects a single processor
to several MIOs and supports an SISD mode of operation.
Data trees have leaves at the base nodes and roots at the
apex nodes of the banyan (see Figure 2). The processors that
form the root nodes of several data trees may be connected
together to form leaf nodes of either an instruction tree or
a shared tree. The configuration with an instruction tree can
support a multiprecision SIMD mode of operation. Instruc
tion or shared memory trees have leaves at the apex nodes
and roots at the base nodes of the banyan (see Figure 2).
The configuration with a shared memory tree can support
an MIMD mode of operation. It is possible to switch a shared
tree into an instruction tree and switch back. This permits
the SMIMD mode of operation [16] by selectively and dy
namically creating and destroying instruction trees from ex
isting shared trees. Embedded within either an instruction
tree or a shared tree, there exists a General Purpose Com
munication link.

3.1.1 General purpose communications link

Carry-Iookahead circuits can be used for more than just
adders! The use of carry lookahead logic as a general purpose
communication (GPC) link has been described in [17]. A
slight modification of the scheme is used in t,he TRAC system
to achieve a flexible one-bit bidirectional data transfer among
a group of processors connected by an instruction tree or
a shared tree whenever such a tree is created. (Pieces of
. GPC links exist in every node in the banyan, and are con-
nected into the GPC link when the instruction tree is cre
ated.) The GPC link is embedded in the instruction tree. A
schematic diagram of a GPC link consisting of three levels
and connecting eight processors is shown in Figure 3.

Each node in the GPC link contains the carry lookahead
logic required to connect its one or two sons to its father.
The GPC link thus provides a high speed one-bit commu-'

)! l()(~{
~

Figure 3-GPC link.

nication link on which the delays <;>f propagation are pro
portional to the number of levels in the network. Each node
in the GPC link has the capability to reverse the linking order
of the processors connected by its subtree. This feature en
ables flexibility in achieving a desired order of processors
within a GPC link and is essential in configuring tasks con
sisting of fixed memory or I/O modules.

Each link in the GPC link consists of four distinct lines.
The direction control line (DR) is used to determine the di
rection of data transfer within the ordered set of processors,
i.e. forward or reverse. For example, left shift requires a
forward and right shift requires a reverse direction of prop
agation. The other three lines G, P and C have their usual
significance within the context of a carry lookahead logic.
Depending on the way the G and C lines are connected in
the root node, the processors would be either linearly or
circularly ordered. For example, linear ordering is used for
2' S complement adders and circular ordering is used in the
"end-around carry" ones complement adder. Thus the GPC
link provides a piece-wise or global data transfer in terms
of broadcast, collection, priority and carry lookahead link
ages among a set of linearly or circularly ordered proces
sors. The use of this flexible communication scheme is de
scribed in [17].

3.1.2 Shared trees

Shared memory trees are structurally similar to instruction
trees: a shared memory tree is rooted in a memory module
at the base of the switch and has two or more processors for
its leaves. The links of the shared tree are, however, only
potential connections that have been reserved for the con,.
figuration. Anyone of the processors on a shared tree can
acquire the shared MIO if it is not already held by some
other processor on the shared tree when the request is made.
An acquisition results in the establishment of an active chain
between the shared memory and the processor that owns it,
and the acquired MIO and the active chain become part of
the acquiring processor's data tree. An explicit release op-

646 National Computer Conference, 1980

\jl
. \

\ /
~ \ /
~ 2].
Potential Links to L & R Active chain to L Active chain to R

Figure 4-Shared memory: potential chains and active chains.

eration converts the active chain back to a potential chain
and the shared MIO to an available MIO (Figure 4).

More than one processor can attempt to acquire an MIO
at a given instant. These requests are arbitrated by a GPC
link that is embedded in the shared tree (this uses physically
the same components as the GPC link that follows the in-:
struction tree but this GPC link follows a shared memory
tree). The GPC link is used as a prioritization network that
assigns a linear ordering to the processors at leaves of the
shared tree .. Mutual exclusion of acquisition is assured by
the GPC hardware.

When configurations consisting of more than one shared
tree between a set of processors are established two situa
tions can result:

1. One processor has the highest priority in all shared
trees, or

2. Different processors have highest priority in different
trees.

The first situation results in unfair acquisition: if the high
est priority processor makes a request it acquires all shared
MIO's that are available. The second situation results in an
undefined (deadlock) state. This is resolved by dividing
shared MIO into distinct classes or colors. Arbitration for
differently colored !tees is performed in different memory
cycles on the GPC link (i.e., eight colors are implemented
in TRAC: a shared memory tree of color zero can be set up
every eighth memory cycle).

A processor can belong in more than one shared tree
however, requests for shared MIO acquisition are made at
different times as determined by the color. This can avoid
deadlock if shared memory trees between a processor and
each other processor that shares memory with it are of dif
ferent colors (as in the graph theoretic coloring problem).
Additionally, different processors can have highest priority
in differently colored shared tree. This way one processor
does not hog all the shared resources.

3.2 Packet switching

Packet switching provides communication from every pro
cessor in the machine to every other processor. This is
achieved by making the entire switch available for packet
movement in the time slot when tree-shaped busses are not

needed. This time slot is sufficiently wide for the time mul
tiplexed implementation of two packet networks: these net
works are called the mapping and the interrupting packet
networks. The motivation for the implementation of two
networks is discussed elsewhere [18].

The operation of all memory modules is synchronized so
that all modules perform memory accesses in the same time
slot (Figure 5). Trees are unnecessary when this access oc
curs-we use this time slot for moving packe~s from level
to level in the switch. This is in keeping with the philosophy
of extending switch functions at small incremental costs;
further, the performance of the existing switch is not de
graded in any way. The additional hardware needed for
packet switching are buffers on switch links (one for mapping
packets and one for interrupting packets per link) and ar
bitration logic on switch nodes (common hardware for map
ping and interrupting packets).

Each data tree has one designated memory module. Pack
ets are sent from this base node toward the addressed apex
node of the banyan. A unique path exists from every memory
module to every processor. This path is defined by a I digit
address in base s notation (for regular banyans), where I is
the number of levels and s the spread of the banyan (Figure
5). Each packet consists of two parts: a destination address
and data. Packets in the current version of TRAC are 4 bytes
long: 1 byte for address and 3 for data.

In the following discussion we will only consider one
packet network. The behavior of the other network is iden
tical.

Each link contains a single byte buffer. Packets move as
byte trains from level to level wherever a buffer in a suitable
link above the header becomes available. The choice of the

sou~~ssor Target Processor

Source Memory

-----.----] L XXXX010}IData Byte __

2 byte packet for s=2. 1 =4 banyan

Figure 5-Packet movement on s=2, 1 =4 banyan.

1: left
0: R1ght

Design and Implementation of Banyan Network in TRAC 647·

link is made on the basis of an appropriate digit of the des
tination header. All four bytes of the train move together up
one level in a memory cycle.

Packet trains are synchronized. Every fourth memory
cycle, the first byte of a train may enter the network from
the base node. If trains will contend at a node, they will
contend when their first bytes meet at that node. If more
than one packet attempts to use the same node in the switch
for jumping from link to link, prioritization hardware at the
node chooses one (first byte) of the packets for movement
and allows the remaining packets of the train to move in later
cycles, while the other packets must wait (Figure 6). This
results in nondeterministic transmission times for packets
however, no packet gets lost in the switch.

All processors can be transmitting packets in parallel.
High data throughput is possible because a very large num
ber of the links can be involved in data movement.

3.3 Master switch controller

The switch has a controller that is used to create trees.
This controller receives instructions from a base node in the
banyan. A scheduler is one of the tasks running in TRAC
which includes, as a resource, this control port. The sched
uler allocates resources for tasks, and issues commands to
connect the resources. Commands are sent to the control
port just like data might be sent to an MIa. Upon powering
up the machine, the scheduler itself is set up, by reading a
sequence of commands from a ROM in the control port. As
trees are set up to avoid using faulty nodes, the scheduler
is created from good resources. The only single failure point
is the control port, thus enhancing reliability.

Processors have a physical address, called the processor
address, which is their position at the apex. (This address
is the same one used in packet switching.) In our prototype,
it is a 4 bit binary number. Memories and I/O devices have
a similar physical address, called the MIa address which is
their position at the base. The resource address, in our pro
totype, is an 8 bit binary coded ternary number with a don't
care digit code, in.the manner suggested by Siegel [9]. If an
address is 1 ,0,2,X, where X is a don't care, three base nodes,

\jJ {J ~J

..!ol \y"~ PJ-I- - ~ol ~I(p~ --'---'OL,(PJ--

Blocked by htgher ! Blockage persists
priority packet froll left: for n cycles

d.) Cycle 4 i e.) Cycle 4 + (n+l) f.) Cycle 4 + (n+2)

ADDRESS HEADER: 0010. I: LEfT; 0: RIGHT;
2 BYTE PACKET I«)VEHENT ON 4-LEVEL BANYAN.

Figure 6

1,0,2,0, and 1,0,2,1 and 1,0,2,2 are selected at once. Don't
cares speed up the selection of resources and tend to assign
them so that the banyan is more efficiently utilized.

A task is a program segment that utilizes the same or sim
ilar data structures such as a: subroutine to invert a matrix.
A task may require n processors, each processor requiring
m memory and 110 devices. To set up a task, a sequence of
commands will be sent via the control port to set up busses
(trees) in the banyan to interconnect the resources needed
for the task. Data busses are first set up. A data buss is
created by naming the MIa addresses in a command to mark
them to be connected. The command includes a parameter
which is the list of MIa addresses. MIa's are specified this
way; however the processor is not specified. The processor
is selected automatically by hardware, to avoid faulty or
busy nodes in the banyan. The command returns the address
of the processor that was selected by hardware through the
control port, back to the scheduler, so that the scheduler
can use this address later to set up memory sharing busses,
and so that it can pass the address to any processor that may
want to send packets to the processor that was selected. A
data bus is set up in this manner for each of the n processors.
Then an instruction bus is set up by another command to
connect the processors together. A memory sharing bus can
be created to interconnect the processors of selected tasks.
Yet another command will create a memory sharing bus
among n processors whose processor addresses are specified
in the command. It returns the resource address of the mem
ory that was selected, so it can be identified later. Instruction
and data busses used in a task are automatically deleted by
the task when it is done. Memory sharing busses generally
have to exist as long as any task may need them, so they
have to be explicitly disconnected by the scheduler. Note
that tasks are set up rather infrequently (say every 100 ms.)
so that the trees are created infrequently and remain to be
used for long periods of time.

4.0 SWITCH ARCHITECTURE

After studying several interconnection networks we have
decided to design and implement SW-hanyan due to its flex
ibility, ease of control, cost- effectiveness, small delay, mod
ularity, expandability and ease of diagnosis and fail-softness.

Since the family of banyans is very large, a choice of ban
yan meeting our requirements was not trivial.

The TRAC system (Figure 7) consists of sixteen 8-bit, bit
sliced microprocessors which are connected through the
banyan network (switch) to the 81 MIa's (64 RAM's, disk
and 16 110 ports). In our study in choosing the banyan, we
made the following assumptions:

1. The system should have 16 processors,
2. The ratio of the number of MIa's to the number of

processors should be 3: 1 to 5: 1 ,
3. The fanout and spread should be between 2: 1 to 5: 1

due to physical implementation (preferably not larger
than 4),

4. Cost and blockage should be minimized.

648 National Computer Conference, 1980

We have simulated all feasible banyans with 16 apexes and
63 to 81 MIO's and we have decided to choose a banyan of
f = 3 and s = 2 due to its relatively low cost, minimal blockage
(note that f = 3 and s = 2 average to the closest set of f and
s to e), acceptable number of levels and ease of addressing.

The following comparison with crossbar switch may prove
promising capabilities of the banyan switch.

BANYAN CROSSBAR
Complexity O(nlogn) 0(n2

)

f,s " arbitrary fixed
Addressing easy may be complex
Blockage small none
Setup easy easy

The picture is even more clear if we actually compare
banyan versus crossbar for 16 processors, 81 MIO's system.

The TRAC's banyan is shown in Figure 2.

Fanout
Spread
Number of nodes
N umber of links

BANYAN
3
2

390
211

CROSSBAR
81
16

1296
96

This network is used to partition resources to set up mul
tiple processes in the system [19]. As we have described
earlier, the resources in process domain are dynamically re
configured to establish data trees, instruction trees and
shared memory trees to execute programs. The current cost
of TTL components and PC card used for a node is $125
which amounts to $26,375 for this network (211 nodes x $125
per node = $26,375). The speed considerations indicate rel
atively small time required for scheduling and resource al
location (about 200-300 microsecs). The setup time is very
small (1 cycle = 1 microsec). The data rate may be high
since delay over the switch is equal to 20ns, which amounts
to the total of lOOns over 5 levels of the switch. Blockage
seems to be small. Simulation runs have indicated that well
over 90 percent of the jobs could be allocated in three tries
and on the average about 35 percent in the first try. Since
modularity, expandability and fault tolerance are inborn
qualities of banyans, all of them may be also found in the
TRAC banyan.

5.0 FUNCTIONS OF THE SWITCH AND CONTROL
LINES SPECIFICATION

The switching network performs several functions which
can be divided into five main selections[20]:

1. Clock decoder logic,
2. Bus control logic,
3. Link control logic,
4. Packet switching logic,
5. Carry lookahead/priority logic.

Each node-cell in the banyan is put exactly on one printed
circuit board (module).

Banyan switch signals may be divided into two categories:
out-going and in-going into the node-cell.

Twenty-six lines run from node to node corresponding to
each link between them. Of the$e 26 lines per link, 23 are
presently being utilized.

These 23 control signals are e~plained below. Arrow in
dicates whether that signal propagates from processors to
MIO's (J) or vice-versa (t). Several functions are time
mUltiplexed on each line. The control lines are named ac
cording to their primary functions.

The following switch control signals are used:

1. GR : ~ : Grant-Used to Broadcast request for Instruc
tion-tree or Grant for Data tree. Broadcast is univer
sal.

2. RQ : t : Request-Used to Broadcast request for Data
tree or Grant for Instruction tree. Broadcast is uni
versal.

3. TR : ~ : Tree-Follows any active node and links.
Starting from top it goes to all three nodes below it
but passes through only the one that is active.

4. DI : ~ : Deny Instruction-If a RQ signal coming down
the Grant line runs into an active node a DI is gen
erated at that node which is propogated down to bot
tom-nodes.

5. DD : t : Deny Data-If a RQ signal going up the line
runs into an active node a DD is generated at that node
which is propagated up to top nodes.

6. RF : t : Read From-In response to a request from
Processor following instruction tree if the page no. in
memory matches, a RF signal is sent back up the RF
line.

7. RB : ~ : Rebound-In response to a RF signal from a
matching Memory, the Processor sends back a Re
bound signal, asking memory to send up the Data byte
along the Data Bus.

8. IL : ~ : Instruction Link-Sets up the direction of Carry
in the Carry look ahead circuit, in addition to its pri
mary function of informing the MIO that it has an In
struction tree. Also used for Data Bus Direction.

9. SL : t : Shared Link-Follows the shared tree. Informs
the Processor that it has a shared tree. Propagates
after the shared tree has been established.

10. PR : t : Packet Request-
11. PG : ~ : Packet Grant-

12. CP : ~ : Carry Propagate-
13. CG : ~ : Carry Generate-
14. CC : t : Carry-

Packet Request is sent
up to the node immedi
ately above requesting
permission to move a
packet. If PG, Packet
Grant, is sent down the
packet moves up one
'level.
CLA (Carry Look
Ahead) circuit is used to
link the Processor-car
ries between successive
Processors. Also used
to determine shared
Memory Priority.

Design and Implementation of Banyan Network in TRAC 649

i \ 1\

. " " "
C I' U'5

. "

swITe!1

"

¥o poRT 5 Y- fl,F!-1 o/(IF~
C MI:Os)

il\ I"

\1 ,II
Hf,.,6llf -r ~ ~t)# j;J(:1. /luI

Figure 7-TRAC systems.

15. DR : ! : Direction-It provides a momentary change of
direction in Carry circuit and Priority circuit.

16. DB i!: Bidirectional Bus for Instruction and Data
byte transmission.

6.0 DESIGN AND DESCRIPTION OF THE BANYAN
SWITCHING ELEMENT (NODE-CELL)

In this section the actual design of the banyan node-cell
(with logic diagrams given at the end of this section) is in
troduced. The five functions of the banyan switching element
(node-cell) and its implementation are described in detail in
the following sections.

6.1 Clock decoder logic

Clock decoder enables timing of the switch with subcycles
during which particular signals required for bus set up are
generated. Inputs to this circuit come directly from the mas
ter control circuit. The inputs and outputs of this circuit can
be classified as:

(a) Switch command signals (SWCMD): Switch com
mands exercise absolute control over th~ type of tree

being set-up-I, D or S-type. The following table ex
plains this 3-bit command.

SWCMD-O

I
SWCMD-l
I SWCMD-2

o 0 0-N 0 operation
o 0 I-Allows Data-tree set-up.
o 1 O-Allows Shared-tree set-up.
1 0 O-Resets the entire switch (during phase-4 only)

Further discussion pertinent to SWCMDs follows in Sec
tion 6.3 on link control logic.

(b) Clock phase signals: A grey code generator generates
A, B, C as shown in the circuit on clock decoderlogic
in Table I. These are used to generate the clock phase
signals 60, ,65.

(c) Packet switching signals: These signals are for exclu';
sive use of the packet switching and discussion of
these signals is deferred until the section on packet
switching.

650 I National Computer Conference, 1980

6.2 Bus control logic

The primary function of the bus control logic is to provide
the flow of a byte on the bi-directional bus by enabling it in
the proper direction and phases as required by the type of
tree set-up.

Figure 8, a block diagram for the bus control logic, shows
clearly the signals within this section.

During phases 0 and 1, the bi-directional bus is always off
and the flip-flop bank in the bus control circuit is used for
the packet movement only.

6.3 Link control logic

The following section summarizes the functions of the link
control logic:

1. Set-up a Data-tree or deny it.
2. Set-up an Instruction tree or deny it.

To Top Left Node
~

mR8!lfF'! 00-07 I i '~4
i :2::_~, - ~
I ,~ i ",<;''',..:..;';...t;~_~ Bidirec

tional
switch

DIR-I I
I
I

I
i
I
!

nt nL DE!l I
----- _1_1

F.nable/
DirectiOn

3. Set-up a Shared tree or deny it.
4. Copy an S-tree to an I-tree.
5. Destroy an S-tree.
6. Destroy I and D-trees.
7. Reset the entire banyan.

(1) To set up a Data-tree:
Following steps must be executed for a Data-tree
set-up.
(a) SWCMD is set to 001.
(b) MIO sends a request for the data-tree to the

processors by setting the RQ-line. This broad
cast is universal.

Note: If one of the I, D or S-ff is set, aDD
(Data-tree denial) also accompanies the RQ-sig
nal and the processor receiving both request
and denial will not respond.

(c) If the processor is available a grant is sent down
by setting OR-line. Then during a phase 4, the
D flip-flop is clocked and a Data tree is estab
lished.

OIR

To'TO'p--Bj9h~ N~
DO-07--~

~ i I~'I " I,
".! RF2!E
;~I I I I , I ,

~ti- .f!J!fv , /1

switch I ,

/1
I I

Figure 8-Block diagram for bus-control circuit.

Design and Implementation of Banyan Network in TRAC 651

Note: After a D-tree is set up a DD is now
generated from this node and any future at
tempts to set a D-tree with this node without
clearing D flip-flop will be denied.

(2) To set up an instruction-tree:
Following set-ups must be executed for an In~

struction-tree set-up.
(a) SWCMD is set to 010.
(b) Processor sends down a request by setting GR

line. Processor also sets TR-line to disenable
DI signal being generated in the D-tree. This TR
signal will follow only the D-tree, associated
with this processor.

(c) After one or more of MIO's are chosen a grant
is received by the node on RQ-line from the
node below.

Note: The roles of RQ and GR line are in
terchanged in the case of I-tree set-up.

(d) After receiving a grant on RQ-line the p'rocessor
clears the TR-line (must be done before phase
4).

(e) During phase 4 I flip-flop is clocked and an 1-
tree is set up.

Note: D flip-flop and I flip-flop in a node can
be set, but not set up, concurrently.

(3) To set up a Shared tree:
S-tree is set up in exactly the same way as an 1-

tree except the SWCMD in this case is OIl.
(4) To copy an S-tree to an I-tree:

Following steps must be executed for copying S
to I-tree.
(a) MIO sets the SL-line and processor sets TR

line.
(b) Now if SL (i-I) is true, SL (i) is the value of S

flip-flop in the node and during phase 3 in pres
ence of TR signal it is clocked into I flip-flop.

Note: Clocking for entire S-tree must occur
simultaneously in order for it to be copied cor
rec;tly. Also TR-signal must become false before
phase 4 or else it will clear the flip-flops in the
node.

(5) To destroy an S-tree:
To destroy an S-tree SL-line is set during phase

1 which generates S2C clearing S flip-flop.
(6) To destroy I and D-trees:

TR-line is set during phase 4 which clears D and
I-trees.

(7) To reset the entire switch:
Set the SWCMD to 111 during phase 4. This

clears the entire flip-flop set-up in the node cell.

6.4 Packet switching logic

The purpose of packet switching is to provide for a com
pletely free movement of byte from any MIO to any pro
cessor. A packet then, by implication, can move from aMIO
to a processor even if they are in two different trees con
currently.

Before explaining the packet switching logic it is necessary
to understand the following:

(a) Distribution of packet switching clock signals amongst
different levels of the banyan.

(b) Addressing for packet movement.

The clock is dispersed from level 1 through level 4. C(O),
CO) , C(4) are connected to the system clock via a dis-
tributor network so that one system clock is sequentially
transmitted to each of these. Each level interprets this cycle
for one of the three purposes:

1. Negotiate (N): During the negotiate cycle this level is
negotiated for by the level below.

2. Direction (D): If granted, the direction byte of the
packet moves in during this cycle.

3. End (E): In this cycle, the last packet is moved out
from this level. Also this cycle inhibits any grants to
the level below even if the packet in this level has a
grant to move up.

Example: C-2 is an END cycle for level 3, NEGOTIATE
cycle for level 2, DIRECTION cycle fot level 1. Therefore
during cycle 2, a direction byte (if granted) moves into level
1 while level 2 is simultaneously being negotiated for and
level 3 is moving (if granted) an END byte.

Figure 9 shows the packet movement at different levels
in the switch. Figure 10 shows the block diagram for the
entire packet switching circuit.

Note: Mapping and interrupting packet movement being
mutually exclusive can share the priority circuitry.

Phase 3-Mapping packet negotiates.
Phase O-Mapping packet moves.
Phase 4-Interrupting packet negotiates.
Phase I-Interrupting packet moves.

Note also that the bus is used for the packet switching
only during phases 0 and 1. During phases 3 and 4 only ne
gotiation is in progress and that is completely restricted to
packet switching circuit in the node and thus bus can be
allocated for other purposes.

TO T1 T2 T3 T4 TS T6

CPU's - - - NEG OIR 1st Cota 2nd Data
Word Word

Top Node - - NEG OIR 1st Data 2nd Data END
Word Word

Center Node - !
NEG OIR 1st Data 2nd Data, END NEG

Word Word

I
Lower Node NEG OIR 1st Oat. 2nd Data END : NEG OIR

Word Word i
Memory I/O OIR 1st Data 2nd"Data END NEG I OIR 1st Data

Word Wor~

I
Word

Figure 9-Cycle chart, showing the movement of mapping or interrupting
packet through the banyan.

652 National Computer Conference, 1980

~"J" t O"!'L---J _: ~t _ ~J12 ,I< '~ I
1ng C1rcu1t

I local Global

L::::::.-=--==~=:= l~::--=~-==-=::.-
t3NEG - ,1 I L' k l-t4NEG

DIR BIT _ _ OIR BIT

tODIR Input ~nabl ~rg 1n - .1DIR
Select10n C1

1

rcuit F
-'-r-- PG

il
PG

iR PR1l PR1R I I I I
Priority Selection I Grant -Enable ~NEG
Circuit Circuit END

~'
PH

Figure IO-Block diagram for packet switching circuit.

6.5 Carry look ahead/priority logic

Carry look ahead/priority logic has the following two fllnc
tions:

(1) To provide a carry linkage between any two proces
sors.

(2) Priority selection for shared memories.

Carry linkage is enabled if it is a part of the Instruction
tree. Carry is used for the addition, subtraction, shift and
the vector or element condition code transfer. A flip-flop is
set when the shared-tree that it is part of is active. Figure
11 shows the carry-look-ahead circuitry.

6.6 Fabrication a~d testing

The switch module card contains mode logic and link logic
for the two upper links. It is connected by two 26 wire cables
to the modules above it and by three 26 wire cables to the
modules below. A 12 pin edge connector supplies power a.nd
clock signals from the 'backplane.' The card itself contains
58 SSI and MSI chips. The bidirectional amplifiers are
mounted on a piggyback carrier so that different bidirection
amplifiers can be easily put in the module.

A microcomputer system with a 144 bit wide 110 port is
used for testing the modules. For the switch module, all the
142 pins on the board are connected to the computer 110

The Gx' Px and Cx of each I.C. connect to the appropriate connections on the
memory modules. Each I.C. can handle 4 memory modules. ~

74S182 I 745182 74S182 745182 745182 745182 745182 74S182
r--- Cn nCn

G
,Cn Cn en r- en Cn en

G p p i G P G P G P G P G P G P

Go Po Cnt-x G1 P, C"..y G2 P2 Crtz G3 P3 Go Po Cn+y G, P, C"..y G2 P2 Crtz G3 P3
~ Cn ~n

74S182 G if G if 74S'82

Go Po Cn+x Gl' P, (...... Cn
745'82

Figure II-Interconnection of a carry-look-ahead generator.

Design and Implementation of Banyan Network in TRAC 653

port. A switch testing program (written in FORTRAN) ex
ercises the module under test as follows: bit patterns are
placed on the 1/0 port of the computer and the resulting
signature from the module is compared with a table con
sisting of 'good' and 'faulty' signatures. The testing program
steps through a table of patterns and returns a formatted
report to the user.

7.0 CONCLUSIONS

The design and implementation of the banyan intercon
nection network for the Texas Reconfigurable Array Com
puter (TRAC) has been presented. We have shown that a
switch designed within the restrictions of LSI (few pins, and
> 1000 gates) can support a wide range of interconnection
mechanisms that complement a powerful processor. The
bidirectional switch is a powerful, unique, multifunctional
network capable of setting up majority of partitions for
SMIMD architectures. One of the most attractive charac
teristics of the switch includes: external control of the net
work at the top and the bottom levels only, cost-efficiency
of O(n log n), carry look ahead and priority logic as well as
time-multiplexed switching capability without degradation
of the system performance. Modularity, expandability, LSI
compatibility and fault tolerance potential make this network
very desirable for support of varistructured, reconfigurable
systems.

8.0 REFERENCES

1. Batcher, K. E., "The flip network in STARAN," Proc. of the 1976 In
ternational Conference on Parallel Processing, August 1976, pp. 65-71.

2. Feng, T., "Data manipulating functions in parallel processors and their
implementations," IEEE Trans. on Comput., Vol. C-23, March 1974, pp.
309-318.

3. Goke, L. R., "Connecting networks for partitioning polymorphic sys
tems," Ph.D. Dissertation, Dept. E.E., U. of Florida, 1976.

4. Goke, L. R. and Lipovski, G. J., "Banyan networks for partitioning multi
processor systems," Proc. First Annual Symposiums on Computer Ar
chitecture, Dec. 1973, pp. 21-28.

5. Lawrie, D., "Access and alignment of data in an array processor,"
IEEETC, Vol. C-24, No. 12, Dec. 1975.

6. Lawrie, D., "Memory-processor connection networks," University of
Illinois, Report UTUCDCS-R-73-557, Feb. 1973.

7. Premkumar, U. V., Malek, M., and Lipovski, G. J., "A theoretical basis
for switching structures," submitted to the 7th International Symposium
on Computer Architecture, 1980.

8. Siegel, H. J., Mueller, P. T., Jr., and Smalley, H. E., Jr., "Control of
a partitionable multimicroprocessor system," Proc. 1978ICPP, 1978, pp.
9-17.

9. Siegel, H. J., "Analysis techniques for SIMD machine interconnection
networks and the effects of processor address masks," IEEE Trans. on
Comput., Vol. C-26, Feb. 1977, pp. 153-161.

10. Siegel, H. J., McMillen, R.' J., and Mueller, P. T., Jr., "A survey of
interconnection methods for reconfigurable parallel processing systems,"
Proc. of NCC, 1979, pp. 529-542.

11. Stone, H., "Parallel processing with the perfect shuffle," IEEETC, Vol.
C-20, No.2, Feb. 1971, pp. 153-161.

12. Thompson, C. D., "Generalized connection networks for parallel pro
cessor intercommunication," IEEE Trans. on Comput., Vol. C-27, Dec.
1978.

13. Wu, C. and Feng, T., "Routing techniques for a class of multistage in
terconnection networks," Proc. of the 1978 International Conference on
Parallel Processing, August 1979, pp. 197-205.

14. Pease, M. c., "The indirect binary n-cube microprocessor array," IEEE
Trans. on Comput., Vol. C-26, May 1977, pp. 458-473.

15. Lipovski, G. J. and Tripathi, A., "A reconfigurable varistructure array
processor," Proc. 1977ICPP, 1967, pp. 165-174.

16. Radoy, C. H. and Lipovski, G. J., "Switched mUltiple instruction, mul
tiple data stream processing," Proc. of Second Annual Symposium on
Computer Architecture, 1974, pp. 183-187.

17. Lipovski, G. J., "An organization for optical linkages between integrated
circuits," Proc. of NCe, 1977, pp. 227-236.

18. Premkumar, U. V., Kapur, R., and Lipovski, G. J., "Interprocessorcom
munication in TRAC," Proc. of the first International Conference on
Distributed Computing Systems. 1979, pp. 51-62.

19. Seinowski, M. C. et aI., "An overview of the Texas ReconfigurableArray
Processor," submitted to Proc. of NCC, 1980.

20. Dujari, G. and Horne, P., "Node circuit for banyan switch of the Texas
Reconfigurable Array Computer," Technical Report TRAC-9, University
of Texas at Austin, January 1979.

The advent of trusted* computer operating systems

by STEPHEN T. WALKER
Department of Defense
Washington, DC

BACKGROUND

The need to trust a computer system processing sensitive
information has existed since the earliest uses of computers.
As the effectiveness of computer systems has improved, the
desire to utilize them in increasingly more important and
consequently more sensitive information proce~sing appli
cations has grown rapidly. Sensitive information must be
protected from unauthorized access or modification. But
without trusted internal access control mechanisms, the
computer has to be treated as a device operating at a single
sensitivity level.

Much has been learned about methods of assuring the in
tegrity of information processed on computers since the
emergence of operating systems in the early 1960s. Early
efforts were primarily concerned with improvements in the
effective use of the larger computer centers that were then
being established. Information protection was not a major
concern since these centers were operated as large isolated
data banks. There were many significant hardware and soft
ware advances in support of the new operating system de
mands. Some of these changes were beneficial to the inter
ests of information protection but since protection was not
an essential goal at that time, the measures were not applied
consistently and significant protection flaws existed in all
commercial operating systems.

In the late 1960s, spurred by activities such as the Defense
Science Board study (recently reprinted l), efforts were ini
tiated to determine how vulnerable computer systems were
to penetration. The "Tiger Team" system penetration ef
forts2 record of success in penetrating all commercial sys
tems attempted, led to the perception that the integrity of
computer systems hardware and software could not be relied
upon to protect information from disclosure to other users
of the same computer system.

By the early 1970s we had long lists of the ways penetra
tors used to break into systems. Tools were developed to
aid in the systematic detection of critical system flaws. Some
were relatively simplistic, relying on the sophistication of
the user to discover the flaw,3 others organized the search
into a set of generic conditions which when present often
indicated an integrity flaw. 4 Automated algorIthms were de-

* A trusted computer operating system is one which employs sufficient hard
. ware and software integrity measures to allow its use for simultaneously pro
cessing multiple levels of classified and/or sensitive information.

655

veloped to search for these generic conditions, freeing the
"penetrator" from tedious code searches and allowing the
detailed analysis of specific potential flaws. These tech
niques have continued to be developed to considerable so
phistication. In addition to their value in searching for flaws
in existing software, these algorithms are useful as indicators
of conditions to avoid in writing new software if one wishes
to avoid the flaws which penetrators most often exploit.

These penetration aids are, however, of limited value in
producing trusted software systems. For even if these tech
niques do not indicate the presence of any flaws it is not
possible to prove a positive condition (that a system can be
trusted) by the absence of negative indicators (known flaws).
,There will always be that one remaining flaw that has not
yet been discovered.

In the early 1970s the Air Force/Electronics Systems Di
vision (ESD) conducted in-depth analyses of the require
ments for trusted systems.5 The concepts which emerged
from their efforts today are the basis for most major trusted
computer system developments. The basic concept is a Ref
erence Monitor or Security Kernel which mediates the ac
cess of all active system elements (people or programs) re
ferred to as subjects, to all systems elements containing
information (tapes, files, etc.) referred to as objects. All of
the security relevant decision making functions within a con
ventional operating system are collected into a small prim
itive but complete operating system referred to as the Se
curity Kernel. The three essential characteristics of this
module are that it be: (1) complete (i.e., that all accesses of
all subjects to all objects be checked by the kernel); (2) iso
lated (i.e., that the code that comprises the kernel be pro
tected from modification or interference by any other soft
ware within the system); (3) correct (i.e., that it perform the
function for which it was intended and no other function).

Figure 1 is a chronology of some of the major trusted com
puter system developments that have occurred since 1973.
Following the ESD report in 1972, ESD and the MITRE
Corporation began a series of efforts to implement security
kernel based systems. The early efforts were limited to new
operating systems built from scratch.6 Also in 1973 a design
study called the Provably Secure Operating System Study
was initiated at SRI International. 7 From this effort emerged
a system design specification process which is being widely
used in later system developments and the preliminary de
sign for a capability based architecture trusted system. From

656 National Computer Conference, 1980

COMPUTER SECURITY EVOlmlON

1973

1974

1975

1978

ESDIMITRE
SECURITY MODEL
SECURITY KERNEL

MULTICS

SECURE
UNIX
PROTOTYPE

1977 FACC
KERNELIZED
SECURE

UCLA
SECURITY

KERrL

SECURE
UNIX
PROTOTYPE

HONEYWELL
SCOMP

SOC
KERNELIZED
VM370

SRI
PSOSSTUDY

OPERATING KSOS·8
SYSTEM
(KSOf-")

1880. TRUSTED SYSTEM APPLICATIONS
Figure 1.

1974 until 1976 much effort by MIT, Honeywell and MITRE
was spent on designs of a security kernel base for MUL
TICS.8 In 1974, work began at UCLA to develop a security
kernel base for a virtual machine monitor for the DEC PDP-
11 computer. 9 From this effort emerged a system design
specification process which is being widely used in later sys
tem developments and the preliminary design for a capability
based architecture trusted system.

In 1975 the Air Force initiated a research effort to design
an improved hardware base for use as a Secure Communi
cations Processor (SCOMP). Honeywell won the competi
tive procurement process with their Level 6 minicomputer.
The hardware improvements to the Level 6, designed to im
prove the efficiency and effectiveness of a security kernel
based software system, are called the Security Protection
Module and are intended to be compatible options for the
standard Level 6 computer.

In 1976 both the MITRE and UCLA projects to implement
security kernel based systems began efforts to develop
trusted prototypes of the UNIX (TM) operating system. to.lI

Also in 1976, the System Development Corporation (SDC)
began the development of a kernelized version of the IBM
VM370 operating system (KVM)Y This system was dem
onstrated in a preliminary version in October 1979 and is
expected to be available for specific DoD applications by
late 1980.

In 1977 based on the success of the UCLA and MITRE
trusted UNIX prototype developments, an effort was begun
to develop a "protection quality" trusted system, entitled
the DoD Kernelized Secure Operating System (KSOS) in a
two-phase program. In the Design Phase, from August 1977
until April 1978, two competitively selected contractors
(Ford Aerospace and Communications Corporation and
TRW Inc.) developed detailed system designs. Following a
careful evaluation of the two designs, the Implementation
Phase contract was awarded to ,Ford Aerospace in May
1978.13,14 This phase will implement, by Fall 1980, a pro
duction quality trusted operating system which is compatible
with UNIX. This effort is sponsored by the Defense Ad
vanced Research Projects Agency and several other DoD
agencies, each of which has specific applications in mind for
the system.

This KSOS implementation will be on the Digital Equip
ment Corporation PDP-ll!70 computer in order to take max
imum advantage of the widespread installed computer base
and existing UNIX-compatible applications on that com
puter. However, the organization of this project has been
substantially influenced by the possibility of implementa
tions on hardware other than the PDP-II. The product of
the Design Phase was a detailed system level specification. 15
This specification provides a functional description of each
module of the security kernel and operating system. This

spec could be used to guide the implementation of versions
of KSOS on other hardware architectures. The Honeywell
Corporation has undertaken an internally funded KSOS de
velopment project for their SCOMP modified Level 6 min
icomputer. Other implementations of the KSOS system are
being studied by various organizations.

TRUSTED OPERATING SYSTEM FUNDAMENTALS

An operating system is a specialized set of software which
provides commonly needed functions for user developed
application programs. All operating systems provide a well
defined interface to application programs in the form of sys
tem calls and parameters. Figure 2 illustrates the relationship
between the operating system and application software. The
operating system interfaces to the hardware through the
basic machine instruction set and to applications software
through the system calls which constitute the entry points
to the operating system. Applications programs (e.g., A, B
and C) utilize these system calls to perform their specific
tasks.

A trusted operating system patterned after an existing sys
tem is illustrated in Figure 3. The security kernel is a prim
itive operating system providing all essential security rel
evant functions including process creating and execution and
mediation of primary interrupt and trap responses. Because
of the need to prove that the security relevant aspects of the
kernel perform correctly, great care is taken to keep the

WELL DEFINED

INTERFACE.

APPLICATION
PROGRAMS

A 8 c
-.. ~~----~--------~

OPERATING

SYSTEM

HARDWARE

Figure 2.

Advent of Trusted Computer Operating Systems 657

APPLICATION
PROGRAMS

WELL DEFIN~D A 8 C D ... ~
INTERFACE

OPERATING

SYSTEM

EMULATOR
WELL DEFINED

~

INTERFACE SECURITY

KERNEL

HARDWARE

Figure 3.

kernel as small as possible. The kernel interface is a well
defined set of calls and interrupt entry points. In order to
map these kernel functions into a specific operating system
environment, the operating system emulator provides the
nonsecurity relevant software interface for user application
programs which is compatible with the operating system in
terface in Figure 2. The level of compatibility determines
what existing single security level application programs
(e.g., A, B, C) can operate on the trusted system without
change.

Dedicated systems often do not need or cannot afford the
facilities or environment provided by a general purpose op
erating system, bu't they may still be required to provide
internal protection. Because the security kernel interface is
well defined and provides all the primitive functions needed
to implement an operating system it can be called directly
by specialized application programs which provide their own
environment in a form tailored for efficient execution of the
application program. Examples of this type of use are ded
icated data base management and message handling systems.

Figure 4 illustrates the relationship between two typical
computer systems connected by a network. Each system is
composed of an operating system (depicted by the various
support modules arrayed around the outside of each box)
and application programs (e.g., A, Q, and R in the inner area
of the boxes). The dotted path shows how a terminal user
on System I might access File X on System II. Working
through the terminal handler, the user must first communi
cate with an application program (A) which will initiate a
network connection with the remote computer through the

658 National Computer Conference, 1980

r--------. ---------r
, . I

,------------,
I I

I I PHYSICAL
I SECURITY I
I PERIMETER I

V ~
I I

I ~
I I

I
I
I
I
I
I

(
\ FILE X

I
I
I
I I

I ~ OPERATING I
~SYSTEM I ·1 I

•••• . I
·t TERMINALS I

APPLICATIONS i·· · · ;
PROGRAM l ____ TERMINALS ____ -1 L ___________ ._---I

Figure 4.

network interface software. On System II an application
program or a system utility (Q) is initiated on the user's be
half to access File X using the file system. Program Q could
perform a data base update or retrieval for the user or it
could arrange to transfer the file across the network to the
local computer for processing.

When this scenario is applied in a secure environment, the
two systems are placed in physically secure areas and, if the
network is not secure, encryption devices are installed at
the secure interface to the network as shown in Figure 4.

Figure 5 illustrates the function of the security kernel in
the above scenario. Because the kernel runs directly on the
hardware (Figure 3) and processes all interrupts, traps and
other system actions, it is logically imposed between all
"subjects" and "objects" on the system and can perform
access checks on every event affecting the system. It should
be noted that depending on the nature of the hardware ar
chitectllre of the system, the representation of the kernel
may have to include the various liD device handlers. The
DEC PDP-II, for example, requires that all device handlers
be trusted and included in the kernel since liD has direct
access to memory. The Honeywell Level 6 with the Security
Protection Module Option does not require trusted device
drivers since liD access to memory is treated the same way
as all other memory accesses and can be controlled by the
existing hardware mechanisms.

SYSTEM SECURITY VULNERABILITIES

Protection is always provided in relative quantities. Guar
anteed 100 per cent security is not possible with today's
physical security measures, nor will it be with new computer
security measures. There will always be something which
can fail in any security system. The standard approach to
achieving reliable security is to apply multiple measures in
depth. Traditional locks and fences provide degrees of pro
tection by delaying an intruder until some other protection
mechanism such as a roving watchman can discover the at
tempted intrusion. With computer systems this "delay until
detected" approach won't always work. Once an intruder
knows about a security flaw in a computer system, he can
generally exploit it quickly and repeatedly with minimal risk
of detection.

Research on the security kernel approach to building
trusted operating systems has produced a positive change
in this situation. While absolute security cannot be achieved,
the design process for trusted computer systems is such that
one can examine the spectrum of remaining vulnerabilities
and make reasonable judgments about the threats he expects
to encounter and the impact that countermeasures will have
on system performance.

A caution must be stated that the techniques described
here do not diminish the need for physical and administrative

Advent of Trusted Computer Operating Systems 659

II -----~------i PHYSiCAL :------------1
\ I SECURITY I ~

I I PERIMETER I I

I V ~ :
I I I 1
I I l I
: I I I
~ c:::J I

: (:
I 'FilE xl
I I
I I
I I
I I
I ~ OPERATING I I
I I ~SYSTEM I I

II TER-M-'-N·ALS I ~ APPLICATIONSi •••• I
L.. ___________ .. _-' ~PROGRAM L ____ TERMINALS ____ ...J

Illli!lllll!!!I!!I:!:!I!!!!1 ~~~~:~TY
Figure 5.

security measures to protect a system from unauthorized
external attack. The computer security/integrity measures
described here allow authorized users with varying data ac
cess requirements to simultaneously utilize a computer fa
cility. They provide this additional capability which relies
upon the existing physical and administrative security mea
sures rather than replacing them.

. The nature of traditional physical and administrative se
curity vulnerabilities encountered in the operation of com
puters with sensitive information is well understood. Only
users cleared to the security level of the computer complex
are allowed access to the system. With the advent of trusted
computer systems allowing simultaneous use of computers
by personnel with different security clearances and access
requirements, an additional set of security vulnerabilities
comes into play. Table I describes one view of this new
vulnerability spectrum as a series of concerns. Each of these
concerns was not serious in previous systems because there
was no need or opportunity to rely on the integrity of the
computer hardware and software.

The first category is the Security Policy which the system
must enforce in order to assure that users access only au
thorized data. This policy consists of the rules which the
computer will enforce governing the interactions between

system users. There are many different policies possible
ranging from allowing no one access to anyone else "s infor
mation to full access to all data on the system. The DoD
security policy (Table II) consists of a lattice relationship in
which there are classification levels, typically Unclassified
through Top Secret, and compartments (or categories) which
are often mutually exclusive groupings. II> With this policy a
partial ordering relationship is established in which users
with higher personnel security clearance levels can have
access to information at lower classification levels provided
the users also have a "need to know" the information. The
vulnerability concern associated with the security policy is
assuming that the policy properly meets the total organiza
tional security requirements.

The second general concern is the System Specification
Level. Here the function of each module within the system
and its interface to other modules is described in detail.
Depending upon the exact approach employed, the system
specification level may involve mUltiple abstract de scrip
tions. 17 The vulnerability here is to be able to assure that each
level of the specification enforces the policy previously es
tablished.

The next vulnerability concern is the high level language
implementation. This category constitutes the actual module

660 National Computer Conference, 1980

TABLE I-Operating System Security Vulnerabilities

Cateaory

S~curity Policy

System Specification

High Order language
Implementation

Machine Language
Imple:i:entation

Function

Establish security rela~
tionship between all
system users, resources
(e.g .• 000 Security
Policy)

Establish policy rela
tionship fer Each system
module (e.g •• Parnas I/O
assertions)

Transform System Speci
fiea~ion Provisions for
each module into (e.g.
Fortran, PASCAL, C)

Transfonm HOL implemen
tation into binary codes
\,/hi ch are executed by
hardware

1'Software (Installation Independent)

{,Hard\'/are (Installation Dependent)

Hard\,'are Instruction
IlllJdules

Circuit Electronics

ihv ~ ce Phys i cs

Perform machine instruc
tions (e.g •• AOD instruc
tion)

Perfonm basic logic
functions which comprise
instructions (e.g.; AND,

. OR functions)

Perform basic electro
magnetic fl,nctions which
compl~ise bc:sic logic
function. (~.g. electron
interaction)

implementation represented in a high order language (HOL)
such as EUCLIDI8 or PASCAL. This vulnerability involves
the assurance that the code actually obeys the specifications.
The next concern on the vulnerability list is the machine
code implementation which includes the actual instructions
to be run on the hardware. The step from HOL implemen
tation to machine code is usually performed by a compiler
and the concern is to assure that the compiler accurately
transforms the HOL implementation into machine language.

The next level of concern is that the hardware modules
implementing the basic instructions on the machine perform
accurately the functions they represent. Does the ADD in
struction perform an ADD operation correctly and nothing
else? Finally, the last concerns include the circuit electronics
and more fundamental device physics itself. Do these ele
ments accurately perform in the expected manner?

As can be seen by analyzing this vulnerability spectrum,
some of the areas of concern are more serious than others.

Vulnerability Relative
Resolution Security Risk

Revlew Moderate

For each module establish High
security assertions which
govern activity

Manual or interactive H.1gh
validation that HOl -
obeys system spec

Compiler Testing Moderate

Testing,· redundant checks
of security relevant
hardware.

Maintenance Testing

low --·except for security
related hardware

low

In particular, relatively little concern is given to circuit elec
tronics and device physics since there is considerable con
fidence that these elements will perform as expected. There
is a concern with hardware modules, though in general most
nonsecurity relevant hardware failures do not pose a signif
icant vulnerability to the security of the system and will be
detected during normal operations of the machine. Those
security relevant hardware functions can be subject to fre
quent software testing to insure (to a high degree) that they
are functioning properly. The mapping between HOL and
machine code implementation is a serious concern. The com
piler could perform improper transformations which would
violate the integrity of the system. This mapping can be
checked in the future by verification of the compiler (pres
ently beyond the state-of-the-art). Today we must rely on
rigorous testing of the compiler.

The selection of the security policy which the system must
support requires detailed analysis of the application require-

TABLE II-DoD Security Policy

1. Non discretionary (i.e •• levels established by national policy
must be enforced)

Compartments

P. B C

Top Secret

Secret

Confi denti a 1

Unclassified

Partially Ordered Relationship

Top Sec.::t > Secl'et '> Confidential '/ Unclassified

Compartments A. B. C are mutually exclusive

Example:

User in Compartment B, level Secret can have access to a11
information at Secret and below (e.g., Confidential and
Unclassified) in that compartment, but no access to infor
mation in Compartments A or C.

n. Discretionary, "Need to kno\'1" - (i.e., levels established
"infonnally") •

ments but is not' a particularly complex process and can be
readily comprehended so the level of concern is not too high
for this category.

The system specification and HOL implementation are the
two areas which are of greatest concern both because of the
complex nature of these processes and the direct negative
impact that an error in either has on the integrity of the sys
tem. Considerable research has been done to perfect both
the design specification process and methods for assuring
its correct HOL implementation19,2o,21,22,23 Much of this re-
search has involved the development of languages and meth
odologies for achieving a complete and correct implemen":
tation.24 ,25,26

As stated earlier this vulnerability spectrum constitutes
a set of conditions in which the failure of any element may
compromise the integrity of the entire system. In the high
integrity systems being implemented today, the highest risk
vulnerability areas are receiving the most attention. Consis
tent with the philosphy of having security measures in depth',
it will be necessary to maintain strict physical and admin
istrative security measures to protect against those lower
risk vulnerabilities that cannot or have not yet been elimi
nated by trusted hardware/software measures. This will re
sult in the continued need to have cleared operation and
maintenance personnel and to periodically execute security
checking programs to detect hardware failures. Over the
next few years as we understand better how to handle the
high risk vulnerabilities we will be able to concentrate more
on the lower risk areas and consequently oroaden the classes
of applications in which these systems will be suitable.

Advent of Trusted Computer Operating Systems 661

DIRECT VERSUS INDIRECT LEAKAGE PATHS

Computer system security vulnerabilities constitute paths
for passing information to authorized users. These paths can
be divided into two classes: direct (or overt) and indirect
(or covert) channels. 27 ,28 Direct paths grant access to infor
mation through the direct request of a user. If an unauthor
ized user asks to read a file and is granted access, to it, he
has made use of a direct path. The folklore of computer
security is filled with case histories of commercial operating
systems being "tricked" into giving direct access to unau
thorized data. Indirect or covert channeis are those p~ths
used to pass information between two user programs with
different access rights by modulating some system resource
such as a storage allocation. For example, a user program
at one access level can manipulate his use of disk storage
so that another user program at another level can be passed
information through the number of unused disk pages.

Unauthorized direct access information paths can be com
pletely eliminated by the security kernel approach since all
objects are labeled with access information and the kernel
checks them against the subject's access rights before each
access is granted. The user who is interested only in elimi
nating unauthorized direct data access can achieve "com
plete" security using these techniques. Many environments
in which all users are cleared and only a "need-to-know"
requirement exists, can be satisfied by such a system.

Indirect data paths are more difficult to control. Some in
direct channels can be easily eliminated, others can never
be prevented. (The act of turning off the power to a system
can always be used to pass information to users.) Some in
direct channels have very high bandwidth (memory to mem
ory speeds), many operate at relatively low bandwidth. De
pending upon the sensitivity of the application, certain
indirect channel bandwidths can be tolerated. In most cases
external measures can be taken to eliminate the utility of an
indirect channel to a potential penetrator.

The elimination of indirect data channels often affects the
performance of a system. This situation requires that the
customer carefully examine the nature of the threat he ex
pects and that he eliminate only those indirect paths which
pose a real problem in his application. In a recent analysis,
one user determined that indirect path bandwidths of ap
proximately teletype speed are acceptable while paths that
operate at line printer speed are unacceptable. The assump
tion was that the low speed paths could be controlled by
external physical measures. With these general requirements
to guide the system designer it is possible to build a useful
trusted system today.

EARLY TRUSTED OPERATING SYSTEM
APPLICATIONS

There are a number of classes of applications for which
KSOS (either as a full UNIX compatible operating system
or in the stand alone kernel mode) is well suited. 29,30 The
first is an application called the Guard (Figure 6) in which
two commercial untrusted data management systems, op-

662 National Computer Conference, 1980

KSOS APPLICATIONS
GUARD

CONVENTIONAL
DATA BASE

MANAGEMENT
SYSTEM

LOW LEVEL

SECURED FACILITY

SECURITY
WATCH

OFFICER

CONVENTIONAL
DATA BASE

MANAGEMENT
SYSTEM

HIGH LEVEL

SECURED FACILITY

Figure 6.

erating at different security levels, are allowed to interact
through a KSOS based security filter. Queries from the low
level classified system are passed to the higher system
through the Guard. Replies, which might contain information
classified at the higher level, are sanitized by either operators
or application programs on the Guard. Before information
can be passed to the lower level system it must be presented
by the security kernel to the Security Watch Officer for a
determination of the appropriate classification of the sani
tized reply. If the new classification is at or below the clear
ance level of the lower system, the reply can be forwarded.
If not, it will be returned for further sanitization. This rel
atively simple application provides· a very useful function
and has wide utility in the DoD.

A second application class is that of trusted network front
ends (Figure 7). In the interconnection of DoD computers
by sophisticated data communications networks, extensive
use is being made of front end minicomputers to offload
many of the network protocol and terminal access functions
from the mainframe systems. These networks must now be
operated in a system high dedicated mode with all computers
and terminals operating at the same security level. If these
front end systems were implemented on security kernels,
subnetworks of computers and terminals, each operating at
its own security level, could be established. A set of co
operating trusted network front ends could provide a sig
nificant improvement to today's system high operating en
vironment with no change required to the large systems.

A third general class of trusted system applications is that
of message handling systems. The DoD has a wide range of
requirements for systems of this type. One characteristic
which crosses the entire spectrum of this application class
and has thusfar not been satisfied is the need for internal
integrity within the message system. In many cases security
constraints preclude the handling of information from the
full set of sources required by an organization because some
element of that organization does not have the complete set
of clearances required. The result is either a duplication of
systems to handle different sources (with the resulting prob
lems of stale or incomplete data) or the inaccessibility of
information to sources that require it. If these message han
dling systems were built on a trusted base such as KSOS,
they could make use of the access isolation mechanisms
which it provides. Such a system could provide the integra
tion of many information sources into a single environment
with sufficient protection to isolate sensitive information.

These are only a few of the applications in the DoD (and
in the private sector) that require operating systems with
significant levels of internal integrity. Any system that pro
cesses sensitive information could benefit from the integrity
provided by a trusted operating system. KSOS will not sat
isfy all the sensitive information handling needs that we now
foresee, but as experience in applications like those de
scribed here yields a better understanding' of more sophis
ticated applications, the systems which follow KSOS should
be able to fulfill the growing number of requirements.

Advent of Trusted Computer Operating Systems 663

I(SOS APPLICATIONS
TRUSTED NETWORI(FRONT END

LARGE
UNTRUSTED

CPU

LARGE
UNTRUSTED

CPU

TRUSTED
NFE

TERMINALS

TRUSTED
NFE

.... _ .. TRUSTED _ ..
NFE

LARGE
UNTRUSTED

CPU

Figure 7.'

TRUSTED SYSTEM ACCEPTANCE

The terms "approval," "certification," "accreditation"
and "validation" among others have frequently been used
to describe some form of acceptance for use of a system in
a particular security environment or security mode. Such
environments include dedicated mode, periods processing
(where the computer is operated at one security classifica
tion level for users with the same clearance and "need to
know" for a period, stopped, cleared and then tun at a dif
ferent level for a period, stopped, cleared, etc.), system high
(where all users are cleared to the same security classifi
cation level but may differ in their need to know) and si
multaneous multiple security classification levels (referred
to as multilevel secure or multilevel security mode where
users with different personnel security clearance levels have
simultaneous access to the same computer system).

In a multilevel secure environment, where the integrity of
the computer hardware and software will be relied upon to
the maximum to protect classified information, system ap
proval has been particularly hard to contemplate. However,
if a reasonable degree of integrity can be assured for the
hardware and software security mechanisms then this com
bined with appropriate external security provisions should
allow acceptance of trusted ADP systems.

The level of integrity afforded by the security kernel mech ..

anism and the formal specification and verification process
to which it is subjected, as applied in KSOS and KVM,
should be sufficient for approval for use in a nuniber of DoD
applications in particular environments. The approval pro
cess will involve a detailed analysis of the risks to be en
countered by the particular application/environment, the in
tegrity measures inherent in the kernel based hardware and
software, and the external physical and administrative mea
sures which can be established.

It is important to understand that security is nota binary
decision based only on the characteristics of the operating
system or hardware. A particular system installed in one
envirdnment may be approved for use, while the same sys
tem in a different environment may be unacceptable. With
an understanding of the spectrum of vulnerabilities that a
trusted system will be subjected to and the external physical
and administrative measures that are available, an evaluation
of the threat posed by a particular application/environment
can be performed to determine the suitability of a particular
system in a particular environment. It is possible to es
tablish general categories describing applications and envi
ronments and to evaluate systems such as KSOS and KVM
to determine in wltich application/environments they should
be suitable. The first applications of KSOS and KVM may
be satisfactory for a limited set of environments. Later sys
tems which are able to overcome more of the potential vul-

664 National Computer Conference, 1980

nerabilities should be. acceptable in increasing broad appli
cation/environment combinations.

DOD COMPUTER SECURITY INITIATIVE

This paper has thus far described the development and
potential use of trusted systems such as the DoD's Kerne
lized Secure Operating System and Kernelized VM370 Sys
tem. As significant as these developments are in themselves,
there is a much more important "next step" that must be
taken. First, some background is needed on the factors
which have influenced the actions of the DoD and the com
puter industry.

The DoD relies on the computer industry to supply its
general purpose computer hardware and operating system
software. With the exception of limited special purpose sys
tems, most computers in the DoD are commercial products
utilizing vendor supplied operating systems. The cost of de
signing, implementing, and maintaining today's complex sys
tems is so large and the underlying operating system support
needs of the DoD are so little different from those 'of other
ADP users that the expense of DoD unique operating sys
tems cannot be justified.

The DoD and others have been for many years asking the
vendors to build trusted operating systems. But since we
were unable to clearly define what we meant by a trusted
system, industry has been reluctant to undertake a serious
development because of the high risk that when completed
their product might be found unacceptable by either the DoD
or other customers. As long as no one was able to demon
strate in detail what was being sought or what constitutes
an acceptable product, there was little progress in the de
velopment of commercially available trusted systems.

One way to overcome this impasse is for someone (like
the DoD) to build a trusted system, demonstrate that is is
acceptable in real applications and provide detailed infor
mation on the techniques used in the development to the
computer industry. If the technology used to build this sys
tem is suitable for application in general sensitive informa
tion handling environments, then there is a large and rapidly
growing marketplace for such a product.

When viewed from this perspective the significance of
KSOS and KVM takes on new dimensions. These efforts
constitute the existence proof demonstration that a trusted
operating system can be built and successfully used in DoD
applications. Furthermore the approach used in building
KSOS (i.e., the well documented detailed design phase in
cluding a top level formal specification ofthe kernel interface
and a formal proof that it enforces an appropriate security
policy, followed by an implementation phase) allows im
mediate transfer of this technology for early use in near term
system developments. For the same reasons that the DoD
cannot support its own operating system development ef
forts, it cannot fund multiple vendor.s to build such systems.
But the demonstration of a technology suitable for wide
spread use in both government and industry should provide
sufficient incentive to the computer industry to expend its
own development resources to build a suitable line of trusted
operating system products.

The DoD wishes to encourage the computer industry to
develop, with their own resources, trusted operating systems
with security provisions similar to those provided by the
KSOS and KVM systems. In support ofthis, a DoD program
is being planned to transfer information concerning the
DoD's efforts to develop trusted operating systems and to
evaluate industry developed systems which are submitted
to the DoD for potential use in sensitive information handling
applications.

Two seminars on the DoD Computer Security Initiative
have been held in July 1979 and January 1980 at the National
Bureau of Standards in Gaithersburg, Md.

SUMMARY

This paper has described the background surrounding the
development of several DoD trusted computer systems in
cluding the DoD Kernelized Secure Operating System and
the Kernelized VM370 System, and the implications of these
developments on the future uses of computers. These proj
ects represent general purpose trusted operating systems
intended for widespread use. They employ the concepts of
a security kernel and an operating system emulator to pro
vide maximum compatibility with existing software appli
cations at a minimum investment of development cost and
time.

KSOS and KVM are intended to demonstrate the trusted
system development methodology and to provide a base for
the useful application of trusted computer systems. They
were not intended to be the ultimate answer to everyone's
security problems but rather to point the way toward that
goal. They also are part of an important initiative by the DoD
to transfer an understanding of security kernel technology
to industry to assist in the development of commercially
available trusted systems.

The work described in this paper is the result of many
years of research in trusted computer systems. The tech
nology to build systems described here exists today. There
is still much additional research required to develop trusted
systems with the full flexibility which will be required in the
future. We are recommending continued research into more
sophisticated capabilities and we believe that the industry
ties established in the DoD Computer Security Initiative will
provide strong transfer mechanisms for future research ac
complishments.

REFERENCES

1. Ware, Willis H., "Security Controls for Computer Systems, Report of
Defense Science Board Task Force on Computer Security," R-609-1, reis
sued October 1979, Rand Corporation, Santa Monica, CA.

2. Linde, Richard R, "Operating System Penetration," Proceedings of the
1975 National Computer Conference, 1975, pp 361-368.

3. Abbott, R P., et aI., "Security Analysis and Enhancements of Labora
tory," Livermore, CA, National Bureau of Standards, Washington, DC,
NBSIR 76-1041, April 1976.

4. Carlstedt, J., R. Bisbey and G. Popek, "Pattern Directed Protection Eval
~ uation," USC Information Sciences Institute, ISI/75-31, January 1975.
5. Ander:son, James P., "Computer Security Technology Planning Study,"

James P. Anderson and Co., Fort Washington, PA, USAF Electronics
Systems Division, Hanscom AFB, MA, ESD-TR-73-51, Vols I and II,
October 1972 (AD 758206 and AD 772806).

6. Schiller, W. L., "The Design and Specification of a Security Kernel for
the PDP-1l/45," ESD-TR-75-69, The MITRE Corporation, Bedford, MA,
May 1975 (AD AOI1712).

7. Neumann, P. G., et aI., "A Provably Secure Operating System: The Sys
tem, Its Applications and Proofs," Final Report, Project 4332, SRI In
ternational, Menlo Park, CA, February 11, 1977.

8. Schroeder, M., Clark, D., and Saltzer, J., "The MULTICS Kernel De
sign," Proceedings of the Sixth Symposium on Operating Systems Prin
ciples, West Lafayette, Indiana, November 1977.

9. Popek, G. and Kline, C., "A Verifiable Protection System," Proceedings
of the International Conference on Reliable Software, Los Angeles, CA,
May 1975.

10. Woodward, J. P. L. and Nibaldi, G. H., "A Kernel-Based Secure UNIX
Design," MTR-3499, MITRE Corp, Bedford, MA, November 1977.

11. Popek, Gerald J., et aI., "UCLA Secure UNIX," Proceedings of the 1979
National Computer Conference, June 1979, pp. 355-364.

12. Gold, B. D., et aI., "A Security Retrofit ofVM370," Proceedings of the
1979 National Computer Conference, June 1979, pp. 335-344.

13. McCauley, E. J. and Drongowski, P. J., "A KSOS - The Design of a
Secure Operating System," Proceedings of the 1979 National Computer
Conference, June 1979, pp. 345-353.

14. Berson, J. A. and Barksdale, Jr.~ G. L, "KSOS-Development
Methodology for a Secure Operating System," Proceedings of the 1979
National Computer Conference, June 1979, pp. 365-371.

15. Secure Minicomputer Operating System (KSOS), Computer Program
Development Specification (Type B-5), Department of Defense Kernel
ized Secure Operating System, Ford Aerospace and Communications
Corp., WDL-7932, September 1978.

16. Bell, D. E. and LaPadula, L. J., "Secure Computer Systems: Mathe
matical Foundations and Model," M74-224, The MITRE Corp, Bedford,
MA, October 1974.

Advent of Trusted Computer Operating Systems 665

17. Robinson, L. and Levitt, K. N., "Proof Techniques for Hierarchically
Structured Programs," Communications of the ACM, Vol. 20, No.4,
April 1977.

18. Lampson B., et aI., "Report on the Programming Language EUCLID,"
SIGPLAN NOTICES, Vol. 12, No.2, February 1977.

19. Popek, G. and Farber, D., "A Model for Verification of Data Security
in Operating Systems," Communications of the ACM, September 1978.

20. Millen, J., "Security Kernel Validation in Practice," Communications
of the ACM~ Vol. 19, No.5, May 1976.

21. Feiertag, R.! J., et aI., "Providing Multilevel Security of a System De
sign," Proceedings ACM Sixth Symposium on Operating System Prin
ciples, November 1977.

22. Walker, B., Kemmerer, R., and Popek, G., "Specification and Verifi
cation of the UCLA UNIX Security Kernel," Proceedings of ACM SIG
OPS Conference, December 1979, to be published in Communications of
the ACM.

23. Millen, J. K., "Operating System Security Verification," The MITRE
Corp., M79-223, September 1979.

24. Roubine, O. and Robinson, L., Special Reference Manual, SRI Inter
national, Menlo Park, CA, January 1977.

25. Ambler, A., "Report on the Language GYPSY," University of Texas at
Austin, ICSCA-CMP1, August 1976.

26. Holt, R. c., et aI., "The EUCLID Language: A Progress Report," Pro
ceedings of ACM 78 Conference·.

27. Lampson, B., "A Note on the Confinement Problem," Communications
of the ACM, Vol. 6, No. 10, October 1973.

28. Lipner, S., "A Comment on the Confinement Problem," Fifth Sympos
ium on Operating System Principles, Austin, TX, November 1975.

29. Woodward, J. P. L., "Applications of Multilevel Secure Operating'Sys
tems," Proceedings of the 1979 National Computer Conference, June
1979, pp 319-328.

30. Padlipsky, M. A., Biba, K. J., and Neely, R. B., "KSOS-ComputerNet
work Applications," Proceedings of the 1979 National Computer Con
ference, June 1979, pp 373-381.

Software Management

Much has been written about establish
ing an acceptable engineering discipline
within organizations that develop and
maintain software. Papers proliferate on
how different engineering methods can be
applied and about other tools available to
help apply them. Yet, the technical dis
cipline established using these methods
cannot work unless a solid management
foundation is created upon which they can
operate.

The purpose of this double session is to
expose the audience to the project man
agement techniques that are being used
today by successful managers to realize an
acceptable product on time and within
budget. This panel session is not about
software management tools and tech-

Donald Reifer
Area Director

niques. Rather, it stresses practical ways of implementing a management discipline em
ploying modern tools and techniques sometimes against strong opposition. Panel members
represent organizations that are implementing such techniques and that understand their
ramifications.

667

Software Engineering
Technology Transfer

Software that has been developed with
the tools, techniques, and methodologies
of software engineering has proven to be
more reliable, efficient, and maintainable
than conventionally developed software.
The use of these software engineering
techniques by data processing practition
ers would result in higher quality software
and an attendant increase in effectiveness
of an organization's data processing func
tion.

This session will address the problems
and solutions in transferring this software
engineering technology to the paractition
ers in the field. The first paper will deal
with defining the needs of these practi
tioners, the second paper will present the

Lorraine Duvall
Area Director

methodologies available, and the third paper will provide the concepts of an integrated
facility for developing software. The panelists will present their experiences and ideas from
the viewpoint of the government, technical societies, universities, and industry.

669

An integrated support software network using NSW
technology

by RICHARD A. ROBINSON and EMILY A. KRZYSIAK
Rome Air Development Center
Griffiss AFB, New York

INTRODUCTION

The problems with support software and the management
structure employed in acquiring major weapon systems
within the Air Force have been documented in a ~xcellent
fashion by General McCarthy, 1 and his remarks are used to
introduce the subject of this paper. In addition, plans are
currently under way to tie together the many organizations
involved in major system acqllisitions,2 and to utilize AR~
PANET and National Software Works (NSW) technology3,4

as the framework for a series of technology demonstra
tion(s). Finally, the reader should note that substantial
efforts are currently under way within the Air Force to stand
ardize and control programming languages and compilers.5

•
6

"Program managers are faced with' a major challenge
brought about by the rapid expansion in use of digital com
puters in our modern weapon systems. It is estimated that
the Air Force spends in excess of one billion dollars annually
to make required changes to existing embedded computer
programs. This cost will continue to grow as we bring into
the inventory an increasing number of more complex digital
systems. Given potential snowballing support costs, there
is the real possibility that the Air Force will not be able to
afford the required support posture for future weapon system
embedded computers unless we change our current manage
ment philosphy.

It appears that major software systems and their attendant
management structure have grown without an overall master
plan or long range goal to guide the developer, maintainer,
and user organizations. Today there are at least 37 different
regulations and policy letters on Air Force management of
software systems. Some of these regulations and policies
provide conflicting guidance.

In the late 1960s and early 1970s, a typical weapon system
h~Q les~ than 100,000 word~ of embedded software, usually
handling only one or two fairly straightforward functions.
Current estimates place the oper'l-tional software for the Joint
Tactical Information Distribution System (JTIDS) in excess
of 400,000 words. The operational software for the E-3A is
over 500,000 words implementing 275,000 instructions. This
repres~nts only 9 percent of the total E-3A weapon system
software.

This volume of embedded software is a major factor in the

671

high support costs. Another is the expense of changing ma
ture software. A representative cost to develop a line of
embedded software would be $40-$75, depending on com
plexity of the program and development tools available.,
Once the weapon system has been fielded and the config
uration baseline has been established, it may cost upwards
of $4000 to change that same line of software.

With software's inherent flexibility we can add functions
or integrate systems to provide rapid and effective response
to threat changes or to advances in technology. We stand
to lose this inherent flexibility and seriously impair our mis
sion readiness posture unless we develop a strong support
capability whether it be organic or contractor furnished. "1

WHAT IS SUPPORT SOFTWARE?

For purposes of this paper, support software will be de
fined "as the set of programs you need to develop the soft
ware you want."7 A representative set of programming aids
(or tools) is as follows:

• Communications Aids
• Compilers
• Linkers
• Mgmt Info Systems
• Online Doc Aids
• Standards Enforcers
• V & V Aids
• Requirements Analysis Tools
• Assemblers
• Online Editors
• Data Base Mgmt Systems
• Code Auditors
• Automated Testing Systems
• Simulators

HOW IS SUPPORT SOFTWARE ACQUIRED?

In order to appreciate why support software is so costly,
it might be best to review in more detail how support soft
ware gets acquired on a major system acquisition. Typically,

672 National Computer Conference, 1980

a user organization (USER) identifies an operational need.
A subsequent study effort is awarded to further describe the
operational requirements and/or develop functional specifi
cations. A System Project Office (SPO) is created for co
ordinating system acquisition efforts. Procurement actions
are initiated, a prime contractor (DEVELOPER) is selected,
components of the job are identified, digital systems are in
tegrated, etc. Note that little if any attention is paid to sup
port software. The basic support software is found or de
veloped by the prime contractor, and the criteria used is that
"if something is once proved adequate, it will be used again '
because of schedule, monetary, and other constraints. "7

The support software that gets developed in this fashion
is developed out of desperation rather than by design. It is
generally crude and inefficient because it has not been de
veloped by specialists, nor has it been developed for use by
others. Neither does it take advantage of current technology.
Definite tradeoffs occur between the sophistication of the
support software, and "getting on" with the job. For ex
ample, a program manager may decide it is not cost effective
to use an on-line editor on his project because it is currently
not available, it is buggy, or his staff has no experience with
it. Therefore he uses punched cards, etc. As a result, the
support software ends up being very expensive, inefficient,
and unusable during subsequent phases of the system life
cycle, or on other programs.

Once the system has been developed and tested, it is tran
sitioned to the logistics command (MAINTAINER) for sup
port on behalf of the operational command (USER). The
accompanying support software is frequently viewed as in
adequate or unusable because there is no documentation,
they are not familiar with it, they have not been trained to
properly support it, and frequently are not able to take over
and maintain the system using it. As a result, the logistics
command is forced into assuming development contractor
responsibilities rather than concentrate on maintenance (or
resource management) functions.

WHY DO WE HAVE PROBLEMS WITH SUPPORT
SOFTWARE?

In view of the above remarks, let's try and summarize why
we have problems with support software so that we can get
a better handle on what to do about it. According to Sof
tech's analysis of the problem:7 (1) it is expensive to develop
and funds may not be available; (2) it takes time to develop
and time may not be available; (3) it is not planned that others
may want to use it; (4) it. is not developed nor maintained
by specialists; and (5) user access (via networks) has not
been provided nor is it conveniently available.

Even if it is available, support software is generally not
suitable during subsequent phases, or on other programs
because: (1) it is developed as a "one-time" application spe
cific package; (2) it is operating system and machine depen
dent; (3) it is crude and inefficient, and is poorly documen
ted; and (4) it requires such extensive modification that re
development may be easier, more timely and less expensive.

WHAT CAN WE DO ABOUT IT?

It is proposed that the following steps be taken to address
the support software problem:

• Establish an Integrated Support Software Network -
to provide DMU personnel with convenient and timely
access to a repository of proven, high quality tools.

• Provide a staff of software specialists and consultants
- to assist DMU personnel in selecting tools from the
repository, and in assessing the utility of the selected
tools.

• Standardize, control, and distribute the tools that have
been determined to be most useful and cost effective.

• Maintain the tools as required by Air Force (or DoD)
policy, and keep abreast of new technology develop
ments.

• Demonstrate feasibility and practicality of the ISSN
concept.

With the support of ISSN staff personnel, DMU personnel
would log directly into the ISSN and request an inventory
list of available tools. They would then select from that list
those of most interest, and try those they find to be most
useful for their needs. Once the decision is made to procure
the tools, they would be delivered via the network to their
respective machines. Supporting documentation would be
provided on-line, and in hard copy form. If this were not
feasible because of machine non-compatibility, or possibly
machine non-availability, DMU personnel would simply use
the requested tool kit or remotely located ISSN machine(s)
until a dedicated, project-owned machine became available.
The tool kit, or selected tools would then be transferred to
their host environment for dedicated project use.

HOW DO WE DO IT?

As illustrated in Figure 1, the overall ISSN concept can
be broken down into the following elements: (1) a computer
network; (2) the NSW system; (3) a "core" facility; (4) a
number of general purpose/experimental machines; (5) a
number of project-specific (native) machines; and (6) a
professional staff of software specialists, dedicated to sup
porting the needs of DMU personnel, including mainte
nance, training and documentation.

The network

A computer network, e.g. the ARPANET, would be used
to tie together the major machines involved in the acquisition
of a major weapons system. It would also be used to provide
real-time communications between the many organizations
involved in formulating requirements and specifications, and
during design, development, and subsequent maintenance
of the system. The network is designed to provide efficient
communications between heterogeneous computers so that
hardware, software, and data resources can be conveniently

Integrated Software Network Using NSW Technology 673

® ® PWB PWB

. " NSW ,/

MAINTAINER e s G DEVELOPER

/ "

GO 370

N N

S @)- (0 -@ S PWB 20
W W

~
V

Core Facil ity ~
V

" /'

USER s R&D
NSW

"~
V

~/

V
Figure I-A network-based ISSF.

and economically shared by a wide community of users. The
ARPANET currently links a wide variety of computers at
Defense Advanced Research Projects Agency (DARPA)
sponsored research centers and other DoD and non-DoD
activities in CONUS, Hawaii, Norway, and England.

The NSW system

Once a network connection had been established, the
National Software Works (NSW) system would be used to
provide DMU personnel with convenient access to the dis
tributed computer resources, including those available within
the core facility (described below). The NSW is a distributed
software system which resides upon the ARPANET host
machines, and provides a user with single point access to

resources (or tools) on those machines. It also obviates the
need for DMU personnel to know host operating system or
file system details.

The core facility

The major element within the ISSN is the "core" facility
or tool repository, where DMU personnel can get the latest
information on tool technology, and where they can assess
the suitability of and possibly acquire high quality tools for
use on their respective projects. The core facility might con
sist of three- types of machines - DEC 20 (TOPS 20), IBM
360 (OS), and DEC 11170 (UNIX/PWB), all suitably hosted
on the network described above. Extensions can readily be
made to include other mainframe computers, e.g. UNIVAC

674 National Computer Conference, 1980

1110 (EXEC 8). Geographic location of the machines is not
important because of the network connection. It is impor
tant, however, that the core facility be professionally staffed
and run by a responsible organization.

The tool repository contains a variety of tools (or toolkit).
The fundamental notion is that the same toolkit would be
available to DMU personnel throughout the system life
cycle. Individual tools would be simply added to or removed
from the toolkit from time to time, depending upon DMU
needs. A basic toolkit might consist of an on-line editor
(TECO), a compiler (JOVIAL), a program support library
(PSL), and an automated testing tool (JAVS). Additional
support software would be obtained from the tool repository,
as required. The decision on which tools to include in the
toolkit would depend on the particular acquisition phase,
and the functions to be performed.

The core facility can also be thought of as a repository
where prospective tool vendors can install proprietary or
unproven tools so they can be properly evaluated by core
facility/DMU personnel. Of particular interest is the issue
of whether the tools properly communicate with each other.
The "do it yourself' syndrome invariably leads to the de
velopment of stand alone tools that do not communicate with
each other, e.g. the many dialects of JOVIAL that currently
exist, and of the many problems that occur because of the
prevalence of divergent interfaces. More rapid assessment
and evaluation of this aspect of tool technology is possible
through the use ofNSW technology. When DMU personnel
become convinced of the applicability of a tool, or a tool kit,
they will import the selected tool(s) (with supporting doc
umentation) onto their "native" machines.

General purpose/experimental machines

These are machines that currently exist within the NSW
System as tool bearing hosts (TBH) and would be utilized
by DMU personnel for such things as electronic mail, train
ing, off-loading when dedicated (native) resources are sat
urated or are not available, or when specific tools (or tool
kits) are not available on the native machine(s). Machines
available for this purpose are TENEX (DEC-10) and TOPS-
20 (DEC-20) machines at USC-lSI, an IBM 3033 at UCLA,
a TOPS-20 (DEC-20) at RADC, a MULTICS (H6180) at
RADAC, an EXEC 8 (UNIVAC 1110) (location to be de
termined), and a UNIX (DEC 11170) system. Note that the
"core" machines identified above are also on this list. Actual
details will depend upon DMU needs.

It should be noted that general purpose/experimental ma
chines can be used for supporting specific phases of the ac
quisition process. For example, dedicated SREM or CAD
SAT machines can be used to support requirements definition,
a PDL machine for design support, etc. It is not unrealistic
to suggest that a machine be totally dedicated to a specific
function, e.g. requirements analysis, and would service mul
tiple DMU organizations. Access to these resources would
be obtained (and controlled) at each DMU site.

Project-specific (or native) machines

These are usually owned and operated by contractor per-
. sonnel or government agencies, and are located on-site and
under the control of contractor or government personnel.
For the ISSN concept to be demonstrable, it is necessary
that the operating system on the native machine be com
patible with one of the core facility machines. Exceptions
to this rule should generally be discouraged or forbidden
because of the obvious and frequently detrimental impact
on associated support software. Specific tools (or toolkit)
to support development of the weapon system can then be
imported from the core facility using the network connec
tion. These tools will consist mostly of standardized, high
quality tools that have been registered with the Federal Soft
ware Exchange and are maintained and serviced by a profes
sional staff of software specialists. If native or dedicated
program resources are not available, or are otherwise sat
urated during peak load conditions, the developer will also
have the option of using a remotely located general purpose/
experimental machine.

It is required that the native machine(s) be on or have
convenient access to the ARPANET, and be machine/op
erating system compatible with the core facility machine/
operating system, i.e. a TOPS-20, OS 370, UNIX PWB. This
is necessary primarily because of the cost (and time) of re
hosting the support software obtained from the core facility;
also because of the requirement for core facility staff to
maintain the rehosted tools. Upon completion of develop
ment and testing, the DEVELOPER turns over project
owned machines to the logistics command (within the Air
Force) and they are installed in a support center specifically
set up to maintain each major weapon system. These facil
ities are located within the individual air logistic centers
(ALCs). In order to complete the scenario, it is necessary
that these support centers also be on or have convenient
access to the ARPANET to ensure continued used of the
same tools used during earlier phases.

A professional staff of software specialists

For the ISSN concept to be demonstrably successful, the
staff located within the "core" facility must provide timely
service to DMU personnel, and must effectively maintain
and control the tools which reside within the repository. This
includes the servicing of software trouble reports (STR) sub
mitted by DMU personnel on tool problems.

RECENT EVENTS ARE BEGINNING TO LOOK
PROMISING!

Although recent efforts in language standardization and
control look promising, much remains to be done to change
the basic procurement/management practices that are used
to acquire and support major systems. Some of the changes
that are currently under way that support the ISSN concept

Integrated Software Network Using NSW Technology 675

are as follows:

MIL-STD-J589A

• A single language for Command & Control
• Standard interface is likely
• LCF standardization & control possible

MIL-STD-J750

• One instruction set
• Standard linker possible
• Standard assembler possible
• Standard debugger(s) possible

MIL-STD-J553B

• Standard 1/0 protocols likely
• Environmental models are easier to adapt
• Aids V & V tool standardization

DAIS Tech Demo

• Flexible avionics executive
• Flexible structured digital systems

AFLC Tech Demo

• Establish network/NSW applications
• Install network connections
• Install standard support facilities (PWB)
• Provide NSW resources

WHAT CAN BE ACCOMPLISHED?

Now that we have described the elements of an integrated
support software network, what can be expected to happen
if it were suitably staffed and demonstrated? It should be
possible to demonstrate:

• The support software development burden can be re
moved from the system program offices (SPa). Support
software requirements, specifications and high quality
tools can be provided to the sPa's, and contractor and
spa personnel can conveniently assess the quality of
the support software before buying or committing it!

• The support software maintenance and enhancement
burden can be transitioned to the logistics command,
where the distribution and use of tools employed during
system acquisition can be used to responsibly maintain
major weapon systems.

• The developer, maintainer and user efforts can be fo
cused on improving techniques for advancing weapon

system technology rather than building up an inade
quate support software capability on each program and
for each phase.

• The quality of weapon systems can be improved.
• Life cycle costs can be substantially reduced.
• Support software can be made immediately available for

subsequent programs.
• Most importantly, it will be easier to establish a cor

porate memory from phase to phase (within a project)
and across projects, and effectively apply new advances
in tool technology.

WHAT IMPROVEMENTS CAN BE EXPECTED?

Some of the improvements that can be expected ifproven,
high quality support software is utilized by DMU personnel
are:

Requirements analysis

• Life Cycle Costing Possible
• Less Costly Maintenance
• Distribution Problems Resolved
• Training Problems Simplified
• More Timely Development
• Responsible R&D Support

Documentation

• Standardized and Controlled
• Distribution On-Line
• Under Configuration Control

Integrated tool kit

• Library of Tools (selectable)
• High Quality Tools
• Reliability Demonstrated
• Effectiveness Demonstrated
• Interoperability Demonstrated

Availability (of ISSN)

• For Training Support
• For Tool Assessment (planning)
• For Tool Evaluation (project)
• For Tool Utilization
• For On-line Assistance

Adaptability (of ISSN)

• For Special Problems
• Readily Available
• Maintenance & Engineering

676 National Computer Conference, 1980

Support

• Adaptation Assistance
• Requirements Analysis Assistance
• For Local Site Support

SUMMARY

This paper has described an integrated support software
network (lSSN) which can be used by the DEVELOPER,
MAINTAINER and USER organizations in acquiring and
maintaining large, computer-based systems. It focuses on
the problems of technology transfer (it is virtually non-ex
istent) within the software engineering business and how an
"integrated" support software network could be used to
alleviate or solve many of these problems. Networking and
N SW technology are proposed as the vehicle for tying to
gether the various machines, resources and organizations
involved in major system acquisitions. Application of this
technology provides a means for changing acquisition man-

agement practices within the Air Force, and should result
in substantial cost savings and more timely delivery of major
weapon systems.

BIBLIOGRAPHY

1 McCarthy, General James, Brig Gen, U.S. Air Force, AFALD/AQ letter,
entitled "Embedded Computer Software Management Concept."

2 "NSW Technology Demonstration Plan for Air Force Logistics Applica
tions," dated 18 October 1979.

3 ARPANET Information Brochure, Code 535, Defense Communications
Agency, Washington, D.C. 20305, 1978. (Available from NTIS as AD
A052672).

4 "Semi Annual Technical Report on NSW for the period 12 December 1978
- 30 June 1979," by Massachusetts Computer Associates, Inc., July 1979
CADD-7907-1201.

5 "Higher Order Language Control Facility," Air Force Contract F30602-79-
C-0032.

6 "Requirements for ADA Programming Support Environments," "STONE
MAN" document, Office of the Under Secretary of Defense, February
1980.

7 SOFTECH seminar presentation entitled, "Solving JOVIAL Support Prob
lems for Embedded Computers; A Controlled Approach."

The role of an information analysis center in software
engineering technology transfer*

by JON MARTENS and LORRAINE DUVALL
lIT Research Institute
Rome, New York

THE PREDICAMENT

As software engineering advances into its second decade,
the ideas, principles and practices conceived in its first dec
ade need to be assimilated into a workable set of tools and
techniques that can be dispersed to software developers for
their use in the production of software.) The need for this
technology transfer is clear and immediate. Without the
proper transfer of software engineering technology from
software engineering researcher to developer, the software
world will be unable to extricate itself from its present pre
dicament.. This predicament has been characterized by Mey
ers as follows:

"The general character of the software predicament can be seen
clearly, although consistent numbers with which to characterize
it more precisely are hard to come by. Because less expensive
hardware is bringing more applications within economic reach,
the amount of software to be developed is increasing. Also be
cause more software is already in existence, there is more to
be maintained. But the productivity of programmers is improv
ing rather slowly, especially by the standards of hardware price/
performance, with the result that the overall cost of software
development is tending to increase."2

The predicament presents a rather ominous picture to be
sure. Essentially, the problems of today in the software
world are more difficult, but the solutions to the problems
do not seem to be effective. The result is a losing battle if
things continue as they have. One reason for the losing battle
may be that the software world is trying to solve today's
problems with yesterday's solution techniques. For exam
ple, several recent surveys have shown that the transfer of
software engineering is at a standstill and that people are
still developing software as they were five years ago. 3

A POSSIBLE SOLUTION

"I firmly believe that technology transfer is the primary means
we have to combat the software problems the industry has been
experiencing. ,,4

* This research wtls supported by Contract No. F3060-78-0255, from the Air
Force Systems Command, Rome Air Development Center, Griffiss Air Force
Base, New York 13441.

677

Reifer's statement points a way to the beginning of a so
lution to the software predicament that exists today. Tech
nology transfer needs to bring new and effective solutions
from the software engineering researcher to the software
developer. Unfortunately, the process is not quite as easy
as it sounds. Setting up direct communication links between
researcher and developer will not insure that technology is
transferred over these links. The wholesale importation of
the latest software engineering techniques, in fact, just in
vites disaster. The developer needs to understand the tech
niques so they can be evaluated within the context of the
development environment. This is essential. Another way
of stating this is by citing Reifer's Technology Risk Principle.

"Technology should only be used when the risk associated with
it is acceptable."5

Some of the technologies may indeed be acceptable in terms
of risk; however, the developer needs to understand the
technology and all of its myriad applications before any con
sideration can be made to its transfer to the development
environment. This technology transfer business is more than
giving lectures or writing journal articles about the latest
technologies. It involves a certain amount of information
synthesis and analysis so that the ultimate receiver can
evaluate the technology's wortb. If no benefit is perceived
by the developer, no transfer of technology is going to occur.
Of that we can be certain.

SOME SOLUTION MECHANISMS

Although the technology transfer process is a difficult one,
there are mechanisms in place today within the software
engineering community to effect the transfer of technology.
Wasserman, for example, cites four major mechanisms (and
their attendant shortcomings).6

1. University graduates go to work in software develop
ment settings.
Problem: New graduates generally have positions oflow
visibility and responsibility and have not received any

678 National Computer Conference, 1980

development experience within the university environ
ment.

2. University faculty serve as consultants to industry.
Problem: Consultants often opt for more "interesting"
(i.e. more research-oriented) situations as they come
about and have little continuity within one company.
They also lack the same software development exper
tise that their students lack.

3. Industry people go to the university.
Problem: Sabbaticals are not open to many people and,
besides, the'y are rarely taken by people with major
project responsibilities.

4. Industry people attend short professional development
courses.
Problem: The direct application of the techniques
learned in these courses is often difficult to transfer to
a typical work situation.

These four techniques all involve some level of inter-per
sonal dealings in an environment different than one the per
son is used to. Because the performance of individuals in
such a situation has such a wide variance, it is difficult to
obtain a consistent level of technology transfer. The crucial
process of transferring the context of ideas generated in a
researcher environment to a developer environment is a dif
ficult achievement when attacked on a one-to-one basis.
Nevertheless, these techniques should be effective if the
"right" person for the job can be identified.

Studies in scientific and technical information dissemi
nation have identified such a person.7 Called, a "gate
keeper," this person has the important technology transfer
ability to interface the outside world (i.e. the research com
munity) to the inner realm of the development organization.
Much of the time, however, these people tend to be senior
technical staff and not high level managers who could influ
ence the company to adapt a new software engineering tech
nology.

The professional societies and the journal literature serve
as an aid to technology transfer in a more formal manner
than the inter-personal techniques. For example, many of
the societies arrange and conduct tutorials to disseminate
information about software engineering technologies. Along
the same lines, the journals of the professional societies pub
lish articles about the latest techniques. Although these tech
niques are formal, their effectiveness is limited by the very
structure of the professional groups and journals.

Professional groups, by their nature, are essentially special
interest groups created to advance the interest and ideas of
a relatively narrow area of interest. For this reason, the so
cieties and their journals are more for the purpose of intra
group rather than inter-group communication. Both re
searcher and developer have their own societies, and both
sides recognize the need and importance of the technology
transfer issue. But the very structure of any society is not
designed to facilitate a process such as technology transfer.
The required interface mechanism between developer and
researcher are not strong for the societies or the journal lit
erature.

INFORMATION ANALYSIS CENTER AS
TECHNOLOGY TRANSFER AGENT

A formal mechanism that can perform the interfacing role
between researcher and developer for the purpose of tech
nology transfer in the software world does exist. The mech
anism is the information analysis center. Specifically, the
information analysis center for software engineering is
named the Data and Analysis Center for Software, hereafter
referred to as DACS.

The purpose and objective of an information analysis cen
ter transcend those of a technical information center or li
brary. The technical information center and library provide
bibliographic services as their main commodity. Information
analysis centers, as their name may imply, provide infor
mation analysis and synthesis services as their primary com
modity. It is these analysis and synthesis services that serve
as the core of the technology transfer mechanism within the
information analysis center. As has been previously dis
cussed, a precondition for the transfer of software engi
neering technology from the researcher to the software de
veloper is a thorough understanding of the technology and
its attendant implications in terms of risks and benefits
within the developer's environment. It is this essential pre
condition to the technology transfer process that can be pro
vided by the synthesis and analysis of information within the
information analysis center. Although the previously dis
cussed mechanisms are all useful to some extent, they do
not possess the match of capability and task that exists be
tween the information analysis center and the technology
transfer task. In software engineering, the requisite synthesis
and analysis skill are provided by the DACS as the software
engineering information analysis center.

THE INFORMATION ANALYSIS CENTER CONCEPT

The formal concept of the information analysis center was
expressed in 1963 by the nuclear physicist Alvin Weinberg.8

Weinberg had prepared a report at this time which was to
serve as somewhat of a landmark document in the field of
national scientific and technical information policy. The in
formation analysis center concept did not originate in the
report; in fact, the report listed over 400 organizations in the
nation it considered as meeting the criteria of an information
analysis center.9 Highlighting the contribution information
analysis centers could have in managing the nation's tech
nical information was one of the major concerns of the re
port. An excerpt from the report explains the worth of the
information analysis center concept.

"The activities of the most successful (information analysis)
centers are an intrinsic part of science and technology. The cen
ters not only disseminate and retrieve information, they create
new information In short, knowledgeable scientific inter
preters who can collect relevant data, review a field and distill
information in a manner that goes to the heart of a technical
situation are more help to the overburdened specialist than a
mere pile of relevant documents. "10

Role of Information Analysis in Software Engineering 679

Although this excerpt does not explicitly mention technology
transfer, that process of ". . . distilling information in a
manner that goes to the heart of a technical situation" is
certainly central to the process of technology transfer. The
receiver of the technology must be able to understand· and
evaluate the technology on his own terms. The analysis and
synthesis of information about a technology by the infor
mation analysis center matches the need and is the driving
force behind the center's ability to act as an effective tech
nology transfer agent. The fit between technology transfer
and the information analysis center is a natural one; the state
ment Weinberg made about the value of the synthesis and
analysis process is as valid and crucial today in the area of
software engineering as it was in 1963 when the statement
was made. By synthesizing and analyzing software engi
neering information into a form that is comprehensible and
relevant to the software developer, the DACS has an im
portant role as technology transfer agent in the field of soft
ware engineering. This task of synthesizing information in
software engineering is more difficult than it might be with
other fields because of the breadth and dynamic state of soft
ware engineering at the present time. But these very char
acteristics of software engineering may result in bigger pay
offs when the technologies are transferred than may be the
case with a narrower or more static discipline. The task is
harder, but the potential benefits resulting from software
engineering technology transfer may be greater.

A TWO-WAY STREET

Technology transfer is generally thought of as a one-way
street from researcher to developer. Simply, technology,
which originates with the researcher, is transferred to the
software developer who is the ultimate user of the technol
ogy. In its broadest sense, however, technology transfer is
a two-way street. It is a two-way street because the re
searcher needs the experience of the developer for guidance
in future research efforts. Both good and bad experiences
with technology provide the researcher with valuable infor
mation to improve the technology.

Information analysis centers are good places for the de
veloper to transfer software experience information. Just as
the information analysis center interfaces between the trans
fer of technology from researcher to developer, it can pro
vide the interface for the flow of experience data from de
veloper to researcher. The synthesis and analysis skills of
the information analysis center are just as useful and rele
vant for both directions of information flow. A large part of
the DACS effort is expended in this regard, particularly in
the organization of software experience data into databases
that can be used for the evaluation and analysis of software
engineering technologies.

DACS-A SOFTWARE ENGINEERING
INFORMATION ANALYSIS CENTER

In June of 1975, the Rome Air Development Center
(RADC) contracted with lIT Research Institute (IITRI) to

design a center that would acquire, analyze, and disseminate
information on software engineering technology. The Air
Force recognized the n~ed for such a center to serve the
government, industrial, and university community as a focal
point for software development and experience data.

DoD has traditionally recognized the worth of information
analysis centers. Several organizations within DoD sponsor
a number of centers. For example, nine DoD Information
Analysis Centers are managed and funded by the Defense
Logistics Agency (DLA). In keeping with the nature of all
information analysis centers, the centers are responsible for
the acquisition, analysis, evaluation, and dissemination of
scientific and technical information to the managers, sci
entists, engineers, and technicians they support. Among the
specialized areas the centers deal with are electronic hard
ware reliability, metals and ceramics, and machinability. As
part of its responsibilities, each center serves as an infor
mation and technology transfer agent within its own area of
technical expertise.

A contract to establish the DACS was awarded to lIT
Research Institute (IITRI) by RADC in August 1978. When
fully implemented and operational, the DACS will provide
a centralized source for current, readily-usable data and in
formation concerning software technology. This software
information resource will: (1) aid the program manager in
planning and monitoring software projects; (2) supply ex
perience data to software research projects; (3) provide base
lines for software development methods comparisons; (4)
foster the use of uniform terminology; (5) aid in establishing
data collection guidelines and standards; and (6) distill and
disseminate information on software projects.

The benefits expected to be accrued by members of the
software engineering community, both developers and re
searchers, are: (1) valuable savings of scientific and engi
neering manhours in locating data and information; (2) rapid
application of the latest technologies via technology transfer;
(3) elimination or minimization of duplication of effort; (4)
reduction of software costs and improved performance; (5)
minimization of program delays and schedule stretchouts.

All of the objectives ofthe DACS are related to the process
of technology transfer. Through the first objective, the
DACS will aid the technology transfer process by supplying
information about software technologies to the developer in
an understandable format. The second objective deals with
the feedback from developer to researcher, as discussed ear
lier, that is required for refinement of technologies. Objec
tive Number 3 will facilitate technology transfer by providing
a basis for the evaluation of technologies in developer-re
lated terms. Objectives 4 and 5 are objectives that will
streamline the technology transfer mechanism. Uniform ter
minology (objective 4) and data collection guidelines (ob
jective 5) are essential to aid communication between re
searchers and developers. Objective 6 is, in itself, the
essence of the information analysis center technology trans
fer process-the ability to synthesize and distill information
about the technology.

The benefits of the DACS, when they are· realized, will
result in efficient and effective technology transfer (benefits

680 National Computer Conference, 1980

1-3) and a start at escaping from the software predicament
which the Air Force, the Department of Defense, and the
entire software community are facing (benefits 4 and 5).
Although these benefits are ambitious, the framework of the
information analysis center provides an excellent mechanism
for achieving these goals.

HOW DACS OPERATES

Objectives cannot be fulfilled or benefits realized unless
a methodology to achieve these ends is established and fol
lowed. Information analysis centers serve technology trans
fer by synthesizing, distilling, analyzing and repackaging in
formation. The DACS, as an information analysis center
technique, provides a mechanism for synthesizing and ana
lyzing the information concerning software engineering tech
nology. Since the DACS is currently a pilot facility, the tech
niques are just being formatted, utilized, and tested. Al
though these techniques are still in a test mode, they should
be adequate as they follow the techniques used for oth.er
technical lAC's with a fair amount of success. A functional
model of the techniques is shown in Figure 1. 11,12

DACS ACTIVITIES AND PRODUCTS

Two major components make up the technique repre
sented in Figure 1: (1) building an information base about
software engineering technology and, (2) transferring infor-

Acti vi ti es

>,
Information collection C'l

0

'0 Q)

1
In

c ttl
..c; ..0
U
Q) c

+oJ 0
C'l +oJ
C ttl

~ "'C
.0

'5 4-
c Information organization co

c 1
0 Information synthesis/repackaging +oJ
ttl >,

1
E C'l

0

~ '0
c c

..c;
u

C'l Q)
C +oJ .s:

Q)
s... ..c;
Q) +oJ

4- Information analysis In +oJ
C ::s
ttl 0
s... ..0
I- ttl

.,

....

•

~

mation about the technology in a form that can readily be
understood, evaluated, and used to the advantage ofthe soft
ware developer by the processes of information analysis and
synthesis. Each of the major components consists of several
sequential processing steps with each processing step re
sulting in the output of a particular information type. As a
pilot facility, the DACS has more experience with the earlier
steps, but all steps have been utilized to some extent.

Building the technology information base has been a major
effort and concern of the DACS to date. This process con
sists of (1) information collection and, (2) information or
ganization. From a technology transfer viewpoint, the pur
pose of these two steps is to prepare the information base
so that it can later be synthesized into a form more suitable
for technology transfer.

Information collection is being actively pursued by the
DACS. The professional society publications are reviewed,
as are conference proceedings: reports on new research proj
ects, trade journals, and technical reports from universities,
government, and industry. Information on new and previous
software engineering research is the primary result of this
review and collection procedure. Software experience data
is also being collected by the DACS. At the present time,
seven major datasets have been assembled and two are cur
rently being assembled. Collection of all this information is,
of course, necessary prior to any synthesis or analysis of the
data that is required for technology transfer.

Information organization is the next step in the process
of building a technology information base. Information man-

I nforma ti on Products

Information on new software engi neeri ng research

I nformati on on previous software engineering research

Software experience data

Bibliographies

State-of-the-art-reports

Handbooks

Critical reviews

Figure I-DACS activities and information products.

Role of Information Analysis in Software Engineering 681

agement skills, such as indexing, abstracting, and informa
tion storage and retrieval, are used in this phase. The in
formation collected in the first step is indexed, abstracted,
and entered into a computerized information retrieval sys
tem. Custom bibliographies can then be produced by the
retrieval system by specifying subject keywords or by qual
ifications on other fields such as author or title. These bib
liographies are of use to the research community and de
velopers in locating results of research. At this point in the
process, the information is organized as final preparation for
the steps of information synthesis and analysis that are so
important to the information analysis center's contribution
to technology transfer. These first two steps (information
collection and organization) are performed by most technical
libraries. The next two steps, however, separate the infor
mation analysis center from the technical library.

Information synthesis, the next step, is the core 'of the
technology transfer process. Information generated by the
researcher must be digested and made palatable for the de
veloper. If at all possible, the information must be presented
in a format to allow cost-benefit assessment by the devel
oper. Depending on the novelty and age of the technology,
this may not always be possible. At the very least, however,
the information must be distilled so the basic concepts and
principles are explained in a language that the developer can
comprehend. This is not an easy task. Considerable skills
in communications and expertise in the technology are re
quired to produce the handbooks and state-of-the-art reports
that are the outputs of this technology transfer process.

DACS has produced a state-of-the-art report on quanti
tative software models. 13 Research in this area has been ex
tensive and has the potential for being used by developers,
so this subject area was a prime candidate for this initial
effort. With these thoughts in mind, the state-of-the-art re
port was produced with two major features to facilitate tech
nology transfer. The first feature was a description of the
salient characteristics of the model, such as data parameters,
key equations and relationships, and experiences in using
the model. This feature enables the developer to understand
the model's concepts and capabilities.

Synthesis of information was carried one step further to
produce the second feature of the report. A matrix was pre
pared to correlate model with data parameters. By using this
matrix, a developer can quickly determine what models
could be used with the data parameters available to the de
veloper. If data parameters were unavailable, the cost of
collecting them could be weighed against the benefits of the
model as presented in the description.

Additionally, DACS has published a glossary of software
engineering terms. 14 This glossary should aid the technology
transfer process by providing a reference point for uniform
terminology.

One last step is included. in the technology transfer pro
cess: information analysis. Analysis goes one step beyond
synthesis by providing an evaluation of the technology. As
the center makes the transfer from pilot to full-scale oper
ation, this analysis effort will be pursued. One target of
analysis that DACS would like to examine is the effective-

ness of modern programming practices. At the present time,
data sources for such an effort are being collected and or
ganized.

USER PERCEPTIONS

A recent survey mailed with the DACS Newsletter is cur
rently being analyzed. One interesting result in the light of
the role of the DACS as technology transfer agent, is the
interest of the respondents in state-of-the-art reports. These
reports, as previously mentioned, are one of the primary
products of the DACS.

Questionnaire respondents were given a list of the seven
types of information processed and/or generated by an in
formation analysis center and were asked the following:

"For your job, please rate the value of the following types of
information (1 = most valuable)"

Table I summarizes the results. Although these results are
preliminary, the results point to a definite preference for
surveys of current technologies. The final results of the sur
vey will be used to plan future DACS servic~s and products.

CONCLUSION

The need for technology transfer in software engineering
is clear and essential if the software world is to escape from

TABLE I-User Survey: Preliminary Results

Profi 1 e of user:

Prece~t of Res pondees

Resea rchers : 28%

Developers: 70% (Managers 38%, Programmer/analyst 32%)

Not designated: -.1%

100%

Information value:

Percent of respondees ranki ng an i nformati on type as 1, 2, or 3

on a scale of 1 (most valuable) to 7 (least valuable).

Information Ty~

Information on new software research

State-of-the-art reports

Bi b 1 i ographi es

Software experience data

Information on previous software

research

Handbook information

Critical reviews

57%

75%

15%

24%

35%

37%

37%

682 National Computer Conference, 1980

its pres.ent predicament. Various methodologies and mech
anisms exist for this transfer process. One process, using an
information analysis center as a transfer agent, is appealing
because the capability of the information analysis center as
synthesizer of technology fits the task of transferring tech
nology in such a way that the software developer and user
can understand and· evaluate the technology. As a software
engineering information analysis center, the DACS is ful
filling the role of transfer agent. Mechanisms are in place to
synthesize the software engineering technology and dissem
inate it to software developers. During its operation, DACS
has built an information base of software engineering and
used that base to synthesize the technology into several
handbooks and state-of-the-art reports. Response to the re
ports has been encouraging, and the DACS plans to issue
more in its role as a software engineering technology transfer
agent.

REFERENCES

I. Wasserman, Anthony and Belady, L. A., with contributions from Susan
L. Gerhart, Edward F. Miller, Jr., William Waite and William A. Wulf,
"Software Engineering: The Turning Point," Computer, September 1980,
pp.30-41.

2. Meyers, Ware, "The Need for Software Engineering," Computer. Feb
ruary, 1978, pp. 12-26.

3. McClure, Robert M., "Software-The Next Five Years," Digest of Pa
pers Compcon Spring 76, p. 607, as cited in Ware Myers, "The Need for
Software Engineering," Computer, February 1978, pp. 12-26.

4. Reifer, Donald, "The Nature of Software Management: A Primer," in
Donald Reifer, Tutorial: Software Management, IEEE Computer Soci
ety, March 1979, p. 5.

5. _, "The Nature of Software Management: A Primer," in Donald Reifer,
Tutorial: Software Management, IEEE Computer Society, March 1979,
p.5.

6. Wasserman, Anthony and Belady, L. A., with contributions from Susan
L. Gerhart, Edward F. Miller, Jr., William Wait and William A. Wulf,
"Software Engineering: The Turning Point," Computer, September 1978,
pp. 30-41.

7. Paisley, W., "Information Needs and Uses," in C. A. Caunda, Annual
Review of Information Science and Technology, Vol. 3, Encyclopaedia
Britannica, Chicago, as cited in Lauren B. Doyle, Information Retrieval
and Processing, Melville Publishing Company, Los Angeles, 1975, p. 390.

8. Weinberg, Alvin, "Science, Government, and Information," a Report of
the President's Science Advisory Committee, Panel on Science Infor
mation, January 1963, as cited in Lorraine Duvall, Software Data Re
pository Study, RADC-TR-76-387, December 1976, p. I-I.

9. _, "Science, Government, and Information," a Report of the Presi
dent's Science Advisory Committee, Panel on Science Inf()rmation, Jan
uary 1963, as cited in Lorraine Duvall, Software Data Repository Study,
RADC-TR-76-387, December 1976, pp. 1-2.

10. Weinberg, Alvin, "Science, Government, and Information,"a Report of
the President's Science Advisory Committee, Panel on Science Infor
mation, January 1963, as cited in Alan Rees, "Functional Integration of
Technical Libraries, Information Analysis Centers," in Alan Rees, Con
temporary Problems in Technical Library and Information Center Man- ,
agement: A State-of-the-Art, American Society for Information Science,
1974, p. 119.

II. Brady, Edward L., "The Role of Information Center in Engineering In
formation System," in Proceedings of the National Engineering Confer
ence, Engineer's Joint Council, 1964, as cited in Allan Rees, "Functional
Integration of Technical Libraries, Information Centers and Information
Analysis Center," in Alan Rees, Contemporary Problems in Technical
Library and Information Center Management: A State-of-the-Art, Amer
ican Society for Information Science, 1974, p. 119.

12. Bishop, Ethelyn and Nisenoff, Norman, An Application of Market Re
search Techniques to the Dissemination of Scientific and Technical In
formation, NSF/DSIl751-13211 AOI, November 1977.

13. Software Engineering Research Review, Quantitative Software Models,
(SRR-l), March 1979.

14. The DACS Glossary, A Bibliography of Software Engineering Terms,
October 1979.

Considerations in the transfer of software engineering
technology

by MICHAEL J. McGILL
Syracuse University
Syracuse, New York

INTRODUCTION

The development of new and increasingly efficient tech
niques of software engineering seems to be impressive to
everyone except the professional software developers. In a
recent summary of a panel discussing software engineering
problems to be faced during the 1980's, Wasserman notes:

Not surprisingly, the panel concluded that the problems of the
'80's look very much like the problems of the '70's and de
pressingly similar to the problems of the '60's. The basic ques
tions ... were presented by the chairman as follows:

1) How can well engineered products and systematic pro
cedures for their creation be developed?

2) How can the body of software engineering techniques be
applied to existing systems?

3) How can technology be transferred more effectively from
the research community to software developers?1

This paper will examine the prospects for the use of soft
ware engineering techniques in the near future by the "av
erage programmer. " The characteristics of technology trans
fer will be examined and put into perspective with software
engineering.

THE PROGRAMMING ENVIRONMENT

Programming is an intellectually challenging exercise with
at least two factors, size and complexity, identified as sig
nificant by Gries. 2 Size is important because anyone person
can remember only a small portion of a programming system.
However, if size was the only consideration, then the task
of programming, like that of knitting, might be challenging
but not intellectually stimulating. Complexity factors com
bined with size factors insure that programming will remain
an intellectual challenge. Complexity may be either associ
ated directly with the computational process or with the
determination of the correctness of the program.

Structured programming and design are approaches to the
size and the complexity problems and have a significant im
pact on the computer industry. The concept of GOTO-Iess
code has led to case studies of systems with tremendous
improvements in productivity, reliability, and reduced main-

683

tenance costs. The IBM system developed for the New York
Times was the example used by many proponents of struc
tured techniques. Unfortunately, one discovers that numer
ous maintenance problems persisted even in this exemplary
system.

Modular design and top-down design continue to be catch
phrases for programmers. Many techniques have been de
fined for the definition, description, implementation, and
testing of programs. The techniques allow for hierarchical
descriptions, structured charts, decision tables, control
graphs, etc. Each is designed to enhance the programmer's
effectiveness and ~fficiency. However, Y ourdan and Con
stantine note that,' "to say that the average programmer's
design process is organized, or structured, would be chari
table. "3

The approaches to the design, development, and evalua
tion of a software product are continually increasing in num
ber and sophistication. For instance, Gries4 points out three
approaches to programs:

Enumerative reasoning

Used to understand the sequence of statements, condi
tional statements and some uses of GOTO. It is an approach
to understanding and showing the correctness of execution
paths.

Mathematical induction

Used to understand iteration and recursion. Induction may
be used to show that procedures are correct irrespective of
the number of times the procedure is invoked.

Abstraction

U sed to isolate the relevant properties or qualities of an
object so that one can focus on what the object does. In this
manrier one examines data types, variables, etc., to insure
correct operation.

The ideal is to have a program that can be proven correct.
Recognizing these approaches is, however, quite different

684 National Computer Conference, 1980

from SlPplying them. Most programmers are aware of soft
ware engineering devices and in fact recognize the need for
increasingly effective methods. Procedures for proving. the
correctness of a program have been considered for more than
a decade.5 The procedures are the results of efforts by nu
merous computer scientists. Scientists, even computer sci
entists, tend not to be professional programmers. Profes
sional programmers are more properly categorized as very
high level technologists. Therefore, the transfer of software
engineering technology is really an issue which concerns the
transfer of information about available tools, techniques, and
procedures from the computer scientist to the professional
programmer technologist. The ultimate concern is with an
alteration of programming practices. Many changes will
occur at the individual level where the single person is the
adapter or rejector of an innovation. Change also occurs at
the organization level where it may be called development,
specialization, integration, or adaptation. Whatever it is
called and on whichever level it occurs, change must ulti
mately be understood by a focus on the communication proc
ess and its participants.6

PROGRAMMER CHARACTERISTICS

The programmer is a consumer of massive quantities of
information. This individual must understand the problem
environment by acquiring information through both formal
and informal channels. The programmer must gather this
information from internal and external sources as well as
from a memory in order to develop a range of solutions to
a problem.7

The programmer's purpose is to produce an acceptable
piece of software. This goal is in sharp contrast to that of
the computer scientist who is seeking a fundamental under
standing of a concept and a resulting publication. The im
plications for the person supplying information to support
both the programmer's function and the computer scientist's
function are enormous. The scientist requires a systematic
collection and organization of documents as well as a mech
anism for making these documents available. Thus, the end
product of one scientist (a publication) may serve as im
mediate input to a second scientist (figure 1).

The programmer's output is a software product. In order
for this to serve as input to a second programmer's task, the

Time

)

Scientist Scientist Scientist

~D'~D ---7D~

Publications Publications
and Other and Other
Information Information
Sources Sources

Figure I-Scientists' development and use of information.

program must be decoded and analyzed. The programmer
clearly has access to the report of the scientist. However,
the programming problem confronting this person is specific,
immediate, and probably important to his professional and
economic future (Figure 2). The scientist's report is abstract
and as such will require interpretation; it is general and will
therefore require translation to this specific problem; and it
is unfamiliar to the programmer and thus the programmer
using the results of this paper is likely to make a few mistakes
at first.

It is much more efficient for the programmer to have an
other program and its programmer explain the software prod
uct. These products are used either as a basis for hew pro
grams or as prototypes of new programs. Docurrlentation
alone does not suffice. It often requires an explicit knowl
edge of the software product. Typically this requires human
intervention or supplementation.

The programmer is faced with the dual problem of (1) fol
lowing at least the trends in the ever increasing volume of
information from scientists on software engineering, and (2)
using mechansims and/or people to aid in the decoding and
analysis of already existing software products.

Keeping up with the available literature is an ~cknowl
edged problem among scientists. The growth rate of poten
tially relevant literature is increasing with no indication of
achieving or approaching a limit.8 This, of course, increases
the difficulty of locating useful items among the useless
items. Mooers9 developed a "law" which states that infor
mation will not be used when it is more trouble to acquire
the information than it is to be without the information. As
a result, "information scientists" have developed informa
tion systems to help scientists meet their information needs.
These attempts are documentated and analyzed in the four
teen volumes of the Annual Review of Information Science
and Technology. Unfortunately these systems are not ade
quate to meet the needs of the high level technologist such
as the programmer. 7

It was pointed out that programmers rely heavily on as
sociations with other programmers. This does not occur
without restrictions. Organizational constraints are placed
on a programmer's ability to interact with those from other
organizations. The programmer is expected to work with the
employer to achieve this goal and is expected to refrain from
preliminary disclosures. Thus, proprietary information in
hibits the free flow of information among programmers.

Time
)

Programmer Programmer

---G
~ ~ #

Programs, Programs , Programs ,
Publications Publications Publications
and other and other and other
Information Information Information
Sources Sources Sources

Figure 2-Programmers' use of information sources.

Considerations in the Transfer of Software Engineering Technology 685

In spite of barriers, some techniques do seem to diffuse
quickly among organizations. Allen7 suggests that since hu
mans are :the best carriers of information, employee turnover
may be a cause of the spread of technology. As an example,
Roberts and Wainer10 showed that applications for space
technology occurred as individuals left the academic and
space research organizations to start their own businesses
or work for others.

For the truly effective transfer of technical information, one
must make use of the human ability to recode and restructure
information so that it fits into new contents and situations; each
job change brings a record of experiences and a vast amount
of "proprietary" information; a continual flow of job changes
insures that no single firm is far behind.7

INTEGRATION OF SCIENCE AND TECHNOLOGY

A common assumption is that science provides the basis
for technology. However, Pricell investigated patterns of
citations among technologists and scientists over a 20-year
time period to determine this dependence. He concluded that
science and technology progress quite independently of one
another. Gibbons and Johnston12 tried to refute this by ex
amining small technological advances. They did indeed trace
five technological advances to a scientific source. The av
erage time between the publication of the scientific finding
and the technological advance was 12.2 years. There are
examples of faster adaptations. If a need is developed by the
technologist, then science will often attempt to fill the need
and if successful a rapid use will be made of the scientific
finding.

So there is some reason to believe that a connection exists
between science and technology. In most cases, this is a
slow process with occasional exceptions.

IMPLICATIONS FOR SOFTWARE ENGINEERING

The realities of software engineering technology are (1)
that the computer scientist is frustrated by the lack of adap
tion of what are considered to be valuable tools and tech
niques, and (2) that the professional programmer is faced
with the ta~k of identifying information immediately relevant
to a specific programming task; scientific papers are often
viewed as abstract academic exercises with little practical
application.

It is not surprising that one finds a variety of reasons why
innovations have not occurred. For example, at a recent
panel consideration on the lack of formal specification of
programs, the following reasons were presented:

· . . We lack adequate tools and support. We need better data
base management facilities, better tools for viewing a system
at different levels of abstraction, and better proof tools.
· .. Progress has been slow because systems are hard to specify.
· . software development occurs over such a long time span (7-
10 years) that both the software requirements and the state of
the art in software specifications are likely to change.

· .. Completely formal specifications are hard to write and peo
ple do not need them.
· .. People fail in writing specifications because they approach
it from only one viewpoint.
· .. Progress is slow partly because the people working on spec
ification techniques are not working on real systems J3

A commonly heard prescription is that the programmer
must be educated in the modern tools and techniques of soft
ware engineering! In fact, the proliferation of organizations,
seminars and "experts" willing to reeducate professional
programmers does provide evidence that many individuals
and organizations recognize this as a need.

On the other hand, suggestions have been made to make
the published papers available to the professional program
mer more relevant to their immediate needs. For example
Gerhart14 suggests that the repeated publication of software
engineering advances which use trivial or easily specified
programs such as sorting or greatest common divisor is not
a helpful practice for the professional programmer. It is a
useful technique for the computer scientist in that it assists
in the comparison of methods. However, the programmer
ends up with a lack of either depth or breadth of experience
with the programming tools. Gerhart suggests a pUblication
outlet for free standing proofs of a variety of programs.

One might also suggest that information professionals
have not done their jobs. There is little known about the
information needs of the professional programmer. On the
contrary one is more likely to read statements about what
the professional programmer should be:

The world today has about a million "average programmers,"
and it is frightening to be forced to conclude that most of them
are victims of an earlier underestimation of the intrinsic diffi
culty of the programmers task and now find themselves lured
into a profession beyong their intellectual capabilities The
conclusion that competent programming required a fair amount
of mathematical skills has been drawn on purely technical
grounds and, as far as I know, has never been refuted!S

But software engineering technologies will be accepted
and used by even the most mediocre programmer if there
is adequate motivation provided. Rogers and Shoemaker16

note that:

The innovation process begins with an individual, or set of in
dividuals, recognizing that their organization is facing a "per
formance gap" between their expectations and reality. This
problem recognition sets off a search for alternatives, one of
which may be innovation. The new idea usually comes from
outside the organization, and must be matched with qualities
of the organization's problem. Usually the innovation must be
modified somewhat as it is implemented to fit the organization's
conditions. So the innovation process consists of problem rec
ognition, searching for alternative solutions, matching the in
novation w~h the organization's problem, and implementation
of the innovation, leading eventually to its institutionalization
when it is no longer recognized as a separate element in the
organization.

The information professionals must recognize the needs

686 National Computer Conference, 1980

of the professional programmer; the programming managers
must (ecognize a need to create programs more effectively;
professional programmers must be given the opportunity to
communicate in the manner most effective for them to ac
quire the available tools and techniques; and adequate re
ward structures must be present to encourage change rather
than inhibit it. There are no individuals at fault, and no sim
ple prescription for change. Rather, there needs to be a rec
ognition that the goals of the programmer are different from
the goals of the computer scientist. The information useful
to one is not useful to the other and the needs of the scientist
are not the needs of the programmer.

REFERENCES

1. Wasserman, Anthony I., "Problems of the '80's," Summary of Panel at
International Conference on Software Engineering, May 1978, ACM SIG
SOFT Software Engineering Notes, Volume 3, No.3, July 1978, p. 29.

2. Gries, David, "Current Ideas in Programming Methodology," in G. Goos
and J. Hartmans (ed.) Program Construction: Lecture Noted in Computer.
Science, Berlin, German, Springer-Vorlag, 1979.

3. Yourdan, Edward and Constantine, Larry L., Structured Design: Fun
damentals of a Discipline of Computer Program and Systems Design,
New York, Yourdan Press, 1978.

4. Gries, David, "Current Ideas in Programming Methodology," in Peter
Wagner (ed.) Research Directions in Software Design Technology, Cam
bridge, Mass., The MIT Press, 1979.

5. Hoare, C. A. R., "A Axiomatic Approach to Computer Programming,"
Communications of the ACM, Volume 12, October 1969, pp. 576-580,583.

6. Rogers, Everett M., and Adhikarya, Renny, "Diffusion of Innovations:
An Up To Date Review and Commentary," in D. Nimmo (ed.) Com
munication Yearbook 3, New Brunswick, New Jersey, Transaction
Books, 1979.

7. Allen, Thomas J., Managing the Flow of Technology: Technology Trans
fer and the Dissemination of Technology Information within the R&D
Organization, Cambridge, Mass., The MIT Press, 1977.

8. Brown, Harrison, "UNISIST: Growing Interest in a Worldwide Science
Information System," Journal of the American Society for Information
Science, Volume 22, No.4, 1971, pp. 288-289.

9. Mooers, Calvin N., "Mooer's Law or Why Some Retrieval Systems are
Used and Others Are Not," Zator Technical Bulletin 136, Cambridge,
Mass., Zator Co., 1959.

10. Roberts, E. B. and Wainer, H. A., "Some Characteristics of Technical
Entrepreneurs," IEEE Transaction on Engineering Management, EM-
18, Volume 3, 1971.

11. Price, D. J. DeSolla, "Is Technology Independent of Science?" Tech
nology and Culture, Volume 6, 1965, pp. 553-568.

12. Gibbons, M. and Johnson, R. D., "The Roles of Science in Technological
Innovation," Research Policy, Volume 13, 1974, pp. 220-242.

13. Heninger, Kathryn L., "Limits to Specifications: Why Not More Prog
ress?" Summary of Panel at IEEE Conference of Specifications of Re
liable Software, April 1979, ACM SIGSOFT Software Engineering Notes,
Volume 4, No.3, July 1979, pp. 15-16.

14. Gerhart, Susan, "A Proposal for Publication and Exchange of Program
Proofs," ACM SIGSOFT Software Engineering Notes, Volume 3, No.
1, January 1978, pp. 7-17.

15. Dijkstra, E. W., "On the Interplay Between Mathematics and Program
ming," in G. Goos and J. Hartmans (eds.) Program Construction: Lecture
Notes in Computer Science, Berlin, Germany, Springer-Verlag, 1979.

16. Rogers, Everett and Shoemaker, F. Floyd, Communication of Innova
tions: A Cross Cultural Approach, second edition, New York, The Free
Press, 1971.

A technique for comparative assessment of software
development management policies

by BRENDAN D. L. MULHALL and STEVEN M. JACOBS
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

INTRODUCTION

This paper describes a technique designed for organizing and
structuring the comparison of software development man
agement and software design practices. It is intended to pro
vide a general method for assessing proposed software prac
tices, especially of bidders on software contracts, and also
to provide a visual aid in explaining to management how
these proposed software practices comply with specifica
tions, exceed specifications or are lacking.

An evaluator confronted with a request for proposal (RFP)
or the proposal response to an RFP is often confronted with
an enormous amount of documents that contain software
policies, standards, and guidelines. Frequently, the software
specification. in the RFP or proposal response is not well
organized and difficult to assess. To aid the evaluator in
organizing his or her thinking and assure the completeness
of the review, it is valuable to have a structured, disciplined
approach to accomplish this evaluation.

This paper outlines a method of "getting started" with the
evaluation process. It describes a technique for structuring
the evaluation and illustrating completeness of software
specification in the RFP proposal. This technique also aids
reviewers of the final evaluation. Both the organization being
evaluated and the evaluator's critiques and policy standards
are checked.

The primary intention of this paper is not a summary of
any of the referenced documents. Rather, this technique
highlights those practices and policies which are considered
valuable because they increase computer programmer pro
ductivity, reduce software life cycle costs (i.e., development
and maintenance costs), and increase project management
visibility. This effort was performed in support of the U.S.
Army Remotely Piloted Vehicle (RPV) Project for the A via
tion Research and Development Command (A VRADCOM),
St. Louis, Mo, through the Defense Technology Office
within the Technology Development Program at the Jet Pro
pUlsion Laboratory (JPL), California Institute of Technol
ogy. Consequently, U.S. Army and JPL software policies
are used as an example, even though the assessment tech
nique is completely general.

687

ASSESSMENT METHODOLOGY

The technique is represented in the form of a matrix la
beled Table I. The major row identifiers are nine key areas
of computer software development methodology and man
agement procedures. They are: Standards Required, Roles
and Assignments, Documents, Planning, Testing, Reviews,
Change Control, and Deliverables. Classical components of
the software project life-cycle as defined by DeMarco [1]
such as requirements analysis, design, coding, etc. are in
cluded within these rows.

There are three columns in Table I. A leading or identi
fying column is titled "Generic Names." This column ca
tegorizes the rows within each major category of the table.
The generic names provide a consistent breakdown of the
details of each major area of the software. practice so that
a complete evaluation is accomplished. Two blank columns
follow which will be filled in as part of the policy assessment
procedure.

The assessment of any software management policy is a
straightforward procedure. First, a review of the software
development policy under scrutiny is performed. Secondly,
the policy to be used as a standard or baseline is broken
down by generic name items and entered in its column. A
column representing the bidder's policy is constructed and
entries are made for each row (see Table I). Each item in
the two columns is a specific detail of the two policies. The·
two policies are then compared, row by row. Concurrence
with accepted software management polities as specified in
a Request for Proposal, (or example, can be determined by
inspection, by noting where there are differences between
the two columns. The degree of compliance is easily illus
trated to any technical audience by use of the table. Short
comings can also be highlighted. This degree of compliance
can evolve into a more formal statement of adequacy of the
given bidder's policy, to be used as a final decision point for
award or modification of a software contract.

In evaluating proposals, each bidder's procedure would
be compared row by row. Where there was no discussion,
the bidder would be downgraded for lack of understanding.
Where there is over specification, this would be noted as a

688 National Computer Conference, 1980

TABLE I.-Software development management assessment

Generic
Names

STANDARDS* Top-down
REQUIRED Design.

Structured
Programming,

Modularity,

Documentat ion
and Rev iews.

Doc umen t Du r
ing Design,

Test Whi Ie
Coding,

Language,

Fi rmwnre vs.
Software I

ROLES AND* Sou Tce nf
ASSIGNMENTS Requirements.

Task/Pro J l'C t
Manager.

Dcsignl'r,

Coder.

Code Checker.

Secretari<lti
L ibrnrian.

Susta inl'r.

AC'cpptor,

Tester.

User/Operator.

Consul tant,

Configuration
Management

Accepted
Standards Bidders

r./,,'neric
Names

SOr~rWARE Rt'quirpml'lllS,
DOCUMENTS'

High-ll'vl'l
Des ign,

Ma intenanct' t

ACCl'ptillU'l'

Test Procedures,

Opcrat ions
Nanua 1

PLANNINC Kl·sponsibi 1 it~.

DOl'tlml'llt.

Est imal ing.

Sl'iwduiing.

Kl'StHlrCl'

AI 1 {)Cilt ion.

Cpmputt'r
Kl'SllUr('l's.

Project Control

TEST I N(: Top-Down Tl'Sl,

Ol'S ign Ilr Test,

Tl'st Tno 1 s,

Tl'st Resul ts,

Error Hand ling •

Verification and
Validat ion.
Acceptance,

Tntegration,

In-Plant and
Fie Id Test

*Software Development r-tanagement areas that require partH'uiar attentlon

possible cost reduction during the implementation or as a
result of contract negotiation. Thus, Table I is not merely
a comparison of management policies of two selected soft
ware development policies. Rather, Table I can be expanded
and used as a tool for analyzing any number of software
development tasks, comparing given management practices
with a variety of accepted standards and the software en
gineering literature.

APPLICATION OF THE TECHNIQUE

An example of the application of the technique is shown
by the matrix contained in Table II. The first two columns
of the matrix are two U.S. Army procedures for software
design practices and management policy. The first is a pro
posed procedure [2] (Army regulation) and the second, the
procedure specified in the RPV Request for Proposal, [3,4].

The next two columns are software procedures which have
been used at one time or another at JPL. These are the pro
cedures for the National Aeronautics and Space Adminis
tration (NASA) Deep Space Network (DSN) [5-11], and the

A('('l'ptl'd

Standards Biddl'n'

KEV I EWS*

CONTKOL

(:l'nt'ril'
Nilmt'S

H igh- J l've 1
Dl'sign,

Ikta i 1 t'd
Dt'S [gn,

Accept,mn.' Test
Proc(.'durt's,

Openn [(lns
Manua 1

Dl'Vt'lopml'nt.

Aftl'r Transr ... r
til 0pl'rat ions

DEI.IVER/\.I~I.ES~'I: Dncumcnts.

C(ldt~ •

Tl'st Resut ts,

'I't'st Data

Brendan D. L. Mulhall

AcCt.·pted
Standards Bidders

. Department of Energy sponsored Vehicle Economy, Emis
sions, and Performance (VEEP) computer simulation project
[12]. Finally, the last two columns are titled "The Litera
ture" and show four reference texts which represent a sample
of the academic viewpoint written by Tausworthe [13,14]
and Yourdon [15,16].

In some instances, the generic names simply do not apply
across the board and, consequently, a bracket is used to
communicate the collapse of these identifiers. In this case,
a short description is used instead which is amplified in the
text.

The nine key areas of software development and their con
comitant generic names are described below as are the en
tries for the four policies and four texts used for the example.

Standards required

In this major area, those standards which are fundamental
to modem software engineering according to Tausworthe13

•
14

and Jensen and Tonies '7 were listed. These are top-down
design, structured programming, modularity, documenting

STANDARDS*
REQUIRED

ROLES AND*
ASSIGNMENTS

A Technique For Comparative Assessment of Software Development Management Policies

TABLE II. Example of software development management assessment

Brendan D. L. :1ulhall

U. S. ARMY J P L THE LlTERATLIRE

Generic Specif ied Deep Space
Names Proposed in RPV RFP Network VEEP Tausworthe Yourdon

Top-down Required Required Required Top-down Top-down
Design
Structured Required Required Required

r-'~.:a::.L---.---t----n-:--"';--;--+-...,,--.-;---+-...,,--.---,;----------l Followed des ign, des ign and
Structured implement,

Programming,
Modularitv, Required Required Required

programming, Structured
~1odularity, design,

h;":'::;~:::::;;=c.!...---t---::--:--:--+--=----:-;---+--::--.---..,;----------l Yourdon' s

Docwnentation
and Reviews,
Docwnent
Our ing Des ign,
Test While
Codinl!
Language
Firmware vs.
Software

Source of
Requirements,
Task/Project
Manager,
Designer
Coder
Code Checker
Secretariat I
Librarian

Sustainer,
Acceptor,
Testor
User /Operator ,
Consultant
Configuration
Management

Partially
specified
Omitted

Omitted

Omitted
Omitted

Needs
to
be
defined

Required

Required

Omitted

Omitted

High level
Same
methodology
for both

To be
def ined
in
(contractor
provided)
Computer
Program
Developmen t
Plan (CPDP)

Assigns code
check to
programmer

Specified Standards Documentation, Structured
in detail Concurrent programming,
Strongly
encouraged

documentation, Structure
Requirement and charts,

Strongly definition, Chief pro-
encouraged Des ign and grammer
High level specification, teams,
Same Coding, Test- Program
methodology ing, Quality librarians,
for both Assurance Structured

Subsystem Cognizant Engineer Project
Requirements 1---,-------1 Manager, Chief
Engineer Chief Programmer Program
Identified Designer,
Cognizant Development Engineer Entire team Lead
Identified Support Programmer Programmer,
Quality Librarian Test Engineer,
Assurance Interface Coo-
Identified Librarian trol Engineer,
Cognizant Sustaining Engineer Sponsor User
Cognizant Operations Engineer Programmers Representative
Cogn_lZant Development Engineer Coo.nizant En2ineer
Cognizant Operations Engineer Cognizant Engineer
Net specified Cognizant Engineer
Secretariat Librarian

Roles and assignments

walkthroughs,
Pilot
projects

Analyst,
Designer,
Chief
Programmer,
Copilot,
Administra
tor, Editor,
Secretary,
Librarian,
Toolsmith,
Language
Lawyer,
Programmer,
Tester

689

with design, testing during coding, the preferred use of high
level languages, and standards for firmware. The applica
bility of each of these is indicated across the row which is
intended to show that it is a recognized attribute of the par
ticular standard practice.

In this area, the concepts and semantics become some
thing of a problem because every organization has its own
names. For example, the DSN lists Cognizant Design En-

TABLE II. Example of software development management assessment (continued)

u. s. ARMY J P L THE LITERATURE

Generic Specified Deep Space
Names Proposed in RPV RFP Network VEEP Taus.worthe Yourdon

Software
SOFTWARE Requirements, System To be Software Requirements Document In Research Requirements Requir'ed

DOCUMENTS* specification defined by Objectives Plan Document

High-level Omitted contractor Software Design Document Design Software Design Structured
Design in CPDP document Document design

Detailed Development Software Specificat ion Document Design Software Specif· Procedural
Desil!n specification document icat ion Document design
Maintenance, Product Software Specificat ion Document Documentation Maintenance Developmen t

specification manual Support
Acceptance Coordinated Software Test and Transfer Doc Technical Software Test Library
Test Procedures, test program paper Report

Operations Operators Software _ Ope rat in~ ftanual User guide User manual
Manual manuals

PLANNING Responsibility To be def ined Cognizant Development Engineer All planning Schedule Complete
Document, by contractor perf ormed by established management
Es tima t ing, in CPDP Task Manager with phased procedure
Scheduling, Computer concurrency for each
Budgeting, Resource Specif ied in of deve lopmen t version or
Re"'Source Management DSN Software activities major
Allocation Plan (CRMP) Management modification
Computer Speed, memory, and Imple-
Resources, 6. CPU reserve mentation Plan
Project Control in CPDP

TESTING Top-Down Test Omitted Omitted Required Required Omitted Required
Design of Test, Required Required Required Required Required Omitted

Test Data, Omitted Interpret Required J{equlred Required Omitted
inputs

Test Tools Required Test Materials Required Requirea Requ red Requ red
Test Results, Monitoring Omitted Required Required Required Omitted
Error Handling, Required Required Required Required Required Required
Verif ication Required Required Required Required Required Omitted
6. Validation
Acceptance, Required Omitted Required Required RElquired Omitted
Integration, Requi.ed Omitted Required Required ReqUTrea Requ red
In-Plant and Omitted Required Omitted Omittea Omitted Omitted
Field Test

690 National Computer Conference, 1980

TABLE II. Example of software development management assessment (continued)

U. S. ARMY J P L THE LITERATURE

Generic Specified Deep Space
Names Proposed in RPV RFP Network ,VEEP Tausworthe Yourdon

REV1EWS* Requirements, System CPDP Once In Research and Same as DSN During
Specification, Technology with structured

Project Plan, CRMP CPDP Monthly work Objectives and critical walkthroughs
breakdown Plans (RTOP) software
structure acceptance

High-level Development Omitted Module' by Module by
Design, spec if icat ion module module,
Detailed Development Module by Module by When
Design, specification module , module requested,
Acceptance System CPDP Once At sponsor
Test Procedures, aCQuisi tion delivery,
Operations CRMP CPDP Once Via user
Manual guide

CHANGE* During None To be Controlled by Team agreement on Change control During
CONTROL development, defined ,by software a module basis cycle estab- structured

contractor implementation lished when walkthroughs
in CPDP team and main- problem occurs

tained by affecting
secretariat software devel-

opment library
elements under
configuration
control

After transfer Software In CPDP By formal Sponsor's Omit ted
to operations Configuration change control responsibili ty

Control Board with support

DELlVERABLES* Documents, All software All software All documents All documents Omit ted
documents documents except SRD Recommends

and SDD preparing a

Code, Software and High level High level High level
checklist of
deliverab~e

operating language and language and language and software items
system machine code machine code machine code

Test Results, According to Required Required In technical paper

Test: Data approved Required Required In technical paper
test plan

SOFTWARE $8 million
DEVELOPMENT None N/A TBD (Mark 11.1 $250,000 N/A N/A
COSTS Implementation

* Software Development Management areas that require particular attention

gineer (CDE), Cognizant Sustaining Engineer (CSE), and
Cognizant Operations Engineer (COE) for the key software
tasks of design, maintenance, and operation, respectively.
Under "The Literature," Yourdon has several interesting
and even amusing names for roles which are identified in
other systems. This text identifies roles which exist in every
computer facility though perhaps not explicitly recognized,
such as "Tool Smith" and "Language Lawyer."

Discussion of common practice with DSN personnel was
required to determine the equivalents to the "Tool Smith,"
in their policy of requiring a single development of utility
software (such as partiCUlar 110 handlers or character-code
conversions) that will meet identical requirements in a num
ber of programs. On the other hand, the function performed
by Yourdon's "Language Lawyer" is often not'centralized,
but is duplicated many times over by programmers who in
dividually maintain sizable files of memos and other corre
spondence that tell how the operating systems and compilers
really work.

THe effects of these differences in terminology cause sig
nificant expenditure of effort to determine the real corre
spondence between role statements, efforts that are not per
mitted in the evaluation of competitive bids. This is a

probl<!m area in the use of the technique described here and
requires considerable judgment by the users of the technique.

Software documents

Adequate documentation of software is imperative. The
Documen,ts row outlines the names of required documents
that accompany software developm~nt. For example, the
DSN requires the Software Requirements Document (SRD)
which contains a statement of those system functional re
quir~ments which are to be implemented in software, Soft
ware Design Document (SDD) the top-level architectural
design, Software Specification Document (SSD) which con,.
tains the detailed design and which becomes a maintenance
document, Software Test and Transfer Documenl (SIT) for
describing test and transfer to operations procedures, and
Software Operations Manual (SOM) the user guide. Other
projects require Software Functional Description (SFD),
which includes functional requirements, and Software Test
Report (STR), which document test results as well.

There is a conscious effort in the selection of generic doc
ument names in the table to make them relate in a nearly

A Technique For Comparative Assessment of Software Development Management Policies 691

one-to-one way with the Roles and Assignments. This is to
indicate the author or responsible person for each document.
This correspondence is further carried on in the Reviews
section and could become a third dimension in the table.

Planning

Planning is, of course, a key step in any project imple
mentation, and imperative in software development. The
approval of a well-defined software management and imple
mentation plan is a common practice at JPL and essential
for software development management. Even small software
tasks require planning in order to meet schedule and func
tional requirements. Two items of planning, namely resource
allocation (the employment of personnel and other resources
that we measure in dollars such as computer time, graphic
support, etc.) and computer resources, (the amount of core,
CPU time, peripherals, etc. which any program shares with
other programs while co-existing in the same software ef
fort), may seem redundant but are not.

In the allocation of resources, the life cycle cost of the
system is of primary importance. The life cycle costs consist
of the design and implementation costs as well as the op
erating and maintenance costs through the useful life of the
system, and, finally, archival storage costs after replace
ment. To forecast life cycle cos.ts one must consider both
the software and the hardware together as a complete op
erating system. For example, if a program must be squeezed
down by partitioning into segments to fit into a limited
amount of main memory, as opposed to designing with an
adequate amount of memory to reasonably accommodate the
program and also to allow for some growth, then both im
plementation and maintenance costs may be increased. Sim
ilar tradeoffs may exist such as 110 and the choice of peri
pherals.

Testing

Ultimately, all useful computer programs must be shown
to be both correct and valid. A "correct" program has in
ternal consistency within its architecture, logic, syntax, and
nomenclature. A valid program satisfies the functional re
quirements of the user.

Like top-down design, top-down testing is often, but not
always, according to Yourdon and Constantinel8

, employed
to gain the full benefit ofthe top-down approach. Procedures
for testing software must be designed in advance. Definitions
of test data, test tools, and the use of stubs as in Y ourdonl5

,16

are also required. Procedures to be followed based upon the
test results must also be defined. The terms verification and
validation must clearly be understood by both the software
bidder and customer.

Structured walk-throughs, as described by Yourdon [15,16],
are a key means of ensuring software consistency and cor
rectness. The criteria for software acceptance must also be
established. The integration of a software system requires
additional test procedures, occasionally examining software

in an in-plant versus field use test, or over the entire life
cycle of the system.

Reviews

This section uses the same generics as the documents and
the roles and assignments sections to show this relationship.

Change control

Any change to computer software can have drastic effects
upon delivery schedule and computer program validity.
Changes that occur during or after the software design and
implementation require change control procedures. There
fore, the comparisons of change control procedures in Tables
I and II are divided into two areas, the first being the change
control during the development period and secondly, after
initial acceptance of the software by the user. These are sep
arate and very distinct areas requiring different procedures.
Changes that affect interfaces being worked on by different
groups require careful control at all times after the interface
definition has been established, even during implementation:
Changes that are found necessary after design review of ar
chitectural or high-level designs need not be as formally con
trolled since the software has not been accepted by the user
and disseminated through the user organization. Authori
zation of the change at this stage still requires the same ap
proval cycle as the original design.

When properly applied, top-down design, modularity, and
structured programming techniques all help to minimize or
prevent the change from rippling through the system design
by isolating each function in its own module and by elimi
nating sneak paths which allow changes to cause unforeseen
effects.

An automated software development tool such as SDDL
(Software Design and Documentation Language), developed
at JPL, can aid in tracking the changes that occur during the
design process itself by making it easy 1) to record such
changes and 2) to see where changes have occurred. SDDL
also lends itself to software implementation using structured
programming techniques, minimizing the effects of changes
when structured, modular computer programs are con
structed [19].

Changes that occur to software after delivery require for
mal change control procedures that not only update the soft
ware, but also inform others by issuing a notification of
change and change pages to holders of the software docu
mentation and, update operators' manuals.

Deliverables

Not all projects call for the same items as deliverables.
For example, the requirements and the high-level design
documents are not part of the standard deliverables for the
DSN because they were not deemed necessary to survive
the implementation. Also, not every standard practice calls

692 National Computer Conference, 1980

for delivery of both machine code and high-level language
though this is an essential item for maintenance purposes.
Operating systems are often required as part of software
delivery. The provision of operations and maintenance man
uals also are handled differently by different projects.

In the item with the generic name Code, there are two
levels specified. High-level language or source code can be
a program design language or a compiler language such as
FORTRAN or COBOL. Even assembly language, if that was
the highest level language used in the development, can be
the source code. The most human-oriented language em
ployed is the source code and should be included as part of
the product delivered to the customer, since it is needed to
maintain and revise the program. The second level is ma
chine code representing the entire working program.

Software development costs

This last row in Table II indicates the relative magnitude
of the software implementation projects. It is recognized that
complete, rigorous software practices are not always appro
priate in small projects. The most efficient approach is to
use those aspects of software methodology which are val
uable for control, design, maintenance, and survivability of
the software system while not requiring all of the formal
reviews, documentation standards, etc. which might be re
quired to manage a larger project. Therefore, keeping in mind
the size and scope of the programming task while utilizing
the assessment technique is important.

If more than two procedures are being compared, relative
development costs become an interesting item and, hence,
are included in Table II but not Table I.

COMPARISON OF POLICIES

An inspection of Table II indicates the comparability of
the six approaches to software management and design. The
most similar are the Deep Space Network Policy and the
texts by Tausworthe which is due to the contribution that
Tausworthe made in developing DSN standard practices.
The Vehicle, Economy, Emission, Performance program
was based heavily on the texts by Y ourdon and, conse
quently, is a specific application of these texts.

The two Army procedures do differ somewhat. The spec
ified procedures in the RPV RFP are based on two refer
ences, one (the RFP) is a collection of statements and various
Army documents which formed the specification. The pro
posed Army practice [2], is more of a computer hardware
resource management procedure, although it has a number
of requirements on software procedures. Consequently,
these two columns are not entirely comparable, but were
included to show both the present Army philosophy and one
possible future approach.

One area of comparison between proposals and standard
practices which is not delineated in the table, but is to the
advantage of the software bidder is the clarity, conciseness,

and discernibility of statements of the required procedures
and practices.

A FINAL NOTE

Due to the differences in software policies and guidelines
combined with the lack of maturity of the field of software
engineering, a fair and just comparison of a number of soft
ware proposals or policies can be difficult. One must gain
a substantial familiarity with the proposals or policies to be
evaluated to secure valid comparison data for this technique.
Special treatment of information in regards to particular pro
posals or policies is often necessary and slight modifications
of the standards displayed by this technique may be in order.
A weighting factor may also be incorporated into the table
by adding another column to Table I for a multiplier or
weighting-type function, or simply being more critical of
certain areas and not in others, in a more subjective ap
proach.

When there is adequate interaction between the software
practitioners and a group of knowledgeable evaluators, the
assessment technique can be a useful tool for highlighting
the differences between approaches and for providing a basis
for determining how approaches could be modified or ap
proved.

CONCLUSION

Any bidder's proposal can be evaluated by constructing
a new column and filling in each area the names or the exis
tence or the absence of certain documents, reviews, assign
ments of personnel, etc. By this means the conformity of
the proposed standard practice to existing conventional wis
dom can be related. Shortcomings and better procedures in
certain areas can also be readily identified and communi
cated.

The assessment technique can assist in giving structure
to the process of comparing bidder's proposals, management
policies of different projects or organizations, or to evaluate
proposals for software management approaches.

ACKNOWLEDGMENT

This paper presents the results of one phase of research
conducted at the Jet Propulsion Laboratory, California In
stitute of Technology for the United States Army Aviation
Research and Development Command, by agreement with
the National Aeronautics and Space Administration.

BIBLIOGRAPHY

1. DeMarco, Tom, Structural Analysis and System Specification, New
York: Yourdon, Inc., 1979.

2. Management of Computer Resources in Army Defense Systems, U. S.
Army Publication #AR 70-XX, March 1978.

3. Research and Development Software Acquisition, A Guide for the Ma
terial Developer, U.S. Army Publication #AMCP 70-4, Sept_ember 1974.

A Technique For Comparative Assessment of Software Development Management Policies 693

4. Request for Proposal for u.s. Army Remotely Piloted Vehicle Target
AcquisitionlDesignation Aerial Reconnaissance System, U.S. Army RFP
#DAAK50~78-R-0008, May 1978.

5. Irvine, A. P., Editor, Standard Practices for the Implementation of Com
puter Software, JPL Publication #78-53, September 1978.

6. Software Implementation Guidelines and Practices, JPL DSN Standard
Practice Publication #810-13, August 1975.

7. Preparation of Software Requirements Documents, JPL DSN Standard
Practice Publication #810-16, December 1975.

8. Preparation of Software Definition Documents, JPL DSN Standard Prac
tice Publication #810-17, July 1976.

9. Preparation of Software Specification Documents, JPL DSN Standard
Practice Publication #810-19, March 1977.

10. Preparation of Software Operator's Manuals, JPL DSN Standard Prac
tice Publication #810-20, February 1977.

11. Preparation of Software Test and Transfer Documents, JPL DSN Stand
ard Practice Publication #810-21, November 1976.

12. Vehicle Economy, Emissions, and Performance Program Development

for the JPL Automotive Technology Status and Projections Project Final
Report, JPL Publication #78-71, June 1978.

13. Tausworthe, Robert C., Standardized Development of Computer Soft
ware, Part I, Methods, JPL Publication #SP 43-29, July 1976.

14. Tausworthe, Robert C., Standardized Development of Computer Soft
ware, Part II, Standards, JPL Publication #SP 43-29, Part II, August
1978.

15. Yourdon, Ed, How to Manage Structured Programming, New York City:
Yourdon, Inc., 1976.

16. Yourdon, Edward, Techniques of Program Structure and Design, En
glewood Cliffs, N.J.: Prentice-Hall, 1975.

17. Jensen, Randall W. and Tonies, Charles C., Software Engineering, En
glewood Cliffs, N.J.: Prentice-Hall, 1979.

18. Yourdon, Edward, and Constantine, Larry L., Structured Design: Fun
damentals of a Discipline of Computer Program and System Design,
Englewood Cliffs, N.J.: Prentice-Hall, 1979.

19. Kleine, H., Software Design and Documentation Language, JPL Pub
lication #77-24, July 1977.

Software Reliability

The first session of the software relia
bility area will address Software Reliabil
ity Needs. It includes three invited papers
that deal, respectively, with the origina
tion of reliability requirements, with issues
of reliability measurements, and with re
liability modeling and prediction. All of
them represent the cutting edge of the cur
rent technology and treat the subject in a
broad manner that may be of interest also
to the non-specialist; e.g., the discussion
of reliability requirements is based on soft
ware used for a fly-by-wire system for
transport aircraft. In this context, the
overall aircraft safety regulations are ex-
amined, and the derivation of computer Herbert Hecht
and software reliability requirements from Area Director
these is outlined. All papers recognize that
software reliability is an evolving discipline, one in which we are all students, and a field
of tremendous importance for the future of computers in our society.

The second session addresses Current Trends in Software Reliability, and it is structured
as a panel discussion. The panelists work in fields that make utmost demands on the
reliability of computing systems, and they will relate the current practices that are being
used to meet these requirements. Management techniques, personnel selection and train
ing, and technical methods in requirements analysis, design practices, structured pro
gramming and innovative test strategies will be discussed.

695

Standard error classification to support
software reliability assessment

by JOHN B. BOWEN
Hughes-Fullerton
Fullerton, California

SUMMARY

A standard software error classification is viable based on
experimental use of different schemes on Hughes-Fullerton
projects. Error classification schemes have proliferated in
dependently due to varied emphasis on depth of casual trace
ability and when error data was collected. A standard clas
sification is proposed that can be applied to all phases of
software development.· It includes a major casual category
for design errors. Software error classification is a prereq
uisite both for feedback for error prevention and detection,
and for prediction of residual errors in operational software.

INTRODUCTION

The ability of managers and technical developers to influence
the reliability of software is very high at the outset of a proj
ect but declines rapidly as commitments are made, schedule
time and budgets are used, and code and documents are
produced. The acceptance test phase is the very time when
little chanceremains to influence the reliability of the system
except by rebuilding the deficient parts. A significant goal
is to alert management as early as possible in the develop
ment phases of critical problems and adverse trends that
could degrade software reliability. Since up to 60 percent of
the errors detected in the life cycle of software have been
committed during the design phase,! a major challenge is to
devise error categories that are sensitive to that phase, and
thereby provide feedback. Management feedback has been
difficult to obtain, because programmers have traditionally
enjoyed a pride of codemanship that rarely admits to the
existence of errors. However, with the advent of Modern
Programming Practices (MPPs), such as code reviews, soft
ware errors are available for analysis and feedback-even
before a program module is executed.

A special conference on the problems of data collection2

concluded that "The most success in data collection has
been realized in those places where there has been feed
back. " Over three years ago Marcia Finfe~ noted that
"Many papers addressing the problem of error collection
and quantization state that greater understanding of soft
ware errors will lead to the improvement in the design and

697

application of software development tools and techniques,
but the reality of the situation does not support this conclu
sion. Project managers who have the ability to both initiate
error reporting procedures, and analyze the incoming data,
do not consistently take action resulting from the analysis
of the error reports." This observation is still true today.

Typically, the reason for not acting on the analysis of error
trends is the overriding pressure of getting the immediate job
done on schedule. Such a reason is understandable partic
ularly during the latter stages of development. However,
software management appears to be remiss in not applying
the results of error analysis to subsequent projects.

In the case of predictive software reliability models, most
program managers have doubts about their usefulness. Con
sequently some view error data collection as a nonproduc
tive extra burden. This view is unfortunate, because only
with the support of conscientious error data collection can
proposed quantitive reliability models be validated.

The Rome Air Development Center (RADC) has spon
sored numerous studies on software error collection and
analysis, starting with a software reliability study by TRW!
which included an error category scheme, which was gen
erated as the raw error data was analyzed. This error scheme
was used in later RADC studies ,4,5 but no approved standard
error classification has emerged within the Air Force, to
date. The Navy has included a software trouble classification
in its recent MIL-STD-1679;6 however the four categories
do not have enough detail to assist in feeding back construc
tive information to management.

This paper proposes the standardization of a set of soft
ware error classifications that have casual, severity, and
source phase properties. Such a set will assist the project
manager in taking remedial action to improve reliability, sup
port company and software community efforts in evaluating
the impact of reliability-producing techniques, and aid in
validating software reliability models and metrics. The term
software reliability, therefore, as used in this paper repre
sents both the assessment of the use of reliability-producing
factors and the prediction of residual errors. Although reli
ability models are primarily used to predict residual errors
existing after acceptance testing, they can also be applied
to earlier development phases if primed with sufficient error
data. Reliability prediction is not concerned with the casual

698 National Computer Conference, 1980

properties of errors, but should be concerned with severity
and source phase properties.

NEED FOR A STANDARD ERROR CLASSIFICATION

Like most human activities, the software engineering en
vironment is a complex of a g~eat variety of interrelated fac
tors. Some researchers such as Willmorth, et al. 7 conclude
that "No one set of data parameters collected for research
purposes will significantly support a wide range of reliability
analyses." Weiss8 contends that error classifications need
to be tailored for each study or application so that the ques
tions of interest can be answered. I contend that there is a
need for a standard scheme to classify error data which rep
resents the basic characteristics of the software environ
ment.

In fact, a number of organizations and agencies such as
the Joint Logistic Commanders, U.S. Navy, IEEE Com
puter Society, and a number of industrial companies have
developed, or °are in the process of standardizing, software
error classificationso Unfortunately, few of these schemes
are compatible with each other. Only the severity classifi
cations are similar, and even in this case the number of se
verity categories ranges from three to five. RADC has in
augurated a software data collection and analysis program9

which has as one of its major objectives to "Promote stand
ards of software data collection, and support the develop
ment and definition of common software data collection ter
minology. "

The necessity of a standard error classification scheme
becomes evident when the needs of a large project and re
search activities are examined. A few examples are: to pro
vide feedback to develop software design standards; provide
guidance to test engineers; evaluate modern programming
practices; evaluate verification and validation tools; and val
idate and support quantitative reliability models. The minimal
ingredients of such a scheme are listed in Table I.

Since some studies report that as much as 60 percent of
all software errors originate in the design phase, it is im
portant that error collection and classification be sensitive
to the point in time in the life cycle of a program when the
error occurs. Only then can improved software design stand
ards be developed. In addition, the distribution of types of
errors from related projects can assist test engineers and
quality analysts in concentrating their activities. For in
stance, if one particular application is expected to have a
preponderance of computational errors then the test plan
ners would profit by applying dynamic tools, rather than
static tools, to uncover such errors. 10 Thus, while it has been

TABLE I.-Questions that can be answered by a feedback-oriented
classification scheme

When - In what phase in the software development cycle did the
error ori ginate?

How What did the designer/analyst/programmer do wrong?

What - What is the effect of exercising the resultant fault?

established that the use of error classifications can aid in
evaluating all phases of software development, the most re
warding efforts occur during the early phases, such as de
sign. As suggested by Finfer,3 error analysis can indicate the
necessity to apply additional personnel to a particularly
error-prone program or subsystem, and a cluster of errors
in a related group of programs may indicate that particular
software is poorly designed. In a study for NASA-Langley,
Hechtll recommended that "Classification by cause of fail
ure is desirable in order to organize remedial measures. This
information is of value for the management of the immediate
project on which it is obtained, for overall software man
agement (e.g., in guiding the allocation of resources), and
for the development of improved software engineering tools
and procedures (language processors, test tools)."

Thus while these examples illustrate the underlying ne
cessity for developing a standard software error classifica
tion scheme, the problem is not exactly new. A software
data collection conference in 19752 concluded that: "Stand
ardization of data items, collection procedures, and project
characteristics is needed to provide comparability of mea
sures in evaluating tools, techniques, and methods." This is
still true today especially in the validation of predictive soft
ware reliability models and software reliability metrics, as
well in the selection of the best V &V tools and techniques.

One of the major hurdles in comparability is the difficulty
in controlling all of the factors that influence software de
velopment during an experiment that compares two software
development activities using different modern programming
practices. It is difficult to compare the programming activity
of different projects using error analysis because of uncon
trollable factors-such as programmer background, hard
ware and software environment, and applications. Error
density is frequently used to evaluate MPPs. For example,
IBM12 compared two large projects: One project with top
down design, structured code, chief programmer teams, and
a librarian, had an error rate of 1.0 per 100 lines of code.
Another project, using conventional techniques, had twice
that rate. This report is an example of the typical use of
unqualified errors to evaluate the effectiveness of MPPs. In
the final analysis, such a use can be misleading unless the
researcher reveals when the errors were detected, and how
severely these errors impact mission performance. Even if
the errors are qualified there must be a common understand
ing of the classification scheme. Susan Gerhart13 reports
"The study of observed ~rrors on the fallibility of modern
programming methodologies suffered from an inconsistent
error domain which caused several types of classification
schemes to be difficult to construct and to interpret."

Castle, in a thesis on validation of software reliability math
models,14 states that if he had to make one recommendation,
it would be the importance of continued software error col
lection. He pointed out, "A dis~ase cannot be cured without
knowledge of the cause. So is the case with unreliable soft
ware." In a list of 22 software error characteristics for col
lection, he includes the phase in which the error occurred,
the criticality of the error, and the error categories (causal)
with unambiguous definitions. As a result of a study of can
didate software reliability models, Kruszewskp5 recom-

Error Classification to Support Software Reliability Assessment 699

mended improved data collection with formal error reporting
and using causal and severity categories. Schafer in a recent
RADC study to validate candidate software reliability models 16
used 16 sets of project error data which represented a total
of 31,181 errors. The results of the study indicated that in
general the software models fit poorly due to vagaries of the
data, rather than shortcomings of the models. The study re
port concluded that more work remains in the area of soft
ware error data collection. Echoing these findings, Sukert,
at a recent conference,17 recommended the development of
software error data collection standards, and the study of
software reliability predictions based on error criticality cat
egories.

SURVEY 'oF CANDIDATE ERROR CLASSIFICATION
SCHEMES

An excellent survey of the state-of-the-art in software
error data collection and analysis was published by Robert
Thibodeau. 18 His report describes recent efforts of govern
ment agencies, educational institutions, and private com
panies; and includes synopses of several studies on software
error collection and analysis. On the topic of error classifi
cation he states:

"The study of software errors requires them to be sepa
rated according to their attributes. This is the first step in
understanding what causes them and, subsequently, how
they may be prevented. The need for a practical error clas
sification is important and, since it applies to nearly all areas
of software research, it deserves to be treated as a separate
topic. "

Mitre error classification study

In early 1973 MITRE Corporation, under contract to
RADC, developed a general software error classification
methodology.19 The methodology was designed to serve as
a guideline for experiment-specific application. The pro
posed classification scheme is hierarchical, and consists of
five major categories:

1. Where did the error take place
2. What did the error look like
3. How was the error made
4. When did the error occur
5. Why did the error occur

The associated subcategories are not unique to the major
categories and include attributes such as People, Hardware,
Software, Mechanical, Intellectual, and Communicational.
The scheme accounts for the fact that a single error can have
a number of characteristics occurring simultaneously. The
report addresses the problem of mUltiple classification of the
same error, and suggests the use of the" fuzzy set theory
where multiple classifications are qualified by degree to fully
describe a single software error.

TRW software reliability study

During a study for RADC,I TRW-Redondo Beach devised
a software error classification scheme with twelve major
causal categories. The study also developed a source phase
classification. These classifications which were iteratively
developed during a 2.5-year study are listed in Table II.

Study of errors found in validation

Raymond Rubey in a technical paper published in 197520

presents several error categories. He stated that, "The most
basic data required about the errors found during validation
are the frequency of occurrence of those errors in defined
error categories and their relative effect or severity. " Three
of the proposed error classification schemes are included in
Table III. '

ANISLQ-32(V) verification and validation

In May 1977 the Navy distributed a statement of work for
V & V services21 which characterized the software errors en
countered during software development as follows:

Requirements
Processing Design
Data Base Design
Interface Design
Processing Construction
Data Base Construction
Interface Construction
Verification
Specification (all documentation)

TABLE H.-Software error classifications developed during TRW
reliability study

COMPUTATIONAL
LOGIC
DATA INPUT
DAT A HANDLIN G
DATA OUTPUT
INTERFAGE
DATA DEFIN IT ION
DATA BASE
OPERATION
OTHER
DOCUMENTATION
PROBLEM REPORT REJECTION

Source Phase

REQUIREMENTS
DESIGN
CODING
MAINTENANCE
NOT KNOWN

700 National Computer Conference, 1980

TABLE I11.-Error classifications proposed by Rubey study

Causal

INCOMPLETE OR ERRONEOUS SPECIFICATICN
INTENTIONAL DEVIATION FROM SPECIFICATION
VIOLATION OF PROGRAMMING STANDARDS
ERRONEOUS DATA ACCESSING
ERRONEOUS DECISION LOGIC OR SEQUENCING
ERRONEOUS ARITHMETIC COMP UT ATION S
INVALID TIMING
IMPROPER HANDLING OF INTERRUPTS
WRONG CONSTANTS AND DATA VALUES
INACCURATE DOCUMENTATION

Severity

SERIOUS
MODERATE
MINOR

Source Phase

DEFINING THE PROGRAl\] SPECIFICATION
DEFINING TilE PROGRAM
CODING
PERFORMING MAINTENANCE FUNCTIONS

JLC preliminary error classification

In April 1979 the Joint Logistics Commanders Joint Policy
Coordinating Group on Computer Resource Management
held a software workshop22 where preliminary general cat
egories for classifying software errors were defined. As
shown. in Table IV three major casual categories and four
severity categories were included.

TABLE IV.-Software error categories proposed by Joint Logistic
Commanders

Software Specifications

1. Unnecessary functions
2. Incomplete requirements or design
3. Inconsistent requirements or design
4. Untestable requirements or design
5. Heq uirements not traccable to higher specifications
6. Incorrect algorithm
7. Incomplete or inaccurate interface specifications

Code

1. Syntax errors
2. Non-compliance with specification (s)
3. Interface errors
4. Exception handling errors
5. Shared variable accessing error
6. Software support environment errors
7. Violation of programming standards
S. Operational support environment errors

1. Accuracy
2. Precision
3. Consistency

Severity

1. Prevents accomplishment of its primary function, jeopardizes safety,
or inhibits maintainability of the software

2. Degrades performance or maintainability, with no workaround

3. Degrades performance or maintainability, but a workaround exists

4. Doesn't adversely affect performance or maintainability (such as
documentation, etc. errors transparent to users)

Discussion

Most of the software error classification schemes surveyed
have a separate classification for severity or impact on mis
sion performance. However, there was no general agreement
on using distinct classifications for cause and source phase.
Some error causes are phase peculiar, therefore a combined
single category would result in fewer subcategories than all
possible combinations of source phase and casual subcate
gories. This advantage appears to be outweighed, however,
by the ease in implementing automated statistical analysis
of the phase and casual attributes when the categories are
separated.

It should be noted that only the Navy AN/SLQ-32(v) cas
ual classification scheme included unique categories for de
sign errors. Rubey's classification contains only one special
design category, intentional deviation from specification.
(This category could be interpreted as representing either a
design or coding activity.) The JLC classification has design
categories; however they are combined with requirements
(e.g., incomplete requirements or design).

RESULTS OF USING EXPERIMENTAL
CLASSIFICATIONS ON HUGHES-FULLERTON
PROJECTS

For over two years Hughes experimented with a software
error classification scheme on an Army project during the
development phases. The classification scheme used on this
project was based on the scheme proposed by Rubey.20
Three classifications were used: Severity, Cause, and Mis
cellaneous as shown in Table V. The casual classification

TABLE V.-Hughes-Fullerton experimental error classification

Severity

CR
l\IA
l\JJ

Cause

REQl\IT
PROGl\1
SPECS
LOGIC
!l\/PVE
INTRT
LINKE
ARITII
ALGOR
DOCUM
EDIT
DATAl
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7

DATAS

Miscellaneous

INTRa
STAND

System Crash or Serious Effect on l\lission Performance
Incorrect Values that Reduce Mission Performance
Incorrect Values that have Tolerable Effect on l\lission

Expanded. Reduced, or Erroneous Requirements
Non Responsive Program Desi gn
Incomplete or Erroneous Prog-ram Design Specifications
Erroneous Decision Logic on Sequencing
Improved Program Storage or Response Time
Improper Handling of Interrupts
Incorrect l\lodule or !loutine Linl<nge
Erroneous Arithmetic Computations
Insufficient Accuracy in Implementation of Algorithm
Inaccurate or Incomplete Comments on Prologue
Erroneous Editing for New Version Update
Incomplete or Inconsistent Data Structure Definition
Wrong Value for Constant or Preset Data
Improper Scaling of Constmlt or Preset Data
Uncoordinated Use of Data by !\lore than O,ne User
Erroneous Access or Transfer of Data
Erroneous Reformatting or Conversion of Data
Improper !\lasking & Shifting During Data Extraction &

Storage
Failure to Initialize Counters, .Flags, or Data Areas

NelV Error Introduced During Correction
Noncompliance with Programming Standards and

Conventions

Error Classification to Support Software Reliability Assessment 701

was open-ended, that is to say, categories were added as
required during the project. The Data category was assigned
most frequently (23 percent of total errors), consequently
it was divided into eight subcategories. Incomplete or er
roneous program design specifications accounted for 15 per
cent of the total number of errors; logic for 14 percent; and
requirements, program design, and access or tran'sfer of data
for 10 percent each.

On a similar Army project,23 Hughes has over a year's
experience in using an error classification scheme based on
the TRW/RADC scheme. The casual classification was as
signed separately from the source phase, and was tailored
to the following ten major categories (percent of total errors
are shown in parentheses):

Computational (4)
Logic (38.5)
Data definition (20.5)
Data handling (14)
Data base (3)
Interface (4.5)
Operation (1)
Documentation (0.5)
Problem Report Rejection (NA)
Other (13.5)

The major categories, Data Input and Data Output, were
dropped, because they were not appropriate to the appli
cation.

An analysis of error trends on this project revealed that
eight problems were caused by the improper selection of
instructions. Accordingly, it was felt that this class of errors
warranted a separate subcategory. Since such a selection
could result from either misunderstanding or carelessness,
the following two subcategories were added to the Other
category:

Selection of wrong instruction or statement
Careless selection/omission of instruction or statement

It is believed that these two categories will determine the
need for improved training of new programmers on subse
quent projects in the understanding of the instruction rep
ertoire. Such categories may be useful in validating com
plexity metrics such as the one proposed by Ruston.24 The
metric is based on information theory, and assumes that the
less frequently an operator or operand is used then the more
difficult it is for the programmer to use correctly.

On a Navy project, Hughes employed a code review tech
nique which included the recording of errors according to
categories. Five hundred modules had a total of 765 errors;
the remaining 742 had no problems.25 Table VI presents the
distribution of the most frequent errors, and compares the
distribution with comparable categories from IBM's code
inspection technique. 26 The high percentage of errors due
to missing or insufficient listing prologues and comments for
the Hughes project was probably due to the novelty of such
a requirement early in the coding phase.

TABLE VI.-=-Distribut~~_~~_:rr~~ dete~!~.~ during code inspection

Categury

Prologue IComments
Desig'n Conflict
Logic
Programming Standards
Language Usage
Other
Module Interface
Data Base

Total

~ _____ y of Total

Hug'hes

44
19.5
11.5
11
5
3
3
3

100.0

IBM

17.0
25.5
30.5
4.5

12.5
3.5
6.5

100.0
___ ._ •........ ___ . ____ ...L ____ _

RECOMMENDED ERROR CATEGORIES

With respect to proposed error classification schemes, the
applicability to more than one project, the excessive gran
ularity and ambiguity of subcategories, have been called out
as problems. Hughes has found that the use of a minimal set
of three software error classifications (Cause, Severity, and
Source) solves these problems and is sufficient to support
the assessment of software reliability. As summarized in
Table VII, Source tells in which software development phase
the error originated in, Cause tells what the analyst or pro
grammer did wrong, and Severity tells whether the mani
festation of the error degrades mission performance.

The recommended casual classification for software reli
ability assessment, containing seven major categories, is
shown in Table VIII. The scheme can be tailored by adding
subcategories of interest or exception, such as problem re
jection, to the Other category. A definition of each category/
subcategory is presented in Appendix A.

A severity classification of at least three categories (for
example Critical, Major, and Minor) is recommended. In
addition to guiding project managers in assigning priorities
to the troubleshooting and resolution of problems, severity
categories are necessary for practical application of predic
tive software reliability models. In order for the prediction
of residual software faults to be meaningful, the impact of
the execution or manifestation of the fault on the system
mission performance must also be included. Some proposed
reliability models such as the execution time theory model
can accommodate severity by running separate predictions
for each severity category of interest. The justification for
the recommended error casual and source phase categories/
subcategories is discussed in the following subparagraphs.

TABLE VII.-A software error classification scheme that provides
feedback

-----_ .. - .. __ ._--_._------------
Scurce - Phase in which error of omission Icommission was madc

(e. g. Requirement, Design, Coding, Test, Maintenance,
and Corrective Maintenance).

Cause - The causal description of the error. rather than
symptomatic

Severity - The resulting effect of the error on mission performance
(e.g. Critical. Major, and Minor)

702 National Computer Conference, 1980

TABLE VIII.-Casual categories to support software reliability analysis

Design

Nonresponsive to reluirements
Inconsistent or incOloplete data base
Incorrect or incomplete interface
Incorrect or incomplete program structure
Extreme conditions neglected

Interface

Wrong' or nonexistent subroutine called
Sl.broutine call arg'wnents not consistent
Improper usc or setting of data base by a routine
Improper handling of interruptE

Data Definition

Data not initialized property
Incorrect data units or scaling
Incorrect variable type

Logic

Incorrect relalional operator
Logic activities out of sequence
Wrong variable being checked
l\Jissing' logic or condition tests

Loop iterated incorrect number of times (including endless loop)
Duplicate logic

Data Handling'

Data accessed or stored improperly
Variable used as a flag or index not set properly
Bit manipulation done incorrectly
Incorrect variable type
Data packing/unpacking error
Uni ts or data conversion error
Subscripting error

Computational

Incorrect operator /operand in equation
Sign convention error
Incorrect/inaccurate equation used
Precision loss due to mixed mode
Missing computation
Rounding or truncation error

Other

Not applicable to software reliability analysis
Not compatible with project standards
Unacceptable listing prologue/comments
Code or desig'n inefficient/not necessary
Operator
Clerical

Category for design-related errors

Although a casual category for design-related errors is re
dundant with the source phase category Design, sufficient
error volume has been associated with software design ac
tivities to warrant a separate casual category. In analyzing
designed-related category assignments on three software

TABLE IX.-Misunderstandings as sources of errors during NRL
experiment

Categ~.~y __ ..

Clerical
Design
Coding StJccs
Careless Omission
Language
Interface
Requirements
Coding Standards

Total

% of Total Errors

36
19
13

_L ____ J

projects at Hughes-Fullerton it was found that the categories
accounted for 25, 17, and 8 percent of the total errors. Fur
thermore, the results of the error category frequency distri
butions collected during code review/inspections (refer to
Table V) reveal that design conflicts constitute a significant
portion of the error causes (25.5 and 19.5 percent). Another
study8 performed at the Naval Research Laboratory (NRL)
reported that design misunderstandings contributed to 19
percent of the total errors (see Table IX).

Subcategory for clerical errors

Two experimental studies, one performed at the Naval
Post Graduate School (NPGS)Z7 and the other performed at
the Naval Research Laboratory (NRL),8 found it necessary
to include clerical as a major error category. In fact, both
studies found that the clerical category was the most fre
quency error cause (see Tables IX and X). The NPGS error
distributions represent a composite of four projects. On one
project the Clerical, Manual subcategory contributed to 36
percent of the total errors. Due to the high occurrences of
clerical errors reported on these two unrelated projects, it
is recommended that clerical be added as a subcategory to
the Other category.

Maintenance category

Maintenance errors are defined by Thayer l as those errors
resulting from the correction of previously documented er
rors. He reported that in one project this category of errors
reached 9 percent of the total number of errors; however,
he estimated that a practical norm for this type of error
ranges from 2 to 5 percent. Fries5 reported " ... a surpris
ingly high 6.5 percent of the errors were a result of attempts
to fix previous errors or update the software. Thus, the num
ber of errors introduced by the correction process itself is
nontrivial. This is an important consideration when devel
oping reliability model assumptions." Note that Fries' 6.5
percent includes updates or enhancement changes as well
as corrections of previously documented errors; therefore
the actual percentage value for maintenance errors would
probablY lie in the 2 to 5 percent range.

TABLE X.-Most frequent e!f0~ types found during NPGS experiment

Subcategory

Clerical, manual
Coding, Representation
Coding, Syntax
Design, Extreme Condition Neglected
Coding, Inconsistency in Naming
Coding, Forgotten Statements
Design, Forgotten Cases or Steps
Design, Loop Control
Coding, Missing Declarations or Block
Coding, Level Problems Limits
Coding, Sequencing
Design, Indexing
Coding, Mh;sing Data Declarations
Clerical, Mental
Other (combined)

Total
----------.. -------- --

% of Total Errors

18.5
10.0

7.0
6.5
5.0
5.0
4.5
4.0
4.0
3.0
3.0
2.5
2.5
2.5

...l.l!.d.
100.0

Error Classification to Support Software Reliability Assessment . 703

At Hughes-Fullerton three projects have been monitored
during development phases for maintenance errors. The por
tion of total errors for these three projects are 14, 12, and
8 percent. One possible reason these percentages are higher
than the previously reported range of two to five percent,
is that none of the thre"e Hughes projects controlled the num
ber of allowable patches. Consequently, there was always
the extra risk of wrong correction in patch form due to hasty
implementation, or the subsequent incorrect symbolic im
plementation of a successful patch. It is estimated that main
tenance errors· contribute to as high as 20 percent of the total
errors after a system is fielded. Because of the frequency of
this type of error, and the interest in reducing the cause of
maintenance errors, a separate category is required. Either
a Maintenance subcategory could be added to the Other
causal category, or a Corrective Maintenance category could
be added to the source phase classification. It is recom
mended that a new category be added to the Source phase
classification, because including maintenance error as a
causal subcategory would preclude the assignment of the
more descriptive cause (e.g., Subscripting error).

Optional category/subcategory assignment

The original TRW/RADC classification for Project 51 was
designed for universal application by allowing the option to
assign categories at only the major category level (e.g., Com
putational, Logic, Data Handling, etc.). The TRW study re
port commented as follows about the applicability of the
subcategories: "The detailed categories, however, are less
universal and suffer in applicability due to differences in lan
guage, development philosophy software type, etc. When
data are collected may also have a bearing on applicability
[of the detailed categories] to some software test environ
ments. For Project 5 the list used was apparently adequate
for the real time applications and simulator software, as well
as the Product Assurance tools. However, there was criti
cism concerning applicability of detailed categories to the
real time operating system software problems." Hughes
Fullerton has employed the two-level (category/subcate
gory) option, and has found it to be satisfactory for all proj
ects.

ERROR COLLECTION GUIDELINES

It is human nature not to admit to errors, therefore it is
essential that software engineers be informed of the signif
icance of reporting accurate error data to support software
reliability analysis. It should be emphasized that the purpose
of error reporting is to measure the technology and not the
people. I agree with Gerhart's13 statement: "It is necessary
to view errors as a phenomenon of programming which re
quires study and, while it is necessary to be sensitive to
peoples' reactions when threatened by exposure of errors,
it may be healthier to get the errors and the errants out in
the open rather than to cover up the human origin of errors."

Automatic data collection may be the only means to ensure

objective data, but short term projects cannot afford it. In
most instances, useful software reliability information can
be obtained by only slight modifications to existing problem
report/correction systems. The use of coded error category
descriptors on program trouble and correction reports tends
to alleviate thoughts of incrimination. _

Guideline procedures for assigning and approving error
categories should be included in project standard practices
to promote consistent interpretation of the error categories.
In addition to the error categories, the procedure should
contain detailed definitions of the error subcategories. Those
definitions guide individual programmers in assigning the
most appropriate category to represent the error at hand.
Even with the use of such an error category dictionary, pro
grammers may assign different categories for the same er
rors. Therefore, it is futher suggested that a senior program
mer or reliability analyst be responsible for reviewing all
error category assignments for consistency and accuracy.
Certain less offensive subcategories such as Clerical require
special monitoring, because a programmer will lean toward
them when given a choice.

Programmers must be reminded to fill out a separate prob
lem correction report for each distinguishable correction at
the module level. It is recommended that the following data
be collected in addition to the error classifications:

• Date/time that error/incident was detected
• Date/time that error was resolved by programmer
• Date/time that resolution was verified
• Principle module responsible for error

CONCLUSIONS

It appears from the survey of proposed software error
classification schemes that they differ primarily because of
varying emphasis on different areas of software develop
ment. I agree with some researchers that error classifications
must reflect areas of interest, however this does not preclude
the development of a standard minimal set of software error
classifications that has universal application-including re
liability assessment. Therefore, I suggest that the proposed
error classification scheme be considered as a standard for
use in software reliability assessment. The proposed scheme
can be used during design reviews, code reviews, and test
ing.

In order to satisfy all activities, additional error charac
teristics will have to be collected. For example, in the val
idation and use of predictive software reliability models the
date and time of detection of a fault, and the date and time
of correction of the error are additional data that are required
to be collected. However, if the cause of the "error" is ig
nored a reliability model could be fed time/date data for a
problem report, such as integration of new software, that is
not analogous to the residual class of errors that quantitative
models predict.

The development of a set of standard software error clas
sifications is a prerequisite for the development of a mean-

704 National Computer Conference, 1980

ingful software reliability discipline. Such a set of classifi
cations can serve two promising approaches to the discipline:
1) those that emphasize the use and assessment of reliability
producing techniques during the early development phases,
and 2) those that focus on the prediction and measurement
of the number of residual errors after acceptance, by statis
tical math models. Both approaches require error classifi
cations to effectively assess and measure software reliabil
ity.

Concurrent with the development and acceptance by the
software community of a standard set of causal, severity,
and source classifications there is a need for research and
development in the automation error collection through com
pilers and test runs. Also, the capabilities of emerging in
dependent V & V tools when augmented by standard error
classifications can be extended to improve test plan and pro
cedure generation.

REFERENCES

1. Thayer, T. A., et ai, "Software Reliability Study," TRW-Redondo Beach,
RADC TR-76-238 (Aug 1976).

2. Willmorth, N. E., "Proceedings of Data Collection Problem Confer
ence," RADC TR-76-329, Vo!' VI (Dec 1976).

3. Finrer, M. C., "Software Data Collection Study," System Development
Corp., RADC-TR-76-329, Vol III (Dec 1976).

4. Baker, W. F., "Software Data Collection and Analysis: A Real-Time
System Project History," IBM Corp., RADC-TR-77-192 (Jun 1977).

5. Fries, M. J., "Software Error Data Acquisition," Boeing-Seattle, RADC
TR-77-130 (April 1977).

6. Chief of Naval Materiel, Military Standard for Weapon System Software
Development MIL-STD-1679 (Navy), AMSC No. 23033 (Dec 1978).

7. Willmorth, N. E., et aI, "Software Data Collection Study, Summary and
Conclusions," RADC-TR-76-329, Vo!' I (Dec 1976).

8. Weiss, D. M., "Evaluating Software Development by Error Analysis:
The Data from the Architecture Research Facility," Naval Research Lab
oratory, NRL report 8268 (Dec 1978).

9. Nelson, R., "Software Data Collection and Analysis, Draft"-partial
report, RADC (Sep 1978).

10. Gannon, c., "Error Detection Using Path Testing and Static Analysis,"
Computer, pp 26-31 (Aug 1979).

11. Hecht, H., "Measurement, Estimation, and Prediction of Software Re
liability," Aerospace Corp. NASA CR-145135 (Jan 1977).

12. Motley, R. W. and Brooks, W. D., "Statistical Prediction of Programming
Errors," IBM Corp. RADC TR-77-175 (May 1977).

13. Gerhart, S. L., "Development of a Methodology for Classifying Software
Errors," Duke University (July 1976).

14. Castle, S. G., "Software Reliability: Modelling Time-to-Error and Time
to-Fix," masters thesis, Air Force Institute of Technology (Mar 1978).

15. Kruszewski, G., "Modeling Software Reliability Growth, Proceedings of
Surface Warfare Systems RMQ Seminar," Norfolk, VA (Sept 1978).

16. Schafer, R. E., et ai, "Validation of Software Reliability Models,"
Hughes-Fullerton, RADC-TR-79-147 (Aug 1979).

17. Sukert, A., "State of the Art in Software Reliability," Presentation, NSIA
Software Conference, Buena Park, CA (Feb 1979).

18. Thibodeau, R., "The State-of-the-Art in Software Error Data Collection
and Analysis," AIRMICS (Jan 1979).

19. Amory, W. and Clapp, J. A., "Engineering of Quality Software Systems
(A Software Error Classification Methodology)," MITRE Corp., MTR-
2648, Vol VII, Jan 1975, also RADC-TR-74-324, Vol VII.

20. Rubey, R. J., "Quantitative Aspects of Software Validation," Proceed
ings of the 1975 International Conference on Reliable Software Los An
geles, pp 246-251 (April 1975).

21. NAVSEA, Statement of Work for AN/SLQ-32(V) Verification and Val
idation, Appendix A (May 1977).

22. Hartwick, R. Dean, "Software Acceptance Criteria Panel Report," Joint
Logistics Commanders Joint Policy Coordinating Group on Computer
Resource Management, Software Workshop, Monterey, CA (April 1979).

23. Bowen, J. B., "AN/TPQ-36 Software Reliability Status Report," Hughes
Fullerton, CDRL 8-18-015 (Dec 1979).

24. Shooman, M. L. and Ruston, H., "Summary of Technical Progress, In
vestigation of Software Models," Polytechnic Institute of New York,
RADC-TR-79-188 (July 1979).

25. Thielen, B. J., "SURTASS Code Review Statistics," Hughes-Fullerton,
IDC 78/1720.1004 (Jan 1978).

26. Fagan, M. E., "Inspecting Software Design and Code," Datamation, pp
133-144 (Oct 1977).

27. Hoffman, H., "An Experiment in Software Error Occurrence and De
tection," masters thesis, Naval Postgraduate School (Jun 1977).

APPENDIX A

DEFINITION OF RECOMMENDED ERROR
CATEGORIES/SUBCATEGORIES

Design

The Design category reflects software errors caused by
improper translation of requirements into design. The design
at all levels of program and data structure is included (sub
system through module and data base through table). Such
errors normally occur in the design phase, but are not limited
to that phase. Errors due to inconsistent, incomplete, or in
correct requirements do not qualify for this category; such
errors should be assigned to the subcategory, "Not Appli
cable to Software Reliability Analysis. "

Interface

The Interface category includes those errors concerned
with communicating between ,1) routines and subroutines,
2) routines and functions, 3) routines and the data base, 4)
the executive routine and other routines, and 5) external in
terrupts and the executive routine.

Data definition

This category pertains to errors involved with permanent
data, such as retained, global, and COMPOOL. It includes
common variable and constant data, as well as preset, ini
tialized, and dynamically set variables.

Logic

The Logic category includes all logical-related errors at
the intramodule level. Examples of this category are incor
rect relational operators and incorrect looping control. Im
proper or incomplete logic occurrences at the intermodule
level do not qualify for this category, and should be assigned
to the Interface category.

Error Classification to Support Software Reliability Assessment 705

Data handling

The Data Handling category is concerned with errors in
the initialization, accessing, and storage oflocal data; as well
as the conversion and modification of all data.

Computational

The Computational category pertains to inaccuracies and
mistakes in the implementation of addition, subtraction,
multiplication, and division operations.

Other

The Other category is designed to provide flexibility for
each application. However once selected for a project, the

subcategories should not change. The following suggested
subcategories deserve further explanation.

Operator

This subcategory includes errors caused by inaccurate
users manuals for both operational and diagnostic applica
tions.

Clerical

This subcategory includes errors that can be traced to
careless keypunch, configuration control, or system gener
ation operations.

What makes a reliable program-Few bugs, or a small
failure rate?*

by B. LITTLEWOOD
Mathematics Department
The City University
London ECIV OHB
England.

INTRODUCTION

It is instructive to look at some of the reasons advanced
by software developers for their reluctance to use software
reliability measurement tools. Here are a few common ones:

(A) "Software reliability models are statistical. Programs
are deterministic. If certain input conditions cause a mal
function today, then the same conditions are certain to cause
a malfunction if they occur tomorrow. Where is the random
ness?"

(B) "I am paid to write reliable programs. I use the best
programming methodology to achieve this. Software relia
bility estimation procedures would not help me to improve
the reliability of my programs."

(C) "We verify our software. When it leaves us it is cor
rect. "

(D) "I ran your software reliability measurement program
on some data from a current project of ours. It said there
was an infinite number of bugs left in the program. Who are
you trying to kid?"

(E) (same manager as in D, but one week later) "We cor
rected a couple of bugs and ran the reliability measurement
program again. This time it said that there were 200 bugs
left. Infinity minus two equals two hundred? Is this the new
math?"

(F) "We put a lot of effort into testing. The selection of
test data is a systematic process designed to seek out bugs.
Reliability estimation based on such test data would be no
guide to the performance of the program in a use environ
ment. "

(G) "We are writing an air traffic control program. Total
system crash would be catastrophic. Other failures range
from serious to trivial. Reliability models dornot distinguish
between failures of differing severity."

Although I have been involved in software reliability mod
elling for the past decade, and have myself perpetrated a
few models, I have a great deal of sympathy with some of

* This research was supported in part by the US Army, European Research
Office, under Grant No. DAERO-79-G-0038.

707

the sentiments expressed above. I have a feeling that some
of the early models have been oversold, that not enough
emphasis has been placed on the underlying modelling as
sumptions, and that by concentrating on a simple reliability
analysis we might be ignoring wider concerns. In this paper
I shall be looking at one common deficiency of early models
and suggesting a way in which it can be overcome. I hope
that, in passing, some new insight into the wider issues will
be gained.

THE PROBLEM AND ITS EARLY SOLUTION

In its simplest form the problem is this. We have available
some data t1 , t2 , ••• , tn, representing successive (execu
tion) times between failures of a program. What can we say
about the current reliability of the program, and how this
will change in the future?

This bald description needs some amplification. In the first
place, are we sure what we mean by "reliability" in this
context? In A, above, we see one of the difficulties. There
is a sense in which software failures are completely pre
dictable: if we know that an input caused a failure in the
past, then the same input will cause a failure now (assuming
the program is unchanged). Equally, if a program can cor
rectly process an input once, the same program can correctly
process the same input forever. Contrast this situation to
that of hardware, from which conventional reliability ter
minology arises. Hardware devices exhibit wear-out and it
is not possible to guarantee that the response of a device to
a particular input will remain constant. More strongly, we
can say that a hardware device is certain to fail1,lltimately,
whereas a program, if perfect, is certain to remain failure
free. Of course, it is questionable whether there is much
chance of writing a real-life program in such a way that it
is perfect. The principle, however, remains: it is possible to
conceive of a program which is never going to fail. This
concept of the "perfect" program immediately suggests a
way to define software reliability which would not have a
hardware parallel. A program which will never fail is one

708 National Computer Conference, 1980

containing no "defects": no errors (or bugs). The "reliability"
of a program is its relative freedom from bugs. Such a con
cept of reliability, then, is essentially static: it describes the
state of the program rather than how ~he program performs
(its failure rate, mean time to failure, etc.). My own view
is that we are almost always more concerned with the dy
namic reliability of a program than the number of bugs it
contains. There are, though, some situations where the rlum
ber of bugs remaining in a program is of practical interest:
the commonest such situation being that where we wish to
be assured that none are left. It seems sensible, therefore,
that we should have reliability models which enable both of
the following interpretations of reliability to be used: relative
freedom from bugs, relative freedom from failures in oper
ation. It is the relationship between these two concepts of
reliability-how the number of bugs remaining in a program
affects the performance of the program-which will form the
main theme of this paper.

This seems a convenient place to comment on C. When
I talk of a perfect program I mean something more than cor
rectness. There seem to be two basic objections to formal
verification of programs. Most important is the logical ob
jection: the most that can be achieved is a proof that the
program is consistent with its specification, not with the in
formal requirements [1]. Those advocates of program veri
fication who maintain that a program can be "correct," and
yet fail to fulfill the requirements demanded by the customer,
are just passing the buck. A problem does not disappear by
declaring it to be someone else's responsibility. Another
objection, which may ultimately be overcome, is that of cost:
the sheer effort required to verify programs of realistic size
is often completely prohibitive. This seems likely to remain
true for a long time. I do not mean to imply that these ideas
are not valuable, though. On the contrary, it is clear that
they have already had a quite far-reaching and valuable im
pact on programming methodology.

Notice, by the way, that a program could perform "per
fectly" and yet fail a proof of "correctness." Although we
would be right to reject the program if we knew the result
of the proof, it is clear that in the absence of such knowledge
it may be possible to describe the program as highly reliable.

When we look at large real-life programs, written under
time and cost constraints, discussions about perfectibility
seem merely theological. We shall be almost certain that
such programs do contain bugs, that they will eventually
produce unacceptable output, and that proofs of correctness
(if they were feasible) would fail. Our purpose, then, is to
quantify this imperfection: this is why we need reliability
studies.

Returning now the basic problem, it is important to be
aware of the source of the inter-failure times t 1 , ••• , tn. In
most cases this data is collected during the test and integra
tion phase of the project, whilst debugging is in process. We
would expect, then, that the reliability of the program is
increasing: i.e., there will be a tendency for the t's to be
increasing. At any particular stage of this process it is the
intention to use the model to measure the current reliability
and predict future reliability. This brings us to F. These

models can predict future performance of a program only on
the assumption that there is continuity in the behaviour ofthe
programming team and in the behaviour of the process se
lecting inputs. This assumption is commonly violated, and
in such cases model predictions cannot be trusted. Possibly
the commonest situation of this kind is when there is a dis
continuity between the test and use environments. In many
cases it is simply impractical, or prohibitively slow and ex
pensive, to use an actual (or simulated) use environment to
produce inputs for the test phase. Instead, inputs are gen
erated with the specific intention of testing most rigorously
those parts of the program which are known a priori to be
likely to contain errors: a similar process is often used for
hardware, called stress testing. It may sometimes be possible
to use data from other projects to estimate the relationship
between the severities of the test and use environments
what Musa [2] calls the testing compression/actor. My own
view is that this will rarely be justified, since every program
is essentially unique. We would need to know not merely
that the inputs for test and use environments were related
similarly between the current program and its predecessors,
but that responses of the programs to these inputs had the
same relationship.

The other source of discontinuities of behaviour which
prevent direct use of these models is system integration. If
new modules are being integrated into the system during the
collection of the t's, then new sources of failure are being
introduced and it is unreasonable to expect the estimates
based upon an earlier stage of system integration to be valid.
It does seem likely in this case, though, that estimation of
the magnitUde of the reliability discontinuities will some
times be possible. There is likely to be greater commonality
of behaviour between modules of the same system than be
tween different projects. This is an area where further re
search is needed; at present we shall have to assume that
the models are used only after integration, or for the periods
of homogeneous behaviour between module integrations.

It may seem, after these areas have been eliminated, that
there is very little that software reliability models can be
used for. However, if we have a system which has been
totally integrated, and we are sure that the test environment
(simulated or real) is representative of the use environment,
we can use the models to estimate current reliability and
predict future reliability during debugging. In those cases
where it is possible to test modules under these conditions,
then of course the same reliability estimation can be per
formed on them. It may even be possible to combine knowl
edge of the reliability of the modules with structural infor
mation about their roles in the system and calculate overall
system reliability [3, 4].

Let us now return to the general problem and look at the
early solutions. I shall use the notation of Jelinski and Mor
anda [5], but the models of Shooman [6] and Musa [2] are
essentially the same (although it should be noted that Musa
introduces many extra refinements over the basic model).
It is assumed that the random variables Ti , representing the
times between (i - l)th and ith failures of the program are
independent and have the exponential distributions:

(1)

where {Ai: Ai>O} is the sequence offailure rates of the pro
gram. Note that Mus~ argues cogently for "time" in this
context to represent execution time, rather than calendar
time.

The reasoning behind assumption (1) is that the input
space contains a subset of inputs which will induce failure
and that this subset is encountered randomly. The process
can thus be viewed as a Poisson process with a rate which
changes at each event. The assumption seems to be a rea
sonable one so long as we define "failure" fairly carefully.
We would, for example, have to treat a cascade of failures,
caused by a single error in the program being encountered
once, as a single failure. This accords with usual practice.

The important remaining question concerns the structure
ofthe sequence {A i}' It is clearly impossible to estimate each
Ai separately, since there will generally only be a single ob
servation, t i • More importantly, we wish to be able to project
Ai for future i. Jelinski and Moranda make the following as
sumption (similar assumptions can be found in [2,6]:

"The failure rate at any time is assumed proportional to the
current error content of the program ... the proportionality
constant is denoted by <1> •••• " ([5], p. 473).

This is equivalent to assuming

Ai= (N:'-' i + 1)<1> (2)

where N is the number of bugs (errors) in the program before
debugging starts. Each remaining bug contributes an amount
<I> to the overall failure rate of the program, so that when
(i -1) bugs have been eliminated there remain (N - i + 1). Of
course, this assumes that each failure of the program results
in the immediate removal of one bug. In fact it is relatively
easy to relax this assumption in order to represent imperfect
debugging; this is an issue which I shall not examine here.

The model is now completely specified by the two un
known parameters Nand <1>. These can be estimated from
the data t l , t2 , ••• , tn by, say Maximum Likelihood, and
estimates of current and future reliability calculated.

A NEW SOLUTION

Consider the quotation from [5] which results in (2). What
is being assumed is that each bug in the program contributes
equally to the overall failure rate of the program. Thus when
a failure occurs (and a bug is fixed) the overall failure rate
drops by a fixed constant amount, <1>. Between bug-fixes the
failure rate remains constant. A plot of failure-rate against
execution time is shown in Figure 1: all steps are of equal
size.

It seems to me wrong to assume all bugs have the same
effect on the overall failure rate. In fact it seems likely that
the contributions from different bugs to the failure .rate of
the program will vary quite widely. There is, for example,
evidence that the frequencies with which different portions

What Makes a Reliable Program 709

of code are exercised vary enormously. A bug in frequently
exercised code will cause failures more frequently than a bug
in infrequently exercised code (other factors being equal),
i.e., it will contribute more to the failure rate of the program.

A more plausible scenario, then, is that at the beginning
of debugging the program contains a pool of N bugs with
differing failure rates. Early failures of the program are more
likely to be caused by those bugs with the greatest failure
rates. Thus early bug-fixes, corresponding to the removal
of bugs with larger failure rates, will have greater effect on .
the overall failure rate. Instead of a plot such as Figure 1,
the steps will be of different sizes with larger steps occurring
early in the debugging.

Before suggesting in detail how this effect can be mod
elled it is instructive to examine the source of the random
varia~ion in software failure times as suggested by earlier
authors [2,5,6]. All these models assume that the sole source
of randomness (or uncertainty) lies in the nature of the input
stream. Thus in (1), Ai is treated as a constant (given by (2)
if N, <I> known) and the only random variable is Ti • This
seems to me to ignore the uncertain nature of program writ
ing and debugging itself. Since we shall be uncertain of the
amount any bug contributes to the overall failure rate, we
are uncertain of the relationship between Ai _ I and Ai' Thus
instead of a sequence {Ai} with a deterministic relationship
between successive terms, as in (2), we should be dealing
with a sequence {Ai} of random variable failure rates. An
other way of looking at this is as follows. Instead of treating
the debugging process as a series of deterministic operations
on "a program," it can be viewed as the creation of a series
of programs, PI, P2 , ••• , P n • Program Pi may differ from
program Pi-I in only a small way-the result of fixing the
(i -1)th bug-but it is a different program, and the difference
is unpredictable. Just as it is not possible to predict what the
sequence of debugging changes will be which produce the
sequence {Pi} of programs, so the sequence of failures rates
is not predictable. It must be treated as a sequence of random
variables {AJ.

The two sources of uncertainty can be modelled in the
following way. Assume, as do earlier authors [2,5,6], that
the uncertainty in the input stream causes the execution time
to next failure to be conditionally exponentially distributed.
That is,

(3)

We shall assume perfect debugging, for simplicity. So that
when i failures have occurred we have removed i bugs. Let
total execution time be t(O) at this stage (see Figure 3). Then

(4)

where N is the initial number of bugs (unknown) and <P r
represents the -(random variable) contribution to the overall
failure rate of the rth bug among the remaining (N - i) bugs.
It solely remains to find the distribution of <P r for all to), r.
Clearly

pdf(<I>r)=pdf(<I>s) for all r,s.

710 National Computer Conference, 1980

failure
rate

N4»

(N-l)~

(N-2)4»

(N-3)4»

(N-4)cf»

tl t2 t,

r
t ..

r >
A B Execution time

Figure 1.

This merely states that at each stage our uncertainty (our
ignorance) about the bugs which remain is the same for each:
we cannot distinguish between them.

Let us represent our initial uncertainty about the <1>' s by
a Gamma (a,j3) distribution:

j3<X<I><x-!e-~<I>

pdf(cP) = [(a) (cP>O). (5)

Then the distribution of each of the <I>'s in (4), by Bayes
Theorem, is

pdf(cPlbug has survived detection for a time t(O» (6)

Pr{no failure of this bug in (O,t(O» I <I> = <I>}.pdf(<1»

I Pr{ no failure of this bug in (0, to» I <I> = <I>}. pdf(<I>)d<l> .

Substituting (5) into (6) and simplifying we find that the dis
tribution of a <I> in (4) is

Gamma(a,j3 + t(O». (7)

Since the sum of independent, identically distributed Gamma
random variables is itself Gamma distributed, we find from
(4) that the distribution of A is

Gamma«N - i)a,j3 + t(O» (8)

Finally, from (3) and (8) we find that the distribution of the
time to next failure, T, when i bugs have been detected and
execution time t(O) has elapsed (Figure 3) is

pdf(t) = L" pdf(t I A = }..)pdfCA)d}..
(9)

(N - i)a(j3 + t(O»<N - i)<x

([3+t(O)+t)<N-i)<x+! '

which is a Pareto distribution. This result should be com
pared with the exponential distribution of the Jelinski-Mor
anda model, (1) and (2). Full details of this new model can
be found in [7], including examples of how it can be used
to predict future reliability.

Consider the failure rate at the arrowed epoch in Figure
3. This is

(N - i)a
[3 + t(O) . (10)

Notice how this changes as debugging proceeds. When a
failure occurs and a bug is fixed, the failure rate drops by
an amount a/(j3 + t(O»; early bug-fixes, with small t(o>, cause
greater reductions in the program's failure rate than later

faiiur
rate

t, t2 t!

ones. During periods of failure-free operation, between bug
fixes, the failure rate decreases continuously as t(O) increases.
We thus get a plot of failure rate against time of the kind
shown in Figure 2.

As a justification of the decreasing failure rate (DFR)
property of the Pareto distributions, consider the two epochs
A and B in Figures 1, 2. Assume that a judgment of the
reliability of the program has been made at A. How would
you expect the reliability to have changed at B, after a further
period of failure-free operation? It seems to me more piau.;.
sible that we should be reassured by the extra evidence
. (Figure 2), since this is evidence of good performance, than

,r, ------~~),~ T ~

fa 11 ures detected, and thus 1 bugs f1 xed, I
1n (0, t(t»

i
tlNow"

Figure 3.

'I' next
failure

execution time

What Makes a Reliable Program 711

r
t ..

r >
A B

execution time

Figure 2.

that we should believe the reliability unchanged (Figure 1).
What is in fact happening, in this model, between A and B
is that we are gathering new information about the distri
bution of the failure rates of remaining bugs-specifically
we are increasing t(O) in (7).

IMPLICATIONS OF THE NEW MODEL

The intention behind all models of this kind is the same.
We wish to be able to estimate both static reliability (number
of remaining bugs) and dynamic reliability (frequency of fail
ures) of a program. I have argued in the previous section
that early models make a false assumption about the rela
tionship between these two measures. Let us now look at
the implications of the new model for reliability estimation
and, in particular, what consequences would follow from
using one of the naive models.

It should be acknowledged, first, that the new model is
a little more complicated. It is necessary to estimate three
parameters (N, ex, ~) from the available data, rather than the

712 National Computer Conference, 1980

two parameters (N, <1» ofthe earlier models. This should not
present any unusual difficulties.

An important observation is that the Ielinski-Moranda
model is a special case of the new model. If we let a~oo,
~~oo in such a way that a/~ = <1> in (5), we find that the
Gamma (a,~) distribution becomes concentrated at <1>. Thus,
if a particular data set produces values of a and ~ which are
very large, the Ielinski-Moranda model will provide a good
approximation with <1> = a/~. Of course, this operates in re
verse: if the best-fitting values of a and ~ are not large, this
implies that the Ielinski-Moranda model would be a poor
approximation to the underlying process. In summary, then,
nothing can be lost by using the new model instead of the
old ones; and something important may be gained.

Assuming that the model does not reduce to the Ielinski
Moranda one, in what ways will it give a different picture
of the reliability growth taking place during debugging?

In the first place, it suggests that there is a law of di
minishing returns operating in debugging. The reliability im
provements gained from successive bug-fixes gradually be
come smaller and smaller. This implies that estimates of N
may be larger than for the Ielinski-Moranda model without
necessarily implying equivalently large estimates of dynamic
reliability (e.g. failure-rate). This law of diminishing returns
suggests that it will often be appropriate to end debugging
before the program is judged bug-free, without implying that
such a program is unreliable. In other words, if we are solely
interested in the performance of the program (failure rate,
mean time to failure, etc.) we can accept a program known
to contain many bugs, as long as we are assured that these
bugs cause failures infrequently. This seems to me to accord
better with intuition and real-life practice than the Ielinski
Moranda assumption, which deems all bugs to have the same
contribution to overall reliability. We have all, I think, en
countered programs containing bugs which we were pre
pared to live with.

My own view, then is that almost always the appropriate
criterion to adopt is dynamic reliability rather than number
of remaining bugs. There are, though, situations where we
might wish to have a very high assurance that no bugs re
mained. Examples would be an air traffic control system or
nuclear power station safety system. It would not be suffi
cient to know that the program was very reliable, whilst
containing bugs, if these bugs included ones with cata
strophic consequences. This observation reveals the weak
ness of an analysis purely in terms of the counting of failures
and bugs (see quotation G). What we ought to have are
models which enable us to predict the process of conse
quences of failures. There is, unfortunately, little data or
research in this area-no doubt partly due to a natural re
luctance to ac'cept a quantification of the unthinkable. We
demand, instead, a high assurance that the system is "per
fect. "

If we wish to stop debugging only when we have a high
assurance that the last bug has been removed, the new model
gives some disturbing answers. Since the model will often
tend to suggest that many bugs remain (albeit ones with small
failure rates), and the successive times between their re-

movals are Pareto distributed (the Pareto distribution has
a long tail, Le. large values occur with greater frequency
than in the exponential case), we find that estimates of the
time required to end debugging are very large. Often, with
large systems, they will be prohibitively large. It is, effec
tively, impossible to make a large system bug-free.

Again, this is not surprising: it seems to accord with ex
perience. But it is worrying. Contrast this with the hardware
case: one of the important results of hardware reliability is
that it is possible to make a system with any given reliability
using components of any given unreliability. We cannot do
this for software. Does this mean that we cannot use soft
ware for such critical applications? In practice we seem to
have little choice.

SUMMARY AND CONCLUSIONS

The new model that I have described does, I think, rep
resent the relationship between static and dynamic measures
of software reliability more naturally than earlier models. I
would not, however, suggest that this or any other model
is definitive. Indeed, I suspect that it will be a long time
before we are able to apply these techniques with confidence
to every software development project. In the meantime, we
have some techniques which are useful when treated with
care: in particular, it is necessary to be sure that the un
derlying modelling assumptions do apply to the project under
examination. So my reply to speaker B would be that, whilst
agreeing that software reliability techniques do not of them
selves help to improve reliability, it is a brave manager who
asserts that his programs are reliable without in some way
measuring this reliability.

On the debit side, there is still a great deal of work re
maining. In my view, the single biggest gap in our knowledge
lies in the area of costs/consequences of failures. We have
little in the way of theory, and very little data; yet we all
recognise that a reliability theory is only one step on the
road to a more comprehensive cost theory. This is an area
which urgently requires study.

Another area where progress has been disappointing is
that of structural models. It seems intuitively clear that the
structure of a program will affect its reliability, but so far
there is no effective way of incorporating into a reliability
model the wealth of information available about program
structure.

Finally, a comment on quotations D and E. It is true that
"difficulties" have been experienced with parameter esti
mation of the early models, and this has tended to alienate
some potential users. It should be said that these problems
generally only occur with small data sets (Le. at the very
beginning of the debugging per~od), when the evidence for
growth in reliability is slight. Since all the models depend
upon an assumption of reliability growth, it is not surprising
that things can go wrong when such growth is not clearly
evident in the data. It must always be borne in mind that
these techniques are not a magical panacea: they are simply
systematic methods of estimating what is actually present
in data.

REFERENCES

1. DeMilIo, R. A., Lipton, R. J. and Periis, A. J., "Social processes and
proofs of theorems and programs," Comm. ACM May 1979, Vol. 22, No.
5, pp. 271-280.

2. Musa, J. D., "A theory of software reliability and its application," IEEE
Trans. on Software Engineering, Vol. SE-l, Sept. 1975, pp. 312-327.

3. Littlewood, B., "A reliability model for systems with Markov structure,"
Applied Statistics (J. Royal Statist. Soc., Series C), Vol. 24, No.2, 1975,
pp. 172-177.

4. Littlewood, B., "A software reliability model for modular program struc-

What Makes a Reliable Program 713

ture," IEEE Trans. on Reliability (Special Issue on Software Reliability),
Vol. R-28, No.3, August 1979, pp. 241-246.

5. Jelinski, Z. and Moranda, P. B., "Software reliability research," in Sta
tistical Computer Performance Evaluation, Ed.: W. Freiberger. New
York: Academic, pp. 465-484.

6. Shooman, M., "Operational testing and software reliability during program
development," Record 1973 IEEE Symposium on Computer Software Re
liability, New York, NY, April 30-May 2, 1973, pp. 51-57.

7. Littlewood, B., "A Bayesian differential debugging model for software
reliability," in Proceedings of Workshop on Quantitative Software Models,
Kiamesha Lake, NY, Oct. 9-11, 1979 (to appear).

Software reliability and advanced avionics

by GERARD E. MIGNEAULT
NASA Langley Research Center
Hampton, Virginia

SUMMARY

This paper proposes that software is becoming the most safety
critical element of the highly reliable avionics systems which
will be needed in civil transport aircraft of the future.

The paper first discusses the pressures leading to the use
of digital technology, especially computers with software,
in future civil transport aircraft. The level of required reli
ability pertaining to safety is then determined, both as man
dated by regulations and as observed in actual practice.

Finally, advanced fault tolerant computers are described.
Their reliability is simply analyzed in order to determine the
role software will play; it is critical. The level of software
reliability required is then examined.

INTRODUCTION

Electronic components are not new to civil transport air
craft. However, in the past such equipment has been pre
dominantly analog in nature. The recent past, the present
and the near future constitute a period of transition, a time
of change from analog components to components making
fuller use of digital technology, and including the use of
stored program computers.l One can foresee the trend con
tinuing into the future and leading to greater dependence
upon stored program computers, and consequently, upon
the embedded software. It follows therefore, that software
reliability is becoming, and will continue to become, an even
more significant factor in the analysis of the reliability of
avionics and, accordingly, of the reliability of the total air
craft.

A VIONICS IN FUTURE CIVIL AIRCRAFT

The anticipated wider use of stored program computers
in future civil aircraft is a consequence of several more or
less obvious factors. More obvious is the pace of develop
ment of digital technology: ever greater amounts of com
putational capability compressed into ever smaller vol
umes-of less weight, consuming less power, and at less
cost both initially and in later maintenance. Thus, other
things unchanging, there is an economic advantage· to the
use of the newer technology devices-on a functional device

715

per functional device substitution basis. Since the newer,
stored program computer devices are essentially multifunc
tion devices, there is also the potential benefit of reduction
of the total number of devices and greater standardization
of device types. Moreover, multifunction devices permit
priority rankings among functions to be exercised, i.e., the
option is more available· to the system of choosing which
functions continue to perform when the system is faced with
a number of failed components. Such an option is no insig
nificant advantage; it is not available to a system in which
each component device is dedicated to a specific function.
Thus, multifunction devices provide a system with a greater
likelihood of' 'graceful degradation. " Another more obvious

. factor is the opportunity for expanding the scope of some
functions by virtue of the increased data base and compu
tational power available.

A less obvious factor is the fact that some potential in
creases in civil aircraft fuel efficiency are dependent upon
the availability of reliable, increased computational capa
bility. Such fuel efficiency increases would be possible due
to weight and drag savings resulting from reductions in air
craft passive structure. In turn, the· structure reductions
would become possible by means of "active control" tech
niques which maintain aircraft aerodynamic stability and
reduce peak local loads on aircraft structure (in effect, dis
tribute loads more evenly across the structure) by complex,
precise, ever continuing, and possibly differential, "active
control" of aircraft control surfaces. Clearly, to the extent
to which such computational power was substituted for pre
viously passively provided structural integrity and stability,
uncontrolled in-flight interruptions and/or continuing general
malfunctions of the increased computational capability
would not be tolerated.

In sum, potential economic benefits provide, and will con
tinue to provide, powerful pressures to introduce more dig
ital technology, especially in the form of stored program
computers, into future civil aircraft. To many it is almost an
article of faith that the introduction of more digital technol
ogy into avionics will have a positive effect upon the relia
bility of the avionics. While the presumption may not be too
difficult to demonstrate correctly for the limited cases of
device per device substitution, it remains to be determined
with acceptable confidence that the maximum performance
benefits to be associated with the use of stored program com-

716 National Computer Conference, 1980

puters can be achieved without an intolerable detrimental
resultant effect upon the reliability of the total aircraft.

RELIABILITY REQUIRED OF AVIONICS

The reliability required of a total aircraft system provides
a bound on the reliability required of the avionics and the
software embedded in it. There are several, not totally un
related concerns which give rise to aircraft reliability re
quirements. They are (a) cost of operations for airline op
erators, (b) disruption of the air transportation system, and
(c) safety of occupants of aircraft and individuals on the
ground. The concern about disruption of the air transpor
tation system is ordinarily far less prominent than the other
two concerns, if it is recognized at all. With its potential for
national economic chaos, it could become the source of the
very strictest reliability requirements when the nature of
design inadequacies and software (un)reliability is consid
ered. However, in this paper as in society in general, safety
is recognized as the concern generating the most stringent
requirements since clearly the most conspicuously undesir
able malfunctions in civil aircraft are those which result in
sudden, often spectacular loss of human life.

A minimum acceptable level of safety is specified in reg
ulatory agency directives by the use of the expression "ex
tremely improbable"2 to describe the likelihood of cata
strophic events. However, the requirement is subject to
interpretation. A typical interpretation by a major airframe
manufacturer is the following:

". . . a number less than or equal to 1 x 10 - 9 has been imposed
... to represent the probability of an event designated as ex
tremely improbable Loss of the CCV /FBW function, given
a fault-free system at dispatch, shall be extremely improba
ble. "*3

There are two points to be noted. First, the qualification
"given a fault-free system at dispatch," which is intended
to exclude having to consider physically degraded systems
in the determination of a system's reliability, begs the issue
of software bugs and, indeed, of all questions of design in
adequacies. Of course, such flaws are not denied. But they
are not included within the reliability computational process.
The working hypothesis is that they will be exorcised before
operational use of the systems to an extent such that their
presence is negligible, or more precisely, such that the fre
quency of malfunctions of a system due to such residual
flaws is sufficiently less than the frequency of malfunctions
due to physical degradation to permit them to be ignored in
reliability calculations. Conventionally the hypothesis is jus
tified by system verification, i.e., testing, prior to operational
use.

The second point to note is that the interpretation applies
the requirement for ,. extremely improbable" events to loss
of a specific function critical to the flight of an aircraft rather

'" CCV IFBW = Control Configured Vehicle/Fly by Wire

than to the loss of an aircraft. No apportionment of the
(un)reliability among subsystems is indicated; the occur
rence of any malfunction from the set of all malfunctions of
the stored program computers whose consequences include
loss of the CCV/FBW function must, therefore, be an "ex
tremely improbable" event.

There are also in circulation drafts for an FAA Advisory
Circular on the topic of system design analysis to generate
a consensus explanation of the expression "extremely im
probable." One contains the statements:

"Systems, considered separately and in relation to other sys
tems, should be designed ... such that a catastrophic failure
condition is extremely improbable Extremely improbable
refers to events ... with a mean frequency in the order of 1 x
10- 9 or less per flight or flight hour. Such events are the loss
of a number of lives and/or destruction of the aircraft. "4

The last sentence is explicit; the mean frequency magnitude,
1 x 10 - 9, is to be coupled with loss of lives (or aircraft), not
with a function. Thus to the extent that malfunctioning com
putational systems (i.e., stored program computers including
the embedded software and firmware and other residual sys
tem design inadequacies) can singly cause catastrophic con
sequences, the occurrence of any malfunction from the set
of all such malfunctions must be at least "extremely im
probable," and possibly even less likely in order to allow
for the apportionment of some of the (un)reliability to other
aircraft subsystems-including the human factors.

Finally, statistics on the state of civil aviation safety lend
credence to the reasonableness of the interpretations cited
above of the regulatory agency safety requirement. Figure
1 contains the history by calendar year of the "average
aircraft's average speed" in the recent past. As indicated by
the graph, while the period priQI' to 1974 was a time of tran
sition, the period from 1974 to the present (1978 was the last
fully documented year at the time of writing) has been quite
stable. The "average aircraft's average speed" has varied
from its mean value during the period by no more than ap
proximately 0.3 percent while the total hours flown each year
has remained relatively constant, approximately 6.3 (± 7
percent) million hours. Therefore, the period from 1974 to
1978 is here adopted as the base period.

Figure 2 contains the history of the mean frequency of
fatal accidents (per million hours flown) per calendar year.
During the years of the base period, the mean frequency of
such catastrophic events has varied between 0.5 x 10-6 to
1.5 X 10-6 per flight hour with a mean mean of approximately
0.9 x 10-6 • Moreover, an examination of individual accident
records reveals that the majority of the accidents are not
ascribed to equipment malfunctions as the primary cause.
Exact proportions are debatable owing to reporting differ
ences; however, it suffices to note that it could be argued
that the mean frequency of fatal accidents due primarily to
equipment malfunctions was in the range from 1 x 10-7 to
1 X 10-8 per flight hour during the base period. Certainly,
other things unchanging, nothing less safe than what is al
ready available is acceptable.

430
420
410
400

Miles flown 390
Hours flown 380

370
360
350

....... I \/

/
/ I Base

.

I
I p:riOd

.

Software Reliability and Advanced Avionics 717

During base period

6.3 x 106 (± -- 7%)
Hours flown

Year

340~------~--~----~
60 70 74 80

Calendar year
Figure 1.

Hence, for avionics a maximum mean frequency of cat
astrophic malfunctions of 1 x 10-9 per flight hour over the
lifespan of aircraft is asserted to be the reliability require
ment. The magnitude 1 x 10-9 , however, is a source of dif
ficulty for it makes a reliability estimate with useful confi
dence bounds virtually impossible to obtain by conventional
system verification prior to operational use because of the
number of trials and elapsed time required. In particular, the
working hypothesis mentioned above must be justified by
some other means-if it is to be relied upon.

A solution often referred to involves the concept of
(aircraft) systems of greater reliability constructed from sub
systems of lesser reliability (reference 5 for the theoretical
notion)-for example, the use of back-up systems. But, in
addition to the still present difficulty of credibly estimating
the extremely high reliability of the decision logic imple
mented to switch to a back-up system, the notion requires
the use of alternate systems, external and redundant to
avionics. It is precisely such systems which advanced avion
ics is intended to obviate-if promised benefits are to be

realized. Therefore, the notion is considered inconsistent
with the intent of advanced avionics--,

FAULT TOLERANT AVIONICS COMPUTERS

Computer architectures have been developed specifically
in anticipation of the need to satisfy the safety requirements
implied by the expression "extremely improbable" dis
cussed above and in anticipation of the data processing needs
of future civil aircraft. 3,6,7 The reliability of the physical com
ponent devices available now and in the foreseeable future,
devices such as processors, memories, power supplies, etc.,
whose mean time to failure (MTTF) parameters are realist
ically in the range from 102 to 105 hours, implies mean fre
quencies offailure in the range from 1 x 10-2 to 1 X 10- 5 per
hour for conventional, fault intolerant computer systems
constructed from such devices. What is somewhat experi
mental in the referenced architectures is the attempt to attain
extremely high system reliability by means of/ault tolerance

Base

Fatal accidents

106 Hours flown

2.0

1.5 I \ .f
riOd

T
1.0

. I ' .. \/
.5 __________ ~ __ ~ ____ _

60 70 74 80

Calendar year
Figure 2.

Mean ,.... .9

~
Fatal acc. ,.., 106

Hour

718 National Computer Conference, 1980

achieved by the use of redundancy, error detection achieved
by voting among redundant components, and reconfigura
tion-all performed internally.

An aside is needed at this point to ensure consistent in
terpretation of the terms "failure," "fault," and "error."
Confusion can arise as a result of the "software" trend, ev
idenced by recent articles on software reliability, 8 of using
the words in a manner reversed from the usage generally
adopted for hardware. The following meanings are used here
for both hardware and software:

A failure is the event when something causes a device, com
ponent, system, algorithm, etc., to change its state from one in
which it performs its intended function to one in which it does
not. The something which causes the change mayor may not
be known. After the failure, the device, component, etc., is
called a failed or faulty device, component, etc. Any higher
level system of devices, etc., which cannot perform its function
because a subdevice, sub-etc., is failed is also called failed or
faulty.

A fault is the particular condition or flaw in a failed device,
etc., which differentiates it from its unfailed state.

When the function or output of a device, etc., differs from
its intended function or output, that difference is called the
error. In data processing systems, error means bad or wrong
data. An error is all that can be detected internally to a com
puting system. A higher level system which contains a failed
device, etc., emitting errors yet continues to perform its function
is said to be fault tolerant. An accumulation of errors may well
be the cause of a failure of a higher level system.

Thus a physical device fails when it "breaks down. " There
after it contains a fault. A system designer or software pro
grammer can create a design or software containing a fault;
in this sense the designer or programmer failed. A fault may
or may not be active; when it is, one or more errors result.
A fault is latent, transient, intermittent or permanent de
pendent upon the manner in which it generates errors. A
software bug may not surface until some time after a system
has been in operation, i.e., it may be latent. A bug may cause
a data error only occasionally in response to specific, infre
quent input data patterns, and may thus appear intermittent.
Customarily a software bug is regarded as a permanent fault,
remaining in the system ever after from the moment of its
creation by a programmer. However, it is possible for a bug,

having given rise to a data error, to disappear from an op
erational system-in which case it appears as a transient;
the resulting bad data mayor may not be attenuated in fur
ther processing. As an example, consider the common oc
currence of failing to preset a variable at system start up.
Thus, software bugs can appear to share the possible attri
butes of hardware faults.

The referenced computing systems are designed to detect
and contain errors and isolate faults in physical components
at the level of processors, memories, etc.-generally. De
tection requires at least comparison; containment and iso
lation require a plurality. Necessary algorithms are imple
mented in hardware and software. When components are
deduced to be faulty, they are ignored in future computations
by the unfailed components-not unlike ostracism within a
social system. Functions previously performed by compo
nents since failed are distributed among the unfailed com
ponents; if there is insufficient computing capacity remain
ing, those functions least important to the flight of an aircraft
are discarded. The process continues until insufficient re
sources remain to perform minimum computations and the
system cannot support flight control.

The state transition diagram in Figure 3 is a simplified
representation of the scenario above, incorporating the es
sential approximating assumptions made in reliability anal
yses to date of highly reliable fault tolerant avionics com
puting systems. The analyses have been more complete and
searching than this simple representation-accounting for
various component types, not all interchangeable, having
different propensities for failure, etc. Yet the additional re
finements of analysis do not significantly modify the con
clusion below.

The prime assumption in the reliability analyses is that the
elemental failures at the physical level in any given com
ponent occur independently of the occurrence of other such
failures in other components. It is assumed, and every effort
is made to ensure, that the environment is controlled such
that "massive," system-wide failures do not occur. For ex
ample, avionics systems must be protected from lightning
discharges having such system-wide effects. The diagram in
Figure 3 represents this assumption by restricting degrada
tion solely to a state with exactly one fewer component.

A second assumption is that the frequency of nearly si-

Component
failure' Handled Component

failure 1--------........ etc.

c ____ S_y_s_t_e_m_f_a_il_u_r_e ___)

Figure 3.

multaneous errors (resulting from different failures) is suf
ficiently small to be neglected in the count of system failures.
To the extent to which this assumption is not correct, the
algorithms which perform detection and containment of er
rors and isolation offaults are inadequately designed for they
cannot cope with many combinations of multiple failures
concurrently. Clearly, the greater the latency time between
the creation of a fault and its manifestation as an error, the
less justified the assumption. Yet the assumption is main
tained for its mathematical convenience and for lack of suf
ficient hard data (to date) to support alternate models of
behavior. The instances when the assumption is not correct
are accounted for and represented in the diagram by "cov
erage" parameters, conditional probabilities that, given a
failure, transition to a correctly reconfigured and operating
state is successfully accomplished.

A third assumption is that, once reconfiguration has been
performed, any further errors generated by the faulty com
ponent are prevented from propagating outside predeter
mined containment boundaries and thus prevented from
causing secondary failures. This assumption is also repre
sented in the diagram by means of the restriction of degra
dation solely to a state with exactly one fewer component;
in addition, analyses normally constrain component failure
rates to be independent of system state.

Finally, analyses of the avionic computer systems have
conventionally neglected software and design faults-hy
pothesizing a system fault-free, the bugs exorcised by much
testing and program correctness proving and perhaps even
entirely avoided by application of disciplined management
and program development techniques. It should be noted
that, because of this "decoupling" of the software
(un)reliability from the process of estimation of computer
system reliability, the notion of a required software relia
bility becomes disassociated from the context of the appli
cation. Denied this direct, measurable relation to an appli
cation, rather than remaining simply a characterization of
software's merit, the notion is often associated with com
parisons and orderings of methods for implementing soft
ware (e.g., preferences for certain program structures, for
estimating number of bugs remaining in code, etc.).

SOFTWARE AND DESIGN LOGIC AS SYSTEM
ELEMENTS

While the number of faults (flaws) remaining after careful
development and testing remains problematical, what is im
portant in the context of an application and reliability are
the frequency with which faults are activated and the se
verity of the consequences of the errors generated (empha
sizing again the context of the application). If software pro
grams (and design logic) are considered as system elements,
possible sites of residual faults, interacting with other more
tangible components and capable of leading to avionics com
puter system failure, then the real consequence of software
malfunctions can be evaluated and the reliability required
of software can be stated.

Software Reliability and Advanced Avionics 719

(a) (b)

Figure 4.

A fatuously simple representation of software behavior is
illustrated in Figure 4a; it illustrates a difference between
hardware and software. Unlike the case for hardware in
which redundancy is provided by replications of compo
nents, simply replicating software in replicated components
only replicates any faults; consequently, errors occur in rep
licate sets and the notion of error detection and fault tol
erance by comparison and majority voting is defeated. (The
same is true of design logic.) Yet software fault tolerance
techniques, of which B. Randell and his colleagues at the
University of Newcastle-upon-Tyne have been leading in
novators, exist. They attempt to provide "redundancy" by
means of alternate, secondary algorithms and "acceptance"
tests to detect errors. Such concepts appear applicable to
avionics; minimal additional time and memory usage are re
quired.9 Accordingly the state transition diagram in Figure
4a represents the behavior of fault tolerant software on the
assumption that successful recovery from a software error
is followed by return to an initial (software) state. That is,
unlike hardware, software may not degrade. The rationale
for the assumption is that a fault responsible for a software
error has always lain latent; presumably it will do so again
after the date or conditions which activated it have passed.
A recovery parameter, analogous to the "coverage" param
eters mentioned for hardware above, can be used to account
for the possibility of not detecting or recovering from all
software errors. Figure 4b is an equivalent but simpler rep
resentation.

Studies of system failures due to software have been pub
lished, e.g., some recent data indicating that for one special
application and for one failure mode a hypothesis of expo
nentially distributed system failure times due to software was
not tenable,1O but there is no credible, empirical evidence
for the selection and justification of any complex, general
model of system failures due to software ll let alone due to
general design flaws. Figure 4 is not intended to suggest that
a simple model is sufficient for analysis and prediction pur
poses.

The diagram in Figure 5 is a combination of Figures 3 and
4b to represent a total system comprising hardware and soft-

720 National Computer Conference, 1980

1 - fl (l-k) -nA 1 - fl (l-k) - (n-l) A 1 - fl (l-k) - (n-2) A 1 - fl (l-k) - rAI

(n-2) X

Il (l-k) Il (l-k)

System failed state

Figure 5.

ware (and design logic). An initial n redundant hardware
component system can fail by either

(1) suffering a hardware component failure and degrading
(with conditional probability c.) to an n-l hardware
component system which can in turn fail, or

(2) suffer a component failure from which it cannot re
cover (Le., with conditional probability I-c.), or

(3) suffer a software error from which it cannot recover.
~ represents the rate of fatal software errors; I-k, the
conditional probability of not being able to handle an
error.

Clearl'y, each and every path to failure is bounded by the
I x 10-9 reliability requirement. In particular, for A and ~
interpreted as mean frequencies of hardware and software
critical malfunctions per hour, nA(l-c\) and ~(I-k) must each
be less than approximately I x 10- 9 • For reasonable and re
alistic values of n(3 to 10) and A(-1O- 4), .999997 =Sc.::51, in
a sense, a requirement on design logic. No credibly reliable
estimates for ~ are available, hence it can only be required
of software that ~(1-k)=s1 x 10-9 •

Since, and if, ~ and (1-k) both pertain to the same kind
of failure, i.e., software bugs and design flaws, one might
speculate that they are similar in magnitude and that a cred
ible demonstration that ~ and (1-k) are each approximately
10-4 or 10- 5 is the reliability requirement for avionics soft
ware.

CONCLUSION

To the extent to which the assumptions stated above ap
proximate the real world, hardware can be replicated until
required reliability is achieved, b~t the same is not true of
software. Hence, software is the critical element of highly
reliable (fault tolerant avionics) computer systems; the prob-

lem of design inadequacies is considered to be the same as
the software problem. Since data on software error rates
(in the precision implied necessary by the model above) are
lacking, it is currently not possible to predict with" credible"
confidence that a highly reliable software system will indeed
satisfy its reliability requirement. This leaves an avionics
system with embedded software in an uneasy state but points
quite clearly to the area of needed research.

REFERENCES

1. AVIONICS: Projections for Civil Aviation, 1995-2000, NASA-ASEE 1979
Engineering System Design Fellows, Old Dominion University, NASA
CR-159035, September 1979.

2. Federal Aviation Administration FAR part 25, paragraph 25. 1309(b) ,
dated 5 August 1970.

3. Bjurman, B. E., Jenkins, G. M., Masreliez, C. J., McClellan, K. L., and
Templeman, J. E., Airborne Advanced Reconfigurable Computer System,
Boeing Commercial Airplane Company, NASA CR-145024, August 1976.

4. Federal Aviation Administration Advisory Circular No. 20-draft, "Sys
tem Design Analysis," undated, initiated by AFS-130.

5. Barlow, Richard E. and Frank Proschan, Statistical Theory of Reliability
and Testing, Holt, Rinehart and Winston, Inc., 1965.

6. Hopkins, A. L., Smith, T. B., and Lala, J. H., "FTMP - A Highly Reliable
Fault-Tolerant Multiprocessor for Aircraft," in Proceedings of the IEEE,
Vol. 66, No. 10, pp. 1221-1239.

7. Wensley, J. H., Lamport, L., Goldberg, J., Green, M. W., Levitt, K. N.,
Melliar-Smith, P. M., Shostak, R. E., and Weinstock, C. B., "SIFT: The
Design and Analysis of a Fault-Tolerant Computer for Aircraft Control,"
in Proceedings of the IEEE, Vol. 66, No. 10, pp. 1240-1254.

8. "Special Issue on Software Reliability," IEEE Transactions on Relia
bility, Vol. R-28, No.3.

9. Fault Tolerant Software for Aircraft Control Systems, The Aerospace
Corporation, NASA CR-145298, February 1978.

10. Beaudry, M. D., A Statistical Study of Service Interruptions at the SLAC
Triplex Multiprocessor, Technical Report #141, Computer Systems Lab
oratory, SEL 79-006, Stanford University, May 1978.

II. Thibodeau, R., The State-of-the-Art in Software Error Data Collection
and Analysis, General Research Corporation, Army Institute for Research
in Management Information and Computer Science, Georgia Institute of
Technology, AIRMICS Contract # DAAG29-76-c-0100/0598, 1978.

Languages

This year the "Languages" technical
area focuses on practical matters. The four
sessions are all concerned with language
issues arising from real world considera
tions.

"Ada, Where it Stands Now" will as
sess the current status of the new De
partment of Defense programming lan
guage for embedded computer systems.
Embedded computer systems are those
which interface with non-computer de
vices such as satellites and submarines.
"MUMPS" is considered by its devotees
to be an instant data base implementation
system. This session will spread the word. Russell J. Abbott
"High Level Languages for Microproces- Area Director
sors" explores the availability, outlook,
and problems of powerful languages for
little computers. "Pascal in the Real World" demonstrates that a well designed language
can be used to solve real world problems.

If a common theme emerges from these sessions, it is that it is possible to design,
implement and use clean, powerful and "academically" acceptable languages for the nitty
gritty jobs which must be done.

721

A linguistic comparison of MUMPS and COBOL

by THOMAS MUNNECKE
Veterans Administration Hospital
Lorna Linda, California

"I speak Spanish to God, Italian to women, French to men,
and German to my horse." Charles V of France

COMPUTERS AND LANGUAGES

There are endless discussions in data processing circles
about which computer language is best. Not surprisingly, the
arguments generally boil down to each participant saying:
"The language I know is best. " These dogmatic beliefs often
lead to vigorous debates among programmers who use dif
ferent languages.

Languages have a deep relationship to the thought patterns
of their users. If a programmer can't easily say something
in a computer language, he is not inclined to think it, either.
When programmers of the different languages meet, they are
projecting their thought patterns into each others' language.
Finding that the language does not express these thought
patterns as richly as their native language, they often judge
the other language as inferior.

Languages and their user communities tend to grow to
gether. A user community cannot be expected to change its
language unless it sees a new set of needs not met by its
current language. Contrary to Charles V's fluency, it would
be difficult to convince a German that he should learn Italian
to speak to women. However, he could be convinced to learn
the language of mathematics when he realizes that his spoken
language is not sufficient for his mathematical needs.

MUMPS was created as a computer language in response
to a new group of needs. MUMPS was designed to be a
simple, small-computer-oriented language dedicated to a
specific task. It turned against the trend toward disintegra
tive languages which grew out of early batch processing tech
niques. It pursued a new dimension of user/computer inter
action. A dimension seldom seen, much less appreciated, by
typical COBOL programmers.

Today, there is a crushing new group of needs which mod
ern information systems must face. People costs to run com
puter systems far exceed computer costs. In order to rec
ognize this linguistically, perhaps we should rename
"computer systems" to "people systems." "Computer lan
guages" should become "people languages." These terms
more accurately reflect the needs of modern information

723

systems. The computer is merely a medium by which an
organization achieves its goals.

Viewing the computer as a medium is an effective way of
reflecting these changing needs. The computer would then
be in the same general category as books, magazines, tele
vision or telephone.

People might then view computer programmers turned
computer scientists in the same light as a television cam
eraman who calls himself a television scientist or a printer
who calls himself a book scientist.

This new group of needs can only be solved by the people
who brought them about-the users of the information sys
tem. They cannot expect "computer scientists" to solve
their problems any more than they can expect a printer to
write a book for them.

The role of the computer must be to linguistically support
the user in his own terms, adapting to his needs, and being
as forgiving and friendly as possible. This, of course, is a
flagrant violation of oldtime wisdom, where one could not
waste computer time on such frills.

MUMPS takes this role of user adaptability seriously. The
natural logic of the language encourages programmers to turn
control over to users with simple, yet powerful commands.
MUMPS users tend to show an almost reverent attitude to
their systems.

Conversely, COBOL was designed in an era when com
puters were expensive, programmers were cheap, and only
science fiction buffs dreamed of small computers. The nat
ural logic of COBOL is oriented towards batch processing
of fixed records. As people struggled to make COBOL adapt
to the needs of on-line systems, they added features* such
as data base management systems, data communicatio~s
monitors, message formatting monitors, and the like. Rather
than adding flexibility to COBOL, all of these disintegrative
appendages have stifled the language.

MUMPS, perhaps, can best be understood by the appen
dages which it lacks. This lack of features is MUMPS' great-

* The term "feature" has sometimes been defined as a "design flaw which
marketing" has noticed. For example, a computer manufacturer once an
nounced a distributed processor which had the" security feature" that it could
not be programmed locally. Only cross-compilations downloaded from the
host processor were allowed. Cynics who felt that this feature was really a
cover up for not having local software were vindicated some time later when
the manufacturer announced a new feature-local programming ability.

724 National Computer Conference, 1980

est strength, not a weakness, as the old schools would have
it. All of the following functions of these appendages are
integrated into MUMPS' unique symbolic structure:

Assembler Language
Compiler
Data Base Management System
Sort/Merge Utilities
Job Control Language
Linkage Editor
'Debugger
Data Communications Monitor
Core Image Dumps
Absolute Addresses
Type Definitions
Dimension Statements
Message Format Processor.

MUMPS is an entire data management system, built within
a single linguistic framework. All of the utilities, control
blocks, and organizational paraphernalia which are consid
ered "features" of COBOL-based systems are simply not
needed with MUMPS.

In order to facilitate comparison, IBM's data base man
agement system, IMS 360 (Information Management Sys
tem) has been selected as a typical add-on to COBOL for
data management applications.

This elegant simplicity of MUMPS is generally not appre
ciated by newcomers examining the MUMPS syntax. For
example, the up-arrow is the only indicator in the MUMPS
language that the program is working with a data-base record
instead of a local array variable. A reader who was expecting
a long list of data-base manager subroutine calls will be dis
appointed. He should not, however, condemn the language
for successfully eliminating those appendages of archaic lan
guages.

INTRODUCTION TO MUMPS I

MUMPS, the Massachusetts General Hospital Multi-Pro
gramming System, is a high-level interpretive programming
language and data-management system. It is particularly
suited for interactive applications which require a large,
shared dynamic data-base and the efficient manipUlation of
textual data.

The development of MUMPS began at the Laboratory of
Computer Science, Massachusetts General Hospital, Bos
ton, Massachusetts, in 1966. Previous research in medical
information systems had encountered frustration and dissa
tisfaction with the current state of the technology. The ex
periments during 1960 to 1965 with assembly language sys
tems were usually unsuccessful due to long development
time and excessive turnaround times for even the most sim
ple program modifications. For these reasons, the staff of
the Laboratory of Computer Science set out to design an
efficient time-sharing system for clinical data management. 2,3

The characteristics of this system were patterned after
JOSS, a high-level, interpretive language developed at the

RAND Corporation in 1964. Experience was also drawn from
descendants of JOSS such as TELCOMP and STRING
COMP developed by Bolt, Beranek and Newman, and
FILECOMP specified by General Electric for the MEDI
NET system.

The goal of the MUMPS system was to combine a simple
yet powerful high-level language with an easy-to-use data
base handling system. The MUMPS Language was designed
to be easy to learn, with simple methods of program creation,
modification and debugging. Language capabilities for the
handling of variable length character strings and multi-ter
minal I/O were also required. A sparse hierarchical data-base
system was developed as an integral part pf MUMPS. The
hierarchical structure was determined to b~ the most appro
priate method of handling the complex of demographic data,
diagnosis, laboratory results and other data required for clin
ical data management. A data-base handler was designed to
facilitate access to the hierarchical structure from the
MUMPS language. Basic features were developed to imple
ment symbolic update and retrieval functions. The design
emphasized the support of a dynamic data-base, subject to
frequent updates interspersed with on-line queries. The
MUMPS programmer could freely design both the content
and structure of data to best fit his application. Finally, the
system was implemented with a compact, time-sharing ex
ecutive to make efficient use of all resources in a mini-com
puter environment.

The appropriateness of these design goals is now well doc
umented. The MUMPS system has found a significant place
in both medical and non-medical environments. Since the
original implementation at the Laboratory of Computer Sci
ence, at least seven other dialects and variations of MUMPS
have been developed. In order to rejoin these divergent
views and promote program interchange, the U.S. Depart
ment of Health, Education and Welfare, and the National
Bureau of Standards initiated development of Standard
MUMPS. This standard specification, along with other
MUMPS documents for language teaching and translation
was accepted by the American National Standards Institute
in 1977.4

MUMPS is more than a programming language. It is a
linguistically integrated data management system combining
with a single syntax what other operating systems might call:
(a) an application programming language; (b) a job control
language; (c) a linkage editor; (d) a data-base management
system; and (e) a data communications monitor.

The MUMPS storage hierarchy

MUMPS goes beyond traditional data management by
allowing records (nodes) to be interconnected hierarchically.
Thus, a node can be the child of another node arid the parent
of any number of nodes. Networks are not allowed: each
node can have only one immediate parent (though there can
be any number of generations in the structure), and no node
can have a parent as a descendant. It is also possible to have
nodes which serve only as connectors, i.e., which contain
no data. These are often called pointers though they should

not be confused with the traditional use of this term. The
set of subscripts or keys. which define a node is actually the
path from the top of the hierarchy to the node. Thus, there
is a single key associated with the descent from a parent to
a child. MUMPS provides capabilities for addressing a node,
for the purpose of storage or retrieval by the complete se
quence of keys, or by a portion of the sequence. When a
portion is used, the missing keys are supplied by the system
based on the most recent reference to the database. It is also
possible to test whether or not an arbitrary node exists and
whether or not it has any data. Also, there is a means of
sequencing among a set of siblings, i.e., given an arbitrary
position within the hierarchy of finding the next numerically
higher single key. This technique cannot be used to cross
from one set of siblings to another. In general, there are
capabilities for moving from parent to child and from sibling
to Sibling, but the only way to move back up is to begin again
from the top.

This scheme of node intercon~ection is very useful be
cause many real world systems can be represented by a hi
erarchy or something simpler (e.g., a hierarchy includes a
simple indexed organization as a subset). Thus, a complex
entity may be represented as being constructed of subenti
ties, each of which is in turn sub-divided. In addition, there
is frequently a need for network structures. These relation
ships can be created by the applications programmer. For
example, although MUMPS does not itself provide inverted
files, MUMPS programs construct such files by storing log
ical references to other nodes. For example, in an inventory
control system a parts file might have part-number as a key. '
A file of suppliers could logically point into the parts number
file by means of the part numbers.

People often ask of MUMPS systems: "Why does it not
support other languages?" "Why does it not compile its
code?" These are a sampling of hundreds of similar ques
tions as to why MUMPS does not support the features of
the language and operating systems to which they are ac
customed. These questions are of the variety: "When did
you stop beating your wife?"

MUMPS' only retort to these questions is: Why are all
these features needed? Are the 12 access methods used by
a typical COBOL/IMS system a strength or a weakness? Is
the linguistic distintegration characteristic of almost all
"modern" operating systems solvable by adding more frag
mentary features? Is the increasingly complex combine of
pre-compiled object modules, control blocks, and linkage
editors really suited to today's online environment?

Standards

A standard is only as strong as its weakest linguistic link.
A standard which ignores major linguistic structures such
as terminal communication, data-bases, and the like nec
essarily will force users into an integration crunch and a re
version back to disintegrative designs.

The American National Standards Institute MUMPS
standard is a linguistically strong standard. Programs and
data-bases written in standard MUMPS are assured of port-

Linguistic Comparison of MUMPS and COBOL 725

ability because MUMPS requires no linguistic support from
all of the peripheral languages common to older operating
systems.

Oddly enough, this linguistic independence is often the
most vocally criticized aspect of MUMPS. People review
ing MUMPS, after noting its lack of features, go on to crit
icize its "incompatibility" with current systems. One re
viewer's "incompatibility" is another's "linguistic purity."
The fact that MUMPS' designers refused to disintegrate their
linguistic realms to archaic operating system features should
not be held against them.

Access methods

The list below compares the access methods used by
MUMPS and COBOL using IBM's Information Management
System (lMS).

COBOL/IMS

QSAM
BSAM
QISAM
BISAM
BPAM
VSAM
BTAM
HSAM
HISAM
HIDAM
HDAM
OSAM

MUMPS

GLOBALS

While this incomplete list of 12 access methods may look
impressive, it raises the question: Are all these really nec
essary? To the MUMPS programmer, of course, the answer
is no. Even the term "access method" is foreign to him.

Pointers

Today's disk storage technology requires internal pointers
for efficient data management. The following list shows the
difference between COBOL/IMS and MUMPS.

COBOL/IMS

Physical Parent
Physical Child
Hierarchical Forward
Hierarchical Backward
Physical Twin Backward
Logical Twin Forward
Logical Twin Backward
Physical Child Last

MUMPS

$NEXT
$DATA

The differences between these two columns run far deeper
than is apparent. While the MUMPS program is able to dy
namically structure its search, based on the content of the

726 National Computer Conference, 1980

data it finds as it works its way through the data-base, the
COBOL/IMS pointer system is rigidly defined in pre-com
piled control blocks which may be changed with only the
greatest caution.

MUMPS' richness in content-oriented data structuring is
possibly best illustrated by the fact that MUMPS can rep
resent a data value of "nothing." Whereas COBOL would
require a bogus value, for example 999 or spaces, MUMPS
simply recognizes a null data value. This is roughly equiv
alent to the discovery of zero in algebra.

Languages

People often say "We are a COBOL shop." However,
due to the inherently weak nature of COBOL and the lan
guages which have sprouted up around it, many languages
are used within the COBOL environment.

COBOL/IMS LANGUAGES

Language

COBOL
Data Language/l
Job Control Language
Linkage Editor
Message Format Services
System Definition MACROS
Assembler Language
MACRO Assembler
Program Specification Blocks
Data-Base Definition Blocks

Total Pages

Pages of
Documentation

300
100
200
100
100
300
200
100
150
150

1700

Each of the languages listed above has its own linguistic
domain, reference language, and documentation. This has
a profound effect on the overall operation of the computer
support staff. Specialists have arisen, spreading the respon
sibilities of a given system over a multitude of people, such
as systems programmers, data-base administrators, network
administrators, and control block librarians, in addition to
the traditional programmers and systems analysts. Listings
of code in each of these languages is thus spread out over
each of these specialists, and typically jealously guarded.
Thus, a programmer searching for the cause of an error may
spend a good portion of his time searching for specialists
and/or their listings.

Error detection and correction

Try as we may, errors will occur. MUMPS, being an in
teractive system, will display the error with an explanation
directly in the MUMPS language. The programmer may ex
amine variables, modify the program, and resume processing
directly from the keyboard, all using MUMPS language.
Thus, all communication is accomplished in one language,
at a terminal, as soon as the error occurs. This is not the

case with the COBOL/IMS environment. An error begins
with a hexadecimal dump (typically, 25-50 pages long),
which the programmer sees hours or days after the error
occurs. He must thread these numbers through a maze of
languages, specialists, and listings. Following is a highly
polished translation of one error which might occur in a
COBOL/IMS environment:

COBOL/IMS error detection:

"An Assembler Language Dump shows that the COBOL
Return Code of the PCB of the PSB defined in the PARM of
the JCL EXEC card (or specified in the IMS SYSTEM) gener
ated by the PSBGEN utility contains a PCB MACRO with SEN
SEG MACRO parameter PROCOPT incompatible with DLI I
call FUNCTION parameter."

This particular error traversed six languages, on four dif-.
ferent listings, requiring working knowledge of 1000 pages
of documentation. Furthermore, the error was presented to
the programmer after the fact, perhaps after irreversible con
ditions had changed things.

With the functions of the data-base management system,
job control language, control blocks, utilities, assemblers,
compilers, and communications monitors stripped away, one
arrives at a comparison of the entire COBOL language and
a portion of MUMPS.

CASE COMPARISON-PAYROLL PROGRAM

The author once translated a COBOL program into
MUMPS. The COBOL program was part of a payroll system
which received a batch of time and attendance records and
computed the gross and net pays, various leave balances,
and the like. The MUMPS version replaced the batch system
with on-line data entry and validation, with immediate com
putations. Thus, the MUMPS version had more work to do.

ITEM COBOL MUMPS PERCENT

Lines of Code 3600 300 8
"IF" Statements 460 89 19
"GOTO" Statements 650 43 6
Total Program Size 120K 9K 8

The MUMPS version required approximately 8% of the
number of lines of code, 19% of the number of conditional
checks (even with the added validity checks), 6% of the pro
gram branches, and 8% of the run-time memory.

Execution time on a $100,000 MUMPS minicomputer was
approximately twice as long as the several million dollar
COBOL/IBM 370/158 computer. Exact programming times
were hard to estimate, but three weeks were spent on the
MUMPS version, while the original COBOL version took
an estimated six to nine months.

CASE COMPARISON-MESSAGE DISPLAY

To illustrate these differences, a portion of a COBOL pro
gram was selected which writes out the message: "Affidavit

XXX processed, Precinct is YYY." The MUMPS version
of this simple message display program is: WRITE !, "AF
FIDAVIT ", AFFNO," PROCESSED. PRECINCT IS ",
PREC

The COBOL version illustrated below requires the mes
sage to be formatted in the DATA division. (Note that the
'W' is actually a special character, which must be multi
punched on a keypunch. Thus, the keypunch, printer, and
computer all have different understandings of the same char
acter):

Data division:
03 FILLER PICTURE X(10) VALUE 'AFFIDAVIT'.
03 MSG-AFF-NO PICTURE X(7) VALUE SPACES.
03 FILLER PICTURE X(10) VALUE 'PROCESSED'.
03 FILLER PICTURE X(13) VALUE 'PRECINCT

IS'.
03 MSG-PREC-NO PICTURE X(5) VALUE".
03 FOB PICTURE X VALUE 'W'.

Then the message must be transmitted in the procedure
division.

Procedure division:
OOO-ENTRY.

MOVE H-PREC-NO TO MSG-PREC-NO.
MOVE H-AFF-NO TO MSG-AFF-NO.
MOVE CMPL-MSG TO OUT-SEG-I.

TERM-TRAN.
CALL 'TELECALL' USING DECB-ADDR,

TPTRNSMT, TP-SW.
RETURN-TO-VRNEW AFF.

The MUMPS version used 6% of the lines of code, and
9.6% of the number of characters. The COBOL version made
six explicit declarations of the lengths of fields involved.
MUMPS made none.

Comparisons:
ITEM

Lines of Code
Characters
Number of Bindings

DATA INDEPENDENCE

COBOL MUMPS

16 1
500 48

6 0

Someone from the disintegrative school might defend it
at this point by saying: "But what about data independ
ence?** The traditional file structures provide for data-in
dependent programs, through well-defined linkages."

If one examines the situation carefully, one sees that data
independence is a mythical construct of the disintegrative
school-data dependence is merely being transferred to yet
another language or languages. This process is somewhat
akin to a doctor "curing" a patient by erasing his symptoms
from the medical record.

** Data independence5 is defined to be the "immunity of applications to
change in storage and access strategy."

Linguistic Comparison of MUMPS and COBOL 727

Mr. C. J. Date5 discussed the data independence of IMS.
If one examines the darker side of IMS' s data independence
(i.e., its data dependence on control blocks), things are
slightly different. For example, in order to add a single byte
to a key field in a COBOL/IMS system, the following pro
cedures must be followed:

1) Change the data-base definition block
2) Change the program specification block
3) Regenerate the accumulated control block
4) Change any message output format, message input for

mat, device input format, or device output format block
referencing the field.

5) Change the data division of each COBOL program
which references the field. Furthermore, the procedure
sections of each program must be scanned for move
statements which overtly or covertly reference the
field. Once associated fields have been identified, they
too must be scanned for reference to yet other fields.
COBOL can covertly reference fields through redefin
ing, corresponding moves, assembler language subrou
tines, or parameter passing.

6) Unload the data-bases under the old data definition.
7) Reload the data-bases under the new data definition

with a program which shifts the data to its new format.
Depending on the size of the data-base, the unload/re
load process can take from a few minutes to several
days. The data-bases are not accessible to terminals
during a major portion of this time.

8) Since the changes are so pervasive, prudence dictates
that the control blocks, application programs, and data
bases be tested on a duplicate "test" system. Thus, all
of the above steps must be carefully sequenced through
twice.

Thus, the COBOL/IMS concept of data independence can
trigger off a complicated sequence of control block changes,
recompilations,job control language changes, and significant
data-base down time for the simple process of adding a single
byte to a field. The operations staff must use several macro
languages, COBOL, job control languages, linkage editor,
and manual procedures to accomplish this task.

Many attempts to correct this complicated sequence have
been made, including adding another linguistic entity such
as a master data dictionary. However, this can only serve
to further disintegrate linguistic control. As a new language
is added it imposes its own (weak) data definition structure,
reference language, source language control, etc.

One is tempted to ask, "Why is adding a single byte to
a field such a major undertaking for such a sophisticated
computer system? Why is every linguistic domain so de
pendent on exact field length specifications?" The answer
is that the disintegrative approaches are built up from com
piled logic which uses absolute addresses (or absolute off
sets). The languages lose control of the data at the moment
of compilation.

MUMPS, on the other hand, makes no such linguistic dis
tinctions. Fields are treated dynamically according to what
ever data are found in them. Data-base structures grow and

728 National Computer Conference, 1980

shrink according to whatever data is stored in them. Reor
ganization is seldom necessary due to internal techniques of
balanced multiway trees. 6 All data references are symbolic;
if a field does not exist in a particular instance, it takes no
space. There are no data definitions, procedure-scanning,
absolute addresses, REDEFINES, as~embler language sub
routines, control blocks, or data set definitions to worry
about-they simply do not exist. The only changes a
MUMPS programmer may need to make to add a byte to a
field are:

I.) If an explicit length reference is made to the field, it
will have to be changed to the new length. For ex
ample, IF $LENGTH (INPUT) > 6 WRITE "TOO
LONG" would have to have the "6" changed to a
4'7".

2.) If the field is printed on a pre-printed form, the output
routine may have to be changed.

MISCELLANEOUS OBSERVATIONS OF COBOL
AND MUMPS

1. To a MUMPS programmer, COBOL appears to be a
linguistic flatland in which only the simplest data struc
tures may be, expressed. Problems which he dismisses
with a simple statement in MUMPS would be pages of
code in COBOL.

2. COBOL's rigid structure is its most prominent char
acteristic. MUMPS is known for its flexible data and
program structures. For example, if a COBOL program
encounters a 5 digit number to be printed in a 4 digit
field, it will change the data to meet the format.
MUMPS would rather print the right data in the wrong
format than print the wrong data in the right format.
In all of the structure/content design tradeoffs, MUMPS
stresses content, while COBOL stresses structure.

3. COBOL makes a very strict distinction between "pro
gram" and "data." These distinctions are not neces
sarily made in MUMPS. A MUMPS program could
execute a data-base, or a program could be treated as
data. This allows MUMPS to be used as an implemen
tation language for higher level languages or systems.
It also allows for all of the MUMPS operating system
utilities to be written in MUMPS itself, rather than re
sorting to assembler languages, linkage editors and the
like.

4. COBOL is usually compiled, whereas MUMPS is usu
ally interpreted. The COBOL language disappears at
execution time. It assumes that the programmer has
accounted for all eventualities before the program was
compiled. MUMPS, on the other hand, is free to make
use of the interpreter during the execution of the pro
gram.

5. MUMPS takes the "small is beautiful" approach to
computing. Originally designed for minicomputers, it
exploits the dedicated nature of small computers. It
makes heavy use of the cheapest resource (central pro
cessor time), and minimizes the most expensive re- .
source (people time). MUMPS systems generally grow

by adding more systems, rather than larger ones.
COBOL, on the other hand, grew up in the "bigger is
better" school. Manufacturers stressed the "econo
mies of scale" of large computers, saying that a larger
computer would work more cheaply per unit of work.
These economies have clearly turned around with
today's microelectronic technology.

COBOL users and large scale computer manufac
turers, fearing loss of control, have often responded by
scaling problems up to the point where they can be
solved only by large-scale computing equipment.
MUMPS users, on the other hand, tend to scale prob
lems down to smaller and smaller computers.

6. The author has a theory that the response time of an
interactive computer system increases exponentially
with the cost of a computer. This is due to the fact that
a computer must be idling along at 30-50% capacity in
order to handle unexpected interactive loads. Thus, the
cost of good response time is proportional to the cost
of "wasting" computer time in reserve for the unpre
dictable needs of an online system. The owner of a
$500 Radio Shack computer does not hesitate to
"waste" computer time to serve his needs, but his tech
niques would bring shudders to the manager of a large
scale computer.

7. There is a controversy in the data processing field titled
"Superprogrammers versus Mongolian Hordes."
MUMPS supports the "superprogrammer" philoso
phy. Individuals, or small teams of MUMPS program
mers, are capable of producing what large teams of
COBOL programmers can do. Few "superprogram
mers" are content to remain COBOL programmers.
Their talents are frustrated by COBOL's awkwardness,
inflexibility, and slow development cycles. Good
COBOL programmers tend to be promoted to higher
paying positions in the COBOL organizational hier
archy, a clear case of the Peter Principle. In contrast,
MUMPS programmers can draw higher salaries due to
their higher productivity, and happily remain MUMPS
programmers.

8. COBOL programmers tend to exhibit great concern
about computer efficiency with a corresponding lack
of concern about the efficiency of the users of the sys
tem. I have labelled this characteristic "cyclephobia"
an irrational fear of wasting computer cycles. Cycle
phobes tend to see problems in light of the primitive
operations expressable in COBOL. MUMPS program
mers, on the other hand, have a much healthier attitude
toward c'omputer/user efficiency tradeoffs. This is
partly because they use' an inherently more friendly
computer-the small computer, and partly because
MUMPS naturally directs the programmer to "friendly,"
responsive computer interactions.

REFERENCES

1. Munnecke, T. H., R. F. Walters, J. Bowie, C. B. Lazarus and D. A.
Blidger, "Mumps: Characteristics and Comparison with Other Program
ming Systems," Medical Informatics, Vol. 2, No.3, pp. 173-196, 1977.

2. Greenes, R. A., A. N. Papalardo, C. W. Marble and G. O. Barnett,
"Design and Implementation of a Clinical Data Management System,"
Computers in Biomedical Research 2, pp. 469-485, 1969.

3. Bowie, J. and G. O. Barnett, "MUMPS-An Economical and Efficient
Time-Sharing System for Information Management," Computer Pro
grams in Biomedicine, 6, pp. 11-22, 1976.

Linguistic Comparison of MUMPS and COBOL 729

4. American National Standards Institute, Inc., American National Stand
ard MUMPS Language Standard, ANSI 11.1-1977, 1977.

5. Date, C. J., An Introduction to Database Systems, Addison Wesley,
Reading, Massachusetts, 1975.

6. Knuth, P. E., The Art of Computer Programming, Vol. 3. Sorting and
Searching, Addison-Wesley, Reading, Massachusetts 1973.

The design of PLAIN -Support for systematic programming

by ANTHONY I. W ASSERMAN*
Section on Medical Information Science
University of California, San Francisco
San Francisco, California

DISCIPLINE IN SOFTWARE DEVELOPMENT

The successful construction of medium and large software
systems requires the management of the complexity inherent
in the problem being programmed. A well-disciplined ap
proach to software development involves the production of
a, complete specification, a complete problem solution, and
program design prior to 'the inception of actual coding. In
practice, this requires the production of some form of pro
gram design representation [1] from. the original specifica
tion, with the action of each module specified with a program
design language [2]. Furthermore, data structures are spec
ified and refined, in some cases to physical data structures,
but more commonly to logical data structures.

It is from that point that coding begins. The information
available to the coder should include, at a minimum, the
input and output parameters for each independent program
unit and an unambiguous description of the operations to be
carried out by each. Analysis of information flow, perform
ance or space requirements, and similar considerations lead
to the identification of commonly used routines and data,
yielding an initial program structure derived from the design.

A disciplined approach to software development, then,
requires that the program design stage precede the program
construction stage. The completed software design can be
checked against the original specification by "walk
throughs" [3] or similar methods, with the resulting "soft
ware blueprints" providing the basis for implementation (or
possibly redesign).

An important consideration in the target programming lan
guage, then, is the ease with which one can proceed from
the design representation, with its modular structure and its
degree of abstraction, to the program representation, i.e.,
executable code. A second key corisideration is the ease with
which one can determine the conformity between the com
pleted program and the original specification, using testing
and/or verification techniques.

* This work was supported in part by NationalScience Foundation grant
MCS78-26287. Computing support for text preparation was provided by Na
tional Institutes of Health Grant RR-1081 to the University of California, San
Francisco, Computer Graphics Laboratory, Principal Investigator: Robert
Langridge,

731

PLAIN AND ITS DESIGN CONTEXT

The past few years have witnessed an increased under
standing of the relationship between programming languages
and problem solving [4,5]. As a result of this work in pro
gramming methodology, programming languages are no
longer viewed as independent entities, but rather as an in
tegral part of the problem-solving process. Programming lan
guages are now seen as a mechanism for expressing a prob
lem solution in a precise way for computer execution. As
such, a given programming language may have a significant
effect upon the ease with which the solution may be ex
pressed. If the language does not easily support the abstrac
tions used by the programmer in solving the problem, then
the transformation from the problem solution to a correctly
executing program will be complex, with the increased like
lihood that errors will be introduced during this transfor
mation process.

A number of new programming languages have been de
signed and/or implemented with a primary or secondary ob
jective of promoting proper programming techniques [6,7,
8,9,10,11,12]. In addition, some general criteria for language
designs have been advanced[13,14,15,16]. Design ofthe pro
gramming language PLAIN (Programming LAnguage for IN
teraction) has proceeded in parallel with these other efforts,
commencing in 1975. Unlike the other languages, the in
tended application area for PLAIN is interactive information
sy~tems, typically programs whose end users will be appli
cation-knowledgeable and computer-naive. PLAIN is in
tended to provide the application programmer with a tool
that supports the systematic construction of this class of
programs. As such, it contains facilities for definition and
use of relational data bases, modules for information hiding,
string processing with a simple pattern-matching facility, and
exception-handling, incorporated into a well-structured, Pas
cal-based language.

In this paper, however, we shall be concerned primarily
with the support provided by PLAIN for concepts of sys
tematic programming. We begin by presenting some goals
that encourage a disciplined approach to software construc
tion, commenting briefly on their contribution to the overall
goals. Then, following a short survey of other languages, we
examine PLAIN with respect to these design goals, partic-

732 National Computer Conference, 1980

ularly those of abstraction and modularity, and compare the
approach of PLAIN with those of some other modern lan
guages. Information on other aspects of the language and its
implementation may be found in [11,17,18].

LANGUAGE DESIGN GOALS FOR SYSTEMATIC
PROGRAMMING

Although the intended application areas and the relative
priority of the goals vary considerably among the recently
designed languages, there are a number of areas of general
agreement that can be identified. These common objectives,
taken together, provide a sound basis for programming lan
guage design. Languages that meet these objectives can be
expected to provide an excellent framework for the system
atic construction of high quality programs. These objectives
are presented briefly and with only the most significant as:.
pects of their rationale, as additional discussion of these is
sues may be found in the cited references.

1) Support for abstraction

Abstraction has been recognized as a means to develop
a representation of concepts that relates closely to the ap
plication being programmed, to hide inessential details of the
problem solution at various levels of the program develop
ment process, and to support the notion of "top-down" de
sign. If a problem solution involves the use of queues or
directed graphs, for example, one should be able to make
use of those objects in the programming process.

The ability to define these abstract objects, along with
appropriate operations on these objects, is extremely valu
able. Such objects can be specified formally' using algebraic
techniques to define their behavior [19]. If the objects arid
their associated operators are encapsulated so that the rep
resentation of the object is isolated and inaccessible from
other parts of the program, the facility for data abstraction
is analogous to the facility for procedural abstraction pro
vided by functions and procedures in many programming
languages.

Such a programming language facility, generically termed
abstract data types [20], provides the programmer with the
opportunity to define behavioral characteristics of data ob
jects and to refine program and data structures in parallel.
It is then possible to create data objects within a program
resembling those used in the problem solution, thereby eas
ing the process of transforming the problem solution into a
program.

2) Support for modularity

Although there are a number of different definitions of a
"module," for purposes of this paper, one may consider a
module to be an object, perhaps a procedure, function, or
abstract data type, that carries out a well-defined operation,
hides a design decision, or isolates information from other
modules. Typically, the actions may be described in a sen-

tence or two of natural language. Furthermore, each module
has. well-defined interfaces to other modules. Modularity
makes an important contribution to the overall comprehen
sibility of programs, to the practice of programming by levels
of abstraction, and to the production of large software sys
tems by allowing various pieces of a software system to be
effectively isolated from one another [21,22,23].

The ability to decompose a large problem into a number
of smaller ones and to delineate clearly the interactions
among the pieces is an important tool in gaining intellectual
mastery over complex problems. Software design aids such
as HIPO charts [24] and structure charts [25] have been de
veloped to help identify modules and to represent the total
structure of the software system so that the decomposed
modules can be integrated into a single integrated system.
Furthermore, concepts of cohesion (unity of function) and
coupling (module connections) [22,25] provide a basis for
evaluating module designs.

3) Support for verification and testing

Program correctness, as determined through either form;!l
verification or testing, has been .a critical motivation for
much of the work in software engineering and programming
language design. Verification is a formal mathematically
based proof that a program conforms to its specification.
Testing is a collection of activities that provides a practical
demonstration of conformity between the program and its
specification, based upon systematic selection of test cases
and execution of program paths and segments.

Both the characteristics of a given programming language
and the practices used to write programs in the language
affect verification and testing. The ease of testing and ver
ification is further influenced both ·by static and dynamic
program characteristics [26]. Static factors are those features
that may be automatically checked by a compiler at trans
lation time, those that are independent of the execution char
acteristics of the program. Examples of static aspects include
most type checking and some checking for the use of alias
ing.

Dynamic factors are those aspects of the program that are
dependent upon its execution properties, including control
flow and response to exceptional conditions. Issues of pro
gramming style, such as the use of uncontrolled branches
and pointer structures, clearly affect the complexity of
checking required.

Support for verification and testing is closely tied to some
of the other issues as well. For example, the desirability of
testing or proving program modules individually fits in well
with' the desirability· of system design ,at the module level.
In addition, support for verification and testing implies the
prior development of system specifications and hence a sys
tematic approach to software creation. Finally, other issues
such as modularity and readability are closely related to is
sues of program correctness, since the determination of cor
rectness is greatly aided by module simplicity and compre
hensibility.

The Design o.f Plain-Suppo.rt fo.r Systematic Pro.gramming 733

4) Pro.gram readability

Pro.gram readability has been seen to. be a valuable pro
gram pro.perty co.ntributing to. ease o.f pro.gram maintenance
and mo.dificatio.n [13]. The use o.f o.paque programming
"tricks" o.r the co.nstructio.n o.f cryptic programs is no. lo.nger
co.nsidered to. be an acceptable pro.gramming practice, as it
has beco.me reco.gnized that programs must be read by hu
mans as well as by machines during their increasingly lo.ng
lifetimes.

Many properties co.mbine to. yield readable programs, in
cluding the use o.f mnemo.nic variable names, the presence
o.f meaningful keywo.rds, the liberal insertio.n o.f co.mments,
and linear flo.w o.f program co.ntro.l. Here, to.o., programming
practices are impo.rtant, since it is po.ssible to. write a well~
structured, highly understandable program in "po.o.r" lan
guages and a to.tally inco.mprehensible program in even the
"best" language. Furthermo.re, program readability appears
to. be a highly perso.nal and highly subjective quality, sig
nificantly influenced by the reader's previo.us programming
experience and programming style.

5) Preventio.n o.f self-mo.difying programs

A number o.f languages, mo.st no.tably LISP, treat pro.
grams and data interchangeably, in such a way as to. permit
the co.de being executed to. vary dynamically, i.e., to. be de
termined at executio.n time. Such an approach is entirely
co.nsistent with the co.ncepts o.f sto.red programs and Vo.n
Neumann machines; unfo.rtunately, tho.ugh, this approach
is in co.nflict with the go.als o.f program readability and sup
po.rt fo.r verificatio.n and testing, since the ability to. create
new variables and to. alter the program dynamically makes
verificatio.n and testing impo.ssible unless o.ne is able to. test
o.r pro.ve all o.f the programs that can be generated. Fur
thermo.re, such programs are o.ften difficult to. co.mprehend,
since the actual co.de is no.t to.tally visible. In Pascal and its
descendants, procedures and data are separate entities,
where data o.bjects may change their values dynamically and
procedures are static and immutable. Programs that permit
"the executio.n o.f data" are fo.rbidden.

6) Co.ntro.l o.f sco.pe and binding o.f variables

Blo.ck-structured languages pro.vide explicit co.ntrol o.ver
the existence o.f variables. Space fo.r declared variables is
allo.cated upo.n entry to.- a blo.ck and deallo.cated (except fo.r
statically allo.cated variables) upo.n exit fro.m that blo.ck. The
set o.f kno.wn variables can be determined from o.bserving
the static structure o.f the pro.gram, with no. ability to. create
variables dynamically.

Co.ntro.l o.f the sco.pe and binding o.f variables has been
identified as a technique that can reduce pro.gramming errors
caused by side effects, particularly tho.se resulting fro.m in
discriminate use o.f glo.bal variables [27]. Such co.ntro.l is also.
needed to. achieve mo.dularity, since, witho.ut it, a program
mer may easily circumvent restrictio.ns co.ncerning the
proper use o.f input and o.utput parameters fo.r a mo.dule.

The use o.f po.inters sho.uld also. be no.ted here, since they
may co.ntribute to. this pro.blem. Many languages, such as
PL/I and Pascal, permit the creatio.n o.f "dangling refer
ences" by having an o.bject in an o.uter blo.ck po.int to. an
o.bject in an inner blo.ck. When co.ntrol leaves the inner
blo.ck, the o.bject po.inted to. may disappe&r, but the po.inter
itself will remain.

7) Language size

Language size has also. been seen to be impo.rtant, since
relatively small languages are easier to. implement and can
make it po.ssible fo.r the pro.grammer to. gain co.mplete mas
tery o.fthe pro.gramming language [13,14]. A number o.f dif
ferent, albeit "rough," metrics can be used to. estimate lan
guage size, including the number o.f keywo.rds, the size o.f
its grammar (in LALR fo.rm, fo.r example), the number o.f
statement types, o.r the size o.f the co.mpiler o.r interpreter
fo.r a given co.mputer.

There appears to. be an o.ptimal size fo.r languages, with
so.me languages being so. small as to. prohibit an adequate
variety o.f co.ntrol structures o.r data types, while o.ther lan
guages are so. large as to. prevent the average programmer
from gaining a clear understanding o.f the entire language,
with all o.f its syntactic and semantic subtleties.

These seven design o.bjectives are no.t o.rtho.go.nal. Indeed,
there are numerous intricate co.nnectio.ns amo.ng them, as
well as so.me inherent co.nflicts. Fo.r example, co.ntrol o.f
sco.pe and binding o.f variables. is Clo.sely related to. mo.du
larity. On the o.ther hand, restrictio.ns o.n language size may
serve to. limit the extent to. which a language may suppo.rt
a variety o.f abstractio.ns. Thus, the language designer seek
ing to. achieve these design o.bjectives must give higher prio.r
ity to. so.me o.bjectives than to. o.thers and must trade o.ff var-
io.us alternatives judicio.usly. .

LANGUAGES DESIGNED FOR SYSTEMATIC
PROGRAMMING

As no.ted abo.ve, a number o.f different programming lan
guages, including Pascal, CLU, Alphard, Gypsy, Euclid,
LIS, PLAIN, Mesa, and Ada, have been designed with mo.st
o.r all o.f these design o.bjectives in mind. (See [28] fo.r ex
ample.) Even tho.ugh the different languages are intended to.
serve a diversity o.f language requirements and applicatio.ns
areas, the languages have mo.re similarities than differences
when examined from the standpo.int o.f suppo.rt fo.r system
atic pro.gramming.

The mo.st significant differences are tho.se caused by dif
ferent emphases in the design go.als amo.ng the vario.us lan
guages. Fo.r example, Alphard and Euclid place a heavy
stress o.n the go.al o.f program verificatio.n, while the o.thers
might be said to. recognize the impo.rtance o.f verificatio.n
witho.ut the explicit requirement that programs in tho.se lan
guages will be verified. As ano.ther example, LIS and Euclid
are seen as system implementatio.n languages, to. be used

734 National Computer Conference, 1980

primarily for the development of operating systems, com
pilers, and similar programs, while CLU and PLAIN are
application languages. (This is not to imply that the lan
guages in one group cannot be used for other applications,
but only the intent of their designers.)

In the remainder of this paper, we will examine the design
decisions in PLAIN with respect to these objectives for sup
porting a systematic approach to program construction, as
sessing some of the decisions in comparison and contrast
with those made for other programming languages. The in
tent of this discussion is to provide some insight into the
design of PLAIN and into some of the tradeoffs that were
made in that design; the reader is not expected to agree with
all of these decisions-if there were unanimous agreement
on these issues, there would not be so many languages! In
short, one of the implicit goals of many of these new lan
guages (as can be seen from their defining documents) is to
gain additional understanding of programming methodology
and the ways in which language features aid or hinder the
programming process.

From a software engineering standpoint, each may be re
garded as a tool that can be made available to the individual
software development group as an instrument for building
their product. It is to be expected that some of these tools
will receive little use and little acceptance, while the use of
others will be strongly encouraged and modified and/or en
hanced over time.

Finally, it should be noted that the programming language
is part of a complete problem-solving process, which is sup
ported by a software development methodology and a pro
gramming environment. The environment and the method
ology will vary among organizations and among languages,
but it is really the programming language, in combination
with the programming environment, that determines the full
extent of support for systematic programming that is pro
vided for the programmer.

PLAIN: A LANGUAGE DESIGNED FOR RELIABLE
INTERACTIVE SOFTWARE

As noted above, PLAIN (Programming LAnguage for IN
teraction) is addressed to the dual goals of support for the
construction of interactive programs, i.e., those programs
that execute interactively and support for structured pro
gramming (in the original sense ofthat term [4]). PLAIN was
designed with features to assist the development of programs
involving conversational access to a data base.

These features include:

1) the data type string for variable length strings, along
with appropriate operators and functions for· string
manipulation;

2) an elementary pattern specification facility along with
pattern-matching operations, used both for validating
user input and for formatting of input and output;

3) the data type relation and a set of operations to provide
a facility for relational data base management [17,29];

4) a procedure-oriented exception-handling mechanism

for trapping errors and restricting control flow upon the
occurrence of an exception, commonly used in the
event of user input errors.

This set of features is largely missing from other program
ming languages that seek to support systematic program
ming. At the same time, those languages that are most heav
ily used for the construction of interactive program-BASIC,
MUMPS [30], APL, LISP,and FORTRAN-are quite weak
in meeting the design objectives stated above. PLAIN, by
contrast, addresses both groups of design objectives.

From the outset, the original contribution of PLAIN was
seen to be not so much the introduction of new language
features, but rather a synthesis of features whose interaction
would lead to a useful tool. In particular, the combination
of relational data base management and facilities for data
abstraction provides a powerful mechanism for structuring
operations on data bases. Indeed, the design effort was un
dertaken with some reluctance, and only after a careful look
at a number of other programming languages.

Given the planned number of innovations for supporting
interactive programs, it was decided to be fairly conservative
with respect to the inclusion of new features for systematic
programming. The original intent was to remain fairly close
to Pascal for these features; however, parallel developments
in other language design efforts, including all of those men
tioned above, were highly influential and the resulting lan
guage resembles Pascal somewhat less than was originally
planned.

These new features are not only intended to support the
creation of well-structured programs, but to go beyond that
point so as to make a well-disciplined approach to program
development a necessity for proper use of the language. In
particular, it was considered extremely important to include
features that aided modular decomposition of systems, with
emphasis on intermodule communication [31], and to sup
port joint refinement of procedures and data.

We now outline some features and design concepts of
PLAIN that provide good problem-solving support and that
impose various programming restrictions. The primary ob
jective is not so much to present the PLAIN language in
detail as to show the motivations of the design from the
standpoint of programming discipline, with reference to the
set of design objectives discussed above. Because of the in
teractions among these objectives, though, the subsequent
discussion is structured along slightly different lines.

Abstraction and modularity in PLAIN

Abstraction and modular decomposition are two critical
intellectual tools used by humans to solve problems. They
are intricately related to one another, as each is intended to
exhibit a view of a process or an object. For example, merely
describing (at some level of abstraction) a process for sorting
numbers into ascending order is inadequate for incorporating
that process into a computer program; it is also essential to
include a description of the interfaces between that operation
and the host program.

The Design of Plain-Support for Systematic Programming 735

To look at it another way, a module is a "black box" that
provides an abstract view of a process or object to its in
voker. Even though support for abstraction and support for
modularity are presented as two separate design objectives,
the extent to which one is achieved strongly affects the ex
tent to which the other can be achieved. This is apparent if
one considers the effect of being able to examine the internal
structure of one module from another module; if one makes
use of that internal information, then the abstraction is vi
olated.

Many of the differences between Pascal and PLAIN are
caused by the desire to provide better support for abstraction
and modularity in PLAIN. Pascal has four key discernible
weaknesses in this regard:

1) Unrestricted access to global variables-program units
may freely access and/or modify variables declared in
a containing lexical scope (unless the inner scope has
a newly declared variable with the same name); thus,
the use of specific variables is hidden, and a consid
erable amount of code inspection is required to ~Ieter
mine the data flow. Access to dynamic structures via
globally-declared pointers also makes it possible to cre
ate "dangling references," since the object being
pointed to may be deallocated.

2) Absence of input/output parameters for modules-pa
rameters in Pascal are passed by value and by reference
(var). However, passing a variable by reference is no
guarantee that it is an output parameter, since it is con
sidered a good programming practice (and an efficient
one) to pass structured variables by reference, thereby
eliminating the space and time required to make a copy
of the parameter. Nonetheless, neither the procedure
heading nor the procedure call gives an indication as
to input or output parameters. Indeed, the concept of
passing parameters by value and by reference is an im
plementation concept rather than a programming con
cepL

3) Lack of support for data abstraction modules-Pascal
supports procedural abstractions (procedures and func
tions), but has no facility for defining encapsulated data
types, similar to those present in CLU (a cluster), AI
phard (a form), Euclid (a module), or others.

4) Side effects in functions-it is possible for a Pascal
function to accept parameters by reference and to mod
ify them within the body of the function; similarly, it
is permissible for a function to make an assignment to
a global variable. Such a capability goes against the
mathematical concept of a function, as well as breaking
down the abstraction embodied in the function and
(effectively) creating additional output parameters from
the function module.

PLAIN attempts to overcome each of these weaknesses,
thereby providing stronger support for abstraction and mod
ularity." First, all use of global variables must be declared in
the heading of the individual program unit (procedure, func
tion, data abstraction module). The PLAIN imports list is

similar to that of Euclid and the glocon/glovar declarations
used by Dijkstra [32]. Some of these names are local dec
larations, some are parameters, but the rest are global var
iables or other program units. These nonlocal names must
appear in the import list, along with a classification of their
use, as modified, readonly, or invoked. This requirement
does not apply to constants or to type declarations, which
may be used freely. The effect of the imports list, though,
is to increase the visibility of the use of variables throughout
a program and to permit the reader of a module to determine
the interrelationships between modules, both invocations
and data connections.

In conjunction with use of the imports list to specify acce~
to variables and program units, PLAIN contains the agility
to restrict the use of a given variable to a designated set of
program units. This feature, called the restricted to clause,
controls the extent to which globally-declared variables may
be used. With the imports clause alone, any global variable
may be freely imported. However, there are many instances
when it is desired to share a variable among a set of program
units and to prevent it from being accessed by other units.
(Labeled COMMON in FORTRAN can serve this same pur
pose.)

Consider, for example, a program in which routine main
may call procedures pI, p2, and p3. Further, assume that
p2 and p3 will both need the variable k, but that neither of
them calls the other. Hence, communication of the value of
k must occur through main. It is desired to prevent pI from
obtaining (and possibly modifying) k. Thus, one can declare"

var k: integer restricted to p2, p3;

as a way of achieving the desired protection.
Furthermore, PLAIN, like Ada, overcomes the dangling

reference problem by forbidding deallocation of dynamically
allocated variables. While this is not an entirely satisfactory
solution from the standpoint of storage utilization, it is the
only solution that permits the use of pointers without re
sorting to garbage collection and without permitting dangling
references. The use of objects of pointer type is restricted
in PLAIN in order to limit the number of program units that
are aware of the representation of dynamically allocated
objects.

Next, PLAIN has different rules from Pascal concerning
parameters. PLAIN parameters may be either readonly or
modified. A readonly parameter is an input parameter to the
procedure or function whose value is not changed by the
procedure or function. A modified parameter is a parameter
that may have a value assigned to it during the execution of
a procedure (possibly as a result of a call to a procedure
invoked from within that procedure); as such the actual pa
rameter for a formal modified parameter must be a variable.
It mayor may not have an input value. (An alternative strat
egy would have been to follow LIS and Ada, which have in,
out, and inout parameters. The readonly parameters and the
modified parameters are separated, in both the procedure
declaration and the procedure invocation by the symbol
"~".

736 National Computer Conference, 1980

For example', one might declare a procedure for the great
est common denominator with the following heading:

procedure gcd (m,n: integer~x,y,z: integer);

with a valid call appearing as

gcd (59,93~x,y,z)

where x, y, and z have been declared as integers in the in
voking routine.

This decision has several implications for implementation.
First, conformity to the declaration must be checked to make
sure that no assignment is made to readonly parameters. This
involves making sure that the formal parameter does not
appear on the left hand side of an assignment statement, in
the modified part of an actual parameter list for a procedure
called from within the given program unit, or as a modified
variable imported into a lexically nested program unit. Al
though all of these checks can be made prior to execution
time, they can involve a considerable amount of overhead.

An implementation advantage, however, is that it then
becomes unnecessary to pass any of the parameters by
value, thereby eliminating the overhead associated with
copying of parameters. Because the use of the parameter can
be checked from the program text, it is possible to pass all
parameters by reference, regardless of whether they are read
only or modified. Thus, the programmer may accurately .
characterize all parameters as readonly or modified, de
pending upon their actual use. The overhead occurs at trans
lation time and not during program execution.

The features described to this point have a significant im
pact upon the ease of transformation between the design
phase. and the program. Suppose that a system had been
designed using the practices of Structured Design [19]. Part
of the design representation is a structure chart showing the
hierarchical structure of the system and the calls between
modules. Each path between modules is numbered and an
accompanying parameter table shows the input and output
parameters for each module. For example, in Figure 1, the
call to A2 from A (path 5) provides Y as an input parameter
and obtains Z as an output parameter; it can be seen that
Z is then passed to MAIN as an output of A (path I).

Third, PLAIN contains a facility for encapsulation, bear
ing some resemblance to similar features in CLU, Euclid,
and Ada. In addition to defining new types, one can also
encapsulate a set of related procedures and functions, pro
viding a feature similar to that of the Ada package. Each
encapsulated type declaration consists of a rep clause, in
which the representation of the type is declared, an ops
. clause, in which the operators upon· the type are declared,
an exports clause, in which the names of externally visible
operators are given, and an optional exception clause, in
which one can name exceptions associated with the opera
tions upon the type.

The procedures read and write may be defined in the type
to extend the built-in read and write operations. The Boolean
function equal may be defined to extend the built-in equal
function for structured variables. The procedure init may be

Parameters
Path Input Output

1 X,Y Z
2 D SAFE
3 RES
4 X
5 Y Z
6 A AQ
7 B BQ
B C CQ

Figure I-A structure chart

defined to specify actions to be carried out when a variable
. ofthat type is declared. The abstract type facility, along with
several of the features previously described, can be illus
trated by the familiar example of an integer stack.

The operations upon the stack may be specified as follows:

~stack create:
push:
pop:
top:
empty:
equal:
size:

stack x integer ~stack U stackfull
stack ~stack U stackempty
stack ~integer U stackempty
stack ~ Boolean

stack x stack ~ Boolean
stack ~integer

Axioms:

top(push(s,i)) =i
top(create) = stackempty
pop(push(s, i)) = if size(s)<MAX then s else stackfull
pop(create) = stackempty
equal(sl,s2)=if empty(sl) & empty (s2) then TRUE else

if empty (s I) I empty (s2) then FALSE else
(top(sl) = top(s2)) & equal (pop(sl),pop(s2))

size(create) = 0
size(push(s, i)) = size(s) + 1
size(pop(s)) = size(s) - 1

Before presenting the PLAIN module, it is important to
make some observations about the specification. First, the
create operation is carried out by the declaration of a variable
of the type integers tack in the program using the data ab-

The Design of Plain-Support for Systematic Programming 737

straction. Thus, there is no explicit create operation in the
integerstack module. Next, the stack specification given here
is somewhat different from the specification given elsewhere
in the literature [19,33], primarily to accommodate the stack
full result caused by the finiteness of machine resources.

The code for the module is shown in Figure 2. It should
be noted that the implementation is not a direct encoding of
the specification (hinting at some problems that verifiers
might have). The primary difference is that the specification
of equal uses a recursive definition, while the implementa
tion examines individual elements of the stack. There are
three reasons for this change: 1) recursion is usually more
expensive in terms of machine resources; 2) pop is a pro
cedure, not a function, and so cannot be used in the language
in the way that it is used in the specification, and; 3) naming
rules complicate the means of referring to individual objects
in each of two different stacks being compared. In addition,
one would have to make copies of the stacks to use a re
cursive equal operation without destroying the stacks; that,
too, is more expensive than a simple element-by-element
comparison.

Limited parameterization of the type definition is permit
ted, as shown by the stack size parameter MAX. The formal
parameters must be of a simple type. Thus, one can use a
single data abstraction to define integer stacks of different
sizes, but not to define a stack of integers and a stack of

tnoe Intelerstack [}(AX: Integer] = __ ale

eQC1ri8 pllllh, pop, top, empty, equal;
esception stackfull, stackempty;
rep

"P"

rec ... d
stktop: O .. MAX:
elements:,[1..MAX] "'integer

end record;

function size(s:integerstack): Integer; Icomputes size of stack sj
1>ecin

size := s.stktop
end size;
function empty (8:integerstack): boolean; Ireturn.. true iff stack s emptyj
Jmportll size: In d;
becfn

empty := size(s)=O
end empty;
procedure push (val: integer -> s: Integerstack); Ipllllhe. integer val onto stack sj
exception stackfull;
Jmportll size: in d;
becfn

if size(s) >= MAX then IIicnaI stackfull
eille s.stktop:= s.stktop + 1; •. elementa [a.stktopj:= val end if

end push;
p1'Ocedure pop (-> s: integerstack); Ipops off top element of stack sj
exception stack empty;
imporbl empty: Invoked;
becfn

if empty(s) then aipal stackempty eUe s.stktop := s.stktop -1 end if
end pop;
function top (8: integerstack): integer; Ireturn.. value OIl top of stack; no popj
exception 8tackempty;
importll empty. invoked;
1>e,m

if empty(s) then aipal stackempty e top := a.elements [s.stktopj end if
end top;
function equal (sl,s2: integerstack): boolean; lreturns tru~ iff sl = s2j
imporbl size: invoked;
yar I: integer;
be«in

if size(sl) -= size(s2)
then equal := false
e

1:= slzeesl); equal ::;0 true;
loop

if 1=0 then ellit end if
if 81.elemenls[l] = s2.elemenls[i]
then i := 1 - 1 de equal := tallle; eDt
endlf

repeat
end if

end equal;
II.stktop := O·

end Iittegerstack;

Figure 2-Encapsulated type definition for integer stacks in PLAIN

strings. The reason for this restriction is that relation is a
data type and it was desired to prevent abstract type defi
nitions from accepting relation as a parameter; the cleanest
solution was a complete prohibition of type parameters. The
resulting facility is less powerful (but easier to implement)
than the generic package facility of Ada. One can now de
clare, for example,

var sl: integerstack [50]; s2: integers tack [100].

As noted above, it is the intention of PLAIN to disallow
side effects in functions. At the simplest level, it is possible
to make certain that no globals are imported and modified,
and that no readonly globals or parameters are used as mod
ified parameters in procedures called from within the func
tion. Also, the syntax of the language forbids the presence
of modified parameters; in their absence, it is impossible to
use aliasing to cause side effects.

In order to be striCt about the side effects requirement,
though, more checking is required. First, certain data base
operations must be prohibited; specifically, those modifying
the current tuple indicator or the data base itself, caused by
iterating through a relation, can be considered a side effect.
Second, input/output operations must be restricted, since
alterations to a file may be considered a side effect, espe
cially if the file can be read after termination of the function.
Such a restriction can cause complications for the software
developer'desiring to place debugging messages within func
tions, for example. Third, since functions may call proce
dures, all of the procedures called during execution ofa func
tion (to an arbitrary number of levels of invocation) would
have to be checked to make certain that they, too, do not
violate these restrictions on side effects.

In short, even though it is highly desirable to prevent all
side effects, the costs of doing so, both in execution over
head and programmer inconvenience, must be considered.
The prevention of input/output operations is particularly
problematical in this regard, and PLAIN relaxes the side
effect restriction to permit input/output within the body of
functions. Otherwise, PLAIN requires sufficient declara
tions by the programmer in the heading of each program unit
that it is possible to check procedures to see if assignments
to global variables are made.

From an implementation standpoint, it is straightforward
to check the restrictions on the use of globals. A flag can
be set to indicate whether or not the stack of activations
includes a function call. If there is an active function call,
i.e., the calling sequence of program units includes a func
tion, then the procedure to be executed must be checked for
modified globals. Otherwise, the call is disallowed and an
exceptional condition is raised. Note, though, that this is
only a partial solution to the problem, since the declaration
(in an imports statement) that a procedure can modify a
global variable does not necessarily mean that the global is
modified on a particular call to the procedure, since control
flow may bypass any statements causing a disallowed as
signment. Without this compromise, however, it would be
necessary to check every assignment withiJ} such proce-

738 National Computer Conference, 1980

dures, and the overhead of making those checks would be
enormous. In summary, the seemingly innocuous desire to
prohibit side effects in functions can impose severe restric
tions and execution overhead.

PLAIN, then, provides considerable support for abstrac
tion and modularity, providing additional features beyond
those of Pascal at some expense in language size and com
plexity. The provision for abstract data types and the strong
requirements for module interfaces enhance the possibility
of creating libraries of procedures, functions, and encap
sulated type definitions that can be used as "software com
ponents" [34].

Support for verification

The design of PLAIN was motivated primarily by appli
cation needs; in the application areas addressed by PLAIN,
there is a strong need for software and data reliability, par
ticularly in areas such as medicine, where proper operation
of a system may have life-critical importance. At the same
time, though, the need for operational systems is so great
that most developers of such systems tend to begin by writ
ing code rather than by following any kind of coherent sys
tem design methodology. At present, there is almost no like
lihood that anyone would attempt to prove the correctness
of such a system, even had they produced a sufficiently rig
orous specification.

Thus, support for program verification was not a major
objective in the design of PLAIN, in the sense that it is in
Alphard .or Euclid. The assistance that PLAIN provides for
program verification comes primarily through its resem
blance to Pascal and to other modern languages. For ex
ample, PLAIN contains an assert statement that can be
checked at execution time, but the statement only permits
a Boolean expression, with no provision for such essential
features as expressions involving universal or existential
quantification. (Such quantification could be checked in a
Boolean function that is part of the assertion.)

Along the same line, PLAIN is like Pascal with respect
to aliasing, rather than including the features of Euclid that
prevent aliasing. However, PLAIN improves upon Pascal
with respect to the use of procedures and functions as pa
rameters by requiring type information to be provided for
the parameters of the procedure and function parameters.
In this respect, it follows the proposal of the British Stand
ards Institute for Pascal [35]. In this way, it is possible to
perform a greater degree of type checking while still per
mitting function and procedure parameters.

This is not to say that the design of PLAIN ignores the
possibility of verification, though, only that it was not a prin
cipal goal. A significant problem is that effective verification
techniques have not yet been developed for the class of pro
grams addressed by PLAIN. For example, very little has
been done concerning verification of data base operations.
Furthermore, even though the data base operations may be
mechanically correct, it is impossible to guarantee with the
present collection of facilities that the results are semanti
cally meaningful.

PLAIN takes one small step in this regard, however,
through its rules concerning type compatibility. In PLAIN,
any two types having different names are different types.
(The designers of Ada subsequently made the same defini
tion.) Among the data base operations, the join operation
of the relational algebra can only be performed on two ob
jects of the same type. Thus, one can make judicious use
of the data type facilities to assure that only meaningful joins
can be performed.

As an example, consider two relations A and B, where A
contains the attribute "age" and B contains the attribute
"quantity "on"hand. " If these attributes are both declared
to be of type integer, then the'relations A and B may be
joined on these compatible attributes, however meaningless
the result may be. If data types "agetype" and "amount
type" are defined in advance, though, with "age" declared
to be of type "agetype" and "quantity"on"hand" declared
to be of type "amounttype," then it becomes impossible to
perform the join. In this manner, one may specify exactly
which joins may occur and may verify their correctness from
a logical standpoint.

Another verification problem is presented by the excep
tion-handling mechanism. Once again, there are no practical
methods for verifying programs in the presence of excep
tional conditions; one might say that the occurrence of such
a condition means that a program has failed to satisfy s,?me
input assertion and that the program therefore cannot be
proved correct. Yet exception-handling is fundamental to
PLAIN, since it is necessary to provide the programmer with
facilities to prevent exceptional conditions from causing a
program to terminate abnormally. The anticipated end users
of PLAIN programs, being largely computer-naive, can be
expected to make numerous errors, particularly in input, that
must be properly trapped and handled; one simply cannot
say that the program has failed to meet some input assertion
and must therefore be terminated. Accordingly, the applica
tion programmers writing programs in PLAIN must be given
the ability to trap and handle exceptions.

The PLAIN exception-handling mechanism, described at
length in another paper [36], seeks to provide a well-struc
tured flow of control following the occurrence of an excep
tional condition. The programmer may create a handler pro
cedure that can be associated with the occurrence of a
specific exception at a specific program location. When an
exception is raised, either through the signal statement, or
through an automatic mechanism in the language processor,
the handler procedure can carry out any required actions,
potentially clear the offending exception, and then return
control to normal program flow, to the beginning of the state
ment in which the exception occurred (retry) or to the in
vocation point of the procedure" in which the exception oc
curred. In this way, exceptions can be passed through
succeeding levels of invocation with any necessary actions
being taken at each level. Since exception-handling is done
with procedures, it is possible to pass parameters from the
environment of the exception to tbe handler procedure, fol
lowing the normal rules for scoping of declarations. At any
point, tHe active exception may be cleared by the handler
for that level so that normal program operation can continue.

The Design of Plain-Support for Systematic Programming 739

The intent of this approach is to facilitate both the pro
gramming of exception-handling actions and the verification
of programs in the presence of exceptions, since this method
avoids the unrestrained flows of control and unrestricted
access to variables that characterize some of the other ex
ception-handling schemes. Although a more detailed ap
proach to this verification is sketched out in [36], there has
not yet been any practical experience with the application
of verification techniques to such programs.

Support for program readability

Although, as previously noted, program readability is dif
ficult to quantify and can be strongly affected by individual
programming styles, it is possible to provide language fea
tures that enhance program comprehensibility. Many of
these features provide support for other systematic pro
gramming goals as well. In general, the design of PLAIN
attempts to follow Hoare's dictum that "the readability of
programs is immeasurably more important than their write
ability" [13].

As with many other language aspects, much of the read
ability of PLAIN programs results from its resemblance to
Pascal. Among the common features supporting readability
are:

-provision of appropriate keywords
-format free program structure permitting indentation on

lines
-control structures supporting linear flow of program

control within program units
-prevention of self-modifying programs
-straightforward provision for comments
-limited language size.

Similarly, the Pascal-like program structure retains the dis
advantage of placing the main program at the end of the
program text.

PLAIN incorporates some additional features intended to
enhance program readability (as well as to help in achieving
other goals). These features are the following:

-fully bracketed control structures
-explicit importing of global names into a module
-input/output parameter lists in both declaration and call

of procedures.

The use of fully bracketed control structures permits a
more consistent language definition and can reduce the use
of begin-end pairs as separators. The reduction in begin-end
pairs not only eliminates unnecessary program "clutter,"
but also removes a major source of programming errors,
making the begin-end now serve only the single purpose of
enclosing an entire executable program unit (main prognim,
function, or procedure).

In Pascal, for example, the structure of the if statement
is

if Booleanexpression then statement [else statement].

In PLAIN, as well as in Ada and other newer languages,
it is

if Booleanexpression then statementlist
[else statementlist] end if.

Similar gains are achieved with the case· statement. The
statement is terminated with an end case and individual cases
are separated with the reserved word when. Again there can
be a considerable reduction in the number of begin-end pairs,
producing a situation in which both readability and writea
bility are improved ..

The imports list, discussed above, in addition to helping
enforce rules concerning modularity, is an aid to program
readability. Because declarations and imported names are
all visible in the heading of a program unit, it is easier to
comprehend, modify, and/or validate units independently.
The designers of Ada have taken the opposite view, claiming
that importation of a large number of objects will detract
from program readability and cause additional clutter. This
author believes that the proper use of structured objects,
combined with efforts to minimize coupling between mod
ules, will prevent the imports list from becoming excessively
long, and that its presence provides a good mechanism for
specifying the interface between the PLAIN program and
its execution environment. Further experience in the use of
these languages may help to resolve this difference.

Another improvement to readability comes about from the
restrictions on the use of pointer variables in PLAIN. Be
cause pointer variable may only be used within modules,
most program units are free of expressions involving com
plicated data access methods, such as multilevel pointer
structures. While PLAIN does not achieve a uniform ref
erence mechanism, the number of reference methods is quite
small. Furthermore, function and procedure calls must be
used to access the operations on the complex data structures
defin~d in data abstractions. This restriction has several ben
efits:

-access to the physical representation of a data object
is sharply restricted so that the reader of the program
only needs to understand the logical operations on the
object once the isolated representational information is
understood

-the reader, typically performing a maintenance activity,
needs to study much less of the· program text in order
to make changes to the data structures

-meaningful names can be chosen for the functions and
procedures, thereby aiding reader understanding of the
program.

It must also be recognized that some of these gains in
readability come at the expense of some overhead· in space

740 National Computer Conference, 1980

or execution time as a result of the additional procedure and
function calls needed to accomplish the encapsulation of
data ..

CONCLUSION

This paper has examined the design of the programming
language PLAIN from the standpoint of the support that it
provides for the notions of systematic programming, focus
ing on both its' strengths and weaknesses. It can be seen that
the design of PLAIN places major emphasis on the goals of
abstraction, modularity, and readability, and that it makes
advances over Pascal and features of some other modern
languages with respect to supporting a well-disciplined ap
proach to software construction.

At the same time, support for program verification and
testing was consciously left at a lower level than is possible
given the current technology of programming language de
sign. The language size is moderate, containing more fea
tures and more syntax than Pascal, and being comparable
to Ada in that respect. The goal of small language size was
not achieved as fully as had been hoped, due to the apparent
needs of the application area.

The implementation of PLAIN is presently under way on
the PDP-II computer under the UNIX operating system, and
it is expected that an initial implementation will be opera
tional in the summer of 1980. It is anticipated that imple
mentation experience and increased use of the language will
eventually lead to revisions in the language to provide im
proved support for the dual objectives of aiding the con
struction of interactive information systems and encouraging
the use of systematic programming methodology.

REFERENCES

1. Peters, L. J. and Tripp, L. L., "Software Design Representation
Schemes," Proc. of the Symposium on Computer Software Engineering,
MRI Symposium Proceedings, vol. 24. Brooklyn: Polytechnic Press, 1976,
pp. 31-56.

2. Caine. S. and Gordon, E., "PDL-a Tool for Software Design," Proc.
AFIPS 1975 NCe, vol. 44, pp. 271-276.

3. Myers, G. J., "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections," CACM, vol. 21, no. 9 (September, 1978),
pp. 760-768.

4. Dahl, O.-J., Dijkstra, E. W. and Hoare, C. A. R., Structured Program
ming. London: Academic Press, 1972.

5. Wirth, N., "Program Development by Stepwise Refinement," CACM,
vol. 14, no. 4 (April, 1971), pp. 221-227.

6. Wirth, N., "The Programming Language Pascal," Acta Informatica, vol.
1, no. 1 (1971), pp. 35-63.

7. Wulf, W. A. (ed.) et al., "An Informal Description of Alphard" (prelim
inary), Department of Computer Science, Carnegie-Mellon University,
February, 1978.

8. Liskov, B., et al., "CLU Reference Manual," MIT Laboratory for Com
puter Science, Computation Structures Group Memorandum 161, July
1978.

9. Lampson, B. W. et al., "Report on the Programming Language Euclid,"
ACM SIGPLAN Notices, vol. 12, no. 2 (February, 1977), pp. 1-79.

10. Ambler, A. L. et ai., "Gypsy: a Language for Specification and Imple
mentation of Verifiable Programs," Proc. of ACM Conf. on Language
Design for Reliable Software. ACM SIGPLAN Notices, vol. 12, no. 3
(March, 1977), pp. 1-10.

11. W!lsserman, A. I. et al., "Revised Report on the Programming Language
PLAIN," Laboratory of Medical Information Science, University of Cal
ifornia San Francisco, Technical Report #34, July, 1978. (Revised Report
in preparation).

12. Ichbiah, J. D. et al., "Preliminary Ada Reference Manual," ACM SIG
PLAN Notices, vol. 14, no. 6 (June, 1979), part A.

13. Hoare, C. A. R., "Hints on Programming Language Design," Stanford
University Computer Science Department Technical Report CS-73-403,
December, 1973.

14. Wirth, N., "On the Design of Programming Languages," Information
Processing 74. Amsterdam: North-Holland, 1974, pp. 386-393.

15. Richard, F. and Ledgard, H., "A Reminder for Language Designers,"
ACM SIGPLAN Notices. vol. 12, no. 12 (December, 1977), pp. 73-82.

16. Department of Defense Advanced Research Projects Agency, "Require
ments for High Order Computer Programming Languages-' STEEL
MAN'," June, 1978.

17. Wasserman, A. I., "The Data Management Facilities of PLAIN," Proc.
ACM 1979 SIGMOD Conference, 1979. pp. 60-70.

18. Booster, T. W., "Implementation of Pattern Matching in PLAIN," M.S.
Project Report, University of California, Berkeley, September, 1979.

19. Guttag, J. V., •• Abstract Data Types and the Development of Data Struc
tures," CACM, vol. 20, no. 6 (June, 1977), pp. 396-404.

20. Liskov, B. and Zilles, S. N., "Programming with Abstract Data Types,"
ACM SIGPLAN Notices, vol. 9, no. 4 (April, 1974), pp. 50-59.

21. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into
Modules," CACM, vol. 15, no. 12 (December, 1972), pp. 1053-1058.

22. Myers, G. J. Reliable Software through Composite Design. New York:
Petrocelli/Charter, 1975.

23. Liskov, B., "A Design Methodology for Reliable Software Systems,"
Proc. AFIPS 1972 FlCe. vol. 41, pp. 191-199.

24. HIPO-a Design Aid and Documentation Technique. White Plains: IBM
Data Processing Division. Pub. GC20-1851.

25. Yourdon, E. and Constantine, L. L., Structured Design. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

26. Wasserman, A. I., "Testing and Verification Aspects of Pascal-like Lan
guages," Journal of Computer Languages, vol. 4, no. 3/4 (1979), pp. 155-
169.

27. Wulf, W. A. and Shaw, M., "Global Variables Considered Harmful,"
ACM SIGPLAN Notices, vol. 8, no. 2 (February, 1973), pp. 28-32.

28. Ichbiah, J. D. et al., "Rationale for the Design of the Ada Programming
Language," ACM SIGPLAN Notices, vol. 14, no. 6 (June, 1979), part
B.

29. Codd, E. F., "A Relational Model of Data for Shared Data Banks,"
CACM, vol. 13, no. 6 (June, 1970), pp. 377-387.

30. American National Standards Institute. MUMPS Language Standard.
ANSI Xl1.1-1977.

31. DeRemer, F. and Kron, H., "Programming-in-the-Large vs. Program
ming-in-the-Small," IEEE Transactions on Software Engineering, vol.
SE-2, no. 2 (June, 1976), pp. 80-86.

32. Dijkstra, E. W. A Discipline of Programming. Englewood Cliffs: Prentice
Hall,1976.

33. Wulf, W. A., London, R. L. and Shaw, M., "An Introduction to the
Construction and Verification of AIphard Programs, " IEEE Transactions
on Software Engineering, vol. SE-2, no. 4 (December, 1976), pp. 253-264.

34. Belady, L. A., "Evolved Software for the 80's," Computer, vol. 12, no.
2 (February, 1979), pp. 79-82.

35. Ravenel, B., "Toward a Pascal Standard," Computer, vol. 12, no. 4
(April, 1979), pp. 68-82.

36. Wasserman, A. I., "Design and Evaluation of a Procedure-Oriented Ex
ception-Handling Mechanism," in preparation, 1980.

Some practical experiences with the Pascal language

by G. G. GUSTAFSON, T. A. JOHNSON and G. S. KEY
Computer Sciences Corporation
San Diego, California

INTRODUCTION

In 1976 the Naval Ocean Systems Center (NOSC) initiated
the BIODAB project to determine if a high performance re
lational DBMS could be developed to support scientific ap
plications.

The BIODAB prototype was implemented in FORTRAN
V and small percentage of Assembly Language (less than 10
percent). The modifications needed to enhance the static
prototype' for general purpose use involved the addition of
several major processors, including: Data Base Definiton,
Update (Add, Change, and Delete), and Unload. In addition,
the Report Writer had to be extensively modified for greater
efficiency and flexibility.

The results of that study encouraged NOSC to develop
RELATABASE as a general-purpose enhancement of the
BIODAB prototype.· The design constraints for RELAT
ABASE were threefold. First, retain the high performance
data access technology developed during the BIODAB proj
ect. This constraint required a hardware architecture in
which sequential searching of a highly compressed data base
was practical. An access method employing double-buff
ered, asynchronous I/O with a hardware masked search in
struction was developed for this purpose. Second, RELAT
ABASE should not use any more main memory than
necessary for each of its many functions. Finally, RELAT
ABASE should be an interactive system capable of sup
porting ad hoc queries of a data base. All of these criteria
were satisfied using the UNIVAC 1110 at NOSC.

We define the "production environment" to be that en
vironment in which programs are developed as deliverable
products under constraints of both time and money. It is our
objective to distinguish organized programming of this type
from systems, research, hobbyist, or other types of pro
gramming.

THE DEVELOPMENT EFFORT

Implementation language choice

The choice of the implementation language was carefully
considered: Many software tools were available in FOR
TRAN from the BIODAB project, and all team members
were competent FORTRAN programmers. A preprocessor
for writing structured FORTRAN programs2 was also avail-

741

able. In spite of these tools, Pascal was seriously considered
as the new applications language for the following reasons:
(1) as a block-structured language, Pascal did not require a
preprocessor; (2) most of the tools which had been built for
FORTRAN, and particularly for character manipulation,
were either unnecessary or easily rebuilt in Pascal; (3) be
cause Pascal-l1003 allows direct access to the UNIV AC-l100
Executive Request mechanism, reliance on special Assem
bly Language routines could be significantly reduced; as an
example, Figure 1 lists the RELATABASE external module
DRUMIO which interfaces directly with the executive and
performs random access I/O; the replacement of Assembly
Language routines with ones written in a high level language
is usually desirable because the code is easier to read and
maintain, and because the maintenance function can usually
be performed by less senior programmers; (4) although only
one of the team members had previous experience with Pas
cal, learning the language was not expected to be a significant
problem; (5) because the new software would rarely need
to communicate with the existing FORTRAN code, the in
terface between the two languages would not be a problem;
(6) the control structures, data structures, and data type se
curity features of Pascal were definite advantages.

In order to promote rapid learning of Pascal and uniform
coding practices, a set of programming standards was chosen
and imposed on all Pascal code.4 A similar set of standards5

was provided for all new FORTRAN code ~hich was needed
to support existing BIODAB code. The Pascal standards in
cluded: descriptive preamble comments for each independ
ently compiled procedure or function; the capitalization of
all Pascal reserved words; a few indentation rules to make
data and control structures more visible.

Project experience with Pascal

The Pascal programming team had three members. Two
full-time project members had experience in the production
environment but did not know Pascal. The other programmer
was a part-time member who had used Pascal· extensively
as a student.

The inexperienced Pascal programmers found that mas
tery of the language came slowly at first for a number of
reasons. The most common problems were remembering to
use the semicolon as a statement separator and the lack of

742 National Computer Conference, 1980

const
--row = 3B ;
~ I,

ascidentype = pakkad array [1 .. 12] of CHAR ;
fdidentype = pacKea-77Bay (1 .. 12] .ir0 .. 77B
ha1fword = 0 ~7 ;
va 1i dcodes = lOB ., 53B ;
packetype = ~cked record

filename : ~~d array [1 ('':' F12I1LL2!)O ., 77B
wordtwo: IN; ft"
status: 0 •• 77B ;
iofunction: va1idcodes
s3word3: 0 •• 77B ; (* FILL *)
finalcount: halfword ;
nwords: halfword ;
bufferaddress: halfword
diskaddress: INTEGER;
end ;

(*~CII to FIELDATA string conversion *)
procedure asc2fd (inputstring: ascidentype

nrchars : INTEGER ;
var outputstring : fdidentype) ; EXTERN ;

procedure ENT~drumio (filename : ascidentype ;
iofunction validcodes
bufferaddress halfword;
diskaddress INTEGER;

var nwords halfword, ;
var status INTEGER) ;

var
--ropacket : packetype ;
beg~n

L nwords <= 0 then ~I:!.
nwords := 0 ;
end

e1se~n
--a5czra-T filename, 12, iopacket.filename

iopacket.iofunction := iofunction ;
iopacket.nwords := nwords ;
iopacket.bufferaddress := bufferaddress
iopacket.diskaddress := diskaddress
iopacket.status := 0 ;
aO := ADDRESS (iopacket) ;
ER (i ow, aO) ;
status := iopacket.status ;
nwords := iopacket.finalcount
end

enO-; (* drumio *) .

Figure I-Pascal-IIOO executive request (ER).

a construct-closing keyword which identified which struc
ture was being closed (Le., something like the END IF in
ANSI X3.9-1978 FORTRAN6

). The latter problem was
solved with some satisfaction through indentation of nested
constructs. However, once the learning pains were past, the
power and flexibility of Pascal began to be appreciated. Code
generally was written faster and easier than would have been
possible in FORTRAN. Data type security proved to be a
most helpful feature in reducing run time errors. The record
and set (Figure 2) data structures were well received and
saw frequent use. A record type is a most convenient way
to grouprelated data in a logical and clear manner. The abil
ity to build and manipulate sets offers the programmer many
new and powerful approaches to algorithm development.

Because the implementation of RELATABASE followed
the top-down concept with functional independence of mod
ules, we encountered no problems of module interfacing.
Most of the debugging process was limited to minor logic
errors in newly introduced modules. The modification of the
standard procedure WRITELN in Pascal-llOO to allow nu
meric variables to be displayed in octal was a great help
because several of the data types we used were defined as
packed, partial computer words and could not be meaning
fully displayed otherwise.

Project productivity

The productivity of the project can be divided between
the efforts of the FORTRAN team and the Pascal team. In

all, RELATABASE contains 53,600 lines of source code. Of
that total, 9,100 lines were retained from the BIODAB pro
gram, 23,000 lines were new FORTRAN code (generated by
the FORMEL 'structured FORTRAN' preprocessor), 3,200
lines were Assembly Language code to support Pascal pro
grams, and 18,300 lines were written in Pascal. The imple
mentation of RELATABASE began in mid-January with a
five-man team, and continued through September of the
same year. During that time the staff size varied, decreasing
until only one member remained at the project's conclusion.
The total number of man-hours given to the entire project
was 4,574.

The production rates for Pascal and FORMEL code have
been adjusted to account for source lines added because of
the coding conventions (Pascal) or preprocessor (FORMEL)
used. The adjustment factors are 90 percent of total lines for
Pascal and 75 percent of total lines for FORMEL. On this
basis, Pascal production rates were 50 lines per programmer
day. FORMEL production is computed at 86 lines per pro
grammer-day. The BIODAB project, where 90 percent of
the code was written in FORTRAN, without a preprocessor,
produced 45 lines of source code per programmer-day. These
data are summarized in Table I.

In order to compare the Pascal rate with FORMEL's, one
must keep in mind that the FORMEL staff was composed
of expert FORTRAN programmers, while two of the three
members of the Pascal staff had never coded in Pascal be-

~
delimtype = set of CHAR (* delimiters for scanner *)
scannerrec = record

columnfound : INTEGER
delimiterfound : CHAR
firstcolumn : INTEGER
ignorechar : CHAR ;
item1ength : INTEGER;
maxinpchars : 1 .. MAXINT
startcolumn : 1 .. MAXINT
end;

(* for scanner control *)
(* column delimiter found *)
(* stop Scan delimiter *)
(* non-ignore char column *)
(* ignored leading char *)
(* length of string found *)
(* chars to scan, usually 80 *)
(* char pos to start scan *)

fuTIString = packe~ array [1 •.
var

133 J 2i CHAR

--Column: 1 .. MAXINT ;
match : BOOLEAN ;

procedur~ ENTRY scanner

~&.!..!! (* scanner *)

input string
-delims

var controlvalues

full string ;
delimtype ;
scannerrec)

with controlvalues do begln --rr (startcolumn ~ maxlnpchars) then ~&iI:!.
column := startcolumn
end

else ~&.!..!!
column := 1 ;

co~~~n~ound := 0
firstcolumn := 0
itemlength := 0 ;
while (input string Ccolumn1 = ignorechar) and
-- (column <= maxinpchars) ~ ~&!.!!

column := column + 1 ;
end .

if-r-c~lumn <= maxinpchars) then be&!.!!
-firstcolumn : = column; . -- -

end ;
matcfi := FALSE;
while not match and (column <= maxinpchars) do be&.!..!!
--matcn-T= input-string (column1 in delims ;--

if match then Dagin -
- delimi terTOun : = input str ing [column 1 ;

columnfound := column ;-
end

elsebe.&!.!!
--rfeiiirength : = itemlength + 1

end ;
column := column + 1 ;

st:~~c~lumn := column
end ;

ena-; (* scanner *) .

Figure 2-Record and set usage.

TABLE I.-Summary of Language Productivity

Source Lines Productivity
Source Hours

Unweighted Weighted Unweighted Weighted

PASCAL 2774 21500 17250 62 50

FORMEL 1800 23000 19350 102 86

ALL 4574 44500 36600 78 64

fore. Since then one of the Pascal programmers has written
production programs at a rate of 300 lines of debugged code
per day.

DIFFICULTIES WITH PASCAL

Pascal offers significant advantages in terms of data and
control structures, but exhibits some disadvantages in the
production environment. These disadvantages may be due
in large part to the design goals which Wirth chose for the
language.7 The current standardization effort for Pascal may
eliminate most of these disadvantages. The production pro
grammer deciding upon an implementation language should,
however, be familiar with Pascal's disadvantages as well as
its advantages.

We encountered two broad categories of problems using
Pascal in a production environment. The first set of problems
was associated with the language definition itself. The sec
ond set was associated with the specific language imple
mentation that we used. In fairness, we hasten to add that
a number of the difficulties may have arisen from the manner
in which RELAT ABASE was developed using multiple
source languages (Le., FORTRAN, Pascal and Assembly).

The difficulties with Pascal as a production language can
be further subdivided into those whose repair we consider
to be mandatory and those whose repair we consider to be
desirable. "Mandatory" implies that without some solution
to the specified problem, preferably a new standard for the
language, Pascal cannot provide the production programmer
with needed facilities. "Desirable" implies that a solution
should be sought within the language standard, although a
solution, albeit awkward, can be devised by the programmer.
Desirable also includes those facilities which are primarily
a convenience or could be included within a particular im
plementation.

Language definition

Standard types

Failure to provide standard types equivalent to the FOR
TRAN types DOUBLE PRECISION and COMPLEX causes
considerable extra programming with Pascal. Had Pascal
remained a teaching language, then the need for these dat~

Practical Experiences with the Pascal Language 743

types would be reduced. It can be argued that Pascal sup
ports the programming of double precision (or any precision)
arithmetic operations.s However, the need to develop spe
cialized arithmetic routines is not in keeping with an envi
ronment in which a customer is paying for·a product. The
same argument applies to the complex arithmetic operations.
It may be easy to define complex variables through appro
priate type statements, but coding and recoding the complex
arithmetic operations through functions and procedures is
undesirable in a production environment.

Because Pascal supports strong type checking, it is nec
essary to include a type-less operator akin to the instrinsic
function BOOL in UNIVAC's FORTRAN V9:

(bool-stmt)
(one-word-var)

: = BOOL«one-word-var»
: = (integer-variable)
: = (real-variable)
: = (logical-variable)
: = (typeless-variable)

The result of the BOOL function is to wholly ignore any type
incompatibilities which might arise during arithmetic or Boo
lean operations upon variables. The power of this function
must be limited to logical expressions. Its use would be in
appropriate in an assignment statement, for example.

External compilation

Two associated problems exist within a mUlti-language
environment. Pascal does not define the mechanism needed
for independent external compilation of modules. In large
scale software development, where more than one program
mer is involved in development, it is mandatory that modules
be developed independently and tied together through mech
anisms offered by the operating system or system proces
sors. Requiring five programmers to simultaneously edit the
same workspace is justification enough for exlternal compi
lation.

In complex systems it is frequently necessary to collect
programs into separately addressable banks. This technique,
known as "bank-named collection," minimizes core-second
charges by switching out banks which are not currently re
quired. to In RELATABASE, up to four active banks were
resident in core, and occasionally the need arose to com
municate between them. Pascal does not support this re
quirement, particularly if one of the two communicating
banks is switched out.

FORTRAN solved the problem posed by switched bank
communication through the COMMON statement. A named
COMMON can be placed in a control bank (Le., one that
would not be switched out), and any FORTRAN module can
make updates to it. This feature was particularly useful in
maintaining the status of a bank that was executed earlier
but is no longer active. Although RELATABASE designers
were able to work around this problem, we believe the need
for a Pascal equivalent to FORTRAN's COMMON is man
datory.

744 National Computer. Conference, 1980

Dynamic arrays

The bounds of an array are sometimes ill-defined in the
production environment. Scientific programs in particular
often use core as a workspace rather than as a specific pre
defined entity. Matrix manipulations may be vector oriented,
but type incompatibilities arise when attempting to reference
a portion of a matrix rather than the whole matrix. Likewise,
it is sometimes necessary in systems-level programming to
discard a number of words which are not meaningful to a
particular process. Because Pascal does not allow direct ref
erencing of partial arrays, the programmer is faced with the
necessity of a type statement of the form:

type
area = packed record

case BOOLEAN of
TRUE: (recordl : ...) ;
FALSE: (record2 : ...) ;
end;

This construct affects the results ofthe FORTRAN EQUIV
ALENCE statement. Unless dynamic arrays are included
in the language standard, we urge.caution to those who ad
vocate that the tag field be required in variant records. 11

Modifying Pascal to allow dynamic, or adjustable, arrays
meets most of the production environment needs and there
fore becomes mandatory.

Parameterization of constants

Advocates of Pascal, ourselves included, frequently assert
that Pascal programs are portable. This statement is not gen
erally true because of the inability of the programmer to
define constants, particularly parameterizing constants, in
terms of previously declared constants. Constant definition
parts often include annoyances such as:

const
pi = 3.15159265 ;
two-pi = 6.28318531 ;

rather than the statements:

const
pi = 3.15159265 ;
two-pi = 2.0 * pi ;

Nor is the code:

const
high = 256 ;
highml = 255 ;
highpl = 257 ;

conducive to either portability or reliability. The need to
declare, within the constant part only, constants in terms of
previously declared constants is mandatory. We believe that

the form of constant declaration should allow any type of
constant expression-arithmetic, relational and mUltiplica
tive operations-upon previously declared constants.

Data initialization

The failure to provide compile-time data initialization is
a source of both increased costs and decreased reliability.
This problem is particularly important when more than one
programmer is involved in development of a system which
requires large amounts of initialized data. Both factors make
some form of compile-time initialization mandatory.

Declare before use

The enforcement of the "declare before use" rule for pro
cedure and function declarations, together with the require
ment for the FORWARD directive, appears to be a design
flaw. Even single-pass compilers should be able to recognize
the failure to declare a module before the termination of
compilation. We believe it desirable to remove the restric
tions imposed by this rule with respect to procedure and
function declarations.

Termination of comments

One of the more annoying problems associated with de
bugging a Pascal program is caused by the failure to include
(or the accidental removal of) the comment terminator (the
Pascal symbols "}" or "*)"). The compiler ignores the bal
ance of the code and usually produces voluminous messages
at the end of the listing; There are few errors which are more
difficult to diagnose than failure.to close a comment because
the programmer frequently "sees" comments termination,
even though none exists. Although some Pascal implemen
tations warn of a possible error, usually when a semicolon
is encountered, we believe the end of source line should act
as a comment terminator. We admit that this need can be
repaired only by a modification to the language.

For-statement syntax

As an aid to producing structured code, the syntax of the
for-statement could be modified. The recommended form
would be:

"for" (loop,.variable) ": = "- (start-value) ("to" I
"downto") (stop-value) ["by" (step-value)]
[' 'when" (Boolean-expression)] (statement).

The failure to provide a means of stepping through values
(i.e., the proposed by-clause) appears to be a major cause
for error in production code. The contrivances needed to
account for non-step-by-one values of the loop control-var
iable are counter to one of the more important design goals

of the language: "a systematic discipline based upon certain
fundamental concepts clearly and naturally reflected by the
language"7 (pg. 133). Forcing recomputation of a pseudo
loop variable within the body of a loop is not consistent with
a natural or clear language.

An early escape mechanism is needed in the syntax of the
for-statement. The proposed when-clause is a precondition
to loop execution in the same manner as the usual precon
dition required of the current value of the loop control-var
iable. Therefore, the for-statement body will be executed if,
and only if, the Boolean expression yields a value of TRUE
and the value of the loop control-variable is within the range
of start-value to stop-value, inclusive. We would not require
that the declaration of the loop control-variable be external
to the loop body. Because the variable's value is usually,
and we believe correctly" undefined at termination of the
loop, it seems an unnecessary requirement to declare the
variable externally to the for-statement.

Standard functions

The lack of standard functions in Pascal requires consid
eration. The functions provided for numerical analysis (e.g.,
ABS, ARCTAN, COS, EXP, LN, SIN, SQR, and SQRT)
are simply not enough in the production environment. The
FORTRAN instrinsic functions (e.g., MIN (choosing small
est value), MAX (choosing largest value), LOGIO (common
logarithm), TAN, ASIN (arcsine), ACOS (arccosine), SINH
(hyperbolic sine), COSH (hyperbolic cosine), and TANH
(hyperbolic tangent)6 are important in scientific program
ming. Furthermore, requiring these functions to be devel
oped during a production project raises the specter of ac
curacy and precision errors. Because many computer systems
contain these functions as a part of their vendor-supplied
libraries, their repeated recoding is even less desirable. A
cogent argument has been made for inclusion of ~dditional
operators in programming languages. 12 Additional bperators
in Pascal would be most welcome.

Input/Output facilities

The 110 facilities of Pascal require major revision and rede
sign. We will mention only two of our difficulties. Data
types, other than the standard types, cannot be displayed
directly. A common solution is: define a variant record type,
one variant of standard type and the other of the type to be
displayed; assign to the type to be displayed variant of the
record the value of the variable to be displayed; display the
standard type variant. For example, if the current address
contained in a pointer was to be displayed, the statements
of Figure 3 might be used. The second difficulty with the
Pascal 110 facilities is that data cannot be displayed in other
than the standard type base. For example, an integer cannot
be displayed as some power of eight (Le., octal). These dif
ficulties have a direct effect upon the work required to per
form program debugging. Any improvements would be de
sirable.

Practical Experiences with the Pascal Language 745

tYP~ink = tnode ; (* pointer into plot data tree *)
node = record (* binary tree of plot data *)

left : lInk ; (* pointer to leftson *)
right : link; (* pointer to rightson *)
x value : REAL (* value of x *)
y-value : REAL, (* value of f(x) *)
end ;

prInt type = pac~ed. record
case BOOLEAN 0

var

--rRUE : (pointer_rep : link) ;
FALSE : (integer_rep : INTEGER)

--Plot points : link ; (* binary tree of plot values *)
print_pointer : print_type ;

print pointer.pointer rep := plot_points;
WRITELN (OUTPUT, print_pointer. integer_rep

Figure 3-Printing non-standard data types.

Language implementations

The difficulties derived from implementation are spawned
in part by the valid insistence that Pascal-llOO remain as
close to the standard as possible. We regard these difficulties
as dependent upon the implementation and do not consider
it advisable to include them within any Pascal language
standard.

Source code inclusion

We found the need to copy source code into a module
from another system-known 'entity to be a mandatory re
quirement for production implementations. This condition
was especially true for type declarations which, in the Pas
cal-llOO environment, were required in both the calling and
called modules (Pascal-llOO supports external compilation).
The facility which meets this need is the COBOL COPY
verb,13 although with perhaps somewhat less of a baroque
form. Unless a program development group has a powerful
text editor, the failure to provide a form of source code in
clusion can impact the development schedule.

Identifier names

To the extent practical, it is desirable to have a Pascal
implementation accept identifier names of up to the maxi
mum length which can fit on a source line. If a compiler
limits unique identifier names to, say, 12 characters, as does
Pascal-llOO, prefixes which are usually meaningless are
bound to be attached to the name. These prefixes tend to
reduce readability and increase maintenance costs.

CONCLUSIONS

Pascal is a relatively new addition to the family of pro
duction programming languages. We believe that as the lan
guage matures Pascal will become accepted as a superior
programming tool. The RELA T ABASE project has shown
that the language is easily mastered, yields productivity rates

746 National Computer Conference, 1980

which compare well with other "older" languages and con
tains powerful and easily implemented data structuring. The
drawbacks to Pascal as a production language probably can
be corrected through the current standardization effort.

REFERENCES

I. "RELATABASE Processor System Overview," Naval Ocean Systems
Center, San Diego, 1979.

2. "FORMEL 2.0-The FORMEL FORTRAN Preprocessor-User's Man
ual," Computer Sciences Corp., San Diego, 1978.

3. Ball, M. S., "Pascal-lI00," Naval Ocean Systems Center, San Diego,
1979.

4. "Pascal Quality Assurance Standards and Conventions," Computer Sci
ences Corp., San Diego, 1979.

5. "FORTRAN Quality Assurance Standards and Conventions for the
COSR/SES Project," Computer Sciences Corp., San Diego, 1979.

6. "American National Standard Programming Language FORTRAN,"
1NSI X3.9-1978, American National Standards Institute, New York,
1978.

7. Jensen, K. and Wirth, N., "PASCAL-User Manual and Report," Sec
ond Edition (Corrected Printing), Springer-Verlag, New York, 1978.

8. Alagic, S. and Arbib, M. A., The Design of Well-Structured and Correct
Programs, Springer-Verlag, New York, 1978.

9. "UNIVAC FORTRAN V Programmer Reference," UP-4060 Rev. 2,
Sperry Univac, 1973.

10. Borgerson, B. R., Hanson, M. L., and Hartley, P. A., "The Evolution
ofthe Sperry Univac 1100 Series: A History, Analysis, and Projection,"
Comm ACM 21, 1, January 197825-43.

11. 'rSpecification for the Computer Programming Language Pascal" (draft),
International Organization for Standardization, October 1979.

12. Iverson, K. E., "Operators," ACM Trans. on Prog. Lang., 1, 2 (October
1979), 161-176.

13. "Amercian National Standard Programming Language COBOL," ANSI
X3.23-74, American National Standards Institute, New York, 1974.

UCSD PascaJ<f~: a portable software environment for small
computers

by MARK OVERGAARD
SojTech Microsystems, Inc.
San Diego, California

INTRODUCTION

The UCSD Pascal System is a complete program develop
ment and execution environment for small computers. Its
facilities include text editors and file management utilities,
as well as compilers (for Pascal, in particular), assemblers,
and a linkage editor. The system is highly portable; versions
have been implemented on almost twenty minicomputers
and microprocessors. (A concise description of system fa
cilities is provided in an appendix.)

The system was developed under the direction of Profes
sor . Kenneth Bowles at the University of California, San
Diego (UCSD), starting in late 1974. The author, working
first at the University as a graduate student, and more re
cently with Soffech Microsystems, played a principal tech
nical role throughout the evolution of the software.

The original need was for inexpensive interactive access
to a high level language for a large enrollment introductory
course in problem solving and computer science. We decided
early that we would use small, stand-alone computers as the
hardware foundation for our solution rather than larger,
time-shared computers. We then chose Pascal as the lan
guage to be used by students in the introductory course, and
also as the implementation language for system software we
would need to build for these small machines. The design
goals for PascalI specifically included these two kinds of
applications. We used the P-compiler as the starting point
for our Pascal implementation.

We needed a stand-alone Pascal program development and
execution environment suitable for computer-naive stu
dents, but also capable of being used for maintenance of the
system itself. We had two primary design concerns:

1) a user interface oriented specifically to the novice, but
also acceptable to experts;

2) a strategy for fitting these facilities in small, stand-alone
machines. By our definition, a "small machine" had
less than 64k bytes of memory, dual standard floppy
disks, and a CRT terminal. We were particularly con
cerned about the Pascal compiler, since we knew of no
implementation of Pascal within those· constraints.

These two concerns have been themes of the evolution of

747

UCSD Pascal ever since. Experts and novices have both
continued to use the system, and adaptations of the system
to even smaller host configurations (e.g. the Radio Shack
TRS"80@) have been done.

In the user interface area, our current philosophy is still
very similar to that originally developed. Given a single user
host computer and a CRT terminal (the preferred environ
ment), our approach is to keep the user continuously in
formed about the state of the system and the options avail
able in that state. A "prompt-line" is maintained on the
terminal screen listing these options. The user can select an
optiolT by typing a single-character command. In text editing,
the high bandwidth connection to the user is exploited to
provide a continuously updated "window" into the text file
being perused or modified. A naive user in this environment
is led tutorially through an interaction with the system. Ex
perienced users can ignore the continuous status information
unless it is needed.

The original small system implementation strategy has also
largely survived. Its major component is the use of a p-ma
chine as the foundation of the system. The UCSD p-machine
is a simple idealized stack-oriented computer which can be
emulated by an interpreter executing in the machine lan
guage of a conventional host computer.

The important requirement is that the instruction set of
the p-machine be designed so that p-code representations
of Pascal programs are very compact and easy for the com
piler to produce. Compactness and ease of generation for p
code are both important, in order to minimize the size of the
Pascal compiler, which is the biggest single software com
ponentof the system.

We were inspired by the code-compaction approach used
at Burroughs,3 but had to adapt it to conventional hardware
without facilities for microprogramming or bit-level address
ing. Through several iterations on the p-machine architec
ture, static and dynamic statistics of opcode and operand
frequencies were used to identify the instruction sequences
occupying the most space and redesign them to be more
compact. Tannenbaum4 has independently pursued the same
sort of optimizations, but without our concern for software
portability.

More generally, our concern for small host computers is
pervasively reflected in our choice of functional facilities

748 National Computer Conference, 1980

included in UCSD Pascal and the implementation ap
proaches used to provide them.

As we accumulated experience with hardware and soft
ware for small systems, it became clear that while the costs
of raw hardware would continue inexorably down, the costs
of software were an entirely different matter. Thus, a third
concern became important in the evolution of UCSD Pascal:
conservation of our software investment. The bulk of this
paper is devoted to explaining the software conservation
strategy that we have evolved.

One final introductory matter needs to be addressed: the
unexpectedly large interest in UCSD Pascal from outside the
University and how that interest was dealt with. A version
of our software running on PDP-l1's was first distributed to
a few off-campus users in the summer of 1977. Outside in
terest began to increase when a version for 8080's andZ80's
became operational early in 1978. Shortly thereafter, a de
scription of the system in Byte5 drew over a thousand in
quiries. As interest in the software mushroomed through
1978, it became clear that the demand for UCSD Pascal could
not be met within the available resources of the University
project. For this and other reasons, investigation began at
the University into ways in which support of the growing
UCSD Pascal user community could be moved off-campus.
This effort culminated in June, 1979, with the designation
of SofTech Microsystems as the focal point for licensing,
support, maintenance and continued evolution of the UCSD
Pascal language and system. Advanced development work
has continued at the University in the Institute for Infor
mation Systems. Some of the results of that work are de
scribed later in the paper.

CONSERVATION OF SOFTWARE INVESTMENT: AN
OVERVIEW

The first component of our effort to conserve software
investment is the use of Pascal as the principal system and
application language. In 1974, when the choice was made,
Pascal was one of the more popular academic languages, and
provided the best combination of power and ease of imple
mentation. We certainly did not foresee the current ava
lanche of industrial interest in the language.

The second component of our software strategy is a heavy
emphasis on software portability. We feel that independence
of software from differences in the underlying hardware is
crucial to small machine applications in order to have:

1) the freedom to change hardware to take advantage of
rapid technology developments, thus reducing hard
ware cost or increasing its performance.

Consider the experience at UCSD with equipment
for teaching Ken Bowles' introductory computer sci
ence course. The first small machines, acquired in the
fall of 1975, were nine PDP-ll1lO's (worth about
$17,000 apiece). Since then, two equipment transitions
have occurred at two year intervals: first to 25 Terak
85 lOa computers (worth just under $8000 apiece), and

then to 45 Apple II computers (at less than $3000 each).
And all of these configurations can run virtually the
same software!

2) the chance to reduce the effective cost of software by
widespread sharing within an application community.

At this writing there are more than 15,000 computers
(with many different host CPU's) running UCSD Pas
cal. This number is large enough to justify significant
investments in application software. High costs to the
individual end-user are not required to recoup those
investments.

These portability motivations are, of course, not new to the
small machine environment; they have just become much
more urgent as the cost of software continues to rocket while
that of hardware plummets.

There are several different approaches to software port
ability. One can emphasize the program, picking a particular
large application, like a data base management package, and
working to reduce effort to move it to new host operating
system or processor environments. A disadvantage of this
approach is that the effort must be expended anew for each
additional application considered.

Another possibility is to emphasize a language and its im
plementation. Here the theory is that programs written in
that language will port easily (by recompWltion) to a new
environment after the language itself is moved. Unfortu
nately, any sizable application program calls on 110 and other
operating system resources in ways that may conflict with
services available in a new environment. Therefore, changes
are likely to be needed in the application programs to be

,moved. Figure 1 may clarify this approach.
UCSD Pascal provides a portable software environment.

When the system is moved to a new host, all the conventions
about file titles, disk organization, and other operating sys
tem matters are replicated. Therefore applications in UCSD
PC;lscal can usually be moved to a new host without any
modification to the source version of a program. This is
shown in Figure 2. As we will see below, it is even possible
to move the object version of a program to a new host.

Software environment portability has been independently
pursued with the Thoth6 and Unix@)7 operating systems.
Neither of these efforts has had our concern for the special
problems of small hosts.

In two sections below, specific areas ofUCSD Pascal port
ability are examined. In the first, independence from the host
processor (ignoring system peripherals) is considered. Sec
ondly, our approach to independence from host peripheral
devices is discussed.

While our concern with portability is long-standing, rec
ognition of the third component of our conservation strategy
(organization for support and maintenance) is more recent.
As UCSD Pascal entered widespread production use in 1979,
it became clear that maintenance and support activities
needed careful attention if a large user community using
many varieties of host hardware was to be properly served

PROGRAM PROGRAM

HOST

INTERFACE

HOST
SOFTWARE

E NV IRONMENT

'A'

HARDWARE

'A'

HOST

INTERFACE

HOST

SOFTWARE

ENVIRONMENT

'B'

HARDWARE

'B'

Figure I-LANGUAGE approach to portability.

at a reasonable cost. It also became clear that the academic
environment was not well-suited to this task. One reason
why Soffech was chosen to take over support of UCSD
Pascal was their experience in developing and using software
engineering tools of the type needed to support maintenance
of UCSD Pascal.8

INDEPENDENCE FROM THE HOST PROCESSOR

P-machine contributions to software portability

The key to host processor independence is the designation
of the p-machine as the foundation of the UCSD Pascal Sys
tem. One result is that the entire Pascal system, including
editors, compilers, operating system, etc., can be moved to
a new host computer by reimplementing the p-machine and
associated low-level routines in the native language of the
new host. The relative simplicity of this implementation task
has been widely exploited. Implementations of some variant
of the UCSD p-machine have been done for the micropro
cessors and minicomputers listed below. (Those that have
actually become products are marked with an asterisk:)

*Data General Nova
*Digital Equipment PDP-ll®> & LSI-ll®>
*General Automation GA-16
,Hewlett Packard System 45
*Intel 8080 & 8086
Lockheed Sue

*Mos Technology 6502
*Motorola 6800 and 6809; 6800 is being actively pursued

Portable Software Environment for Small Computers 749

PROGRAM

HOST

INTERFACE

HOST
SOFTWARE

ENVIRONMENT

HARDWARE

'A'

Move

PROGRAM

HOST

INTERFACE

HOST

SOFTWARE

ENVIRONMENT

, HARDWARE

'B'

Figure 2-ENVIRONMENT approach to portability.

Nanodata QM-l
*Sperry Univac (Minicomputer Operations) V77
*Texas Instruments 9900
*Western Digital Pascal Micro Engine®>
*Zilog Z80 and Z8000
several custom micro-coded processors

The effort required for one of these implementations has
ranged from 6 person weeks to 9 person months, depending
on experience of the implementor and suitability of the host
for p-machine implementation. We know of no other body
of software as large as the UCSD Pascal System that has
been moved to as many different host computers.

UCSD p--code is portable at the binary code file level (see
more discussion of this under Data Representation Issues).
Other pseudo-machine oriented efforts (Janus,9 for example)
have generally standardized, instead, at the level of symbolic
pseudo-machine assembly language. The choice of a binary
interface for UCSD Pascal makes it much more practical for
p-code to serve as a sort of "lingua franca," for commu
nicating object programs among a wide user community.
Carl Helmers 10 has proposed a d,istribution approach for
small machine application packages in which the last few
pages of the user document would contain a printed bar-code
encoding of the object program., As he recognized, UCSD
p-code fits very nicely into this approach.

P-code is a lingua franca in another sense: even though
the p-machine is optimized for Pascal programs, translators
can and have been written from FORTRAN and BASIC to
p-code. With some strategic additions to the p-machine to
support new data types, even a COBOL to p-code translator
is feasible.

750 National Computer Conference, 1980

Concentration on small systems

We have chosen to limit the class of suitable host com
puters so as to enhance portability within that class. We
assume that memory can be yiewed as 8-bit bytes and 16-bit
words and that the 7-bit ASCII character set is used. Dis
tributed versions of the p-machine are also limited to a 16-
bit address space. (A later section discusses removal of this
limitation.) Our success in transcending the details of the
host environment has been substantially increased by spe
cializing in this limited class. Fortunately, most small com
puter systems are included.

Performance issues

What price has been paid for these portability benefits?
One part of the cost is in the reduced execution performance
of interpretively executed p-code compared to other imple
mentation approaches. For many small computer applica
tions (text editing or data capture, for instance) interpretive
execution on a dedicated microprocessor is more than ad
equate. 'In other applications (e.g. compilation) the benefits
due to the small size of p-code outweigh the drawbacks of
raw execution speed.

It is also possible (with some reduction in portability) to
code time-critical routines directly in assembly language and
call them from a high level host program. Most real-time
programs can meet performance requirements with only a
small portion (less than 10 percent) written in assembly lan
guage.

Another performance possibility is to provide more direct
hardware support for the p-machine. In the Western Digital
MicroEngine, the MOS chip set used in the implementation
of Digital Equipment's LSI-ll has been microcoded to im
plement the p-machine directly. P-code is thus the native
language of the MicroEngine. Performance improvement
factors of five or more have been measured for the
MicroEngine over interpretive execution on the LSI-II. At
least another factor of two in performance has been achieved
with a micro-coded p-machine based on high speed bit-slice
technology. An overall improvement factor of twenty com
pared to LSI-II interpretation is probably achievable with
standard low-cost components. (All of these comparisons
apply to simple integer arithmetic and array operations, as
in an integer sort routine.)

Data representation issues

Some concessions to efficiency over portability have been
made. The biggest has to do with representations of p-ma
chine data types. Although a standard on floating point num
ber representation and algorithms is being developed by the
IEEE,11 there are still many different formats supported by
·various vendors. We have standardized on a size of 32 bits
for floating point numbers, but do not require a particular
representation. Therefore, advantage can be taken of exist
ing floating point software and hardware support. Where

new floating point implementations have been done (on the
6502,6800,9900, and W.D. MicroEngine) the IEEE format
is used. A machine-dependent "power of ten" table allows
all high level software (even conversions between ASCII and
internal floating point) to be isolated from knowledge of the
internal representation. Long integer representations. can
also vary. Binary integer, packed BCD, and radix 100 are
among the feasible representations. A dramatic performance
improvement can be achieved on some hosts by choosing
a suitable representation. Once again, higher level software
in the Pascal system need only care about the length (in
words) of a long integer.

Even ordinary 16-bit integers do not have a standard rep
resentation (at least in the ordering of their two bytes). In
some host architectures (e.g. PDP-ll, 8080) byte zero of a
word is the least significant byte; in others (e.g. 6800, Z8000,
IBM 370), byte zero contains the most significant bits of the
16-bit integer. Thus, the interpretation of two adjacent bytes
as a 16-bit word is machine-dependent. Here, too, an attempt
to force a single representation on all architectures would
be prohibitively expensive.

What is the impact on portability of these representation
decisions?

First, portability of source programs is not affected, unless
a program specifically chooses to deal with the representa
tion, by bypassing the type philosophy of Pascal. We need,
but do not yet have, an analog of the LINT program under
Unix,7 w hich could comb source programs for potential trou
ble spots of this type.

Second, data files containing any of these data types are
not directly readable by implementations with different rep
resentation choices. It is possible to design file record struc
tures so that an application program can automatically com
pensate for representation differences.

Third, code files are sensitive to the byte ordering (we call
it "byte sex") of the host processor. The dependence occurs
where adjacent bytes in the code stream represent words
(mostly in superstructure tables). The Pascal compiler can
generate code files of either type on any host, and a utility
program is provided to convert object files from one 'type
to another.

Finally, code files containing floating point constants are
not directly movable between hosts with different floating
point representations. It is usually possible, by doing some
computation at run-time, to avoid this problem.

INDEPENDENCE FROM THE HOST PERIPHERALS

UCSD Pascal I/O hierarchy

Our approach to achieving peripheral independence is to
provide a hierarchy of I/O environments. The levels of the
hierarchy are chosen to further two objectives:

1) isolation of application programs and most system com
ponents from details of the host computer, and

2) reduction of effort involved in adapting to new host
configurations.

Portable Software Environme·nt for Small Computers 751

Terminal

APPLICATIONS

PROGRAM

OPERATING

SYSTEM

SCREEN I/O FILE

UN I T I/O

BASIC I/O

SIMPLIFIED I/O

I/O

Printer Disk

Figure 3-UCSD Pascal 1/0 hierarchy.

Drives

The levels we identify are pictured in Figure 3 and listed and
described below:

1) Screen 110. This level presents a uniform image of a
screen terminal. Capabilities include moving the ter
minal cursor; clearing all or part of individual lines or

the entire screen; and accepting cursor control or other
special commands from the terminal keyboard.

2) File 110. At this level, devices are designated by logical
volume names. Volumes can be serial (e.g. console) or
random access (e.g. disk). Random access volumes can
have directories of named files. Serial volumes are
(possibly bi-directional) byte streams. Textual 110 (with
full conversion between internal representations and
ASCII) is provided from and to volumes or files. Rec
ord-oriented 110 (with automatic blocking and deblock
ing) is provided with random access volumes or files.

3) Unit 110. At this level, devices have numbers that in
dicate their type (e.g. 1 for console terminal, 6 for
printer, etc.). A serial device is still a byte stream, with
knowledge of a few special output characters (blank
compression codes, carriage returns). A random access
device is considered an array of directly addressable
512-byte blocks. No knowledge of files, textual or rec
ord-oriented 110 is available at this level.

4) Basic 1/0. Capabilities of random access devices at this
level are similar to those available at the Unit 110 level.
Serial devices are much simpler. Serial transfer occurs
one character at a time and no special output characters
are processed. Special input characters from the con
sole terminal can cause console output to be stopped,
restarted or discarded.

5) Simplified 110. Here the random access interface is
much more primitive. A device is viewed as sequence
of tracks, each containing an array of physical sectors.
Transfers occur, one sector at a time, between a main
memory buffer and a (track, sector) coordinate. Serial
device capabilities are similar to those in Basic 1/0,
except that no special input characters are recognized.

Table I summarizes the degree of independence from host
configuration provided at each of these levels. The Basic
and Simplified 110 components are generally implemented
in assembly language and clearly dependent on peripheral
details. The pseudo-machine interpreter (which generally
includes Unit I/O) is dependent on the host processor, but
defers peripheral details to lower levels. File and Screen
1/0 are implemented in Pascal and are therefore independent
of both peripheral and processor variations. The application
program does not have to depend on anything but the virtual
environment provided by the Pascal system.

Software
level

TABLE I.-Host configuration independence

Is independent of:

Console Central Peripheral
Terminal Processor Complement

Application program and Yes Yes Yes
most system components

Screen rio No Yes Yes

File I/O Yes Yes Yes

Interpreter and Unit rio Yes No Yes

Basic and Simplified riO Yes No No

752 National Computer Conference, 1980

Adaptation to host configurations .

Four kinds of user adaptation are intended. ThF easiest
adaptation is also by far the most frequently needed:icatering
to console terminal peculiarities. Most of the effort involved
goes to changing the entries in terminal description tables
maintained by the system (a program, SETUP, is provided
to do this). Some programming (in Pascal) of interface pro
cedures may be required. Average effort involved for the
user is an hour or two. A test program is provided to de
termine if the effort was successful.

Next in order of increasing difficulty and decreasing fre
quency of need is adaptation of the Simplified Basic 110
Subsystem (SBIOS). Given that a user is knowledgeable
about his peripheral interface, and has access to existing low
level driver software, a few days of work should be sufficient
to bridge the gap between those drivers and the SBIOS in
terface, producing a usable Pascal System. Again, a test
program is provided. The approach we have taken here is
based on that developed by Digital Research for the CP/M@
operating system.

The Basic 110 Subsystem (BIOS) is comparable to its sim
plified cousin, except that is has.more responsibility, and
therefore more possibility for optimization. For instance, it
is possible in the BIOS to take full advantage of a direct
memory access interface to disk. The BIOS definition em
phasizes performance and flexibility, while the emphasis
with SBIOS is on e~se of adaptation. BIOS implementation
generally takes a week or two of effort, assuming detailed
knowledge of the peripheral complement and familiarity with
our 110 structures.

Finally, the most elaborate adaptation is to a new host
. processor (which is included in this peripheral independence

section for completeness). As mentioned above, effort in
volved here is more than a month, but less than a year; six
person months is probably a good average.

Table II gives the various levels of adaptation. For each,
a reasonably realistic level of effort is given, as well as an
approximate "probability of need" indicating how fre
quently adaptation at that level will be desired. Fortunately
for the viability of our approach, these probabilities have
some basis in reality.

ENHANCEMENTS

Native code generation

Active work is under way at UCSD to provide the ability
to translate selected procedures of a p-code program to na
tive code for a conventional host computer. This possibility
will alleviate many of the performance drawbacks of our p
code orientation without sacrificing portability. Programs
can be written and maintained entirely in Pascal, and the p
code object version is still transferable among different kinds
of host computers. If active use of a program reveals per
formance bottlenecks, the time-critical procedures can be
translated to a native code.

TABLE H.-Intended levels of adaptation

Level of adaptation Approximate "Probability
Effort of need"
In'vol ved

Application program very little, 1.0000
if any

Screen I/O hours 0.1000

Simpl if ied I/O days 0.0100

Basic I/O ~leek s 0.0010

Interpreter months 0.0001

Code generation is implemented as an optional step in the
compilation process. It takes as input a complete p-code
program and produces, as output, a mixture of unmodified
p-code and translated native code procedures. This process
is diagrammed in Figure 4. Internally, the code generator
represents a p-code procedure as a forest of expression trees.
Several traversals of these trees occur during the translation
process.

Note that the p-code input to the code generator can come
from a Fortran or Basic compiler, as well as from the Pascal
compiler. Once again, software investment is conserved,
since only one code generator for a particular target machine
serves several languages.

Implementations are in progress of code generators for the
PDP-II, TI9900, Intel 8080, Mos Technology 6502, and Gen
eral Automation GA-16. At this writing, the first two ver
sions are farthest along. For both processors, translatedna
tive code is about 50 percent larger than the corresponding
p-code. Improvements in execution performance compared
to interpretive execution on the same host have been around
a factor of 10 for the PDP-II and a factor of 15 for theTI9900 .

New definition of "small" systems

As new microprocessor architectures (e.g. 8086, Z8000,
68000) and peripherals (e.g. low-cost Winchester disks) be
come widely available over the next several years, the def
inition of "small" low-cost computer systems will have to
broaden considerably to include those with megabytes of
main memory and tens of megabytes of mass storage. We
are investigating ways in which the UCSD Pascal system
could allow these facilities to be exploited. The situation is
complicated by our need to continue supporting both Z80
class and Z8000 class users for the foreseeable future. There
fore, it must be possible for user programs, and particularly
system components, to run in both environments. It must
also be possible, of course, to produce a user program that
requires so many resources that it can only be run in an
expanded environment.

As an example of the extension approach we are pursuing,
consider the problem of dealing with address spaces bigger
than 16 bits. In the near term, it is quite easy to apply the
16-bit limitation only to data space: object code need not be
accessible within_the I6-bit area. For the longer term, we
are considering a scheme in which details of physical ad-

PASCAL
COMPILATION

Program o

. Procedure A o P-Code

Procedure B o P-Code

Procedure C o P-Code

Procedure D P-Code

NATIVE CODE
GENERATION

A
A Native Code

B P-Code B

C P-Code C

D

D Native Code

~ ~ ~
'SOURCE

CODE
OBJECT

CODE

Figure 4-Selective native code generation.

OBJECT
CODE

dresses in the host are not important to higher level software.
That software is already isolated from whether host memory
is addressed as words or bytes. We propose further isolation:
only a small machine-dependant portion of an implementa
tion would know whether addresses are 16 or 32 bits in size
and the detailed meanings of those bits.

CONCLUSION

The UCSD Pascal language and system have demon
strated that sophisticated, yet accessible, high level language
capabilities can be provided in constrained microcomputer
environments. More importantly, we have been shown that
these facilities can be compatibly implemented on a wide
range of host computers. As the inexorable advance of sem
iconductor technology continues, we believe that conser
vation of software investment is the fundamental practical
problem facing the microcomputer industry. We think our
efforts are contributing to the solution of that problem.

ACKNOWLEDGMENTS

The UCSD Pascal system is the work of a large group, too
numerous to list here, of graduate and undergraduate stu
dents at UCSD. The role of Kenneth Bowles in inspiring,
directing, and energizing this work has certainly been crucial
to its success. Helpful comments on this paper from John
Brackett, Winsor Brown, AI Irvine, and Richard Kaufmann
are gratefully acknowledged, as is Keith Shillington's prep
aration of the illustrations.

Portable Software Environment for Small Computers 753

REFERENCES

1. Wirth, N., "The Programming Language Pascal and its Design Criteria,"
InfoTech State of the Art Report - High Level Languages, 1972.

2. Nori, K. V., U. Ammann, et aI., "The Pascal (P) Compiler: Implemen
tation Notes. ETH Zurich Technical Report 10, December 1974.

3. Wilner, W. T., "Design of the BI700," Proceedings of AFIPS, Fall 1972.
4. Tannenbaum, A. S., "Implications of Structured Programming for Ma

chine Architecture," Communications of the ACM, March 1978.
5. Bowles, K. B., "A (Nearly) Machine Independent Software System for

Micro and Mini Computers," Byte, May 1978.
6. Cheriton, D. R. and M. A. Malcolm, et aI., "Thoth, a Portable Real-Time

Operating System," Communications of the ACM, February 1979.
7. Johnson, S. C. and D. M. Ritchie, "Portability of C Programs and the

Unix System," Bell System Technical Journal, July-August 1978.
8. Eanes, R. S. and C. K. Hitchon, et aI., "An Environment for Producing

Well-Engineered Microcomputer Software," Fourth International Con
ference on Software Engineering, 1979.

9. Waite, W. M. and B. K. Haddon, "A Preliminary Definition of Janus,"
University of Colorado Technical Report SEG-75-1, 1975.

10. Helmers, c., "Editorial," Byte, August 1978.
11. Gustavson, D. B., "Standards Committee Activities: An Update," Com

puter, July 1979.
12. Jensen, K. and N. Wirth, "Pascal User Manual and Report," New York:

Springer Verlag, 1974.
13. Ravenel, B., "Toward a Pascal Standard," Computer, April 1979.

APPENDIX: Facilities of the System

Program execution environment

The foundation of the System is the UCSD p-machine. It
is a simple idealized stack computer which can be imple~
mented either by direct hardware support (as in the Western
Digital Micro Engine) or by an interpreter executing in the
machine language of a conventional host computer. On a
conventional host, a single object program can include both
p-code (to be interpretively executed), and native code (for
direct execution by the host).

Peripherals are accessed by logical "volume" names. Se
rial volumes (e.g. console terminal) are considered byte
streams. Random access volumes (e.g. floppy disk) can have
directories of named files. Various kinds oflogical transfers
involving volumes and files are supported.

Program execution and file manipulation commands

The user can execute a named object program, or use short
cut commands to invoke important system programs. The
user can also designate individual files or groups of files for
removal, renaming or transfer among on-line devices. Other
commands support various housekeeping needs: listing di
rectories, compacting the files on a disk, and testing disks
for invalid areas. Finally, the user can designate a "work
file. " Subsequent editing, compilation and execution com
mands apply to this work file by default.

Text preparation and modification facilities

Two styles of text editing are supported: one requires a
video display terminal, and the other does not.

754 National Computer Conference, 1980

When the system console is a CRT, the "screen-oriented"
editor can usually be used. This editor maintains a cursor
into the text file being edited and a "window" into that area
of the file on the terminal screen. Modifications to the text
are made by the intuitive and mechanical process of moving
the cursor to the site where change is desired and indicating
the change. Commands are provided for moving the cursor,
finding and replacing textual patterns, making insertions and
deletions, and copying text into the cursor position from
elsewhere. Special facilities exist for processing documents.
User-specified left and right margins can be automatically
enforced by the editor and new margin requirements can
easily be applied to existing text.

The second available style of editing does not require a
screen terminal. Once again, a cursor is maintained, where
most of the action occurs. But the user is responsible for
maintaining a mental image of the cursor context. Com
mands are available for insertion, deletion, and copying of
text, as well as for moving the cursor. A simple macro facility
is provided.

Programming languages

The principal programming language supported is UCSD
Pascal. Except for the provision of procedures as parame
ters, UCSD Pascal is largely consistent with the base Pascal
language, as defined in Jensen and Wirth's User Manual and
Report. 12 UCSD Pascal is also quite consistent with the
emerging international standard for PascalY 'We are com
mitted to eventual complete compliance with an adopted
standard.

UCSD Pascal includes various extensions beyond the base
language. We summarize, here, the most important:

1) Dynamic character strings. A predeclared type "string"
is supported. A string variable contains a sequence of
characters. A maximum length for the sequence is spec
ified in the declaration. Concatenation of strings; in
sertion, deletion and extraction of substrings; and string
pattern matching are provided by predeclared service
routines.

2) Encapsulation and separate compilation. A new com
posite declaration, the "unit," is provided. A unit is
a group of procedures, functions, and data structures,
usually related to a common task area. A program or
another unit (a "client module") can access these fa
cilities by'naming the unit in a simple "uses" decla
ration. A unit consists of two parts, the interface part,
which can declare constants, types, variables, proce
dures and functions that are public (made available to
any client module), and the· implementation part, in
which private declarations can be made. These private
declarations are available only within the unit, and not
to client modules. Units can be compiled separately
from their client modules. .

3) Extended precision integers. A "long integer" data
type is provided. Integers up to 36 decimal digits in size
can be represented and participate in the standard in-

teger operations: addition, subtraction, multiplication,
and division. Conversions among long integer, string
and standard integer forms are provided.

4) Concurrent processes. Another type of routine in
UCSD Pascal is the "process." Processes are declared
with the global procedures of a program and have the
same lexical access to global variables and procedures.
A process is different from a procedure in that when
invoked, it proceeds in parallel with its invoker. Sem
aphore variables, plus wait and signal primitives, are
provided to allow these parallel processes to synchro
nize and communicate reliably. With the "attach" pro
cedure, a semaphore can be associated with an external
interrupt. This association causes the semaphore to be
signaled if the interrupt is activated. Thus Pascal pro
cesses can respond to external events.

5) Miscellaneous extensions. Other additions to UCSD
Pascal provide random access to Pascal file compo
nents and a constrained interprocedural go to mecha
nism. Segment routine declarations allow designation
of overlays and external procedure declarations allow
an assembly language routine to be called from a Pascal
host as if it were a Pascal procedure.

A Basic compiler exists for the UCSD Pascal system, but
is not currently being supported.

Assembly language is available for most processors on
which the system is \supported. The assemblers can be used
for stand-alone programs (such as interpreters) or for pro
cedures which will be bound into high level language host
programs. The approach is to provide (as far as possible) the
syntax for machine instructions defined by the original pro
cessor manufacturer (e.g. Zilog for the Z80). A common syn
tax has been defined for assembler directives and assembly
time expressions. Naturally, all of the assemblers can run
on any host processor variant of the System, so a single type
of host can be used to support assembly language programs
for mUltiple machines.

Directives supported include the usual facilities for macro
definition, conditional assembly, storage allocation and list
ing control. Additional directives allow communication with
external labels in other assembly language routines. Finally,
special provision is made for communication between an
assembly language routine and a Pascal host program. The
low-level routine can request access to host program global
variables and constants. It can also allocate its own global
storage space.

TRADEMARKS

UCSD Pascal is a trademark of the Regents of the Uni
versity of California. PDP-l1 and LSI-11 are trademarks of
Digital Equipment Corporation. Unix is a trademark of Bell
Laboratories. Micro Engine is a trademark of Western Digital
Corporation. CP/M is a trademark of Digital Research, Inc.
Radio Shack and TRS-80 ~re trademarks of Tandy Corpo
ration.

Software Quality

The FAA's computerized Enroute Sys-
tem for controlling in-flight commercial
aircraft crashes during a peak holiday pe
riod due to overloading. The DoD Early
Warning System, a computerized air de
fense system, mistakes the rising moon for
a barrage of incoming enemy missiles and
shock waves travel all the way to the
White House. A single erroneous state
ment in a small computer on-board a
French weather satellite causes 71 of 142
weather balloons to self-destruct. These
experiences would not have happened if
there had been better software quality.

Assuring software quality has been and
still is a thorn in the side of most software
customers and project managers. This
phenomena crosses all customer bounda-

Kurt F. Fischer
Area Director

ries: commercial, industrial, military, other government; and crosses different application
types: operating systems, information systems, process control, command and control,
communication, business systems, etc. The "Software Quality" area contains four ses
sions that will enlighten both purchasers and developers of software with discussions and
papers which will reveal not only current quality-related problems, but also suggested
solutions.

Dr. Edward Miller will chair a panel session on Software Quality Testing. Panelists will
discuss the need for establishing and following quality standards, and programming and
testing techniques to improve the testing process.

Dr. Ned Chapin will chair a three-paper session on Software Quality Metrics. "Meas
uring program complexity in a COBOL environment" by Zolnowski and Simmons presents
a composite measure of program complexity that provides an objective quantitative eval
uation for any program or programming effort. Another paper, "The complexity of an
individual program" by John McTap critiques the Zolnowski and Simmons model and
proposes a model extension. The third paper, "An information theory based complexity
measure" by Eli Berlinger proposes a measure of programming difficulty based on the
probability with which various tokens of a program are used.

Dr. Leonard Gardner will lead a panel discussion of accomplishments, problems, and
proposed solutions of present and future software standards. These will encompass ma
chine, assembly, and high level languages, and software related to buses and their inter
faces. Panelists have been selected who represent a very broad base of standardizing
activities of various technical societies and workshops.

Mr. Kurt Fischer will lead a panel discussion of current software quality assurance
problems and techniques. Topics of discussion will include the purpose of software QA,
the techniques that are currently used, the benefits that are received from QA programs,
and future directions that software QA should take. The selected panelists have all managed
QA programs on major projects and will be glad to share their experience with the audience.

755

Measuring· program complexity in a COBOL environment

by JEAN ZOLNOWSKI and DICK B. SIMMONS
Texas A&M Unil'ersity
College Station, Texas

INTRODUCTION

Webster l defines complexity as the "quality or state of
being: hard to separate, analyze, or solve; complicated; in
tricate; involved; having confusingly interrelated parts."
This definition is certainly apropos of software and in fact
the term program complexity is found often in discussions
centered on software and its evaluation. An understanding
of computer program complexity is considered necessary in
comprehending how software is written and how a language
is used.

In particular, a figure of merit in the form of a complexity
measure for a program can serve as a factor in evaluating
the efficacy of various programming styles/methods; in pro
ducing programmer productivity measurements; in produc
ing software cost estimations based on a programmer'spast
program complexity history; in relating errors to specific
program characteristics; and in similar types of quantitative
analyses.

This paper describes a complexity measure, a composite
index of complexity, which insures that the relative merits
of a program will be judged/compared not according to un
tested hypotheses or programmers' SUbjective judgments but
rather according to complexity factors actually evidenced
in the program and therefore relevant in measuring it. For
example, this index of complexity has been used to compare
structured versus unstructured programming styles within
a reference group of COBOL programs. The measure veri
fied that in fact the structured programming group did pro
duce less complex programs.

The index is a complexity measure based upon the as
sumption that opinions of experienced authors reflect rele
vant aspects of program complexity. The method for relating
the diverse set of authors' proposed complexity character-

. istics in a measure is based on Gunning's2 idea of a fog index,
i.e., a score is assessed against a program based on com
plexity characteristics evidenced in the program and specific
weighting factors attached to each complexity characteristic.
The index of complexity evaluates a program within a ref
erence group of programs reflective of typical program types
and programming styles of the particular programming en
vironment in which the measure is being used.

The sections to follow will outline how the procedure for
producing this index of complexity can be accomplished in

757

an arbitrary programming environment. An application to
a reference group of 13 COBOL programs, typical of me
dium-sized production programs ina computing center en
vironment, will be presented. Also, discussions will be ori
ented toward the actual use of the index and the data from
which it is derived in evaluating structured versus unstruc
tured COBOL programming styles.

CURRENT APPROACHES TO PROGRAM
COMPLEXITY

The difficulty in understanding complexity is apparent in
the diversity of opinions that exist concerning the causes of
a program's complexity. Discussions on program complexity
are centered in essentially three areas in the literature: cost
estimation techniques, authors' discussions on the types of
program characteristics each considers relevant to complex
ity, and specific complexity measures which have been pro
posed. Table I lists some proposed measures (References 3
through 17).

Several of these complexity measures concentrate on spe
cific structural characteristics of a program. This can present
several problems in producing a relevant figure of merit for
a program.

One obvious problem with the use of a measure defined
in terms of a single specific structural characteristic or a
generalized categorization is that, although· it may reflect
some minimal diffe.rentiation between programs, it may not
give the most accurate or sufficient picture of the particular
aspect of the program it purports to measure. This can be
illustrated by considering three programs from the COBOL
reference group. Each program contains approximately the
same number of verbs but each was written in a different
structured programming style (definitions of each style are
contained in Table II).

Table II contains data on some specific structural char
acteristics evidenced in each of these three programs. As
this table illustrates, an emphasis strictly on IFs and number
of conditions does not provide the best profile of the unique
structural aspects of each program.

For the controlled structured program, structure is best
evidenced in a detailed analysis of IF nesting. However, the
structure of the uncontrolled structured program is best seen
through a detailed analysis of its use of the PERFORM verb.

758 National Computer Conference, 1980

TABLE I.-Proposed Complexity Measures

Orientation of Measure Description

Control Flow Cyclomatic Number

Count of Program Paths

Enhancement of Cyclomatic Number (includes a count
of logical conditions)

Measurement by the Pair (Cyclomatic Number, Operator Count)

Number of Multiple Entry Loops

Number of Knots

Cyclomatic Complexity Interval Plus # lines int%ut of
line of code

Module Interaction Number of Modules or Subsystems

R "Number of Module linkages '\
\Number of Modules ~

Data Reference

Program Control

Measured based on control structures and control variables

Measure of difficulty in understanding software's function
based on components of sets of input and output

Minimal Intersection Number

Logical Complexity R (Number of non-normal exits from a decision statement)
Total number of instructions

Software Science Metrics of software science predict complexity of a program

Composite Measure of
Compl exity

Approach complexity via statistical (natural) language
theory

Index of Complexity based on Structure/Interaction/Instruction
Mix/Data Reference Program Characteristics

Interface complexity/Computational complexity/I/O complexity/
Readabil ity

Author

McCabe [3]

Sull ivan [4]

Myers [5]

Hansen [6]

Peterson [7]

Woodward, et al [8]

Cobb [9]

Gilb' [10]

Gilb [10]

McCl ure [11]

Chapin [12]

Chen [13]

Gilb [10]

Halstead [14]

Shooman & Laemmel [15]

Zolnowski & Simmons [16]

Thayer [17]

The unstructured program requires. an analysis of GO TO
induced loops.

METHODOLOGY FOR AN INDEX OF COMPLEXITY

which of these proposed complexity characteristics appear
often enough in the reference group of programs to be rel
evant in a measure. For as Knuth's18 study showed, often
what is thought about programs is not actually what appears
in programs.

The index of complexity listed in Table I is a measure
which reflects the relevant aspects of a program's complex
ity. The index is based upon the assumption that opinions
of experienced authors reflect what is essential to program
complexity and therefore form a reasonable basis for a mea
sure of complexity;

The technique is to measure a program using complexity
variables, derived from the basis set of authors' opinions,
which are relevant to the program in its specific environment
and language. The index of complexity for a program is com
puted within a set of programs chosen as a reference group.
Objective data collection and program analysis are used to
validate the basis set of complexity variables by showing

The method for relating the set of complexity character
istics together in the index of c~mplexity is to assess a score
against a program based on: (1) a set of complexity char
acteristics seen to be discriminating within the reference
group of programs and; (2) weights assigned to these dis
criminating complexity variables.

The following series of steps provide an example of how
the index of complexity can be computed for a sample group
of COBOL programs: Steps 1 thru 5 are concerned with
choosing figures of merit (reference values) against which
individual programs can be evaluated. Steps 6 and 7 are con
cerned with actually producing a unique index of complexity
for a program.

Measuring Program Complexity in a COBOL Environment 759

Step I. Select a set of program characteristics (features)
to use in a measure

Before actual measurement, what to measure must be
known. Unfortunately, there is little empirical data to sub
stantiate anyone particular opinion on which program char
acteristics constitute a definition of program complexity.
Therefore, an analysis was done over a wide range of au
thors' opinions.

Some of the program characteristics said to be relevant

to complexity were easily translated to a variable measur- .
able by a static or manual analysis of a COBOL program.
Other opinions on complexity were not so easily measur
able. Authors often tended to be rather obscure as to what
specific program characteristics reflected their opinions.

Program complexity characteristics derived from authors'
opinions were classified under four categories of program
complexity: instruction mix, data reference, interaction/in
terconnection, and structure/control flow. Table III contains
examples of the types of COBOL program characteristics
listed by category.

TABLE n.-Differences in Programming Styles Between Three Programs within the COBOL Reference Group

Program Characteristic

verbs

IF ELSE

IF (no ELSE)

Avg. # Logical Conditions

independent IFs

Avg. # instructions w/in IF

% GO w/in IF

% PERFORM w/in IF

total PERFORMs

PERFORMed independently

MAX nesting BREADTH of PERFORM

Avg. # PERFORMs w/in Nested
PERFORM

GO TO induced loops

Avg. # paths in loops

Controlled*
Structured

334

50

2

1 .9

16

12.6

o

8.9

20

6

2

4

o

Uncontrolled**
Structured

324

35

33

1 .9

43

4.8

5.3

21.2

24

2

35

110

o

Unstructured***

336

7

47

2.4

51

1 .5

52.6

1 .3

1

o

o

26

644.4

*programmers were forced to utilize the concepts of structured programming. Structured
walkthrus, etc. enforced the use of these concepts.

**programmers utilized structured programming subject to their own interpretation of how
to implement these concepts.

***no attempt was made to adhere to any of the structured programming concepts.

760 National Computer Conference, 1980

TABLE Ill.-Complexity Variables

Category

1. Instruction Mix

2. Data Reference

3. Interaction/Interconnection

4. Structure/Control Flow

Step II. Select a reference group ofproRrams

The index of complexity proposes a measure for a program
within a group of programs. Therefore, the set of sample
programs chosen as the reference group has to be reflective
of the programming environment in which the software is
produced. The set of reference values against which indi
vidual programs will be evaluated is predicated on this
group.

For example, this research was conducted in a university
environment. The learning experiences evidenced in stu
dents' programs were not desired. Therefore, sample pro
grams were requested from full-time programmers at the
Computer Center and 'only production programs currently
in use were chosen.

Five programmers from different COBOL applications'
'areas provided programs. Each programmer was asked h)
give a complexity rating to his/her program, as well as other

General Types of'Variables
Measured

- program size data
- numbers and types of instructions
- specific attributes of instructions
- detailed profile of IF nesting

- numbers and types of variables
- numbers of references to and span of

each variable
- parameter nesting data

- numbers of subprograms referenced
- number of entry poi nts
- types and numbers of parameters
- how data connected between modules

- detailed PERFORM flow analysis
- counts/attributes of branching

instructions
- flow graph of the program
- basic flow graph variables such as

numbers and sizes of basic blocks
and intervals

- detailed loop analysis
detailed strongly connected region
analysis

details about the environment in which the program func
tioned. This provided an initial assessment of each program.
Table IV illustrates the types of COBOL programs selected
as a reference group. Note that Column 6 indicates the pro
gramming style in which each program was written.

Step III. Analyze/collect data within the reference RrouP

A static analyzer, written in SNOBOL, was used to show
which proposed complexity characteristics outlined in Table
III appeared often enough in the reference group of programs
to be relevant in a measure.

There were a large number of features analyzed for each
program. The differences in the types of complexity char
acteristics collected (means, medians, percentages, simple
counts, etc.) produced widely varying ranges of values for
the different types of variables. Size is obviously a discrim-

Measuring Program Complexity in a COBOL Environment 761

inator'between programs and this was reflected in the range
of values for program size characteristics, such as counts of
variables used. Program characteristics such as counts of
loops in programs, span of data reference, parameter nest
ing, etc., were not necessarily reflective of size.

though these variables are considered relevant to complex
ity. Other variables, such as those dealing with GO TO state
ments and looping phenomenon, did prove relevant to the
programs' complexity as expected.

Within each of the four complexity categories, a total of
44 characteristics were seen to be discriminating complexity
variables for the COBOL reference group under analysis.
Variables chosen as discriminators were essentially in two
categories: those where programmer insistence or a multi
tude of authors' opinions necessitated their inclusion and
those that obviously discriminated within the sample set.
For example, programmer Ps gave Program 12 a relatively
high rating despite its small size. This was due to the pro
grammer's emphasis on the complexity of his input/output
manipulations exemplified by the use of the Declaratives
Section. Therefore, a variable such as the number of USE

Step IV. Reduce to a set of discriminating characteristics

The next step in the process is to reduce the number of
features to be used in the index of complexity. The results
of the static analysis of Step III provide a profile of each
program (a feature vector) consisting of data from each of
the four proposed complexity categories.

Certain of the variables, such as sizes of basic blocks '9

and numbers of branches from basic blocks, produced a
minimal discrimination between the COBOL programs, even

TABLE IV.-COBOL Reference Group Questionnaire Data

Programmer

Program Complexity
rating by

programmer

2

3

4

5

6

7

8

9

10

11

12

13

2

4

5

5

5

5

7

7

7

7

8

9

Rank
according
to size

7

6

4

5

3

9

10

11

8

12

2

13

Program type

Stack maintenance

Data entry and
update

Data base mainten
ance

Parser and subcom
mand processor

Character manipula
tion

Data base manage
ment

Data base loading

Parser/driver

File update

Data base manage
ment

File-editing, report
producer

I/O

Data collection and
accounting

Special techniques used

Structured, * modular,
top-down design

Structured~*modular

None***

Structured, * modular,
top-down design

Structured, * modular,
top-down design

Structured, * modular,
top-down design

None ***

Structured, * modular
top-down design
Structured, ** modular

Structured,* modular,
top-down design

None ***

None

Str.uctured,** modular

Part of
1 arger
system

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

*indicates programmed in a controlled, structured environment. (See Table 2 for definitions)
**indicates programmed in an uncontrolled, structured environment. (See Table 2 for definitions)

***indicates programmed in an uncontrolled, environment. (See Table 2 for definitions)

762 National Computer Conference, 1980

TABLE V.-Instruction Mix Complexity Rating for COBOL Reference Group

Program
number 2 3 4 5 6 7 8 9 10 11 12 13 Average

Programmer P1 P2 P3 P1 P4 P4 P3 P1 P2 P4 P3 P5 P2

USE 0 0 0 0 0 0 0 0 0 0 0 1 0 . 1
SORT 0 0 0 0 0 0 1 0 0 0 4 0 0 .4
SEARCH 0 0 0 0 0 1 0 0 0 0 , 2 0 .3
% COMMENTS 0 0 0 9 6 "7 0 5 0 23 0 0 0 3.8
% PERFORM 0 33 9 11 13 9 .2 14 15 6 l' 6 17 11. 1
% IF 8 2T 20 20 18 13 16 14 23 16 19 13 18 16.9
% GO 0 3" IT 1 1 0 20 4 9 0 13 16 4 6.3
Maximum depth of

IF nest 0 3 2 3 5 5 2 4 5 10 2 3 5 3.8
sections 0 6 0 0 0 0 2 0 9 0 7 0 9 2.5
Size (verbs) 12 324 213 141 180 120 336 347 529 334 564 104 836 310.8
Avg segment size

statements 8 16 12 10 14 19 7 11 8 23 6 4 20 12.2
Avg segment

size -' verbs 6 14 10 7 9 8 7 7 7 10 7 4 18 8.8

Total score 7 5 2 5 3 4 3 7 4 8 4 8

Relative com-
pl exi ty rank
for instruction-
mix 1 10 8 2 8 3 5 3 10 5 12 5 12

Unique complexity
rank 10 8 2 9 3 5 4 11 6 12 7 13

verbs was included as a discriminator in the instruction mix Step V. Decide on a reference value (ji[?ure of merit) for
category. each of the discriminatin[? features

Tables V thru VIII provide a sample of the complexity
characteristics found to be discriminators within the four The choice of a reasonable value for any specific com-
categories for the COBOL reference group. plexity variable differs between programming environments.

TABLE VI.-Data Reference Complexity Rating for COBOL Reference Group

Program number 2 3 4 5 6 7 8 9 10 11 12 13 Average

Programmer P1 P2 P3 P1 P4 P4 P3 Pl P2 P4 P3 P5 P2

occurs 0 2 2 1 3 0 24 0 23 0 17 9 23 8
redefines 0 0 11 2 0 0 i 0 23 2 2 -0 -, 3 .. 6
Median span of

var ref 4 10 15 12 28 22 4 9 4 12 2 8 14 11.1
Median dist bet

var refs 0 13 16 7 25 10 9 24 15 31 7 4 24 14.5
linkage var 3 3 4 4 9 5 6 3" "4 IT 0 11 "5 5.2
Total # vars in

procedure div 19 126 122 71 70 73 190 134 252 161 260 59 278 139.6

Total score 0 0 3 3 2 4 4 4 2 2 5
Relative com-

plexity rank
for data ref 8 3 8 5 10 3 10 10 5 5 13

Unique com-
plexity rank 2 8 3 9 5 10 4 11 12 6 7 13

Measuring Program Complexity in a COBOL Environment 763

TABLE VII.-Subprogram Interaction Complexity Rating for COBOL Reference Group

Program number 2 3 4 5

Programmer P1 P2 P3 P1 P4

.Tota1 # calls 1 8 10 13 6
R(# unique ca11s/ 1 2 1 5 5

total calls T 8 10 13 "6
params for

PROC DIV 3 0 0 4 6
Ii ENTRY pts 0 1 1 0 0
Avg # entry

params 0 3 2 0 0
changes in

params 0 3 0 0
Avg # params

passed 4 3 4 3 5
linkage vars 0 0 13 1 8
copy in

linkage 3 3 0 3 3
Tota 1 score 3 5 7 4 4
Relative com-

plexity rank
for i nter-
action 2 7 12 4 4

Unique com-
plexity rank 2 7 12 4 5

The purpose of the index is to produce a measure for a pro
gram within its own typical programming environment. The
choice of a reference value for each discriminating charac
teristic was based solely on the source code within the ref
erence group of programs.

Therefore, an average (and in cases where the range of
values was too wide, a median) across a discriminating var
iable's values for each program in the reference group was
chosen as the reference value against which programs would
be evaluated (right-hand column in Tables V thru VIII).
Since authors differed as to what program characteristics
most affected complexity, the weighting given to each dis
criminating complexity characteristic was 1.0.

Step VI. Assess a complexity score and index of
complexity within each of the 4 complexity categories

Essentially, the process of producing a complexity score
is as follows: [K = Number of programs, N = Number of dis
criminating variables]. Each dk; represents a measured value
of the discriminating variable, V;, for a program P". The
measured value, dk;, of each V; for a program P k is contained
in the rows of Tables V thru VIII. Each W; is the weighting
factor for a discriminating variable v;.

6

P4

8
5
8

5
0

0

0

4
"3

2

3

2

3

7 8 9 10 11 12

P3 P1 P2 P4 P3 P5

10 30 10 27 0 0
1 15 2 IT
10 30 10 27

0 3 0 8 0 4
1 0 1 0 0 3

3 0 4 0 0

3 0 0 0

5 4 3 6 0 0
12 0 0 rr 0 14

0 3 4 2 0 0

7 5 6 5 0 4

12 7 10 7 1 4

13 8 10 9 6

Select a reference value: (see Step V)

Compute an Average, A;, where

K

L dk;

A·= ~
1 K

for every i, where I $.i$.N.

Evaluate against the reference value:

Compute a score Uk; where

u,;~ {~ if d~i~Ai
if d~i<A,

13 Average

P2

8 10. 1
1 .43 8

0 2.5
1 .6

5 1.4

.8

4 3.5
0 4.8

5 2.2

6

10

11

The entries where Uki= I have been indicated by underlining
the dk; entries in Tables V thru VIII. Note that rounded val
ues of the dk; were used except in instances where d,,; had
a majority of 0 as its measured value.

Sum the scores with their respective weights:

Assess a complexity score, Sf,;, for each program P".
N

Sk= L W;lIk;
;=1

764 National Computer Conference, 1980

TABLE VIII.-Structure/Control Flow Complexity Rating for COBOL Reference Group

Program number 2 3 4 5

Programmer P1 P2 P3 P1 P4

R(verbs~
break 5 5 8 7

breaks in flow 0 65 46 17 25
Avg # instruc-

t ions fo 11 ow-
i ng IF 6 5 2 6 10

outer IFS T 43 39 13 12
% instrucs after

I F (GO or
PERFORM) 0 5 21 3

R(indeE PERFORMS)
unique PERFORMS 2 5 4 6 0 15 7 9 10

Max breadth PER-
FORM nesting 0 35 2 2

Avg # paths
through
PERFORM 0 11 2 3 3

loops 0 0 6 0 0
Span largest

strongly conn
region 0 0 51

back branches 0 41 1 2
Avg span back

branches 0 192 18 21 19
down branches 2 125 93 57 84
Avg span of down

branch 4 15 30 12 22
loops composing

largest str
conn 0 0 5 0 0

Avg # exits out
of a loop 0 0 7.2 0 0

intersecs bet
loops 0 0 10 0 0

Total score 8 9 2
Relative com-

plexity rank 8 9 5
Unique com-

p1 exity rank 8 9 5 2

Step VII. Produce an overall figure of merit (inde~ of
complexity)

6

P4

11
11

9
7

0

6
8

2
1

1
0

0
33

19

0

3

The programs can now be ranked in order by their scores
as indicated in the last 2 rows of Tables V thru VIII. This
produces an overall index of complexity, Rk , within each
complexity category.

The indices in each of the four categories provide a de
tailed complexity profile for a program. Figure 1 illustrates
this with a histogram of the complexity indices within each
category in order by programmer and for each programmer
in order by his/her rating of each program. With respect to

7 8 9 10 11 12 13 Average

P3 P1 P2 P4 P3 P5 P2

5 5 3 17 4 4 5 6.1
68 69 154 20 136 27 175 62.5

2 8 3 13 2 3 5 5.7
51 23 96 16 99 11 99 39.2

53 5 6 0 25 10 6 20.i8

1 3 4 6 8 2 2
T 19 34 20 24 3 32 .4

0 4 22 2 37 3 71 13.8

3 10 8 3 205 4 21 21.2
26 0 2 0 26 2 1 4.9

46 19 4 2 10 10.2
0 5 48 32 1 67 15.3

0 47 255 30 25 53 472 87.1
123 141 244 121 243 53 307 125.3

8 47 25 23 14 7 86 24

13 0 0 3 1.8

3.9 0 3 0 2.9 3 1.7

44 0 0 0 25 0 0 6.2

9 6 11 2 13 12

9 7 11 5 13 12

10 7 11 6 13 4 12

the four complexity indices, COBOL programmer P4 was
inconsistent 'only in ranking what was a simple program on
a medium scale. COBOL programmer P3 ranked his pro
grams in an order opposite to our overall results. However,
the structural complexity assessed against his programs
agrees with P3's original ranking. Programmer P3 did not take
into account all aspects of complexity (e.g. interaction/in
terconnection) when evaluating his programs.

In turn, an overall figure of merit can be determined for
the reference group of programs. For this COBOL d,ta, the
scores Skj and rankings Rkj across the four complexity cat
egories were averaged and used to assess an overall cQm- .

Measuring Program Complexity in a COBOL Environment 765

plexity score Sk' normalized on a scale of 0 to 10. Each
program P k was in turn ranked according to this score pro
ducing an overall index of complexity Ik I •

Table IX illustrates the programmers' original ratings and
rank versus the index of complexity.

UTILIZATION OF THE INDEX

The results of the index, through the set of variables found
to be discriminators, provide a differentiation of program
ming styles within the COBOL reference group. When ana'"
lyzing the complexity of 12 programs written by program
mers PI' P 2, P 3, and P 4 (see Table IV) across the three pro
gramming styles defined in Table II, it was found that the
controlled structured group produced far less complex pro
grams than the other two groups. The average relative com
plexity rank of each group under the four categories of com
plexity was as follows:

Instruction Mix
Data Reference
Interaction/Interconnection
Structure/Control Flow

Unit
Values

of
Relative -=
Indices -

R
kj

-

-4 -
-

0 -
Program

Programmer

If

Controlled Uncontrolled
Structured Structured Unstructured

3.7 10.7 8.3
5 8 7.7
4.5 9 8.3
3.3 10.3 10.3

4 8 5 6 10

PI P
4

Structured programming is supposed to reduce the com
plexity ofa program and the above results justify this within
the controlled structured group. However, the supposedly
structured (but controlled) programs produced the highest
complexity ranking. The set of discriminating variables
under each of the four categories were analyzed in an attempt,
to understand this.

An analysis of the complexity profiles found several data
points which differentiated between the t~ree· programming
styles and distinguished each from the other. Essentially,
the discrimination between programming styles produced by
the types of data points presented in Table II and discussed
previously for a single program within each of the three cat
egories were equally applicable across the 12 programs.

ADAPTING THE INDEX TO DIFFERENT
PROGRAMMING ENVIRONMENTS

The technique of calculating an index of complexity as an
evaluation of a program is quite flexible. The basic assump
tion is that programs should be judged by an objective set
of program characteristics known to be relevant to com
plexity and should be judged within a reference group of

9 13 3

P
2 P

3

Instruction Mix
Complexity

Data Reference Complexity

Interaction/Interconnection
ComplEfxity

Structure/Control Flow
Complexity

11

Figure I-Histogram of relative complexity indices for the four complexity
categories.

766 National Computer Conference, 1980

TABLE IX.-An Overall Index of Complexity

Program # 2 3

Overa 11 Compl exity .77 6.2 8.5
Score (S') k

Index of Complexity (I k) 8 11

Programmers' R~ting 2 4

Relative Rank By
Programmers' Rating 2 3

production programs reflective of their programming envi
ronment.

A manager can choose a set of complexity characteristics
as a basis relevant to his/her software environment. The lan
guage of the programs to be measured is arbitrary. The tech
nique for computing the index is independent of language
and has been used on a set of FORTRAN programs.:!o

The static analysis, described previously, can be accom
plished in large part by tools that should exist in most pro
gramming environments. The analysis done to produce a set
of discriminating variables from the results of the static
analysis involve only a careful examination of the data. Re
finements in this analysis can be made as the reference group
increases. Instead of a weighting of 1.0 across all discrimi
nating characteristics, a manager can assess his/her own
weights making the index more adaptable to opinions on the
impact of specific program characteristics or the importance
of structural complexity versus data reference complexity,
etc.

The program profiles and complexity rankings have illus
trated that there is a large amount of data that indeed dif
ferentiate between programs both within a language and
across language usage. These results emphasize that there
is not just one aspect of a COBOL program that sufficiently
defines its complexity. A program has to be analyzed on all
its merits and a manager must therefore make judgments on
software accordingly.

REFERENCES

I. Webster's New Collegiate Dictionary. G & C Merriam Co .. 1973.
2. Gunning. R .• How to take the fOR out (~f II'ritinR. The Dartnell Corp ..

1964.
3. McCabe. T. J .. "A complexity measure." IEEE Transactions on SqftJt'(Ire

EnRineerinR SE-2. 4 (December. 1976). pp. 308-320.
4. Sullivan, J. E., Measuring the complexity of computer software. MITRE

.Corporation, MTR-2648, Vol. V, June, 1973.

4

2.3

3

5

4

5 6 7 8 9 10 11 12 13

3.8 1.5 7.7 3.8 9.3 5.4 6.9 3. 1 10.0

5 2 10 5 12 7 9 4 13

5 5 5 7 7 7 7 8 9

4 4 4 8 8 8 8 12 13

5. Myers. G. T .. "An extension to the cyclomatic measure of program com
plexity." SIGPLAN NoticfS 12. 10 (October. 1977). pp. 61-64.

6. Hansen. W. J .. "Measurement of Program Complexity by the Pair (Cy
c10matic Number. Operator Count)." SIGPLAN Notices 13. 2 (March.
1978). pp. 29-33.

7. Peterson. W. W .• Kasami. T. and Tokura. N .. "On the capabilities of
while. 'repeat. and exit statements." CACM 16. II (November. 1973). pp.
503-512.

8. Woodward. M. R .• et al.. "A measure of control flow complexity in pro
gram text." IEEE Transactions on Sqftll'are EnRi1leerinR. Vol. SE-5. No.
I. January. 1979. pp. 45-50.

9. Cobb. G. W .. "A measurement of structure for unstructured program
ming languages." ProceedinRs qf the S(~ftll'are Quality and Assurance
Workshop. November. 1978. pp. 140-147.

10. Gilb. T .. Sqftware Metrics. Winthrop Publishers. Inc .. 1977.
II. McClure. C. L.. "A Model for Program Complexity ·Analysis." Pro

ceedinRs qf3rd International COl1ference on S(dt\l'are Enf:ineerinR. IEEE
Cat. No. 78CHI317-7C. pp. 149-157.

12. Chapin. N .. "A measure of software complexity." ProceedhlRs qf the
National Computer C0I1ferellce. 1979. pp. 995-1002.

13. Chen. E. T .. "Program Complexity and Programmer Productivity." IEEE
Transactions on Software EnRineerinR. Vol. SE-4. No.3. May. 1978. pp.
187-193.

14. Halstead. M. H .. Elements (~f Sqftll'are Science. Elsevier North-Holland.
Inc .• N.Y .. 1977.

15. Shooman. M. and Laemmel. A .. "Statistical Theory of Computer Pro
grams-Information Content and Complexity." DiRest (~(Papers COMP
CON Fallll. IEEE Cat. No. 77CHI258-3C. pp. 341-347.

16. Zolnowski. J. C. and Simmons. D. B .. "Measuring Program Complex
ity." DiRest qf Papers qf Fall COMPCON 77. IEEE Catalog No.
77CHI258-3C. pp. 336-340.

17. Thayer. T. A .. et al..S(~ftll'are reliability study. RADC-TR-76-238. Au
gust. 1976.

18. Knuth. D. E .• An empirical study qf FORTRAN proR/'{/l1ls. U.S. Gov
ernment Report AD-715-513. February. 1971.

19. Aho. A. Y. and Ullman. J. D .. The theory q(parsinR. translation. lind
compilinR. Vol. II: CompilinR. Prentice-Hall .. Inc .. 1973.

20. Zolnowski. J. C. and Simmons. D. B .. "A complexity measure applied
to FORTRAN." ProceedinRs qf COMPSAC 77. IEEE Catalog No.
77CHI291-4C. pp. 133-141.

21. Mills. H. D .• "The complexity programs" in ProRrwn Test Methods. ed.
W. D. Hetzel. Prentice-Hall. Inc .. 1973. pp. 225-239.

22. Zolnowski. J. c. .. "A Composite Measure of Prograin Complexity."
AUERBACH Computer Programmi~g Management series. 1978.

The complexity of an individual program

by JOHN L. McTAP
Software Engineer
Menlo Park, California

NEED

Zolnowski and Simmons proposed an interesting measure
of program complexity.I.2.3 But it suffers from four major
practical defects:

a) It cannot be applied to an individual program without
first identifying a group of existing programs as a reference
base.

b) It does not provide a reliable measure since the meas
ure usually changes each time the composition of the group
of programs changes.

c) It is burdensome to compute because the computation
must be for an entire group of programs to make possible
measuring the complexity of an individual program.

d) It cannot· be applied to the components within a pro
gram, such as modules or subroutines.

In spite of these deficiencies, the measure has some at
tractive strengths. An example is the use of program fea
tures. 1 These strengths could be enhanced. Ideally, these
enhancements should be attained while eliminating the prac
tical defects. Then, the enhancements would also be im
provements.

IMPROVEMENT

The features of a program that can qualify for use in the
measurement of program complexity have been specified in
terms of criteria by Zolnowski and Simmons. I Briefly, the
criteria for acceptable features are:

1-The features must have been identified by some au
thority as being relevant to increasing or decreasing program
complexity.

2-The features must exist in some degree or amount
in a program.

3-The features must be expressible and measurable in
quantitative units.

4-The features must be commonly found in some degree
in nearly all programs to be included in the group.

5-The available documentation must provide written
evidence of the features.

Some examples of program features often meeting the cri
teria are: the total number of imperative instructions, the
average depth of the "IF" nesting, the total number of lines

767

of source code, the total number of entry points, the total
number of Boolean variables declared, the average number
of parameters passed, the average number of lines of source
code jumped by a forward transfer of control, and the total
number of lines of annotation in the source code.

As an improvement on the Zolnowski and Simmons meas
ure, it is here suggested that a sixth criterion be added.

6-The expected amount of the features must be cited
in the organization's local standards manual.
And a change is here suggested in the fourth criterion, by
dropping the phrase "in the group."

These suggestions effectively eliminate the need to use a
group of programs. Instead, the local standard effectively
substitutes for the group. Whereas the selection of programs
to comprise the group may be haphazard or limited, the se
lection oflocal standards is commonly given much thought,
careful attention, and extensive review. Also, local stand
ards are normally promulgated to encourage good practices
and serve as a basis for assessing the application of those
practices. In contrast, existing programs only by chance may
be exemplary, and at the best, only reflect the past practices
of personnel.

The reason why Zolnowski and Simmons have proposed
the use of a group of programs is simple: the statistical law
of large numbers. As sample size increases, the character
of the sample is more likely to be the same as the character
of the group the sample was drawn from. If you want to
know how complex programs are at some user organization,
sample them for an estimate. Then contrast that estimate
against any program which may interest you from that or
ganization. This makes the Zolnowski and Simmons measure
of complexity really a measure of the deviance or difference
from past programming practices.

Applying the law of large numbers to the record of the
past sometimes offers cold comfort for the present. A present
program may appear deviant, yet the deviance may be de
liberate to correct undesirable past practices. An example
might be the use in COBOL of "PERFORM" within "PER
FORM." Further, past practices can hide from attention
complexity-raising present practices. An example may be
the use of a declared variable for multiple purposes (it is one
way to reduce the total of the data declarations).

In many organizations, present programming practices are
governed by the current local standards manual. This usually

768 National Computer Conference, 1980

describes the target or acceptable practices for the organi
zation. For example in a COBOL environment, a standards
manual might specify that IF's may be nested provided the
nesting depth does not exceed three. The suggestion he're
is that the target or acceptable practices substitute for the
actual past practices proposed by Zolnowski and Simmons.
To support this substitution of local standards for the char
acteristics of the group of programs, a simplification can be
made in the computational procedure. This is described
below.

This substitution puts attention on a lightly treated aspect
of the Zolnowski and Simmons measure, the selection of
weights. Uniform weighting is done in the Zolnowski and
Simmons measure. Here with the improvement suggested,
the opportunity exists to weight features differentially to
reflect the local conditions, or the judgments of the local
management, or the recommendations of the accepted au
thorities about the relative importance or priority of the fea
tures.

COMPUTATION

The computation of the improved measure of program
complexity has two phases. One phase works from the local
standards, and prepares for the second phase. The second
phase works from any individual program, and results in a
measure of the complexity of that program. No group of
programs is needed.

The first step in the first phase is to select the features to
use in the comparison. Each of these features must meet all
six criteria cited previously. A decision will be needed on
the relative weight or importance in program complexity for
each feature. A selection will also be needed of which di
rection in the measure for the feature indicates high com
plexity-that is, is a low number or a high number an in
dicator of high complexity for the feature? Some features,
for example, the average number of parameters passed, in
crease complexity when large, and decrease complexity
when small. Some other features operate in the reverse di
rection, the authorities indicate.

Second, for each of the features selected, a reference value
must be chosen. This is the amount against which the com
parison will later be made. Where this level should be set
is a matter for local determination and the application of the
six criteria noted earlier. As Zolnowski and Simmons have
pointed out, existing programs may fruitfully contribute
some evidence as to current practices. But differential stud
ies as to successful versus unsuccessful software could yield
far better evidence for setting the local reference level of
features, than just a raw sampling of past programs.

Third, once the reference levels have been established,
they must be expressed in the reference vector R, with one
element for each feature.

Fourth, to accompany this reference vector, a vector of
weights W is needed, with one element for each element in
the reference vector. That is, the weights in the weight vector

represent the size of the contribution to program complexity
of the feature.

Fifth, a direction vector D must be prepared, with one
element for each feature, to match the reference and weight
vectors. But the direction vector is all + 1 or -1 elements.
A + 1 element indicates that an increase in the amount of
the feature contributes to simplicity, and a-I to complex
ity.

The above five steps of the first phase must be done before
attempting the second phase to measure the complexity of
individual programs. But once the first phase is done, any
number of individual programs may be measured by suc
cessively applying the steps ofthe second phase. The second
phase has the following steps.

A brief example can illustrate the steps in the second
phase, as shown in Figure 1. Assume that phase one has
given the list of features, the reference vector R, the direc
tion vector D, and the weight vector W (see Figure 1 top).
The number and selection of features deliberately has been
made simple and small here for convenience. Figure 1 bot
tom shows the second phase step-by-step computational
procedure to get the program complexity score.

First, the documentation of the program is examined for
evidence of each feature. Evidence found is interpreted in
numeric, form .and is recorded feature by feature as the fea
ture vector F of this program.

Second, the magnitude (M) of the difference between the
feature vector and the reference vector is determined. A
simple subtraction takes care of this matter, but care must
be taken for which to use as the subtrahend and which as
the minuend in order to match the direction vector. If the
subtraction is of the feature vector F from the reference vec
tor R, then a positive sign on an element in the magnitude
vector means that the reference vector asked for more of the
feature than the feature vector reported the program to have.

Third, element by element, the difference vector M from
the prior step is multiplied by the direction vector D, to alter
the signs and yield a product vector P. Now in the product
vector P, a plus indicates undesirable high complexity and
a minus desirable low complexity.

Fourth, a change vector C is created from the product
vector P. Whenever the product vector element sign is a
minus, a zero is put in the change vector C. Whenever the
product vector element is a plus, a + 1 is put in the change
vector C.

Fifth, the score vector S is obtained by mUltiplying the
change vector C by the weight vector W, element by ele
ment.

Sixth, the sum of the elements in the score vector is the
complexity score for the program.

The score is independent of any particular group of past
or present programs. The score reflects deviations from the
local standard. Further, it reflects those aspects of the pro
grams which are known to be significant contributors to com
plexity. This has been achieved in a manner which makes
the score relevant to a particular organization's practices,
and permits an easy comparison between programs subject
to that standard. This also permits a simple comparison of
the effects of proposed or actual changes in standards.

The Complexity of an Individual Program 769

PHASE ONE

Feature Identification Vectors

ID Description W D R

A Average verbs per module 2.0 -1 10

B Ratio of PERFORM verbs 1.5 -1 0.1

G Ratio of IF 1.2 -1 0.05

H Ratio of MOVE verbs 1.0 +1 0.33

E Average variables per module 1.8 -1 8

J Maximum IF nesting depth 1.5 -1 4

PHASE TWO

ID R F + M x D + P + C x W + S

A 10 8 +2 -1 -2 0 2.0 0.0

B 0.1 0.18 -0.08 -1 +0.08 1 1.5 1.5

G 0.05 0.08 -0.03 -1 +0.03 1 1.2 1.2

H 0.33 0.31 +0.02 +1 +0.02 1 1.0 1.0

E 8 9 -1 -1 +1 1 1.8 1.8

J 4 3 +1 -1 -1 0 1.5 0.0

Program complexity score 5.5

Figure I-Example of the computation of the complexity score for a small
modularized COBOL program using a limited list of features

EXTENSION

Further, the technique can be extended from the program
to the subroutines or the modules individually within the
program. Zolnowski and Simmons have opposed this, ap
parently on the grounds of statistical instability from the
expected smaller sample sizes. But with the improvements
presented in the previous section, such an extension is both
reasonable and desirable without the need to identify subsets
of modules.

Complexity in the program must arise from the features

of the program, as Zolnowski and Simmons have pointed
out. Yet, except for a few features, such as overall program
size, the features of the program exist because either 1-
they are also features of the program's component modules,
or 2-they can be easily redefined to be fuatures recogniz
able at the module level. For example, the count of the num
ber of COBOL "IF's" in the program occurs in the modules.
And, for example, the percentage of the total count of the
verbs used in a COBOL program that are "PERFORM"
verbs can be redefined for module complexity to be the per
centage within the module. The results of a computation of
the complexity of the modules of the sample program is

770 National Computer Conference, 1980

shown in Figure #2. Note that the program complexity is
not necessarily the average of the module complexity.

This extension is valuable in the use of the complexity
measure for efforts to reduce or control complexity. If a
measure is global to the program, then the use of the feature
must be located or found in the program in order to modify
the use of the feature. Yet, most of the time, the feature has
been used in specific modules. It is far less time consuming
to search a few easily identified modules for the presence
of a feature than to search an entire program. And, modi
fication of the complexity in the modules nearly always re
sults in a corresponding modification of the program com
plexity.

DISCUSSION

A matter of concern for any measure of program com
plexity is its validity. The validity of the proposed measure
is at least as high as that of the Zolnowski and Simmons
measure because the five selection criteria are the same for
both in selecting the features. The added sixth criterion of
fers an improvement in validity because it allows substituting
a standard which can be carefully conceived for the hap
hazard chance of a group of programs. If the standard is
haphazard or ill-conceived, the proposed measure is still as
good as the Zolnowski and Simmons measure, as long as the
other five criteria are observed.

The proposed measure is more responsive to local con
cerns. For example, factors that are relevant for measuring

Feature F Vectors

ID #1 #2 #3 #4 #5 #6

A 12 5 12 10 19 1

B 17 0 33 40 0 0

G 17 0 8 0 0 0

H 42 60 33 20 32 0

E 9 11 9 7 28 3

J 1 0 1 0 0 0

the complexity of real-time software may be, in the expe
rience of an organization, significantly different from those
measures which reflect the complexity of delayed-time soft
ware. These can be reflected explicitly in the measure pro
posed without the need to accumulate two groups of pro
grams. In addition, specific characteristics related to the
particular hardware configuration, software resources, and
local practices are included, provided the criteria are satis-
fied. .

Better flexibility and adaptability are offered by the pro
posed measure. The proposed improvement makes possible
an easier comparison of work done by different teams or by
different individuals on the same or different teams. It makes
possible an easier comparison of the professional growth of
individuals in their work assignments. It makes possible an
evaluation and comparison of the software work done at one
site with that done at another. It makes possible a quanti
tative measure to be developed of what distinguishes suc
cessful software from unsatisfactory software. All these ben
efits require that a relevant standards manual exist.

The proposed measure makes possible the easy revision
or modification of the feature list. It is common experience
that when some people know that the quality or quantity of
their performance is being measured, those people take lac
tion to make their work appear good, without actually im
proving their work. That is, people sometimes try "to beat
the system." To retain validity, the "system" must change,
and the proposed measure can changed at a low overhead
cost.

Module
and ComQlexit;y Scores

#7 #8 #9 #10 #11 #12 Program

22 2 1 2 2 1 8

27 0 0 0 0 0 18

18 0 0 0 0 0 8

32 0 0 0 0 0 31

23 5 3 5 5 3 9

3 0 0 0 0 0 3

Score 6.5 0.0 6.5 2.5 4.8 1.0 7.5 1.0 1.0 1.0 1.0 1.0 5.5

Note: The program F vector is not the arithmetic average of the module F vectors.

For that reason, the program complexity score is not the arithmetic average of the

module complexity score. Module and program complexities are calculated in the same

waY--i. e., modules are treated like individual programs.
Figure 2-Results of applying the same computational procedure to the mod

ules of the program shown in Figure 1

Further, when people do actually improve their work, the
variation in their work often becomes smaller. Then, the
units of measure used in the past may become inappro
priately large. The proposed measure of complexity can eas
ily compensate for this, and retain its validity just by chang
ing the reference vector and the units of measure for both
the reference and feature vectors-something partly or fully
lost in using a group of programs. This permits an orderly
growth in the focusing of the organization's attention upon
those aspects of design and implementation practices which
contribute to complexity. To the extent these are brought
under control, attention can theri shift to new factors as they
become dominant. These in turn can be incorporated until
they, too, are better controlled, provided, of course, that
they meet the six criteria.

The reliability of the improved measure is as high or higher
than that of the Zolnowski and Simmons measure. All the
aspects of that measure which contributed to reliability have
been preserved. Further, the computational procedure has
been simplified, freed from a tie to a group of programs, and
made less burdensome, reducing several sources of unreli
ability.

CONCLUSION

A comparison of the proposed measure has been presented
by Chapin.4 Compared to other measures, the validity and
reliability of the proposed measure is at least as good as that
of the Zolnowski and Simmons measure.4 The cyc10matic
number advocated by McCabe lacks the breadth of the pro
posed measure.s The McClure measure has a more laborious
computational procedure, and requires a well-structured de
sign. 6 Yet the use of structured techniques does change the
features of programs, as Elshoff7 and ZolnowskP have doc
umented.

The Complexity of an Individual Program 771

By adding a sixth criterion, the proposed improvement
effectively subsets the features covered in the Zolnowski
and Simmons measure to those covered by local standards.
This sub setting enhances the validity by eliminating the lo
cally extraneous and irrelevant features, and improves the
sensitivity and responsiveness of the proposed measure.
This sub setting also converts the measure into a comparison
against a desirable objective or target, instead of against a
melange of past practices.

Finally, the most significant aspect of the proposed im
proved measure of program complexity is its applicability
to individual programs and to the modules within the pro
grams without suffering from the ever-shifting membersl1ip
of the group and free from the burden of computation for
a group of programs. Programs and modules can, with the
proposed improved measure, be ra~ed standing alone for
complexity, in quantitative and reliable terms.

REFERENCES

1. Zolnowski, Jean C. and Simmons, Dick B., "A complexity measure ap
plied to FORTRAN," Proceedings of the COMPSAC 1977 (Long Beach,
CA: IEEE Computer Society, 1977), pp. 133-141.

2. Zolnowski, Jean C. and SiIVmons, Dick B., "Measuring program com
plexity," Proceedings of the 1977 Fall COMPCOM (Long Beach, CA:
IEEE Computer Society, 1977), pp. 336-340.

3. Zolnowski, Jean C. and Simmons, Dick B., "Measuring program com
plexity in a COBOL environment," a paper located elsewhere in these
Proceedings.

4. Chapin, Ned., "A measure of software complexity," Proceedings of the
1979 NCC (Montvale, NJ: AFIPS, 1979), pp. 995-1002.

5. McCabe, Thomas J., "A complexity measure," Software Engineering,
Volume SE-2, Number 4 (December 1976), pp. 308-320.

6. McClure, Carma 1., Reducing COBOL Complexity through Structured
Programming (New York: Van Nostrand Reinhold, 1978), 192 pp.

7. Elshoff, James L., "The influence of structured programming on PLil
program profiles," Software Engineering, Volume SE-3, Number 5 (Sep
tember 1977), pp. 364-368.

An information theory based complexity measure

by ELI BERLINGER
Nassau Community College
Garden City, New York

INTRODUCTION

There have been numerous measures proposed to measure
program complexity. Some are completely heuristic, com
paring certain measurable program features against a set of
predefined standards. Some are topological, based on the
number of regions on the control or data graph of the pro
grams or a combination of the above, and of course, there
is Halstead's Software Physics.

All of these measures have their deficiencies and, no
doubt, so will ours. We have, however, set ourselves the
goal of eliminating some of them and to provide a measure
which has mathematical and intuitive correctness and which
will have a good correlation with observed facts.

Goals

A complexity measure based on all elements of the pro
gram. Everything can produce an error, even a simple as
signment statement or MOVE instruction. They should all
have some effect on the measure. This requirement is not
met in the topological measures, for instance.

To satisfy both intuitive desires and psychological reali
ties, we want the measure to be more sensitive to infre
quently used elements of the language being used than to
commonly used ones. It is reasonable to suppose one can
do more accurately what one does more frequently.

A particular element of a language used in a complex man
ner should contribute more to a complexity measure than
the same element used in a simpler manner. For example,
a nested loop would seem to be more complex than a se
quence of two simple loops. Few of the measures seen to
date have adequately addressed this situation.

The measure should allow for automated techniques in its
calculation.

These are our 'primary goals. As will be seen later, addi
tional advantages will follow as a direct result of the measure
definition.

STATE OF THE ART

A number of complexity measures have been proposed.
A review of some of them will be presented in this section,

773

together with a brief critique of some of their strengths and
weaknesses. As will be noted, a number of the measures
seem to be completely heuristic with no apparent mathe
matical justification.

Hellerman l proposed a measure having some relation to
information theory. His measure is based entirely on the
number of inputs and outputs. Let X be the domain of inputs
and Y be the range of outputs. Each element, Y i , of the range
is the output of a class of inputs, Xi' The Xi form a mutually
exclusive set of N classes. If we conceive of a program as
reducible to a table lookup, let IXil be the number of ele
ments of Xi and Ixi be the number of elements of X. Then
each Yi appears IXil times. The probability of its occurrence
is P(Yi)=lxiI/IXI and its information content is -log2lXi ll
IXI =log2IXI/IXil· The total information content, w(f) which
Hellerman calls the "computational work" is
w(f) =2,~) IXillog21Xl/ixii = Ixi R(P) , ,P N) where R is
the entropy function.

There are several objections to the use of Hellerman's
measure. Two will be given.

First, it is necessary to know precisely how many input
values yield a specific output value. In most programs, the
domain input values is an enormous set, as is the range of
output values. In all likelihood, neither domain, nor range,
will ever be exhausted.

Second, even assuming all elements of the domain can be
used, we would require the computer to evaluate all elements
of the range to determine the domain classes. This means
that every input value has to be used to obtain the output
values, which will determine the domain classes, which can
then yield the measure. By this time. the program is com
pletely debugged and delivered and we no longer need the
measure.

McCabe2 proposed a measure which is easily obtained at
an early stage. Known as the "cyclomatic number," it is
based on the number of linearly independent paths through
the control graph of the program. Let N be the number of
nodes, E the number of edges, and P the number of con
nected components. Then the cyclomatic number, V, is
V=E-N+2P.

McCabe derives a number of simplifications for the cal
culation of V. Using Euler's formula, N-E+R=2, where
R is the number of regions of a plane control graph, we get
R = E - N + 2. Therefore, if there is only one connected com-

774 National Computer Conference, 1980

ponent, R = V. In words, V'is the number of regions on a
plane control graph, counting the external region.

Using a result of Mills,3 McCabe achieves another sim
plification. If 1T is the number of predicates in the program,
then V = 1T + 1. Therefore, to calculate V, one need only
count the number of binary conditions contained in IF's and
DO's to calculate V.

Myers4 proposes a modification to McCabe's cyclomatic
measure. He shows that difficulties arise if one calculates
V by counting the number of predicates (conditions) and that
other difficulties arise if one counts only the number of de
cision statements, IF's and DO's. He proposes to make V
an interval whose lower bound is the number of decisions
+ 1, and whose upper bound is the number of predicates
+ 1. By using an interval, Myers removes the question of
whether or not the statements

IF (A & B) THEN .. .
ELSE ... ; are more

complex than If A THEN IF B THEN ... ;
ELSE ... ;

ELSE:

The cyclomatic measure is a good one. It is easily obtained
and comparisons between programs are possible. However,
two programs consisting only of sequences will both have
V = 1 regardless of the number of statements or variables
contained in the program. The measure is serisitive only to
branching or looping. Nothing else which might contribute
to the complexity of a program is considered. Some purely
sequential programs can be quite complex, however, and
their measures should reflect this.

A much more serious problem appears to exist. A se
quence of IF-THEN-ELSE's has a higher cyclomatic num
ber than a nest. Consider the following two diagrams:

B

<$
', E=9

'\N=7
/ P= 1

,/ V=9-7 +2(1)=4

Both control graphs have a cyclomatic measure of 4, yet,
intuitively, a nest should be more complex than a sequence
since several predicates are operative simultaneously.

McTap5 proposes a measure which compares certain
measurable features of a program to a set of predetermined
standard values. The greater the number of featiIres which
deviate from the norm on the side of complexity, the larger
the measure. The measure is calculated in two phases, as
follows:

Phase 1

1. Select those features, which are to be measured. The
features must be "normalized" so that a given value means
the same thing in all programs or modules. For example, the

number of decisions is not a satisfactory feature, while the
proportion of decisions, compared to all statements, is.

2. Select, arbitrarily or by experience, a reference level
for each feature.

3. Form reference vector, R, comprised of these levels.
4. Form a direction vector, D, where d; = + 1 means 'the

feature contributes to simplicity and d; = - 1 means it adds
to complexity. + 1 and - 1 are the only values used in D.

5. Form a vector, W, of weights for each feature.

Phase 2

1. Form feature vector, F, by studying the documentation
and measuring each feature.

2. Form the magnitude vector M=F-R. Here, if the fea
ture exceeds the reference level, m;>O, else m;::;O.

3. Form product vector P=M*D. If P;>O, the ,-r.h feature
in the program contributes less complexity than the refer
ence level. If P ;<0, it contributes to greater complexity.

4. Form change vector, C:

{
o if P j?O

Ci= 1 if Pj<O

That is, C j = 1 for each feature which contributes more com
plexity than the reference level.

5. Form the score vector, S = C* W. If particular feature
of the program is more complex than the reference value,
the corresponding score vector element is the weight as
signed to that feature. If not, the element is zero.

6. Form the complexity measure M = ~s j, that is, the
measure is the sum of the elements of the score vector.

From a theoretical viewpoint, there is absolutely no math
ematical correspondence between this measure and the num
ber of bugs, or any other factor of importance. From a pro
duction viewpoint, this criticism is not important. If it has
been experimentally determined that programs whose meas
ure exceeds a certain value tend to be poorly written, then
the measure can be used to detect such faulty programs so
that they can be rewritten at an early stage of production.
For that purpose, the measure appears suitable as a guide.

The measure will provide no correlation between the com
plexity measure and the number of bugs. The elements of
the score vector are only two-valued. If the program feature
is below the reference level, the corresponding element is
zero. If above, it is equal to the weight. It would seem that'
the measure might be improved by redefining the change
vector, C as follows:

{
o if Pj~O

C j = -Pi if Pj<O

The correlation between the measure and the number of bugs
should now be considerably improved.

Chapin6 proposes a measure which is based on the role
played by the variables in each module. He considers four

types of variables:

P-input data needed for processing
M-output data assigned a value
C-data used as control (in loops, decisions, etc.)
T -data which remains unchanged in the module (passes

through)

An 1-0 table is constructed for each module on which is
indicated the role of each 1-0 variable. (Here, an 1-0 variable
is any non-local to the module.) The measure is calculated
as follows:

For each module;
1. Count, in the 1-0 table, the number of items in C, P,

or T roles (output).
2. Multiply each by a weighting factor; 3 for C, 2 for M,

1 for P, i for T.
3. Sum the weighted counts.
4. Initialize E to 0 for all modules.
5. If a module serves in the exit test of an iteration then

add to its E measure as follows: (a) if the control data item
for the exit test comes from within this module, add 0 to E;
(b) if it comes from the loop body, add 1 ro E; (c) if it comes
from outside the loop, add 2 to E. For example, if the control
data is initialized outside the loop and modified within the
loop, add 3 to E.

6. Convert E into a repetition factor, R, by adding 1 to
the square of ! of E: R = (iE)2 + 1.

7. Multiply the sum of the weighted counts from step 3
by the modules respective Rs.

8. Find the square root of the products from step 7. This
is Q, the index of module complexity.

9. Calculate the program Q by finding the mean of the
module Qs.

10. Calculate the system Q by finding the mean of the
component module Q within the component programs.

It is felt that this measure has a number of disadvantages:
1. While the measure is based on the set theoretic defi

nition of a function, some of the specific calcuiations appear
to be experimentally derived. For example, step 6 requires
the square of one third of the E value. Why this particular
value is used is not theoretically clear.

2. It requires a detailed 1-0 table or equivalent for each
module specifying precisely how each variable is to be used
in the module. This may be desirable in some cases. A clear
idea of the meaning of each data item is certainly essential.
However, it would require close supervision to ensure that
each variable is properly identified.

3. The calculation of the program and system Qs leaves
much to be desired; the use of the mean has the effect of
making large programs with many modules no more complex
than an individual module. This does not seem to be desir
able. As a minimum, the program and system Qs should be
some additive function of the module Qs.

Chen 7 defines a measure on the topological properties of
a graph. Given a "strongly connected proper flowchart,"
one which contains no dividing edges or bridges, nor weakly

An Information Theory Based Complexity Measure 775

connected subparts, he defines the "maximal intersect num
ber," MIN, as the maximum number of edges which can be
intersected by a continuous line drawn so as never to enter
any region, including the external region, more than once.

If the graph of the flowchart is made up of serially con
nected subparts, the MIN = ~MIN of subparts - (2 x
number of slubparts) + 2, for which he gives a proof.

The topoi'ogical attribute MIN can be given analytically
by the expression MIN = 7:,,, + 1 where

,,-I

Z" = 1 + ~ log2(P;X + q ;), X = 2
;=1

where n is the number of decision symbols on the flowchart
or graph, q; = probability that the i + ph IF symbol is forming
a serial relation with any of its preceding and adjointed IF
symbols, and Pi= l-qi'

For a given proper flowchart, q i is either 1 or 0 depending
on whether or not it is in the specified serial relationship.

7:,,, is called the "control structure entropy." The pro
grammer is considered a source emitting IF symbols and
7:,,, is defined as the entropy of the "source" when it emits
n IF symbols in a specified manner.

For a given total number of IF symbols, the programming
job is to determine the exact flowchart structure. This will
determine the P is and q is. Since there are many different
alternatives which are seemingly equal, we can, a priori, set
P i= q i= i· This gives 1" = 1 + ~7-1 10gz(1 + i) = (n -1) log23
- n + 2 = 7:,,,. Given the i number of IF symbols a program is
to have, 7:,,, can be calculated since it depends only upon n.

Chen now derives a relationship between 7:,,, and r, the
productivity in source statements per busy hour. The rela
tionship is heuristic, derived to fit his observed points and
is

r(Z) =' 1
" b/a + (c - b/a)'eaozn

where a=0.3187, b=9.2451 x 10- 1 and 0.7695 x 10- 1

c 0.7714x 10- 1
•

For a given flowchart the measure Z" has the property that
any number of serially connected IF symbols do not con
tribute to complexity. Only if the IF symbols are "nested,"
will the complexity increase. While it is true that serially
connected IFs seem to be inherently less complex than other
connections, yet it seems to be an oversimplification to ig
nore them completely.

Using the ';a priori" formula improves this situation some
what. Here, each IF statement add log2 3-1 to the entropy
Z".

It should be noted that Chen's maximal intercept number
is quite similar to McCabe's measure when there is only one
connected component.

Mohanty8 proposes the Entropy Loading measure based
on the amount of information shared between modut'es or
subsystems.

Assume A i and B are two subsystems of S such that
AnB=<f>, AUB=S. A table is made with every subsystem

776 National Computer Conference, 1980

of A and B along one dimension and every system attribute
along the other. An entry is 1 if a subsystem makes an as
sumption about the attribute, 0 otherwise. For each sub
system of SeA or B) we consider the sub matrix consisting
of attributes which have a nonzero entry for that subsystem.
Applying Schutt's Entropy Metric9 to each submatrix, we
get H(A) and H(B). If we calculate the Entropy Metric for
the entire system S, we get H(S). The Entropy Loading
Measure is now defined as

C(S) = H(A) + H(B) - H(S).

It is a measure of the information shared between the sub
systems A and B.

This measure is useful at the system design stage where
the shared attributes are known, or, at least, hinted at. It
provides no help in determining the complexity of a given
module or subsystem, which would, however, be desirable
at a later stage in program development.

Schutt9 proposes the Entropy Metric. It is similar to Hel
lerman's Work Function] but is divided by lxi, the number
of input classes. The definition of the Entropy Metric is

'" IX;I Ixi
H= ~ TXT 10gzIX;I'

Halstead 10 has proposed a rather comprehensive theory
in which he not only proposes a measure to correlate with
the bugs in a program, he also attempts to predict this meas
ure at the most primitive state of the programming when all
that is known is the number of input and output variables.

Let 11] = no. of operators
TJ z = no. of operands
N] = total usage of operators
N z = total usage of operands

and N = N] + N z be the total length of the program
then N = TJ] logz TJ] + TJ z logz TJ z and is called the program

length.

While this relationship is interesting and Halstead dem
onstrates that it gives correct results for a number of pro
grams, it is not the measure he uses.

He defines program volume, V, as

V = N logz TJ where TJ = TJ] + TJ z

The potential volume, V*, is the volume a program would
have if a function existed which would solve the problem.
There would be two operators; one an assignment statement,
the other a call to the function. The potential volume is
therefore:

V* = (2 + TJz*) logz (2 + TJz*)

where TJz* is the number of input lout put variables, each used
once in the function parameter list.

The program level, L, is now defined as the ratio of the
potential volume to the program volume:

V*
L=

V

The larger the volume of the program, the lower the level
of its coding.

The program effort, E, is defined to be proportional to the
volume and inversely proportional to the level: E= VIL.
Here it is assumed that for a given volume, it is more difficult
to comprehend a program written at a low level than at a
high one, perhaps because of increased complexity for each
statement, and for two programs written at the same level
(remember that the level is unitless, being a ratio of like
quantities) it is more difficult to comprehend the "larger"
one.

It is the effort, E, which is used as the measure to correlate
with the number of bugs in the program.

Halstead defines another measure, I, called the informa
tion content, defined 1= LV. This measure, Halstead feels,
correlates best with total programming and debugging time.

Halstead has given a comprehensive and, on the whole,
a rather beautiful theory to explain program behavior. There
is but one basic flow. He "derives" the volume equation,
V = N logz TJ, as follows: Given TJ types, logz 11 bits are re
quired to uniquely identify them all. It requires N logz 11
"mental discriminations" to select N symbols from a table
of 11 symbols using a binary search technique since each
search requires logz 11 choices. Hence the volume.

This scheme seems to be based loosely on information
theory, and this is where the measure fails from a theoretical
viewpoint.

From information theory, we have the total information
as 1= - '2.N; logz P; where P; is the probability of the "h type,
and N; is the number of times it is used. To get Halstead's
volume, it would be necessary to assume that all types have
equal probability, and that the types existent in a paiticular
program constitute the universe of types, giving P; = lITJ.
Then 1= - '2.N; logz lITJ = '2.N; log2 TJ = N log 11. These two
assumptions are untenable. Therefore, the Halstead measure
fails to have a theoretical basis and must be thought of as
completely heuristic.

Sullivanll reports a number of measures, some of which
he rejects as either unworkable or not sufficiently studied,
and others he proposes as measuring the quantities which
contribute to complexity.

The Cl complexity at any node of an elementary scheme
is the number of paths containing more than X contiguous
repetitions of a sequence of modes, where X = 2 unless oth
erwise stipulated. The complexity of the entire scheme is
defined as the local complexity of the terminal node. A prob
lem with this measure is that the measure can be very large
or even infinite, the difficulty being in the notion of a loop
as the immediate repetition of the same sequence of steps.
If there are intermediate steps, this definition allows for the
repetition of the same loop virtually an infinite number of
times.

The C2 complexity at any node is similar to the Cl measure
but eliminates the difficulty mentioned above. It is defined
as one less than the number of paths from the start node to
the given, not counting paths where any node occurs more
than X times, X = 2 unless otherwise stipulated. The com
plexity of the entire elementary scheme is defined as the

local complexity at the terminal node. The complexity of
a composite scheme is defined as the sum of the complexities
of its elementary subschemes. Compared to CI, only the
contiquity condition has been removed, but this removes the
retracing of loops move than once for different sequences
of paths. The subtraction 'of unity is to give unitary sub
schemes (sequences) a C2 measure of 0 so that the sum of
the measures for the elementary schemes of a scheme would
not be sensitive to the incorporation of unitary decompo
sition or to decompositions along a single path.

The C2 measure is always finite and if the program is struc
tured, all of its elementary subschemes have measures of
either 0 or 1. If the program is written using IF-THEN -ELSE
for alternation and DO WHILE for iteration, then the C2
measure is the number of IFs and WHILEs.

Sullivan feels that one weakness of the C2 measure is that
all paths are counted even when some paths do not contrib
ute as much to complexity as others. He gives the example
of an N-way case structure which is not necessarily N times
as complex as a simple IF-THEN structure.

Measure C3 at any mode of an elementary scheme is de
fined as the first derivative of the C2 measure with respect
to X, the maximum no. of repetitions of any node. This
eliminates the problem mentioned above with respect to the
N-way CASE structure. The C3 measure has not been stud
ied in depth and Sullivan makes no further use of it.

Sullivan now uses another approach. The C measures are
defined on properties of the control graph but completely
ignore data. He defines two new values, the P measures,
which describe complexity in terms of how the program in
teracts with the data.

Let the entire scheme be decomposed into subschemes
and let the subschemes be modules (either actually or con
ceptually). Let the data subgraph proper to the module be
that part of the data graph referenced from the nodes of the
module or subscheme. If we now assume that any data ele
ment so referenced is relevant over any path through the
subscheme, then it is reasonable to define measure PI as the
product of the number of paths through the subscheme
(C2 + 1) and the number of data items (nodes of the subgraph)
referenced.

As Sullivan himself states, the underlying assumption is
not intuitively satisfying. Not all nodes of the sub scheme
reference every node of the data subgraph. Also, no dis
tinction is made between set and use references.

'Sullivan now changes perspective and examines each data
item individually to see how it is used. For a given data graph
nodes, define the process node set as all nodes which either
set or use that data item, together with the start and terminal
nodes. For nodes n i, n j of the set, let edge (n i, n J exist if
n j can be reached from n i without passing through another
node, nk> of the set. For this new control graph, the PD2
data node complexity at this particular data node is the C2
complexity of the control graph just defined except that any
sub scheme which has only use references and no set ref
erences in nodes other than its start node is assigned value
O. Sullivan has not determined how the P2 measure should
be defined from the PD2 data node complexities. It may be

An Information Theory Based Complexity Measure 777

possible to have P2 be the sum of all the PD2 measures but
he suggests that some other function makes more sense.

The various measures Sullivan suggests may be correlated
with the number of bugs, or difficulty, of a program. At the
time the paper was published, the measures had not been
tested. This writer is not aware that experimental justifica
tion exists. The P2 measure seems a bit difficult to imple
ment. For each variable, it is necessary to create a control
graph from the nodes of the program or system control graph
which use that variable. Where there are subscripted or qual
ified variables, the problem is compounded greatly since the
data graph will have many nodes, each of which requires the
creation of a control graph. From a practical viewpoint, the
calculation of this measure may require a program of con
siderable complexity to measure it.

BACKGROUND ON INFORMATION THEORY

Suppose an alphabet of symbols is given (e 1 ,e 2, ••• ,e n)
whose respective probabilities of occurrence are
(p 1 ,p 2 , ••• ,P n). Then the. following quantities can be defined
or proven.

Uncertainty and information

Where symbol e i has probability Pi' the uncertainty as
sociated with the occurrence of symbol e i is -log Pi' If the
logarithm is base 2, the information isin bits. The uncertainty
is a measure of the information provided by the symbol.
Note that a symbol with low probability contains more in
formation than one with high probability. Uncertainty and
information are, for practical purposes synonymous in the
present context.

Entropy

The entropy, H, is defined H = - '£.p i log Pi' It is the av
erage information provided by the alphabet of symbols (e i)'
We will discuss entropy again.

Total message information

Let a measure be composed from an alphabet (e J whose
frequencies of occurrence are (f;) and probabilities are (P i)'
Since e i contains -log Pi bits of information, the total in
formation contained in the message is

1= - ~f, log Pi bits.

This will form the basis of our complexity measure.

Ideal symbol length

To minimize expected message length, where a message
is defined as a string of symbols, it can be shown that the

778 National Computer Conference, 1980

encoded symbol should have a length in bits given by
1; = -log p;. For example, if e I has probability PI = i, and
if we use base 2, then the encoded length of symbol e I should
be 11 = -log2 i = 2 bits.

Entropy, H

Entropy of an alphabet is defined as H = - "i,p; log p;,
summed over all i. If -log p; represents the length of symbol
e i then the entropy represents the weighted average symbol
length in an ideal coding scheme. The entropy will be used
later in a complexity measure prediction formula.

Message length

Let a message have symbol e i occur with a frequency Ii
and let an ideal coding scheme be used so that symbol e i
has coded length - log p ;, then the coded length of the
message will be L = - "i,f,. log Pi where "i,Ii = N is the total
number of symbols used in the message.

We see that the two calculations - "i,p; log p; and
- "i,I; log p; can be interpreted in two ways. The first, en
tropy, is both the average information content supplied by
the alphabet and the average length of the encoded alphabet
where an ideal coding symbol is used. The second is both
the total information contained in a message and the total
message length if encoded with an ideal coding scheme.

These interpretations will be used again later when dis
cussing the complexity measure.

ASSUMED PROGRAMMING ENVIRONMENT

We require an installation at which statistics have been
gathered on all items. used in programs written at the in
stallation. Specifically, the following are known: (1) the per
centage of time each operator is used; for some operators
several distinct percentages are known; these include op
erators which have nesting levels such as DO'S, IF'S, pa
rentheses, and so on; (2) for operands such as variables,
constants, arrays, function names, ~tc. we rank their prob
abilities according to frequency of use; that is, the proba
bility of the most frequently used taken first, the next most
frequent second, etc.; separate sets of probabilities are kept
for arrays of differing dimensions and, perhaps, of different
data types or structures; (3) frequencies for labels are kept
as for variables, .ranked in order of usage.

The required frequencies can be automatically accumu
lated as programs run at the installation. Different proba
bilities are maintained for each language for which a com
plexity measure is required. A number of programs have
been written, which can be easily incorporated into a system,
that count frequencies for FORTRAN, PL/I, and perhaps
some others.

A COMPLEXITY MEASURE

We now define a new complexity measure based on in
formation theory.

Let a program be given. We count the frequency of oc
currence of all tokens in the program: operands and oper
ators. We assume that the long term probabilities of these
are known and are represented by Pi. The complexity meas
ure is defined as:

There are several interpretations we can assign to this
measure. First, from an information theory viewpoint, the
measure represents the total information contained in the
program, assuming the program to be a message.

Second, if we were to code each token of the program
using an ideal coding scheme, the measure would be the total
length required to encode the program.

The measure as defined is sensitive to the frequency of
usage of all symbols and to the proportion of times the sym
bol has been used in the past.

The Pi are an accumulated statistic gathered at the in
stallation over a period of time. It is quite possible that a
given program may have a different measure at different in
stallations. This would reflect different programming tech
niques at these installations. There are both positive and
negative aspects to such a situation.

On the positive side, if a program manager has a known
correlation between this complexity measure and program
ming difficulty at his installation, he can predict how long
it will take his programmers to finish the job. This would be
of primary importance to him.

On the negative side, the manager has no way of knowing
from the measure whether his programmers are working ef
ficiently. If it is important to know this, and one would think
it is, a comparison of the measure would have to be made
with another installation's. If another installation has a dif
ferent set of probabilities, the measure can be recalculated
using those probabilities. It is somewhat unclear, however,
whether the results are meaningful.

A better way to measure programmer efficiency might be
with the entropy measure to be defined later.

This measure may appear, to some, to be similar to Hal
stead's program length measure. There is, however, a major
difference. Halstead's "probabilities" are calculated as IJ
n for a given program. The measure here uses long term
probabilities obtained over a period of time. Halstead makes
no distinction between programs using difficult constructs
and those using simpler ones. The measure proposed here
does.

ADVANTAGES

The measure, as defined, has the following advantages:
(1) once the programming has been done, calculation of the
measure can be completely automated; (2) the measure can

be estimated at an early stage to detect programs or modules
which may be overly complex; (3) the measureis more sen
sitive to infrequently used tokens than more frequently used
ones; this is intuitively satisfying as it is reasonable to sup
pose that people will tend to make more errors in using things
with which they are less familiar; (4) most importantly, the
measure makes distinctions between tokens which are used
at different levels; the probability of a DO used as a second
level is lower than the one used at the first level; the level
two DO will contribute more to the measure than the level
one; this also seems quite satisfying as it is reasonable to
suppose that nesting is more complex than sequencing; very
few of the measures proposed so far have considered this
aspect of programming.

ENTROPY

We can define a language entropy as:

H= - ~Pi log Pi

A language with a high entropy has many tokens with low
probabilities. One with low entropy has few tokens with high
probabilities.

Note that a given language, such as PL/I, will have dif
ferent entropies at different installations. At one place, pro
grammers might write programs containing a large number
of variables with resulting low frequencies. The other in
stallation might use a great deal of segmentation with the
result that each module has only a few variable of high prob
ability. The second installation would tend to write programs
with lower complexity than the first.

The entropy might, therefore, be a measure of an instal
lation's ability to reduce complexity through segmentation.
It could also, perhaps, be used to compare with other in
stallations. For example, if one installation used the various
language features more uniformly than another, then the
entropy would be larger at the installation. This might in
dicate a better knowledge of the language, perhaps.

ESTIMATING THE COMPLEXITY MEASURE

We have seen that the entropy, H, is the average length
of.a program token and the complexity measure, M, is the
encoded length of the entire program.

Suppose N is the expected number of tokens, operators
or operands, in a program. Then we can define an estimated
complexity measure, M, as

An Information Theory Based Complexity Measure 779

The only problem is obtaining N. Some work is being done
along these lines. For example, Professor Laemmel,12 at
PINY, has been using a modified Zipf s law to obtain the
number oftokens ifthe number oftypes is known. The num
ber of types might be estimated at an early program state.
Halstead, using software physics, attempts to estimate the
number of tokens , which he calls the length, from the number
of 1-0 parameters.

Whichever scheme is used, an estimate can be obtained.

CONCLUSION

A measure has been proposed which, it is to be hoped,
correlates well with difficulty in programming. The measure
has mathematical foundation in information theory and is
intuitively satisfying as well. It can be easily found after
some initial programs have been added to a system. Fur
thermore, a predictor for the measure is available.

The measure is based on the probability with which var
ious tokens of a program are used. The probabilities are col
lected over a period of time and are cumulative.

The measure is installation dependent but comparisons
between installations is possible by use of an accompanying
measure. This other measure is also used in predicting to
complexity measure.

BIBLIOGRAPHY

1. Hellerman, L., "A Measure of Computational Work," Transactions on
Computers, Vol. C-21, May 1972, pp. 439-446.

2. McCabe, J., "A Complexity Measure," Transactions on Software En
gineering,.Vol. SE-2, Dec. 1976, pp. 308-320.

3. Mills, H. D., "Mathematical Foundations of Structured Programs," Fed
eral Systems Division, IBM Corp., Gaithersburg, Md, FSC72-6012, 1972.

4. Meyers, G. J., "An Extension to the Cyclomatic Measure of Program
Complexity," SIGPLAN Notices, Oct. 1977, pp. 61-64.

5. McTap, J. L., "The Complexity of an Individual Program," published
in these Proceedings.

6. Chapin, N., "A Measure of Software Complexity," Proceedings of the
1977 NCC, Montvale, NJ, AFIPS, 1979, pp. 995-1002.

7. Chen, E. T., "Program Complexity and Programmer Productivity,"
Transactions. on Software Engineering, Vol. WE-4, May 1978,pp. 187-
194.

8. Mohanty, S. N., "Models and Measurements for Quality Assessment of
Software," Computing Surveys, Vol. II, No.3, Sept. 1979, pp. 251-275.

9. Schutts, D., "On a Hypergraph Oriented Measure for Applied Computer
Science," Proceedings of COMPCON, 1977, pp. 295-296.

10. Halstead, M. H., Elements of Software Science, Elsevier North-Holland,
Inc., New York, 1977.

11. Sullivan, J. E., "Measuring the Complexity of Computer Software,"
MITRE Technical Reports, MTR 2M8V, June 1973.

12. Shooman, M. and Laemmel, A., "Statistical Theory of Computer Pro
grams in Information Content and Complexity," Proceedings ofCOMP
CON, 1977, pp. 341-347.

Software Engineering
Education

Several studies have indicated that the
data processing industry's most critical
problem during the 1980's will be a short
age of qualified software engineers. This
panel brings together a number of people
who have been actively addressing the
problem of increasing the supply of qual
ified software engineers through both
University and industry programs in soft
ware engineering education. They will ad
dress the following issues:

• What skills will be needed by the soft
ware engineer of the future?

• What software engineering programs
are currently underway in universi
ties, industry, and professional soci-
eties to meet these needs?

Barry Boehm
Area Director

• What particular approaches have been tried to date, and how well have they worked
out?

• What are some resulting guidelines for mounting a successful software engineering
education program?

781

Special Topics

In this session, an integral EDP auditor
discusses his function and involvement·
with data processing and the users of data
processing. He shares his views on a wide
range of specific EDP areas of activity and
involvement. He will relate his concerns
to control objectives in the audit meth
odology utilized for determining that the
control objectives are effectively assured.

783

Gene Smith
Area Director

Technology development, severed ventures, and other
aspects of corporate venture capital

by JEAN E. DE V ALPINE
Memorial Drive Trust
Cambridge, Massachusetts

INTRODUCTION

The following discussion is based on the experience of Me
morial Drive Trust (MDT) in connection with efforts of busi
ness corporations to participate through investment or con
tribution of technology, resources, or personnel, in the
development of other business enterprises. We shall em
phasize so-called "severed ventures," but will include an
example of another approach. We shall also describe a ca
pability in the areas of technology and product development
up to and including participation in startup or early-stage
technology ventures.
. MDT, in accordance with its charter, views itself as being
in the business of investing in and contributing on the di
rectorate level to the maturation of enterprises comprising
a very wide spectrum of business categories.

We were founded in 1951. During our first fifteen years,
aside from our investment in Arthur D. Little, Inc. (ADL) ,
we were predominantly engaged in real estate activities. Real
estate development and ownership surely constitute a type
of venture-capital activity within a broad definition of the
term. That, however, is not the subject of principal interest
to this audience.

During the early sixties we began to shift emphasis into
the area of venture-capital investment in small prepublic
enlerprises, with a bias toward "high technology" content,
and we have stayed on this course ever since. It is no secret
however, that MDT is widely perceived in association with
ADL. It is faiF to say that this perception has some validity
in view of the fact that up until 1969 MDT owned 100 percent
of the stock of ADL, and after 1969 and to the present has
owned approximately 70 percent of the stock of ADL.

This association has given a corporate venture aspect to
some of our activities. Nevertheless, management and op
erations of MDT are separate and distinct from management
and operations of ADL. In general, we have operated and
can operate in either the corporate venture mode or the in
dependent venture-capital mode.

A CAPABILITY IN TECHNOLOGY AND PRODUCT
DEVELOPMENT

In fact ADL itself has an active venture-capital activity
called Arthur D. Little Enterprises (ADL Enterprises). In

785

some respects, though not in all, it seems to me that ADL
Enterprises has similarities to Scientific Advances Inc., the
venture-capital subsidiary of Batelle Memorial Institute.
ADL Enterprises includes in its domain managing and de
veloping to feasibility or commercialization of inventions,
including the handling of patent strategy. It also seeks pos
sible spinoffs of technology and/or viable small businesses
from within ADL, somewhat after the fashion of General
Electric's Technical Ventures Operation. ADL Enterprises
further seeks equity in other companies, in situations in
which ADL can contribute technology or expertise in ex
change for equity or options on equity, or perhaps alterna
tively on a royalty or other licensing basis. In appropriate
circumstances, ADL Enterprises may also make cash capital
investment.

ADL Enterprises constitutes an evolution of ADL's In
vention Management Department, formed in 1958 to eval
uate, process and facilitate the exploitation of proprietary
inventions developed by ADL staff members, as well as
those submitted from outside the company. The scope of
this activity now includes active involvement and partici
pation in new product ventures.

For inventions submitted from outside, ADL Enterprises
stresses those that represent substantial technical achieve
ments and not minor improvements, design modification, or
styling changes. They are not ordinarily interested in house
hold devices, automotive accessories, toys, games, and
wearing apparel. Although ADL can act strictly as a licensing
agent for fully developed inventions, it customarily manages
technology to which engineering, economic, or marketing
value can be added in order to maximize licensing potential.
A new product invention should represent a large nongov
ernment market with sales potential of at least $5 million
annually. A manufacturing process improvement should per
mit yearly savings of at least $250 thousand annually.

If after evaluation tests ADL Enterprises should decide
to pursue exploitation of the invention, they will propose an
agreement to create a profitable licensing situation. This
usually will involve a grant to ADL of exclusive rights for
a limited time to develop and license the invention, and will
normally include technical and commercial assistance in
order to enhance the technology. ADL will normally assume
patent costs after an agreement has been made. Typical

786 National Computer Conference, 1980

agreements share licensing income on a 50/50 basis, but un
usual circumstances may warrant a different formula.

Based on success in development and licensing of new
technology, ADL Enterprises has broadened its objectives
to include: a) exploration of totally newmarket segments for
a product already fully commercialized in a different field;
b) provision of assistance to small firms lacking the neces
sary managerial-technical talents or finances to capitalize on
valuable technology; c) cost-sharing in the development of
new technology; and d) joint-venturing arrangements, in
cluding equity arrangements alluded to above. By virtue of
its depth and breadth of resources, ADL is able to draw from
a large pool of professionals and specialists in the major dis
ciplines to perfect and commercialize new technology. They
can then combine their knowledge of industry patterns in
the marketplace with an ability to reach appropriate deci
sion-making individuals to consummate optimum new prod
uct venture, licensing or market agreements.

Again, it should be emphasized that ADL Enterprises, like
ADL, constitutes an activity organized and operated on a
basis of total independence from the investment and new
venture operations of the parent, MDT. Transactions or ac
tivities in which the participations and contributions of MDT
and ADL Enterprises may be either complementary or com
patible are negotiated and structured strictly on an arm's
length basis.

CERTAIN INVESTMENT DESIDERATA

With respect to MDT a brief comment is in order as to
what we view as ideal venture-capital criteria, to be followed
by some observations based on our experience in the cor
porate venture mode.

I do not think it useful to try to be too precise in describing
what we seek in the way of investment opportunity. Suffice
it to say that the range is $250 thousand to $2 million. We
do some startups, but relatively few as a percentage. We
look for evidence of outstanding potential for growth in cor
porate level management skills, technology, marketing ex
pertise, and manufacturing capability. We have been and are
majority shareholder in a number of companies. However
we do not seek this role. Rather, in general we prefer to be
one of several professional venture-capital investors.

Ideally we like situations in which ADL technical or mar
keting expertise can assist us in technology assessment and
evaluation of market potential. However, just as the involve
ment of Scientific Advances Inc. does not carry with it ac
cess to fre~ Batelle R&D, likewise our involvement does not
carry with it access to free ADL professional services.

On the other hand, our familiarity with the capabilities of
various ADL sections and divisions, and with the strengths
and interests of outstanding individuals, is I believe rightly
perceived as an asset which enables us to make highly ef
ficient and effective use of a wide range of skills and knowl
edge. It is this characteristic which results in other venture
capitalists inviting us to participate in their deals, either to
strengthen their own evaluation process, or potentially to
aid the enterprise subsequent to investment.

SEVERED VENTURES

I now turn to the subject of so-called' 'severed ventures. "
In the following discussion we use the term "sponsor" or
"sponsor company" to refer to the operating business en
terprise which may contemplate, adopt, or execute, either
as a policy or randomly, the identification, preparation, and
"spinout," "spinoff," or "severance" of activities devel
oped by and theretofore conducted within the sponsor com
pany. Needless to say the terms "spinoff," "spinout" and
"severance" are here used synonymously. In general the
term "severed venture" will be used as the generic term.

Of course the same company may also contemplate,
adopt, or randomly execute a policy of venture-capital in
vestment in small pre-existing outside enterprises, either by
means of acquisition of equity or quasi-equity for cash, busi
ness assets, or knowhow or technology transfer. This, how
ever, constitutes another and distinct mode of corporate
venturing.

Corporate strategic planners can and have devised many
modes and motivations for sponsor company involvement
in severed ventures, such severed venture comganies being
constituted to operate autonomously with respect to the
sponsor company, and to engage in technology related or
unrelated to, or only peripherally or potentially related to,
areas of interest within the mainstream of the sponsor's busi
ness or business plan. In order to provide a concrete frame
work for purposes of observations from 'Our experience, I
shall give some examples. These examples, although adher
ing rather closely to fact, will be rather thinly disguised by
means of nonmaterial permutations of names and facts.

Cryotec Inc.

Cryotec Inc. was severed from ADL about ten years ago.
At that time revenues were in the $4-5 million range. In 1979
revenues are approaching the $80 million level. The cry
ogenics hardware business of ADL had evolved and been
stimulated during the period when ADL was owned by MIT.
The business grew slowly during the period following the
acquisition by MDT from MIT ofthe common stock of ADL.

As a division of ADL, the cryogenics activity was at best
marginally profitable. Indeed it is fair to say that the business
was so embedded in the ADL R&D environment that it was
extremely difficult to determine what might be its potential
profitability as a discrete activity. This is a problem en
demic to potential technology severances from any sponsor
company having a high level of internal R&D. Suffice it to
say that in the ADL environment the business was con
ducted in the ADL tradition of research, development and
custom engineering of the highest quality. Although not de
monstrably incrementally profitable to ADL from an ac
counting standpoint, such high-quality input provided the
business with an outstanding reputation which proved to be
of great value during the years of transition to genuine stand
alone independence.

The question of motivation is a basic conceptual issue for
any sponsor company contemplating a program, policy or

random effort to identify and launch, as an independent sev
ered venture, some discrete segment of its own business.
What are to be the reasons and criteria for severing out a
given segment of business? In the case of the severance of
Cryotec from ADL the rationale was that a production-ori
ented activity was not in the mainstream of the traditional
consulting and R&D nature of ADL's business and image,
that the cryogenics business would indeed benefit by re
moval from the hothouse R&D atmosphere of ADL and ex
posure to competitive demands of the commercial market
place, and further that, so far as could be ascertained, ADL
could achieve at least as high return on equivalent invest
ment redirected in traditional channels.

Initially the stock of the severed venture, Cryotec, was
held roughly 80 percent by MDT and 20 percent by em
ployees. ADL retained no continuing role of guidance or
overview. At the present time (ten years later), as a result
of several acquisitions MDT holds about 54 percent of the
stock, the balance being in the hands of the public, including
employees.

The business was completely severed physically from
ADL and moved to a separate location. The board of the
newly-severed venture consisted of two representatives of
MDT, including myself, and three members of management,
all of whom were former ADL staff members. All this illus
trates a number of difficult questions which arise when one
contemplates modes and techniques for creating an inde
pendent enterprise out of segments of an existing enterprise.
Rather than list modes and discuss pros and cons, let me
state some tentative conclusions.

For one thing, ultimate realization of value tends to be
optimized if the severed venture can be accomplished so that
it does not require over the period of the first several years
any third party cash investment for working capital or other
purposes. This is an ideal which happened to have been re
alized in the case of Cryotec. However, I would guess that
generally speaking the motivation of the sponsor company
would include the objective of reallocating working capital
or other resources from the severed venture to ongoing or
proposed operations of the sponsor. This would usually re
quire third party investment at the outset.

Further, the management of the severed venture may view
the sponsor as remaining ambivalent with respect to com
mitment to follow through to an ultimate achievement of
permanent independence of the severed venture if outside
investors are not introduced. Indeed it is natural that sponsor
companies contemplating a well-thought-out severed ven
ture program tend to be ambivalent in this respect, resulting
at least from the outsider viewpoint in inconsistent and in
some cases contradictory policy or practice. This is evi
denced in situations in which the sponsor company attempts
to negotiate the equivalent of the right to reacquire and reab
sorb the severed venture within a given period of time, or
contingent upon certain events.

Another important element in our view is that the orga
nization within or affiliated with the sponsor company, and
having the function of identifying the activity to be severed,
executing such severance, and exercising the continuing
stockholder interest of the sponsor with respect to the sev-

Aspects of Corporate Venture Capital 787

ered venture, should be autonomous within the manage
ment structure of the sponsor, should be professionally com
petent and dedicated to venture capital management, and
should have continuity, coupled with a long-term charter.
If this independence is not present a likely result is the in
hibition and hobbling of the severed venture by reason of
subjection of its decision-making processes to the ordinary
procedures of the operating management hierarchy of the
sponsor.

A related issue might be termed the' 'identification prob
lem." Who identifies a candidate? What are the criteria for
such identification? Where does the final decision lie? All
this relates to motivation and the definition of objectives
with respect to a severed venture program. I submit that
within any given sponsor company, and especially a very
large sponsor company, the set of skills required in connec
tion with the identification problem may be somewhat dif
ferent from the set of skills ordinarily associated with a pri
vate, independent venture-capital investment enterprise.

Of course the identification problem may be either more
or less of a problem depending on policy criteria established
by the sponsor company. Such criteria might include the
following: only viable businesses of a certain magnitUde, say
$1 million sales or more, having a pro forma record of prof
itability and/or positive cash flow, and having a high prob
ability of surviving as severed ventures without any assist
ance whatever from the sponsor company. Of course these
need not be the criteria. One could adopt a policy of spinning
out startup technology looking for a market. My personal
belief, however, is that a serious, well-thought-out, long
term severed venture program to be successful must rest on
a firm policy of spinning out only such sponsor company
activities as can be identified and segregated in a manner
such that the severed venture has a visible likelihood of vi
ability over the first several years of independent existence.

Interesting questions arise in connection with the nego
tiation of details with respect to the severance from the spon
sor company of the to-be independent severed venture. The
negotiators include at least the prospective management of
the severed venture, some of whom may be recruited from
the outside for the purpose at hand, the management or di
vision management of the sponsor company, the manage
ment of the autonomous organization or subsidiary within
the sponsor company having purview of the severed venture
program, and in most cases prospective outside cash inves
tors. I might insert parenthetically that we at MDT have been
in the shoes of both prospective outside cash investors and
the severed venture program management organization, ex
cept that in negotiating with the sponsor company we have
had the unusual advantage of being the controlling stock
holder of the sponsor. Even so, the negotiations viewed from
the standpoint of the severed venture program management
entity can be difficult and delicate. For example, in the case
of Cryotec a serious issue arose as to the extent to which
ADL would retain a cryogenics capability, potentially ca
pable of competition with the severed venture. We know
this to be one of the most common issues in connection with
other severed venture activities of which we are aware. It
turned out that ADL did retain, on a very advanced level,

788 National Computtltr Conference, 1980

an R&D capability in cryogenics. However no competitive
situations have arisen, except perhaps with respect to certain
NASA and DOD programs.

The lesson, however, is th~t the sponsor must carefully
think through and contractually delineate the ongoing rela
tionship of the sponsor to the severed venture with respect
to patents, technology, and competition. These matters will
depend upon a clear understanding by the sponsor of the
sponsor's ultimate intent and objectives with respect to the
severed venture. Here again the sponsor confronts the pos
sibility and perhaps even the likelihood of incompatible or
contradictory objectives or practices. The objectives may
even be subject to change, and given the nature of the busi
ness organism changes of objectives may be probable. A
simple example is the case of Cryotec. The original mandate
to me from the MDT Board was to do what could be done
to validate Cryotec as a small 'advanced technology activity
with pretax return on investment on the order of 20 percent,
and having achieved that goal, to sell or merge the severed
venture into a larger company.

However, when that goal was achieved Cryotec then ap
peared to be justified on its merits as a continuing invest
ment, and consequently the original objective was not ex
ecuted. In some situations, but not necessarily all, such a
change of objective might be disappointing to the severed
venture management who might have hoped for an eventual
public offering which would remove absolute majority stock
control from the hands of a single entity, or who might have
hoped for a merger into another entity out of which the sev
ered venture management might emerge dominant, due to
the relatively equal sizes of the merging companies.

A further question arising at the outset of the severance
process is who should be CEO of the severed venture.
Should the CEO come from inside the sponsor company or
should he be recruited from the outside? Whichever course
is followed a certain amount of luck is involved.

In the case of Cryotec the MDT Board advised that I
should recruit a CEO from the outside. After interviewing
all of the divisional management personnel of the cryogenics
operation as it was constituted within ADL, I selected the
individual who had the function of production management
of the business. He turned out to be, and is widely recognized
as, an outstanding CEO. I had no .elaborate rationale for
the choice, except that I was confident as to market ac
ceptance and dominance, and was concerned mainly with
the capability to produce profitably and cost effectively once
the activity was moved out of ADL R&D environment.

Hyperballistics, Inc.

Our experience with Hyperballistics Inc. would make a
fascinating business school case. Strictly speaking this was
not an ADL severed venture. It was instead the severance
of a joint-venture controlled and managed by ADL and hav
ing a third party stockholder who had acquired stock for
cash. This third party stockholder quickly took the position
that it had made its cash investment on the understanding

that ADL would be responsible for the management of the
enterprise. The third party stockholder made no distinction
between ADL and MDT, and when MDT succeeded to the
ADL stockholder position the third party stockholder was
instantly on the phone demanding that I become Chairman
of the Board of Hyperballistics.

This illustrates still another problem for a would-be spon
sor company. The problem is that third party investors, with
or without justification, tend to place significant weight on
the fact that the severed venture is coming out of a highly
reputable sponsor company. They tend to believe that some
how, although the intention may have been disclaimed, the
sponsor company will oversee and guide the management
of the severed venture, and will in dire distress support and
come to the aid of that venture.

For us at least, Hyperballistics also taught the lesson that
a severed venture, or for that matter a corporate venture
capital involvement of any kind in an independently consti
tuted enterprise, should be premised on that enterprise hav
ing its own full complement of managerial capability, and
not being dependent by contract or otherwise for operational
level management provided from within the sponsor com
pany.

Technical Ventures Operation

We have had the role of cash investor in certain spinoffs
executed by the former Technical Ventures Operation of
General Electric Company. In each case these severed ven
tures have survived over a period of several years, and ap
pear to have established viability as small businesses.

In each case the severed venture was constituted with
adequate revenues and resources reasonably to assure the
achievement of modest positive cash flow and profitability.

At the time of these spinoffs the Technical Ventures Op
eration adhered to the "three-legged stool" policy. This
meant that none of the three parties in interest, namely GE,
the management, and ourselves-the cash investor, should
hold an absolute majority of the voting stock. Each of the
three parties was represented on the board of directors with
GE providing two board members, one representing the
Technical Ventures Operation, and one to provide oversight
and guidance to the severed venture by reason of special
qualifications including expertise and experience in the tech
nology or markets.

On the whole I think there is merit in this paradigm. I
know that management does in fact view the "balance of
power" effectuated via the three-legged stool mechanism to
be very important. I believe that most cash investors would
deem this attribute important. On the other hand the posi,tive
psychology of this arrangement tends to be negated to the
extent that the sponsor attempts to retain rights to reacquire
the severed venture. Further, the cash investor should be
confident of his capability to make independent technical
and market evaluations of proposed spinouts from other cor
porations.

ANOTHER STRATEGY-INFILTRATE, WATCH,
ACQUIRE

It is my understanding that the Chairman of EG&G has
described their policy for developing new ventures as uti
lizing a number of different mechanisms including "minority
positions" without buyout agreements. They recognize that
it is usually not desirable to be locked into a minority in
vestment with no public market, but have decided to rely
on persuasion rather than contract for ultimate merger.

An interesting variant of this strategy has, in fact, been
successfully executed by Time Incorporated in the acqui
sition of American Television & Communications Corpo
ration (ATC).

By way of preface it should be recalled that MDT during
the sixties acquired a group of cable television systems of
the classic variety, and placed these systems in a wholly
owned operating subsidiary, Oregon CATV, Inc. In the late
sixties Oregon CATV, Inc. was combined with other aggre
gates of systems including the systems of Narragansett Cap
ital Corporation and Boston Capital Corporation to form
ATC. A public offering followed.

Over the following decade A TC grew rapidly while main
taining extremely strong financial condition. As a result ATC
was widely perceived by industry analysts as the premier
company in the industry. The market generally reflected this
appreciation by awarding ATC shares a premium price in
relation to the industry as a whole. Throughout this period
I served on the Executive Committee and Audit Committee
of ATC.

During the early seventies various analysts and writers in
business publications delivered themselves of the opinion
that Time Inc. had at least three major problems, including
Life Magazine and Time's cable television operations and
franchises. Within a rather brief interval, Time, Inc. ceased
publication of Life and merged its cable television systems
into ATC in exchange for A TC common stock on the order
of 10 percent of the outstanding common stock of ATC. At
the request and encouragement of the ATC Board, the Pres
ident of Time Inc. joined the ATC Board.

ATC continued to flourish. An outstanding set of capa
bilities in system management and franchise acquisition was
structured, and maintained, and improved. The systems and
franchises contributed by Time Inc. were operated and de
veloped with correspondingly excellent results.

In consequence, in 1978 Time Inc. made known their in
tention to acquire additional shares of A TC on the market
and from various institutional holders on the basis that the
ATC stock as such was viewed by Time Inc. as a good in
vestment.

Subsequently, after having built their stockholdings to a
position in excess of 20 percent of ATC outstanding stock,
Time Inc. expressed to the ATC Board a desire to open ne
gotiations with a view to acquisition of A TC in exchange for
stock and cash. In late 1978 this acquisition was consum-

Aspects of Corporate Venture Capital 789

mated on a basis attributing an implicit value to ATC on the
order of $250 million.

It is true that Time Inc. paid a full and fair price for ATC.
It is also true that they were not in a position to compel the
ATC Board or stockholders to agree to merger. Nevertheless
their familiarity with ATC, their presence on the Board, their
appreciation of the turnaround accomplished by A TC in the
operation of their former systems, and ultimately and es
pecially their significant stock position, placed them in a very
favorable position to observe, and to exercise the options
of either holding ATC stock as an investment, selling that
stock, or attempting to acquire ATC. The presence of Time
Inc. as the largest stockholder of ATC tended to inhibit other
potential acquirers.

CONCLUSION

If success be defined in terms of stand-alone viability as
a small business, experience has shown that business en
terprises can indeed be successfully identified within and
severed from larger business entities. In our experience such
successful severed ventures have constituted viable business
units existing within the sponsor corporation prior to sev
erance.

It would seem to be inadvisable to attempt to set up as
a severed venture a startup technology, or a technology or
product line not having found a meaningful market niche.
With respect to such technology or product line the would
be sponsor should either undertake internally, or incollab
oration with an external partner skilled in new technology
and product development, the maturation of the technology
or product line to a level of feasibility and commercializa
tion, prior to attempting a severance.

It is essential that a severed venture program should have
very careful thought-out objectives, definition of candidates
for possible severance, procedures for identifying such can
didates, severance decision processes, and structural para
digms for severed ventures. It is equally important that the
execution of such program should be delegated to a profes
sionally competent organization or subsidiary, reporting at
a high level of the sponsor corporation, vested with sufficient
independence and autonomy, and having a time horizon on
the order of ten years.

In the execution of its mandate, such venture-capital arm
of the sponsor corporation should acquire and hone the skills
necessary to identify possible candidates for severance, and
to negotiate in detail with parties in interest, including the
sponsor corporation, with respect to the terms of severance,
including ongoing future relations relating to patents, tech
nology, competition and the basis, if any, for the provision
by the sponsor corporation of guidance, assistance, and tech
nology. And, of course, such venture-capital arm should
possess the capability to provide continuing board level guid
ance and surveillance to severed ventures in its portfolio.

Recommendations for increasing the availability of capital*

by RICHARD C. PFLAGER
Control Data Capital Corporation
Minneapolis, Minnesota

INTRODUCTION

Mark Twain's proverbial statement about the weather
"Everybody talks about the weather but nobody does any
thing about it" -might be equally applicable to small busi
nesses. Everyone seems to be talking about small busi
nesses** these days, but is there really enough that is being
done to help them? There are, to be sure, a number of or
ganizations that work on their behalf such as the Small Busi
ness Administration in the government sector and venture
capital firms in the private sector. There has also been, in
recent years, a rapid increase in the number of small business
investment companies (SBIC's) as well as minority enter
prise small business investment companies (MESBIC's)
both federally licensed under the Small Business Investment
Act of 1958. More encouraging than the increase in the num
ber of these organizations is the increase in investment funds
that they have made available to small businesses: $33 mil
lion for MESBIC's and $255 million for SBIC's as of March
31, 1979.

While all of this is very good and while it can be argued
that it is extremely encouraging, I would ask again, is it suf
ficient? Small businesses are, after all, a major source of jobs
within the U.S., outpacing the major corporations with im
pressive growth in the rate of employment. Small businesses
have also been the "well spring" of many new and improved
products, services and technologies that contribute signifi
cantly to our economy's productivity, the only successful
damper to inflation that we know. Together with agricultural
commodities, these technologically intensive products com
prise the heart of our export trade.

The purpose of this paper is to recommend certain changes
to our existing tax laws, and by so doing, increase the avail
ability of capital for the small, technically oriented compa
nies that have served us so well in the past as the mainstays
of our economy.

* This paper is derived from a more comprehensive report to the Assistant
Secretary of Commerce for Science and Technology prepared under the di
rection of, William C. Norris, Chairman of the Board and Chief Executive
Officer of Control Data Corporation.
** Throughout this report small businesses are defined as those that have less
than 500 employees, are not majority owned by larger firms, are operated for
profit, and are involved in the creation and use of new knowledge, products,
processes, or services. Activities related primarily to real estate transactions
are excluded. i

791

RECOMMENDATIONS FOR INCREASING THE
AVAILABILITY OF CAPITAL

Capital gains taxation

The present level of capital gains taxation has become a
very critical constraint on the founding and expansion of
small, technically oriented firms. Increases in capital gains
taxation are probably more responsible than any other factor
for the gradual deterioration in technological entrepreneur
ship that has occurred in the United States during the last
decade. Such changes have successively lowered after-tax
returns for investors in successful innovation to a level where
now, technologically innovative firms no longer are able to
attract adequate investment.

Engaging in industrial innovation has always been inher
ently risky because the uncertainties associated with new
technology developments are always compounded by the
uncertainties of market acceptance of the new products and
processes that result from 8uch developments. At the same
time, innovation is usually a capital intensive activity, not
so much because it requires a massive investment as do steel
and chemicals, but because of the extensive time lag between
the launching of the development and the establishment of
its large scale acceptance in the marketplace. During this
time, capital is required to cover the expenditures for start
up costs before the revenues have begun to be realized. Such
capital is forthcoming only when potential investors believe
that the after-tax returns will be adequate to cover their risks.
The problem of adequate rewards, however, is not just one
for capital. Traditionally, key management and technical
personnel have been compensated for the personal risks in
joining uncertain ventures by sharing in the fortunes of the
firm rather than by receiving salary payments. In our free
enterprise system successful entrepreneurship creates the
economic values. These, in turn, are reflected in the rise in
stock prices of the enterprise and are realized by investors
and key individuals in the sale of their stock in such enter
prises. Thus the after-tax capital gain is of critical importance
if we are to have innovation by small firms.

In looking back over the last decade, the tax on capital
gains from 1969 to 1977 increased dramatic all y. Prior to 1969,
the maximum capital gains tax rate paid by individuals was
25 percent. The Tax Reform Act of 1969 increased that rate

792 National Computer Conference, 1980

to a maximum of 40 percent-a 35 percent rate on the capital
gains and an additional 5 percent from the operation of the
minimum tax. Legislation also reduced the tax on earned
income from a maximum rate of 70 percent to 50 percent.
Thus the differential between the taxation of salaries and
capital gains narrowed from 70 percent on salaries and 25
percent on capital gains to 50 percent and 40 percent re
spectively. t

The Tax Reform Act of 1976 provided for further increases
in the minimum tax as well as· raising the maximum rate on
capital gains to approximately 49.0 percent. These changes
virtually eliminated the differential between the rates on
earned income and capital gains that existed prior to 1969.
The effect of these changes was further compounded by the
high rate of inflation which produced significant capital gains
in current dollars, and hence capital gains taxes, for assets
whose value after adjustment for inflation had actually de
clined. The impact of such changes in taxation has been
dramatic for the small technically oriented firms in which
the prospect of capital gains has been the major incentive
for investors. The 95th Congress recognized the negative
consequences of the high rate of capital gains tax by passing
significant rate reductions. The legislation did not, however,
restore the rates to the 1969 level. Given the risks of small,
technically oriented businesses, a further rollback is nec
essary for these firms to realize their growth potential in such
vital areas as job creation. It is also necessary to consider
an even lower rate of 10 percent to attract investment in the
smallest of businesses; for example, application of the lower
rate should be determined by the size of the businesses at
the time the investment is made and thus serve to attract
capital to new firms and to recognize the higher degree of
risk in the smallest firms.

Therefore, our highest priority is for a capital gains tax
reduction that is targeted for small, technically oriented
firms. Such a tax reduction would be a superior method of
improving the availability of capital. By increasing the re
wards for successful ventures, an incentive could be pro
vided to manage such enterprises in an efficient way, leaving
to the marketplace the distribution of these incentives among
the various firms. This approach would be superior to pro
viding loans, or other federal financing to small firms; ap
proaches that would thrust upon the federal government the
difficult task of deciding among the different loan applicants.
This proposal might result, at least initially, in revenue loss
to the federal government, but given the narrowly limited
target of the proposed tax reduction, it would be a minimal
one, and losses would be offset by the gains in employment
and output from the successful firms.:!:

Recommendation 1

That the capital gains tax rate be reduced to 25 percent
(the pre-1969 rate) on the capital gains realized from the sale

t Tax Policy, Investment, and Economic Growth (A report by Securities In
dustry Association, 1978), p. 63.
t Tax Policy, Investment, and Economic Growth (A Report by the Securities
Industry Association, 1978), pp. 34-7.

of stocks of small businesses whenever such stocks have
been held for three years or more, with a rate of 10 percent
for the capital gains of investors in the smallest of businesses .
This reduced rate would not be applicable to any capital
gains realized from real estate sales.

Tax-free exchange of stock

Continuous investment holdings are risky even in small,
technically oriented firms whose stock has risen in value.
The reason being that stockholders have a propensity to
diversify their investments. Under existing tax laws the most
profitable way to diversify is through a tax free reorgani
zation with a large firm carried out through a tax-free ex
change/transfer of stock. Investors oftentimes find that eq
uity shares of large firms are likely to be more liquid and
represent a diversified set of economic activities. On the
other hand, this method of diversification tends to concen
trate capital in the larger firms.

It is important, therefore, to have tax policies that en
courage the continuous use of capital in the start-up of new
firms. At the same time the investor's desire for diversifi
cation of risk is a legitimate one and must be recognized.
Accordingly there is a need to establish an alternate route
for tax-free diversification of risk that would encourage the
formation and growth of small firms but allow the tax free
roll-over of investment from one small firm to another. Such
a provision-similar to the roll-over provision on sale of
homes-would make funds available to new, small, tech
nically oriented firms, from the most knowledgeable and re
ceptive of investors-those that have already participated
in such ventures. It would remove, moreover, the tax in
centive for the sale of the successful small firms to the large
ones, thus preserving the small firms as independent busi
ness entities. It would also allow the investor to diversify
his holding in several small, technically oriented firms.

Essentially this same proposal was made in 1976 by the
Tax Policy Task Force of the Small Business Advisory Com
mittee on Economic Policy.

Recommendation 2

That appropriate changes be made in the tax code to per
mit deferral of capital gains taxes on the sales of shares in
small businesses if the proceeds are reinvested within one
year in one or more other small, technically oriented firms.

Taxation of corporate income and tax treatment of start
up losses

Taxation of corporate income

Small businesses frequently experience great difficulty in
obtaining capital not only in their early, formative years, but
also during the years of their rapid expansion. Firm data are
not readily available, but capital shortages during this period

are believed to contribute greatly to the high failure rates of
small businesses. Causes of capital shortages cover a broad
spectrum, but in the case of the small, struggling companies
that bring new products or services to the market, current
tax rates on net earnings are so high as to preclude the es
tablishment of a solid, financial base that is attractive to
investors. The best and easiest way for small firms to achieve
a sound financial basis, and hence adequate funds to support
expansion, is, of course, through retained earnings. Current
tax rates on cop orate earnings are not, however, sufficiently
differentiated between the small firms and the large, more
established corporations. Net earnings of all domestic com
panies (other than mutual savings banks, life insurance com
panies or regulated investment companies), regardless of size
and age, are subject to a tax of 17 percent on the first $25,000
of net income, 20 percent on the next $25,000, 30 percent
on the next $25,000, 40 percent on the next $25,000 and 46
percent of that portion of the taxable income that exceeds
$100,000. And yet, the tax bite doesn't end there. Most states
also collect income tax on small businesses, and many im
pose taxes on dividends to stockholders. * Small businesses
would have a better chance for survival, as well as growth,
if the tax rates on net earnings were also reduced.

Start-up losses

The well established corporation is also provided a tax
incentive for innovation insofar as its expenses for the early
phases of innovation are a deduction from its corporate in
come tax. The new, small firm cannot obtain this tax benefit
since it lacks the profits from which such losses can be· de
ducted. Then too, such losses (incurred after December 31,
1975) can be carried forward seven years and charged against
income. Before 1976, net operating losses could be carried
forward for only five years. It is common knowledge that
some of the most advanced and promising technology has
a longer gestation period than seven years and hence does
not yield profits within a seven-year period in which to take
advantages of earlier losses through offsets. In short, there
is a tax bias against the smaller firm that is developing tech
nology when compared to the larger firm. This unfavorable
tax bias should be eliminated.

Recommendation 3

That the threshold for the application of the full corporate
tax rate of 46 percent be raised from $100,000 to $250,000
of annual. net income; and for annual net income below
$250,000, a progressive rate schedule be established begin
ning at 10 percent on the first $20,000, and increasing in 10
percent increments to a ceiling of $250,000 on each additional
$40,000 until $100,000 is reached and then no increase until
$250,000; in addition, the carry-forward provisions for start
up losses of small businesses be extended from seven to ten
years.

* Tax Review, Vol. XXXVIII, No. 12, December 1977, p. 47.

Increasing the Availability of Capital 793

Qualified stock option plan for key employees

Small, innovative companies frequently depend upon
stock incentives to attract, and retain, key employees be
cause they cannot afford to pay the high salaries customarily
paid by the large firms. Small companies also tend to go
through a growth cycle where, in the early stages, technical
know-how is the dominant skill required. In due course,
commercial products or services are produced from this
know-how, but the number of customers remains small.
Later, as market opportunities expand and production
grows, new requirements develop. The need to manufacture
and market products on a larger scale emerges and the need
to organize and operate more efficiently begins to rise. This
stage requires managerial talents that are oftentimes una
vailable in the smaller companies but are plentiful in the
larger firms.

The problem for the smaller firm is how it should work
to attract more experienced operational managers from the
larger companies. Prior to 1976, a widely used and highly
successful incentive was the Qualified Stock Option, which
allowed a key employee the following choice: if the person
chose not to be taxed in the year of grant on the current
value of the stock, the person could defer payment of the
tax from the exercise date of the option to the earlier of:
(1) the year of sale of the underlying stock; or (2) ten years
after the grant of the option. The Tax Reform Act of 1976
eliminated this option. As a result, the current law unduly
penalizes key employees of smaller firms who must sell their
optioned stock at the time of exercising the option in order
to pay the required tax. At the same time the individuals are
precluded from selling the stock obtained from exercising
their options because of the limited or highly illiquid market
for such stock. **

That restoration be made of the Qualified Stock Option
Plan for Key Employees of small businesses.

Access to capital markets

Traditionally, small, technically oriented firms have relied
on external financing from the public capital markets to sup
port their streams of new products and services that have
given vitality and buoyancy to the U. S. economy. In recent
years there has been a sharp reduction in the number of firms
successfully obtaining funds in the capital markets. T~e rea
son is readily apparent to anyone watching the stock market
today. Equally illustrative of the venture capital shortage is
the recent survey commissioned by the National Venture
Capital Association. The report states that in 1975 the bulk
of the venture capital industry's investments were in "non"
venture businesses. Only 4 percent of the money went to
the start-up of new ventures and only 2 percent went to fi-

** "A Program of Tax Revision Proposals to Enhance Capital Formation for
Growth Businesses," National Venture Capital Association (NVCA), Wash
ington, D.C. May I, 1977, pp. 9-11. Also see pp. 34-36 of TechnologicalIn
novation: Its Environment and Management, U.S. Department of Commerce.
Washington, D.C., 1967.

794 National Computer Conference, 1980

nance first round financings. Both of these figures repre
sented significant declines from previous years. t

To prevent small firms with growth problems from being
precluded entirely from the public securities market, the
SEC created Regulation A. This regulation facilitates se
curities offerings of $500,000 and less, by exempting them
from the costly and time-consuming requirements of a full
registration. In today's economy, the value of this exemption
has been reduced significantly due to inflation. At the same
time, the need for increased dollars from the venture capi
talists has increased substantially. Both trends emphasize
a real need to raise the Regulation A limit to reflect the cur
rent realities of our existing capital markets.

Another cause of the current shortage of capital for new
ventures is the extreme difficulty of investors to liquidate
their venture capital investments once they are made. The
basic. objective of an investor has always been to realize
substantial gains once the venture becomes successful. Not
only does this produce a profit that is commensurate with
the risk, but it also enables the venture investor to recycle
his capital back into other new ventures. If investors cannot
realize a profit from their venture capital investments, they
will stop making the investments. Then too, gains from suc
cessful investments must be sufficient to offset losses,
which, in many cases, frequently represent a significant per
centage of the total capital invested.

Finally, severe impediments to achieving liquidity have
been caused by recent changes in SEC regulations that force
investors to urge young and sucessful innovative firms to
seek mergers with larger companies that have broader mar
kets for their shares. This has the counter-productive effect
of stifling small promising businesses before they have had
a chance to prove they can thrive on their own, let alone
making large corporations even larger. In the final analysis,
innovation is discouraged and job creation is diminished.

Therefore, liquidity restrictions on venture capital inves
tors should be eased by modifying SEC Rules 144 and 146
so as to facilitate the sale of equities in thriving businesses,
as well as the reinvestment of the proceeds in new and grow
ing businesses. Such modifications would be consistent with
the needs and protection of both the investor and the se
curities markets. This would al~o serve to reduce the liq
uidation of investments through large corporate takeover.

Recommendation 5

That the Security Exchange Commission's Regulation A
exemption be increased to include all issues under $3,000,000
and that SEC regulation procedures for small issues be
streamlined; further, that SEC procedures be modified to
facilitate the sale of stock in small businesses by major stock
holders up to the amount of $100,000 per year.

t "Statement and Proposals to Promote Liquidity of Venture Capital In
vestments," NVCA, 1976, p. 1.

Pension fund investment

Pension funds provide the primary pool of investment cap
ital today. Their assest are generally estimated to range be
tween $200 and $400 billion. The managers of such funds are
subject to ERISA regulations. A conservative interpretation
of the ERISA regulations requires that the fund managers
limit their equity investment to stocks of blue chip firms
frequently traded in large volumes on the public exchanges.
Therefore, by simply amending ERISA regulations, a new
source of funds could be made available to small, technically
oriented firms. The Labor Department found considerable
merit in the recommendation of a 1976-77 Small Business
Administration Task Force on Equity Finance that ERISA
be amended in such a way so as to increase the availability
of capital to new, small, innovative firms without jeopar
dizing the safety of pension plan investments.:!: On July 23,
1969, a new regulation went into effect that removed the
personal liability of a pension fund manager if a particular
investment turned sour, provided the manager had followed
department guidelines. * Although this change will prove
beneficial, we believe a further change should be made.

Recommendation 6

That ERISA's prudent man standard be restated so that
it is clearly applicable to the total portfolio of pension fund
investments rather than individual investments; and further,
that pension fund managers explicitly be permitted to invest
up to 5 percent of pension fund assets in small, technically
oriented firms.

CONCLUSION

New jobs, especially skilled jobs; better solutions to our
national problems of urban decay, pollution, steeply rising
costs of food and housing, and health care; and increased
competitiveness in international markets-all depend upon
our ability to stimulate the rate of technological innovation
in the United States. Small businesses are the "well spring"
for this innovation and small businesses, in turn, depend
upon the availability of capital to sustain them.

The recommendations contained in this paper are sug
gested as one possible course of action that will lead to in
creasing the availability of capital through changes in direc
tion and thrust of our corporate tax laws. The changes as
recommended would not result in any material loss of rev
enue to the government and yet would restore the vigor and
vitality of our small. businesses. Without small businesses
we cannot hope to solve some of the economic problems
confronting our society today. With them we can ensure our
place of leadership in the world economy.

,* Pages 14 and 15 of the cited report.
* Washington Post, July 15, 1979.

Corporate venture capital in the computer industry

by KENNETH W. RIND
Xerox Development Corporation
Stamford, Connecticut

and

GENE I. MILLER
Xerox Development Corporation
Los Angeles, California

INTRODUCTION

Venture capital as practiced by industrial firms differs from
conventional venture investing in that motivations beyond
strictly financial reward are usually present. Typically, a
corporate venture capitalist will be seeking to gain exposure
to new markets/technologies, generate new products, de
velop acquisition candidates, and/or assist a supplier/cus
tomer. Corporations also may utilize venture capital con
cepts in spinning off businesses which are not appropriately
kept inside, or in initiating new ventures internally.

While the role of venture capital in the development of
the computer industry has been profound from its very,in
ception, in recent years corporations have been playing an
increasingly more active role in the financing of new com
puter-related enterprises. This paper will provide an overall
review of the participation of venture capitalists in the com
puter industry, combined with a description of Xerox' on
going involvement as a corporate venture capitalist.

HISTORIC REVIEW OF VENTURE CAPITAL

It is not possible to determine exactly the inception of the
organized venture capital industry in the U.S. In fact, groups
of domestic and European investors in the late nineteenth
and early twentieth centuries were responsible for financing
development of several new industries including railroads,
steel, petroleum and glass. However, a landmark date for
the computer industry was 1911, when a group of wealthy
individuals financed and merged three weak companies, In
ternational Time Recording Company, Tabulating Machine
Company and Computing Scale Company, into a single en
tity to manufacture and market office equipment. They were
wise enought to recruit Thomas Watson as its president in
1914. In 1924 the firm's name was changed to International
Business Machines.

Probably the first corporate venturer was Ou Pont. When
one of its important new customers ran out of funds in 1919,
it purchased a 38 percent equity interest and brought in a

795

new president, Alfred Sloan. General Motors has grown sub
stantially since that investment.

The modern venture capital era is generally considered to
have begun after the Second World War, and was given much
of its impetus by Laurance Rockefeller, who even prior to
that time had helped to finance Eastern Airlines in 1938 and
McDonnell'Douglas in 1939. Other wealthy family groups,
many of whom had originally made their fortunes in earlier
ventures, also became active venture capitalists. These in
cluded the Phipps (Carnegie Steel) and the Whitneys, J. H.
Whitney and his sister Mrs. Joan Payson (heirs of the Van
derbilt fortune).

The formation of American Research and Development
(now part of Textron) in 1946 was another landmark event
because AR&D was tl~e first venture organization open to
public investment and, of course, was the founding investor
of Digital Equipment Corporation. Notable also were the
50's financing of eight scientists from Shockley Transistor
by Fairchild Camera, and the funding of research into a new
copying technique at Battelle by Haloid Corporation, later
to change its name to Xerox Corporation.

Also in the 50's, a new spate of companies were founded
with government R&D contracting as their major business.
Several not-for-profit research groups associated with uni
versities spun-out and prospered in defense-oriented areas.
These included: Itek in reconnaisance; GCA in geophysics;
Tracor in undersea warfare; and Conductron, now a part of
McDonnell Douglas, in radar signal processing.

In the late 1950's and early 1960's a number of successful
organizations were formed by large groups leaving the major
data processing companies. Examples are: Control Data,
founded in 1958 by a group from Univac; Memorex, founded
in 1961 by people from Ampex; Scientific Data Systems
(later acquired by Xerox), founded in 1964 by Packard-Bell
personnel; and Mohawk Data Sciences founded in 1975 by
a Univac spin-out. Two successes of this period can be
traced to the concept of gathering a number of smaller tech
nological firms under a single corporate wing. Litton Indus
tries, founded in 1952, and Teledyne, founded in 1961, were
created in this manner. Other venture capital backed success

796 National Computer Conference, 1980

stories, such as Digital Equipment and Raychem spun out
of non-profit organizations to commercialize new products.

Drawn by these large gains, many new groups entered the
venture capital field in the 1960's and 1970's.

• Small Business Investment Companies (SBIC's) were
authorized by the Small Business Investment Act of
1958. They are corporations, licensed by the Small Busi
ness Administration (SBA), an independent government
agency, that are provided with tax incentives and gov
ernment loans of as much as $35 million (up to four
times the invested capital) to make equity-type invest
ments in small businesses. While 722 SBIC's were li
censed, and more than 50 raised public funds, few could
be considered unqualified successes, and the number
of active SBIC's sank as low as 272 in 1976 before
strongly rebounding in recent years.

• A number of new closed-end public venture funds were
formed in the late 1960's and early 1970's, among them
Inventure Capital, Fund of Letters, Value Line Devel
opment Capital, Diebold Venture Capital, Price Capital
and Source Capital. Most have since left the business.
Insurance companies, banks, mutual funds, university
endowment funds, and new private pools, some of them
using money from foreign investors (including the
Rothschilds), became involved in venture capital. In
vestment bankers also gathered pools of capital for this
purpose. From 1969 to 1972 approximately forty venture
capital groups with committed assets of almost $500
million announced their formation. In the past eighteen
months over $300 million of new monies have been com
mitted to venturing.

• Corporations became active venture capitalists in the
1960's. However, the decline of the market in 1970
brought about the exit of many corporate venture cap
italists, including such major names as: Du Pont, Ford,
Alcoa, Union Carbide, Northrop, Scott Paper and
Singer, as well as some newer venturers such as Mem
orex, California Computer, Data Products, Boothe,
Electronic Memories, Mohawk Data and Applied
Magnetics.

Nevertheless, the survivors of start-up during that period
include many familiar names, including several minicom
puter companies (such as Data General, General Automa
tion, Microdata and Computer Automation), a few periph
eral equipment companies (including Storage Technology,
Pertec and Centronics), several timesharing companies (such
as Tymshare, Comshare and Rapidata) and a considerable
number of semiconductor start-ups (such as Intel, Mostek,
American Micro-Systems, Intersil and Advanced Micro De
vices).

Some corporate-backed computer industry ventures of
this era include: Corning in Four-Phase; TRW in Datapoint;
Burroughs in Decision Data; Fujitsu and Nixdorf in Amdahl;
American Research and Development (Textron) in Docu
mation; and Computer Machinery in Digital Computer Con
trols (now respectively part of Pertec and Data General).

Public interest in the market recovered in 1971 and 1972,
as shown in Table I, before almost collapsing entirely in 1974
and 1975, driving others from the business. The availability
of venture capital funds from Small Business Investment
Companies showed a like decline, and surveys of the non
SBIC portion of the venture capital industry, while less com
plete, indicate a similar pattern of severe cutbacks in 1974
and 1975.

PRESENT STATUS OF THE VENTURE CAPITAL
INDUSTRY

In recent years investments by venture funds have ex
panded substantially from an estimated $300 million in 1976,
to $395 million in 1977 and $500 million during 1978 (ac
cording to Stan Pratt, publisher of Venture Capital). Fur
thermore, there has been a strong influx of additional capital
into the hands of new and established venture capital pools,
encouraged by recent charges in capital gains rates, Rule
144, ERISA and SBIC rules. It is estimated thatthe industry
now commands about $3.5 billion, divided:

• Private pools-$1.3 billion
• SBIC's-$1.2 billion
• Financial corporations-$O.5 billion
• Industrial corporations-$0.5 billion

The figure for industrial corporations includes funds only
under direct control. There has also been a growing tendency
for corporations to invest in venture pools managed by oth
ers.

Corporations increase their direct role

In the last few years a resurgence of interest in corporate
venture capital, fueled by excess corporate liquidity and a
relentless toughening of anti-trust oversight, is evident. In
addition, the entry of foreign corporations into the field has
become a major new factor.

Although financial rewards are usually secondary, cor-

TABLE I.-Small company new issues

Number
of Total Raised

Year Companies (Millions)

1968 358 $ 745
1969 698 1,367
1970 198 375
1971 248 551
1972 409 896
1973 69 160
1974 9 16
1975 4 16
1976 29 145
1977 30 118
1978 37 206
1979E 60 300

porate venture capital funds that have been run by profes
sionals strictly for maximum return, have generally shown
15-20 percent compounded annual returns. However, cor
porate venture capital can best be considered as another tool
to be used for corporate development and should be coor
dinated with the acquisition, joint venture and licensing ac
tivities of the firm. In addition, some elements of public re
lations and good corporate citizenship may be present in
some corporate venture capital programs, particularly those
involved with MESBIC (Minority Enterprise Small Business
Investment Company) financing.

On the other hand, many corporations have failed as ven
turers. A recent survey of corporate venture capital orga
nizations made by Tektronix stated that only 7 percent of
corporate venture capital organizations regard themselves
as being very successful, with over half not even rating them
selves as marginal successes. The success rate could be
greatly improved if entrants exercised the same degree of
planning as they do in their regular business. The difficulties
experienced by a corporation seeking to become a venture
capitalist usually arise from one of these sources:

Lack of appropriately skilled people

A venture capitalist must be entrepreneurially motivated,
patient, realistically optimistic, good at negotiation, persua
sive and able to evaluate people as well as businesses. Also,
he must be more than merely familiar with accounting prin
ciples, tax regulations, corporate finance structures, secu
rities analysis, and securities law. Good internal people are
generally unwilling to leave a company's mainstream activ
ities even if possessing the appropriate skills. Experienced
people from the outside are difficult to attract without special
compensation packages.

Contradictory rationales

A corporate venture capital program may find it difficult
to act in the best interests of both the investee company and
the parent. For example: if the goal of the venture group is
to acquire, then equity financing by others is undesirable;
if the rationale is an exclusive marketing arrangement or a
preferred supplier role, then the investee's operations may
be- unduly limited .. A desire to have continuous profit in
creases by the parent is also incompatible with the normal
activities of a venture operation.

The entire problem can be exacerbated by an improper
reporting structure. For example, having the venture group
report to the Vice President of Finance is likely to shift focus
to profitability; to the Vice President of R&D to technology;
to the Vice President of Corporate Planning to market in
formation, etc.

Legal problems

A corporate venturer must be extremely careful to organ
ize his activities so that they will not run afoul of conflict

Corporate Venture Capital in the Computer Industry 797

of interest problems, including "fiduciary responsibility"
and "corporate opportunity" doctrines. However, several
corporations have left the field incorrectly believing that they
could not get the strategic benefits they wanted out of a
venture activity.

Inadequate time horizon

A venture activity usually shows its losses and problems
early, with the successes taking more time to develop than
anticipated. Unless a commitment is made for at least five
to ten years, a corporate venture fund generally gets ter
minated in its early years.

A most active list

Many corporations have made a single venture capital in
vestment, entered into a "new style joint venture" to obtain
access to a unique technology, spun-off a single new entity,
or found themselves unwittingly with stock in a customer
who was unable to pay his bills. The following list, however,
describes those industrial companies which seem to be most
active in directly providing venture capital to the computer
industry, in addition to Xerox.

Exxon is actively investing in order to provide acquisition
candidates in the information processing industry (with ad
ditional involvements in materials and energy investments).

Textron (American Research & Development) continues
to be a major participant in the financing of venture situa
tions.

Continental Telephone has initiated a major new invest
ment program in computers and communications.

General Electric has invested for financial purposes and
also has had the most active spin-out program. Spin-outs are
made only when it has been decided not to keep an activity
going, and the only alternative is liquidation.

Technological spin-outs have also been made by Battelle,
Bolt Beranek and Newman and Arthur D. Little.

Fairchild Camera and CTS have invested in customers,
and Control Data, Burroughs, NCR and Motorola have in
vested in suppliers. Teledyne, ATO and Telesciences are
recent entrants into venture capital.

Active foreign companies investing for technological rea
sons include: Northern Telecom, Siemens, Nippon Electric,
Cable & Wireless, Konishoroku, BASF, and Fujitsu. Other
recent foreign investors in semiconductor companies in
clude: Robert Bosch, Lucas Ind., Jaeger and VDO.

Some of the more recent beneficiaries of this upsurge of
corporate investments have included:

• Computers - Cray, Tandem, Modular Computer, Apple,
Qantel, Magnuson;

• Data Communications - Paradyne, Computer Com
munications, Tran;

• Telecommunications - MCI, Valtec, Danray, Digital
Telephone;

• Peripherals - Data Royal, Silonics, Qume;

798 National Computer Conference, 1980

• Terminals - Applied Digital Data, Digi-Iog, Ramtek,
Threshold Technology;

• Services - Quotron, Manufacturing Data Systems, Tel
enet;

• Miscellaneous - Xidex, Computer Products, Quantor.

Corporations should be preferred investors

Corporate venture capitalists believe they should be pre
ferred investors. In addition to the usual financial and stra
tegic assistance given by conventional venture capitalists,
corporations also can offer:

• Assistance in almost all facets of corporate endeavor,
e.g., setting up financial systems, qualifying suppliers,
meeting government regulations;

• Credibility with customers, banks and other investors
both from a technical and financial standpoint;

• Relief, if desired, from the full range of corporate ac
tivities, e.g., the corporate investor may take on mar
keting responsibilities or may license the product;

• Immediate income from an R&D or consulting contract
if appropriate;

• Customer interface with an interested party;
• An investor with an infinite lifetime, though his time

horizon for profitability will be shorter;
• Additional capital where warranted;
• A merger partner, if and when appropriate;
• A more flexible financing package since return on in

vestment may not be the only criterion.

Selecting a specific partner

There are several points to consider in selecting a cor
porate venture capitalist to work with.

Compatibility of goals

Corporations make venture capital investments for diverse
reasons including: assisting potential suppliers or customers,
gaining exposure to new technologies/markets, growing pos
sible acquisitions, and obtaining a financial return. The busi
ness interests of both parties can either reinforce the pos
sibility of success or may lead to future conflicts.

Longevity

Many corporate venture groups have been shut down due
to lack of success or even shifts in strategy . A failure of
continuing support will probably arise at a poor time in the
economy for raising funds from others.

People

If the corporate group is not managed by experienced ven
turers unnecessary conflicts may develop. Also, there may

be a desire for the staff to return to a career path inside the
corporation, thereby requiring continual efforts at educa
tion.

Flexibility

The route necessary for decision-making may be short or
tortuous. It is essential for the investee corporation to ensure '
that crises can be met quickly.

Interference

Unless the relationship is well-structured, the corporation
may attempt to require conventional reporting and staff pol
icies which are inappropriate for a venture situation. Curi
osity visits may also be a problem.

Time horizon

Not all corporate venture capitalists realize the length of
time that may be necessary to bring a new business to prof
itability. If your investors do not react rationally to unfore
seen slippage, then the venture will be in substantial diffi
culty.

Style

Corporate venture groups, like noncorporate ones, differ
i~ attitudes, approaches and interests. A feeling of sympa
tico, which should have developed before the investment,
is generally extremely helpful to a successful relationship.

VENTURE INVESTING BY XEROX

The approach taken by the Xerox Corporation is one of
providing a supplement to ongoing corporate activities and
as a way of understanding new areas of interest. In our
"venturing" we seek out and endeavor to work with those
entrepreneurs forging ahead in the new, the advancing areas,
of technology that will or could impact the business envi
ronment in which Xerox is or will be functioning.

To understand the Xerox philosophy of venturing one
should read the words quoted by Joseph C. Wilson, the Chief
Executive Officer of Xerox when it grew from a $15 million
company to one doing over $1 billion in revenues, at a John
Diebold Lecture at the Harvard Business School in 1969:

"Entrepreneurship, by its nature abhors channels ... it has
tended to be individualistic, innovative, venturesome."

and the entrepreneur is the

". . . one who assumes both the risk and the management of
an enterprise, and who hires managers, provides guidelines for
their functions, and performs within the organization.

"He is a man who has ideas-basic, germinal ideas, not vagrant
thoughts-and who has the daring and the confidence to use
them. He is the manager who steps out beyond the confines of
a specific area of corporate responsibility. He creates, he pi
oneers, not just to be different, but simply because this sort of
activity expresses his whole being.

"Ideas alone are not enough. Those who have them must know
what to do with them, and how to translate them into reality."

Noone enterprise can claim all the bright thoughts and
entrepreneurial talent in existence. By venture investing
Xerox expects to keep in contact with this talent elsewhere
and thus stay abreast of others' perception of the newest
aspects of their technology and thereby gain an understand
ing of how technology is evolving in selected business areas.

Xerox has had a series of experiences with venture in
vesting. The Corporation has participated in this ~ndustry
either on a part-time basis or with a combination of internal
personnel and outside consultants who jointly located, ne
gotiated, and followed the investments made. Those historic
investments were generally related, directly or indirectly, to
some of the business areas in which the Corporation was
engaged. In one case in particular the investee company
proved quite successful. In other situations the association
was not as rewarding. Near the end of 1975 the conclusion
was reached to reformulate the venture investment activity
and place it in closer proximity to the long range corporate
development function. Collectively, these operations be
came the Xerox Development Corporation ("XDC"), a
wholly-owned subsidiary of the Xerox Corporation.

XDC is charged with the responsibility for identifying op
portunities and growth areas for Xerox beyond its present
business thrust. Since its founding it has been engaged in
acquisitions, venture investments, divestitures, licensing of
technologies, and helping to shape this strategic direction
the company intends to take in the future. XDC wasinstru
mental in establishing XTEN, a plan now before the Federal
Communications Commission which, if approved, would set
aside a band of radio frequencies for document distribution,
data transmission and teleconferencing.

The early months of XDC were spent gathering its full
time professional staff. Those professionals engaged in ven
ture investments have come from the venture capital com
munity. They are experienced in understanding and relating
to entrepreneurs and the early cycles of a new enterprise.
The close working proximity to the other members of the
XDC group, some of whom are drawn from internal sources,
provides a ready means of identifying and gaining access to
corporate resources and quick~r acceptance of the function
and its goals.

XDC is organized in the style of a partnership. Rather than
call the members "Partner" they are referred to as "Prin
cipal" to reflect that the organization is the wholly-owned
subsidiary of its parent the Xerox Corporation. .

The individuals engaged in venture investing are them
selves organized as a "little" partnership. New opportuni
ties are regularly discussed as are the analyses of investment
candidates, and the progress of the enterprises already in
vested in. This group review is the first point in the invest-

Corporate Venture Capital in the Computer Industry 799

ment process. This little partnership is also the staff re
sponsible for aiding the health of the investee companies and
guiding the relationships that may develop with the Cor
poration.

Should an investment opportunity appear promising, other
elements of the "larger" partnership are brought in to assist
in the further study of the enterprise. Collectively the various
aspects and interrelationships of a potential investment are
threshed out and understood from the alternative view
points. With that expanded understanding a decision is
reached by the venture investment group to proceed or not,
and if so on what terms and conditions. Should the decision
to proceed be made and satisfactory -terms negotiated then
final approval, on all except the largest of investments, is
made within XDC by the concurrence of· the venture in
vestment group and the Chairman of XDC. Large invest
ments are approved, in addition, by the Chairman and Chief
Executive Officer of Xerox.

The principal criteria against which a new investment op
portunity is measured at Xerox are: (1) the entrepreneurial
quality of the management, (2) the nature and relevance of
the enterprise to the current or prospective business envi
ronment of the parent Corporation, and (3) the potential for
building a significant business.

Most industrial venture groups espouse similar measures.
What often tends to happen is that the second criterion men
tioned-relevance of technology to the parent entity
drives out or reduces consideration of the other points. It
is here that the professional staffing and the mind set and
instincts of that staff become increasingly significant.

If the long-standing orientation of the people making the
investment decision is to relate to entrepreneurs and to build
a profitable business the analytical approach and the attrac
tiveness of situations will not easily or naturally be directed
toward technical interest as a basis of advancing funds.

Certainly that orientation must be modified (hence the
value of relating to others in corporate long-range planning
and mergers and acquisitions), but it should not be so
changed as to lose sight of the fundamental nature of busi
ness-to serve the needs of the marketplace. The ultimate
reasons for venturing by an industrial entity-to open al
ternative channels in order to accomplish a given task; to
relate to those aspects of its environment which the parent
lacks the resources (men, material, motivation, time, or
money) to accomplish itself or within its own structure; and
to be open to new ideas from others-mandate commercial
success. It is only appropriate therefore that the probability
of commercial success be a significant criterion. Such prob
ability is derived from an analysis of the proposed business
plan.

The definition of what falls within the area of relevance
to the parent Corporation is a subjective judgment. For our
own part we have attempted to understand the businesses
the Corporation is in, best summarized as information han
dling systems, and project the changes that will or could
occur. Further, we have endeavored to identify the subsys
tems that are the building blocks of those larger systems and
the impact they have on the total configuration. The sum of
this body of knowledge lets one see how various suggestions

800 National Computer Conference, 1980

relate, or could relate, to the overall businesses of Xerox.
Specifically what this means is that oil wells and real estate
are out of consideration; and memory devices, electronic
components, and communications equipment are in for con
sideration.

What is often confused with criteria-the specific infor
mation that should be provided or will be requested in eval
uating a given situation-should not be overlooked. There is
no absolutely correct way to prepare a business plan: Several
excellent discussions on the preparation of a business plan
are available in most libraries. What the plan and the general
information made available will do is provide a means of
measuring management and evaluating their skills and strat
egies. The plan will show: (1) the depth of understanding
of the particular business; (2) a sense of organization and
direction; (3) a perception of the marketplace, its needs, and
means and timetable for meeting those needs; (4) the risks
and problems in reaching the market with a product suc
cessfully.

Accordingly the following should be provided, described
or otherwise explained:

• a market definition and survey-what are the users'
needs, what are their reactions to the product, who are
the competitors and what are their capabilities, and es
timated share potential for the enterprise;

• the product-what are its qualities, its life expectancy,
how does it meet user needs, and how does it compare
to competitive offerings;

• the operating plan-including timetable, achievement
milestones, and manning requirements;

• the financial plan-how are the financial needs of the
enterprise to be met;

• management-background, reputation, past perform
ance.

Personal contact in conjunction with the plan will answer
some of the following issues regarding management: (1) the
level of drive/motivation to achieve; (2) resourcefulness in
meeting and dealing with the unexpected; (3) credibility as
a leader; (4) judgment-the ability to identify significant

milestones in measuring the company's progress and act
according to achievement against those milestones.

Being the venture investing affiliate of an industrial or
ganization brings its own special sensitivities which must be
kept in mind in relating with other businesses as a minority
owner. These areas of concern are associated with the prag
matic means of building a rapport and the mechanics of the
formal investment. In structuring a relationship there is no
such thing as a typical investment for us at Xerox. Each
opportunity is studied on its own merits. Each negotiation
is tailored to the facts of the particular situation. Each in
vestment is followed with a recognition of, or attempt to
recognize, the individual characteristics of the industry, the
people involved, and the inherent "ups and downs" of any
new enterprise.

For our own part Xerox does not seek a venture invest
ment situation wherein it will play the dominant role or at
tempt to control the course and direction of the enterprise.
This is not to say we will not give advice or assistance. It
does say we believe strongly in the entrepreneur. That the
entrepreneurial spirit is essential to innovation and the re
sourcefulness to deal quickly and successfully with the un
expected. To take control and eliminate the incentives for
success would greatly suppress that spirit and defeat the
initial purpose of the investment.

We do not take seats on the Board of Directors of investee
companies. We do negotiate the right to visit at reasonable
times and to attend Board meetings. A provision of the
agreement will provide for regular financial reporting.

The investment is not a prelude to acquisition by Xerox.
This may ultimately come about; to date it hasn't. If such
a turn of events materializes it will because the entrepre~
neurial management wants such a merger, not because it has
been mandated with the original funding.

The Xerox approach to venture investing is the devel
opment of a mutually rewarding relationship. This has meant
for us carrying on our activities in the professional manner
of the traditional venture capitalist while building channels
of understanding between the Corporation and the investee
company. It is working well for us. It is predicated on finding
the entrepreneur working in an interesting area and sup
porting his activities. From that, if more is to develop, the
parties are mutually free to chart their directions.

Structured procedure for comparison and selection of
computer system designs

by ANTONIO VALLONE
Computer Sciences Corporation
Silver Spring, Maryland

Decisions about selecting a configuration for a computer
system require an unbiased comparison among alternative
designs of the system. Several heterogeneous factors need
to be considered and their combined effect must be evalu
ated. The procedure provides a structure to the selection
process activities: developing a selection plan, evaluating
each design, and ranking the alternatives. It is based on a
cost-effectiveness methodology which characterizes each
design by the life-cycle cost through a "system cost index"
and by the design effectiveness in reaching the system ob
jectives through a "system utility index." The procedure is
applicable to the selection of a system, to tradeoff analysis
during the system design, and may constitute the framework
for the analysis of the risk associated to a design implemen
tation.

INTRODUCTION

The acquisition of an information system constitutes a
painstaking problem for a manager of an organization that
makes substantial investments in computer systems [1], [2].
He should identify the needs of the actual and potential users
of the system, define the scope of the system, and specify
the essential and optional requirements and capabilities for
the system. When he has done all his homework his problems
are not ended: In fact, he will have to decide which system
to implement among several proposals of system designs.
He is flooded with a quantity of data representing hetero
geneous parameters of system performance and cost from
which he has to derive a simple' 'number" representing the
"best" design.

Practically the only method presently existing to help the
decision maker is to translate all the data in monetary terms
[3]. This method is largely employed and constitutes a teach
ing topic in many administration courses. The difficulty en
countered in several cases is in the definition of a reasonable
monetary value for the system parameters when the system
objectives are not immediately or conveniently related to
economic benefits. Such are the cases of computer systems
directly devoted to technical or scientifical analysis or ded
icated to information processing for decision analysis. The
economical benefits are remote and often the very existence

801

of the computer system is needed to assess its benefits (e.g.
information value).

This paper presents a structured procedure for selecting
a system configuration among alternative designs based on
a cost-effectiveness methodology. The methodology is an
extension of E. O. Joslin's concepts [3] through the appli
cation of the utility curves concepts introduced by D. Hurta
[4] in the risk analysis area.

The procedure has been developed for NASA-GSFC [5],
[6], and}s applicable to the selection of an entire information
system as well as a subsystem, to trade-off analysis during
system design, and it is also the framework for the analysis
of the risk associated with the decision to implement the
selected design.

COST -EFFECTIVENESS METHODOLOGY

The methodology subdivides the items related to the se
lection of the computer system in two classes: the cost ele
ments which directly affect the life-cycle cost of the system,
and the selection factors which are traceable to the system
objectives. Accordingly, each system design is represented
by two indices: the system cost index that aggregates the
time distribution of all cost elements, and the system utility
index that expresses the effectiveness of the design in ful
filling the system objectives. The two indices combine
through a ranking algorithm in a system rank index which
represents the cost-effectiveness of the design.

The definition of the system cost index is directly obtained
by discounting to a reference "present time" the costs in
curred during the system life cycle (Table I) by means of a
specific value (or a range of values) of the interest rate.

The basic model to compute the system cost index from
expenses distribution and interest rate value is the' 'present
value of expenditures" (PVE) represented by the equation

PVE= ± CEK

. K=O (1 +r)K

which is easily implemented in a computational algorithm
[6]. In the equation, n is the length of the system life-cycle
usually in years, r is the interest rate value, and CEK the

802 National Computer Conference, 1980

TABLE I.-Life Cycle Cost Elements

L1FE·CYCLE COST ELEMENTS IEXAMPLEI

o. SYSTEM DESIGN

,. HARDWARE

I.' MAINFRAME SYSTEM

'.2 PERIPHERAL SYSTEM

'.3 SPECIAL HARDWARE

2. SOFTWARE

2.' SYSTEM SOFTWARE

6. OPERATION

6.' MAINTENANCE (HIW & SIWI

6.'.' PREVENTIVE MAINTENANCE

6.'.2 CORRECTIVE MAINTENANCE

6.2 SYSTEM EXPANSION & ENHANCEMENT

6.2.' HARDWARE

6.2.2 SYSTEM & APPLICATION S/W

2.2 APPLICATION SOFTWARE
6.3 PERSONNEL

3. COMMUNICATION
6.3.' SYSTEM OPERATIONS

3.' NETWORK EQUIPMENT

3.2 NETWORK LINES

6.3.2 APPLICATION OPERATIONS

6.3.3 SUPPORT

4. FACILITIES

4.1 SPACE

4.2 POWER SUPPLY

4.3 AIR CONDITIONING

5. TRANSITION

5.' PERSONNEL TRAINING

5.2 SOFTWARE

6.4 UTILITIES

6.5 POSSIBLE REVENUES'

7. ENO OF LIFE CYCLE

7.' SYSTEM DISPOSAL COST

7.2 SYSTEM RESIDUAL VALUE'

• REPRESENTED BY A NEGATIVE COST

aggregation of expenditures (and revenues) occurring during
the Kth period of the life-cycle.

The system utility index aggregates the heterogeneous se
lection factors in a measure of system effectiveness through
the definition of a utility curve and a weight [5] for each se
lection parameter (Table II) associated to the selection fac
tors. The utility curve (Figure 1) measures how better (or
worse) is any level reachable by the selection parameter with
respect to a specific nominal level. The weight measures the

TABLE II.-Selection Factors and Parameters (example)

SELECTION FACTORS SELECTION PARAMETERS

ACCURACY • COMPUTATIONAL ERROR (ABSOLUTE OR RELATIVEI
• NUMBER OF TERMS IN A SERIES EXPANSION
• NUMBER OF BITS FOR NUMERICAL REPRESENTATION

RESPONSE TIME • TRANSACTION RESPONSE TIME IFOR EACH TRANSACTIONI
• EVENT RESPONSE TIME IFOR EACH EVENTI
• AVERAGE RESPONSE TIME (FOR EACH CLASS OF TRANSACTIONS OR

EVENTSI

THROUGHPUT • NUMBER OF PRODUCTION JOBS PERFORMED DURING A WORKING
PERIOD IFOR EACH JOB CLASSI

• TURNAROUND TIME FOR JOBS SUBMITIED DURING A WORKING
PERIOD (FOR EACH JOB CLASSI

• VOLUME OF DATA PROCESSED IFOR EACH CLASS)

UTIL}ZATION • PERCENT OF TIME A RESOURCE IS ALLOCATED DURING A WORKING
PERIOD (FOR RESOURCE CLASS)

• PROBABILITY OF RESOURCE SATURATION DURING A WORKING PERIOD
(FOR RESOURCE CLASS)

EASE OF TRANSITION • IMPLEMENTATION TIME FOR A FUNCTION (FOR EACH CLASS OF
FUNCTION)

• CURRENT SYSTEM DOWNTIME

AVAILABILITY • PERCENT OF TIMe A FUNCTION IS OPERATIONAL DURING A WORKING
PERIOD IFOR EACH CLASS OF FUNCTIONS}

• MTBF!(MTBF + 'v1TIR,l

RELIABILITY • PROBABILITY THAT A FUNCTION PERFORMS SUCCESS FULL Y (FOR
EACH CLASS OF FUNCTION)

• MTBF

FLEXIBILITY • TIME REQUIRED TO RESPOND TO SUCH ANOMALOUS CONDITIONS AS
WORKLOAD INCREASE OR FAILURE

EASE OF USE AND lOR • TIME REQUIRED BY THE USER TO ACCESS A SYSTEM FUNCTION
DEGREE OF AUTOMATION (FOR EACH USER AND FUNCTION CLASSES)

• TIME REQUIRED BY THE SYSTEM OPERATOR TO SET UP A FUNCTION
IFOR EACH FUNCTION CLASS I

EXPANOABILITY • TIME REQUIRED TO INCREASE THE SYSTF.M·S CAPABILITIES

MAINTAINABILITY • TIME REQUIRED TO FULLY RESTORE A FUNCTION IFOR FUNCTION
CLASS}

• TIME REQUIRED TO DETECT AND REPAIR A FAILURE
• TIME REQUIRED TO CORRECT FAILURE

, MTBF = MEAN TIME BETWEEN FAILURES
MTIR = MEAN TIME TO REPAIR lOR RECOVERI THE FAILURE

UTI Ll TY VALUE

Uu ----------------"'-
.& __...- MARGINAL

p
m

-.: I UTILITY
I
I
I
I
I
I
I
I
I

p
u

PARAMETER LEVEL

Figure I-Utility curve.

relative importance of each parameter with respect to the
system objectives .

Several interpretations may be associated to the utility
curve concept. If the system objectives have a purely eco
nomical nature, the utility curve may represent Joslin's rel
ative monetary worth of each level of a parameter [3]. A
probability related meaning is possible when the system life
stretches quite into the future. The utility curve translates
the probability that each level of a parameter will fulfill the
uncertain future objectives. In general, the utility curve is
the way to accommodate subjective preferences and judg
ments within the selection process through a quantitative
representation.

The aggregation of the various parameter utilities gener
ates the system utility index. An example of aggregation
model is [6]:

Vs= VE(WE+ WaVa)

In the model, V E is the geometric average of the essential
parameter utilities, Va is the arithmetic average of the op
tional parameter utilities, and WE and Wa the respective ag
gregated weight.

The system cost index and the system utility index com
bine in a system rank index by means of a general dominance
relation [5]. Also, a ranking algorithm can be defined for a
specific class of computer systems. For example, if Grosch's
Law [7] can be assumed for large systems, the system rank
index is defined by

Rs=(V S)1/2/CS

and the system design with the largest value of R s will be
selected.

THE SELECTION PROCEDURE

The process of selecting a computer system encompasses
several activities such as defining the system's important
features, evaluating performance parameters, and ranking
system designs with respect to some selection criteria.

The various activities needed to apply the cost-effective
ness methodology are integrated in a procedure that em
ploys, as a starting point, the objectives and requirements

Procedure for Comparison and Selection of System Designs 803

specified for the system (and also employed by the design
activity) and that systematically evaluates each alternative
design to identify the best design for the system.

Broadly speaking, the procedure is composed of three
major steps: developing a selection plan; evaluating the se
lection criteria for each alternative configuration design; and
determining the order of preference among designs, based
upon how closely they satisfy the selection criteria.

Figure 2 presents a scheme of the selection procedure.
Defining the selection plan is the critical step of the pro

cedure because it must provide subsequent activities with
the inputs and the controls that will ensure consistency and
objectivity within the selection process. Consistency is at
tained by specifying the methods that will be employed to
evaluate each design. Objectivity can be attained by defining
in advance topics and criteria related to subjective assess
ments so that each design will be treated in the same way.

The selection plan must contain an accurate description
of the selection process taking into account that the effort
dedicated to the selection process should be commensurate
with the expected potential saving. The principal functions
of the selection plan are: identify the system selection factors
and the system life-cycle cost elements; generate the selec
tion parameter utility; and specify models and tools to be
employed for evaluating effectiveness and cost and for as
sessing the alternative design ranking.

Cost elements and selection factors have been already il
lustrated in Tables I and II respectively.

To each selection parameter identified, correspond a util
ity curve and a weight generated through: a definition of the

SYSTEM DEFINITION

• PARAMETERS
• MODELS

r---
AL TERNA TlVE I
CONFIGURATiON I
OESIGN ---,

I

SYSTEM
CONFIGURATION
UTILITY

SELECTION REPORT

SYSTEM
CONFIGURATION
COST

REPEAT FOR EACH
AL TERNA TlVE DESIGN

Figure 2-Scheme of the selection procedure.

acceptable range of the parameter; an assessment of the pa
rameter weight and the utility values for two or more pa
rameter levels; and a calibration of the utility curve model.
The first two activities are performed by one or more re
spondents who have a good knowledge of the system ob
jectives, of the system requirements, and of how a variation
in the level of each selection parameter may affect the ful
fillment ofthe system objectives. The last activity will ensure
consistency of assessment both among the respondents and
among the various utility curves. The choice of the models
depends on the specific interpretation of the utility curves.
Details may be found in [5] and [6].

For each selection parameter and cost element, the selec
tion plan should define a model and/o'r an algorithm to eval
uate the parameter or cost level and should specify how the
model will be employed for any expected system design. For
instance, system performance parameters may be estimated
by models o(the flow of data, controls, and activities within _
the system such as analytical algorithms based on queuing
theory or simulation programs. Examples of simulation pro
grams are the Multi-Purpose System Simulator (MPSS) [8]
and the Data System Dynamic Simulation (DSDS) [9]. The
selection plan should specify types, volumes, and frequen
cies of data and information (i.e., the test workload) that
enter the system. Other selection parameters, such as flex
ibility and ease of use, may be estimated through subjective
judgment~ if adequate algorithms are lacking. The selection
plan should specify the guidelines, procedures, and meth
odologies to be used in the subjective assessments in order
to ensure a high level of objectivity and consistency.

For the system cost index, the selection plan should spec
ify the following items: time span and present time of the
system life cycle; methods and procedures to compute and
distribute each cost element; and value of the yearly interest
rate or cost of money.

The selection plan should also specify how to handle ex
ceptional cases, such as proposed design options and/or al
ternative contractual conditions. In general, each alternative
should be considered as generating a different system design
in order to assess the global and marginal effect of each al
ternative.

The development of the selection plan should be done with
enough care so that the subsequent evaluation and ranking
steps may be routinely performed on each alternative design.
These last two steps will be performed when each design has
been completely defined and will comprehend, in general,
the following activities:

• Analyze the documentation of each system design.
• Model the designed system configuration to represent

both the selection parameters and the cost elements.
• Estimate the level of each selection parameter, as well

as the amount and time distribution of the expenditures
relative to each cost element.

• Compute
-the system design utility index using the specified

utility curves and algorithms

804 National Computer Conference, 1980

-the system design cost index using· the specified
models

-the system ranking index using the specified model.
• Order all alternate designs according to the ranking

index.

Analysis of the design documentation is the critical activ
ity because it must extract the data and information required
to evaluate the design according to the selection plan spec
ifications, and identify all exceptional conditions. The re
maining activities should follow the selection plan strictly
and will not be discussed further here since they have been
analyzed in detail in [5] and [6]. For illustration, the appendix
presents a hypothetical example.

CONCLUSION

The selection of a computer system design among several
alteniative configurations requires the analysis of hetero
geneous items, both technical and economic, that need to
be combined in a consistent and rational ordering of the al
ternatives.

The selection procedure presented in this paper is based
upon a cost-effectiveness methodology that subdivides those
items in two classes: selection parameters representing the
ability to fulfill the system objectives; and cost elements
affecting the life cycle cost ofthe system. The impact of each
class on the selection is combined in a selection criterion:
the system utility index as a measure of the system design
effectiveness; and the system cost index as a measure of the·
distribution of costs over the system life. The two system
indices are evaluated for each alternative system design
which is thus characterized by a pair of utility costs. The
application of a ranking algorithm provides a rational or
dering of the designs from which the "best" system can be
selected.

The various activities of the selection process are struc
tured in a systematic procedure that clearly identifies the
functions, the inputs and the results of each step. Further
more, the procedure can ensure a maximum degree of con
sistency and objectivity through the development of a se
lection plan which specifies in advance any controlling topic
and SUbjective assessment needed for the evaluation of the
alternative designs. The selection procedure has been ex
perimentally applied with success to a real case study [6].

REFERENCES

1. Timmreck, E. M., "Computer Selection Methodology," ACMComputing
Surveys, 5 (Dec. 1973).

2. King, J. L. and Schrems, E. L., "Cost-Benefit Analysis in Information
Systems Development and Operations," ACM Computing Surveys, 10
(Mar. 78).

3. Joslin, E. 0., Computer Selection, The Technology Press, Inc., Fairfax,
Va., 1977.

4. Dr. Hurta, "Risk Assessment Methods," (personal communications).
5. Vallone, A. and Bajaj, K., Cost-Effectivenss Methodology for Computer

System Selection Part I CSC/TR-79/6850, Contract NAS 5-20640 (TA) 571-
060, NASA-GSFC, Greenbelt, Md.

6. Vallone, A. and Bajaj, K., Cost-Effectiveness Mehodology for Computer
System Selection Part II, CSC/TR 79/6852, Contract NAS 5-20640 (TA)
571-060, NASA-GSFC, Greenbelt, Md.

7. Cale, E. G., Gremillion L. L., and McKenney, J. L., "Price/Performance
Patterns of U.S. Computer Systems," Comm. of ACM, Vol. 22, No.4,
(Apr. 1979).

8. CSC/SD-79/6852 MPSS User's Guide, Contract NAS 5-20640 (TA) 571-
060, NASA-GSFC, Greenbelt, Md.

9. Data System Dynamic Simulation (DSDS)-User Manual, General Electric
Co., Contract NAS 8-31532, NASA-MSFC, Huntsville, Ala. 1978.

APPENDIX-HYPOTHETICAL EXAMPLE OF THE
SELECTION PROCEDURE

In order to furnish a complete description of the proce
dure, this Appendix describes a hypothetical example of
system selection taken from a presentation of the procedure
to NASA-GSFC. The case study is oversimplified, to cover
completely the selection procedure in a short space.

The example is the selection on an hypothetical entry sys
tem to support program coding and debugging for a software
development facility.

A series of tabl~s and figures describe the example with
the following types of information:

• Definition of the system (Table A-I)
• Selection plan (Table A-I) and utility curves (Figures

A-I through A-3)
• Description of the alternative configuration designs

(Table A-III)
• Alternative design evaluation and ranking:

-selection parameter evaluation (Table A-IV)
-system utility index determination (Table A-V)
-life-cycle cost and system cost index evaluation

(Table A-VI)
-utility index-cost index diagram (Figure A-4)
-system rank index evaluation and identification of

the best design (Table A-VII)

Although the tables and figures are self-explanatory,' some
discussion of the content.will aid in following the ·example.
The system is defined by specifying its principal character
istics (Table A-I): system objectives, functions, and nominal
requirements specifications. Obviously these are only a

TABLE A-I.-Definition of System

SYSTEM DEFINITION

• OBJECTIVES: PROVIDE COMPUTER SUPPORT TO PROGRAM CODING

• FUNCTIONS: GENERATE SOURCE CODE

COMPILE GENERATED CODE

CORRECT SYNTAX ERRORS

• SPECIFICATIONS: NUMBER OF PROGRAMMER POSITIONS SUPPORTED 10 NOMINAL
(CRT TERMINALS)
COMPILE TURNAROUND TIME 15 MIN NOMINAL
(AVERAGE OVER A MIXTURE OF PROGRAMS)
EDIT RESPONSE TIME 10 SEC NOMINAL
(AVERAGE OVER A MIXTURE OF EDIT COMMANDS)

Procedure for Comparison and Selection of System Designs 805

TABLE A-H.-Selection Plan

DEVELOPMENT OF THE SELECTION PLAN

• SELECTION FACTORS: IDENTICAL TO THE SYSTEM SPECIFICATION PARAMETERS

• COST ELEMENTS:
1. PROGRAMMER POSITIONS

1.1 HARDWARE
1.2 SUPPORT SOFTWARE

2. TERMINALS· MAINFRAME COMMUNICATION NETWORK
3. H,W & S/W MAINTENANCE 110", OF COST/YEAR I
4. SYSTEM ANALYST SUPPORT TO PROGRAMMERS 15", OF PROGRAMMERS @ $30.000/

YEAR PROGSI

• GENERATION OF UTILITY CURVES FOR EACH SELECTION PARAMETER

• SYSTEM UTILITY INDEX: GEOMETRIC AVERAGE OF EVALUATED PARAMETER UTILITIES

• SYSTEM COST INDEX: PRESENT VALUE OF EXPENDITURES
fa = 10070

n = 5 YEARS

• SYSTEM DESIGN EVALUATION:

• RANKING MODEL

- MODEL SYSTEM DESIGN WITH MPSS
- NORMAL WORKLOAD OF MAINFRAME
- PROGRAM SOURCE DISTRIBUTION
- EDIT DISTRIBUTION

- UTILITY PER DOLLAR
- ALGORITHM:

RS =~
Us

- SELECT THE MINIMUM R S

small subset of what should have been needed to define an
actual system. The nominal requirement levels are assumed
to derive from a compromise between user need to optimize
programmers' performance and constraints due to the hy
pothetical operational environment.

The selection procedure follows the steps discussed in the
previous sections.

First, the selection plan is developed (Table A-II) using
the system definition. The major topic is represented by the
generation of the selection parameters' utility curves and
weights (see Figures A-I through A-3). These have been
assessed by the writer through Ian arbitrary jUdgment. The
rationale behind the assessment of parameter ranges 'and
utility values derives from a hypothetical analysis of the
programmers' productivity.

The system's hypothetical design, which does not belong
to the selection procedure, resulted in several alternative
system designs. These are grouped (Table A-III) in two basic
configurations. The first one relies upon the host central

150

•
15 1110. OF TERMINALS

WEIGHT Wr 0.35

Figure A-I-Utility of number of terminals.

150

100

50

o 2. 10 20 30 EDIT TIME ISEC,

WEIGHT. WE = 0.20

Figure A-2-Utility of edit time.

computer for the editing capability; the second configuration
distributes the editing capability. Each of the two configu
rations is associated with three alternative communication
solutions. Therefore, six designs need to be evaluated.

The evaluation activities for the selection procedure are
described next.· First, each selection parameter is evaluated
for each of the six designs (Table A-IV). Response time and
turnaround time, hypothetically derived from the modeling
and simulation of each design, have been assessed in ac
tuality by a subjective judgment of the writer. Combining
parameter levels and utility curves by means of the system
utility model provides the value of the system utility index
for each system design (Table A-V). This value represents
the capability of each design to meet the system objectives.
Note that only design D is above the nominal level. How
ever, the other designs are also technically acceptable and
constitute a trade-off among requirement specifications.

The second evaluation concerns the system life-cycle cost
of each design (Table A-VI). Each cost element specified by
the selection plan is evaluated from a. hypothetical vendor
price list or, for maintenance and personnel support, from
the corresponding models also specified by the selection

"c

I

"" --+----
I
I
I
I
I
I
I
I
I
I
I
I

WEIGHT We OJ~

Figure A-3-Utility of compiler turnaround.

806 National Computer Conference, 1980

TABLE A-I1I.-Description of Alternative Configuration Designs

ALTERN"TlVE CONFIGURATION OESIGNS SYSTEM OESIGN

1 PASSIVE CRT TERMINALS

1.1 OIRECT CONNECTION

1.2 USE OF REMOTE CONCENTRATORS

1.2.1 1 CONCENTRATOR

1.2.~ 2 CONCEN TRATORS

2. OISTRIBUTE EDITING CAPABILITY

10 TERMINALS

6 TERMINALS

12 TERMINALS

2.1 INTELLIGENT CRT TERMINALS DIRECTLY CONNECTED 10 TERMINALS

2.2 USE OF FRONT ·END MINis

2.2.1

2.2.2

1 MINI

2 MINis

8 TERMINALS

15 TERMINALS

TABLE A-IV.-Selection Parameter Evaluation

~
ONFIGURATION

SELECTIO
PARAMETERS

NUMBER OF TERMINALS

COMPilE TURNAROUNO
IMINUTESI

EDIT RESPONSE TIME
(SECONDS)

1.1
IAI

1.2.2
lei

2.1
101

2.2.2
IFI

TABLE A-V.-System Utility Index Determination

PAR AM·

~ 1.1. 1.2.1 1.2.2 2.1 2.2.1 2.2.2 ETER SELECTIO
WEIGHT PARAMETERS IAI ,BI ,CI 101 lEI IFI

0.35 NUMBER OF TERMINALS 10 110 100 120

0.45 COMPILE TURNAROUND 85 110 68 105 5V

0.20 EDIT RESPONSE TIME eo 95 95 125 120 no
1.0 SYSTEM UTILITY INDEX 1 89 40 105 99 81

NOMINAL

100

100

100

'~~~J:S~TEM UTILTlY INDEX IS COMPUTED AS A WEIGHTED GEOMETRIC AVERAGE OF THE SELECTION PARAMETERS UTILITY

Us ={UT~T 1Uc'wc IUelwE

TABLE A-VI.-Life-Cycle Cost and System Cost Index Evaluation

~~ 1.1 1.2.1 1.2.2 2.1. 2.2.' 2.2.2. COST
ELEMENTS IAI IBi ICI 101 lEi IFI

POSITION: HIW 1 30.0 18.0 36.0 90.0 44.0 60.0

s,w 2 3.0 10.0 10.0

COMMUNICATIONS LINE 5.0 2.0 40 5.0 4.0 8.0

EQUIPMENT 3.0 6.0

TOTAL ACQUISITION 35.0 23.0 40.0 98.0 98.0 78.0

IK$I

MAINTENANCE IK$/yi 3.5 2.3 4.& 9.8 5.8 7.8

PERSONNEL SUPPORT 15.0 9.0 18.0 15.0 12.0 22.5

IK$/yl

TOTAL OPERATION 18.5 11.3 22.6 24.8 17.8 30.3

IKs/vi

PVE OPER. 3 IK$I 70.1 42.8 85.7 94.0 &7.5 114.9

Cs 4 IK$i 105.1 65.8 131.7 192.0 125.5 192.9

1 PASSIVE TERMINALS @ 3.0 K$
INTELLIGENT TERMINALS @l 9.0 K$
MINICOMPUTER SYSTEM @ 20.0 K$

2 EDIT s:w FOR TERM. 3.0 K$
SYSTEM S/W FOR MINI 10.0 K$

3 pve OPER .• Q(r,n)-TOTAL. OPER. (oj,.",,- K:l 11 +d-kl

r. 10%; n· 51VI; a(r,n) .3.7901867(V)

4 Cs • PvE OPERATION + TOTAL ACOUISITION

Us

Figure A-4-Utility index-cost index diagram.

TABLE A-VII.-System Rank Index Evaluation

SYSTEM DESIGN Us Cs RS
1 RANK

"'---
1.2.1.(8) 46 65.8 1.43 3

1.1. (AI 89 105.1 1.18 1·

2.2.1. (E) 99 125.5 1.27 2

2.1. (0) 105 192.0 1.83 4

1 SYSTEM RANK INDEX COMPUTED WITH THE MODEL:
Cs

R =-
S Us

SELECTED SYSTEM CHARACTERISTICS:

DIRECT COI-INECTION
10 TERMINALS (NOMINAL 10)
20 MIN COMPILE (NOMINAL 15 MIN)
15 SEC EDIT (NOMINAL 10 SEC)

plan. The computation of the system cost index is a direct
application of the formula relative to the PVE.

The last evaluation concerns the system ranking index for
each design. The first step consists of plotting the system
utility index (Us) versus the system cost index (PVE) for
each design (Figure A-4). This step identifies the designs
(namely C and F) to exclude immediately because of inferior
cost-effectiveness. With the second step, the remaining de
signs are then ordered according to the system ranking index
computed by means of the model specified by the selection
plans (Table A-VII). The best design (namely A) results in
being the most cost-effective. Although it has a performance
below the nominal requirements, it will support the number
of terminals nominally required. The selected design is a
trade-off among technical and economical characteristics,
a trade-off which is best in relation to the selection plan
specifications.

Extracting unique rows of a bounded
degree array using tries

by DOUGLAS COMER
Purdue University
West Lafayette, Indiana

SUMMARY

An array with integer entries between 0 and d-l has bounded
degree d. This paper considers several algorithms for ex,;,
tracting the set of unique rows from a bounded degree array.
For each algorithm considered, it gives the time, space, and
I/O requirements,' and an assessment of the types of appli
cations for which the method is well-suited. It begins with
four methods based on well known techniques and data
structures, and goes on to propose a new algorithm which
uses a form of digitial search tree known as a trie. It shows
that the trie-based scheme has advantages over the other
methods. Finally, it discusses some applications including
computing a projection in a relational database system, and
finding classes of isomorphic rows.

INTRODUCTION

A 2-dimensional array A is of bounded degree d if each
element of A is an integer, a, such that O$,a<d. The problem
of extracting the unique rows of an array with bounded de
gree arises in many applications. The UNIX operating sys
tem [7] provides the command "uniq" which extracts all
unique lines from a text file. In [5], Housel develops an al
gorithm for scheduling processes in a data restructuring pro
gram. One step of the algorithm finds all unique rows in a
bounded degree matrix.

Finally, in a relational database- system [2], each relation
may be thought of as a 2-dimensional array in which each
column is a domain. The process of projecting a relation
over a subset, P, of its domains consists of eliminating all
domains (columns) not in P and extracting unique rows from
the resulting sub array . For a relation, R, with domains "em
ployee name" and "county of residence," a projection of
R over- "county of residence" would be a list of all those
counties in which employees reside. Since the cost of re
moving a subset of columns from a given row is usually
small, the difficulty in computing such a projection is· es
sentially that of extracting the unique rows from an array.

In order to quantify the cost of various solutions to the

807

problem of extracting unique rows, we state it as follows:

Problem 1 (row compression): Let A be an n x m array
of bounded degree d, and let k be the number of distinct
rows of A. Find a k x m array, A', such that each row
of A appears in A'. k may not be known a priori.

Since we are interested in the space required to generate A I
as well as the time required, we wiil assume that A is stored
on secondary storage by row and need not be kept in main
memory. We further assume that A is "unordered" in the
sense that the rows are not arranged lexicographically (the
ordering of A I is discussed below).

Several solutions for Problem 1 are reviewed below which
are based on well known algorithms. Knuth [6] is a good
reference for both the detail and analysis of the sorting and
hashing algorithms mentioned.

Solutions to Problem 1:

1) Insertion:

2) Comparative Sort:

3) Radix Sort:
4) Hashing:

For each row, r, of A, if r is not in
A I insert it.
Read A into memory and sort it
using a comparative sort (like
quicksort), placing the rows in lex
icographical order.
Proceed as in #2 using a radix sort.
Hash the rows of A into a table,
skipping duplicates and adding the
rest to A'.

Each of these solutions may have advantages over the
others depending on n, m, and k. Method 1, insertion, is
easy to program, requires only space for A I, and reads A in
row order. It requires only nmlb disk fetches, where b is the
blocking factor. To compare two rows takes m comparisons,
so if A I is kept ordered and a binary search is used, the
running time is O(mk2 + nm log2k), where the term mk2 ac
counts for inserting a row in order. By using k extra locations
for pointers and not actually moving the rows of A I, the time
can be reduced to (k2 + nm log2k). For small k, the running

808 National Computer Conference, 1980

time is reasonable even if n is large. But ifk is as large as
n, the running time is O(n 2 +nm log2n). We shall see that
other methods have much better running time.

Method 2, a comparative sort, is practical when k=n (i.e.,
there are only a few duplicate rows in the array), and n is
large. The running time is only O(nm log2n) and the space
required is nm plus locations for n pointers -(to eliminate
moving rows of A). Since the array has bounded degree, an
immediate improvement in running time to O(nm) can be
obtained by using Method 3, a radix sort, with radix d. Both
of these sorting methods also have the advantage that the
rows of A I can be generated in either sorted order or in the
original order.

Since radix sorting requires time proportional to the size
of the input, no faster method can be found in the general
case. However, processing in the input in column order, as
is done in a radix sort, requires nm disk fetches for reason
able size array A, while processing the input by row requires
only nmlb disk accesses. The number of entries per block,
b, would normally be high, making radix sort unreasonable.
In such cases Method 4, hashing, would be desirable since
it processes A by row in one pass while still using onlyO(nm)
steps. But there are drawbacks to hashing as well. First, the
new array, A I , can no longer be output in sorted order with
out a separate procedure. Second, since the number of dis
tinct rows of A is not known a priori, the hash table may be
allocated (and initialized) much larger than necessary.

We seek a solution to Problem 1 which meets the following
criteria:

1. No more than O(nm) steps are required,
2. No more than O(km) space is taken (where k is not

known a priori),
3. The new array, A', can be generated in either sorted

order or in the original order, and
4. The array A is processed by row in a single pass, re

quiring only nmlb disk accesses.

A TRIE-BASED METHOD

In this section a solution for Problem 1 which meets the
four criteria listed above is presented. Like the other meth
ods discussed, this one is based on a well known idea, that
of a trie index. The definition of a trie will be given first, and
then its use in solving Problem 1 will be discussed.

Tries were introduced by de la Briandais [3] and Fredkin
[4] for the storage of character data. Sussenguth [9] proposes
an alternative implementation which requires more time to
access but saves space. In this paper we will give a slightly
modified definition of a trie and relate a trie to an array of
bounded degree.

Definition: Let A I be a k x m array of bounded degree d such
that row if. row j, i *-j. A trie for A I is a tree with k leaves, each
of which lies at depth* m such that:

* the root of a trie lies at depth 0; the children of a node at depth i lie at depth
i+ 1.

1. For each row of A' there is a path in the trie from the
root to a leaf with the sequence of labels on edges in
the path equal to the sequence of elements of the row,
and

2. Each such path in the trie has a sequence of labels on
the edges equal to a row of A I.

Figure 1 shows an array and the trie for it.

To search for a row in the trie, one begins at the root and
follows those ,edges with labels which are the same as the
elements of the row in question. An important property of
tries is that the decision about which edge -to follow at a
given node can be made in constant time. Fredkin's imple
mentation uses an array of pointers at each node to achieve
the property. To follow an edge with labelp, one follows the
pth pointer. Of course, the range of lable values determines
the storage necessary at each node. For a trie corresponding
to an array with bounded degree d, each node would have
d pointers.

Since the decision about which edge to follow takes con
stant time, searching for a row of length m requires Oem)
steps. Adding a row to an array corresponds to adding a leaf
to the trie and establishing a path from the root to the leaf.
Knuth [6] provides a detailed algorithm for insertion and
shows that it will require only Oem) steps. Thus, to build a
trie for a k x m array will require O(km) steps.

We now address the solution of Problem 1 using a trie.
The method is straightforward: for each row, r, of A, if r is
not in the trie, insert it. Since the search and insertion al
gorithms are nearly identical, they can be merged. A search
continues until a null pointer is found, at which time the
addition of a new path begins. Therefore, any row can be
processed in Oem) steps, so A can be processed in O(nm)
steps, the minimum possible. The constant overhead is very
small, making the method good in practice. Furthermore, if
storage is allocated on demand, only O(km) space will be
used for the trie (even though k is not known before the trie
is begun).

Consider the four criteria for a row compression algorithm
outlined in the previous section. We have already shown
that a trie is as fast as possible, and uses only O(km) space.

1 3 1

3 3 1

1 1 1

3 3 2

2 1 3

3 2 2

1 3 3

3 2 1

Figure I-An array of degree 3 and the trie for it.

Extracting Unique Rows of a Bounded Degree Array Using Tries 809

To see that a trie can be used to order A', observe that a
preorder traversal of the trie (details of a traversal can be
found in [8] will generate A' in sorted order. To obtain A'
in the original order, the trie can be constructed while A I is
being generated: new rows are output as they are inserted
into the trie, while duplicate rows are ignored. Since A is
processed by row, the trie-based method needs only nmlh
disk accesses while reading A. Therefore, the method meets
the criteria listed above.

Notice that the trie-based method does well in the appli
cation of computing projections because the extraneous col
umns do not actually have to be removed before the trie is
built. Instead, one can read a row of the file representing the
relation, and pick out exactly those columns that should re
main in the relation as the trie is searched.

OTHER APPLICATIONS

One way to look at the problem of extracting the unique
rows of an array is to think of placing all equal rows in the
·same class. In some applications, one would like to group
together all those rows which are isomorphic (equal up to a
renaming of values), and extract one representative of each
such class. For a binary matrix, a trie can be used to find
classes of isomorphic rows using a minor variation of the
method outlined above. As each row is inserted into the trie,
the first element is examined. If it is a 0, the remaining ele
ments in the row are .inserted into the trie as usual. If the
first element is ai, the complement of the row is inserted.
Each leaf in the trie is the head of a list of the row numbers
of all rows which terminate there and represents a class of
rows which are isomorphic. By chaining the leaves together
as they are added to the trie, a list of the classes of iso
morphic rows can be obtained in O(nm) time for an array of
n rows and m columns.

For arrays with degree greater than 2, the process of-find
ing classes of isomorphic rows becomes more complicated.
The trick is to scan the row once, changing entries to a can
onical form before the row is inserted into the trie. As the
row is scanned, each entry is examined to determine whether
that value had been seen before. If it had, then it is mapped
into the same integer as it was before. Otherwise, a fresh
int~ger is assigned as its code, the entry is changed into the
new integer, and the integer is stored for use with later en
tries in the row with the same value.

An unsophisticated algorithm for mapping a row of m en
tries into canonical form follows. In the algorithm, r is the
row vector, c a counter, and v a vector of length d.

c:= -1;
for i : = 1 to d do

v[i] : = -1;
for r: = 1 to m do begin

if v[r[i]] = - 1 then begin
c:=c+l;
v[r[i]] : = c
end; (* if *)

r[i] : = v[r[i]]
end; (* for *)

This implementation, which requires O(d) overhead per row
as well as space for a vector of length d, is quite practical
for small d. In fact, the cost of building a trie will usually
dominate the small overhead incurred in changing the rows
into canonical form.

A more sophisticated approach makes use of the "con
stant-time array initialization" mentioned in [1]. This result
shows that the vector v could be initialized in constant time
provided some extra space is used. The total space used is
roughly 3d which makes the method useful for even mod
erately large d.

CONCLUSIONS

We have shown that a trie index can be an efficient method
for extracting unique rows from an array of bounded degree.
The method is fast, uses storage only as necessary, processes
the input array by row, and can be used to generate the
output in sorted order.

One application of the trie-based method is that of com
puting the projection of a relation in a relational database
system. Other applications include extracting classes of iso
morphic rows in a bounded degree array.

REFERENCES

1. Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Com
puter Algorithms, Addison Wesley, 1974.

2. Date, C., An Introduction to Database Systems, Addison Wesley, 1975.
3. de la Briandais, R., "File Searching Using Variable Length Keys," Proc.

Western Joint Computer Conference, 1959,295-298.
4. Fredkin, E., "Trie Memory," CACM 3:9 (Sept. 1960),490-499.
5. Housel, B., "A Technique for Implementing Data Restructurers," TODS

(to appear).
6. Knuth, D., The Art of Computer Programming. Vol. 3, Sorting and

Searching, Addison Wesley, 1973.
7. Ritchie, D. and Thompson, K., "The UNIX Time-Sharing System,"

CACM 17:7 (July 1974), 365-375.
8. Reingold, E., Nievergelt, J., and Deo, N., Combinatorial Algorithms: The

ory and Practice, Prentice Hall, 1977.
9. Sussenguth, E., "Use of Tree Structures for Processing Files," CACM6:5

(May 1963), 272-279.

A look at making the ADP procurement process more
efficient-Temporary regulation 46'

by ROGER J. GORG, GEORGE N. BAIRD and JUDITH A. PARKS
Federal Compiler Testing Center
Falls Church, Virginia

INTRODUCTORY NOTE

This paper represents the view of the authors and in no way
is to be taken as an official Government or General Services
Administration position on the subject matter. It represents
the authors' experience in acquiring a computer system
under existing Federal Procurement Regulations.

BACKGROUND

The Brooks Act (Public Law 89-306)1 went into effect on
October 30,1965. The purpose of the act was to provide for
the economic and efficient purchase, lease, maintenance,
operation and utilization of Automatic Data Processing
(ADP) Equipment by Federal departments and agencies. The
Administrator, General Services Administration was given
the authority and direction to provide the necessary mech
anisms for the economic and efficient purchase, lease and
maintenance of ADP Equipment by the Federal Govern
ment. As a result, GSA assumed the procurement authority
for all general purpose computer systems to be acquired for
Federal use. Appropriate Regulations regarding the acqui
sition of ADP Equipment were prepared and issued.

The procurement regulations developed and implemented
for the purchase of ADP equipment put into effect at that
time required all Federal Agencies to request a Delegation
of Procurement Authority (DP A) from GSA for any acqui
sition over $50,000. This meant that an agency procuring
ADP equipment with a cost grt?ater than $50,000 had to in
clude GSA review and approval in the procurement process.
At the time the regulation went into effect few computer
systems were being purchased for under $50,000. The net
effect was that GSA had to expend some of its limited re
sources whenever a computer system was required by any
agency in the Federal Government, regardless of the cost
or size of the system.

Federal Agencies and the ADP industry in general also
had had a growing concern about the lengthy, complex and
costly ADP procurement process. Much of this concern had
been directed at the disproportionate cost to participate in
and the large amount of time involved for a procurement to
be completed. This issue was of particular concern in the

811

case for which the dollar value was under $1,000,000. Ac
cording to government studies, the average cost for the Fed
eral Government to conduct a competitive procurement in
this dollar range was about $12,000 in administrative costs.
The average time to complete such a procurement was about
6 months.

The acquisition procurement of major computer systems
by means of a traditional functional specifications ADP pro
curement was generally more time consuming and admin
istratively costly than a non-competitive (sole-source) or
equipment specification procurement. However, the poten
tial benefits which could be realized through a fully com
petitive procurement would, in the long run,far outweigh
the short term disadvantage. GSA was working on regu
lations which would speed up the process and reduce the
cost of conducting procurements for low cost ADP equip
ment where the benefits of a traditional procurement were
not as great.

In October 1976, the House Committee on Government
Operations (the Brooks Committee) issued a report to Con
gress on the administration of the Brooks Act covering the
procuremerlt of ADP resources by the Federal Government. 2

The report pointed out several areas where GSA, the Office
of Management and Budget (OMB) and the National Bureau
of Standards (NBS) had not administered and implemented
the Brooks Act in accordance with the original wishes of
Congress. The report also noted that 56 percent of procure
ment delegations in 1975 were for procurements under
$250,000. These procurements mainly involved minicom
puters, peripherals, software and maintenance where a
highly competitive market exists. Agencies were in effect
being required to follow the same procedures for small-dollar
buys as they were for the purchase of major mainframe com
puter systems. GSA determined that the dollar value of these
smaller procurements represented only about 6 percent of
the total value 'of all ADP equipment procurements. 3

The Congressional report recommended that, in order to
conserve the resources of both GSA and user agencies, new
procedures had to be adopted which would allow agencies
to procure small-dollar systems without having to obtain a
delegation of procurement authority. While this approach
was intended to speed up the procurement process and save
the government time and money, it was in no way designed

812 National Computer Conference, 1980

to erode or eliminate the competitive aspect of the procure
ment.

The most viable solution to making the needed changes
,involved the potential use of the small purchase procedures
I(which previously were not available for use with ADP
equipment procurements) and a revision to the criteria for
the use of the ADP schedule contracts issued by GSA's
Automated Data and Telecommunications Service. The ex
panded use of the schedule contracts would allow purchase
orders to be placed expediously and at the least possible
expense to both the Government and industry.

(Note: ADTS/ADP schedule contracts represent pre-ne
gotiated prices, terms and conditions under which the ADP
Equipment manufacturers offer their products to the gov
ernment. These contracts are negotiated on a fiscal year
basis and establish the price for each of the items listed. A
maximum order limitation (MOL) is specified in terms of a
number of systems and/or a dollar value for each order to
be placed. This limitation can be waived by GSA. Traditional
ADP competitive procurements based on functional-type
specifications 'have resulted in the participating vendors of
fering the government prices below those shown in their
schedule contracts.)

TEMPORARY REGULATION 46

GSA implemented the recommendation in the Brooks
Committee report by issuing Temporary Regulation 463 en
titled "Use of Small Purchase Procedures and Schedule
Contracts for Automatic Data Processing (ADP) Re
sources." This temporary regulation prescribed the use of
small purchase procedures for ADP procurements of up to
$10,000, revised agency procurement procedures for com
petitive procurements which do not exceed a purchase cost
of $300,000 and provided policies and procedures for the use
of schedule contracts for ADP Equipment. I

This regulation does not suggest or imply a non-compet
itive or sole-source procurement, but requires that maximum
practicable competition be preserved and clearly docu
mented by the procuring agency. All procurement statutes,
policies and regulations that apply to a: traditional ADP func
tional specification procurement also apply to a Temporary
Regulation 46 (schedule contracts) procurement.

A procurement of this type would take place as follows.
First, the agency must have the necessary bona fide need,
funding and authority to initiate the procurement. Then the
agency's requirements for the computer system must be de
fined and documented. Next, the literature and pricing
guides of the computer systems available through the ADP
schedule contracts must be reviewed and analyzed in terms
of agency requirements and cost. Contact with and pres
entations given by the schedule contractors can be useful.
in performing this analysis. Included in this phase must-be
the accurate documentation of the actual technical and cost
ing analysis performed and the identification of the system
that best meets the agency's needs in terms of cost, price,
and other factors considered. (The total cost of the system
is based on schedule purchase price regardless of method

of acquisition. The cost may not exceed $300,000 under this
procurement procedure. Annual maintenance is not included
in calculating the total cost.) If the total cost of the system
is under $35,000, the system can be ordered off the appro
priate ADP schedule contract immediately. If the total sys
tem cost is greater than $35,000, then the government must
publicize its intention to order the system by placing a syn
opsis in the Commerce Business Daily (CBD) in advance of
placing the order. This permits interested vendors, who may
not be available under the schedule contracts program, to
demonstrate their ability to satisfy the agency's require
ments. If no responses are received by the deadline given
in the synopsis, the procurement file is so documented and
the order is placed with the selected schedule vendor.

If any responses are received from vendors who have not
already been fully considered, the procuring agency must be
able to document that the use of the ADP schedule contract
will be most advantageous to the agency/government. (If that
position cannot be demonstrated, the agency must revert to
a traditional ADP competitive procurement.) Should the
agency choose to select a system at other than the lowest
price available under any GSA schedule contract, then the
agency must justify its action.

The remainder of this paper discusses two Temporary
Regulation 46 procurements within GSA, the results and an
assessment of the success of these procurements.

FEDERAL COMPILER TESTING CENTER - MINI
COMPUTER ACQUISITION

The Federal Compiler Testing Center (FCTC) (formerly
known as the Federal COBOL Compiler Testing Service)
was transferred from the Navy to the General Services Ad
ministration (GSA) in May 1979. The computer support pro
vided by the Navy prior to the transfer was guaranteed until
the end of the fiscal year. Part of the transition phins of the
organization required the acquisition of an in-house com
puter system to handle the majority of the FCTC data pro
cessing workload. Since the estimated cost of a system was
around $275,000, the procedures described in Temporary
Regulation 46 established the applicable procurement vehi
cle by Which the computer system should be purchased most
efficiently.

The requirements for the computer system had to be de
fined in order to determine which computer systems avail
able under the ADP schedule contracts could meet those
needs. The requirements were developed in the form of a
set of functional-type specifications. There were several rea
sons for this. First, the FCTC staff was accustomed to ex
pressing technical requirements using this method of rep
resentation. Second, the FCTC needed a document for use
in determining which vendors under the ADP schedule con
tracts met our minimum software/hardware requirements.
Third, technical requirement had to be established for com
parison and evaluation purposes. And finally, should the
FCTC be placed in a position where a traditional ADP com
petitive procurement had to be initiated, the technical spec
ifications would be ready.

Making the ADP Procurement Process More Efficient 813

After the system requirements were defined, the schedule
vendors with equipment which appeared to meet the mini
mum requirements were contacted and technical literature
was requested.

One major software requirement that made it easy to iden
tify which computer systems would be potentially acceptable
was the requirements for an identifiable Low-Intermediate
level of Federal Standard COBOL (COBOL 74)4 with the
stipulation that the COBOL compiler had to have been of
ficially validated at the time the system was purchased. This
requirement was extremely critical since one of the major
functions of the FCTC is to produce and maintain Compiler
Validation Systems for COBOL.5 A second standard pro
gramming language, FORTRAN 786 (X3.9-1978 American
National Standard Programming Language FORTRAN),
was also necessary because the Center will be producing a
FORTRAN Compiler Validation System for the FORTRAN
standard for use beginning in calendar year '81.

Next, technical literature from each vendor which satis
fied the basic programming language requirements was ex
amined to determine if the rest of the mandatory require
ments were met. Of the seven systems which met the
programming language requirements that were being re
viewed, several did not meet other mandatory requirements.
For example, one system could provide a 9 Track 800 BPI
magnetic tape drive but did not support a magnetic tape drive
capable of handling 1600 BPI. Since 1600 BPI is the standard
recording density used by the FCTC for distributing soft
ware, this deficiency would have created a time consuming
and expensive situation if the in-house system could not be
used to perform the simple task of copying magnetic tapes
at the required 1600 BPI density.

At the conclusion of the elimination procedure utilized,
five systems met all mandatory requirements. At this point,
the ADP schedule contract price lists provided by each of
the vendors were examined to determine the lowest cost
system. This was not a simple task since there was generally
insufficient information contained in the price schedules to
determine how to configure a system and develop the as
sociated cost for that system. Although the key items and
associated prices could be identified, it was difficult to de
termine what devices were compatible with the CPU, the
number of devices which a single controller could support,
or whether all the necessary components and cabinets had
been identified. To order a computer only to find out it could
not be used without the purchase of additional equipment
would be totally unacceptable and improper.

The vendors under consideration were contacted and
asked to provide a presentation on their systems and answer
questions regarding the configuring of each system. This
process provided the final information necessary to complete
the evaluations of the computer systems being considered.
Shortly thereafter, the final analysis was performed and the
most cost effective (least expensive) system that met the
mandatory requirements had been identified. The official
GSA prices under the ADP schedule provided by the vendors
had to be closely monitored during the evaluation process.
One vendor lowered his schedule prices requiring a recal
culation of the total cost for that system.

Once the analysis was complete, a synopsis for the Com
merce Business Daily was prepared and, along with the re
sults of the analysis, was forwarded to the Contracting Of
ficer in charge of the procurement. The synopsis contained
a functional description of the computer system that had
been selected. It was described in terms of the number of
concurrent users that must be supported, the amount of mass
storage space that was required, the number of magnetic
tape drives required, etc. However, the Contracting Officer
felt that the synopsis should reflect the exact system con
figuration that was to be ordered, rather than a general de
scription. The synopsis which was developed on that basis
included a description of the system and a notice of the intent
to order the system from the selected ADP schedule contract
and was published in the CBD. The synopsis gave public
notice that eight days were being allowed for interested ven
dors to respond and demonstrate that they meet the require
ments specified and could provide the equipment necessary
to perform the job at a lower overall cost to the Government.

During the eight day response period, only one response
was received from industry. The system offered in the re
sponse did not meet all of the mandatory requirements and
was roughly 60 percent more expensive than the selected
system. Once the final analysis and appropriate documen
tation of this response was prepared and provided to the
Contracting Officer, the official procurement action was ini
tiated the following day. Delivery was to take place within
the next .90 days which is the standard time required under
the ADP schedule contracts.

Assessment

The procurement was successful and completed in a little
over three months as compared with a normal timeframe of
up to 18 months to acquire an ADP system without em
ploying the provisions of FPR 46. It took roughly five weeks
from the time the Contracting Officer was assigned to the
project until the delivery order was signed. Two ofthese five
weeks were required because the initial synopsis that ap
peared in the Commerce Business Daily (CBD) allowed only
one working day for responses (the time for the synopsis to
be received and published by the Commerce Business Daily
had been under-estimated) and the synopsis had been some
what garbled when rewritten in the Contracting Office before
being mailed to the CBD. So a net time of three weeks time
was required from the time the Contracting Officer was first
involved. Approximately 50 hours were spent by the Con
tracting Officer in this procurement, several orders of mag
nitude less than would have been required using the tradi
tional ADP procurement approach.

The time required to prepare the necessary justifications
and the technical specifications was just under 240 hours
spread over six weeks using the resources of four technical
people. It is critical in this type of procurement that the time
necessary for planning and defining the requirements for the
acquisition are not reduced or else the result may be a gen
uine catastrophe. The review of the technical literature and
the presentations provided by the vendors were extremely

814 National Computer Conference, 1980

useful since under Temporary Regulation 46 there is no
benchmark or functional demonstration involved. This meant
that the technical literature and vendors' presentations had
to be used to determine if the system could handle the Cen
ter's workload. If the proper configuration cannot be deter
mined, then it would be better to revert to the traditional
ADP procurement which includes benchmarking and func
tional demonstrations rather than select a system that may
not be adequate to meet the requirements of the agency. This
review took about 150 hours over a three week period.

The problem areas in this procurement were few and easily
identifiable. First, the Contracting Officer had not performed
a Temporary Regulation 46 procurement before. Therefore,
a learning process was involved. Temporary Regulation 46
was reviewed several times during the acquisition process
and several detailed discussions were held with the Con
tracting Officer regarding the exact way to proceed at each
step of the acquisition. A good part of the time the Con
tracting Officer was operating under the misapprehension
that the procurement was sole-source and treated the pro
curement as such. Accordingly, it was not until late in the
procurement process that the Temporary Regulation 46 pro
cedures took hold. A similar type of problem with Contract
ing Officers not being familiar with Temporary Regulation
46 was also mentioned at the "Federal ADP Procurement"
course (presented by AIlE, September 25-27, 1979 in Wash
ington, D.C.) by several speakers and members of the au
dience. It appears that the process is so simple compared
to other ADP procurement processes that contracting offi
cers find it hard to believe that this new procedure is legal
and become skeptical. However, this problem was over
come.

The second problem had to do with the price lists provided
by the vendors under the ADP schedule contracts program.
It was next to impossible to configure and/or price a com
plete system with the information provided. An improve
ment to the schedule price lists would be the inclusion of a
configuration guide to help the reader understand what is
necessary to combine hardware devices and configure a
usable system. Some vendors' literature was easier to use
than others, but none were sufficient by themselves and help
was required from the respective vendors to understand how
to configure a system.

NATIONAL AUDIOVISUAL CENTER-ADP
EQUIPMENT ACQUISITION

The second Temporary Regulation 46 procurement con
ducted by GSA involved the acquisition of ADP equipment
for the National Audiovisual Center. While many similarities
existed between this procurement and the one previously
described, certain experiences were encountered which offer
additional insight into the procurement process for small
systems.

The National Audiovisual Center (NAC) required equip
ment to accommodate the processing of their audiovisual
information and distribution systems. Requirements in
cluded both the conversion of existing systems and the de-

velopment of new systems for implementation on new equip
ment. Documentation was available on existing systems and
the new systems were described in detailed ADP design
packages. Using this workload information, a requirements
document was developed. The document contained a brief
description of the workload, system interfaces and hard
ware/software requirements. Additionally, to meet the
COBOL programming and conversion needs of the National
Audiovisual Center, a requirement was included to the effect
that any COBOL compiler considered for acquisition must
have at a minimum been validated at the Low-Intermediate
level of Federal Standard COBOL. (This requirement is con
sistent with Federal Property Management Regulation 101-
36.1305-1 "Federal Stand,ard COBOL" which requires that
one of the four levels of Federal Standard COBOL be iden
tified for any COBOL compiler that is to be brought into the
Federal inventory.)

Upon completion of the requirements definition task, tech
nical specifications were researched to determine candidate
vendors. Eight vendors were identified who offered products
of comparable size and capability which appeared to be able
to satisfy the requirements. A more detailed analysis of the
various system capabilities and the specific requirements
(e.g. COBOL validation, serving as both a host system and
a RJE system, etc.) revealed that five of these vendors failed
to meet certain of the mandatory requirements. For the re
maining three systems which had been identified, configu
ration charts were prepared. These charts were subsequently
validated to ensure their accuracy. Cost comparisons were
performed using ADP schedule prices and a recommended
selection was made.
. The contracting officer was apprised of the procurement
selection rationale. He was provided a configuration list of
the selected system, and a synopsis for publication in the
Commerce Business Daily (CBD). The synopsis was pub
lished and fifteen days were allowed for responses. Unlike
the announcement in the CBD for the Federal Compiler Test
ing Center (FCTC) procurement, this notice did not identify
the selected vendor or provide a detailed configuration. As
a result; inquiries were received from vendors requesting
complete bidding information. All interested parties were
sent supplemental information which included a detailed
configuration showing actual model numbers. They were in
formed that the evaluation of all known schedule sources
had been completed and a determination made that this spe
cific configuration met all Government requirements. They
were further told that if they could provide a system with
an equivalent configuration and appropriate schedule price
references, it would be fully considered. The reason "ap
propriate schedule price references" were requested was
that we had found in our earlier analysis that the most recent
ADP schedule prices were not always listed in the published
documents. As mentioned in the FCTC procurement above,
it was possible for schedule prices to have been lowered
significantly during the fiscal year.

In total eleven vendors indicated an interest in responding
to the notice. Only four actually submitted price quotations,
one of which was invalid because it was received after the
fifteen day lapse time. The three valid price quotations, in-

Making the ADP Procurement Process More Efficient 815

cluding one submitted by the selected offeror, was evaluated
initially on price. The result was that all prices fell within
a 10 percent range and the system which had been selected
still represented the lowest cost to the Government. There
fore, only a cursory technical review was made of the other
proposals. A recommendation was presented to the con
tracting office that a purchase order be issued for the selected
system. This final step was accomplished in accordance wiith
the recommendations provided.

Assessment

Several observations can be made in respect to this pro
curement. The resources required to conduct the procure
ment approximated those described for the FCTC procure
ment, with the exception that the contracting spent in the
neighborhood of 22 hours. One significant difference from
the FCTC procurement was the close competitive range of
ADP Schedule price quotations for equivalent configura
tions. This situation leads us to believe that when new sched
ules are negotiated, in light· of Temporary Regulation 46,
the Government should be in a good bargaining position and
vendors should be receptive to lowering prices for compet
itive reasons. Our experience indicates that a complete anal
ysis of user requirements and the resulting hardware/soft
ware needs is important and well worth the time and effort
required. Like the Testing Center participants, we also found
that configuring from ADP schedules and accompanying lit
erature is a difficult job. Both industry and the Government
should strive for more standardized formats and descriptive
narrative in the ADP schedules contracts in order to facilitate
their use under Temporary Regulation 46.

SUMMARY

Based on the two procurements described above, the new
procurement process established for limited dollar level ADP
equipment appears to be a good one. The calendar time in
volved in the selection of this system was only around three
months including the definition of the system requirements.
The procurements, in terms of the time required from when
the Contracting Officer became involved until the computer

systems were ordered was a relatively short time-five
weeks in the case of the FCTC which could have been three
weeks except for the need to re-issue the CBD notice and
four weeks for the NAC which would have been shortened
to three weeks had they allowed only one week for com
ments on the synopsis in the CBD.

The approximately 400 hours of professional time (not in
cluding Contracting Officer time) that was spent by both the
FCTC and NAC would have been at least three times that
amount if a benchmark and live test demonstrations had been
required for a traditional ADP equipment procurement. The
time and expense of the vendors was limited to a few phone
calls, providing copies of some of their technical literature,
and several meetings. This certainly represents far less cost
than had they participated in a traditional ADP procurement.

Although the two Contracting Officers approached the
procurements differently, the results were closely the same.
The problems associated with a new procurement process .
(Temporary Regulation 46) will require the time necessary
for government Contracting Officers to become familiar and
comfortable with the new process. It appears that when deal
ing with the synopsis to be published in the Commerce Busi
ness Daily, a description of the the system (which has been
selected) rather than a functional description is desirable.
This method of announcement should keep down responses
from vendors who were already evaluated and rejected early
in the procurement. It would save the vendors time and
money as well as avoiding unnecessary duplication of effort
by the government which must review all responses regard
less of previous determinations in the selection process.

REFERENCES

1. Public Law 89-306, 89th Congress, H.R4845, 1965.
2. House Report No. 94-1746, "Administration of Public Law 89-306, Pro

curement of ADP Resources by the Federal Government," 1976.
3. Title 41, Chapter 1, Federal Procurement Regulation, FPR Temporary

Regulation 46, "Use of Small Purchase Procedures and Schedule Contracts
for Automation Data Processing (ADP) Requirements," Federal Register,
Vol. 43, September 28, 1978.

4. "American National Standard Programming Language COBOL, X3.23-
1974," American National Standards Institute, New York, 1974.

5. Federal Property Management Regulation 101-36.1305-1 "Federal Stand
ard COBOL," Federal Register, Vol. 44, August 28, 1979.

6. "American National Standard Programming Language FORTRAN, X3.9-
1978," American National Standards Institute, New York, 1978.

An information base for procedure independent design of
information systems

by LEVENT ORMANCIOGLU
University of Wisconsin-Milwaukee
Milwaukee, Wisconsin

PROCEDURE INDEPENDENT DESIGN

An information system contains a vast number of logical
statements in addition to data. These logical statements are
used to control the retrieval and use of data for applications.
Systems Design is the process of translating the information
requirements of an organization to a set of logical statements
which operate on the observed data to generate new data.
The 'detived data' generated in this fashion could actually
be used for decision support or stored back in the data base
for future use; however, the storage is rare since it can al
ways be regenerated using the logical statements. The logical
statements are often expressed using a procedural program
ming language mostly aided by Data Base Management Sys
tems which accomplish to decouple the physical data struc
ture and the application system designer's logical view of
it. This feature, called 'data independence,' has a number
of advantages such as:

a. simpler interface with the applications programmer
b. machine optimized physical design
c. modifications in the physical structure without chang

ing the application programs
d. high portability to different computer systems.·

The main difficulty with data independence is the fact that
shielding the application programmer from the physical data
structure also deprives him of the information needed to
develop efficient algorithms. To restore efficiency without
sacrificing data independence requires delegating the re
sponsibility of generating algorithms to the information sys
tem. This responsibility includes not only the generation of
data retrieval algorithms but also application system algo
rithms since the efficiency of both are strongly interrelated.
The application system designer in such an environment
would have to avoid specifying algorithms and procedures;
and restrict himself only to specifying the functional rela
tionships between the data to be generated and the data in
storage. This approach to design is called 'procedure inde
pendent' and Information Base is an approach based on
Predicate Calculus and Array Algebra to the procedure in
dependent design of information systems.

A number of data sublanguages based on Predicate Cal-

817

culus have been developed including ALPHA,' ,COLARD,2
and RIL;3 and a number of others with more user orientation
like QUEL,4 SQUARE,5 and QUERY by EXAMPLE6 are
based on similar principles. All of them proved to be rela
tionally complete which refers to their selective ability in
terms of identifying the subsets of data. However, in addition
to data selection, an information system needs the ability to
algebraically manipulate the data to generate new data. This
need has long been recognized as a need to host a data se
lection sublanguage with a programming language. Infor
mation Base uses APL operators7 to algebraically manipulate
data which has been retrieved using predicate calculus. The
capability I of iteration between algebra and calculus in
creases the power of the language.

INFORMATION BASE

The development of the Relational Data Base Theory8 and
the use of first order predicate calculus made it possible to
view data as a collection of two dimensional tables and re
trieve subsets of data non-procedurally. An information base
adds to these capabilities in two ways:

a. by developing a 'function specification language' (FSL)
based on predicate calculus and array algebra to ex
press the functional relationships between the data to
be generated for applications and the data in storage;

b. by storing the functional expressions in FSL-called
functions-in a 'function base' and identifying each
function by its unique output. This makes it possible
to treat the functions as a set without reference to their
sequence.

FSL is an all-purpose language used to specify functions,
to define and manipulate data and to enter queries. A query
expressed in FSL goes through three stages and a number
of iterations among them to produce a response:

a. the query is interpreted as a function to determine its
input data requirements;

b. for each data item required but not stored explicitly,
the appropriate function is retrieved from tlp.e function

818 National Computer Conference, 1980

base to generate the data. The search strategies are the
same as data bases, since the function base is treated
as a set;

c. for each function retrieved above, the data require
ments are determined by interpretation as in (a) and the
process is repeated.

The iteration between functions and data continues until
the query is expressed only in terms of explicitly stored data.
The process basically consists of then, repetitive substitution
of 'implicit data' with corresponding functions until a query
as an expression in FSL is defined in terms of the explicit
data only. At that stage the expression is executed to pro
duce 'a response to the query.

Example: A query involves the computation of discount
which is 10 percent of the total cost of each supply. The
explicit data contains supply_quantity and the supply_price.
A function in the base states that:

supply_cost ~ supply_quantity x supply_price

The query should state:

supply_discount ~ 0.1 x supply_cost

where supply_cost is substituted by the system with
supply_quantity x supply_price; and the final expression is
executed to produce the response.

FUNCTION SPECIFICATION LANGUAGE (FSL)

First order predicate calculus has been shown to be a con
venient and powerful data selection sublanguage9 but not an
algebraic manipUlation language for applications. The alge
braic manipulation of retrieved data is usually done either
through a programming language which adds undesirable
procedure to the design or by adding built-inJunctions like
SUM, ADD, AVERAGE which usually produce a less than
complete or an inflexible language. FSL augments predicate
calculus with array algebra utilizing APL operators. Array
algebra requires positional correspondence between ele
ments of different arrays and hence cannot be applied di
rectly to relational tables where the order of tuples (rows)
is arbitrary. The strategy in this paper is to use a two-step
process where predicate calculus is used to determine the
relevant subsets of data and to feed them into vectors of an
APL expression before execution.

FSL syntactically allows any expression S where:

S = P. t where P is a relation name and t is a domain
name;

S = any valid APL expression (without branching)
involving S;

S = S: any predicate calculus expression involving S.

The basic unit of information denoted by P. t refers to do
main t of relation P and interpreted as a set by predicate
calculus expressions and as a vector by APL expressions.

The basic FSL statement involves an APL expression aug
mented by a predicate calculus expression. Given an APL
~xpression involving n vectors of type P.t, the predicate
calculus expression augmenting it is interpreted first to pro
duce a response set of n-tuples. These n-tuples are then fed
into n vectors of the APL expression for execution.

Predicate calculus expressions consist of well formed for
mulas (wft) defined as follows:

a. Atomic formulas containing constants, variables in the
form P. t where P is a relation name and t is a domain
name, and arithmetic comparison operators =, =1=,
<, :5, >, ;:::: are wff.

b. If A and Bare' wff, then:
~A, AVB, A/\B, A~B are wfT.

c. If A is a wff and P is a relation name:
VP(A) , 3P(A) are wff.

d. The formulas obtainable by finitely many applications
of a, b, and care wff.

Relation names are used as variable names with quantifiers
V and 3-as indicated in c-to improve readability. If more
than one variable corresponds to a particular relation P,
primed variables P', P", etc. are used to distinguish varia
bles. Comparison operators are assumed to have precedence
over logical operators.

A list of APL operators used in FSL are given in the Ap
pendix. Most of the examples will be restricted to arithmetic
operators +, -, x, -;-; maximum r; minimum L; size p;
concatenation ,; and reduction /; where the last one is used
'to reduce a vector into a scalar 'by applying an arithmetic
operator repetitively to the elements of the vector. The as
signment ~ operator has a special meaning in FSL. In ad
dition to the usual function of separating the target variable
from the body of the expression, it actually forces the FSL
expression to be evaluated separately for every element in
the target variable to avoid generalized arrayslO as explained
in the following example.

Example:

P.x ~ +/ Q.y x R.z : S

where S is a predicate calculus expression such as:

P. v = Q. w 1\ R.z = c

This FSL expression implies that for every row I III P,
{Q.y, R.z} pairs satisfying the expression S are retrieved and
fed into APL vectors named Q.y and R.z. Multiplication of
these two vectors and summation of all the elements in the
product vector produce the ith value in the vector P.x. The
number of elements in vectors Q.y and R.z are different for
every element of P.x; hence it is possible to view the total
structure as a generalized array where vectors along a par
ticular dimension have varying number of elements (Figure
1). Another difference from standard APL is the ability to
treat character strings as single elements rather than vectors.

The following examples illustrate the flexibility and con
venience of FSL; given the information base of a manufac-

Procedur~ Independent Design of Information Systems 819

x

Q'Yi,rn

x

x

Figure I-An FSL expression visualized as a generalized array and
interpreted as a set of simple arrays.

turing environment where a number of projects receive sup
plies of parts from a number of suppliers.

SUPPLIER (s#, name, location, dr, cost) contains supplier
number, name, location, discount rate, and the total cost of
all supplies by the supplier.
PROJECT G#, location, tec, cost) contains project number,
location, total estimated cost and cost to date.
PART (p#, type, price, weight) contains part number, type,
price and weight.
SUPPLY (1#, s#, p#, j#, quantity, cost, date) contains sup
ply number, supplier number, part number supplied, project
number receiving the supply, quantity, cost, and date re
c~ived.
ROUTE (origin, destination, distance, cost) contains the
distance between any two locations denoted by origin and
destination and unit transportation cost per mile per pound
on each route.

All cost fields contain derived data and all others are ob
served.

The following queries and functions are first expressed in
English, then in FSL:

a. Compute the number of suppliers in Milwaukee.
p SUPPLIER. s#: SUPPLIER.location =
'MILWAUKEE'

b. Compute the average weight of all parts of type A.

+/ PART. weight + p PART. weight + pPART.type
= 'A'

c. SUPPLY. tc is the transportation cost for each supply
and depends on the distance, unit transportation cost
and the total weight transported.
SUPPLY.tc ~ ROUTE.distance x ROUTE. cost x
SUPPLY. quantity x PART.weight: 3PROJECT
3SUPPLIER SUPPLY.s# = SUPPLIER.S# /\
SUPPLIER.location = ROUTE.origin /\
SUPPLY.j# = PROJECT.j# /\ PROJECT.location
= ROUTE. destination /\ SUPPLY.p# = PART.p#

d. SUPPLY .dr is discount rate applying to each supply
and it is equal to the discount 'rate of the supplier in
volved, or 5 percent more if the quantity is greater than
100.
SUPPLY.dr ~ (SUPPLIER.dr: SUPPLY.s# =
SUPPLIERs#) + 0.05: SlJPPLY.quantity > 100

e. SUPPLY. cost is the cost of each supply and depends'
on the quantity, price, discount rate and the transpor
tation cost.
SUPPLY.cost ~ (SUPPLY. quantity x PART.price
x (1 - SUPPLY.dr» + SUPPLY.tc: SUPPLY.p#
= PART.P#
Obviously, this function is utilizing the two previous
functions SUPPLY.tc and SUPPLY.dr, assuming that
they are available in the function store of the infor
mation base. Otherwise the substitution would have to
be done by the user.

f. PROJECT. cost is the cost to date of each project and
it is defined as the sum of all supply costs for that proj
ect.
PROJECT. cost ~ +/ SUPPLY.cost: SUPPLY.j# =
PROJECT.j#

g. Create a relation SUP(p#,j#, num) which contains the
number of supplies of each part for every project.
SUP ~ PART.p#, PROJECT.j#: 3SUPPLY
PART.p# = SUPPLY.p# /\ SUPPLY.j# =
PROJECT.j# . SUP.num ~ p SUPPLY.l#:
SUPPLY.p# = SUP.p# /\ SUPPLY.j# = SUP.j#

h. Which locations are supplying which locations?
SUPPLIER.location, PROJECT.location: 3SUPPLY
SUPPLIER.s# = SUPPLY.s# /\ SUPPLY.j# =
PROJECT.j#

i. Which locations are supplying which locations exclu
sively? (supplier supplying only one location)
SUPPLIER.loc, PROJECT.loc: VSUPPL Y
SUPPLIER.s# = SUPPLY.s# ~ SUPPLY.j# =
PROJECT.j#

j; PROJECT. distance is the average distance of suppliers
supplying each project.
PROJECT.distance ~ +/ ROUTE.distance + p
ROUTE.distance: 3SUPPL Y 3SUPPLIER
PROJECT.location = ROUTE. destination /\
PROJECT.j# = SUPPLY.j# /\ SUPPLY.s# =

SUPPLIER.s# /\ SUPPLIER.location =

ROUTE. origin
k. PROJECT.farthest is the farthest location supplying

each project.
PROJECT.farthest ~ ROUTE.origin

820 National Computer Conference, 1980

[ROUTE.distan'ce i f/ROUTE.distance]: 3SUPPLY
3SUPPLIER PROJECT.location =
ROUTE. destination 1\ PROJECT.j# = SUPPLY.j#

'1\ SUPPLY.s# = SUPPLIER.s# 1\
SUPPLIER.location = ROUTE. origin
or:
PROJECT. farthest ~ ROUTE.origin: 3SUPPL Y
3SUPPLIER 'v'ROUTE' PROJECT.j# =
SUPPLY.j# 1\ SUPPLY.s# = SUPPLIER.s# 1\
SUPPLIER.location = ROUTE.origin 1\
PROJECT.location = ROUTE. destination 1\
(PROJECT.location = ROUTE' . destination 1\
SUPPLIER.loc = ROUTE' . origin ~
ROUTE. distance ~ ROUTE' . distance) .

USER FRIENDLINESS

The convenience to the final user of an information system
is a major concern in language design. Some previous re
search5,6 reported behavioral work to compare different syn
taxes in terms of user preferences. Syntax of a language
undoubtedly plays a role in determining the level of con
venience to and acceptance by the final user; however one
has to keep in mind that different types of users with different
skills and needs may have different preferences of syntax.
A syntax geared toward the naive user may very well turn
out to be very cumbersome and inconvenient for more so
phisticated users as probably is the case in QUERY by EX
AMPLE.6

A technique which invariably decreases the workload on
the final user is abstraction. Abstraction involves decreasing
the information content of queries, hence decreasing the
effort required to form a query. This process can be called

'incomplete querying' since the queries acceptable by the
system do not necessarily have all the information necessary
to respond to the query. Incomplete querying obviously re
quires the system to provide the missing information to com
plete a query and it is accomplished by storing query seg
ments-which may be queries themselves-and assigning
them abstract names. A user, then, is free to use these ab
stract names to refer to query segments and build a complex
query from these segments. Iteration in this process is per
missible and actually is the real source of power.

Information Base draws heavily on the concept of abstrac
tion by storing functional relationships as functions, and re
ferring to these functions by name in forming more complex
functions. A simple example of this was provided in section
2 where the previously defined variable SUPPLY .cost was
used in a query and the definition of SUPPLY.cost was re
trieved by the system from the information base. It may be
claimed that the user has to provide all function definitions
at some point in time; however even if the same user has to
provide all function definitions, division of the task into in
dependent segments simplifies the work to a great extent.
An information Base Administrator may be employed to
maintain the structure and given the task of defining the func
tions to further improve the situation.

Following the same philosophy, we will name predicate
calculus expression segments as functions and keep them in
function storage to further simplify queries. Natural candi
dates for this process are segments involving natural joins
of two or more relations. Intelligent choice of names results
in expressions close to English expressions in terms of ease
of interpretation and construction by humans. The names
used here start and end with relation names and imply an
access path between those two relations:

SUPPLY_CONTAINING_PART }
PART_CONTAINED_IN_SUPPLY ~SUPPLY.p# =PART.p#

SUPPLY_RECEIVED_BY_PROJECT }
PROJECT_RECEIVING_SUPPLY ~SUPPL Y .j# = PROJE~T .j#

SUPPLY_BY_SUPPLIER }
SUPPLIERDF_SUPPLY ~SUPPLY.s# =SUPPLIER.s#

SUPPLIE~SUPPL YING_PROJECT } ~3SUPPL Y
PROJECT_SUPPLIED_BY_SUPPLIER SUPPLY_BY_SUPPLIER 1\

SUPPL Y _RECEIVED_BY _PROJECT

SUPPLIE~ON_ROUTE~SUPPLIER.loc = ROUTE.origin

PROJECT_ON_ROUTE~PROJECT.loc = ROUTE. destination

SUPPL Y_USING_ROUTE } ~3PROJECT 3SUPPLIER
SUPPL Y_RECEIVED_BY_PROJECT 1\
PROJECT_ON_ROUTE 1\

PROJECT_USING_ROUTE }
ROUTE_USED_BY _PROJECT

SUPPL Y _BY_SUPPLIER 1\
SUPPLIE~ON_ROUTE

~ 3SUPPLY 3SUPPLIER
PROJECT_RECEIVING_SUPPL Y 1\
SUPPL Y _BY _SUPPLIER 1\
SUPPLIE~ON_ROUTE 1\
PROJECT_ON_ROUTE

Procedure Independent Design of Information Systems 821

Given the above function base, some of the examples of
section 3 are simplified as follows:

a. SUPPLY.tc ~ ROUTE. distance x ROUTE.cost x
SUPPLY. quantity x PART.WEIGHT:
SUPPLY _USING_ROUTE /\
SUPPLY _CONTAINING_PART

b. SUPPL Y.dr ~ (SUPPLIER.dr:
SUPPLY_BY_SUPPLIER) + 0.05: SUPPLY.quantity
> 100

c. SUPPLY.cost ~ (SUPPLY. quantity x PART.price
x (l-SUPPLY.dr)) + SUPPLY.tc:
SUPPL Y _CONTAINING_PART

d. PROJECT. distance ~ +/ROUTE.distance -:- p
ROUTE. distance: PROJECT_USING_ROUTE

e. PROJECT.farthest ~ ROUTE.origin
[ROUTE. distance i f/ROUTE.distance]:
PROJECT_USING_ROUTE

CONCLUSIONS

A non-procedural design language is extremely useful in
providing the application system designer with means to
communicate the system requirements tOI other designers or
to the machine without efficiency considerations. Procedure
has to be introduced to the information system by some
one-or preferably some system-who has the full knowl
edge of physical data structure, operating system, and the
hardware configuration, and it has to ble introduced with
efficiency as the only concern. If there is interdependence
between requirements and the efficiency attainable to meet
those requirements, an iterative approach should be taken
rather than combining the two tasks, simply because of the
size, effort, and the number of different skills involved in
systems development process. The interpretation of FSL
expressions and automated implementation of systems re
quire automated access path selection and automated gen
eration of application algorithms. Optimization of this pro
cess is beyond the scope of this paper. The current
implementation· work is geared toward the generation of
feasible implementations directly from the information base
design. The implementation language is naturally APL.

BIBLIOGRAPHY

1. Codd, E. F., "A Data Base Sublanguage Founded on the Relational Cal
culus," Proc. of 1971 ACM-SIGFIDET Workshop on Data Description
Access and Control, ACM, New York, 1971.

2. lJracchi, G., Fedeli, A., and Paolini, P., "A Language for a Relational
Data Base Management System," Proc. Sixth Annual Princeton Conf.
Inf. Science and Systems, Mar. 1972, 84-92.

3. Fehder, P. L., "The Representation Independent Language," Res. Rep.
RJ 1121, IBM Research Laboratory, San Jose, Calif., Nov. 1972.

4. Held, G. D., Stonebraker, M. R, and Wong, E., "INGRES. A Relational
Data Base System," Proc. 1975 AFIPS Nat. Computer Conf., 409-416.

5. Boyce, R. F., Chamberlain, D. D., King, F. W., III, and Hammer, M.
M., "Specifying queries as Relational Expressions: The SQUARE Data
Sublanguage," Comm. ACM, 18, 11, Nov. 1975,621-628.

6. Zloof, M. M. and Dejong, S. P., "The System for Business Automation
(SBA): Programming Language," Comm. ACM, 6, June, 1977,385-396.

7. Iverson, K. E., "A Programming Language," John Wiley, New York,
1962.

8. Codd, E. F., "A Relational Model of Data for Large Shared Data Banks,"
Comm. ACM, 13, 6, June 1970, 377-387.

9. Codd, E. F., "Relational Completeness of Data Base Sublanguages,"
Courant Computer Science Symposia, Vol. 6, "Data Base Systems,"
edited by R. Rustin, Prentice Hall Inc., Englewood Cliffs, N.J., 1972.

10. More, T., Jr., "Axioms and Theorems for a Theory of Arrays," IBM
Journal of Research and Development, 17, 135, 1973.

11. Ormancioglu, L., "Process Management System: An Automated Design
Methodology for Management Reporting Systems," Ph.D. Dissertation,
Northwestern University, 1979.

APPENDIX

APL operators in FSL

Operator Monadic Dyadic
+ Plus Add

Minus Subtract
x Signum Multiply

Reciprocal Divide
I Ceiling Maximum
L Floor Minimum

* Exponential Power
0 Natural Logarithm Logarithm

I Magnitude Residue
! Factorial Combinations
? Roll Deal
p Size Reshape

Ravel Catanate
Index generation Index of

<f> Transpose Dyadic transpose
E Membership

t Take
~ Drop

<f> Reverse Rotate
e Reverse Rotate first

Literal value
I Reduction Compression
[] Indexing

For a detailed explanation of how to use these operators,
reader is referred to any APL manuaU

Comparing load & go and link/load compiler organizations

by WILLIAM L. WILDER
Intermetrics Inc.
Washington, D.C.

INTRODUCTION

Compilers usually produce eithh absolute code that is ex
ecuted immediately upon conclusion of the. compilation or
object code that is transformed iby a linking loader into ab
solute code. These compiler organizations will be called
Load & Go and Link/Load. Both Load & Go and Link/Load
compilers use a number of passes to translate the source
program into absolute code. A pass reads some form of the
source program, transforms it into an another form, and nor
mally outputs this form to an intermediate file which may
be the input of a later pass.

Load & Go compilers can reduce the need for file com
munication between passes by using internal buffers to hold
the intermediate representations of the source program dur
ing the compilation passes. Load & Go compilers can elim
inate the need for linking by producing absolute code that
remains in core, whereas Link/Load compilers can produce
better absolute code than Load & Go compilers at the ex
pense of increased compilation time. Both types of compilers
are needed in different environments. Load & Go compilers
can be used during program development where there are
many more compilations than executions. Link/Load com
pilers can be used after program development is complete
to minimize execution cost.

Comparisons using three pairs of Load & Go and Linkl
Load compilers for the SIMPL, I PL/t, and Pascal languages
show that the cost to compile a program is reduced by the
use of Load & Go compiler organizations, but the cost of
executing the program is increased. The cost of executing
any program is depe'ndent upon the amount of data supplied
or the number of iterations through the data. This data de
pendency can make a program more expensive to compile
and execute with a Load & Go compiler than with a Linkl
Load compiler.

METHOD OF COMPARISON

Four programs have been used in comparing the Load
& Go and Link/Load compilers: bubble sort, Ackermann's
function, removal of blanks from text, and Newton's method
of approximating the square root. Each of these programs
has been translated into the SIMPt, PL/t, and Pascal lan
guages and runs on existing compilers at the University of

823

Maryland Computer Center. The comparisons between com
pilers for each program are on the basis of compilation cost
(including link cost for Link/Load compilers), execution
cost, total cost, and absolute code size (including library
routines and run-time stack). Each of these programs has
been run approximately ten times while developing the
method by which the cost figures are gathered and code size
determined. No significant differences could be detected
from one run to the next, but the graphs and tables presented
in this paper represent the final run of each program.

The bubble sort has been a standard algorithm commonly
found in comparisons between languages and compilers.
FORTRAN and SIMPL have been compared using sort pro
grams2 before and their compilation, execution, and total
costs are nearly equal. Other FORTRAN and SIMPL~pro
grams3 have been compared and are also nearly equal in
terms of execution cost and absolute code size. The other
programs have been chosen on the basis of the language
features they exercise. Ackermann's function exercises re
cursion, blank removal utilizes string manipulation, and
Newton's method uses real number arithmetic. Both Ack
ermann's function and Newton's method4 ,5 have been used
before in comparing ALGOL and PL/t compilers to each
other. The blank removal program6 has been used in com
paring the Load & Go SIMPL compiler to the Link/Load
SIMPL compiler.

Before analyzing the comparisons, the compilers for each
of the languages should be described. The Load & Go
SIMPL compiler7 is a two-pass compiler that communicates
between passes in core and the Load & Go PL/t compiler
is a three-pass compiler similar to the PL/C compiler. 8 In the
Load & Go SIMPL compiler (SIMPL-RLG) and PL/t com
piler (PLUM), the absolute code produced by the compiler
remains in core and can be immediately executed. The Linkl
Load SIMPL compiler is a three-pass compiler and the Linkl
Load PL/t compiler is a four-pass compiler. In the Linkl
Load SIMPL compiler (SIMPL-R) and PL/t compiler (PLl),
the object code is written by the compiler to a file which is
the input to the linking loader. The linking loader outputs
the absolute code to a file that can be executed. The run
time support systems for each of these compilers allows the
run-time stack to be enlarged dynamically when necessary
during execution. The initial size of the run-time stack is
.5K words for SIMPL and 4K words for PL/t.

824 National Computer Conference, 1980

Both the Load & Go Pascal compiler and the Link/Load
Pascal compiler are one-pass compilers. The Load & Go
Pascal compiler (PASLGO) writes absolute code to three
files which are the input to an executor program. The Link/
Load Pascal compiler (PAS) outputs the object code to a file
which is the input to the linking loader. The linking loader
outputs the absolute code to a file that can be executed. At
the start of execution, the run-time stack and heap are al
located 6K words of space and the stack grows upward to
ward the heap as the heap grows downward toward the
stack. The run-time stack and heap cannot be enlarged dy
namically during execution, but the run-time stack and heap
can be initially allocated either 16K words or 32K words of
space as an option.

COST COMPARISONS

Comparisons of the compilation cost, execution cost, total
cost, and absolute code size for each of the programs on
each of the compilers are displayed as graphs in Figures 1-
4 and the actual data can be found in Table I ofthe Appendix.
The compilation cost comparisons for the four programs

Cost COrT"Clarisons Figures
(*. = Load & Go, + = Link/Load)

35.0-1
1
1

30.0-1
1 #1

25.0-1 • + +
1
1

20.0-1 + +. *
1 • + *
1 * + *.

15.0-1 + +.
1
1

10.0-1 +
1 + + +.
1

5.0-1
1 *
1 ***. ***.

0.0-1 • •
• bs br • bs br • bs br •
• af nm. af nm. af nm.
• SIMPL • PL/1 • Pascal •

Figure I-Compilation cost.

35.0-1
1
1

30.0-1
1

+ 1

25.0-1
1
1

• +

20.0-1
1
1

15.0-1
1
1

10.0-1 +
1 + + +.
1

5.0-1 * *
1 * *.
1

+ +. *

* *
* *

. *.
• + * + *.

+.

0.0-1 • •
• bs br • bs br • bs br •
• af nm. af nm. af nm.
• SIMPL • PL/1 • P asca 1 •

Figure 3-Total cost.

3.5-1
1
1

3.0-1
1
1

2.5-1
1
1

2.0-1
1
1

1.5-1
1
1

1.0-1 *

*

*
* +

• + * * *.
+ *.

+.
1
1

0.5-1

• + + •
+ +.

*.
1 +
1 + + +.

0.0-1 . •
• bs br • bs br • bs br •
• af nm. af nm. af nm.
• SIMPL • PL/l • Pascal.

Figure 2-Execution cost.

35K-1
1

1
30K-1

1

1
25K-1

1
1

20K-1
1

1 * * *
15K-I

1
1

10K-I
1

* * * *.
. . .
• + + + +. * * * *.

• + + + +.

1 •

5K-I++++.
i
1

OK-I • •
.bs br .bs br .bs br •
• af nm. af nm. af nm.

• SIMPL • PL/1 • Pascal •

Figure 4-Absolute code size.

show that programs are from 50 percent to over 300 percent
less expensive to compile using Load & Go SIMPL and PL/
1 than Link/Load SIMPL and PL/l. Notice that it takes
longer to link a PL/l program than to compile it using the
Link/Load PL/l compiler. The last compilation cost com
parison shows that Load & Go Pascal is more expensive
than Link/Load Pascal, which is unusual because Load &
Go compiler organizations normally reduce the compilation
cost of programs.

The execution cost comparisons show that the absolute
code generated by the Load & Go compilers are from 25
percent to 300 percent more expensive than the Link/Load
compilers. The biggest difference in execution cost is be
tween the SIMPL compilers, but Load & Go SIMPL is faster
than any of the PL/l compilers or the Load & Go Pascal
compiler. This is probably not a fair comparison because
both PL/l and Pascal are block-structured languages, while
SIMPL is not.

The absolute code generated by Load & Go compilers is
from 25 percent to over 300 percent larger than the Link/
Load compilers. The biggest difference is again between the
SIMPL compilers. On the UNIVAC 1100/40 at the Univer
sity of Maryland, the execution cost of any program is some
factor of CPU time multiplied by some factor of the amount
of core used, e.g.

EXECUTION COST = CPU TIME *
(amount of CORE / 32K of CORE).

This formula reflects not only the execution cost of the ab
solute code, but also the compilation cost of the compilers
and linker.·

DATA DEPENDENCY

The practicality of Load & Go compiler organizations in
compiling and executing a program is dependent upon the
data supplied to that program. Given enough data, the com
pilation cost advantages of Load & Go compilers are more
than offset by the execution costs of its code. The next set
of comparisons shows this data dependency, comparing the
total cost of the Load & Go compilers and Link/Load com-

o pilers for the original amount of data to sixteen times the
original amount of data. The original amount of data consists
of 50 numbers for the bubble sort, a pair of numbers for
Ackermann's function, 20 lines of text for blank removal,
and 10 pairs of numbers for Newton's method. This datahas
been chosen because it rea~mably exercises each program.

The total cost comparisons are displayed as graphs in Fig
ures 5-8 and the actual data can be found in Table II of the
Appendix. These graphs show that the total cost of all com
pilers increases evenly.from the original amount of data to
sixteen times the original amount of data. The total cost of
Load & Go SIMPL a!J,d PL/l are less expensive than Link/
Load SIMPL and PL/l for up to eight times the original
amount of data. From this point, Load & Go SIMPL's total
cost increases until it is more expensive than Link/Load
SIMPL at sixteen times the original amount of data. Load

Data Dependency Figures
(* = Load & Go, + = Link/Load)

35.0-1
1
1

30.0-1 +.
1 +
1 .+++

25.0-1 *.
1 * +.
1 .***

20.0-1 . + +
1 .++
1 *. *.

15.0-1
1 +.
1+++

10.0-1+ *
1

1 * *
5.0-1** .**

1
1

0.0-!1 4 16:1 4 16:1 4 16:
. 28.28.28
• SIMPL • PL/1 • Pascal

. Figure 5-Bubble sort.

35.0-1 +.
1
1 +

30.0-1
1 • ++
1 .+

25.0-1
1 *.
1 ** * +.

20.0-1 .*
1 .+++
1

15.0-1 *.
1
1 *

19·0-1 + +.
1+++
1 *

5.0-1 *
1** .*
1

0'0-!1 4 16:1 4 16:1 4 16.
. 28.28.28
• SIMPL • PL/1 • Pascal

Figure 7-Blank removal.

35.0-1
1
1

30.0-1
1
1 +.

25.0-1
1 + + *.
1 .++

20.0-1 * *.
1 .***
1 • ++ + +.

15.0-1 .+
1 *
1 *.

10.0-1 +.
1+++ + *
1 * .**

5.0-1***
1
1

0.0-1 •
.1 4 16.1 4 16.1 4 16 .
.28.28.28.
• SIMPL • PL/1 • P asca 1 •

Figure 6-Ackermann's function .

35.0-1
1
1

30.0-1
1
1

25.0-1 +.
1 +
1 .+++

W.~I * *
1 *** +.
1 .+++ +

15.0-1
1
1

10.0-1 + +.
1+++ *.
1

5.0-1 *.
1*** * .***
1

0.0-1 .
.1 4 16.1 4 16.1 4 16.
.28.28.28 .
• SIMPL • PL/1 • Pascal.

Figure 8-Newton's method.

& Go PLIl 's total cost never becomes more expensive than
Link/Load PL/l. Since Load & Go Pascal's compilation
cost is never less expensive than Link/Load Pascal, Load
& Go Pascal's total cost never could be less expensive than
Link/Load Pascal.

CONCLUSIONS

'These comparisons indicate that a Load & Go compiler
should be about 50 percent less expensive than a Link/Load

Comparing Compiler Organizations 825

compiler in compilation cost to make the use o¥Load & Go
compiler organizations attractive. Allowing the intermediate
representations of the source program to remain in core re
duces the need for file references between passes, and thus
the cost of compilation. Since linking is anywhere from 20
percent to 70 percent of compilation cost for a Link/Load
compiler, a significant savings can be realized by a Load
& Go compiler generating absolute code. Load & Go com
pilers would be most useful during program development
where there are many more compilations than executions of
each program. These program executions are typically on
small representative sets of data.

A Link/Load compiler's execution cost should be at least
50 percent less expensive than a Load & Go compiler's to
make the use of Link/Load compiler organizations compet
itive. The initial compilation cost for producing the better
absolute code must be more than offset by execution cost
savings. Since absolute code size affects the execution cost
directly, the smallest possible set of library routines and run
time stack should remain in core during the execution of the
absolute code. The ability to enlarge the run-time stack dy
namically during execution helps achieve this goal. Link/
Load compilers would be used when production runs start
and there are many more executions than compilations of
each program. These program executions are usually on
larger and more numerous sets of data.

REFERENCES

1. Basili, V. R. and A. J. Turner, SIMPL-T, A Structured Programming Lan
guage, Palladin House Publishers, Geneva, Ill., 1976 .

2. Basili, V. R., "Structured Programming Language for Compiler Writing:
SIMPL-T," Information Processing Society of Japan 17,3, 1976.

3. Basili, V. R., "A Transportable Extendible Compiler," Software-Prac
tice and Experience, Vol. 5, 1975.

4. Wichmann, B. A., "Five ALGOL Compilers," The Computer Journal,
Vol. 15, No.1, 1971.

5. Wortman, D. B., P. J. Khaiat and D. M. Lasker, "Six PL/1 Compilers,"
Technical Report CSRG-36 Computer Systems Research Group, Univer
sity of Toronto, November 1974.

6. Wilder, W. L., "Load and Go Techniques for Student Environments,"
Master's Thesis, Computer Science Department, University of Maryland,
April 1978.

7. Wilder, W. L., "SIMPL-RLG: A Load-and-Go Compiler for the SIMPL
Language," Computer Science Technical Report Series TR-658, Univer
sity of Maryland, May 1978.

8. Conway, R. W. and T. R. Wilcox, "Design and Implementation of a Di
agnostic Compiler for PL/1," Communication,l· I!t' the ACM, 16,3, 1973.

826 National Computer Conference, 1980

APPENDIX

TABLE I.-Cost Comparisons

SIMPL PL/l Pascal

Bubble Sort Load & Go.Link/Load Load & Go Link/Load Load & Go Link/Load

Compile 3.4 7.0 3.2 11.6 20.0 14.3

Link 2.5 12.5 4.0

Execute 1.0

Total 4.4

Size 17 .OK

0.3

9.8

4.5K

1.6

4.8

26.0K

1.3

25.4

21.0K

1.8

21.8

21.0K

0.8

19.1

12.5K

Ackermann

Compile

Link

Execute

Total

Size

Load & Go Link/Load Load & Go Link/Load Load & Go Link/Load

2.5 5.9 2.3 7.5 17.1 11.3

2.1

4.6

19.5K

2.5

0.2

8.4

4.5K

3.3

5.6

29.0K

12.6

1.1

21.2

21.0K

1.4

18.5

21.0K

3.9

0.6

15.8

12.5K

Blank Removal Load & Go Link/Load Load & Go Link/Load Load & Go Link/Load

Compile 2.5 6.0 2.2 7.8 19.0 13.8

Link 2.3 17.8 4.1

Execute 0.6 0.2 1.4 1.7 1.7 0.8

Total 3.1 8.5 3.6 27.3 20.7 18.7

Size 17.0K 4.5K 26.0K 21. OK 21. OK 12.5K

Newton Load & Go Link/Load Load & Go Link/Load Load & Go Link/Load

Compile 2.5 6.0 2.2 6.8 17.0 11. 7

Link 2.6 13.4 4.0

Execute 0.5

Total 3.0

Size 17.0K

0.2

8.8

4.5K

1.1

3.3

26;OK

1.0

21.2

21. OK

1.3

18.3

21. OK

0.7

16.4

12.5K

Bubb le Sort

Data

Data2

Data4

Data8

Data16

Ackermann

Data

Data2

Data4

Data8

Data16

Blank Removal

Data

Data2

Data4

Data8

Data16

Newton

Data

Data2

Data4

Data8

Data16

TABLE H.-Data Dependency

SIMPL PL/1 Pascal

Load & Go Link/Load Load & Go Link/Load Load & Go Link/Load

4.3 10.8 4.7 26.2 21.3 18.5

5.0 11.0 5.3 26.6 21.5 18.7

6.6

9.6

16.0

11.2

11.6

12.5

6.8

10.0

17.0

27.3

28.6

29.3

22.3

23.5

25.7

19.3

20.4

22.6

Load & Go Link/Load Load & Go Link/Load Load & Go Link/Load

4.8 8.9 5.8 21.8 18.6 15.8

5.0 9.0 6.8 22.1 18.7 15.9

5.8

7.3

11.1

9.1

9.3

9.9

9.0

13.5

23.0

22.6

24.0

26.4

18.9

19.4

20.2

16.0

16.3

17.1

Load & Go Link/Load Load & Go Link/Load Load & Go Link/Load

3.5 8.9 3.7 27.4 20.7 18.0

3.9 9.0 4.4 28.0 21.0 18.2

4.9

6.9

11.0

9.1

9.5

10.8

5.7

8.4

14.5

29.0

31.2

36.2

21.4

22.3

24.3

18.6

19.4

21.0

Load & Go Link/Load Load & Go Link/Load Load & Go Link/Load

3.1 9.0 3.3 21.8 18.5 16.1

3.2

3.4

4.0

5.7

9.1

9.2

9.3

9.8

3.6

4.0

5.2

8.1

22.0

22.3

22.9

25.1

18.6

18.8

19.3

20.5

16.2

16.4

16.8

18.0

A link between polygon and grid representations of land
resource information systems

by DEVON NICKERSON
Logging Systems Group, U.S. Forest Service Pacific Northwest Region
Portland, Oregon

Land-use planners, foresters, agricultural scientists, and
others involved in land-based resource decision-making have
been presented in recent years with a computer tool for ex
amining land attributes: the resource data base. Innumerable
developments have been made in this field. A few examples
are:

WRIS-the Wildland Resource Inventory System, devel
oped and in use within the U.S. Forest Service Cali
fornia Region.

COMARC-a commercial geographic data base system,
developed by Comarc Design Systems of San Francisco,
California.

PLOT-the Polygon Layer Overlay Technique, devel
oped by the U.S. Forest Service Pacific Northwest Re
gion, and currently used by the U.S. Fish and Wildlife
Service.

MAP-the Map Analysis Package, developed at the Yale
School of Forestry and Environmental Studies.

TRI-the Total Resource Inventory system, developed
and in use by the U.S. Forest Service Pacific Northwest
Region.

Although there is a large array of computerized resource
data bases in existence, the objectives of all are nearly the
same. First, resource data bases seek to capture relevant
resource attributes in "layers." Resource attribute layers
may include soil type boundaries, ownership boundaries,
timber types, wildlife range limits, elevation zones, slope
zones, aspect zones, political boundaries and many more
characteristics of the land. Second, resource data bases seek
to store this information, recall it, update it, and display it
in comprehensible form. Third, resource data bases allow
the retrieval and display of land possessing a set of common
attributes, from which the resource manager can make some
conclusions. For example, a forester may query a resource
data base for a composite display of all land under National
Forest administration, in Sierra County, of old-growth mixed
conifer timber type, between 4000 and 5000 feet elevation,
and on south-facing slopes; this set of attributes may rep
resent good timber-harvest opportunities, but difficult re
forestation problems. It can be seen that one computational

827

task of resource data bases is to calculate the unions or in-
tersections of a host of information layers.

Resource data bases suffer a sharp division on one major
point: the form in which terrain data is stored and manip
ulated. There are two basic structures. Polygon data bases
handle land resource attribute compartments as a set of (X,
y) coordinates, representing points along the compartment
boundary (Figure 1). Grid data bases divide the land into
regular grid cells, and handle an attribute compartment by
tallying the cells included within the compartment (Figure
2).

Significant differences in computational tractability occur
between Polygon and Grid data base systems. While most
resource data-collection methods correspond to the Polygon
format-for example, ground survey techniques and map
or photo-digitizing-it is a difficult undertaking to devise an
algorithm to compute the intersection of two or more irreg
ular polygons. The Grid approach, on the other hand, lends
itself to computational ease: two or more layers can be in
tersected with simple logical operators on a cell-by-cell
basis~ First, however, each layer grid must be compiled,
usually derived from resource data collected in polygon
form. In addition, the resolution of grid resource data is en
tirely dependent on the size of the individual grid cell. If
each grid cell represents a hectare of land. then attributes
or fragments of attributes of smaller size or irregular outline
either fail to show up or are generalized into one-hectare
square shapes. Also, data storage requirements may be much
greater for Grid systems than for Polygon systems.

A method for efficiently moving from Polygon resource
attribute depiction to Grid attribute depiction would be use
ful indeed. By doing so, the resource manager would be free
to use any of the various resource data base systems, and
could take advantage of the Polygon systems' high resolution
and storage efficiency, and the Grid systems' computational
ease and efficiency. Such a link procedure should operate
at any scale, should be simple to effect in program software,
should be computationally easy and efficient, and should
contribute to the graphical representation of the resource
attribute layer.

While developing a software package for simulating the
visual effects of timber harvest activities, a hardware-de-

~28 National Computer Conference, 1980

Figure I-Resource attribute compartments are recorded as boundary point
coordinates in Polygon-type data bases.

pendent link technique between Polygon resource bases and
Grid resource bases became apparent. The Visual Simulation
program package uses a graphics desktop computer system
with a raster-scan Cathode Ray Tube (CRT) as an output
device. Alphanumeric or graphics images may be displayed
on the CRT. The image is composed of discrete phosphor
dots, or picture elements. An internal buffer records an exact
numeric model of the graphics raster, by retaining an "on"
bit for every illuminated picture element. The graphics raster
has 455 x 560 dots, or 254,800 bits of information. This rep
resents nearly 32,000 bytes of "bonus" information storage,
since the graphics buffer is separate from user-accessible
memory. It was a desire to exploit this extra storage space
that led to discovery of the Polygon-Grid link technique.

Raster-scan graphic images tend to be a little lacking in
resolution, since diagonal lines must be approximated by
illuminating the discrete dots lying more-or-Iess along the
line. Even so, the dots are very tiny, and there are more
than a quarter million dots on the CRT. If an image of a
resource attribute compartment could be portrayed on the
graphics CRT, each included picture element could be
thought of as a grid cell possessing that attribute. Moreover,
by plotting the polygon attribute boundary to any desired
scale, and coloring-in within the attribute boundary, the res
olution of the grid is controllable. The graphics buffer then
represents a storable, retrievable numerical model of the
attribute in grid form. Since all or part of the graphics buffer
can be transferred to the user-accessible memory, binary
logical operators can be used to rapidly calculate unions or
intersections of various attributes depicted in this fashion.

Figure 2-Resource attribute compartments are recorded as included grid
cells in Grid-type data bases.

00

o t
o

00 S
o tI T

o B

o
o

Figure 3-Line segments inclined at less than 45 degrees result in bits stacked
in the horizontal direction.

Upon retrieval or combination of attributes, the result is in
stantly displayable in graphic form.

As with many a good idea, there is a catch. Almost any
six-year-old equipped with a crayon can color-in inside the
lines. With a computer this is not so easy. One must start
with a boundary and turn on all the picture elements inside.
The logical approach would be to move sequentially down
the graphics raster, examining each horizontal line in turn.
Moving from left to right along the line, one would realize
he was "inside" upon encountering the first "on" bit, which
would represent first crossing the boundary into the attribute
compartment. From that point on, every bit would be turned
"on," until the next "on" bit was encountered, which would
represent crossing the boundary out of the attribute com
partment. In this manner, very complicated shapes with re
flex curves, fingers, and holes could be colored-in. The catch
is that bits become "stacked" in the horizontal direction
when a boundary segment is drawn at an inclination of less

o

o
o

o
o

o
o

o
o

o

o
o

o
o

o +- SINGLE
o 0 BIT

o 0
o 0

o
o
o
o
o
o
o
o
o
o
o
o
o
o

Figure 4-A vertical change-of-direction leaves a single bit.

Representations of Land Resource Information Systems 829

"
//

\
) .I'

J/ \ /t'

(.

\
, '}

" \.

\
(, ./

(
.........

) ')
\

\ (
..... ,.

.........
....... ,

'\ I/))')
(
, /

Figure 5-An attribute boundary polygon, plotted without stacked or single
- bits.

than 45 degrees from horizontal (Figure 3). The color-in
technique described above would think "entering" at the
first bit, "leaving" at the second bit, and would fail to color
in the horizontal line beyond the second bit. In addition, at
points where the boundary changes direction vertically, only
a single bit may be "on" (Figure 4). The color-in technique
would commence coloring-in upon encountering this bit, and
would leave a spurious trail of "on" bits extending to the
right.

The solution is to draw the boundary such that neither
anomalous event occurs. One such boundary is shown in
Figure 5. Bit-stacking is eliminated by controlled plotting of

Figure 6-The attribu,te boundary polygon is colored-in, yielding an attribute
grid composed of individual picture elements.

~_At·1_F·Li. _______ . ______ _ . _____________ . _____________________________________ ~

STAND-T--------------------------------
II STAflD 2

STAtUI 3

OVERLAP .-:; ~~~: :.n t::~'E t~ CI~:I~t-.~~t~~.I~:;~:E·'i) t vp.;-, ;. €. Ql)€"t" l:ip bet vJf€ n l'

Figure 7-A composite of attribute grids and crosshatch graphics.

line segments inclined less than 45 degrees. Single bits at
vertical changes-of-direction are deleted. The color-in pro
cedure can be performed exactly as described above, with
results as seen in Figure 6.

The Visual Simulation routine used this technique to
model partial-cut timber harvest settings. Boundaries of dis
tinct timber types are digitized, producing an attribute
polygon. The color-in routine creates an attribute grid. Each
grid cell or picture element represents a tree crown. By in
serting a random-number selection mechanism, various in
tensities of partial timber removal can be modelled. Several
distinct timber type layers were combined using an EX
CLUSIVE OR operator. A layer of unforested openings
(clearcuts, meadows, water bodies, and road right-of-way)
was added, using the BINARY COMPLEMENT and the
BINARY AND operators. Crosshatching graphics, to iden
tify the separate timber types, were added using the binary
AND operator. The composite graphil:, generated in a single
pass across seven grid layers, is shown in Figure 7. The plan
view from this composite graphic was used, via the graphics
buffer, to produce a simulation of the timber stand as seen
in true perspective (Figure 8).

The technique described in this paper is an attempt to turn
a computer hardware peculiarity to useful advantage. The
graphics buffer of the desktop computer system described
can certainly be mimicked within any large computer main
frame. More exciting would be a graphics desktop system
used to prepare resource layer information as described,
then passing the layer in both Polygon and Grid form to a
major mainframe for storage or manipulation. Output would
return to the graphics system to be formatted for display.

830 National Computer Conference, 1980

EXAMPLE
LEVEL LINE-OF-SIGHT IS 11 INCHES ABOVE FRAME

VIEW DIST: 43 INCHES

-5

-10

99mm LENS

Figure 8-Partial-removal timber harvest simulation, derived from the
composite attribute grid in Figure 7. Note many-layered unharvested stand,

shelterwoodstand(left,topcenter),andthinnedpole-sizetimber(right).

It is for the sake ofthese future possibilities that the Polygon
Grid link technique is described in this paper.

REFERENCES

Salmen, L., et aI., Comparison of Selected Operational Capabilities of Fifty
Four Geographic Information Systems, Western Governors Policy Office,
Fort Collins, Colorado, 1977.

Schwarzbart, G., et aI., Analysis of Computer Support Systems for Multi
functional Planning, Report III, U.S. Forest Service Management Sciences
Staff, Pacific Southwest Region, Berkeley" California, 1976.

Tomlin, C. D., Cartographic Modeling Techniques in Natural Resources
Management, doctoral dissertation, Yale School of Forestry and Environ
mental Studies, New Haven, Connecticut, 1979.

Tomlin, C. D. and Berry,J. K., Map Analysis Package, Yale School of For
estry and Environmental Studies, New Haven, Connecticut, 1979.

Young, R. W., Evaluation of a Commercial Geographic Data Base for Stor
age and Retrieval of Forest Insect and Disease Information, U.S. Forest
Service Methods Application Group, Davis, California, 1979.

Risk analysis in the 1980's

by JEROME LOBEL
Honeywell Information Systems, Inc.
Phoenix, Arizona

INTRODUCTION

The application of scientific procedures to the study and
evaluation of information and communications systems risks
is still in its infancy. Hopefully, before the end of this decade
we will see major breakthroughs both in improved tech
niques 4nd greater utilization of Risk Analysis procedures
by computer users. On the other hand Risk Analysis (also
sometimes called Threat or Vulnerability Analysis) has real
merit e\olen by todays standards. The problem is that many
organiz~tions have still to be convinced as to its potential.

THE pAST-RISK ANALYSIS LIMITATIONS

Risk Analysis attained a certain degree of popularity as
a result of a report written for the Federal Information Pro
cessing Standards Task Group 15, Computer Systems Se
curity, of the United States Department of Commerce Na
tional Bureau of Standards in 1975.

Although recognized as a potentially valuable evaluation
tool authorities generally did not present it as a panacea for
relieving the ills of an electronic data processing system.
Typical systems problems such as fraud, theft, embezzle
ment, malicious damage, unauthorized access, natural dis
aster, accident, or an operations interruption or stoppage
were considered to be too complex to be resolved by rela
tively simple mathematical or statistical solutions.

Other criticisms of Risk Analysis methodology included:

• The owners and users of information systems (the peo
ple from whom survey data is usually obtained) often
do not have enough detailed knowledge as to how their
systems work or where their systems work or where
their vulnerabilities are located to provide adequate or
sufficiently accurate information.

• It is difficult if not impossible (or impractical) to survey
100 percent of an exhaustive list of system vulnerabil
ities.

• Estimates of event occurrence (the probability of an
event occurring) or its cost may be too imprecise to be
reliable.

• Some information system threats are not quantifiable
in monetary terms (Le. national security information
compromises, loss of public services, etc.).

831

• The most fallible part of most information systems, the
human factor, is too unpredictable and uncontrollable
to measure.

In spite of these limitations, many organizations began to
use Risk Analysis or some variation of it to get a better
"handle" on their information system vulnerabilities.

THE PRESENT-STANDARD PROCEDURES

In practice, there are many variations in Risk Analysis
technique and approaches. The basic process of Risk Anal
ysis however tends to follow the following four steps:

1. A survey is made of an organization's risks associated
with its most essential assets, typically its people, in
formation and facilities. Normally the data gathered
during the surveyor study includes:

• The identification of potentially injurious or dis
astrous events,

• Estimates of the frequency lof occurrence associ
ated with risk events (Figure 1).

• Estimates of cost (usually in money) of the loss
per incident of event occurrence (Figure 2).

Special statistical tables are often used to permit even
gross estimates of time or cost to be mathematically
useful.

2. Calculations are made based upon the input data (es
timates made during the survey) and result in the der
ivation of an expected annual loss from the occurrence
of a particular event (Figure 3).

3. A detailed evaluation of each event or problem area is
made to identify the best known preventative measures
and their associated costs.

4. A return-on-investment (ROJ), pay back calculation or
other comparative measurement technique is used to
evaluate the reasonableness of spending time, money
or energy to reduce a particular risk. Risk Analysis
studies usually result in some form of management de
cision. As an example, if a particular risk prevention
measure is deemed too expensive or not practical, a
decision may be made to "tolerate" the risk.

Advocates claim that the final result of a formal Risk

832 National Computer Conference, 1980

ElY = FREQUENCY OF EVENT

P = PROBABILITY

EXAMPLE:

LETP 0 IF PRACTICALLY NEVER

If ONCE IN 300 YEARS

2 IF II 30 YEARS

3 IF II 3 YEARS

4 IF II
II 100 DAYS

5 IF II 10 DAYS

6 IF II 1/DAY

7 IF 10/DAY

8 IF 100/DAY

(IF 3 YEARS = 1000 DAYS)

Figure I-Probability of frequency estimation table.

Analysis survey will be a set of informed management de
cisions, possibly several magnitudes better than the intuitive
guess-work that might have otherwise taken place. It is also
proposed that Risk Analysis should be a dynamic or on-going
process which is repeated or periodically updated. Its ad
vocates also claim that it is one of the few systematic ap
proaches to resolving potentially dangerous problems as
sociated with certain data processing and communications
systems.

Risk Analysis studies may be performed by special data
processing project teams, internal audit staffs, professional
security staffs or outside consultants, just to name a few of
the organizations often called upon to do the job.

THE FUTURE-TAILORING PROCEDURES TO
SATISFY REAL WORLD NEEDS

The idea that Risk Analysis, as a way of measuring and
correcting information system threats, might be overlooked
by computer users led to a survey of 250 organizations that
had already been exposed to the methodology. The objective
of the survey was to analyze the extent to which formal Risk
Analysis procedures were being used by these organizations
and the nature of the benefits that were being derived. Fifty
eight responses were received and were tabulated in the re
sults.

Altogether, there were ten questions in the survey. A num
ber of the questions had multiple parts and permitted the
respondee to comment on significant issues. All responses
were based upon organizational as opposed to individual
experiences.

EXAMPLE:

LET COST 12 IF LOSS IS $ 3,333,333

11 " $ 1,000,000

10 " $ 333,333

9 " $ 100,000

8 " $ 33,333

7 " $ 10,000

6 " $ 3,333

5 " $ 1,000

4 " $ 333

3 " $ 100

2 " $ 33

" $ 10

0 " $ 3

LIE = LOSS PER EVENT

Figure 2-Estimate of order of magnitude table.

The following is a list of the questions, the responses tab
~llated, and this author's comments and conclusions regard
ing the response to each question:

1. Has your organization implemented a formal Infor-
mation Systems Risk Analysis program at any time?

Response: Yes = 10 No = 48
Comment: The low response of 21 percent (orga
nizations with formal Risk Analysis Programs) in
dicates that, at the very least, Risk Analysis has
not yet met with wide acceptance as a means of
identifying and correcting information system threats.

2. Has your organization used the formal Risk Analysis
technique for studying information system weak
nesses at any time in the past?

Response: Yes = 12 No = 46
Comment: For those organizations that have im-

EXAMPLE

LIE EXPECTED LOSS PER EVENT

ElY EXPECTED FREQUENCY OF EVENT

LtY EXPECTED AVERAGE LOSS PER YEAR

LIY = (LIE) (ElY)

Figure 3-Expected average loss per year calculation.

3.

4.

5.

pie men ted the program, it appears that they must
have either attained some degree of success or that
the program is only in its initial phase of imple
mentation. (Only one organization indicated the
program was a washout.)

If your organization has used Risk Analysis, would
you say that the extent to which it was applied was:

Response: Check one only
a. Extensive (all or most systems

or applications)? 9
b. Moderate (1 to V? 3
c. Occasional (less than 1)? 10

Comment: Although there appears to be some dis
crepancy between the answer to this question and
the previous questions, it would seem that the ma
jority of organizations that implemented a formal
Risk Analysis program tended to go all the way
that is surveyed and evaluated all applications as
opposed to only part of their information system.
(It is likely that organizations that checked part c.,
"Occasional," probablY did not consider their prior
use of Risk Analysis type studies as being a "for
mal" application of the methodology.)

If your organization implemented a Risk Analysis
program, how good were the results?

Response:
a. Excellent (est. savings in ex-

cess of $.5 million) 0
b. Good (est. savings between

$100,000 and $.5 million) 2
c. Fair (est. savings less than

$100,000) 0
d. Poor (savings could not be

identified) 9
Comment: The rather negative outcome indicated
by the responses to this question can be indicative
of generally poor results, poor follow-up, measure
ment difficulty, or it may have been too early for
Risk Analysis users to measure their results. Also,
there were a number of questionnaires sent back
with comments to the effect that the reason for their
organization doing Risk Analysis was not neces
sarily to obtain monetary cost savings. They said
that their main objective was simply to identify
risks and implement preventative measures.

If your organization has not used Risk Analysis,
which of the following reasons probably accounted
for this:

Response:
a. Lack of management support 18
b. Lack of adequate information

on the technique 17
c. Technique lacks rigid disci-

pline 2
d. Other techniques easier to use 3
e. Could not determine a Risk

Analysis Survey would ac-
complish anything 13

6.

7.

8.

9.

Risk Analysis in the 1980's 833

Comment: The reasons given for not i~plementing
a Risk Analysis program indicate that potential
users want a lot more proof that the effort and re
sults will probably be worthwhile. So it seems likely
that we will not see a significant increase in the use
of formal Risk Analysis programs to reduce infor
mation system threats until more organizations re
port positive results, or possibly develop and use
other techniques which get the job done better.
There is also a strong indication that m~my potential
users of Risk Analysis are looking for more edu
cational information and articles on Risk Analysis
methodology and its practical application.

What would you say is the strongest argument for
doing a Risk Analysis study?

Check as
Response: Appropriate

a. Quantification of system risks
and priorities 30

b. Focus attention on high risk
areas 29

c. Confirmation of previous threat
studies 2

d. Alerting of the organization 30
e. Management participation 11
f. No other technique available 0
g. The resulting action steps 9

Comment: It is interesting to note that responses
to this question indicate a greater interest in the
communications and quantification value of risk
analysis compared to the final outcome or results
of implementing study recommendations. This may
mean that many people consider Risk Analysis
more of an education and planning tool than the

, final answer as to where to apply resources to min
imize or eliminate information system vulnerabili
ties.

If your organization is not using Risk Analysis tech
niques, are you using some form of substitute program
or procedure?

Response: Yes = 11 No = 27
Comment: The number of yes answers are signifi
cant inasmuch as almost as many Risk Analysis
using organizations reported they were using some
form of modified procedure for evaluating systems
risks. (See the next question.)

If you have used or are presently using Risk Analysis,
have you modified or improved on the standard pro
cedure in order to get better results?

Response: Yes = 10 No = 16
Comment: Again, the large number of organizations
that reported that they were using some modified
form of Risk Analysis to study their system vul
nerabilities seems to attest to the need· for organi
zations to tailor whatever procedure they elect to
use to their own needs and purposes.

If you have used or are using Risk Analysis, have you
developed any new or unique survey forms or cal-

834 National Computer Conference, 1980

10.

culation procedures that you could share with other
interested organizations?

Response: Yes = 5 No = 23
Comment: Although only a few of the responding
organizations felt that they were in a position to
contribute to the state-of-the-art (at the time of this
survey), the ideas that were sent in were extremely
interesting. (See the next chapter-Risk Analysis
Enhancements.) As an example, a number of or
ganizations went to some form of unique procedure
for prioritizing or weighting risks related to the
needs of their own organization. This helped to
partially reduce the amount of time and precision
required to estimate risk relevancy and monetary
cost savings. As a result, a Risk Analysis study
using an alternate procedure might be more useful
to a particular organization. Furthermore, modified
approaches probably work better where the inher
ent nature of the system makes it difficult or im
practical to utilize monetary values as a basic mea
surement criteria.

If your organization has not performed a Risk Anal
ysis Surveyor other similar study of your information
system vulnerabilities, what are the possibilities of a
program being implemented sometime in 1979?

Response: Excellent 10
Probable 19
Negative 14

Comment: The majority (29) of the responding or
ganizations that had not yet already initiated some
form offormal Risk Analysis program indicated that
they would probably do so prior to the end of this
year (1979). To some extent, this is surprising in
the light of the answers given to the other questions
in the survey. One conclusion that could be drawn
in line with this response is that computer users
recognize that systems abuses and risks do not ap
pear to be diminishing, and therefore some type of
action program will soon be needed. The problem
may be which risk evaluation program should be
implemented and when?

RISK ANALYSIS ENHANCEMENTS

Thanks to the generous cQoperation of the organizations
that responded to the Risk Analysis Survey, the following
ideas are presented as examples of techniques that might be
used to modify or enhance a Risk Analysis program.

Example 1

Objective: A simpler, less expensive procedure-This
computer user reported that they operated a medium-sized
installation, and didn't have the manpower to implement a
"formal and extensive" Risk Analysis program. Their so-

lution was to develop a simplified data gathering form (Figure
4), which they felt short-cutted a more expensive and time
consuming study.

Example 2

Objective: Shorten the Risk Analysis data gathering cycle
and expedite evaluation of more critical computer applica
tions-This organization initially used the evaluation pro
cedure published by the Institute of Internal Auditors in their
Systems Auditability and Control-Audit Practices guide.
They reported that they didn't have time, however, to com
pile all of the required data, but determined that they could
get by with three indexes and an overall summary. (See Fig
ure 5.) The indexes are referred to as the: (1) Major Systems
Index, (2) Company Assets Index, and (3) Critical Systems
Index.

Example 3

Objective: Modify standard Risk Analysis procedures to
more clearly distinguish the severity of impact of different
classes of hazards-This organization developed an eight
point "degree of loss" index (See Figure 6), and a special
form to permit a more quantitative review of information
system hazards.

COMPUTER SECURITY ANALYSIS
(DATA GATHERING FORM)

System name _________ System Identification ___ _

Description of system:

...- MANUAL SYSTEMS COMPUTER SYSTEMS ~

::::~]r---------+-]-+--] --+--+]]-+--I -+----il 1
Effect of dilruption of servic.:

Alternlt. method:

Effect of"loll/d"truction of fU,,:

Fir. Pow" E.rth Sabotlg. Fraud error

Prob,bUitl .. of occurrence

Rlco.ery plen euabli.hed

Counterm.a.u, .. tlken

.-
Remarks and noUI:

Figure 4.

RISK IMPACT INDICES

(Critical Scale is 1 to 10 with 10 being the
high value or most ciritical condition)

Major Systems Index

9.10 Over 60 programs or 100 man months of maintenance, or
10,000 computer hours annually and updates a major
master file and interfaces with another major system.

7·8 35·60 programs or 20·100 man months of maintenance
or 1,000·10,000 computer hours annually and updates
a master file and interfaces with another system.

5.6 10·34 programs or 10·20 man months of maintenance or
250·5000 computer hours annually.

3.4 5·9 programs or 5·9 man months of maintenance or
50·249 computer hours annually.

2 and below other system

The Company Assets

9·10 Directly affect cash
8 Affects movement of assets
6·7 Indirectly affects movement of assets
5 and below less affect on assets

The Critical System Index

9·10 Necessary to maintain daily business
7.8 Necessary to maintain statutory requirements and

monthly reporting
5·6 Necessary to maintain business
4 and below not primary to business

Figure 5.

Example 4

Objective: Modify Risk Analysis procedure to permit an
evaluation of risks that do not lend themselves to monetary
measurement criteria such as events involving adverse social
or political consequences-This organization is experi-

. menting with the coupling of conventional Risk Evaluation
Procedures with a unique "sensitivity value" or point scale
(Figure 7), in order to measure critical events which do not
permit monetary assignments.

Example 5

Objective: More clearly distinguish between "major" and
"minor" threats and classes of exposure present in an in
formation system-In the interest of simplifying the Risk
Analysis procedure and at the same time focus attention on
the threats of potentially great severity, this very large com
puter user developed a unique two-level threat classification
system (Figure 8). They also divided potential security ex
posures into four categories. (Figure 9).

CONCLUSION

It is very difficult to prove that a computer system Risk
Analysis study will necessarily result in a more secure in-

Risk Analysis in the 1980's 835

DEGREE OF LOSS MATRIX

HAZARD: ___
NO. TYPE RATINGS

LOSS FREQ.

DEGREE OF LOSS: MANIFESTATIONS:

A. MINOR ANNOYANCE

B. MAJOR ANNOYANCE

C. MINOR LOSS/RECOVERY

D. MAJOR LOSS/RECOVERY

E. MAJOR INTERRUPTION

F. SEVERE DISRUPTION

G. MAJOR DISASTER

Figure 6.

SENSITIVITY VALUE SCALE

Sensitivity Value Factor plus Back·up Factor may be used to calculate
uExposure Points Value" per yea, --

Example

Asset List Value Points

1. Operators manual 10
2. System reference manuals 50
3. Operational files 100
4. Data Base file 250
5. Progr.m Libnry 300

~ ~
ETC.

MAJOR THREATS:

MINOR THREATS:

ETC.

Figure 7.

MAJOR/MINOR THREAT CATEGORIES

An eunt of •• Unrophl. proporllons which destroys the ADP
facility or rand ... It Inop".bl •. Example.: fire, flood,
earthquak., tornado, bombing, riot. Assumption is made that
an att.nd.nt of the f.clllty, such IS the tape/disk
library. are d ... roy.d. R.locltion to an alternate processing
site i. requlr.d. Only the mlterial stored off-site is available
for ule.

Thil category includes all the failures, errors, and mishaps
encountered daily. While each occurrence may result in
relatively Ihort proceSSing delay or minor distortion or loss
of data, the cumulative cost of many oCCurrences can be
significant. Examples: CPU failure, wrong tape or pack
mounted, listings lost, .air conditioning failure.

Figure 8.

836 National Computer Conference, 1980

SECURITY EXPOSURE IMPACT CLASSIFICATION

Security Exposute

Data Integrity

2. Data Confidentiality

3. Operational Reliability

4. Asset Intogrity

Possible Results of Security Failure

Destruction or IJnauthorized modification of data,
unintentional or deliberate.

Unauthorized disclosure of sensitive data.

Undependable or inadequate processing;
unavailability of processing. (Processing
shou:d be accurats. dependable, and timely.)

Destruction or physical damage to buildings and
equipment and supporting functions.

In general. the first three categories represent thraats to data and processing. Auet integrity
can most often be r~l.ted to physical assets: equipment. supplies, furniture, storage media,
etc.

Figure 9.

formation system. On the other hand, as evidenced by the
survey covered in this paper, computer users need a sys
tematic way to study, evaluate and prioritize the risks and
countermeasures associated with their systems. Risk Anal
ysis lends itself to this task.

Fortunately, there are many risk investigation methods
from which to choose. Different organizations should use
the methodology that gets the job done, at a price they can

afford to pay. There is no question that data proc'essing users
need to become more knowledgeable regarding their system
vulnerabilities and risk prevention methods. Therefore,
slowly but surely, we will probably see more organizations
implementing a risk or threat or vulnerability analysis in one
form or another. The procedure used will not be nearly as
important as the overall results that will be obtained.

REFERENCES

1. ADP Security Handbook-Handbook Supplement: DIPS Manual Chapter
6, U.S. Department of Agriculture, 1977.

2. Carrol, John M., Computer Security, Security World Publishing Company,
Inc., 1977.

3. Computer Security Risk Analysis and Control: A Guide for the DP Man
ager-National Computing Centre, Ltd., 1979 (available in the U.S. from
Hayden Book Company, Rochelle Park, N.J. 07662).

4. Courtney, R. H., "Security Risk Assessment In Electronic Data Pro
cessing Systems," IBM Corp., 1975.

5. "Guidelines for Automatic Data Processing Physical Security and Risk
Management," FIPS Publication 31, National Bureau of Standards, June
1974.

6. Koenig, Rick, "How to Get a System Security Project Off the Ground!"
Computer Security and Privacy Symposium Proceedings, Honeywell In
formation Systems, 1977.

7. Kraus, Leonard S. and MacGahan, Computer Fraud and Countermea
sures, Prentice Hall, 1979.

8. Martin, James, Security, Accuracy, and Privacy On Computer Systems,
Prentice Hall, 1973.

A mathematical model of character string manipulation

by SAKTI PRAMANIK
Indiana University-Purdue University at Indianapolis
Indianapolis, Indiana

INTRODUCTION

Every insert and delete operation on a string of characters
causes it to expand or contract in memory. If on the other
hand, these commands are saved, the character string can
be updated at the end ofthe editing session. 1,2 The advantage
of doing this is to move any character at the most once in
memory. This is possible because the final position of a char
acter in the string can be determined from the saved edit
functions. In Figure 1 below it is shown that a "Delete char
acter in position 3" and then an "Insert a character X before
the 3rd character position" can be combined into a single
edit function, "Replace the character in position 3 by the
character X."

Delete and insert functions

Initial Character string

ABC D E

C Delete

Combining the edit functions

Initial character string

ABC D E

L Repl ace by an X

After Delete After Insert

A B D E A B X D E

L Insert X

After Replacement

A B X D E

Figure I-Combining the effect of delete and insert functions into a single
edit function.

One difficulty of combining several edit functions as above
is that they are issued relative to the character position in
the current string while the combined edit function has to
work on the characters in the initial string. For example,
deleting the ith character of the initial string and then de
leting the ith character of this updated string mean deleting
the ith and the (i + l)th characters of the initial string. It
seems that the' above combining process requires the trans
formation of the editorial point in the current string into a
corresponding editorial point in the initial string. But this
conversion may not always be possible because the mapping
may not exist.

837

Instead of defining the editorial point on a referenc~ frame
which is always changing a static frame of reference is cre
ated. This is done by defining a sequence of character slots.
Characters of the string are stored in these slots in sequence.
Three microscopic edit operators are defined which operate
on the contents of these slots rather than on the character
direct by its position in the string.

DEFINITION OF THE OPERATORS AND THEIR
ALGEBRAIC· PROPERTIES

Let S i denote the ith character slot. So S i also represents
the slot location of the ith character in the current string.
Thus, S 1 denotes the slot containing the left most character
in the string. The three basic micro-operators, B iX, F /, and
R/, are then defined as follows:

B/=Si~'X'

i.e., the character X is moved into the ith slot and the pre
vious character in that slot is lost.

i.e., the character in the ith slot is moved into the (i + l)th
slot and the previous character in that (i + l)th slot is lost.
Then the character X is moved into the ith slot. Similarly,

the content of the (i + l)th slot is moved into the ith slot and
the previous character in the ith slot is lost. A character X
is then moved into the (i + l)th slot.

In the above definition, X represents any single character;
for blank characters however, no superscript will be used.
For example, B i will move a 'blank' character into the ith
slot. The following equivalence relations hold good for the
above operators. They indicate that the operators on the
right hand side of a relation eventually result in the same
characters in the slots as those operators on the left hand
side; but the ones on the right hand side achieve this by a
minimum amount of character movement. The convention
that the operators in a string gets executed in sequence from
right to left, is assumed. For example, in the operator string
B/ F/, F/ is executed first, and then B/.

838 National Computer Conference, 1980

F/R/=B/ (1)

F i+lxR/=B i+2YR/ (2)

F/R i+IY=B i+2YF/ (3)

R/FiY=Bi+lx (4)

Ri+lxF/=B/Ri+lx (5)

RixFi+ I Y=B iYFi+ IX (6)

F/B/=B/Bi+IY (7)

FixBi+IY=F/ (8)

BixF/=Fix (9)

Bi+lxF/=Bi+lxB/ (10)

R/B/=R/ (11)

R/B i+ I Y=B iYB i+ IX (12)

BixR/=BixBi+IY (13)

Bi+lxR/=Rix (14)

The above operators commute under the following con
ditions:

F/ commutes with F/, R/ commutes with R/, and F/
commutes with R / only when Ii - j I> 1. F / commutes
with B/, and R/ commutes with B/, only whenj<i or
j>i+ 1.

DEFINITION OF INSERT AND DELETE FUNCTIONS

Function to insert a character X before the ith character
in a character string of length N is represented by the op
erator string

where the Fs are performed in a sequence from right to left.
So F N X moves the character in the Nth slot of the (N + 1)th
slot and then moves the character X into the Nth slot. Then
F N_I X moves the character in the (N -1)th slot to Nth slot
and then the character X into the (N - 1)th slot, and so on.

The function to delete the ith character in a character
string of length N is represented as follows:

RN-IRN-2· .. ·· ... Ri+IRi

Similarly, the Rs are performed from right to left in the
operator string above. We can now represent a sequence of
insert and delete functions by concatenating the strings of
Fsand Rs. The temporal sequence of the edit functions are
preserved by concatenating the operator string of the next
edit function to the left of the string of the previous edit
functions. The advantages of representing a sequence of edit
functions by a concatenated operator string is that this string
can be simplified considerably by using the relations 1
through 14. For example, the delete and the insert functions
of Figure 1 is represented by the operator strings R ~ 3 and
F 3xF 4X respectively. To represent the combined effect of

the two edit functions, we concatenate the operator strings
as follows:

F3XF4XR~3

By using relation 1, F 4X R 4 is reduced to B 4X, This B 4X in
turn can be merged with F 3x , The above operator string now
becomes F 3 X R 3 which by using Relation 1 again becomes
B 3X , Thus the combined effect of the two edit functions is
the micro-operator B3x which imply moving the character
X into slot 3. It should be noted that slot 3 is also the position
of the third character in the initial character-string. In other
words, B 3x replaces the third character in the initial char
acterstring by a character X. A systematic approach to com
bine a sequence of edit functions to produce an optimized
operator string is presented in the following section.

REDUCTION ALGORITHM

This algorithm starts by merging the operator strings of
the first and the second edit functions. The string thus ob
tained is now merged with the operator string .of the third
edit function. This process of merging two operator strings
at a time continues until the operator strings of all the edit
functions h~ve been merged. The merging is done by taking
one operator from the left string and combing toward right
through the operators of the right' string until it combines
with an operator or finds a place in the right string where
it can not be combed any further to the right. The combing
is essentially done by commuting the operator successively
with its right neighbor in the string. Combining two operators
involves finding the previous relation whose left hand side
corresponds to these two operators; then replacing them by
the operators of the right hand side of the relation. These.
operators may now be combined with other operators of the
right string. The following example shows how the operator
strings for the three edit functions have been merged into
a single operator string. The edit functions, in the order they
are issued, are: (1) insert a character X before the 9th char
acter; (2) insert, a character Y before the 9th character; (3)
delete the 6th character.

Assuming an initial character string of length 10, the op
erator strings for the above edit functions are: (1) F 9xF lOX;

(2) F 9YF lOYF 11 Y; (3) R llR loR~sR7R6; respectively.
The merging process starts with the operator string of the

first edit function, i.e., F 9xF lOX. The second operator string
is now merged with this from left as follows:

Y Y Y merge with X X
F 9 FlO F 11) F.9 FlO

Producing F 9 YF 10 YF 9XF 11xF lOX

See that F 11 Y of the left string has commuted with F 9X of
the right string. This resulting string is now merged with the
3rd operator string as follows:

R 6 combs all the way through the right string and so does

Mathematical Model of Character String Manipulation 839

R 7 producing
merge with y y X Y X

RIIRIOR9Rg ----~) F9 FlO F9 FII FlO R7R 6

R g now combines with F 9 Y, thus both of them are replaced
by B gYF 9 as follows:

The new operator B g Y is now combed through its right
neighbors and eventually combines with R 7 to produce

Now R9 combines with F 9 to produce B 10, and this B 10 com
bines with F lOy to produce FlO' Continuing this process we
get the final merged string

The resulting merged string consists of a disjoint set of
substrings of only Fs, or only Rs, or only Bs. For example,
the merged string above consists of the disjoint substrings
F 9xF lOX and R 7 YR 6' These two substrings are disjoint be
cause R7YR~ 9XF lOX is equivalent to F 9xF loxR 7YR

6
• The

relative order of these disjoint substrings is important, how
ever, for the merging algorithm discussed above because it
may result in an incomplete merge if the substrings are not
properly ordered. For example, a fourth edit function "De
lete the 8th character" is issued after the three edit functions,
discussed above. The operator string for the fourth edit func
tion is R loR~g. If the right string is R7YR~ 9xF lOX then the
merged string will be RloR~gR7YR~9XFlOx, This cannot
be reduced any further because R g does not commute with
R 7Y. On the other hand if the right string is F 9XF IOXR 7YR

6

then the merged string is reduced considerably to R 7 X R 6 •

This is because Rg combines with F 9x , and so on.
lt can be shown that the merging algorithm will always

produce a completely reduced string when the disjoint sub
strings of the right string are kept in descending order from
left to right; the ordering is done by their highest subscript.

A computer program has been written to implement the
above merging algorithm. For random input data it is found
that the number of commutations (required for combing) in
creases very rapidly with the increasing length of the char
acter string. The number of commutations can be reduced
considerably if combing is done for a group of operators at
a time rather than taking only one operator at a time from
the left string. This reduction is possible because the sub
scripts of the operators within a group are sequential. The
following table gives the merged substring in terms of the

TABLE I.

i = j i > j i < j

B~ + Bi + 1 B~ _ 1 R: B~ + 1
X

1 = k 1 1 2 ; j F i; j-2

Fi + 1
X RX Y Y FX X

F i + 1
X

1 < k F1 +2; k i -2 Ri - 3 ;.i F1+1 1+2 ; k F i ;j-2 F1 +2; k
R Y R Y R~ -2

Y R Y F~
1 > k 1; k + 1 1; k+1 Ri -3; j 1; k+ 1 1; j -2

subscripts of the merging substrings. We will use the follow
ing shorthand notation for the substrings:

= Null For j<i

and

= Null For j>i

The entries in Table I show the result of merging the sub
strings R If from left with Fi;k

x , Similar table can be con
structed for merging Fi;k

x from left with R If.

CONCLUSION

The merged operator string works as an efficient mapping
between the original character string and the updated char
acter string. For example, a text file on a tape unit can be
considered as a continuous string of characters3 and all the
update information about this text string can be maintained
through a merged operator string. The merging process re
quires a fair amount of string manipulation. This, however,
remains bounded when the number of inserts and deletes are
evenly distributed over time and space.

ACKNOWLEDGMENT

I would like to thank professors Edgar T. Irons and Alan
J. Perlis of Yale University for many helpful conversations.

REFERENCES

1. Pramanik, Sakti, "Map Editing," Ph.D. thesis, Yale University, 1974.
2. Pramanik, Sakti and Irons, Edgar T., "A Data-Handling Mechanics of On

Line Text Editing Systems with Efficient Secondary Storage Access,"
Proceedings of National Computer Conference, 1979.

3. Wilkes, A., "An On-Line Algorithm for Manipulating long Character
Strings," IEEE Transactions on Computer, November, 1970.

Policy, values and EFT research: anatomy of a research
agenda.

by KENNETH L. KRAEMER
University of California
Irvine, California

and

KENT W. COLTON
Brigham Young University
Provo, Utah

INTRODUCTION

In its Final Report of February 1977, the National Commis
sion on Electronic Fund Transfers (NCEFT) defined EFT
as:

" ... a payments system in which the processing and com
munications necessary to effect economic exchange, and the
processing and communications necessary for the production
and distribution of services incidental or related to economic
exchange, are dependent wholly or in large part on the use of
electrons.' '36

This innocuous definition of EFT hardly fits with the
emerging recognition that EFT is a technologically-based
system with the potential for vastly changing relationships
among private enterprises, public institutions and individuals
throughout the country. 2,15,28,27 The complexity of EFT is
illustrated by the fact that it is not a single technological
application; nor is it even composed of a unified group of
technological applications. At least five different techniques
characterize the applications being developed in this coun
try: pre-authorization procedures, automated banking through
EFT. terminals; poiJ?t-of-sale (POS)' operations; national
bank card networks; and automated clearinghouse proce
dures (Table I). Individually and through a combination of
these subsystems and techniques, EFT operating systems
are being established in various areas throughout the coun
try.20,34,35,36,40,43 However, such efforts are not established in
a vacuum; their success, failure, and very nature are highly
dependent on several major forces surrounding their devel
opment.

The evolution of EFT: major forces and values

Figure 1 presents an overview of the major forces involved
in the evolution and development of EFT systems: institu
tional actors, EFT technology and operating systems, EFT

841

regulation and control, impacts of EFT on people and the
economy, and monitoring and evaluating of EFT systems.
Thus_, the actual EFT operating systems are only one part
of a much larger system. And because EFT operating systems
are integrally linked with these other forces, they inherently
are involved in the major public policy and political ques
tions which traditionally relate to these other forces.

To begin, the institutional actors involved in the provision
and use of EFT technology play an important role in deter
mining the overall shape of EFT operating systems. Con
sumers or users of EFT technology include those individu
als, businesses or governments who currently use EFT or
who may do so in the future. What consumers and users will
accept is a major determinant of what the providers of EFT,
the financial institutions and retailers who currently offer or
who could potentially offer EFT services, will offer. But the
providers also may be expected to induce consumers to ac
cept services that are unfamiliar and, perhaps, not always
in the consumers' interest. The providers of EFT also must
deal with the suppliers of the technology, those who actually
produce the hardware and software and supply specific ser
vices and equipment. Generally, the interests of these two
groups-providers and suppliers-tend toward promotion
and rapid deployment of EFT technologies.

Standing between these actors and EFT technologies are
the government agencies which regulate and control EFT
systems both directly and indirectly through regulation of
the basic interactions among providers, suppliers,con
sumers and users. State and federal laws and regulations not
only prescribe the extent and nature of EFT development,
but often set the framework within which EFT {nnovation
may occur. Thus, the various institutional actors will seek
to influence regulation in their favor, and in turn, regulation
and control will set boundaries for the development of EFT
technology.

Once developed, EFT operating systems and technologies
will have a substantial impact on society-impacts on people
and impacts on the economy. These impacts may be ex-

TABLE I.-Major EFT Applications Currently in Development

Subsystem or technique

Preauthorization Procedures
- Direct deposit of regular payments

(such as paychecks, welfare payments,
retirement checks, stock dividends).

- Direct payment oT recurrent expenses
(such as house and car payments,
ut i 1 it ies) •

- Telephone "bill-payment."

Automated Banking through EFT Terminals
- Use of Automatic Teller Machines (ATMs)

to automate traditional banking activi
ties such as depositing and withdrawing
money from accounts or cashing checks.

- Authorization of credit and checks.

Point of Sale (POS) Operations
- Facilitation of electronic transfer

of money at the point of actual
operation or sale (with a direct
link to the customer's account).

National Bank Card Networks
- Clearing of credit card vouchers.

Automated Clearinghouse (ACH) Procedures
- Facilitation of electronic exchange of

money (both debits and credits) among
financial institutions.

842

Operation

Once authorized, such deposits
and payments made automatically
and electronically according to
agreed-upon procedures.

Customers use the telephone to
authorize financial institutions
to pay monthly bills (generally
through electronic transfers)
or to transf.er money from a
savings to a checking account
or vice versa.

ATNs provides 24-hour banking
service through electronic
terminals; almost 8,000 ArMs
in place today.

A terminal is used to cheCK the
customer's credit and to determine
whether the checking or credit
accounts have adequate funds to
handle the transaction in question.

Verify or guarantee a check elec
tronically, or make a direct,
electronic debit from a purchaser's
account to the account of a
business establishment at the point
of sale (e.g., the "debit card").

Facilitate the electronic exchange
of credit transactions and vouchers
(e.g., National Bank Americard~ Inc.)
Interbank Card Association).

An electronic network{s) sub
stitutes for the paper-oriented
check-clearing system. Also pro
vides the clearing facility for
preauthorization procedures and
POS operations, but use is small.

EFT I

I
Regul ation
and Control

Institutional I
A:ctors EFT Ope rat i ng Impacts

Systems and ,
Techno 1 ogi es

Consumers Peopl e
Impacts

Providers Monitori ng
Economic II and LL

Evaluating Impacts
Suppl iers EFT Systems

Figure I-The dynamics of EFT evolution and development.

pected to reinforce or to change any or all of the actors'
views of the desirability of further developments. Indeed the
evaluation and assessment of these impacts provides an es
sential "feedback loop" for understanding the dynamics of
EFT development and a means of monitoring and evaluating
EFT systems from the standpoint of each actor's interest.
Given the varying interest, it is inevitable that conflict will
develop among them and need to be resolved through the
policy process.

The perspective and values which an individual brings to
this framework will naturally result in varying assessments
of the shape such impacts will take and the relevant parties
to be included in the policy making process. Kling [29, p.
643] has identified five major value orientations implicit in
the published discussions of EFT systems:

Private enterprise model

The pre-eminent consideration is profitability of the EFT
systems, with the highest social good being the profitability
of the firms providing or utilizing the systems. Other social
goods such as users privacy or the need of the government
for data are secondary.

Statist model

The strength and efficiency of government institutions is
the highest goal. Government needs for access to personal
data on citizens and needs for mechanisms to enforce obli
gations to the state always prevail over other considerations.

Libertarian model

The civil liberties as specified by the iU .S. Bill of Rights
are to be maximized in any social choice. Other social pur
poses such as profitability or welfare of the state are to be
sacrificed. if they_ conflict with the prerogatives of the indi
vidual.

Neopopulist model

The practices of public agencies and private enterprises
should be easily intelligible to ordinary citizens and be re-

EFT Research: Anatomy of a Research Agenda 843

sponsible to their needs. Societal institutions should em
phasize serving the cpmmon man.

Systems model

The main goal is that EFT systems be technically well
organized, efficient, reliable, and esthetically pleasing.

Developing an agenda for EFT research

We maintain that the value orientations which character
ize the development of EFT also characterize the develop
ment of a research agenda for EFT. For example, when
Congress established the time frame fpr the NCEFT, they
insured (consciously or unconsciously) that both the relevant
policy questions and the answers would be defined largely
by the current participants in the U.S.payments system-'
the financial and retail community. This occurred because
the short time frame meant that new research could not be
conducted, and that the Commission would have to rely on
information mainly in the hands of financial institutions, their
technology suppliers, and their consultants. 5 Of course, that
fact also increased the opportunity for these actors to decide
what research would be reported and- what would not be
reported.

This paper will describe a project to frame a research
agenda broader in scope than the efforts of the NCEFT.
Supported by a grant from by The National Science Foun
dation, we developed a process* which brought together
representatives of not only the key current participants but
also representatives of other actors who are not now but
who might become participants in the future-representa
tives of the full set of actors implied in Figure 1. These in
cluded representatives. of: financial institutions such as
banks and savings and loans; non-depository institutions
such as department stores and supermarkets; state govern
ment institutions such as EFT commissions and regulatory
agencies; federal government users such as the operators of
automated clearing houses and government regulators such
as the Federal Reserve Board and the Federal Home Loan

* The authors of this paper were the principal investigators of this project.
A two-part process was used. It included an exploratory workshop to initially
review and identify research needs, and a follow-up conference to more fully
analyze ideas and to develop an agenda for future research. [8, Chapter 1]
The exploratory workshop was conducted in Washington, D. C. on November
18 and 19, 1976, and the Conference was held in Boston on June 2 and 3,
1977. Because the Conference presented a unique opportunity to systemati
cally solicit the opinions of a broad cross section of interests in EFT, a ques
tionnaire was circulated to all 94 participants seeking to determine their opin
ions on 37 research issues (culled from the 60 suggestions in the exploratory
workshop). The participants were asked to first rank the ten most important
from the perspective of national interest, and which were most important from
the perspective ofthe respondent's institutional interests. The aim of this data
collection exercise was not only to derive priority ranking for research issues,
but to develop priority rankings for different "target populations."

The agenda-making process was planned and organized by Public Systems
Evaluation, Inc. (PSE), of Cambridge, Massachusetts, and the Public Policy
Research Organization (PPRO) of the University of California at Irvine. They
were supported by a grant from the National Science Foundation to Public
Systems Evaluation, Inc.

844 National Computer Conference, 1980

Bank Board; consumers including national consumer orga
nizations and individual consumers; and the EFT technology
industry such as equipment vendors and...consultants. More
over, we asked these people to consider what research was
needed in the middle and the longer term, and whether the
research was primarily important from their institutional in
terest, or from a broader national interest or both.

We present the agenda which resulted from this process
both for its inherent value in informing future research, and
for its value in illustrating the conflicting value orientations
which characterize the field. What emerges from our analysis
is a clear indication that the very definition of what should
be examined by the scientific method involves value con
flicts not only because of the answers which might result,
but also because the simple act of including an issue on the
agenda might have political consequences. For example,
both the providers and the suppliers of EFT technology con
tinually expressed concern over research into potentially
harmful impacts of EFT, such as consumer abuse, consumer
costs and consumer problems. They were worried that the
very existence of such research might be construed by some
policy makers as reason for slowing the development of
EFT.7

Thus, in the agenda itself and throughout its making, it is
apparent that different actors prioritize and approach key
issues differently depending upon their institutional setting
and values. Although other value differences are apparent,
the most consistent tension was between those who favored
free market determination of how EFT develops and those·
who favored more systematic, deliberate consideration of
what societal goals should be served by EFT, given a fuller
understanding of the likely and potential uses and impacts.
The former perspective, based on the private· enterprise
model, sees market research conducted by the financial in
stitutions in their own enlightened self-interest as the dom
inant if not the sole kind of research that is needed. More
over, public acceptance and the use of EFT systems is
viewed as proof of the appropriateness of this perspective,
regardless of whether certain consumer groups are excluded.
The latter perspective, which favored more systematic con
sideration of societal goals, is based on the more socially
oriented libertarian and populist models. It questions the
adequ~cy of industry-dominated market research not only
for the protection of consumers but also for the exploitation
of the technology's potential in the broader interest of soci
ety. The following exchange illustrates these varying per
spectives:

Cox: I think that we are witnessing a very fascinating senes of
statements here in which some of us who would really like to
challenge the fundamental assumptions on which our political
system, our economic system, and maybe even the religious
basis of our society rest, have decided to use EFT as the vehicle
for it today. And I think that makes i,t very hard to discuss EFT.
It is not a vital issue on which the fate of our culture turns, but
it is a matter about which we ought to let the free and most open
conditions that we can create lead us to whatever mix of wam
pum and currency and electronic signals that we like be the
means by which we carryon the business of our society.

Coates: You might easily get the impression that I am opposed
to EFTS. In fact, I'm very enthusiastic about it ... But ... there
are very serious structural problems that are best addressed now
rather than later ... to leave the problem of its (EFTS) devel
opment solely in terms of incremental change and specific cases
and issues in an allegedly free enterprise evolutionary process
is the exact analog of treating the problems of women workers
in society on an individual piecemeal basis. To overlook the
fundamental structural elements is effectively to do a systematic
injustice. What you take to be dragging in all the dirty linen of
society as part of the question is absolutely essential. But it is
not an ideological move peculiar to EFTS. It is rather something
that has to be done with all our major technological systems.7

It is precisely this debate, which mirrors the larger debate
in the society, to which this agenda for EFT research is ad
dressed.

AN AGENDA FOR EFT RESEARCH

Table II presents the EFT research agenda in outline form
as a guide to the discussion which follows. Interestingly, this
agenda relates closely to the major forces of EFT develop
ment outlined in Figure 1. It is significant to note that within
the context of the five major areas used to organize the
agenda-making process, twelve research topics have been
highlighted as warranting first priority attention. The agenda
is not a list of specific research projects that need to be con
ducted, but rather a listing and discussion of research areas
in which specific projects might be formulated. Hopefully,
it will serve to help stimulate specific research projects.

The areas given priority on the agenda correspond with
responses to a survey questionnaire about EFT research is
sues. Respondents were asked to identify, from a list of 37

TABLE n.-EFT Research Agenda

I. TECHNOLOGICA.L ISSUES IN EFT

Clarification of Technological Issues Warranting Research

I r. EFT ~MPACTS ON PEOPLE

Costs and Benefits of EFT to the Consumer

Consequences of EFT for the Less Advantaged

Education of Consumers for Deal ing with EFT

Records Control and Consumer Protection under EFT

Effective and Acceptable Privacy Safeguards

III~ ECONOMIC IMPACT OF EFT

Costs of the Current Financial Payments System

Impact of EFT Oil the Financial System and Financial Institutions

IV. REGULATION AND CONTROL OF EFT

Identification and Understanding of New Regulatory Issues Arising
from EFT (including the questions: Is regulation needed at all?)

Study of the Range and Options of Organizing EFT-Related Regula
tory Structures

V. EVALUATING AND MONITORING EAT SYSTEMS

Long-Run Interactions between EFT and Society

EFT as a Study of Technological Change and Impact

issues, the ten issues they believed of highest priority, and
then to rank those issues in descending order of importance
(with 10 points for the most important, 9 points for the sec
ond most important, etc.). In addition, ~m "ilJtensity" score
was calculated by dividing the number of times the issue was
ranked in the top ten by, the total points it received. (In other
words, if the research issue area has an intensity of 7, it
means that on the average those who ranked this issue in
the top ten felt it was the third most important issue.) Rank
ings of intensity are shown in Table III. Finally, respondents
to the survey were asked to characterize their institutional
view depending on whether they represented a provider,
supplier, regulator, researcher, or "other" perspective. And
as noted earlier, in a number of cases the ranking of agenda
items varied according to these institutional perspectives. **

Technological issues in EFT

N one of the technological issues in EFT ranked high
among research topics (Table III). However, the research
dimensions of this topic require additional attention because
the technologists take three different and conflicting posi
tions on the issues and have tended to prevent clarification.

The first position is that there are no serious technological
issues in EFT. The technology can do whatever people want
it to do for EFT, and adequate safeguards can be provided
for potential EFT technology problems, whether arising from
the technology per se or from its use. Those whose values
hold close to the systems model generally take this view,
and the only issue is whether people are willing to pay for
adequate safeguards. Therefore, the question is political and
economic, not technological. The second position, found
particUlarly among some technology providers, is that there
probably are no serious technological issues, but the tech
nologists cannot-talk about the issues in detail because of
possible implications for Federal Communications Commis
sion hearings, government and private litigation or industry
competition. The third position, found among some acade
micians versed in technology, generally those more tied to
libertarian and populist value models, is that there really are
serious issues regarding reliability, security standards and
competition. "Somebody," they argue, should look into
these issues, although they, personally, are not deeply in
terested in the problem .

. The result of this standoff from engagement with tech
nological issues is that the issues continue to receive inad
equ~te public definition and research attention. Conse-

** The listing of perspectives noted above represents a collapsing of cate
gories. Respondents were actually asked to classify themselves according to
narrower categorie§,and these were grouped as follows: providers: financial,
non-depository institutions; regulators: state government, federal govern
ment; supplier: EFT technology industry, other industry; university research
ers: business/economics departments, other university departments. No spe
cial category was provided for "consumers" per se since all of the groups
noted above are also consumers. There were several people at the conference
who represented specific national consumer groups, and their responses are
included in the "other" category.

EFT Research: Anatomy of a Research Agenda 845

quently, we believe that additional effort must be focused
on defining issues requiring research and bringing together
representatives of the varying technological perspectives to
confront one another directly. Furthermore, research should
be conducted on the three issues which received the highest
ranking among technological concerns. The first is technical
security of EFT systems. EFT development is proceeding
without adequate solutions to computer· and telecommuni
cations security, without standards for appropriate levels of
security, and without any universally acceptable solution in
sight. The second issue is the appropriate configuration of
EFT networks. The number of EFT delivery systems is ex
pected to increase from its present 200 to perhaps 500 in
dependent systems in the 1980's. Yet, in later decades as
the economies of scale become apparent, these systems are
expected to be integrated into perhaps only 100 large net
works. 19 Some systems undoubtedly will be patched together
whereas others will be totally rebuilt. Patched systems are
predicted to be security risks and prohibitively costly. The
integration of EFT networks raises problems of reliability,
security, efficiency and standardization which will need to
be solved in order to link existing systems and/or to build
new integrated systems:38

,42 The third issue is the future in
terface of general purpose telecommunications capabilities
and EFT. The future interface of EFT systems with general
purpose telecommunications capabilities potentially extends
the scale of networking problems immensely beyond any
systems currently in existence.51 It also raises new problems
regarding priority, consolidation of transaction data and in
ternational protocol, among others.

EFT impacts on people

The impacts of EFT on people, paiticularly consumers,
generally received the highest ranking of all research. The
costs and benefits of EFT to the consumer was the highest
ranked individual topic both in terms of total points and in
terms of highest intensity rating (Table III). In addition, this
issue was ranked relatively high for almost all institutional
sectors. The data from the survey displayed in Table IV re
flects this broad base of support, with all but one institutional
sector ranking this consumer related issue with an intensity
of seven or more.

Despite this general agreement on the importance· of con
sumer issues, there was disagreement about how to insure
adequate attention to them. Some conference participants
felt that market research and competition among financial
institutions- the private enterprise model-would insure
that consumer interests are adequately met by EFT devel
opments. However, others were less sanguine about this
prospect. The following exchange illustrates this concern:

Coates: As major consultants to the industry, could you tell us
what kinds of socially conscious questions come forward from
your clients?

Horan: I think that all market research, all planning of banks,

846 National Computer Conference, 1980

TABLE Ill.-Ranking of Research Issues by Conference Participants

Total Rank among
Issue Points the 37 Issues Intensity

TECHNOLOGICAL ISSUES IN EFT
Security of EFJ
Alternative network approaches
Alternative comunication systems and EFT
Reliability of EFT
Impli~ations of potential
Reversibility of EFT changes

EFT IMPACTS ON PEOPLE

86
84
82
72

70

68

Costs and benefits of EFT to the consumer 269
Educating consumers regarding their
EFT-related rights
EFT impact on low income consumers
EFT impact on individual surveillance
Consumer abuse (debit cards stolen,
payments initiated)
Impact of EFT on consumer behavior
Record controls and counterfeiting under
EFT
Privacy problems and EFT

149

130

95

82
81

53
40

Ombudsman as a means of consumer protection 31
Effects of mandatory disclosure laws
on consumer 10

ECONOMIC IftlPACT OF EFT
Comparative costs of current payments
. system and_EFT
Impact of EFT on market competition
Impact of EFT on the definition and
velocity of money
Impact of EFT on smaller financial
institutions
Impact of EFT on operating and other
expenses
EFT and float
EFT-induced changes in monetary systems
Impact as a result of EFT fraud

REGULATION AND CONTROL OF EFT
Definition of EFT regulation; what
should be regulated
Access rules for EFT data
Federal government as operator of EFT
systems
Need for EFT regulation
Roles of various federal and state
legislatures/regulators
Institutionalizing consumer interests

Equal access of all to EFT
What private institutions should be
regulated (bank, nonbank, etc.)?

268
104

83

67

63
45

41

22

202
143

140

115

100
76

73

51

15

16

18

23
24
25

5

8

14

19

20

28

33
35

37

2

12

17

26

27
30

32

36

3

6

7

11

13
21
22

22

5.1
4.9

4.8
4.5
4.4
5.7

7.3

5.5

5.4
6.3

4.3
4.3

4.1
4.4
5.2

3.3

6.2
4.2

4.2

3.7

3.3
2.8
4.6

5.5

6.1

5.7

5.4
5.8

5.6
4.5
4.6

3.6

EFT Research: Anatomy of a Research Agenda 847

TABLE III. (Continued)

Total . Rank among
Issue Points the 37 Issues Intensity

EVALUATING AND MONITORING EFT SYSTEMS
EFT impact on the long-range .character of
society
Impact of EFT on other societal
institutions
EFT as a case study of technological
change and impact
EFT development in other countries
EFT and international fund flows

of merchants, of depository institutions are premised on the fact
that if the consumer doesn't accept it, you just don't have a
market. It's a commercial type of decision.
Coates: I take it the answer is none.
Louderback: I see my clients thinking very carefully about the
services that they are going to be offering their customers, their
depositors, thinking very carefully because if they offer the right
kind of services and satisfy the right kinds of needs, they are
going to be more successful than their competitors.
Coates: ... if one says that competition will protect the con
sumer, I might be willing to accept that in the competitive EFT
market, such as POS, point of sale, is today. But I don't think
it's an adequate response in a more concentrated market, such
as automatic clearing houses, where for pre authorized debits
and credits there is only one game in town, through the asso
ciation. [8, Chapter 19]

In addition to illustrating differences in perspectives on
EFT research, this exchange illustrates the fact that the im
pacts of EFT on consumers might vary considerably de
pending upon the specific EFT technology being studied.
For example, automated teller machines (ATM's) seem to
have been well received by consumers whereas many point
of-sale (PaS) terminals appear to have been poorly received
by both consumers and retailers. 1.15,39 These differences in
consumer reaction to different EFT technologies underscore
the four key research issues in this area.

The first, as already suggested, is the costs and benefits
of EFT to the consumer. Very little is known about how
much EFT will cost, and how those costs will be allocated
to consumers. It is clear that consumers eventually will bear
most of the costs regardless of whether they pay through
transaction charges or taxes for government subsidy of EFT
development, or both. Similarly, little is known about what
benefits EFT will bring to consumers, and how those benefits
will be distributed among consumers. Much has been said
in the promotional literature about the intended benefits of
EFT on reduced costs of payment services, increased con
sumer convenience, increased security of financial trans
actions, and the like. However, the extent to which these

199 4 6.6

127 9 5.8

116 10 3.7
44 31 4.0'
32 34 4.6

intended consequences actually occur is unclear; and the
potential unintended and unanticipated consequences that
might result are even less specified. And whether the pur
ported benefits of EFT are desired by consumers is un
known. 1,8 More importantly, which group of consumers will
receive the benefits and which will pay the costs? Humes20

indicates that high-income, well-educated, financially so
phisticated, credit-card-using consumers are the most likely
users of EFT services. Yet, if costs are allocated generally
over the consuming public and benefits accrue dispropor-

. tionately to some minority of consumers, this might mean
unfair' 'taxation" of those who do not benefit.

The second issue concerns the consequences of EFT for
the less advantaged. It stems from the possibility that a large
group of people might be excluded from EFT services. This
group is comprised of disadvantaged, "unbanked" people
who constitute 25 percent or more ofthe population. 17,20 EFT
might either improve the access of these people to financial
services, or it might have negative consequences for them,
or both. On the positive side, for example, EFT might extend
banking services through electronic means into areas not
now adequately served by banks. On the negative side, EFT
might provide new and abusive methods to garnish wages.
It was argued at the conference that without specific gov
ernment action the net impacts of EFT on the "unbanked"
public are likely to be neg,\tive because the potential positive
benefits will not accrue to them and because these people
will not have the knowledge or means to change situations
that are harmful to them. However, as Hiltz and Turoff in
dicate, this need not be the case:

"EFT represents an opportunity to purposely shape use of a
new technology for social objectives as well as for corporate
profits. EFT could facilitate basic changes in the nature and
distribution of consumer financial services, and extend the ben
efits of such services to segments of the society which are cur
rently at a disadvantage in dealing with existing financial insti
tutions. At the very least, policy makers should take care that
this new type of financial institution does not promote more
inequality. 17

848 National Computer Conference, 1980

More than any other, this issue illustrates the potential con
flict between the values of the free enterprise perspective
and more socially conscious neopopulist perspective. And
probably more than any other issue, it was generally agreed
that the free enterprise model was an insufficient means of
insuring that the opportunity represented by EFT in this area
was met.

The third issue requiring research concerns the education
of consumers for dealing with EFT. Any effort to stimulate
widespread adoption of EFT systems will require a coor
dinated educational effort of considerable scale. 24

,48,49 It is
critical that the educational effort enable consumers to make
reasonable choices about whether to adopt the medium, and
if so, how. Moreover, since EFT will introduce new levels
of complexity in managing personal finances, it might be
necessary to consider requiring education in the use of fi
nancial media in public schools much as driver's training is
now required in many states. Research is needed, therefore,
to determine the kinds of education necessary, to develop
a knowledgeable public awareness of the EFT debates of the
present, and assuming EFTS develop as anticipated, to fa
cilitate knowledgeable and responsible use of the medium.

The fourth issue is records control and consumer protec
tion under EFT. Control over financial records and preven
tion of fraud and other abuses are potential problems with
EFT. 24,38,41,42,46,47,48,54 There is major concern today about the
adequacy of consumer protection, as illustrated by a con
sumer representative's (Kathleen O'Reilly's) comment at the
Conference:

"Consumers are becoming terribly concerned about the impli
cations of the computer fraud phenomenon. It is far from science
fiction. If there is not a commitment to the development of EFT
systems that guarantee that appropriate (and available) tech
nological methodology is used to minimize computer fraud (the
prime victims of which are consumers), EFTS may well en
hance the opportunity for that kind of dangerous abuse.

"What of the consumer concerns related to preauthorized pay
ment? Despite the efficiencies that accompany preauthorized
payments, there is still the concern that it reduces the actual
spending pool availability of individual consumers. For some,
such as the suddenly or temporarily unemployed, a real dilemma
arises as to which bills to pay first. "32

The changes introduced by EFT in regard to the philosophy
and procedures of financial record-keeping and protection
might be dramatic. One critical change is the definition of
what constitutes "money" under an EFT system. If money
is considered actual or symbolic, EFT represents a major
move away from the use of cash to back up the symbols
representing assets and liabilities. In such a case, what will
be the standard for accounting for a given amount of money?
An electronic impulse of certain characteristics over an au
thorized channel? This might have consequences for ac
counting, auditing and protection of financial records.

Economic impacts of EFT

Two broad research areas were identified concerning the
economic impact of EFT. The first dealt with the economics
of EFT, specifically the issue of the comparative costs of
the current payments system and an EFT system. The in
tensity of feelings about this issue is indicated by the fact
that it was second highest in overall ranking by the Confer
ence participants with a total of 268 points (Table III). How
ever, much of the support for this issue came from the fi
nancial sector (44 percent, or 19 out of 43 people-see Table
IV.) Eighty percent of the people (19 out of 24) at the Con
ference from the financial sector placed this issue in their
top ten rankings. The other large group of participants at the
Conference who ranked this issue among the top ten were
from the federal government (47 percent or 8 out of 17 peo
ple). This difference in emphasis among the participants at
the conference further illustrates the tension between private
and consumer-related interests. For those directly involved
in the implementation of EFT, questions concerning the di
rect costs of the payment system are of highest priority from
both an institutional and a national perspective. For those
more interested in the consumer impact, this issue is signif
icant, but not nearly as important.

Al Lipis has noted that "Little information is available on
the costs of cash transactions, yet such transactions consti
tute the bulk of payment transactions. Likewise, little is
known about the costs of cash and checks to merchants. "33

The overall cost ofthe United States payment system in 1976
was estimated by Hamilton and Budd6 to exceed $22 billion,
but we do not have a breakdown of the cost of specific areas
of the system. The banking industry is therefore imple
menting EFT services without good comparisons of the
overall costs and benefits relative to cash, checks and credit
cards. In essence, there is little evidence today that EFT
services are profitable or justified.

Information regarding the cost of our current payments
systems is therefore needed to provide the basis for com
parison of the costs and benefits of EFT and to provide a
common ground of policy decisions. One problem is to de
termine the cost of cash transactions carried out. Another
problem is to determine merchant costs related to the pay
ment system. And still another problem is to discover the
economics of banking services from the consumer's per
spective. t

The second issue dealt with the impact of EFT on the
financial system andfinancial institutions. This issue ranked
twelfth with a total of 104 points (Table III). The primary
question here is the impact of EFT on financial systems in

t There are different definitions in terms of what the costs are to the consumer
for financial transactions. For example, Lipi 33 noted that Arther D. Little2

studies estimated that the costs of handling checks to consumers were ten
cents per transaction, whereas a study by Hamilton and Budd estimated that
the costs per transaction from the consumer's perspective were 42 cents per
transaction.6 If more were known about the economics of consumer payment,
we could better evaluate the costs and benefits of EFT from the consumer's
perspective.

EFT Research: Anatomy.of a Research Agendq 849

TABLE IV.-Ranking of Selected EFT Issues According to Institutional
Perspectives

UNIVERSITY
PROVIDERS REGULATORS RESEARCHERS SUPPLIERS

Non- State Federal Business/ Other EFT Tech-
depository Govern- Govern- Economics Univer- nology

Financial Institutions ment ~ De~artment ~ Industr.l Other TOTAL

Issue: Costs and Benefiis of EFT to the Consumer

Number of people
responding 24 2 17 2 9 6 11 72

Number of times ranked
in the top ten 14 2 5 2 6 2 5 37

Total pOints 103 10 17 41 19 26 14 39 269

Intensity 7.4 10 8.5 8.2 9.5 4.3 1 7.8 7.

Issue: Comearat1ve Costs of the Current Pa,lments S.lstem

Number of people
responding 24 2 17 2 9 6 11 72

Number of times ranked
in the top ten 19 1 2 8 2 3 4 4 43

Total points 119 8 12 42 19 14 25 29 268

Intensity 6.2 8 6 5.3 9.5 4.7 6.3 7.3 6.

Issue: Definition of EFT Regulation: What Should Be Regulated?

Number of people
responding 24 2 17 2 9 6 11 72

Number of times ranked
in the top ten 11 0 1 10 1 4 3 3 33

Total points 64 0 3 79 7 4 24 21 202

Intensity 5.8 0 3 7.9 7 8 7 6.

Issue: EFT ImEact on the Long-Range Character of Societ.l

Number of people
72 responding 24 2 17 2 9 16 11

Number of times ranked
in the top ten 9 0 2 4 0 7 2 6 30

TQtal points 40 0 15 39 0 54 9 42 199

Intensity 4.4 0 7 .. 5 9.8 0 1.7 4.5 7 6.t

Issue: EFT as a Case Stud,l of Technological Change and ImEact

Number of people
responding 24 2 17 2 9 6 11 72

Number of times ranked
in the top ten 7 0 7 2 7 3 4 31

Total points 14 6 0 11 9 46 13 17 116

-Intensity 2 6 0 1.6 4.5 6.6 4.3 4.3 3. ,

850 ~ational Computer Conference, 1980

general, and competing financial institutions in particular.
Our current financial system is already undergoing a variety
of changes and pressures unrelated to EFT. However, EFT
complicates the process and provides added pressure for
change:

"EFT is clearly an important part of the change process which
is under way. In fact, unlike regulatory odegislative innovations
which must evolve slowly through the jockeying of various spe
cial interest groups, EFT offers individual financial institutions
the opportunity to try to gain a larger share of the retail-banking
market. For example, since S & L's are less limited in terms
of branching, with EFT they could leapfrog the paper-check
system by providing bill-payer services and developing, or link
ing into, a system of off-premise terminals. Although the evo
lution of EFT is undoubtedly moving at a slower pace than some
expected, the movement is under way as a part of a larger ev
olution. If EFT were the only change that was occurring, then
it might be possible for progress on that front to stop. However,
EFT is both a fuel and a passenger in the movement of inno
vation, and the whole of the change process is greater than the
sum of the parts."9

What will be the impact of EFT on the comparative market
share for different types of financial institutions? To the ex
tent that EFT requires economies of scale, what impact will
changes in technology have on smaller institutions? And fi
nally, what impact will EFT have on the overall structure
of financial institutions?tt

Regulation and control of EFT

Our current system of financial regulation and control is
a complex and controversial topic. The United States has
a unique system of private financial intermediaries and mar
kets. Compared to other nations, we have a wide range of
financial institutions with 14,000 commercial banks, 5,000
savings and loan associations, 500 mutual savings banks and
22,000 credit unions. The dual banking system is one of the
cherished aspects of our financial structure, and, over the
years, our government has tended to define and supervise
the activities of financial institutions in an overlapping and
sometimes competing fashion. 9

The importance of regulatory issues is suggested by the
fact that the issue of "defining EFT regulation and what
should be regulated" was ranked third highest by the Con
ference participants, receiving a total of 202 points, and in
terms of overall intensity it was the fifth highest. (Table III.)
However, ranking of importance seemed to vary. The issue
received particularly strong support from the representatives
at the Conference from the federal government. Of the 33

tt As a final note, few people highlighted the impact of EFT on money and
monetary flows as an issue which required priority research attention. There
was concern about how we define money and about the influences of EFT
on overall monetary policy. However, most of these questions are not ques
tions concerning EFT per se, rather they are questions having to do with basic
monetary policy, of which EFT is only a part and, therefore, probably need
to be considered part of broader research questions dealing with m~netary
policy. [For a further discussion of this, see 8, 14.]

people who ranked this issue in the top 10, 10 people were
from the federal government (Table IV). Like the issue on
comparative costs, EFT regulation was ranked highest when
viewed purely from an institutional perspective. When
viewed from a national perspective it was only of medium
importance.

Once again, then, views differed concerning the amount
of regulation appropriate for EFT depending upol) the value
perspective of the participants. [Also see 24,29,49.] One
view would rely on the free enterprise model to evaluate
whether or not EFT innovations were effective by deter
mining whether or not consumers were willing to accept the
changes. Those arguing from this perspective find that reg
ulations often retard development, and that too much re
search might have a negative impact. The other perspective,
essentially a statist model of government responsibility, ar
gued that the concerns about potential problems could be
so great that regulation might be used to slow down devel
opment and to avoid' 'nonexistent" problems. The following
dialogue illustrates this debate:

Benton: is there any reason for the government as an actor to
be participating in such a way so that electronic payment sys
tems come into being? The government is supposed to get in
volved in matters that are of national importance. Is there any
evidence that this EFT is that significant?

Cox: I think the fact that we are dealing with something that
is closely related to 'one of the social instruments for control
... of the health of our economy is the reason why the gov
ernment has reason to be more interested in the payment system
than in some other aspects of our society.

Coates: Government should interfere when there are significant
externalities ... Insofar as electronic funds transfer have ef
fects which are outside the chain of buyers and sellers, and
insofar as they become large, one has the argument for gov
ernment intervention because that is the only alternative mech
anism society has for dealing with externalities.

Reistad: The'easist way to determine which of those external
ities should be grappled with would be to go into the pioneering
of the system and see what evolves from it.7

Thus, a range of special and competing perspectives emerge,
and many of the issues concerning the first issue in this
area-regulation and what should be regulated-are ulti
mately political judgments. While final policy decillions will

. be made in the arena of politics and policy choice, research
may help to frame the debate and to reveal the consequences
of alternative choices.

The second regulatory issue concerns the appropriate
mode for regulation and the need for restructuring regula
tory institutions. It is frequently stated by the promoters of
EFT and the private enterprise model that "the marketplace
can serve as an effective regulator of EFT." Yet, there is
little evidence either for or against this assertion. Moreover,
as noted above, we have an overlapping system of state and
federal regulations with notable inefficiencies and problems.
Consequently, serious questions exist regarding what should
be the relationship between state and federal regulators in
the future, aJ)~ what range of options is available for organ-

izing the regulatory structure related to financial institutions
and EFT.

Assuming that the decision is made that regulation is re
quired beyond the marketplace, it might be possible to study
the range and options of organizing EFT-related regulatory
structures. Without institutional restructuring, future regu
lations are likely to look similar to the regulations of the
present and the past. However, perhaps regulatory reform
within the financial system is appropriate and a reworking
of the existing regulatory strategy may be necessary. De
cisions about such reworking could be aided by knowledge
about possible reforms and about the value of taking a reform
approach as opposed to an amendment approach to existing
regulatory policy.

Monitoring and evaluating EFT systems in the broader
context

One of the critical areas for future EFT research relates
to the long-term and broad social impacts of EFT, and at the
Conference two such issues received particularly strong at
tention. The first, "EFT and Social Change" (dealing with
the potential for EFT to bring considerable long range change
in the social and institutional character of society), rated
fourth in terms of total poirits; and the second, "EFT as a
Case Study of Technological Change and Impact," was tenth
(Table III).

Although the two issues were relatively close in terms of
number of times ranked in the top ten and total points, "EFT
and social change" received a much higher intensity rating.
In fact, its rating of 6.6 was the second highest intensity
rating in the entire survey (Table III). This seems reasonable
when realizing that this issue deals with the broad question
of EFT and social change, and "EFT as a case study of
technology change" deals with a specific research approach.
Intensity concerning the broad issue is high, whereas the
specific case study approach was felt to be important by
many, but not as intensely.

Of the people who voted for "EFT and social change,"
support was particularly strong from the university and fi
nancial communities with comparatively little interest from
the federal government (although those from the federal gov
ernment who were interested gave it a high intensity rating)
(Table IV). Of those who voted for "EFT as a case study"
slJpport was again strong from the university community
with 9 out of 11 people ranking it in the top ten (Table IV).

The issue of "EFT and Social Change" concerns the long
run interactions between society and EFT. Most discussions
of EFT focus on likely impacts that EFTwill have on society,
assuming technology to be largely a deterministic and-free
market force in the society. However, the statist perspective
argues that society also will affect the technology-its reg
ulation, development, use and impact. This difference in
perspective is important because the former view assumes
technological determinism, whereas the latter view assumes
that EFT technology is an instrument of society and that its
impact will be importantly shaped by its interaction with
long-term social trends. Coates' criticism of current EFT
research is most revealing in this regard:

EFT Research: Anatomy of a Research Agenda 851

Coates: The most important limitations I see on the work to
date is the absence of any image of the future. There is little
awareness one can sense in the reports of the NCEFT that the
nation is in a state of major evolution. There is no awareness
of the many long-term trends which are remaking our society.
There is no sensitivity to the fact that EFT is part of those trends
both as an influence and as an effect. This absence of a vision
or framework of the future is the single most critical deficiency
in the Commission's work.

The second structural deficiency in the work is a near total ab
sence of any general principles which could form a conceptual
and analytical framework. For example, a general principle that
would have been most useful is that the primary political, civil
libertarian and constitutional risks for the American people in
the next three decades are from government itself. With that
principle informing the deliberations of the Commission, many
of its conclusions, I believe, would have come out differently.
There would have been a series of sharp and useful distinctions
made between the privacy violations or potentials for such vi
olations from the private sector and the much more fundamental
and serious violations from government. This incidentally ties
in with one's view of the future. 7

In order to understand the impacts of EFT in society, it
is important to identify the broad social trends emerging in
the future which will interact with this new technology. [8,
Chapter 14; 28] Three inter-related questions are involved.
The first concerns what long-run changes in society are ex
pected to occur that will interact with EFT. These include
changes in life styles, housing preferences, work patterns,
transportation and communication systems, retailing and
shopping patterns, and similar social patterns. The second
question concerns how these changes will interact with EFT
systems, and with one another, to affect how EFT systems
will be used. The third question concerns what impacts EFT
might be expected to have in the society given different scen
arios and patterns of interaction. For example, what effect
will EFT, possibly in conjunction with other transportation
and communication networks, have on social mobility of
individuals and households at different strata of society? On
work patterns? On shopping? On life in the home?

The second research issue focuses on EFT as a case study
of technological change and impact. Whereas the foregoing
research issue concerns forecasting likely interactions and
impacts of EFT, this issue concerns baseline measurement
and longitudinal monitoring of the actual impacts of EFT
and the study of EFT as a general illustration of the inter
action of technology, society and. public policy. EFT might
be established as a case for study on a continuing basis, in
much the Same way that weather and public political opin
ions are now studied. Specifically, EFT affords an oppor
tunity to begin serious research into several general ques
tions about technology and society: how technology emerges;
how new technology is handled by existing institutions; how
new technologies are assimilated by these institutions and
by the public; what specific impacts new technologies have;
how new technologies create synergistic impacts with other
technologies; and how technologies change over time to con
form to new circumstances and developments. Each of these
represents an aspect of EFT concern that has academic,

852 National Computer Conference, 1980

policy and practical relevance if carried out over time. [For
a further discussion of this topic, see 8, Chapter 14.]

CONCLUSION

Only a few years ago, many technologists and financial
experts predicted that electronic funds transfer systems
would usher in the checkless-cashless society. But it hasn't
happened. The early predictions about the impact of EFT
on the future of the financial system have gone far wide of
the mark. 1,20,41 Instead of electronic banking, we have a
greatly improved paper-based financial system-one that
relies on cash and checks even more heavily than in the past.
Thus, EFT technologies are following the same model of
innovation diffusion that earlier characterized the introduc
tion and spread of general purpose computer technologies.
The introduction of computers in the 1950's was followed
by enthusiastic predictions about how office work and man
agerial work would be revolutionized. Yet, as we approach
the 1980's, research has made it clear that many of the pos
itive impacts of computers, in the office and the board room
have yet to be realized, if they ever will be, and many of the
dire impacts have not occurred. The potential for major
change may still be there, but the incorporation and routin
ization of the technology is occurring much more slowly than
the early technologists and promoters expected. And most
importantly, the technology is being shaped by the organi
zational and institutional context in which it is used rather
than solely serving as a driving force of its own which dra
matically reshapes its context. The technology has come to
be recognized as simply a tool which is shaped more by the
agendas of toose who would l:lse it than by the possibilities
inherent in the technology. [For example, see 78,83.] EFT
systems, therefore, may be expected to exhibit a similar ev
olution through many small incremental changes and adap
tations of the technology to changing organizational and so
cietal definitions of its appropriate use.

From the standpoint of public policy, this means that is
sues surrounding the introduction and use of EFT will remain
on the public decision agenda for years to come. The Na
tional Commission on EFT is over, but many of the policy
issues which it raised have not been settled. Even for those
issues which seemingly have been settled, it is likely that
new understandings and new experiences with the effects
of current public policy will generate recognition of the need
for new policy in the future. And policy and technology will
be mixed. As EFT technology itself changes and is adapted
to new uses, public policy will be needed to deal with the
impacts of the technology. But as we develop greater un
derstanding of the ways in which the society might utilize
the technology, public policy also will be directed increas
ingly toward shaping the way the technology is used.

From the standpoint of research, the joint evolution of the
technology and the public agenda means that continuous
monitoring and evaluation of EFT is paramount. Objective,
scientific information and knowledge can go a long way to
ward informing the public decision agenda over the next
several years and even decades of policy-technology evo-

lution. In looking back over the agenda, it is important to
realize that most of the recommended research is in a middle
time range, probably over the next five to ten years. Only
the last two recommendations call for long-term research
and for the institutionalization of research regarding the ev
olution of EFT in the United States. Middle-range research
clearly is required and significant. It is important to begin
systematic research on EFT systems to continue the mo
mentum created by the National Commission on EFT and
to fill the many gaps in needed information faced by the
Commission. There is also a need to create a cadre of people
who are knowledgeable about EFT systems and are capable
of doing objective, scientific research in the area, rather than
solely client-oriented studies. Much of this research should
begin with smaller, specific questions which can be suc
cessfully answered within a moderate time frame both as a
means of building knowledge and as a means of informing
policy in the near future.

However, it is also important to remember that this paper
and the research agenda setting process have clearly dem
onstrated that values toward the evolution of technology
and research concerning this evolution vary significantly
depending on individual and institutional perspectives. Those
interested in the development of the technology will establish
their own momentum and information base to justify their
movement. It is therefore essential that more than short or
even middle-range research receive attention. Long-term
research is essential along with the continual monitoring and
evaluating of the evolution of EFT.

REFERENCES

1. "A retreat from the cashless society," Business Week, April 18, 1977,
pp.80-90.

2. Arthur D. Little. Inc .. The Consequences of Electronic Funds Transfer:
A Technology Assessment of Movement Toward a Less Cash/Less Check,
Rep. C-76397. Cambridge. Mass .• January 1975.

3. Balderston, F. E., Carman, J. and Hoggatt, A. "Computers in Banking.
and Marketing," Science 195, March 18,1977, pp. 1115-1118.

4. Benton, J., "Electronic funds transfer: pitfalls and payoffs," Harvard
Business Rev. 55, July-August 1977, pp. 16-19,28-29, 164-173.

5. Boucher, W. I., A Comment on EFT Research: Five Tries and a Start,
Working Paper No. PPR-7704, Public Systems Evaluation, Inc., Cam
bridge, Mass., 1976.

6. Budd, G. and Hamilton, E., "The Economics of the Payments Mecha
nism," unpublished article, 1976.

7. Coates, J. F., Cox, E. B., and Reistad, D. L., "Monitoring EFT in Ev
olution," in Colton, K. and Kraemer, F., Computers and Banking, Ple
neum Publishing Corporation, 1980.

8. Colton, K. and Kraemar, K., Computers and Banking: Electronic Funds
Transfer Systems and Public Policy, Pleneum Publishing Corporation,
New York, 1980.

9. Colton, K., "EFT and the Process of Change," in Colton, K. and Krae
mer, K., Computers and Banking, Pleneum Publishing Corporation, 1980.

10. Cox, E. B. and Giese, P., "Now it's the less-check society," Harvard
Business Rev. 50, November-December 1972, pp. 6-18.

11. Ege, S. M., "Electronics funds transfer: A survey of problems and pros
pects in 1975," Maryland Law Rev. 35, 1, 1975, pp. 3-56.

12. Eisenbeis, R. A. and Wolkowitz, B., "Sharing and Access Issues," The
Banker's Magazine, 162,2, March-April 1979.

13. Ellul, J., The Technological Society, Knopf, New York, 1974.
14. Federal Reserve Bank of Boston, "The economics of a national electron

funds transfer system," Conf. Ser. No. 13, Boston, Mass., October 1974.

15. Fisher, J. F., "EFT-The Decade of the 1980's: New Concepts for the
World of Banking," The Banker's Magazine, 162,2, March-April 1979,
pp. 21-24. ~

16. Freeman, '0., Technology and Society: Issues in Assessment, Conflict
and Choice, Rand McNally, Chicago, Ill., 1974.

17. Hiltz, S. Rand Turoff, M., "EFT and social stratification in the USA:
More inequality?" Telecommunications Policy 2, March 1978, pp. 22-31.

18. Hoffman, L., Modern Methodsfor Computer Security and Privacy, Pren
tice-Hall, Englewood-Cliffs, N.J., 1977.

19. Horan, T. F., "Outlook for EFT Technology," in Colton, K. and Krae
mer, K., Computers and Banking, Pleneum Publishing Corporation, 1980.

20. Humes, K. H., "The Checkless/Cashless Society? Don't Bank on It!"
The Futurist, October 1978, pp. 301-306.

21. Johnson, H. G. and Arnold, E. C., "Preparing for EFT," The Bankers
Magazine, 162, 2, March-April 1979, pp. 43-45.

22. Kaufman, G., Money, the FinanciaL System, and the Economy, Rand
McNally, Chicago, Ill., 1973.

23. King, J. and Kraemer, K., "Electronic funds transfer as a subject of study
in technology, society and public policy," TeLecommunications Policy 2,
1, March 1978, pp. 13-21.

24. Kling, R., "Passing the digital buck: Unresolved social and technical is
sues in electronics funds transfer systems, " TR #87, Inform. and Comptr.
Sci. Dept., U. of California, Irvine, Calif., June 1976./

25. Kling, R., "EFTS: social and technical issues," Computers and Society
7, 3, Fall 1976, pp. 3-10.

26. Kling, R, "Six models for the social accountability of computing," Com
puters and Society 9, 1, Summer 1978.

27. Kling, R., "Information systems and policy making: Computer technol
ogy and organizational arrangements," Telecommunications Policy 2,6,
March 1978, pp. 22-32.

28. Kling, R, "EFT and the quality of life," Proc. AFIPS 1978 NCe, Vol.
47, AFIPS Press, Montvale, N.J., pp. 191-197.

29. Kling, R., "Value Conflicts and Social Choice in Electronics Funds Trans
fer System Developments," Communications of the ACM 21, 8, August
1978, pp. 642-657.

30. Kohn, S. J., "Managing the EFT Decision," The Banker's Magazine,
162, 2, March-April 1979, pp. 25-32.

31. Kraemer, K. L., King, J. L., and Colton, K. c., "Towards an Agenday
for EFT Research," Computers and Society 8, 2, Summer 1977, pp. 3-
11.

32. Leary, F. Jr., O'Reilly, K., and Palmer, H. M., "Discussions of papers,"
by K. Humes, S. R. Hiltz and M. Turoff, Working Paper No. PPR-7709,
Public Systems Evaluation, Inc., Cambridge, Mass., 1976.

33. Lipis, A., "Costs of the Current U.S. Payment System," in Colton, K.
and Kraemer, K., Computers and Banking, Pleneum Publishing Corp.,
1980.

34. Louderback, P. D., "Status of EFT: An Assessment of Services and a

EFT Research: Anatomy of a Research Agenda 853

Review of EFT in the Fifty States," in Colton, K. and Kraemer, K.,
Computers and Banking, Pleneum Publishing Corporation, 1980.

35. National Commission on Electronic Fund Transfers, "EFT and the Public
Interest," U.S. Gov't. Printing Office, Washington, D.C., February 1977.

36. National Commission on Electronic Fund Transfers, "EFT in the United
States: Policy Recommendations and the Public Interest," U.S. Gov't.
Printing Office, Washington, D.C., October 1977.

37. Nilson, H. D., "The Future of Credit Cards," The Bankers Magazine,
162, 2, March-April 1979, pp. 54-60.

38. Parker, D. B., Crime by Computer, Scribners, New York, 1976.
39. Pastore, S., "EFT and the Consumer," The Bankers Magazine 162, 2,

March-April 1979, pp. 35-42.
40. Peat, Marwick, Mitchell and Co., EFT: A Strategy Perspective: Peat,

Marwick, Mitchell and Co., New York, 1977.
41. Portway, P. S., "EFT systems? No thanks, not yet," Computerworld 12,

2, January 9, 1978, pp. 14-16,21,23-25.
42. Privacy Protection Study Commission, "Personal Privacy in an Infor

mation Society," U.S. Gov't. Printipg Office, Washington, D.C., July
1977.

43. Prives, D., "The Explosion of State Laws on Electronic Fund Transfer
Systems," P-76-I, Prog. Inform. Technologies and Public Policy, Harvard
U., Cambridge, Mass., 1976.

44. Richardson, D. W., Electric Money; Evolution of an Electronic Funds
Transfer System, M.I.T. Press, Cambridge, Mass., 1970.

45. Rose, S., "More Bang for the Buck: The Magic of Electronic Banking,"
Fortune 95, 5, 1977, pp. 202-226. '

46. Rossman, L. W., "Financial industry sees EFT privacy laws adequate,"
American Banker CXLI, 210, October 28,1976, pp. 1,11.

47. Rule, J.; Private Lives and Public Surveillance, Schocken Books, New
York,1974.

48. Rule, J., "Value Choices in Electronic Funds Transfer Policy," Office
of Telecommunications Policy, Executive Office of the President, Wash
ington, D.C., October 1975.

49. Sayre, K. (ed.), VaLues in the Electric Power Industry, U. of Notre Dame
Press, Notre Dame, Ind., 1977.

50. "The time is NOW," Forbes Magazine 120, 1, July I, 1977, pp. 61-62.
51. Turoff, M. and Mitroff, L, "A case study of technology assessment ap

plied to the cashless society concept," TechnoL. Forecasting Soc.,
Change 7, 1975, pp. 317-325.

52. U.S. Dept. HEW, Secretary's Advisory Committee on Automated Per
sonal Data Systems, Records Computers, and the Rights of Citizens,
Washington, D.C., 1973.

53. Weizenbaum, J., Computer Power and Human Reason, Freeman, San
Francisco, 1976.

54. Westin, A. and Baker, M., Databanks in a Free Society, Quadrangle
Books, New York, 1972.

55. Winner, L., Autonomous TechnoLogy: Technology Out-of ControL as a
Theme in Political Thought, M.LT. Press, Cambridge, Mass., 1977.

A linear programming model for optimal computer network
protocol design*

by JOHN F. HEAFNER and FRANCES H. NIELSEN
National Bureau of Standards
Washington, D.C.

INTRODUCTION

After providing background information on protocol mod
eling, we then describe a linear programming model useful
in protocol design. This is followed by a description of its
use and some comments on its implementation.

Layered protocols

The ISO reference model 15 defines seven layers of pro
tocols. The lower three layers address communications
within the backbone network(s). Layers four through seven
mainly service the host computer environments, both from
the standpoint of communications and data processing. The
linear programming model described here pertains to the
protocols found in layers 4-7. As prescribed by the reference
model, layer 4 (transport control) provides reliable transfer
of information between host environments. Layer 5 (session
control) supports the dialogue of higher level protocols and
processes. Layer 6 (presentation control) provides data
transformations from code translation through record re
structuring of the information being transferred. Layer 7
(application control) contains application-oriented protocols
and is the layer with which most application processes di
rectly interface.

The reference model assigns precise meaning to the terms
protocol and interface. We speak of the protocol as peer
layer communication. For example, protocol dialogue takes
place between an entity at the session layer in one system
and the corresponding entity at the session layer in another
system. Communication between adjacent layers, e.g., be
tween one entity in session control in one system and another
entity in transport control in the same system, is known as
an interface. Given these terms, we characterize a protocol
service feature as a singularly identifiable capability or ser
vice provided by a protocol to higher level protocols or pro-

* This work is a contribution of the National Bureau of Standards and is not
subject to copyright. Certain commercial products are identified in this paper
in order to adequately specify the procedures being described. In no case
does such identification imply recommendation or endorsement by the Na
tional Bureau of Standards, nor does it imply that the material identified is
necessarily the best for the purpose. '

855

cesses. Service features are "visible" across the upper ad
jacent interface. Our interest lies in designing protocols by
first specifying their service features.

Protocol families and application categories

A number of different protocols are needed at each layer.
For example, within the application layer we find (portions
of) Remote Job Entry (RJE), the Common Command Lan
guage (CCL) of a File Transfer Protocol (FTP), voice trans
mission protocol, and perhaps parts of a Network Virtual
Terminal protocol, to name a few. More germane to the lin
ear programming model, we anticipate the need for variants
of, for example, the FTP (i.e., a family of FTPs) to satisfy
the requirements of diverse application categories found
throughout industry and within government agencies.

To further the notion of a family of protocols, consider
the kernel FTP, which we loosely define as the protocol
providing only the service features (i.e., the service opera
tions as seen by the adjacent entities above the FTP) essen
tial 'to most of the using processes most of the time. The
kernel protocol is the "barebones" service needed to con
duct many higher level missions. Now, imagine enhancing
this kernel FTP by providing additional service capabilities.
By varying the added capabilities to suit individmil appli
cations a family ofFTPs can be derived. Assuming the kernel \
capability exists, we will describe an analytical tool to aid
in specifying an extended, target protocol belonging to some
specific family.

The problem of designing a protocol family

Optimal design of a protocol for an application using a
linear programming model is a subtask of the larger problem
of determining a minimal family of protocols for a whole
range of application classes. This larger problem of deciding
an entire protocol family rests on the following postulates.

1. All the categories of applications can be identified.
2. Service features in the kernel of some protocol of in

terest can be determined.

856 National Computer Conference, 1980,

3. All features beyond the kernel that could be provided
within the family can be identified.

4. For each application category the necessary and de
sirable features can be listed.

Figure 1 captures these assumptions. Given these assump
tions, the problem remains to select the minimal set of pro
tocols within the family that will satisfy all applications' re
quirements. This is illustrated by Figure 2. There are two
opposing constraints. On one hand, it is not economical for
an application to carry the overhead of using a protocol con
taining features of no intrinsic value to the application. Con
versely, we want as few protocol stand&rds within the family
as possible, consistent with the first donstraint. It is nec
essary that features (i;l' ... ,ik) essential to application cat
egory Ai be in some protocol P q if Ai is satisfied by that P q'

Note, however, that someij can appear in both Pq and some
other Pro

Thus, choosing the family of standard protocols, e.g., for
FTP, is a higher level problem, one which can be vie~ed as
an optimization problem in operations research. We identify
the higher level problem in order to substantiate the need
to solve the subtask implied by assumption four, which this
paper addresses.

Solution methodologies for some subproblems

To deliberate the feeder problem of assumption four
above, we must convince ourselves that the first three as
sumptions, upon which it depends, can be satisfied.

The first assumption was that application categories could
be named. Today, we have no such list. However, these data
may be obtained by applying survey research methods to the
appropriate communities. Also, the International Data Cor
poration (IDC) has identified 100 applications of data pro
cessing in industry. 13 Such a list might serve as a base from
which to distill government and industry application group
ings.

Assumptions two and three state that we can identify the
family kernel and extended services. Enumerating service
features is presently an unsolved problem. At the outset,
experts do not agree on exactly what service features are.
To compound the problem of exhaustively listing features

. we wish to entertain both inplace and proposed protocols.
The document common to the two is a protocol specification,
as opposed to a protocol design document needed for im
plementation. Recently, work has been done toward defining
rules for extracting features from protocol specifications. II
Thus, we tentatively accept that a family kernel and exten-

APPLICATION ESSENTIAL FEATURES DESIRABLE FEATURES
CLASSES OUTSIDE KERNEL OUTSIDE KERNEL

A1 J f1·.f1 f1 f
12k

1f1 .11 f1 ! t (k+1) (k+2) - n

A2 Jf2 .f2 f2 I 12k J'2 .1212 ! (k+1) (k+2) n

• • •

• • •

• • •

Am J fm,.fm2· .. ··fmj! ifm(j+1) .fm(j+2)· .. ·.fmp t

NOTE: THE KERNEL FEATURES ARE COMMON TO ALL Aj.
Figure I-Association of protocol features with application classes.

APPLICATION
CATEGORIES

• SATISFIED BY •
:! } '.

•
;k KERNEL PROTOCOl, Pk~ I-,,-~._"""""-I
Ak+} Pk,PE1,PE2
Ak+ ~I----~
• SATISFIED BY / / :
: EXTENDED PROTOCOL, PE1 LAYERED PROTOCOLS

AI

:I++'} .1 SATISFIED BY
: EXTENDED PROTOCOL, PE2

Am

Figure 2-A protocol family ,satisfying application requirements.

sions can be identified by: 1) extracting features from many
documents, 2) working with application builders and users
to determine essential and desirable features for each ap
plication category, without regard to costs, and 3) then tak
ing perhaps the intersection of features of the examined pro
tocols as the kernel.

Linear Programming Model for Protocol Design 857

THE LP MODEL FOR PROTOCOL DESIGN

Our fourth assumption was that necessary and useful fea
tures of each application category were obtainable. Our work
considers this subproblem-associating features with appli
cations. In particular, the aim is to derive the information
contained in Figure 1 on an application class basis so that
subsequent methods can develop the families indicated in
Figure 2. In recent years, advances have been made in de
signing application and support software by including the
prospective user in the design stages. 1.5,9,10 These efforts
have concentrated on needed and desired services. Yet, in
puts from prospective users have not been conditioned by
the costs of providing these services. The LP approach di
rectly involves the user in the design loop, and importantly,
it factors in costs of providing services as well as value or
benefit derived therefrom.

A canonical linear programming model

Figure 3 portrays one standard form of a linear program
ming model. ** The rows of the matrix represent resources;
the columns depict activities or events that consume the re
sources. Hence, the matrix elements, aij, are unit resource

** Although it is not clear that linear relationships hold among features, the
LP model provides a useful starting point from which to investigate protocol
quantification methods.

ACTIVITIES

RESOURCES 11 12 · · · In RESOURCE
ALLOTMENTS

1 111 112 · · · 11n b1

2 121 122 · · · 12n b2

UNIT RESOURCE REQUIREMENTS

m

Cn

VALUES

Figure 3-A standard linear programming model.

858 National Computer Conference, 1980

requirements, i.e., the amount of resource i consumed by
one unit of activity j. Elements of the row vector, C, rep
resent the benefit or value of the units of the corresponding
activity (x). Prior to using the model, the permissible re
sources and activities are defined and costs and values are
established. To use the model for assigning resources to ac
tivities, the column vector B-the amount of each resource
to be made available-is specified. The model then maxi
mizes the return, called the objective function:

II

Z= ~ Crj
j=l

subject to the constraint

~ aijxj<bi , 1 <i<m.

The LP model for protocol design

The model shown in Figure 3 is readily adapted to relate
costs to values in the specification of a protocol. Figure 4
illustrates the revised representation. Resources are present
as in the standard form. Notice that they are partitioned into
meaningful groups to allow collective constraint statements
to be made. For example, total development costs can be

stated rather than or in addition to restricting individual de
velopmental costs. In the other dimension of the matrix,
activities are replaced by non kernel protocol service features
of a given family, such as the FTP family.

Thus, Figure 4 represents only that part of the data base
appropriate to FTPs. (If designing other protocols such as
a Network Virtual Terminal or a Host-Host Protocol, en
vision a third dimension of the matrix whose elements cor
respond to the feature/resource costs of those protocol fam
ilies' features.) The protocol layer and family are input
parameters to the model, used to select the appropriate sub
set of the data base for use. Note also that the data base
contains only improvement features: we presuppose that the
kernel has been established. The model is used only as an
aid in defining the extended capability protocols (for appli
cation categories as shown in Figure O. The value vector
C shown in Figure 4 represents the values associated with
a given application group and protocol layer. Thus, for an
instance of use of the model the vector is selected from the
larger data base representing valu~s for each application cat
egory/protocollayer. The dependency of value on both pa
rameters, protocol layer and application category, is easily
demonstrated. Consider the applications of banking and net
work voice conferencing. Clearly, data compression is a fea
ture that has a higher value to the conferencing application

ENHANCEMENT FEATURES

RESOURCES

DEVELOPMENT EFFORT
• _NT.-
o DEIIGN COlT
o WLIMINTATION TWE
o ~ATIONCOIT

o cttICItOUT TWE
• CHlCKOUT COlT

OPERAnONAL COST

SPACE COMPLEXITY
o IIISIIIINT CODE
o IWAPPAILY CODE
o IIUIDINT TAILE .ACE
o IUFFllllQUIUE .ACE
o 'IDII'OIIAIIY WOIIK ITORAGE
o CONTIIOL kOCK lID PIlI CONNECTION

TIME COMPLEXITY
• EXECUTION TWE
• WAlTTWE
o lIECOYIIIY QUAJlANTEU

NETWORK BURDEN
o IE~ IlEADBI OVIJIHEAD
• I'ACKIT lID fACTOII
o IlESlAGE EXCHANGES

•••

IIJ=UNIT REQUIREMENTS OF FEATURE

•••

VALUE OF FEATURE

Figure 4-Linear programming model for protocol development.

DESIGNERI
USER

SPECIFIED
b RESOURCE
b 2. ALLOTMENTS
~ • • • •

than to the transaction processing applicaton. The depend
ency upon protocol layer is equally valid. When designing
an FTP protocol (at layer 60r 7) the application builder cer
tainly desires reliable transmission between remote and local
hosts. However, end-to-end error control is generally as
sociated with the transport control (layer 4). Thus, if de
signing higher level protocols, this feature's value (if the fea
ture appears in this portion of the data base) would be
multiplied by a layer coefficient near 0, since error control
is assumed to be managed in the kernel of the transport pro
tocol(s).

Determination of costs and values

Before the model may be used as an aid in protocol design,
the aij and Cj of Figure 4 must be ascertained. To obtain them,
we assume that a reasonable list of resource types can be
obtained from protocol designers. Those of Figure 4 are in
dicative, not exhaustive. Enhancement features can be ob
tained by applying extraction rules II to a reasonably large
number of protocol specification documents and omitting
kernel features. Now, the costs, aij, can be supplied by pro
tocol designers either from direct implementation and op
eration experience or through some other technique. An ap
proximation to ~a1ues (independent of costs) ban be obtained
from application users and builders via survey research
methods.

We can now use the model to design a (mathematically)
optimal protocol within a family and for a particular appli
cation.

USE OF THE MODEL

First, a "toy" protocol design

Use of the model is shown by the following hypothetical
example. We wish to extend the kernel of the File Transfer
Protocol (FTP) for an application that transfers extremely
large files, such as those typical of some NASA applications.
To enhance the FTP kernel in support of transferring very
large files, the applications builder states for the protocol
designer: 1) the kinds of extensions he needs, 2) their worth
to him, and 3) permissible costs. The protocol designer then
translates these inputs into parameters for the LP model
which then generates a protocol design. The protocol is op
timized in that the objective function is maximized for the
input parameters. The LP output, namely a list of features
to incorporate in the extended protocol, is an approximation.
The process is then iterated until both parties are satisfied
with the resulting feature list.

'rhe following scenario is typical of one iterative use of
the model. Application builder specifications:

1. I want the file transfer program improved only in terms
of the data transfer phase.

2. In particular, I want more detailed and meaningful re
sponses to detected errors and to status inquiries.

Linear Programming Model for Protocol Design 859

3. I am getting real time satellite data coming into a remote
host computer. It is then netted via the FTP to my local
host. Some of the records being transferred are much
more critical than others. That is, the redundancy and
granularity of the data differ over record types. Thus,
I need the ability to dynamically change the unit sizes
of rollback or recovery of information upon network
failure, and I need the ability to dynamically change
the size of the commitment unit, i.e., the amount of
information guaranteed to be transmitted within the
session.

4. I do not especially need any more default options on
the new data transfer service.

5. I will never change the size of the quarantine unit, that
is, the size of what I refer to as records, since my rec:"
ords are all the same fixed size.

6. I am willing to spend a total of $30K on developing
these improvements.

7. I am willing to forgo about 5 percent in operational
costs for these improvements.

The protocol designer now translates these requirements
stated in English into mathematical inputs to the LP model.
The inputs below correspond numerically to the require
ments above. The notation corresponds to that of Figures
3 and 4. The point of this example is that the applications
builder states requirements in English and that the protocol
designer reexpresses them mathematically. It is not impor
tant that the reader of this paper grasp the details of the
mathematical expressions that follow. Protocol designer
translation:

l. 2-jaijxj$.b i for PI$.j$.ql
(Meaning: Consider only data transfer features.)

2. cj= cj+0.2cj for P2$.j$.q2
(Meaning: Increase the value of these response features
by 20 percent.)

3. Xj = 1 for j = ...
(Meaning: Indicate that certain features are required.)

4. cj=cj-0.2cj for P3$.j$.q3
(Meaning: Decrease the value of these features by 20
percent.)

5. xj=O for j= . ..
(Meaning: Omit certain features from consideration.)

6. b l + b2 + ... + bk$.30000
. (Meaning: Constrain developmental resources to
$30,000.)

7. bk+ 1+ bk+2 + + bm $.0.05 of present operational cost
(Meaning: Constrain operation resources to 5 percent
growth.)

Parameters of the model

The toy FTP design highlights some of the ways in which
the model can be controlled. Presently, the model allows the
user to constrain a number of feature and resource attributes.
They appear below along with an indication of the actions
that can be affected by the model's user.

860 National Computer Conference, 1980

Feature attributes

Feature subsets of X can be selected from the data base
for purposes of considering or not considering them. Also,
their values and/or costs can be increased or decreased. The
selection mechanism is to name one or more properties of
the features to specify a subgroup of interest. These feature
attributes are described below.

1. Features may be selected as the subgroups shown in
Figure 4. For example, data transfer or host accounting
may be constrained as subgroups. Thus, as a subgroup
the features can be considered or ignored and their as
sociated values can be increased or decreased.

2. Within a subgroup or over all features, user options of
service capabilities may be addressed.

3. Similarly, system responses to events is an addressable
attribute.

4. The presence or absence of preassigned default values
for protocol features may also be addressed.

5. Lastly, the ability for the user to set default values is
an attribute of protocol features that can be addressed.

Resource attributes

1. The allowable allotment of resources may be managed
on an individual resource· basis, i.e., ~ aUx(,s,bi for a
given i.

2. Resources may be grouped as shown in Figure 4, e.g.,
bi + bi + 1 + ... + bk ::::; allotment.

3. Lastly, resources may be partitioned at the level of
operational ones and developmental ones.

Present work on a realistic FTP design

To date we have concentrated on developing the model.
Consequently, it has been subjected only to small problems
similar to the toy problem described above. Presently, we
are constructing the data base needed for a genuine exercise.
For this more substantial test, we have chosen the FTP fam
ily. To acquire features for the data base, the extraction
rules ll were applied to six FTP documents. 2,3,4,8,14,18 Due to
the newness of these rules, the level of granularity of what
we refer to as a feature varies somewhat. Generally, though,
applying the rules yields a rather fine level of description of
the protocol. Approximately 170 unique features were taken
from the six FTP documents. We somewhat arbitrarily se
lected as the kernel FTP those features appearing in at least
five of the six documents. The resulting kernel contains eight
features, leaving about 160 for inclusion in the data base.
For resources we have used the list shown in Figure 4 and
we have provided initial estimates of costs, later to be re
placed by those of protocol designers. We plan to work with
several other government agencies to develop optimum
FTPs to then be evaluated in terms of these agencies actual
requirements of existing needs. These agencies will provide
the initial value vectors for the data base.

THE MODEL STRUCTURE AND IMPLEMENTATION

Branch-and-bound algorithm

A linear representation was selected for our initial study
of protocol design quantification. It is not clear that a linear.
relationship holds. Nevertheless, we emphasize the use of
an analytical method to quantify protocol design. The cor
rectness of this particular model is of lesser importance at
this juncture.

One important characteristic of the model is that it is a
binary integer model-binary in the sense that either a fea
ture is present or absent in resulting protocol design. A num
ber of (binary) integer programming algorithms have been
studied in terms of their computational efficiency. Most of
them can be classified as using enumeration, decomposition,
cutting-plane, or group theoretic algorithms.6 Initially, an
enumerative branch-and-bound algorithm,12 was chosen.
The branch-and-bound method greatly reduces the number
of possible solutions that need to be considered. It consists
of a branch portion that partitions the search space and a
bound portion that determines the best possible value (in the
subspace) of the objective function. Useful insights were also
gleaned from Mittenl7 aqd from Lawler and Wood. 16 The
algorithm as first implemented, described by,Hiller and Lie
berman,12 was not perfectly suited to our needs. We are cur
rently modifying the algorithm to reduce computation time,
given the extra information inherent in the problem defini
tion.

Sensitivity analysis

In linear programming, all of the model's data are assumed
to be correct. Actually, values are estimates. 12 We are rea
sonably confident of the cost of each resource (supplied by
pro~ocol designers), but the value of features (supplied by
potential users) should be less accurate initially. To assure
near optimal solutions, the model is to be parameterized for
sensitivity analysis. Sensitivity analysis allows investigating
different values for certain parameters and determining the
extent to which data can be changed while retaining an op
timal solution.7

The computer program

The LP model is implemented in the C language and runs
under the UNIX@ operating system on a PDP-11145. At
present, the data base and program are separate files that
are loaded together as an on-line submitted batch job with
terminal output. We are constructing a command interpreter
as an interface so that the model's user can interactiv~y
adjust input parameters and make temporary modifications
to the data base.

With the advent of a 160-feature data base, a severe prob
lem arises. The search s\pace for an optimum solution is 2N
where N is the number of data base features for the family
of interest. Although the branch-and-bound algorithm sig-

nificantly reduces (compared to an exhaustive enumeration)
the number of possible solutions, the number 2160 is still very
large. We have taken two steps to circumvent this compu
tational explosion. The FTP protocols will be developed sec
tion-wise, e.g., connection features, then data transfer fea
tures, and so forth. Thus, if features are partitioned into,
say, 10 sections of about 16 features each, then the search
space is reduced from 2160 to 10*216• Also, we are exploring
other heuristic algorithms that will quickly produce a good
upper bound on the objective function. A successful pro
cedure will allow the features to be regrouped into larger
clusters for simultaneous consideration.

OTHER USES OF THE MODEL

Ancillary outputs

The most prominent output of the LP model is the feature
list of the target protocol. The model fashions other useful
information such as resource requirements. Resource re
quirements and their costs are output for each selected com
bination of features. Reference material is to be incorporated
at the feature level. This material (which will become part
of the program output) will report, for each target protocol
feature, prevalent implementations and implementation stra
tegies, document references to existing or proposed imple
mentations of the features, and other information to guide
implementation of the protocol.

We have referred to the LP model as aiding in protocol
design, whereas the main output is a service feature list,
more closely allied with a specification than a design. How
ever, the implementation guide information lies more in the
domain of design than specification. In fact, the LP process
lies somewhere between specification and design.

CONCLUSIONS

The LP model does not provide a completely satisfactory
protocol design tool. It attempts to quantify sufficiency of
service. Other equally important variables for later study are
quality of service and the interface representation of the
service to the user.

The model has been described to a number of protocol
users and designers, and has been well received. Our ex
pectation, as a result of this work, is that some variant of

Linear Programming Model for Protocol Design 861

this quantification technique will impact the development of
the next generation of network protocols.

REFERENCES

1. Boies, S. J., "User Behavior on an Interactive Computer System," IBM.
Systems Journal, Vol. 13, No.1, pp. 2-18, 1974.

2. Butscher, B. and Heinze, W., "A File Transfer Protocol and Implemen
tation," Computer Communication Review, ACM, Vol. 9, No.3, pp. 2-
12, July 1979.

3. Chorn, G. E., Christman, R. D., and Klingner, C. T., "The Standard File
Transport Protocol," Los Alamos Scientific Laboratory, LA-7388-MS,
August 1978.

4. Harry Forsdick and Alex McKenzie, FTP Function Specification, Bolt
Beranek and Newman Inc., Report No. 4051, August 1979.

5. Frederiksen, J. R., "Survey of the State-of-the-Art in Human Factors in
Computers," Science Applications, Inc., Arlington, VA, SAI-75-533-
WA,1975.

6. Geoffrion, A. M. and Marsten, R. E .. "Integer Programming Algorithms:
A Framework and State-of-the~Art Survey," Management Science, Vol.
18, No.9, pp. 465-491, May 1972.

7. Geoffrion, A. M. and Nauss, R., "Parametric and Postoptimality Analysis
in Integer Linear Programming," Management Science. Vol. 23, No.5.
pp. 453-466, January 1977.

8. Gien, Michel, "A File Transfer Protocol (FTP)," Computer Networks,
Vol. 2, pp. 312-319, 1978.

9. Heafner, John F., Yonke, Martin D., and Jeffrey G. Rothenberg, "Design
Considerations for a Computerized Message Service based on Washing
ton, D.C. Navy Personnel," USC/Information Sciences Institute, Marina
del Rey, Ca., ISI/WP-l, May 1976.

10. Heafner, John F., and Miller, Larry H., "Design Considerations for a
Computerized Message Service Based on Triservice Operations Personnel
at CINCPAC Headquarters, Camp Smith, Oahu," USC/Information Sci
ences Institute, Marina del Rey, Ca., ISI/WP-3, September 1976.

11. Heafner, John F., Nielsen, Frances H., and M. Wayne Shiveley, "To
ward the Extraction of Service Features from Definitive Documents on
High-Level, Network Protocols," to appear in NCC Proceedings, 1980.

12. Hiller; Fredrick S., and Lieberman, Gerald J., Operations Research,
Holden-Day, Inc., San Francisco, Ca., 1974.

13. International Data Corporation, The Domestic Computer Installation
Data File Coding Manual, Waltham, Ma., December 1978.

14. A Network Independent File Transfer Protocol, prepared by the High
Level Protocol Group, IFIP, International Network Working Group,
HLP/CP (78) 1, December 12, 1977.

15. "Reference Model of Open Systems Interconnection," International Or
ganization for Standardization, ISO/TC97/SC16 N227, August 1979.

16. Lawler, E. L. and Wood, D. E., "Branch-and-Bound Methods: A Sur
vey," Operations Research, Vol. 14, No.4, pp. 699-719, 1966.

17. Mitten, L. G., "Branch-and-Bound Methods: General Formulation and
Properties," Operations Research, Vol. 18, No. I, pp. 24-34, January
February 1970.

18. Neigus, N. J., "File Transfer Protocol and Standards," in ARPAN,ET
Protocol Handbook, Feinler, Elizabeth and Jonathan Postel (eds.), Net
work Information Center, SRI International, January 1978.

Extracting service features from protocol documents*

by JOHN F. HEAFNER, FRANCES H. NIELSEN
National Bureau of Standards
Washington, D.C.

and

M. WAYNE SHIVELEY
Defense Communications Agency
Washington, D.C.

INTRODUCTION

This paper describes a manual procedure for itemizing the
service features of a computer network protocol. The pro
cedure has been tested and refined several times. The testing
is described here, along with analysis of test results and gen
eral observations. The authors conclude that, although the
procedure now provides only partially satisfying results,
such a method is needed to aid in quantifying users' protocol
needs.

It is easy to envision rather diverse applications that, in
turn occasion quite different network protocol services. For
exa~ple, remote job entry and file transfer are most handily
accomplished over a logical virtual circuit, whereas trans
action.,oriented processing applic~tions are better suited to
a datagram type service. The requirements can differ (~e
pendent upon the application) within a protocol layer. SIm
ilar to the variant types of connections needed, the above
examples differ in their requirements for message or data
segment sizes. It follows that if the using process views a
protocol as a collection of service capabilities, then t~e co~
lection needs vary across application classes. Thus, 10 allI
ance with the ISO reference model, [ISO], we subscribe to
the idea of a family' of protocols within each layer of the
network protocol hierarchy, where different members of the
family (i.e., individual protocols) provide different mixtu.res
of services concomitant with the using processes reqUIre
ments.

If we accept the premise that protocol designers do not
have a firm grasp on application requirements, and that
needs vary according to application, then we can accept the
need to develop and apply methods to quantify the ~ervice
capabilities of a protocol.

* This work is a contribution of the National Bureau of Standards and is not
subject to copyright.

863

Need for a repeatable procedure for determining service
features

To quantify the service capabilities of a protocol we must
first agree on exactly what service features of protocols are.
Interesting as it may seem to those not working in the area
of high level network protocols, at a recent protocol work
shop there was debate and disagreement over exactly what
the service features were of a particular protocol in question.

, The experts do not necessarily agree. Thus, the first quan
tification step is to devise a method of determining service
features of a protocol.

It is desirable to study proposed protocols as well as in
place ones. The definitive source common to the two.is usu
ally a protocol specification document written in English
and accompanied by sundry notations. That is generally the
most one can expect from a proposed protocol. With this
in mind, we can now state our goal more precisely. Given
a protocol specification document written in English, devise
a set of rules to extract service features. This method must
be repeatable. That is, if some number of protocol designers
derive features of a given protocol, they should extract es
sentially the same features. We say essentially because what
is involved is the application of an algorithm to English text.
History has shown us in other areas of computer science
that we should expect only limited success. Thus, our goal
is to arrive at a workable §et of rules, not a perfect set.

Once features can be identified, then other analytical
methods [HEAJ] can be used to associate features with ~p
plications.

First attempt at rules for feature extraction

A small, cohesive set of rules for feature extraction have
recently been defined. They have been applied to excerpts
of the INWG File Transfer Protocol document [lNWG] by
some of our colleagues who are not experts in the area of

864 National Computer Conference, 1980

network protocols. The results of these exercises have been
studied and subsequently fallacious rules have been amended.
These are matters to which we now attend.

DESCRIPTION OF EXERCISES

Rules and baseline features

Keeping in mind the aim of determining and quantifying
application requirements of protocols, we began to devise
feature extraction rules by posing questions about protocol
service features.

1. What are the characteristics that a service feature must
possess?

2. How do we go about extracting service features from
a protocol specification?

3. How do we know we have listed them all?

Consider these questions in reverse order. First, we cannot
know when we have listed all the features. A reasonable
objective is to specify a systematic way of listing features
such that the procedure can be reliably rep~ated by different
protocol experts to arrive at almost the same feature set. In
partial answer to the second question, most of the service
features stem directly from the commands and parameters
afforded the application process. For example, Sections 4-
6 of the INWG File Transfer Protocol, which describe com
mands and parameters, would be the appropriate parts of
that document. We couched the answer to the first question
above in terms of how we might expect a respondent in a
survey to quantify the sufficiency of a service feature.
Thought of in these terms, we then had some guidance from
survey questionnaire construction methods that permit
quantification of a subject's response.

From the above reasoning and guidelines from survey re
search methods [BABE], we devised a set of extraction rules
and then selected the INWG FTP as a reference point for
their application in order to test their effectiveness. After
the first of two exercises the rules were improved based upon
results obtained. The present version of the rules are shown
below.

Rules for extracting protocol service features from a
protocol definition document

NOTE: The following rules are given in precedence order.
Thus, first apply Rule 0, Rule 1, Rule 2, Rule 3, Rule 4 and
finally, apply Rule 5. Service feature as used in these rules
means an individual service provided by a protocol to the
using process. The lack of some characteristic is not con
sidered a feature; therefore nothing should be listed if a rule
does not apply.

Rule 0: Scan the entire protocol document to familiarize
yourself with it before applying the following rules.

Rule 1: Features of a protocol are described in those parts
of a protocol definition document containing an explanation

of protocol functions. Different terminology may be used in
each document to designate these sections. For example, in
the INWG File Transfer Protocol document, features can be
extracted from those sections that describe commands and
their parameters. In another protocol document, Transmis
sion Control Protocol (TCP), the section containing the
needed information is called Functional Description. Use
only those portions of the document that describe the actions
or attributes of the protocol that are visible to the using
process.

Example 1: From the INWG File Transfer Protocol, Section 4
(... Level 0 Commands), Section 5 (Parameters Describing
Standard Attributes), and Section 6 (Levell Commands) would
be appropriate for feature extraction.

Rule 2: An individual feature may be described anywhere
within a particular section of the protocol document. Some
times two or more features can be extracted from a single
description. It may be obvious, by the use of AND in the
command description, that two features are being described
(example 2); it may not be as obvious when a series of fea
tures is contained in a single command description. Also,
there can be a description listing several related attributes
which, when grouped together, constitute one type of service
capability and therefore, one feature. In any case, where
more than one feature is given simultaneously, state each
feature separately. If only one feature is described, state the
feature.

Example 2: From the INWG File Transfer Protocol, Section
5.2: "The mode of access parameter is used to define the DI
RECTION and MODE of access to be used in the proposed
transfer." The feature related to DIRECTION could be stated
as: "Files may be transferred in either direction over a logical
connection." The feature related to MODE could be stated as
"The initiating process can select from among optional modes
of file access."

We can represent this rule application graphically, where the
arcs show rule numbers applied and the nodes portray the
resulting features.

Remember that individual features can be listed in a series
of three or more as well as being described singly or com
bined by the use of the cunjunction AND.

When there is a description defining several parameters
which can be grouped together by their related action, it may
be helpful to examine the detailed bit patterns of the com
mand formats to determine these groups. This approach to
the application of Rule 2 is useful only where two conditions
are met: (1) formats are included in the description, and (2)
the difference between bits defining independent "con
cepts" and a field of related bits defining options of a single
"concept" can be distinguished.

Extracting Service Features From Protocol Documents 865

Rule 3: (Remember to apply Rule 2 before applying Rule
3. Then apply Rule 3, separately to each feature derived from
Rule 2.) Often there are options or alternatives which can
be applied to each action provided by the protocol. These
alternatives may appear in either of two forms: options that
a user may chose from in employing the feature, or a set of
permissible responses, one (or more) of which a responding
process may select. The features identifying the general ser
vice provided have been extracted by the application of Rule
2. Now apply Rule 3 to each of these features.

Rule 3-a: State, as a separate feature, the list of options
or responses allowed. This rule may be applied recursively.
That is, where there is a subcategory of options or responses
associated with an option, state, as a separate feature, the
list of these subcategory options or responses.

Rule 3-b: State, as a separate feature, that a default value
is provided.

Rule 3-c: State, as a separate feature, the particular value
of the default.

Rule 3-d: State, as a separate feature, the ability to change
the value of the default.

Example 3: From the INWG File Transfer Protocol, Section
5.2, features could be stated as follows:

Application of Rule 3-a: "The initiating process can
select access modes from among the following: 'make
only', 'replace only', 'replace or make'~ 'append
only', 'append or make', 'take job input', 'take job
output', 'read and remove', 'read only', 'destructive
read', 'give job input', 'give job output', and 'no ac
cess'. "

Application of Rule 3-b: "There is a default access
mode."

Application of Rule 3-c: "The default access mode is
'no access'."

Application of Rule 3-d: Access mode defaults cannot
be changed in the INWG File Transfer Protocol; thus,
according to the introductory note, no feature would
be stated. If, however, the INWG File Transfer Pro
tocol permitted the user to set the default, then the
feature could be stated as: "The user may change the
default access mode for the data transfer phase. "

The x terminating the arc 3d indicates that no feature re
sulted from the application of the rule.

Example 4: From the INWG File Transfer Protocol, Section
6.4, which describes the End of Data Command (ES): a list of
responses is given to signal the end of file. Beyond that, two
of these responses ES(E)-error and ES(A)-abort, have op
tional responses associated with their use. Therefore, the fol
lowing features could be listed:

Application of Rule 3-a (applied recursively): Afterthe
first application of Rule 3a td Section 6.4, we would
expect the following feature to be extracted: "The ES
command is sent in response to a QR or an EOF."
A second application of Rule 3-a yields: "Possible
arguments for an ES command sent in response to an
EOF are OK, error and hold. Possible arguments for

866 National Computer Conference, 1980

an ES command sent in response to a QR are OK,
error and abort." Another application of Rule 3-a
gives the following: "The optional responses for the
ES(Error) argument are 'receiver error, retry possi
ble', 'receiver error, no retry possible', 'protocol
error detected by receiver', '00 not acceptable to
receiver', 'sender error, retry possible', 'sender error,
no retry possible', 'protocol error detected by sender',
and '00 not acceptable to sender.' "The optional
responses for the ES(Abort) argument are 'timed out
awaiting an MR', and so on.

Rule 4: Define eachfeature using a single declarative sen
tence.

Example 5: From the INWG File Transfer Protocol, Section
5.2: "Bit 15 (or [8000]) of N is used to indicate the direction of
the proposed transfer, thus:

[0000] P~Q (TAKE)

[8000] ~P (GIVE)"

This feature might be stated as follows: "Files may be trans
ferred in either direction over a logical connection."

Rule 5: State features completely, clearly, and succinctly.

,Baseline features by authors

For purposes of comparison to results of the exercises to
be described, the authors applied the above rules to Sections
5.12,5.13, and 5.14 of the INWO FTP. The service features
thus obtained, we refer to as baseline features; they are given
below.

SECTION 5.12

1. The user is able 'to optionally compress level 2 data.
2. The options for compression are to compress or not

to compress level 2 data.
3. There is a default compression option.
4. The default is not to compress data.

5. The user may optionally interrupt and continue data
transmission.

6. In doing so, the following options may be employed:
later resumption of this transfer in a new transfer pos
sible, restart requests permitted within this transfer,
restart mark acknowledgment must occur, and tem
porary hold.

7. There is a default assumption.
8. The default is that no interrupt/restart will be used.
9. The user can provide parameters on the 00 command

for experimentation.
10. There is a default assumption.
11. The default is that the experimental facility will not

be used.

SECTION 5.13

12. The service may inform the user of the current state
of file transfer.

13. The states of file transfer are: viable, rejected, ter-
minated, and aborted.

14. There is a default for the state of transfer.
15. The default is viable.
16. The user is provided an explanation when the transfer

has failed or is being rejected.
17. The specific extra information about this state is given

in Appendix IV of INWO FTP .
. 18. There is a default explanation.

19. The default value is given in Appendix IV.

SECTION 5.14

20. The user specifies a filename, which is acceptable to
the conceptual filestore, that is used to identify the
file involved in the file transfer.

21. There is a default filename.
22., The default filename is null.

Figure 1 is a graphical representation of the baseline fea
tures showing how they were derived from the FTP materials
by applying the rules. The 'nodes represent the features
where the number in the circle corresponds to the baseline
feature number. The arcs are labeled to show which rule
number was applied to derive the node below. The X means
that the application of the rule did not result in a derived
feature.

Exercises to test the rules

Exercises were devised whereby subjects would extract
features from excerpts from INWO FTP in order to test the
strength of the rules. Six colleagues, who were at least fa
miliar with some high-level network protocols, were chosen
to participate in the first exercise. They were divided ran
domly into two groups ofthree subjects each: a control group
who would list service features, but without the aid of the
extraction rules; and a test group who would also list service
features described in the FTP material, while following the

Extracting Service Features· From Protocol Documents 867

x

~
b
10

3c 3d

11 X

X~b1.
3c 3d

X

Figure I-Representation of baseline features and application of extraction
rules.

extraction rules. If our assertion that rules are needed is
correct, then the control group members should each list
different features. Also if the rules are good, then the test
group members should list many of the features comprising
the baseline. Pictorially, we can represent our expectations
as shown in Figure 2. Responses from control group partic
ipants should be widely scattered, while the test group's re
sponses should be similar among members and should
roughly correspond to the baseline.

Results of the first exercise, to be described, led to rule
improvement. Subsequently, a second exercise was con
ducted with six other colleagues, using the improved rules.
The fIrst part of the second exercise followed the pattern of
the first exercise: control group and test group. Then, to
gather additional information, the control group of the sec-

ond exercise later applied the rules to behave as a third test
group. The results and conclusions follow.

FINDINGS AND CONCLUSIONS

Purpose of analytical analysis

Thetest subjects of the first exercise named, respectively,
14, 7, and 7 of the 22 baseline features. The control subjects
of that exercise identified, respectively, 2, 3, and 4 of the
22 baseline features. How successful was the exercise? Let
us rephrase this question. More specifically, do the results
warrant refining and continuing the initial approach, or in
stead do they suggest that this approach should be aban
doned in favor of some new method? Furthermore, if the
results are promising, what can be inferred from them that
would lead to rule improvement?

These questions suggest the need to apply an analytical
technique to aid in the evaluation of the exercise. Intuitively,
we wish to group the subjects and the baseline data into
groups such that subjects within a group have a high degree
of natural association among themselves (according to some
grouping criterion) while the groups themselves are more
distinct from one another. Then, if the rules worked well,
we would expect to derive three distinct groups: one con
taining the control subjects, a second containing the test
subjects, and a third (closely related to the second) contain·
ing the baseline, as illustrated earlier by Figure 2. A statis
tical technique that can perform this grouping is called clus
ter analysis. Each subject (measured by 22 baseline features),
along with the defined baseline, may be represented by a
point in 22-dimensional space, whose coordinates for each
subject are the subjects' scores associated with the 22 base
line features.

Note that the results of use of the cluster analysis apply
only to the 12 subjects of the two exercises and the baseline
data. Based upon only 12 subjects, we cannot infer that they
represent any larger population.

CONTROL GROUP TEST GROUP BASELINE
Figure 2-Anticipated clustering of subjects' responses.

868 National Computer Conference, 1980

Cluster model

The first step in the cluster analysis is to score the subjects'
responses in relation to the baseline definition. If subject i
named baseline feature j then the subject receives a score
of 1 in that spatial dimension, otherwise the subject receive~
a 0 for that coordinate. It is important to recognize that as
signment of scores is necessarily subjective, to some extent.
The authors deliberated on scoring and concur that any er
rors that may have been induced through scoring would not
significantly alter the results of the cluster analysis.

The next step in the analysis is to select a measure of
association appropriate to the problem domain. Metric dis
tance was chosen, since other common forms (e.g., cosine
of the angle between vectors and product moment correla
tion) are considered to be ill suited to measuring associations
with binary data [ANDM]. Common distance metrics used
in cluster analysis are the' II, 12 (Euclidean), and 100 norms.
With binary variables, each of these metrics compute to the
same quantity for each comparison of subjects j and k on
feature i. The distance metric, then, is used to compute pair
wise relationships between subjects. The final major step in
the analysis is to select and apply a clustering algorithm. The
Ward algorithm [WIGD] was chosen because it weights the
distance between centroids (as a function of cluster sizes)
when computing the distances between clusters. Further
more, the error sum of squares does not decrease, hence the
algorithm is not subject to reversals.

Cluster findings of exercise 1

If the rules were ideal we would expect to find two clus
ters: one containing the control group and a second con
taining the test group and baseline. When the 6 subjects are
analyzed we find:

(c I'C 2,C3)(t IIb)(t 2,t 3)

where the parenthetical groups represent clusters and the
Cli and b correspond to control subjects, test subjects, and
baseline, respectively.

The three clusters are roughly equidistant. Any further
grouping results in a large increase in the accumulated error.
Dividing anyone group into two groups does not substan
tially reduce the error term. Hence, these are the appropriate
clusters. The first cluster contains exactly the control group
as we had hoped. The two remaining clusters contain (1) two
test subjects, and (2) a test subject and the baseline.

Seven meaningful observations leading to rule improve
ment were made upon examining the cluster findings of ex
ercise 1. The rules were accordingly modified (to the form
shown earlier in this paper) for the second e~ercise.

Observations and conclusions of a general nature from
exercise 1

In addition to the rule-specific observations, four obser
vations of a more general nature were noted.

1. Observation: Poorly written documents may result in
nonmeaningful features extracted.

Conclusion: Rules may lead to standardized formats
for writing specification documents.

2. Observation: Rules, as applied. by the subjects, gen
erate many features that are not of interest to users.
An example is a feature dealing with parity bits. Most
users would not care to be concerned-they would sim
ple want parity to be such that their processes worked
correctly.

Conclusion: Experts can act as filters to discard ex
traneous features, especially after some experience
in interviewing applications users.

3. Observation: Control group subjects identified very
few, yet very different, features and described them in
general terms.

Conclusion: Such a high level of generality is not
useful in obtaining detailed requirements from users.
There is a need for rules to allow uniform feature
extraction.

4. Observation: The cursory instruction period was in-
adequate.

Conclusion: Training needs to be extended and to
include a work session by the subject with comments
by a trainer.

Overview of the second exercise

The first exercise allowed a comparison between control
and test groups which we now refer to as C I : T I' The second
exercise, conducted in two parts, permits the following com
parisons.

C 2: T 2: The control group 2 can be analyzed with test
group 2. The purpose, as in C I: T 1, is to test the need for
extraction rules. In this respect, significant differences be
tween exercise 1 and exercise 2 were the following. Control
subjects of group 2 were instructed to state features at the
level of individually distinguishable service capabilities.
Thereby, they were given some level of training (which re
flected the level of granularity of features) beyond that pro
vided to coptrol group 1. The rules were improved between
exercise 1 and 2 which should improve the score~ of test
group 2 over test group 1. The training for test group 2 was
more comprehensive than for test group 1 as suggested by
gerieral observation 4, above.

T I : T2 : Test groups 1 and 2 can be analyzed together. The
purpose of this analysis is to determine the rule improve
ment's progress between exercise 1 and exercise 2.

T 2: CT 2: As the second step of exercise 2, control group
2, after completing their initial exercJse, was trained and then
applied the rules. We now label this group control/test group
2, CT 2' Control/test group 2 can be analyzed with test group
2 to determine the impact of individual differences among
the subjects (since the sample size is so small) with respect
to the experiment. Note, however, that some factors of this
comparison jeopardize the validity of results, namely' the
effects of taking a test upon the scores of a second test and
maturation such as test fatigue.

Extracting Service Features From Protocol Documents 869

C 2: CT 2: We may analyze control/test group 2 and control
group 2, i.e., the same group with and without the assistance
of the rules. The purpose of this comparison is again to assess
the value of the rules.

The results of these analyses follow.

Findings of exercise 2

The cluster analysis procedure is iterative. At each step
exactly two groups of individual subjects who are nearest
neighbors arel combined. This synthesis introduces an error
in that the resulting cluster is represented as the centroid of
its components. Individual location information is lost
through combining. Figure 3 graphs this accumulated error
against repetitive clustering. We chose to describe the ex
periment results from the viewpoint of four iterations, which
provides a cutoff prior to where the accumulated error dou
bled at the next iteration.

Based upon four iterations, findings follow. Results of
exercise 1 are included for comparison. Notation is consis
tent with previous sections of this paper.

CI:TI (c,c,c) (t,t) (t,b)
C 2:T2 (c,c,c) (t,t,t) (b)
TI:T2 (t 2) (t 1>t I,t z,t 2) (t \,b)
T 2:CT2 (ct,ct,t) (ct,t,t) (b)
C 2:CT2 (c,c,c,ct) (ct,ct) (b)

The number of baseline features identified by each member
of each group is given below.

C\: 2,3,4
T\: 7, 7, 14
C 2 : 2,2,5
T2 : 9, 9, 11
CT2 : 4, 9, 12

Interpretation of exercise 2 results

The outcome of exercise 2 closely matches that of exercise
1. In aggregate, the correspondence to baseline features by
subjects of exercise 1 were C \ = 9 baseline features and
T 1= 28. For exercise 2, C 2 = 9 and T 2 = 29. The three-to-one
'hit' ratio between test group and control group maintained,
as did the one-to-ope ratio between C \ : C 2 and T \ : T 2' Test
group 2 was slightly more consistent that test group 1: com
pare (t,t,t) (b) to (t,t)(t,b). The improved rules and additional
training did' not noticeably improve the results (T \ = 28,
T 2 = 29). The findings of exercise 2 support (nearly duplicate)
those of the earlier exercise.

The T \ : T 2 comparison reveals random clustering. Again
consistency is demonstrated but no real improvement is vis
ible.

The comparison T 2: CT 2 should signal any substantial dif-
, ferences between the control and test groups of exercise 2.

If T 2 results match CT 2 results then we can infer that the
differences between C 2: CT 2 and C 2: T 2 are mainly due to
the use of the rules rather than because of any differences

40~------------------------------~

35

30

rz:
Q

= 25
Q
~

:5 20 = :& = u
~ 15

LEGEND:

---- C1 :T1

----- C2: T2

.---- C2: C2 T

---- T1 :T2

- •• -- T2: C2 T

10~----------------~~~--------~

5

1 2 345 6
ITERATIONS OF CLUSTER ANALYSIS

Figure 3-Error induced by grouping.

in the level of ability of subjects. The result (ct,t,t)(ct,ct,t)
is ideal. We conclude that groups C 2 and T 2 were evenly
matched overall and that the differences in scores can be
attributed to the rules.

The results of comparison C 2: CT 2 are similar to those of
C 1: TI and C 2: T2 , namely C 2=9 and CT2 =25. The three-to
one ratio obtains. Evidently, the C 2: CT 2 results reinforce
the C \ : T \ and C 2: T 2 findings, since after training the CT 2
subjects performed similarly to the other test subjects.

Other observations and conclusions from exercise 2

Trained subjects (of both exercises) averaged naming 15
percent of the features of INWG Section 5.12. Their accu
racy was 67 percent over Sections 5.13 and 5.14. The low
hit rate for Section 5.12 was due to the misapplication of rule
3-a where rule 2 applied. Where rule 2 applies to features
given in series, it should be distinguished from rule 3-a in
that each feature expresses an independent concept.

Six of the 11 baseline features of Section 5.12 concern
defaults. Misuse of rule 3-a caused features 1 and 5 to be
combined into a single feature. Consequently, the subjects
made two default statements instead of the six named in the
baseline. Thus, they received scores of 0 for baseline fea
tures 1 and 5 and 3, 4, 7, 8, 10, and 11. This scoring may

870 National Computer Conference, 1980

seem rather strict. A more liberal interpretation of their de
fault features would yield a 70 percent accuracy rate for
Section 5.12 material.

Overall, test subjects of T \, T 2, and CT 2 consistently iden
tified slightly more than 40 percent of the baseline features.
T \ received a 5-minute training. T 2 and CT 2 received a 45-
minute training. The authors have worked with the rules over
a several months period. We have independently applied the
rules to six FTP documents. Upon comparing results we
extract about 95 percent of the same features.

We conclude that the intent of the rules is basically sound.
They need to be stated more crisply. They should include
more examples to differentiate rules 2 and 3a. Lastly, with
the present rules, considerable practice (on the order of days ,
not minutes) is probably needed to achieve a 95 percent hit
rate with the baseline features.

NEXT STEPS

Given a repeatable procedure for feature extraction, the
following question naturally arises. Do the features, so ex
tracted, really represent the protocol's capabilities or value
added service in terms meaningful to the applications build
ers and to protocol designers? To answer the question with
respect to protocol designers, the authors expect to get ex
perts' opinions on their representativeness. The authors
have since applied the resulting rules to several protocol
documents and, with the help of applications users, are test
ing the results via an analytical model [HEAJ].

This effort provides insight that could be applied to the
development of procedures for writing specifications. The
actual identification of features reflects both the efforts of
the author and the reader of the document. If the author had
known the specific rules that were to be applied in the ex
traction of features, then an equivalent set of rules could
have been identified and applied in the development of the
document. It is anticipated that this dual approach would
significantly enhance the elimination of ambiguity in such
a document. There are plans to evaluate the utility of this
approach in the development of standard protocol specifi
cations.

REFERENCES

[ANDM] Anderberg, Michael R., Cluster Analysis for Applications, Aca
dl;!mic Press, 1973.

[BABE] Babbie, Earl R., Survey Research Methods, Wadsworth Publishing
Company, Inc., Belmont, Ca., 1973.

[HEAJ] Heafner, John F. and Nielsen, Frances H., "A Linear Programming
Model for Optimal Computer Network Protocol Design," to appear in
NCC Proceedings, 1980.

[INWG] A Network Independent File Transfer Protocol, prepared by the
High Level Protocol Group, IFIP, International Network Working
Group, HLP/CP (78) 1, December 12, 1977.

[ISO] Reference Model for Open Systems Architecture, International Or
ganization for Standardization, ISO/TC97/SCI6 N1l7, November 1978.

[TCP] Transmission Control Protocol, TCP Version 4, Information Sciences
Institute, University of Southern California, lEN: 81, February 1979.

[WISD] Wishart, David, "An Algorithm for Hierarchical Classification,"
Biometrics, Volume 22, Number 1, pp. 165-170, March 1969.

Verification of information in a file*

by JAINENDRA K. NA VLAKHA
Florida International University
Miami, Florida

INTRODUCTION

Computer centers and particularly data processing centers
deal with a stack load of information files as a daily routine.
The information in many of these files is organized according
to a particular format. For example, in an "employee file,"
the information about an employee might consist of the name
of that employee, his or her age, sex, social security number,
salary, etc., in some order.

Before getting information about an employee from that
file, it would be worthwhile to check the correctness of such
information, that is, to make sure that in the "name" field
is the person's name (some alphameric characters with
blanks), in the "age" field is the age of the employee (that
is, a two digit number specifying the age in years), and so
on.

Observe that we are not validating the information for any
particular employee as such, but making sure that the in
formation available in the file is formatted properly. For ex
ample, if a number "25" appears in the "age" field, the
contents of the field are okay from the format point of view
even though the actual information might be wrong. How
ever, if the age-field contains" A 7," we are certain that this
is wrong information from the format point of view.

Thus, what we wish to accomplish is the validation of in
formation in the file insomuch as it conforms to some format
specification.

BASIC VERIFIER SYSTEM

Figure 1 describes the verifier system, which when input
with a proper valid format and a file record, verifies whether
the information in the file record is correct with respect to
the specified format or not.

The system is implemented on the UNIVAC 1106 at the
Centro de Procesamiento, "Dr. Arturo Rosenblueth" in
Mexico City, in Regular Expression Compiler-Markov (RECI
MK) language. A couple of compilers ofREC are described
in Cisneros I and McKintosh.2

* This work was carried out when the author was an exchange visitor to the
Centro de Procesamiento, "Dr. Arturo Rosenblueth" ("Dr. Arturo Rosen
blueth" Computer Center) in Mexico City.

871

REC/MK has no unconditional jump statements as some
of the other programming languages have, but it does have
an "escape statement" similar to the one in BLISS.3 In that
regard so far as its structure is concerned, this programming
language falls somewhere between the structured language
in the sense of Dijkstra" and an unstructured language like
Fortran IV. The choice ·of the implementation language was
governed more by the usage of the verifier at the Center
rather than the suitability of the language for this particular
application.

There are two major advantages of such a verifier system.

1. Reliability

Once the contents of all the records of a file are verified
correct with respect to the proper format specification, one's
confidence in the future Usage of data from that file increases
to a great extent.

2. Savings in programmer time

Without such a generalized system, if one wishes to verify
the correctness of information content in a file, one has to
write a separate program to achieve this. If there is a second
file in which the information is organized quite differently
from the previous file information, then yet another program
is required to verify the correctness of information in that
file. However, if a generalized verifier system did exist, then
the information contents of both the files would be verified
by it just by a change in format specification for the two
files, thereby providing a tremendous savings in the pro
grammer time.

FORMAT TYPES

In order to check the correctness of information in a file
record, the verifier takes the description of the valid format
which specifies the order in which the information should
occur in that record. This valid format is composed of a
collection of different format types, which specify the type
of information in fields of a file record. The choice of se
lecting particular types of formats was governed by the ap
plications of the verifier system at the Center, though we
feel that these formats are quite essential for verification of

872 National Computer Conference, 1980

Verifier to check
Valid format

the correctness
correct/incorrect

of information
File record

in a file

Figure I-The verifier system

file contents in other application areas also. Quite a number
of these format types are based on defining sets of charac
ters, for example, 'D' is treated as a set of digits, 'L' as a
set of letters, 'B' as a set of blank, etc. In the present version
of the system, the following format specifications are al
lowed.

1. Digit-format

The digit-format allows one to specify the requirement that
the next n characters in the file record should be all digits.
It is specified as "nD," where n is a positive integer. Con
sider the following file record

- - - - - i 1 5 7 9 3 " l? A X Y - - - - - **
1

where pointer 1 indicates the position in a file record to the
left of which the information has been verified, and the ver
ification is to be continued to its right. Suppose, the format
is "5D." Then, the information in the next field of the file
record is correct with respect to this format, and the pointer
1 in the file record is moved right by 5 characters.

2. Letter-format

Syntactically, it is specified as "nL" and means that the
next n characters in the file record should be all letters (A
to Z).

3. Ambos (means "Both" in English)-format

This format is specified as "nA" and requires each of the
next n characters of the file record to be either a letter or
a digit.

4. Blank-format

It is specified as "nB" and it looks for n blanks in the
information file record.

5. Total-format

"nT' specifies that the next n characters in the file can
be any characters chosen from the full character set under
consideration. This format allows one to skip over several
characters in the file.

** liI denotes a blank character.

6. Set definition

This format allows the user to define a set X of particular
characters, so that he can specify "Set format" (described
ne?'t) based on this set.

example I-X = L + ('l?,) defines X to be the set
X = {A B - - - Y Z . l? ,}

This set might be useful when verifying characters in the
name-field of an employee file record.

X = L - (XYZ) specifies a set X whose members are all
the letters of the alphabet except 'X', 'Y', and 'Z'.

X = T - (+ - *1) defines a set of all characters (recall
that T is the total set) except' +', '-', '*', and '/'.

We feel that this format is one of the most essential formats
for information verification in a file. There are many occa
sions when such a format can be used to check the contents
of a particular field in a file record. One exa~ple might be
the verification of name-field contents of an employee file,
when the set can be as defined in example 1.

7. Set-format

"nX" specifies that the next n characters in the file should
belong to the set X defined using the set definition format.

For example, consider the format

X = L + D - (12YZ) $ 5 X $

where '$' is the separator between two formats. It first de
fines the set X = {3 4 - - - 9 0 A B - - - W X} and then looks
for 5 characters in the file record to belong to the set X.
Obviously, the set definition precedes the set format spec- .
ification.

example 2-Suppose a record of an employee file has the .
following set up.

Field Name
No. of Characters

NAME
20

AGE
2

SEX
1

Assume that we wish to leave two blanks between any two
adjacent fields. For verifying the correctness of information
in this record, the valid format might be specified as follows:

X = L + (', l?) $ 20 X $ 2 B $ 2 D $ 2 B $
X = (MF) $ 1 X $

If a record was . . .

JOHNl?P .l?DOE,JR.l?l?l?l?l?l?l?27l?l?M

then, it would be verified correct with respect to the above
format specification.

8. Constant value format

On a number of occasions, one wishes to specify a se
quence of specific characters in a file. This can be done using

the constant value format. It is specified as "C\()
(char.sequence)" where (char.sequence) is the desired se
quence of characters in the file. '$' acts as the terminator
of the desired sequence, and thus cannot be used as part of
the sequence itself.

For example, C\()CONSTANT$

requires the next eight characters in the file to be "CON
STANT."

9. Range-format

Syntactically, this format appears as R((char)-(char),
(char)-(char),). It thus consists of a variable number of
character pairs of the type (char)-(char) each being separated
from the next by ','. The ith character pair governs the in
formation content of the ith character in the file.

R(0-6,A-K,X-Z), for example,

looks for three characters in the file, the first between 0 and
6, the second between A and K, and the third between X
and Z. The obvious restriction of the format is that in every
character pair, the ASCll (or any other) representation of
the first character should be less than or equal to that ofthe
second character.

All the above formats, except the Set definition format,
were fixed-length field formats which are character oriented.
The formats explained below are a little different from the
above types.

10. Number'-format

It is specified as N«digit seq), (digit seq»). It is used when
the information in the next field of the file record is desired
to be within a range of numbers. For example, while veri
fying the "age" field of a record in the employee file, one

• I
may wIsh to make sure that the age is between 21 and 65.
The format specification for that information would be
N(21 ,65).

Both the numbers specifying the range should be positive
(current implementation, which can easily be changed to in
clude negative numbers, also) and the first should be less
than or equal to the second if the format is to be meaningful.
In the present version of the verifier, there is an added re
striction imposed on this format specification which is that
the two digit sequences would have the same number of
characters. For example, a number between 0 and 379 should
be specified as N(000,379). This restriction can be removed
in future versions of the verifier.

11. Select-format

This format allows the user to specify information content
of the next field in the file to be one of many choices. It is
specified as follows:

S(choice 1 ! choice 2 ! choice 3 ! ! choice k).

Verification of Information in a File 873

For the next field information of the file to be correct, it
should satisfy either one of the above choices, e.g., S(C\()
M!C\()F) specifies that the next character in the file should
be either an 'M' or an 'F'. This format may be useful for
verifying "sex" field of an employee file record.

A choice in this format specification can be either of Digit,
Letter, Ambos, Blank, Number, Range and Set formats or
Constant value format.

For example, S(3D ! IB ! 3L) looks for the field infor
mation to . be consisting of either 3 digits or 1 blank or 3
letters. The file record

- - - - - t \() + 37 - - - - -
1

satisfies the above format beqmse the second choice, 1 B,
is satisfied.

12. Variable-format

There are times when we know that the next field contents
should be all digits or all letters or all characters from some
set, but we do not know the size of the field. In fact, the size
of the field may be different for different records of that file.
Variable-fox:mat proves to be very useful under those cir
cumstances. It allows the user to specify a variable length
information in the file. The syntax of this format is ... #spe
cialletter, where special letter can be D(Digit), L(Letter),
A(Ambos), B(Blanks) or X(Set). It means that any number
of next characters in the file belonging to the particular set
(specified by special letter) are to be counted as constituting
the next field. Absence of any character in the file from the
designated set means finding 0 character.

For example, if the file information is

-----IABX+ y*-----

t
1

then, #D matches 1 character,
L matches 0 character,
#A matches 4 characters,
#B matches 0 characters,
and if X = L + D + (+), then
X matches 6 characters.

One application of this format might be to skip over some
variable number of characters in the file until you encounter
the first '*'. That could be accomplished by the following
format specification.

X = T - (*) $ # X $

First, X is defined to be a set of all characters except '*',
and then, in the file you match a variable number of char
acters belonging to the set X.

13. Equal-format

It is not uncommon to encounter file records where the
information content of two fields should be identical. For

874 National Computer Conference, 1980

example, the identification code in a file may appear as the
first and also the last field of the file record. Equal-format
validates such information.

It is specified as "'Em," where m is the number of one of
the previous fields.

For example, If the valid-format is ...

3D $ 2B $ El $ - - - - -

it looks first for three digits, then for two blanks and then
the third field, whose contents should be the same as those
of the first field, character by character. The file record ...

- - - 152b~ 152----
i
1

satisfies the above thre'e formats of the valid-format.
By convention, when counting field in this format speci

fication, set definition is not counted as a field because it
does not verify any additional field of the file record.

Figure 2 gives the formal BNF description of a "valid
format" for verifying information content of a file record.

< Valid format> : : = < ind. format>

< indo format:> <Valid format>

< indo format> ::= <D-for> <L-for> <A-for> I

<B-for> <T-for> < Set-for>

<Set def.> I <Con Val> I <N-for>

<R-for> I <S-for> I <V-for> I

<E-for>

<D-for> ::= cpos. int.> D

<L-for> ::= cpos. int.> L

<A-for> ::= cpos. int.> A

<B-for> ::= cpos. int.> B

-;:T-for> ::= cpos. int.> T

<Set-for> ::= cpos. int.> X

<Set def.> ::=X = <Set description>

<Set description> ::= <LS> I <LS> + <Set description>

<LS> - <Set description>

<LS> <sp. let. 1> I <set>

<sp. let. 1> ::= D I LIT

<set> ::= «char. sequence»

<char. sequence> ::= <char> I <char.> <char. sequence>
i

<char> ::= any valid character I
cpos. int.> ::= <nonzero digit>

HIGH-LEVEL DESCRIPTION OF THE PROGRAM <nonzero digit> <digit sequence>

The verifier takes in the description of a valid format as
input and then reads in a sequence of file records to be ver
ified as specified by individual formats of the (valid-format).

Once it finishes verifying one set of file records, it goes
back and reads in another (valid-format) and repeats the
procedure until no more verification is necessary. The al
gorithm in its simplest form can be described as follows:

Step 1: Read a (valid-format). If "end-of-input-file," then
STOP.

Step 2: Read a file record to be verified. If no more rec
ords to be verified, GO TO step 1.

. Step 3: Validate the information of the file record ac
cording to (valid-format), and report the result.
GO TO step 2.

Step 3 of this simple algorithm cJ:tecks whether the infor
mation in successive fields of the file record is conformal
with respect to the individual formats of the (valid-format)
or not. Its detailed description is given below:

Step 1: Get the next (individual format).
Step 2: If DONE, then perform some initialization for the

next record verification, and RETURN.
Step 3: Verify the information in the next field of the file

record.
Step 4: Report the correctness information to the user.

GO TO step 1.

Step 3 above consists of first determining what the type
of that (individual-format) is and then verifying the contents
of the next field with respect to it.

<digit sequence> ::= <digit> I <digit> <digit sequence>

<digit>

<nonzero digit>

<Con val>

<Blank>

<N-for>

< R-for>

<Range>

< S-for>

< choices>

< ind. choice >

::= 0 I <nonzero digit>

::= 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

::= C <Blank> <char. sequence>

::= N «digit sequence> , <digit sequence»

R « Range»

: : = < char> - < char>

< char> - < char> , < Range>

::= S « choices>)

::= < indo choice> I

< indo choice> ! < choices>

: : = < D-for> < A-for> I < L-for>

< B-for> I < Set-for> I < Con val>

< N-for> I < R-for>

< V-for> ::= # < sp. let 2>

< sp. let 2> ::= D I L I A I B I X

<E-for> ::= E<pos. int.>

Figure 2-BNF description of a valid-format

A sample output of the program for a test run is shown
in the APPENDIX.

CONCLUSIONS AND EXTENSIONS

In this paper, we described a software verifier system to
check the correctness qf information in a file. The (valid
format) and the file record to be verified are input to the

system, and the output is the correctness result for every
(individual-format) of the (valid-format), based on whether
the file information was conformal with respect to it, or not.

Other than increasing one's confidence in the contents of
the file once it is verified, the system, being a rather general
one, helps save a tremendous amount of programmer time
in the sense that one program is good for verification of in
formation in all types of files and separate programs are not
required.

The program is written in REC/Markov language and is
implemented on the UNIVAC 1106 computer at the Centro

. de Procesamiento, "Dr. Arturo Rosenblueth:' in Mexico
City. The choice of the language was governed by the future
use of the verifier at the' Center rather than its suitability for
this application. The top-down design ofthe system has guar
anteed modularity, and we feel that the system can be main
tained and modified fairly ea~ily.

A couple of possible extensions to the system are proposed
below:

1. Presently, set definition allows only 'X' to be used for
defining sets. This can be easily changed to include
usage of other characters (' Y' and 'Z,' for example) in
set definitions. Then, more complex set definitions
would be possible and it would be possible to keep 2
or 3 defined sets at hand. Also, this would allow sets
to be defined in terms of already defined sets other than
D, L, or T.

For example, Y = X - Z $
2. Except for equal-format, all other types of formats are

independent of information contents of previous fields
of a file record. For more complex applications, a few
other "information dependent formats" might be added.

For example, a format of the type ...
IF information in kth field was*****,
THEN format 1 ELSE format 2 $,

may be quite useful in certain applications. At present,
this is partially achieved by the select format.

One other possibility that comes to mind is as fol
lows. Suppose S(ClSM !ClSF) was pth individual format.
Then a format of the type ...

IF "contents of field p of the file conforl!led with
ClSM" THEN format 1 ELSE format 2 $

may allow one to tie in proper information in some field
of the file record with contents of one of the previous
fields whose contents might have been one of many
choices.

3. Presently, the verifier system is capable of handling
only the "character oriented files." This can be ex
tended to make it handle binary strings of more than
one byte.

I would like to add that one can visualize tremendous pos
sibilities of such a verifier system in data file information
verification. This, being the first version of this system, is
definitely not very neat and concise, but with proper mod
ifications, the later version of the system can be developed
to satisfy the needs of individual users.

Verification of Information in a File 875

ACKNOWLEDGMENTS

This work was carried out when I was an exchange visitor
at the Centro de Procesamiento in Mexico City. My sincere
thanks to all the personnel of the Department of Systems
Support and Department of Computer Graphics, particu
larly, Carlos Garcia, Genaro Mariscal, Rafael Garcia and
Rafael Tello.

REFERENCES

1. Cisneros, Gerardo, "A Fortran Coded Regular Expression Compiler for
the IBM 1130 Computing System," Acta Mexicana de Ciencia y Tech
nologia, Vol. 4, No.1, 1970.

2. McIntosh, Harold V., "A CONVERT Compiler ofREC for PDP-8," Acta
Mexicana de Ciencia y Technologia, Vol. 2, No.1, 1968, pp. 33-43.

3. Wulf, W. A., Russell, D. B. and Haberman, A. N"-, "BLISS: A language
for systems programming," Comm. of ACM, Vol. 14, No. 12, Dec. 1979,
pp. 780-790.

APPENDIX

A sample output of the verifier (test runs) is shown below.

REC/MARKOV
INPUT A FULL FORMAT
FULL FORMAT
3D $ 2B $ 3L $ 2B $ N(173,257) $ 2B $ ClSXYZ$ 2B $ 3A $
INPUT A FILE RECORD
FILE RECORD BEING TESTED =
123 ABC 197 XYZ A9L
FIELD NO. = 1
CORRECT INFORMATION
FIELD NO. = 2
CORRECT INFORMATION
FIELD NO. = 3
CORRECT INFORMATION
FIELD NO. = 4
CORRECT INFORMATION
FIELD NO. = 5
CORRECT INFORMATION
aELD NO. =6
CORRECT INFORMATION
FIELD NO. = 7
CORRECT INFORMATION
FIELD NO. = 8
CORRECT INFORMATION
FIELD NO. = 9
CORRECT INFORMATION
INPUT A FILE RECORD
FILE RECORD BEING TESTED =
086 AOR 258 X - Z WIT
FIELD NO. = 1
CORRECT INFORMATION
FIELD NO. = 2
CORRECT INFORMATION
FIELD NO. = 3

876 National Computer Conference, 1980

CORRECT INFORMATION
FIELD NO. = 4
CORRECT INFORMATION
FIELD NO. = 5
ERROR «N-FOR) VIOLATED)
FIELD NO. = 6
CORRECT INFORMATION
FIELD NO. = 7
ERROR «CON - VAL) VIOLATED)
FIELD NO. = 8
CORRECT INFORMATION
FIELD NO. = 9
CORRECT INFORMATION

INPUT A FILE RECORD (*DONE CASE*)
INPUT A FULL FORMAT
FULL FORMAT
X = L + D - (12YZ) $ 3X $ 2B $ S(2X I R(0-5,0-6) I 2B)

$ 5T $ 2B $ 2X $
INPUT A FILE RECORD
FILE RECORD BEING TESTED =
S5M 15JKNA V K7
SET DEFINITION
CORRECT INFORMATION
FIELD NO. = 1
CORRECT INFORMATION
FIELD NO. = 2
CORRECT INFORMATION
FIELD NO. = 3
CORRECT INFORMATION
FIELD NO. = 4
CORRECT INFORMATION

. FIELD NO. = 5
CORRECT INFORMATION
FIELD NO. = 6
CORRECT INFORMATION

INPUT A FILE RECORD
FILE RECORD BEING TESTED =
TRY N -*/+? 6U
SET DEFINITION
CORRECT INFORMATION
FIELD NO. = 1
ERROR «SET-FORMAT) VIOLATED)
FIELD NO. = 2
ERROR «B-FORMAT) VIOLATED)
FIELD NO. = 3
CORRECT INFORMATION
FIELD NO. = 4
CORRECT INFORMATION

FIELD NO. = 5
CORRECT INFORMATION
FIELD NO. = 6
CORRECT INFORMATION

INPUT A FILE RECORD (*DONE CASE*)
INPUT A FULL FORMAT
FULL FORMAT
A $ 2B $ El $ 3D $ E4 $ 3L $ E6 $
INPUT A FILE RECORD
FILE RECORD BEING TESTED =
A79BX A79BX159159AXTAXT
FIELD NO. = 1
CORRECT INFORMATION
(5 CHARACTERS MATCHED)
FIELD NO. = 2
CORRECT INFORMATION
FIELD NO. = 3
CORRECT INFORMATION
FIELD NO. = 4
CORRECT INFORMATION
FIELD NO. = 5
CORRECT INFORMATION
FIELD NO. = 6
CORRECT INFORMATION
FIELD NO. = 7
CORRECT INFORMATION

INPUT A FILE RECORD
FILE RECORD BEING TESTED =

JKN124 JKN124173172A56A56
FIELD NO. = 1
CORRECT INFORMATION
(6 CHARACTERS MATCHED)
FIELD NO. = 2
CORRECT INFORMATION
FIELD NO. = 3
CORRECT INFORMATION
FIELD NO. = 4
CORRECT INFORMATION
FIELD NO. = 5
ERROR (UNEQUAL FIELD INFORMATION)
FIELD NO. = 6
ERROR «L-format) VIOLATED)
FIELD NO. = 7
CORRECT INFORMATION
INPUT A FILE RECORD (*DONE CASE*)
INPUT A FULL FORMAT (*DONE CASE*)
REC/MARKOV.

Translating" non-standard extensions to standard Pascal

by VISWANATHAN SANTHANAM
Wichita State University
Wichita, Kansas

INTRODUCTION

Extensions to a programming language are often introduced
by individual implementors for a variety of reasons. In some
cases, a new construct may allow the programmer to take
advantage of a unique hardware or software feature in the
specific system. In other cases, the application for which the
language is frequently employed may warrant simpler and
more efficient constructs. Whatever the motive, extensions,
in general, severely limit portability of programs. Often it
is necessary to manually translate non-standard features be
fore a program can be successfully adapted to a new envi
ronment. If we must live with such extensions at all, ideally
we would like to be able to translate all extensions auto
matically to make the adaptation expedient and reliable.

Some extensions clearly do not have direct translations
in all target environments. Others lend themselves to system
independent translations, e.g., to the base (standard) lan
guage itself. Typically such translations do not have the same
elegance and efficiency as the original construct, but they
enhance the portability of programs. A system which accepts
descriptions of such extensions and their translations can
automatically process non-standard programs, yield a stand
ard translation and provide a precise definition of the ex
tension to a naive reader of the program. In this paper, we
outline such a system that we call "extension processor."

The details of the system are specific to the Pascal lan
guage. The concepts involved, however, are equally appli
cable to any block structured language, such as Algol,
BCPL, and PL/l. Their applicability to other languages such
as FORTRAN and COBOL is limited.

The extension processor is somewhat similar in function
to a macro processor in that both systems attempt to pre
process the source text of a program and produce an output
suitable for the compiler. There are a number of macro pro
cessors designed for use with Pascal-like languages (see Ref
erences 3 and 4 for examples) and some of these are powerful
enough to handle minor extensions such as the use of con
stant expressions where only simple constants are permitted
in the base language. But these systems are not capable of
describing more complex forms of translations that may in
volve source code movement and/or augmentations far from
the point where the extension is used. The proposed exten
sion processor can effectively describe moderate forms of

877

global and local transformations that are sufficient for trans
lating many popular extensions to Pascal.

THE EXTENSION PROCESSOR

, Extensions are described by the programmer with the help
of two new statements-GRAMMAR and TRANSLATE.
The GRAMMAR statement describes the syntax of the ex
tensions, while the TRANSLATE is used to specify the
standard language translations for them. Each of these state
ments can be included in any Pascal block, preceding all
other declarations such as LABEL, CONST, etc. Like all
other declarations, GRAMMAR and TRANSLATE are also
subject to the scope rules of Pascal. This means an extension
can be "global" if defined at the program level, or "local"
if defined in a lower level block. It is also possible to translate
the same extension in different ways in different blocks. The
complete syntax of these statements is outlined in the ap
pendix. The overall structures and the semantics are dis-,
cussed in this section.

The main structure of the GRAMMAR statement is de
picted in the syntax diagram below.

<grammar>

~GRAMMART<nontenn>--+ =: ~<substitution> --':;'r
Here (non-term) is the syntactic identifier of the extension
feature; (substitution) is merely a linear representation of a
syntax diagram for that extension. The (substitution) itself
is a sequence of tokens consisting of key words (both stand
ard and user defined), operators and other non-terminals,
defined elsewhere in a GRAMMAR statement. Not all non
terminals need to be explicitly defined; "standard" defini
tions could be included within the extension processor, just
as standard type identifiers, such as INTEGER, BOO
LEAN, etc., are defined in Pascal.

In addition to the terminals and non-terminals, a substi
tution may also include labels to identify syntactic entities
in the definition. These labels are useful in describing the
translation later in a TRANSLATE statement.

There are two special operators provided in the GRAM
MAR statement: the "follow-on" operator ~ which is op-

878 National Computer Conference, 1980

tionally employed to clarify the physical juxtaposition of two
successive syntactic entities; and the "alternates" operator
- : which indicates a branch-off point in the syntax diagram.
For example, the syntax diagram

<example!>

~THIS~ISTNOTTA-r::TEXAMPLE~

can be expressed in a GRAMMAR statement like this:

GRAMMAR
.examplel. =: THIS IS -: .(NOT).,

.().;
~ A -: .(GOOD).,

.(BAD).;
~ EXAMPLE:;

Recursive definitions are written in a manner similar to the
BNF notation. For example, this syntax diagram

<example2>

is translated to a GRAMMAR statement by defining a sep
arate non-terminal for the recursive component "THIS":

GRAMMAR
.example2.

. t. =: THIS :;

.t. "see definition below"
.()., "the escape option"
. (AND .t.).; "the recursion option"
~ IS IT:;

The TRANSLATE statement is more complex as it must
describe the more difficult task of translating the extension
to the standard language. Many times there is a need to add
variables or type identifiers to the local block or the program
block. Sometimes it may also be necessary to add executable
statements to the body of a procedure. The TRANSLATE
statement syntax provides for these specifications in Pascal
like constructs. The overall syntax diagram for the statement
has the form:

<translate>

---+ TRANSLATET <nonterm>---. TO --+<translation>---.; r
The non-terminal referenced above must be defined in a
GRAMMAR statement, either explicitly or implicitly as a
standard non-terminal. The (translation) consists of three
components-"global includes," "local includes" and
"substitution." The global and local "includes" are intended
to specify new labels, identifiers, procedures, functions or

statements that may be needed at the program level and in
the current block respectively. Thus each of these "in
cludes" is divided into eight parts: LABEL, CaNST, TYPE,
v AR, PROCEDURE, FUNCTION, TOPOFSTMT and
BOTOFSTMT.

The syntax of each part, so far as the extension processor
is concerned, is the same. However, the phrases constructed
by the extension processor must be acceptable to the Pascal
compiler. The actions of the extension processor itself are
restricted to adding the phrases specified in each part to the
appropriate parts of the program or local block.

The substitution part is identified by the key word TRANS
and it describes the in-place substitution for the recognized
extension. The description takes the form of a sequence of
terminals (operators, key words etc.), non-terminal labels
(defined in the GRAMMAR for the extension), and identi
fiers and labels defined in the "includes" (called "sys
names" and "syslabels"). Special built-in functions called
"sysfunctions" are also provided for generating tokens that
do not appear explicitly within the extension text, but are
"computable" by the extension processor. For example,
&EXPTYPE($E) generates the type of the expression $E.

Furthermore, three powerful "syscontrol" statements are
also provided for the control of the number and sequence
of tokens generated; these are &FOR (also, &FOREACH),
&IF and &CASE. These syscontrols are similar in function
to the conditional compilation features of many macro pro
cessors.

The sysfunctions and syscontrols together form the heart
of the translation language used by the extension processor.
By adding more powerful features into these two categories,
it is possible to widen the range of extensions that can be
translated. In the following section, we illustrate the use of
some of the more basic features of this work .

EXAMPLES

A set of five examples is presented in this section to il
lustrate features of the extension processor.

Example 1: the extended CASE statement

Many implementations of Pascal, such as Reference 1 for
example, have extended the CASE statement to accept an
"OTHERWISE" phrase which specifies an action for cases
not covered in the body of the main CASE. This example
illustrates how such a CASE statement can be translated to
the standard language.

Even though it is not necessary, we will assume that the
extended CASE statement begins with a different word, say
ECASE. This change makes it easier to describe the exten
sion as a new statement and the parser within the extension
processor can recognize it more easily.· With this modifi
cation the typical extended CASE construct can be de
scribed in a syntax diagram as follows.

Translating Non-'standard Extensions to Standard Pascal 879

<extended case>

--+ ECASE --+ <expression> --.. OF

<constant list> - : ~ <statement>

OTHERWISE --+ <statement> ~

This syntax is described in a GRAMMAR statement as fol
lows.

GRAMMAR
. statement.

.,

.(.extendedcase.). "include as a
statement"

.extendedcase. =: ECASE $EXP: .expression. OF
$CASES: .cases.

.cases. -.

OTHERWISE $OTHSTMT: .state
ment. :;

$NULL: .().,
$CASE: .("non-null cases"

$CONL: .constantlist. : . state-
ment.).;

-: .().,
.(; .cases.).; "recurse"

The labels such as $EXP, $CASES etc. are defined here for
reference in the TRANSLATE statement.

A straightforward translation of the ECASE statement is
to check the value of the case expression to be in the set of
all constants for which case parts are defined before exe
cuting a standard CASE statement. The idea is expressed
in a TRANSLATE statement as follows.

TRANSLATE .extendedcase. TO
LOCAL "additions to the current block"

VAR &X: &EXPTYPE.($EXP).; "define a local
variable"

TRANS "in-line substitution"
BEGIN (* extended CASE *)
. &X: = $EXP; (* compute and save case

expression *)
IF &X IN

["now, list all constants"
&FOR $CASES &DO "begin looking at
$CASES"

.(&FOREACH $CONL &DO
.($CONL "list the constants"

&IFMORE.(,). "comma if more to go"
).

).] "ending bracket for the set"
THEN (* if one of the constants *)

CASE $EXP OF "do a standard CASE"
$CASES "list the cases as is"

END (* CASE *)
ELSE $OTHSTMT "the otherwise part"

END (* extended CASE *)
TREND; "end translation"

The &FOR $CASES is really not needed as there is only
one $CONL in the GRAMMAR for ECASE. It is included
here for clarity that the inner &FOREACH is confined to
the non-terminal $CASES.

Example 2: the LOOP statement

The NBS Pascal compiler2 introduces the notion of a
LOOP statement to allow efficient construction certain
classes of loops without the use of the GOTO statement.
(The NBS compiler does not itself implement the GOTO.)
The syntax of this extension is described by

<loopstatemertt>

---+ LOOP ---.. <statement list> ~

co:; EXIT __ IF _ <expression> _ ; ~

c:; <statement list>-:=J

L END---+

and in a GRAMMAR statement by

GRAMMAR
.statement. -. .(.loopstatement.). :;
.loopstatement. =: LOOP

$SLl: .statementlist.
EXIT IF $EXP: .expression. ;
$SL2: .statementlist.

END:; "end of definition"

The translation of the LOOP statement is straightforward if
the use of GOTO statements is permitted.

TRANSLATE .loop statement. TO
LOCAL LABEL &2; "new label needed for GOTO"
TRANS

BEGIN (* LOOP *)
REPEAT

$SLl;
IF $EXP THEN GOTO &2; (* EXIT IF *)
$SL2

UNTIL FALSE; (* forever, that is *)
&2: (* point of escape *)

END (* LOOP *)
TREND;

This translation may be unacceptable if GaTOs are not im
plemented in the target system either. A translation without

880 National Computer Conference, 1980

the GOTO can also be devised, though somewhat bela
boredly.

TRANSLATE .loopstatement. TO "the goto-Iess version"
LOCAL "define a local procedure for $SL 1"

PROCEDURE &SL1;
BEGIN

$SLI
END;

TRANS "now, use &SLI for $SLI and unfold the
loop"

BEGIN
&SL1; (* leading execution of $SLI *)
WHILE NOT ($EXP) DO

BEGIN
$SL2;
&SL 1 (* top of the loop here again *)

END
END (* LOOP *)

TREND;

Example 3: conditional expressions

Algol's conditional expressions can save coding time and
improve execution speed of programs. Pascal does not in
clude this feature in the spirit of keeping the language simple.
We can readily introduce this feature for simple data types
as an extension.

GRAMMAR
.expression. -. .(.conditionalexp.).; "add to

expressions" :;
.conditionalexp. =: CIF "choose a different prefix for

ease"
$BOOL: .expression.

THEN ($EXP1: .expression.)
ELSE ($EXP2: .expression.) :;

We translate the entire conditional expression into a function
call, which then returns one of the two values, $EXPI or
$EXP2, depending on $BOOL.

TRANSLATE .conditionalexp. TO
LOCAL

FUNCTION &F : &TYPE.($EXP). ;
BEGIN

IF $BOOL THEN &F : = $EXPI
ELSE &F : = $EXP2,

END;
TRANS "the in-place substitution is simple"

&F
TREND;

Example 4: macro statements

The extension processor described in this paper does not
necessarily replace the functions of a macro processor. A

simple text substitution type macro processor can express
certain preprocessing requirements better than our extension
processor can. The most logical place for a macro processor
is between the extension processor and the compiler; that
is, the output from the extension processor can be the input
to the macro processor whose output in turn will be the com
piler's input. This means that any non-standard construct
that is to be passed on to the macro processor must be left
alone by the extension processor. In particular, the MACRO
statement itself must be acceptable to the extension pro
cessor. This can be achieved by stating the syntax of the
MACRO statement in a GRAMMAR statement at the pro
gram level. An example of such a declaration follows.

GRAMMAR
. declarations. =: -:.(.macrodcl.).; "add to

.macrodcl.

. macdefs.

declarations" :;
-. MACRO .macdefs. :;
-. $MACNAME: .identifier .

-: .0., "case of no parameters"
. (.idlist.).; "with parms"

= # .terminals. # ;, "prototype"
-: .0., "end of macros"

.(.macdefs.).; "more to go"
"end of MACRO syntax".

Additional definitions may be needed if the macro parame
ters are represented by special identifiers.

Example 5: the BUILTIN attribute

In PLIl it is possible to return to the global level meaning
of an identifier, even though a surrounding block may have
redefined it differently. The BUILTIN attribute of PL/l,
which does this, is somewhat restrictive, but the concept is
quite useful. A similar facility could be made available in
Pascal if we define a key word "BUILTIN" and allow dec
larations such as

TYPE BOOLEAN = BUILTIN;

A similar use with the CONST declaration may also be
permitted. The extension processor can be called in to con
vert this non-standard feature into standard Pascal by de
fining a new identifier at the program level, equating it to
the standard identifier there and substituting the new iden
tifier in place of BUILTIN. The following GRAMMAR and
TRANSLATE statements achieve this.

GRAMMAR
.constphrase. -. .(.builtinphrase.).; :;
.typephrase. -. .(.builtinphrase.).;:;
.builtinphrase. -. $X: .identifier. = BUILTIN :;

TRANSLATE .builtinphrase. TO
GLOBAL

TYPE &GLOBALTYPE = $X;
TRANS

$X = &GLOBTYPE
TREND;

Translating Non-standard E.xtensions to Standard Pascal 881

The foregoing examples only illustrate the simpler appli
cations of the. extension processor. A number of features,
such as the &CASE and &IF syscontrols, were not needed
in these situations. Both &CASE and &IF are useful when
it is necessary to generate different translations for a syn
tactic entity depending on its alternates in the grammar.

CONCLUSION

We have outlined an "extension processor" that will allow
a Pascal user to automatically translate many non-standard
extensions into standard Pascal. In addition to making the
adaptation of program using extensions easy and reliable,
it also provides a way to define one's own extensions, more
powerful than possible with a macro processor.

The question of "what is standard Pascal?" is not at issue
in this paper. It is only necessary to have a working definition
of a "base" language whose features are generally accepted
as standard. We have assumed no single definition as the
standard language; but all the features used in the illustrative
translations are a subset of the languages defined by Jensen
and Wirth5 and the IEEE Pascal Standards Committee draft. 6

Not all extensions can be translated to the base language

APPENDIX

'1Syntax of GRAMMAR and TRANSLATE statement$.

/
<grammar>

~ GRAMMART<nonterm> --+ =: --+ <substitution> ---+:; r
<nonterm>

--+. __ <identifier> _. __

<substitution>

<token> ----...,........--r+
<inline nonterm>

-: --+ <alternates> --+;

<token>

-r<nonterm> ~

4<terminal>.-J

<inline nonterm>

T<nonterm. label> ---+: r. (-7<substitution> ---+).--+

<al ternates>

efficiently. Even among the ones that can be translated ad
equately, there are some that cannot be handled by the pro
posed extension processor. The "structured constants" ex
tensions i

,2 are among the more popular ones that pose a
difficult problem. Some special cases, such as single level
arrays of simple base types, can be handled fairly adequately
with the help of a few more sysfunctions and at least one
additional construct in the TRANSLATE statement. The
question of what minimal additions will be needed to handle
the general case is currently under investigation by the au
thor.

REFERENCES

1. Kieburtz, R. B., Barabash, W. and Hill, C. R., "Stony Brook Pascal/360
User's Guide Release 2," Dept. of Compo Sci., SUNY at Stony Brook,
NY, 1979.

2. Lucas, B. G. and Walker, J. C., "National Bureau of Standards Pascal
Compiler," Interactive Systems Corp., Washington, D.C., 1979.

3 B1700 SDL Reference Manual, Burroughs Corp., Detroit, Mich.
4. Comer, D., "MAP: A Pascal Macro Preprocessor for Large Program De

velopment," Soft. Prac. & Expr. 9, 203-209 (1979).
5. Jensen, K. and Wirth, N., "Pascal User Manual and Report," Springer

Verlag,New York, 2nd Ed., 1978.
6. Ravenel, B. W., "Toward a Pascal Standard," Computer, vol. 12(4), April

1979.

<alternate label>

---+<nonterm label> ~

<nonterm label>

~ $ ~ <identifier> ~

<terminal> is any token other than the special symbols -:, ->, =:, • (,). ,
:: and :;.

<translate>

--+TRANSLATE T<nonterm> ~TO ~<translation> -..,. ; r
<translation>

GLOBAL -<glo1;>al includes>

LOCAL~ <local includes>

TRANS~ <inline susbt>

TREND~

<global includes>

LABEL --+ <label inel>

CONST ~ <const incl>

TYPE_<type incl>

VAR ----+<var inel>

PROCEDURE ~proc incl>

TOPOFSTMT~<stmt list incl>

1l0TOFSTMT-+-<stmt list incl>

882 National COfIlPut~r Conference, 1980

<local includ.es> <include>

---t<global includes>~ --r <inel token> r
<inline subst>

~<inchde>~

<label incl>

--+<include;> ~

<canst incl~

---+<include> ~

<type incl>

----+- <include> ~

<var incl>

---+ <include> ~

<proc incl>

~ <include>

<function incl>

-----+ <include> ~

<stmt list inel>

~ <include> ~

<for incl>

<incl token>

<syselement>

1<sysname> =r
<syslabel>

<sysfunc tion>

<sysname>

----+ & --+'<identifier>-7

<syslabel>

~ & -+<unsigned integer> ----+

<sysfunction>

~<sysname>T·(~<include> -)·r

---c::~~ =r'""J
L.(

<if incl>

<incl token> --_________ ---j~). --.

&IFMOREj • (-+ <include> --+).

&IFLAST

&IFFtRST ,

&ELSE ---ii>. (--+ <include> --+) •

---+ &IF --+<nonterm label> --+:: -+<alternate label>.....--,

L;&THEN --.. (--. <include>--..,.). E &ELSE ~. (--. <include>! -). ~

<case incl>

--+ &CASE -+ <nonterm label> -. (

<alterna~e:::T. (--+' <include> -+).

The flexible console-FLEXICON

by DAVID L. STEINBERG
Siemens Corporation
Cherry Hill, New Jersey

INTRODUCTION

Mature engineering fields have well-developed tools and
standards which aid in development and guarantee 'product
quality. Ironically, after over thirty years, programming re
mains basically an undisciplined processs with most software
engineers still using techniques and tools which have changed
little over the last ten years.! There is as yet no common
standard for programming tools and common experience in
the use of those tools and techniques which currently do
exist. The mounting cost of software dictates that the time
has come to offer the software engineer tools which can
increase his productivity, via saving time and making man
machine interaction more efficient.

A set of programming tools, brought together in a software
development facility such as a dedicated programmer's con
sole" could provide the framework for a software engineering
discipline, and add stability to the computer programming
environment. Because of the continuing reduction in the cost
of hardware it is now economically plausible to consider the
design of a single user terminal with capabilities and features
which cOij.ld not have been justified in the recent past.

The project undertaken by CRD has examined the "wish
list" indicated above with the aim of designing a workstation
which allows the programmer to work efficiently with an
integrated set of electronic tools in place of traditional tools
such as pencil and paper,' line editors, keypunches, docu
mentation typists, draftspeople and printed reference man
uals. 2

The traditional stages of software engineering or program
ming (planning, implementation, and testing) were consid
ered to be the activities performed by programmer in which
electronic assistance is needed. The primary questions that
arose were:

• What tools does a programmer need?
• Can these be satisfied by a programmer's console?

Several criteria were used to select those features to be
included in the Programmer's Workstation.3 These included:
(1) the applicability of the features to the. software effort;
(2) the degree of usefulness of the feature to the software
effort; (3) the potential power of the feature within the sys
tem environment; (4) the ease of implementation of the fea- .
ture into the prototype.

883

As work proceeded on the project, it became apparent that
many features being designed into FLEXICON could be
effectively utilized in applications other than programming.
Therefore, FLEXICON was designed as a basic system
which could easily be adapted to tasks other than that of a
Programmer's Workstation.

SYSTEM CONFIGURATION OF THE FLEXIBLE
CONSOLE

The hardware configuration of FLEXICON makes use of
independent MPU subsystems sharing a common bus. Al
though up to three subsystems can be interconnected via a
data link controller, only two were used in the engineering
model: a dialog subsystem and a function subsystem. The
dialog subsystem manages the man-machine interaction.
This system includes an INTEL Single Board Computer
(SBC,·80/20) with 64 kBytes of memory with related boards
and interfaces (see Figures 1 and 2).

The function subsystem performs tasks initiated by the
dialog subsystem such as file management, spooling, etc. It
is implemented by an INTEL Microcomputer Development
System (MDS) with 64 kBytes of memory, double density
dual floppy disks, an In-Circuit Emulator (lCE-80), a resi
dent relocatoi and linker, a text editor, an operating system,
and assorted unility routines.

An additional subsystem can be added to accommodate
special requirements, for example archival storage or parallel
high level language compilation.

Since the tasks a programmer performs require significant
amounts of data, a high-speed. data link between the dialog
subsystem and the function subsystem was needed. Data
exchange on the prototype was provided by Direct Memory
Access (DMA) in each of the subsystems via a parallel data
bus .

The various user I/O peripherals, which have been con
nected to the dialog subsystem, represent a collection of
state-of-art devices intended to provide the user with an
optimized man-machine interface. These include: (1) up to
four color CRTs, each with limited graphics; (2) transparent
Touch Sensitive Devices (TSD) on each CRT; (3) conven- .
tional keyboard.

The CRTs are Intercolor 8051 intelligent terminals, which
can display 48 lines consisting of up to 80 characters per line.

884 National Computer Conference, 1980

I I
I DISC I 1..;. _____ 1

I I
I PRINTER I 1 _________ 1

I 1
1 MODEM I 1 _______ 1

! •••••••••••••••••• ! •••••••••••••••••• !

------!------I 1
1 PROCESSOR 1 1 ___________ 1

!

------------!-------------I 1
1 DATA LINK CONTROLLER I 1 ________________________ 1

------!------I I
I PROCESSOR 1 1 ___________ 1

• • • • • • • • • • • • • • • • • •• • •••••••••••••••••••

---!---
I 1
I CRT 1
1 _____ 1

!

---!--- ---!---
1 1 I I
1 CRT 1 1 CRT 1 1 _____ 1 1 _____ 1

I 1
1 KEYBOARD 1 1 __________ 1

Figure I-Hardware structure of Flexicon.

---!---
I 1
I CRT I 1 _____ 1

FLEXICON's use of CRT displays is intended to minimize
the need for paper. In this respect, most tasks require a
worker to have access to several kiIlds of information at the
same time in order to make decisions and/or to create new
documents. The number of sources of information a worker
needs at anyone time and the amount of· information a
worker needs to see from each particular source is totally
task dependent. However, there is a practical limit to the
amount of information that a person can physically perceive.
The selection of four CRTs was done arbitrarUy for the en
gineering model as an upper limit, with further study to de
termine an optimum configuration, taking into account er
gonomics, applications, etc.

FLEXICON utilizes modes, control areas, as well as func
tion "buttons" on each screen to organize the system with
the objective of maximizing displayed information. CRD
found that the basic capabilities required to organize the
needs and tasks of a programmer appear to be similar to
those required in many other application areas which involve

the creation and modification of data or information. CRD
believes many of the concepts behind the use ofFLEXICON
as a programmer's workstation are appropriate in configur- ,
ing FLEXICON as a station for users performing similar
tasks.

With the display of more information on multiple CRTs
than previously available, CRD believes that effective,
"more natural" methods of interacting with this information
must be devised to replace traditional cursor control on the
keyboard, light pens, joy sticks, etc. Studies by N. Negro
ponte have shown that traditional cursor control methods
significantly detract from an efficient interaction.6 For ex
ample, a light pen requires a worker to be continually han
dling it as he shifts back and forth between entering infor
mation on the keyboard and using the light pen to manipulate
information on CRT screens.

Two approaches have been used in FLEXICON to pro
vide a more natural method of interacting with the large
amount of displayed information. First, screen oriented tech
niques are used in place of the traditional line editor. In other
words, the user "sees" everything as it actually is, witho~t .
the need to imagine as in the line editor approach of the past.
Each screen is considered to be a small window into a larger
workspace belonging to the file. At all times, a FLEXICON
user sees on a screen as much of the file's workspace as the
CRT field allows (42 lines). What the user sees in the CRT
window is an exact image of the information in the file work
space. A FLEX ICON user can concentrate on the job he
has to do instead of being distracted by traditional line editing
tools which intercede between him and the information with
which he is working. No clutter of commands ever app~ars
in the window area of a FLEXICON CRT screen; only the
user's information appears.

A second technique to provide a "comfortable" interac
tion with information displayed on the CRTs involves the
utilization of transparent Touch Sensitive Devices (TSD)
which cover the face of each CRT .. The TSDs enable the
FLEXICON user to manipulate information appearing in a
CRT window simply by touching the information on the CRT

________________________ I

I I
I COMPILER J r FILE MANAGEMENT I
1 TEST & DEBUG UTILITYI I I 1 _____________________ 1 1 ______________________ 1

I FUNCTION SOFTWARE I 1 ___ . ______ I

----------------------------!---------------------------__ I

I I I I I I
I SYSTEM CONTROL I 1 MENU I 1 SCREEN EDITING I I
1 I I PROCESSING I I I I I 1 ________________ 1 I ____________ I 1 ________________ 1 1

___________________ ______________________ I

KEYBOARD & I I
I TOUCH SENSITIVE I I COLOR GRAPHICS & I I
1 DEVICES I I CRT DISPLAYS I 1 1 _________________ 1 1 ____________________ 1 I

DIALOG SOFTWARE I 1 ___ I

Figure 2-Software configuration of Flexicon.

with his fingertip, thus liberating the user from the incon
venience of handling multiple light pens and/or keyboards.
The Touch Sensitive Devices (TSD), together with the vis
ible workspace concepts just described, greatly simplify user
interaction with FLEXICON and provide a comfortable and
friendly user environment for man-machine interaction.

The use of high resolution graphics'is considered not es
sential to document software. The capability to easily draw
lines and boxes and color modification is thought to be ad
equate for program documentation. However, CRD feels
that the graphics provided to the programmer must blend
well with individual character manipulation capabilities since
programmers create and edit diagrams made up of lines and
boxes and alpha-numeric characters and since such diagrams
are often intermixed with text.

FLEXICON provides a user with simple, yet adequate,
graphics which enable him to create and edit diagrams made
up of lines and boxes. An easy to comprehend and easy to
use set of editing functions are built into FLEXICON which
enables a user to modify, move and edit graphic lines and
boxes, including any associated text. These editing functions

. are all natural language controls. A FLEXICON user can
manipulate a portion of the CRT window either as a strip
of characters or as a geometric area. The result of combining
simple line graphics with both graphic and character oriented
editing techniques is a system as easy to use as a ruler and
a pair of scissors, but with the power and the convenience
of electronic manipulation. All of the controls are able to be
activated by touch, rather than by command entry via the
keyboard.

Color is available as an added dimension to document clar
ity. Its use is being studied as a way to enhance various
presentations, such as structured program code constructs.

USING THE FLEXIBLE CONSOLE

Traditionally, clerical staff members have used terminals
with limited capabilities to do repetitive, rigidly defined
tasks. Special knowledge is required to properly use such
terminals and to properly perform such tasks. Usually the
clerical staff requires extensive training in the usage of a
particular terminal and how to perform a particular task.

With the growth of timesharing computer systems, pro
grammers are beginning to use terminals to create and revise
programs. Most of these terminals are teletypes or dumb
CRTs equivalent to teletypes. To use such terminals to cre
ate and edit programs, programmers must learn a command
language for a line editor as well as separate command lan
guages to perform such tasks as compilation, linking, pro
gram execution and file management. Usually these various
command languages are designed for the convenience of
computers and terminal equipment rather than humans.

A major design goal of the FLEXICON project has been
to produce a unit which can be used after only·a short in
troduction. FLEXICON does not require special knowledge
or training to use and does not require the user to know any
special command language. FLEXICON is controlled and

The Flexible Console-FLEXICON 885

used by touching items on menus, by answering questions
posed by the system, and by following directions given
through the use of prompts.

In FLEXICON, standard menu buttons on the Touch Sen
sitive Devices (TSDs) surround each screen. These standard
menu buttons are fixed onto the TSDs and do not change.
These standard menu buttons organize the major tasks of
the user and provide most of the tools he needs to do his
job. The present FLEXICON system has been oriented to
ward a "Programmer's Workstation." Therefore, the stand
ard menu buttons provide the tools to create and edit code,
diagrams and documentation. These tools are similar to, and
in some ways identical to, the tools needed by other profes
sionals and by secretarial staff to create and edit information.
Nevertheless, these menu buttons are really controlled and
therefore may easily be changed to suit other applications.

In FLEXICON, "soft" menu buttons are presented to the
user in the control area of the screen to provide appropriate
functions for specific applications needs. These menu but
tons are changed as necessary as part of the prompting scen
ario. They provide a simple and powerful technique to pro
vide the user of FLEXICON with very specific capabilities
tailored precisely to a particular application task. They ac
tivate frequently used preprocessed operations.

The Touch Sensitive Devices and the combinatiop. of
standard, fixed menu buttons and "soft," changeable menu
buttons make the FLEXICON unit a natural and simple tool.
A FLEXICON user touches the information he wants to
manipUlate, thereby positioning the cursor, and then touches
a menu button to perform certain action with the informa
tion.

In addition to the standard and soft menu buttons, FLEX
ICON uses informational prompts to guide and assist the
user in performing tasks. The lower six lines of each CRT
screen constitute a control area and are used by FLEXICON
to constantly inform the user of the status of the screen in
cluding any errors he may have made and the action required
to correct the error and properly proceed with his task.
FLEXICON also asks questions of the user when it needs
specific information to perform a task.

The result of using standard menu buttons, "soft" menu
buttons, TSDs and extensive prompting on FLEXICON, is
a terminal system concept which can be used productively
by a new user in a very short period of time. A user need
remember very little about the system to use FLEXICON.
He only need look at the physical face of the screens with
their associated fixed and soft menu buttons and the prompts
to start to work.

APPLICATION AREAS FOR FLEXIBLE CONSOLE

The specific application area of a "Programmer's Work
station" was selected for the initial FLEXICON system.
However, the basic tools and capabilities a programmer
needs to electronically create, modify, and use software and
documentation, and to interchange information with other
computer systems, are also the basic tools and capabilities
needed by other professionals and staff who create, modify

886 National Computer Conference, 1980

and use information. FLEXICON is a basic core system to
which additional capabilities and functions can be added to
tailor the system to other application areas. It is appropriate
to consider the use of FLEXICON in any application area
in which professionals need user oriented facilities and the
capabilities of a highly intelligent terminal to increase their
productivity and job satisfaction. .

Some of the specific areas in which FLEX ICON seems
to lend itself include:

• Management Information Systems
• Computer Aided Design
• Automated Architecture
• Database Management
• Database Inquiry
• Secretarial Workareas
• Automated Office
• Order Entry with Inventory Management
• Process Control

Generally, any tasks which can be structured and performed
with decision trees, that require the integration of infor
mation from several sources or that require the accessing
and/or combining of information from several sources are
likely candidates for a system such as FLEXICON.

CONCLUSIONS

An all purpose workstation which enables a programmer
to increase his productivity, reduce the time required to de
velop a system and increase the quality of his work, offers
advantages: to the programmer, the system designer, the
analyst and, indeed, the manager. It must be noted that
FLEXICON is not the solution to all a programmer's prob
lems; there are several areas which need more development,
specifically the application package itself. The FLEXICON

concept is that of a high level tool which can have many
applications. There are many additions which can be made
to this system to make it a more powerful tool. Much of
these are software expansions. CRD is currently looking into
various areas in which the computer may ease the load of
the programmer to an even greater extent. Some of these
areas include such dynamic possibilities as automatic pro
gramming, automatic testing, electronic manuals, automatic
program analysis, and non-procedural languages.

The future for a system such as FLEXICON is open
ended, constrained only by the needs of the user and tech
nology. The power of the system is defined by the memory

i size and the usage, be it as an intelligent terminal, a stand
alone system, or part of a network. FLEXICON could be
tied to a micro, a mini, or main frame computer.

Computer based systems are being used more and more
in all facets of life. Their successful use requires good man
machine interfaces. FLEXICON provides convenient, easy
to-use, man-machine interface, which speeds and simplifies
the creation and manipUlation of the information needed by
these computer based systems.

REFERENCES

1. Gaines, B. R. and Hill, D. R. (eds.), "Man Computer Communications,"
Infotech State of the Art Report, Infotech International, London, 1979.

2. Berinson, N., "FLEXICON, A Model of a Multi-Screen Programmer's
Desk." Siemens Research and Development Reports (June 1978), ISSN
0370-9736, pp. 353-355.

3. Reed, D., et a\., "FLEXICON User Specifications," Version 1.0, Sie
mens, Cherry Hill, 1978.

4. Ivie, E. L., "The Programmer's Workbench-A Machine for Software
Development," Communications of the ACM, 20, 1977, pp. 746-743.

5. Weinberg, G., The Psychology of Computer Programming, New York,
Van Nostrand Reinhold Company, 1971.

6. Negroponte, N., et al., "Argumentation of Human Resources in Command
and Control Through Multiple Media Man-Machine Interaction," in
Graphical Conversation Theory, ed. by Department of Architecture, Mas
sachusetts Institute of Technology, Cambridge, 1976.

The INTEL® 8087 numeric data proc~sor

by JOHN F. PALMER
Intel Corporation
Santa Clara, California

INTRODUCTION

The INTEL® 8087 is a high performance general purpose
numeric data processor. It is used with the INTEL® 8086,
or the INTEL® 8088, microprocessors to extend their in
struction sets with over 100 instructions (not counting ad
dressing mode). The 8087 has all of the 8086 addressing
modes and through a coprocessing interface is able to exe
cute numeric instructions concurrently with the 8086 (or
8088). The high performance overlapped execution is trans
parent to the user who sees the 8087 simply as an extension
of the 8086 (8088). Furthermore, the 8087 is the only chip
that must be added to an 8086-based system to provide nu
merics capability with a performance enhancement over
software of more than 100. In addition to high performance,
great care was taken to ensure that the 8087 could be used
in any application involving numbers-including commer
cial calculations. This required an unprecedented level of
accuracy and reliability to be built into the processor. The
intent was to greatly simplify the production of high per
formance but reliable numeric software.

Mathematical software is easy for the uninitiated to write
but notoriously hard for the expert. This paradox exists be
cause the beginner is satisfied if his code usually works in
his own machine while the expert attempts, against over
whelming obstacles, to produce programs that always work
on a large number of computers. The problem is that while
standard formulas of mathematics are fairly easy to translate
into FORTRAN they often are subject to instabilities due
to roundoff error. Consider, for example, the quadratic
equation

AX2_2Bx+C=0

whose solutions are

Xl =(B+ VB 2-AC)/A

X2 = (B- VB2_AC)/A

Programs using these formulas, when run on a conven
tional computer, will produce results that are very sensitive.
to roundoff damage.

Since roundoff analysis is subtle, difficult and exceedingly
tedious, our intent in the 8087 design was not only to make
reliable and robust software easier for the expert to build

887

but (0 make it more likely that the unanalyzed code of the
average programmer would run successfully. For example,
the above formulas for the quadratic roots will be far less
sensitive'to roundoff error if evaluated on the 8087 instead
of a typical computer.

Another important aspect of the 8087 is that it is an im
plementation of a very carefully designed standard, pro
posed to the IEEE and destined to be emulated by many
other manufacturers. The establishment of this standard will
go far to provide an environment for experts to produce ever
more reliable software. Until now most experts, in an at
tempt to produce portable code, have written for a mythical
computer whose capabilities are an intersection of the ca
pabilities of all major computers and whose arithmetic is a
collection of all the ugliness of any of them. Thus these pro
grams, while useful for everyone, are ideal for no one. As
suming a standard environment, professional programmers
will be able to concentrate on optimizing the code since port
ability will be automatic.

The proposed IEEE Floating-Point Standard (1, 2, 3, 4)
specifies two data formats

REAL (32 bits, 8 bit exponent)
LONG REAL (64 bits, 11 bit exponent)

and a support format we call

TEMPORARY REAL (80 bits, 15 bit exponent)

to indicate its intended use as a format to hold intermediate
results. Along with the formats, the standard specifies three
rounding rules, required operations (+, -, *, /, REM,
SQRT, COMPARE) and exception conditions. The 8087 im
plements the full standard and many extensions. Some of
the major benefits provided by the 8087 will be explained
shortly but first an architectural overview will be given to
serve as a framework for the more detailed later discussion.

ARCHITECTURAL OVERVIEW

The major architectural feature of the 8087 is its operand
result stack of8 registers, each capable of storing an operand

888 National Computer Conference, 1980

in TEMPORARY REAL (80 bit) format as shown below:

/0 11 ijs 16
\
\ \

\
79

sign exponent significand.

All operands used within the 8087 are first converted to
this format which provides 64 bits of precision and a range
of about 10 ± 4900. In addition to the stack there is a set of
registers called the ENVIRONMENT which contains the
exception flags and pointers and processor control flags.

At the simplest level the programmer may treat the 8087
registers as a pure stack. All operands are explicitly loaded
into the stack and operations are performed on the top ele
ments of the stack. The load (or push) instruction can trans
fer operands to the stack using anyone of seven data for
mats:

Shorter Integer (16 bit 2's complement)
Integer (32 bit 2's complement)
Long Integer (64 bit 2's complement)
Real (32 bit)
Long Real (64 bit)
Temporary Real (80 bit)
Packed Decimal (80 bit; 18 digits and sign)

The load instruction never causes a rounding error, since
TEMPORARY REAL is precise enough to hold all seven
types exactly. Stack operands can be returned to memory
in anyone of these seven forms using the store and pop
instruction which automatically converts the top of stack to
the designated format, stores it in memory and then pops
the stack.

The arithmetic operations which manipulate the stack pop
the top two elements off the stack, perform the operation
and push the result back onto the stack. The operations sup
ported are: ADD, SUBTRACT, SUBTRACT REVERSE,
MULTIPL Y, DIVIDE, and DIVIDE REVERSE. There are
COMPARE instructions that set two bits in the environment
(indicating "greater," "equal," "less," or "unordered")
and then pop both elements, pop just the top, or pop neither.
The REMAINDER instruction in th"e 8087 is an instruction
primitive. It is intended to be used in a software loop to
return both the "divisor" and the partial remainder of a di
vision. There are several other instructions that operate on
the top elements of the stack:

NEGATE: reverses the sign of the top of stack
ABSOLUTE VALUE: sets the sign of the top of stack to

positive
SQRT: computes the square root (its oper

ation time is as fast as divide) of the
top of stack

SCALE: treats the next-of-top as an integer
and adds it to the exponent of the
top of stack -a fast form ,of multi
plying by a power of two

EXAMINE:

DECOMPOSE:

TEST:
CONSTANTS:

TAN:

ARCTAN:

EXPONENTIAL:

LOGARITHM:

a four bit condition code is set to
. indicate the contents of the top of

stack (i.e., zero, positive, invalid,
empty, etc.)
the top of stack is decomposed into
its exponent and significand and
these two results are returned to the
stack
the top of stack is compared to zero
a set of instructions that load inter
nally stored constants onto the top
of stack (i.e., 'TT, 0, 1, etc.)
takes the top of stack, Z as an ar
gument, assuming that 0:s;Z:S;'TT/4,
and returns two results, x and y such
that ylx=Tan(Z).
takes the top two stack elements and
returns the result Z such that
Z = arctan(ylx)
takes the top of stack, x, assuming
O:s;x:s; 112, and returns 2X

- 1
takes the top two stack elements and
returns y* log2(x).

In addition to the stack instructions listed above there are
two instruction set optimizations. The first optimization is
a set of arithmetic instructions that reference memory-one

,of the operands comes from the top of stack, the other from
memory, and the result is returned to the top of stack. The
operations which may use this optimization are ADD, SUB
TRACT, SUBTRACT REVERSE, MULTIPLY, DIVIDE,
DIVIDE REVERSE, COMPARE and COMPARE & POP.
The four types of memory operands that can be referenced
by these instructions are SHORT INTEGER (16 bits), IN
TEGER (32 bits), REAL (32 bits) and LONG REAL (64
bits). There are also STORE (without POP) instructions that
reference the same four operand types. These instructions
significantly reduce the number of instructions needed to
evaluate a typical expression. For example, suppose R, X
and Z are REAL, Sand Yare LONG REAL, I is SHORT
INTEGER and] and K are INTEGER. Then the expression

R: = (S: = (XII + Y)I((] - K)*Z»

is evaluated by the following code sequence: ,~

Instruction
LOAD REAL
DIVIDE SHORT INTEGER
ADD LONG REAL
LOAD INTEGER
SUBTRACT INTEGER
MUL TIPL Y REAL
DIVIDE REVERSE
STORE LONG REAL
STORE & POP REAL

Memory Reference
X
I
Y
J
K
Z

S
R

Without the additional memory referencing instructions
the above expression would have required 14 instructions

and 3 stack elements instead of 9 instructions and 2 stack
elements.

The second optimization involves internal stack address
ing. There is a set of arithmetic instructions: ADD, SUB
TRACT, SUBTRACT REVERSE, MULTIPLY, DIVIDE
and DIVIDE REVERSE, that may take one operand from
the top of stack (TOP) and the other operand from any stack
element addressed relation to TOP (i.e., TOP+i, i=0, ... 7)
and the result can be written over either operand. If the result
is returned to the stack element (instead of the stack top)
the instruction may either leave the top unaltered or pop the
stack.

Thus the new instructions are:

(TOP) op (TOP + i)~(TOP)
(TOP) op (TOP+i~(TOP+i)
(TOP) op (TOP + i~(TOP + i) & POP

In addition to the arithmetic instructions mentioned,
LOAD, STORE, STORE & POP, and EXCHANGE instruc
tions may also refer to stack elements relative to TOP. For
example LOAD TOP + i would load the contents of the ith
stack element beneath the top onto the top of stack. These
instructions allow stack elements to be used to accumulate
results in loops and to hold common sUbexpressions. For
example, suppose X(l) is an array of N REAL's and we want
to calculate

N N N

R:= ~ X;, S:= ~ i*X;, T:= ~ X/

(R)
(S)
(T)

LOOP on I:

;=1 ;=1

INSTRUCTION
LOAD ZERO
LOAD ZERO
LOAD ZERO
LOAD REAL
ADD TOP+3
LOAD TOP+O (this is the

DUPLICATE TOP
instruction)

;=1

MULTIPL Y TOP + 0 (this is
the SQUARE TOP
instruction)

ADD & POP TOP+2
MULTIPLY SHORT

INTEGER
ADD & POP TOP+2
STORE & POP REAL
STORE & POP REAL
STORE & POP REAL

MEMORY
REFERENCE

X(I)

I

T
S
R

This stack addressing capability both minimizes memory
referencing and permits loop accumulations to benefit from
the extended range and precision of TEMPORARY REAL
thus significantly attenuating the effect of roundoff error and
making intermediate overflow or underflow practically im
possible. Thus the 8087 may be thought of as a "pure" stack

The INTEL® 8087 Numeric Data Processor 889

machine with optimizations for memory and internal stack
element addressing.

In addition to the computation instructions the 8087 has
a set of administrative instructions for processor control and
for status saving and restoring. In order to minimize context
switching overhead there are single instructions, SAVE and
RESTORE, that store and load respectively all 8087 volatile
status. Also provided are instructions for loading and storing
the 8087 status needed for software exception handling: ex
ception flags and pointers to the offending instruction and
datum. Finally, there is a 16 bit CONTROL WORD that may
be loaded and stored. The contents of the control word dic
tate:

1. the rounding mode-there are four types of rounding.
2. the internal precision-results may be held internally

in TEMPORARY REAL format but rounded to REAL
(24 bit), LONG REAL (53 bit) or TEMPORARY REAL
(64 bit) precision.

3. the mode of infinity arithmetic-there are two types
of infinity closure, affine and projective, that will be
explained later.

4. the response to exceptions-for each type of exception
there is both a flag and an exception mask. According
to the setting of the mask the 8087 either interrupts after
setting the exception flag or it executes an on-chip
microcoded exception handler and continues pro
cessing.

The usefulness of these controls and the power of the 8087
exception handling will be explained in the next section.

USER BENEFITS

Many of the 8087 features confer significant user benefits.
The benefits that are provided by five of these features will
be described in this section:

1. the "extended" (TEMPORARY REAL) support for-
mat

2. the rounding modes
3. the on-chip exception handling
4. the modified stack architecture
5. the high performance.

One of the major innovations of the H087 is the provision
of an extended support format called TEMPORARY REAL.
This format provides several significant advantages. Firstly,
the 8087 should be thought of as having clean REAL (single)
and LONG REAL (double) precision. By this we mean that
not only is the arithmetic accurate but the commonly sup
plied system functions are also accurate to LONG REAL
precision. For example if x is LONG REAL then eX, In(x),
tan(x), etc., will all be accurate to within less than a unit in
the last place of LONG REAL precision-in fact because
of the on-chip primitive functions the logarithmic and tri
gonometric functions will be accurate to within a few units
in the last place of TEMPORARY REAL precision. The

890 National Computer Conference, 1980

benefits of the TEMPREAL format can also be seen by ex
amining its use in the most demanding function in the 8087' s
repertoire, XV. In calculating this function one loses in ex
treme cases as many fraction bits in the answer as there are
bits in the exponent of y; if x and yare restricted to LONG
REAL then z = xY can lose about 11 bits in these extreme
cases. This is a significant error in a function that is crucial
for commercial calculations involving interest rates. By
using TEMPORARY REAL and the 8087 logarithmic func
tions we can compute xY , where x and yare LONG REAL,
accurate to about a unit in the last place of LONG REAL
precision. Besides providing accurate rate of return calcu
lations we can also ensure that integral values of the argu
ments yield exactly what is expected (i.e., 23 = 8 not 8.00 ... 01).

Another benefit of the TEMPORARY REAL format is the
ability to provide accurate libraries-mathematical, statis
tical, commercial, etc. The user of these libraries delivers
his data in REAL or LONG REAL precision and receives
his results in the same format. However, the library has used
TEMPORARY REAL variables to perform internal calcu
lations, thus protecting against not only roundoff errors but
intermediate overflows and underflows (most over/under
flows occur on intermediate calculations since usually the
input and output lie within fairly narrow ranges). Most li
braries make performance claims "in the absence of over/
underflow. " By judiciously using TEMPORARY REAL var
iables, libraries will often be able to ensure that the only
over/underflows that occur either do not matter or are on
output where they provide the user a necessary and useful
warning result.

Another advantage of this support format is that code
written by programmers who are unfamiliar with analyzing
their programs for roundoff errors and other problems-this
includes almost all of us-will much more often work cor
rectly.

This is particularly true because of the extended stack
it is almost impossible and certainly inconvenient to compute
on the 8087 without using the TEMPORARY REAL format.
Consider for example the program discussed earlier for cal
culating the roots of a quadratic equation:

R I: =(B+ YB 2 -A.C)/A

R 2 : =(B- YB 2 -AC)/A

On a typical computer with no support format these for
mulas from high school math are subject to severe roundoff
damage. However, because of the stack of TEMPORARY
REAL registers, if the expressions are evaluated on the 8087,
the support format is used automatically and invisibly for
the sensitive parts of the calculation and the expressions are
much more accurate. The 8087 stack thus makes "certified"
software easier to write and makes it more likely that un
certified software is reliable.

A second major contribution of the 8087 to numerical com
putation is the capability of controlling the rounding mode.
As described earlier there is a field in the CONTROL WORD
of the 8087 that specifies how infinitely precise results are
to be rounded to fit the designated format. If the correct
result is exactly representable then that result is returned

regardless of the rounding mode. Otherwise the result can
be specified to be anyone of:

1. the nearest (if there are two then return the one with
zero in the least significant bit-this avoids the usual
bias)

2. the next larger } (these modes are termed
3. the next smaller "directed rounding" (5»
4. the closer to zero (true truncation)

Normally one would use the "nearer" rounding to com
pute the most accurate and statistically unbiased estimate
of the correct result. Alternatively, by using the directed
roundings, one can not only compute rigorous error bounds
at crucial places in a program but also implement Interval
Arithmetic (6,7). Interval Arithmetic, where operands and
results are intervals instead of isolated numbers, completely
encloses all rounding errors. Thus when a computation
yields an interval result, the user knows that the exact result
is contained in that interval. Interval Arithmetic can also be
used to estimate the consequences of uncertainty in data.
By entering the data as intervals enclosing any possible
measurement errors, the width of the resulting intervals
gives an indication of the sensitivity of the computation to
those errors. Another use of Interval Arithmetic is to cal
culate, in a simulation, the effect on a system as a variable
such as TEMPERATURE passes through a range of values.
Professor W. Kahan of the University of California at Berke
ley has written (8):

"No other feature would enhance safe numerical computation
more that the provision of INTERVAL as a data type in FOR
TRAN as readily accessible as INTEGER or REAL."

If Interval Arithmetic is so useful why isn't it in wide
spread use? The main reason is that on a typical computer
a rigorous Interval Arithmetic package can cost a factor of
100 to 300 over the ordinary floating-point arithmetic. On
the·8087 this penalty is expected to be a factor of about 5.
The implementation cost of providing the directed roundings
was no greater than that of unbiased rounding so the value
of the capability far exceeds it cost.

Another area where the 8087 makes significant contribu
tions to safe but flexible software is exception detection and
handling. Exception detection on the 8087 serves three main
functions:

1. to report potentially fatal programming errors
2. to permit execution to be resumed after prearranged

response to exceptional conditions
3. to allow functional extensions to the system.

Each type of exception detected by the 8087 has associ
ated with it both a flag and a mask. (The exception masks
are part of the CONTROL word and their value is set and
saved by LOAD CONTROL and STORE CONTROL in
structions.) When an exception occurs, the 8087 sets a flag
and if the flag's mask is reset, an interrupt is generated. The
interrupt procedure (exception handler) has access to the
address of the instruction that caused the exception and the

address of the referenced datum (if any). If, on the other
hand, the exception flag's mask is set, then the 8087 executes
an on-chip microcoded exception handler that performs the
second function described above: the instruction's response
to the exception is "tailored" to that desired in the vast
majority of cases. Execution resumes but the flag remains
set until it is read and reset by software.

The exceptions that the 8087 detects and its response to
. them are explained below.

1. INVALID OPERATION: Stack overflow, stack un
derflow, indeterminate form (0/0, 00 - 00, etc.) or the use
of a Non-Number (NAN) as an operand. An exponent
value is reserved and any bit pattern with this value in
the exponent field is termed a Non-Number and causes
this exception.
a. Masked: If the exception was caused by using

NAN's as operands then the NAN (the "larger" if
both operands were NAN) is delivered as the result,
otherwise a special NAN called INDEFINITE is
returned.

b. Unmasked: Interrupt before any processing.

This exception is used for all of the purposes described.
Indeterminate forms are usually fatal errors and should be
reported-either immediately or by propagating INDEFI
NITE to the end of the program and thus discovering both
the error and how it contaminates subsequent calculations.
Stack over/underflow is also usually fatal but an ambitious
exception handler could use this exception to extend the
8087 stack to memory. Finally, the NAN's can be used for
both run time diagnostics and functional extensions. As an
example ofthe former, one could fill uninitialized arrays with
NAN's each of whose significands contains the value of its
index. Thus a reference to an uninitialized array element
would not only indicate that it was uninitialized but which
one it was. An example of functional extension would be to
use the NAN as a pointer into a heap of values that could
not be stored in the specified format. This would make it
possible to implement a nearly infinite exponent range.

2. OVERFLOW: The result is too large in magnitude to
fit the specified format
a. Masked: Infinity with the sign of the correct result

is returned.
b. Unmasked: An encoding of the true result is re

turned and then interrupt is signalled.
3. ZERO DIVISOR: The divisor is zero while the divi

dend is a finite non-zero number
a. Masked: Infinity is delivered with the sign as the

XOR of the signs of the operands.
b. Unmasked: Interrupt before processing.

Both of these exceptions, if masked, generate infinities
which are special bit patterns and must be dealt with in a
safe, consistent manner by the 8087 in subsequent calcula
tions. For this reason the 8087 recognizes infinities as valid
operands and deals with them in one of two modes, AFFINE

. or PROJECTIVE, determined by a field in the CONTROL

The INTEL® 8087 Numeric Data Processor 891

WORD. The basic difference is that the affine treats all finite
numbers. as if - OO:5x:5 + 00 while in the projective mode 00

has no sign and cannot be compared to finite numbers. The
affine mode is powerful but can give misleading results while
the projective mode is always safe but not quite as useful
as affine. The default is projective and this is the recom
mended mode unless a user has analyzed his program and
is sure the affine mode is safe .

4. UNDERFLOW: The result is non-zero but too small
in magnitude to fit in the specified format
a. Masked: The significand of the result is denormal

ized (shifted right) until the exponent is in range.
This allows underflowed numbers "gradually" to
become zero retaining as much information as pos
sible and is called "gradual underflow."

b. Unmasked: An encoding of the correct result is de
livered and then an interrupt is signalled.

Underflow is usually not a fatal error and by using gradual
underflow (masking the exception) one can proceed, con
fident that the risk of undetected fatal underflow is com
mensurate with the risk of fatal roundoff damage (see 4).

5. DENORMALIZED OPERAND: At least one of the
operands is denormalized, it has the smallest exponent
but a non-zero significand.
a. Masked: The operation proceeds as if the operand

were unnormalized.
b. Unmasked: Interrupt without processing. This ex

ception is used to implement, via exception han
dlers, an optional mode of arithmetic described in
the proposed IEEE Standard for Floating-Point
Arithmetic (2) in which no unnormalized results are
generated.

6. INEXACT RESULT: If the true result is not exactly
repr~sentable in the specified format, the result is
rounded according to the rounding mode, the flag is set
and
a. Masked: Execution continues
b. Unmasked: Interrupt is signalled.

This exception is used to implement exact arithmetic in
floating-point for, among other uses, accounting calculations
and preconditioning (see 4).

Exception handlers are difficult to write, debug and main
tain and they consume valuable memory space at run time.
Therefore, we have provided, on the 8087, exception han
dling that will be ideal for the vast majority of situations. We
recommend that most users mask all exceptions except IN
VALID OPERATION. With the built-in exception handling
and reliable infinity arithmetic it is the only exception that
is likely to be fatal. User exception handling software can
thus be kept to a minimum.

Another special feature of the 8087 to enhance perform
ance and accuracy is the ability to select operands from and
return results to internal stack elements. This stack element
addressing mechanism which has already been described is
useful for holding common sUbexpressions and for holding

892 National Computer Conference, 1980

accumulations during the execution of a loop. Another ex
ample will further illustrate its usefulness. An important cal
culation that is often found in the inner loop of numeric pro
grams is the evaluation of recurrence relations. A particular
example is the following three term recurrence

X i+ t =aiXi+bXi-t, i=2, ... ,N-l

U sing a typical evaluation stack this computation would
require, in addition to the add and two multiples, five mem
ory references-four loads and one store. The evaluation on
the 8087 stack requires only two memory references:

Start
of MUltiply bi Load Multiplyai

Loop (memory) (stack) (memory)

l±J aXi bJ bJ bX;-t biXi- t
Xi Xi Xi Xi

Add Exchange
(stack) (stack) Go to Loop

X i+ t =AiXi-biXi-t Xi
Xi X i + t

The "program" shown above illustrates a general prin
ciple. Almost all important numerical computations have
inner loops that will benefit from the ability to access inner
stack elements.

High performance was another of the important design
goals of the 8087. It is difficult to compare 8087 performance
with other machines since it is not feasible to obtain the same
accuracy and reliability as the 8087 on even the largest main
frames. For example in executing a primitive instruction like
MULTIPLY the 8087 provides:

1. A result with an extended precision and range
2. Correct unbiased rounding with optional direct round

ings for error bounding
3. Reliable exception detection and safe, automatic han

dling
4. Forms of the instruction to minimize memory refer

ences.

No other computer-mainframe or minicomputer-inte
grates these features into a single architecture. But in ad
dition to "architectural performance" a great deal of atten
tion was given to raw instruction performance. For simplicity
and execution speed the 8087 was implemented with an in
ternal data path and ALU of 67 bits. There is a shifter that
can shift left or right from 0 to 63 places in one clock cycle.
This shifter was indispensable in normalization, data for
matting and the transcendental functions which were eval
uated using a modified CORDIC algorithm. The loops for
MULTIPL Y, DIVIDE and SQUARE ROOT were imple
mented with a hardware sequencer. MUL TIPL Y was optim
ized by checking for 40 least significant zeros and skipping

them in the mUltiply loop-this would occur if either operand
were originally SHORT REAL or if either value were an
integer and less than 225 in magnitude. The timing for several
instructions demonstrates the 8087's performance.

Instruction

COMPARE
ADD (MAGNITUDE)
SUBTRACT (MAGNITUDE)
MULTIPLY
DIVIDE
SQUARE ROOT

Execution Time
(microseconds)

6
10
16

16,24*
38
38

* The shorter time applies if either operand were originally SHORT REAL
as explained earlier.

Additional performance is gained by the overlapped ex
ecution of the 8086 (8088) and the 8087. The amount is hard
to estimate but is definitely material.

CONCLUSION

The architecture of the INTEL ® 8087 has been described
along with a review of its user benefits. The 8087 has un
precedented performance, reliability and capability-it can
be used in any numerical application to provide a hundred
fold increase in mathematical performance over the 8086 or
8088 alone. In contributing to and being compatible with the
proposed IEEE Floating-Point Standard the 8087 has care
fully balanced safety with utility.

The many features of the 8087, when combined, can make
it appear complex. Like a car's automatic transinission the
8087 is complex, but also like an automatic transmission the
user need not see the complexity to reap the benefits of In
terval Arithmetic, reliable rounding, safe automatic excep
tion handling and an integrated support format that virtually
eliminates intermediate over/underflows and makes inter
mediate roundoff error negligible. The 8087 removes many
of the pitfalls of numeric computation.

ACKNOWLEDGMENTS

I would like here to acknowledge some of the many people
who contributed to the 8087. The architectural design was
the joint work of Bruce Ravenal and myself, relying exten
sively on the advice of Professor W. Kahan of the University
of California at Berkeley. Robert Koehler made significant
contributions to the system aspects of the 8087 and Janis
Baron designed the assembly language and implemented the
8087 Emulator-a software emulation for systems without
an 8087. Rafi Nave and his engineering team in INTEL IS
RAEL implemented the 8087-the largest microprocessor
device yet in INTEL's history, and Dar-Sun Tsien carefully
reviewed all aspects of the implementation. The management
of INTEL must also be acknowledged for committing sig-

nificant resources to both implementation and promotion of .
a standard for reliable numeric data processing.

REFERENCES

1. Palmer, J. (1977), "The INTEL Standard for Floating-Point Arithmetic,"
Proc. COMPSAC, 107-112.

2. Coonan, J., Kahan, W., Palmer, J., Pittman, T. and Stevenson, D. (1979),
"A Proposed standard for Binary Floating-Point Arithmetic," SIGNUM
Newsletter, October.

The INTEL® 8087 Numeric Data Processor 893

3. Coonan, J. (1980), "Specifications for a Proposed Standard for Floating
Point Arithmetic," Computer, January.

4. Kahan, W. and Palmer, J. (1979), "On a Proposed Floating-Point Stand
ard," SIGNUM Newsletter, October.

5. Yohe, J. (1973), "Roundings in Floating-Point Arithmetic," IEEE Trans.
Computers, Vol. C-22, No.6, 577-586.

6. Moore, R. E. (1966), Interval Analysis, Englewood Cliffs, N.J.: Prentice
Hall.

7. Kahan, W. (1968), "A More Complete Interval Arithmetic," Lecture
Notes for a course at University of Michigan, June 17-21.

8. Kahan, W. (1972), "A Survey of Error Analysis," InformationProcessing
71, North Holland Publishing Company, 1214-1239.

Home computing-A vision in search of a marketplace:
areas of needed research

by JOHN E. RUCHINSKAS, CHARLES W. STEINFIELD and LYNNE L. SVENNING
Annenberg School of Communications
Los Angeles, California

INTRODUCTION

"The typical family of the late 1980's is a working couple with
two children, one car,'a small house and a rather well-structured
way of living They have a home computer for paying bills,
banking, monitoring their energy use, specialized research ser
vices and access to data for personal and business use."

So states Joseph Plummer, senior vice president of re
search at the Young and Rubicam advertising agency. 1 Like
many soothsayers before him, Plummer assumes the home
computer will be rapidly integrated into American house
holds. Yet, a look at the predictions of a decade ago, which
also promised the "magic" of home computers, calls into
question just how inevitable the home computer really is.

The ubiquitous home computer has not emerged-and
shows no new signs of doing so. Computing and memory
costs are dropping, more and more individuals are being
exposed to the computer at work each year and yet, the
home computer bonanza remains a vision.

The natural question that comes to mind is, "Why hasn't
the demand for home computers materialized?" Perhaps, the
more fundamental questions are, "What needs do people
have for computing functions in the home?" and "How can
these needs be effectively addressed and marketed?"

By focusing on home computing functions rather than
home computers, we are emphasizing the fact that any num
ber of computer/telecommunication combinations can be
used to accomplish the same task. Individuals might own or
lease a terminal which is linked to a central computing fa
cility, with little or no processing capability residing in the
home. Alternately, one could own a stand-alone unit, as in
the typical conception of the personal computer. Whatever
the configuration, basic questions remain about people's
willingness to purchase home-based computing functions,
however they might be offered. We must move from wishful
prognostication to systematic assessment of the consumer's
(user's) point of view, and try to understand the factors that
influence the mass-market appeal of home computing func
tions. We must look beyond the specialized hobbyists, com
puter programmers or adult toy enthusiasts who are cur-

895

rently purchasing computers or computing functions to the
general consumer.

In order for computing to become a fixture in the American
household, it must first and foremost offer the consumer
clear benefits, either in terms of access to new services, con
venience in fulfilling familiar tasks, or efficiency in managing
one's daily life. Since any form of home computing repre
sents a major capital investment for most consumers, it is
unreasonable to expect widespread adoption, unless per
ceived needs of consumers are served.

This paper takes a consumer perspective in raising the
kinds of issues that will shape the success or failure of future
attempts to introduce home computing functions. Our goal
is not the definition of a single research program, but rather
to point out areas of uncertainty that cloud visions of the
home computer future.

SERVICE POSSIBILITIES

The first step in moving beyond today's specialized market
lies in finding services that offer clear benefits to the general
consumer. A full range have been proposed in the "blue
sky" literature. Those that appear most viable are briefly
reviewed in the following paragraphs.

On the economic side of the ledger, there are home com
puter applications that promise the consumer greater con
venience or cost savings in managing financial assets.
Budget, task and financial analysis; electronic funds trans
fer, utility bill verification and exception reporting; energy
management, home security and even investment portfolio
management are all familiar possibilities. Greater conve
nience in record keeping (budget and bill management, tax
reporting), automated accounting, increased security or even
financial gains (energy conservation, portfolio management
and financial accuracy) are proposed benefits. Business uses

, from the home offer the consumer both convenience and
cost savings by eliminating trips to work.

A second set of activities that are easily amenable to com
puterization lie in the information domain. News, mail and
classified advertising can all be computerized, targeted and
sent electronically. Electronic libraries or filing cabinets con-

896 National Computer Conference, 1980

taining a range of information from personal documents to
work-related data to recipes offer the consumer a more man
ageable information storage and retrieval option than current
print-based options. Appointment or other scheduling in
formation, as well as family messaging are frequently touted
as possible uses. Computer assisted access to travel, enter
tainment and other directory information is an increasingly
apparent reality, especially overseas.

Finally, in the area of education, programmed learning,
word processing and student related coursework via com
puter offer seemingly attractive selling points.

Of course, entertainment is a function which cannot be
overlooked. Home computers can offer electronic amuse
ment and game functions, provide assistance in travel and
entertainment reservations, and serve as a "creative com
panion" in music and graphic generation. Control of the
entertainment/information environment with computer aid
is also envisioned. Pre-scheduling, recording, controlling
program or media access (especially for children) and play
back are all realizable computer assisted options.

The oft-mentioned possibility of shopping from the home
via electronic catalogues is the most "popular" of the in
teractive functions that promise the consumer convenience,
time and energy savings. Other interactive alternatives that
have also been proposed include opinion analysis/voting and
nutrition/dietary analysis and management.

Current consumer response to service possibilities

While many consumer services can be provided through
some combination of home terminal and computer capabil
ity, we have yet to assess whether the value assigned by the
consumer exceeds the cost of providing the computer-as
sisted service. Consumer valuation will determine which
services will be purchased by which consumers, in what
combination, and for how much money.

Almost all projections of the potential demand for home
computers, home terminals and interactive transaction ser
vices are based on the best guesstimates of "experts" as to
what services are feasible and desirable.2 ,3 The alternative
to expert projections lies in extrapolating future demand
from current sales figures.

Present estimates of home computer sales place the market
at substantially less than half a million households during
1979. Lipoff4 estimated there were 275,000 home computers
sold through the end of 1978, while Nilles et al. 5 place personal
computer sales at 250,000 for the same time frame. Both
authors caution against using current owners as a model for
future demand, since the present market is largely made up
of hobbyists and individuals with previous computer expe
rience. "The dominant portion of the growth in use of per
sonal computers in the future depends upon the acceptance
of the personal computer by quite a different set of individ
uals. "6

As creatures of habit, we hold rather tenaciously to those
that serve us well. The literature on change and innovation
suggests that the rate of adoption of new products or new

ways of doing things is affected by:7

• the consumer's ability to observe the innovation in ac
tion;

• the consumer's ability to experiment or try the inno
vation without a great deal of risk;

• the perceived complexity of the innovation; that is, can
the innovation be adopted relatively easily or is it dif
ficult to understand and does it require a set of new
skills before one can function effectively using the in
novation;

• the compatibility of the innovation with the consumer's
existing values, experiences and needs;

• and the perceived relative advantage the innovation has
over the "old way."

Looking at attributes of home computers or even home
computing functions with this diffusion of innovation per
spective suggests a rather slow rate of adoption and reveals
several potential barriers to general market acceptance.

• Consumers have relatively few opportunities to observe
computers in action, especially in a home environment
serving home needs. While the opportunities are stead
ily growing, the computing function is not always a
readily visible aspect of the product offering. Therefore,
the consumer may not observe and generalize about the
value of home computing innovations.

• Home computers and computer assisted services are
still rather expensive, thus a costly experiment for most
consumers.

• While some computerized products/services require lit
tle from the consumer in the way of new knowledge or
skills, the personal computer is another story. There is
limited software available, which means the consumer
must be satisfied with a few pre-programmed functions,
or develop their own programs, which means learning
new skills in many cases.

• Computers are genenilly improving their image in the
"public eye." However, there is still a great deal of
resistance to the notion of "computerized living. " Com
puters are often viewed as the culprits in consumer's
bad experiences with billing or banking. People also
value the "human touch" and find in-person transac
tions often satisfy several needs, including the need for
social interaction.

• Research suggests that consumers may have some dif
ficulty seeing the relative advantage of computer as
sisted shopping, banking, budget-making or communi
cation.

A series of studies completed by the Center for Com
munications Policy Research at the Annenberg School of
Communications during the last seven years gives some in
dication of how the "average" consumer views the "desir
ability" of some services that might be introduced via home
computers.

Respondents were introduced to the notion that some ac-

Home Computing-A vision in search of a marketplace: areas of needed research 897

tivities they now engage in could be accomplished in the
home with some combination of television, telephone and
computers. They were then asked if they would be willing
to purchase a variety of services for approximately the price
of their basic monthly telephone bill. The services and the
percentage of consumers willing to purchase these servides
are indicated in Table I. Consumers were most attracted to
services involving entertainment, education, and civic func
tions. Banking, medical consultation, television visiting and
accessing government information are only slightly less at
tractive, while notions of shopping and working from the
home generally drew more negative responses. These figures
should be considered with a grain of salt, since respondents
may have been indicating a general positive or negative at
titude toward the service rather than absolute willingness to
purchase.

Consumer comments on why they would not be interested
in such services most often reflected a need to get out ofthe
house, the desirability of human contact in many transaction
type activities, an inability to envision the service de
scribed, and perceived po"ssibilities of abuses in security,
privilege and privacy. They seem worried that computer and
telecommunication assistance will depersonalize many ac
tivities, further concentrate activities in the home, un-

knowingly open their transaction and media behavior to scru
tiny, and generally cause a deterioration in the quality of life
they now enjoy.

Similar attitudinal barriers to home computing functions
were noted in an investigation of potential users of electronic
transaction services. 9

,10 This study surveyed 325 Los An
geles residents about their attitudes toward electronic funds
transfer, electronic shopping, and electronic mail systems,
including willingness to use such systems. Respondents' at
titudes about the reliability of computers proved to be the
most influential variable in discriminating potential users
from non-users. Those who felt "computers are less reliable
than people" were least likely to say they would use any of
the three systems. Concerns about privacy issues in the use
of electronic services joined with demographic measures
such as age and education in further discriminating individual
willingness to use electronic services.

Overall, 24 percent said they were in favor of electronic
mail, while 21 percent found electronic banking or shopping
appealing. Significantly, more than a third of all respondents
said they were neutral toward conducting at least one of
these transactions electronically. Given the previously noted
importance of attitudinal factors in influencing willingness
to use these systems, it would seem especially critical to

TABLE I-Percent of Consumers Willing to Purchase Telecommunication/
Computer Services*

Sample Population
San Sacra- Fort

L.A. 1 Diego2 mento2 Fresno2 MarinI Worthl L.A. l

1973 1977 1977 1977 1978 1979 1979
SERVICES (N=197) (N=500) (N=400) (N=400) (N=626) (N=2QO) (N=200)

EDUCATION-taking credit courses from
the home via television 38.7 63.8 62.2 60.6 45.8 28 40.4
SHOPPING-using television to examine
products, order by phone or inter-
active cable service 20.4 39.2 38.8 39.2 25.4 19 15.1
ENTERTAINMENT-first run movies and
sports events 47.3 68.4 71. 7 64.8 66.1 70
MEDICAL CONSULTATION AND DIAGNOSIS-
with computer assistance via a com-
bination of telephone and television 29.2 45.2 40.4 48.4 26.5 24 30.0
BANKING-funds transfer, bill paying,
etc. via telephone 13.2 56.4 58.6 60.3 49.8 37 49.3
CIVIC FUNCTIONS-such as voting, and
driver's license renewal 27.4 73.1 74.2 72.8 62.3 57 68.2
VISITATION-via television with
friends and relatives 38.1 64.3 53.6 50.1 47.0 50 47.9
ACCESSING GOVERNMENT INFORMATION-
such as social security information
or city council agenda 26.2 55.8 61.2 56.9 62.6 51 59.1

.SELF IMPROVEMENT OR SKILL INSTRUCTION-
such as carpentry or plant care 33.5 66.4 75.7 63.8 64.2 47 64.1
WORKING FROM THE HOME-with an elec-
tronic connection to the work place 16.1 38.8 33.1 31.9 27.5 28 28.8

*Revised from Goldman8

lRandom probability sample of adults, telephone interviews.
2Cluster sample of adult women, face-to-face interviews.

898 National Computer Conference, 1980

examine user attitudes and beliefs about computing func
tions if one where attempting to encourage the adoption of
home-based computer services.

This brief discussion of our current state-of-knowledge
about consumer attitudes and willingness to use and/or pur
chase telecommunication/computer "functions" indicates a
general lack of information. We must know far more about
the nature and extent of consumers' perceived needs, atti
tudes and intentions to purchase or use computing functions
before we can assess market demand with any degree of
accuracy and/or design products and services that will make
the soothsayers' visions an evolving reality. Projecting short
and long term consequences of consumer adoption is another
important facet of missing information that may prove vital
in allaying consumer fears and in designing a socially ben
eficial introduction of home computing.

AN INFORMATIVE RESEARCH PROCESS

Social science research can inform the process of creating
reality out of visionaries' dreams ofthe future. The following
pages outline a research process which reduces uncertainty
about the marketplace, as well as the possible/probable con
sequences of widespread adoption of homing computing.

An assessment of consumer's attitudes, values and be
havior before the introduction of a computer assisted life
style is at the core of the proposed research process. This
baseline information provides product designers and mar
keters with insights about potential users and serves as a
benchmark for measuring change. Market uncertainty can
be reduced considerably through a program of iterative form
ative evaluation. Initial product design informed by base
line data is refined by a process of prototype development,
analysis of consumer reaction, and product redesign.

In addition to helping shape viable market offerings, social
science research can help anticipate the socio-economic con
sequences of widespread consumer adoption of new tech
nologies. Anticipating direct and indirect impacts of con
sumer adoption and use of home computing products/
services allows product designers and policy-makers to plan
for both socially and economically beneficial outcomes. The
formative evaluation process can be slightly expanded to
develop information about the possible/probable impacts of
new technologies on individual behavior and socio-economic
institutions (Figure 1).

Short term changes in the attitudes, values and behaviors
of consumers can be monitored in market-testing and early
in the product diffusion process. These observed changes
can be used to project larger socio-economic impacts.

Anticipatory product-design and policy formulation de
rived from consumer research can improve the likelihood
that a desirable socio-economic future will emerge from the
introduction of home computing. The following pages de
scribe a research process that serves these ends.

Formative evaluation

A computer enthusiast can readily highlight the advan
tages/benefits accruing to the home user of computing prod-

BASELINE INFORMATION
F
o .Demographics
R .Values, Attitudes
M .Perceived Needs
A .Lifestyle
T .Activity Patterns
I .Experience with
V Computers
E

E ,~
V ~RODUC DESIGN AND EVALUATION
A
L
A
T
I
o
N

.Appeal Testing

.Valuation of Products/
Services

.Configuring for Best
Market Advantage

.Market Testin~

ACTUAL MARKET
OFFERINGS

",
IMPACT ANALYSIS

MEASURING SHOR'l
TERM EFFECTS

PROJECTING LONG
TERM CONSEQUENCES

.Resource/Acti .Social Structures
vity Realloca
tion .Social Institu-

.Subj ecti vel 1-+ tions
Perceptual
Evaluations .Quality of Life

.Organization/
Institutional
Impacts

Figure 1-The research process.

ucts and services. The home user, o,n the other hand, often
confronts the possibility of purchasing computing functions
with a set of perceptions and attitudes that temper adoption
and realization of such benefits. User factors must be re
searched and addressed before a consumer-oriented home
computing marketplace will evolve.

An iterative formative evaluation process will yield prac
tical information for designing computing innovations which
have mass market viability. 11 As indicated, this process
starts with gathering baseline information about consumers'
values, lifestyles, activities, perceived problems, attitudes
toward and experiences with computers, as well as products
and services with computer components. The information
can be used to design and refine product/service offerings
in a manner which will optimize perceived consumer value.
An accurately reflected market demand permits better
"packaging" and marketing, which in turn promotes wide
spread adoption, and the evolution of a more user oriented
home computing marketplace.

Home Computing-A vision in search of a marketplace: areas of needed research 899

Baseline information

Consumer demographics, values, lifestyles, and perceived
needs are traditionally important factors accounting for var
iance in purchasing and utilization behaviors. The prelimi
nary research previously cited indicates that age, education
and socio-economic status are important factors influencing
attitudes toward and willingness to purchase computing
functions in the home. The research has been confined
largely to California, and individual studies are biased in
several other ways, such as all women popUlations, or an
upper socio-economic survey area, or a totally Los Angeles
population. While the results hold across most of the studies,
there is a need for more in-depth research on more repre
sentative samples before we can generalize to the mass mar
ket.

Other factors may mediate the influence of demographic
variables. We have yet to assess the relationships of values
and other lifestyle variables to perceived need for, valuation
of and willingness to purchase and/or use home computing
functions. For example, the consumer's valuation of social
interaction may be a better predictor of resistance to adopt
ing home computing services than either age or socio-eco
nomic status. Or, consumers with an activity-rich lifestyle
may see a value in saving time in this manner. Children
in the home have also been shown to be an important lifestyle
variable that influences the purchase of educational/infor
mation products and services. Some individuals prefer to
separate their home and work lives, while others prefer an
integration of life activities. Lifestyle preferences such as
these are bound to influence the valuation of products and
services which permit working from the home.

Very few of us are completely satisfied with our life ex
periences. Some of us fret over finances, others are bothered
by crime in the streets. Some of us have difficulty finding
time to spend with family members, others of us are bored
and alienated. Identifying the common and even uncommon
concerns of general consumers can provide" designers" and
packagers with a set of perceived needs which can be ad
dressed with communications and computer technology. An
innovation that has been designed to meet perceived con
sumer needs has a head start in the race for consumer ac
ceptance.

Consumer experience with computers and computing ser
vices is another type of useful baseline data. One's experi
ences and one's value system shape attitudes, which in turn
have been shown to influence an individual's behavioral in
tentions. 12 There is a wide degree of variance in the general
consumer's experience with computers, ranging from the
computerized billings most of us receive, to daily interaction
with computer terminals. These experiences crystallize
positive or negative attitudes toward computing. Knowing
what experiences characterize an individual's interaction
with computing services and how that individual evaluates
those experiences can provide important insights in design
ing products and services that will create generally positive
experiences and enhance the probability of adoption.

A whole range of attitudes will influence individual inclI
nations to use computers or computing services. Attitudes

toward computers, concentrating activities in the home,
depersonalizing transactions, energy conservation, privacy,
security, television, etc. will all playa role in shaping the
consumer's response to home computing. Identifying which
attitudes are highly correlated with intentions to adopt or
not adopt will give us a clearer picture of market character
istics.

For the most part, computer designers have produced
products and services that appeal to an audience somewhat
like themselves. Gathering more in-depth baseline infor
mation on a wider range of consumers is a valuable step in
developing home computing products/services with a broader
appeal. Baseline data gathered from a representative sam
pling of consumers should include not only the traditional
measures cited earlier, but a cataloguing of daily activities
and the values and satisfactions attached to these activities.

Product design and evaluation

Formative evaluation is iterative in that the market is ana
lyzed, products and services conceived, tested for appeal
and valuation, designed and/or packaged, test marketed, re
fined and finally delivered to the general market. Throughout
this process, empirical research can generate data which re
veals how well products and services match market de
mands. The better the fit, the more likely the use or pur
chase.

Ideas or prototypes can be tested for market appeal using
a variety of focus groups or survey techniques. Early con
sumer evaluation reduces the risk of sunk costs and market
failure. Appeal is only one of the factors influencing con
sumer decisions. How the consumer values the product or
service in the context of competing demands for time and
financial resources is a crucial factor affecting innovation
adoption. Can and will the consumer shift resources? What
kinds of trade-offs can or will the consumer make in order
to access or purchase computing services? How can com
puting products and services be designed to maximize the
benefits and minimize the costs resulting from trade-offs
made?

The configuration of product and service offerings also
plays a major role in their market acceptance. For example,
there appears to be a consumer orientation toward single
purpose products. One has only to look to the typical kitchen
to see specialized appliances, with purposes ranging from
yogurt making to hot dog cooking. The home computing
market seems headed in the same direction, with separate
devices for controlling appliances, playing games, and word
processing. Is this a necessary step? Can the market be cre
ated in a more energy efficient, space efficient, resource
efficient manner serving the' 'needs" of both producers and
consumers of home computers? What factors will inhibit
such developments?

Formative evaluation research can help answer these
questions and in the process help create a home computing
marketplace where product/service offerings fit consumers'
needs and values. In-depth consumer research and product
evaluation will generate the kind of information necessary
to make home computing a reality.

900 National Computer Conference, 1980

Impact analysis

Society is always altered by the introduction of techno
logical innovations, sometimes in intentioned ways, often
in unanticipated ways that prove less than desirable.13 In
recent years there has been a movement toward inventing
or designing a desired future, rather than letting the future
evolve in a happenstance manner. This requires feed-for
ward information about likely short term effects, as well as
assessments of possible/probable long range impacts of tech
nology adoption. Armed with systematically generated in
formation regarding potential consequences, prescient plan
ners and policy-makers in both the public and private sector
can chart courses of action designed to avoid or mitigate
undesirable consequences.

Measuring short term effects

Adopting home computer products/services will have sig
nificant immediate and continuing effects on the way indi
viduals live their daily lives. Using computerized functions
to substitute for, or augment, present behaviors will result
in major resource and activity reallocations. The observable
shifts in time, money and energy allocation may be accom
panied by changes in individuals' subjective/perceptual eval
uation of the particular activities in which they engage and
their lives in general.

The most likely and noticeable effects of adopting home
based computing services will be changes in individual ac
tivity patterns. For example, computer assisted shopping
from the home might result in less time spent shopping, less
physical activity and gasoline consumption, and changes in
individual spending habits. How will individuals allocate
time formerly spent shopping? Will distinct patterns of ac
tivity reallocation emerge for different segments of the pop
ulation? Will individuals reallocate travel savings into other
out-of-home activities? Will individuals attempt to compen
sate for secondary characteristics of the shopping experience
(e.g., social interaction) lost in computerized shopping?
How?

Time allocation and activity pattern analysis before and
after adopting computerized functio~s such as shopping will
provide data on individual behavioral change. This analysis
will indicate the types of direct effects and secondary impact
that might be experienced with widespread adoption of com
puter assistance in the home.

Differences in the way individuals perceive or value ac
tivities are likely to accompany observable behavioral
changes. For example, shopping may become a less valued
activity due to the loss of social interaction. While time al
location and activity pattern analysis. may reflect shifts in
the valuation of life activities, they may not entirely capture
the qualitative dimen5\ions of the individual's experience:.
Asking individuals to assess their satisfaction with various
life activities, as well as observing changes in the actual ac
tivity pattern, may provide feed-forward insights on the ef
fects of home computing on perceived quality of life. Per
ceived v·aluation data may also yield data useful for

designing or modifying home computing products/services.
For instance, should behavioral and valuation data indicate
a strong attachment to social or group activity aspects of
newly computer assisted functions, home-based electronic
messaging and other services designed to enhance social in
teraction might be developed.

Attitudinal, valuational and behavioral individual effects
are the most readily captured through existing research
methodologies. Observation of change at the individual level
can be used to assess certain short term organizational and
institutional impacts. Aggregate shifts in resource allocation
will mean some industries are likely to benefit from home
computer services, while others may suffer, given mainte
nance of their current approach to the marketplace. For ex
ample, Ruchinskas14 detected a decline in newspaper reading
among consumers who had access to textual channels pro
viding news and sports headlines via cable TV. Similarly,
there was evidence that sports fans used more convenient
text channels instead of TV news to gather sports infor
mation. Such cross impacts may follow the introduction of
home computer products/services, unless existing service
providers alter their offerings to provide unique consumer
benefits.

To thoroughly assess short term effects at the organiza
tional level, the proposed consumer-based analysis should
be supplemented by monitoring other indicators. Specifi
cally, this would involve tracking organizational response
to observed shifts in consumer demands. This information
will be vital in attempts to project long range institutional
level impacts of widespread adoption of home computing.

Projecting long range impacts

Assessing and evaluating short-term effects creates· the
information base necessary for projecting long range social
and economic consequences that may result from wide
spread adoption of new personal computing products/ser
vices. Impact domains of particular relevance with respect
to home computing are social structures, social institutions
and quality of life. Examples of possible changes in each of
these domans are highlighted as a means of pointing to areas
in which short term effects research might be used to project
larger socio-economic consequences.

Our societal structure is in some ways reflected by indi
viduals' access to information. Some have suggested the
development of home information/educational computer-as
sisted services will exaggerate information or knowledge
gaps. They envision a further exacerbation of "unequal in
formation access," and a widening gap in information levels
between the rich and the poor. 15 ,16 Examining the charac
teristics of purchasers, users and those interested in infor
mation related products and services, and assessment of pre
post knowledge levels, would provide a test of this hypoth
esis.

Other social structure ramifications may follow from pos
sible reductions in interactions among mel.1).bers of different
socio-economic "classes" due to the concentration of trans
actions in the home. This could reverse trends toward in-

Home Computing-A vision in search of a marketplace: areas of needed research 901

tegration and cause a loosening of the social fabric. Activity
analysis could reveal the beginnings of changes that might
have long term implications for changing social patterns.

Services offered through home computers and/or inter
active terminals are likely to have impacts on existing social
institutions. Widespread adoption of computer assisted in
struction in the home would definitely impact our educa
tional institutions and alter the manner in which educational
services are delivered to the pUblic. Transportation institu
tions could experience major impacts from a reallocation of
the work force, due to increased working from the home or
local work centers via computer linkages. Potential socio
economic impacts in this area have been discussed in the
telecommunication literature. 17 Examples of possible insti
tutional impacts are myriad, but research assessing the na
ture and/or likelihood of these impacts is almost nil.

Finally, all of the possible and probable changes we have
discussed interact to influence the quality of life (QOL).
Quality of life is a function of both the "objective" envi
ronment (physical, social, economic and political) and sub
jective perceptions, attitudes and experiences of individuals
living in that environmental context. 18

Assessments of life and activity satisfaction will provide
some indication of the impacts home computing has on in
dividuals' perceived quality of life. In part, product design
and planning represents a further effort to maintain a high
quality of life by designing products and services that reflect
consumer needs and values. However, careful monitoring
of changes in organizational and institutional structures is
also necessary. This is evidenced in past QOL research,
which found the family institution to be the strongest factor
influencing individuals' perceived quality of life. 19

Policy implications

It must be recognized that information provided by pro
jections of long range socio-economic consequences lies in
the domain of public policy making as well as private in
dustry. Research results identifying potential tendencies to
ward increasing "information gaps" may highlight policy
issues which ultimately require government intervention to
facilitate "equal" access to educational and information ser
vices. Policies may also take the form oflegislative restraints
should negative social consequences seem likely based on
the empirically-based projections. Private industry must
therefore anticipate socio-economic consequences and sub
sequent government action which would alter the shape of
the marketplace.

CONCLUSION

Research can reduce the uncertainty surrounding both the
development of the home computing marketplace and the
impacts of home computing on the quality of our lives. This
research must begin with a more careful study of potential
users and proceed to examine human behavior in home set
tings to which home computing has been introduced. After

determining how human behavior changes with access to and
utilization of home computing, researchers can begin to more
accurately assess the possible/probable socio-economic con
sequences of a computer assisted lifestyle.

We have described a research process designed to max
imize both the short and long term benefits of introducing
home computing functions. The formative evaluation data
that is essential to successful introduction of computing
functions also provides us with baseline measures for judging
future changes. Throughout the product design and market
testing phases, the immediate effects of using home com
puting functions can be monitored. With this information,
we can project what the impact would be if these observed
changes took place on a large scale. This information feeds
back to decision makers to shape the next round of product
design and market introduction. In-putting "impact" data
early in the product development cycle, before parties have
a large vested interest or capital investment in existent tech
nology minimizes the risks of undesirable consequences.

Such a concerted research effort represents an attempt to
maximize both the economic and social benefits of home
computing. In an era where societal resources are becoming
recognized as a finite and valuable commodity, we cannot
miss this opportunity to direct technological change in a
manner that maximizes its utility for all stakeholders.

REFERENCES

1. Advertising Age, November 5, 1979.
2. Baran, Paul (1971), "Potential Market Demand for Two-way Information

Services to the Home," 1970-80, Institute for the Future, Palo Alto.
3. Bortz, Paul (1973), "Technological Innovations in Video and Their Po

tential Market," Denver Research Institute, NTIS Pub. Com-73-1145.
4. Lipoff, Stuart (1979), "Mass Market Potential for Home Terminals,"

IEEE Transactions on Consumer Electronics, CE-25(2): 169-184.
5. Nilles, J. et al. (1979), "Personal Computer, Technology, Users and

Uses," Report No. 0IP/PCTA-79-1, University of Southern California,
Office of Interdisciplinary Affairs, February 1979.

6. Ibid., pp. 3-18.
7. Rogers, Everett and Floyd Shoemaker (1971), Communicatioll q{ Inno

vations, New York, The Free Press.
8. Goldman, Ronald (1979), "Demand for Telecommunication Services in

the Home," paper presented at the ICA Convention, Philadelphia, Pa.,
May.

9. Schwalbe, Ted (1977), "Potential Adopters of EFT and Electronic Mail
Systems," Center for Communications Policy Research, Annenberg
School of Communications at the University of Southern California, Los
Angeles.

to. Schwalbe, Ted (1978), "Diffusion of Electronic Transactions," Center
for Communications Policy Research, Annenberg School of Communi
cations at the University of Southern California, Los Angeles.

11. Martin, Thomas (1978), "Can Interaction With Computers Be Made En
joyable For the Public," Proceedings of the International Conference on
Cybernectics and Society, Vol. II., Tokyo-kyoto, Japan, November 3-7.

12. Fishbein, M. and Ajzen I. (1975), Belief, Attitude, Intention and Behavior:
An Introduction to Theory and Research, Reading, Mass, Addison-Wes
ley.

13. Ellul, Jacques (1964), The Technological Society, (trans. by John Wilk
inson), New York, Alfred A Knopf.

14. Ruchinskas, John (1979), "The Cons~mer in the Electronic Market
place," Center for Communications Policy Research, Annenberg School
of Communication, Media '90 Report #2-79, Los Angeles.

15. Tichenor, et al. (1970), "Mass Media and Differential Growth in Knowl
edge," Public Opinion Quarterly, 34: 158-170.

902 National Computer Conference, 1980

16. Katzman, N. (1974), "The Impact of Communication Technology: Prom
ises and Prospects," Journal of Communication, 24:47-58.

17. Nilles, J. et al. (1976), The Telecommunications-Transportation Tradeoff:
Options for Tomorrow, New York, John Wiley.

18. Hornback, K. and Shaw, R. (1973), "Toward a Quantitative Measure of

the Quality of Life," in EPA-The Quality of Life Concepts, Washington,
D.C., The Government Printing Office.

19. Andrews, F. and Withey, S. (1974), "Developing Measures of Perceived
Life Quality: Results from Several National Surveys," Social Indicators
Research, 1: 1-26. .

1980 NATIONAL COMPUTER CONFERENCE
COMMITTEES

Chairman
Don B. Medley
Moorpark College
Moorpark, CA

Secr&tary
Karen Nelson
Moorpark College
Moorpark, CA

Vice Chairman
Linda Taylor
SDC, Manager Technical Audits
Santa Monica, CA

Committee Advisor
Sakti Ghosh
IBM Corporation
San Jose, CA

Technical Area Coordinators
John C. Biddle
California State University
Bakersfield, CA

Conference Chairman
Herbert B. Safford
GTE Data Services, Inc.
Marina Del Ray, CA

Vice Chairman
Guy H. Dobbs
Xerox Electro-optical Systems
Pasadena, CA

Program Chairman
Don B. Medley
Moorpark College
Moorpark, CA

Professional Development Chairman
James H. Weiss
GTE Data Services, Inc.
Tampa, FL

PROGRAM COMMITTEE

Eric D. Carlson
IBM Corporation
San Jose, CA

Lance A. Leventhal
Emulative Systems
San Diego, CA

G. "Jack" Lipovski
Electrical Engineering Dept.,

University of Texas
Austin, TX

Harvey Marks
Informatics Inc.
Canoga Park, CA

Susan H. Nycum
Chickering and Gregory
San Francisco, CA

CONFERENCE STEERING COMMITTEE

Special Activities Chairman
Dorothy M. Parson
Torrance, CA

Personal Computing Co-chairman
Lewis A. Whitaker
Innovative Computer Products
Tarzana, CA

Personal Computing Co-chairman
Lawrence Press
Small Systems Group

- Santa Monica, CA

Finance Chairman
Richard B. Blue, Sr.
TRW Defense and Space Systems

Group
Redondo Beach, CA

903

Don Reifer
Software Management Consultants
Torrance, CA

Erica M. Rounds
Technology Service Corporation
Santa Monica, CA

James R. Stallard
General Dynamics
St. Louis, MO ,

Todd P. Ziesing
Bank of California
San Francisco, CA

Mark Spitz
Informatics Inc.
Canoga Park, CA

Operations Chairman
Mary Rich
Imperial Computer Services, Inc.
Torrance, CA

Communications Chairman
Ted E. Lorber
C. Itoh Electronics
Los Angeles, CA

Registration Chairman
Ronald W. Colman
California State University
Fullerton, CA

Human Resources Chairman
Thomas Ilas
San Diego Gas & Electric
San Diego, CA

904 National Computer Conference, 1980

NCC Committee Liaison
Jerry Koory
On-Line Business Systems Inc.
San Francisco, CA

AFIPS Liaison
Jerry Chiffriller
AFIPS Headquarters
Arlington, VA

Pioneer Oay Chairman
Mort Bernstein
System Development Corp.
Santa Monica, CA

Advisor
Robert W. Rector
CMAC
Cranston, RI

Russell Abbott
California State University
Northridge, CA

Barry W. Boehm
TRW
Redondo Beach, CA

Eric D. Carlson
IBM Corporation
San Jose, CA

Wesley W. Chu
UCLA-Westwood
Los Angeles, CA

Jim Carlisle
Office of the Future, Inc.
Guttenberg, NJ

Lorraine M. Duvall
lIT Research Institute
Rome, NJ

Roger Firestone
Sperry Univac
Blue Bell, P A

Kurt F. Fischer
Computer Sciences Corporation
Falls Church, VA

Herbert Hecht
Sohar Inc.
Los Angeles, CA

Alyce Jackson
TRW
Redondo Beach, CA

Susan Landa
Bunker Ramo
Westlake Village, CA

Lance A. Leventhal
Emulative Systems Co.
San Diego, CA

NCC '80 AREA DIRECTORS

Bennet P. Lientz
UCLA
Los Angeles, CA

G. Jack Lipovski
University of Texas
Austin, TX

Vincent Lum
IBM Research Lab
San Jose, CA

Harvey Marks
Informatics, Inc.
Canoga Park, CA

Ephraim R. McLean
U nivers~ty of California
Los Angeles, CA

Peter Neuman
SRI International
Menlo Park, cA

Susan Nycum
Chickering and Gregory
San Francisco, CA

Jon Prescott
J &S Associates
Fremont, CA

Larry Putnam
QSM Inc.
McLean, VA

Don Reifer
Software Management Consultants
Torrance, CA

Leigh S. Rosenberg
Jet Propulsion Lab
Pasadena, CA

Erica M. Rounds
Technology Service Corp.
Santa Monica, CA

905

Eugene Smith
USDA, Comm. and Data Services

Division
Beltsville, MD

Roland Spaniol
Eastern Illinois University
Charleston, IL

James Stallard
General Dynamics
St. Louis, MO

T. Straeter
General Dynamics
St. Louis, MO

Linda Taylor
SDC
Santa Monica, CA

Andrew Tescher
Aerospace Corp.
Los Angeles, CA

Ken Thurber
Sperry Univac
St. Paul, MN

Frank T. Tung
IBM Research Lab
San Jose, CA

Rein Turn
California State University
Northridge, CA

Walter E. Ulrich
Houston, TX

Fred Weingarten
Office of Technical Assessment
Washington, DC

Raymond Yeh
University of Maryland
College Park, MD

Todd Ziesing
Bank of California
San Francisco, CA

NCC '80 SESSION CHAIRMEN

Russell Abbott
California State University
Northridge, CA

Don Aharonian
DEC
Weston, MA

Helen M. Alex
USGS, Conservation Division
Washington, DC

Boyd Alexander
U.S. House of Representatives
Washington, DC

Roger Allen
Computer Sci~nces Corporation
EI Segundo, CA

Bharat Bhargava
University of Pittsburgh
Pittsburgh, PA

Barry W. Boehm
TRW
Redondo Beach, CA

John Brackett
Softech Microsystems
San Diego, CA

Edgar Bristol
The Foxboro Company
Foxboro, MA

Louis J. Brocato
USDA, SEA, CDSD
Beltsville, MD

A. Windsor Brown
General Automation
Anaheim, CA

Thomas C. Brown
Computer Sciences Corporation
Silver Spring, MD

Robert Campbell
Advanced Information Management,

Inc.
Woodbridge, VA

Jim Carlisle
Office of the Future, Inc.
Guttenberg, NJ

Coleen Cayton
Denver Public Library
Denver, CO

Ned Chapin
Infosci, Inc.
Menlo Park, CA

Peter Chen
University of California
Los Angeles, CA

Ira W. Cotton
National Bureau of Standards
Washington, DC

Daniel J. Couger
University of Colorado
Colorado Springs, C9

C. Paul Davis
Innovative Computer Products
Tarzana, CA

Carl G. Davis
Data Processing Directorate
Huntsville, AL

William R. Deitrick
Mini-Micro Systems, Inc.
Anaheim, CA

Ed Dodson
GRC
Santa Barbara, CA

Larry Druffel
DARPA/IPTO
Arlington, VA

Lorraine M. Duvall
lIT Research Institute
Rome, NY

William E. Farley
USDA
Beltsville, MD

Roger Firestone
Sperry Univac
Blue Bell, PA

Kurt F. Fischer
Computer Sciences Corporation
Falls Church, VA

906

Werner Frei
USC Medical Imaging Group
Marina Del Ray, CA

Leonard B .. Gardner
San Diego, CA

Edward L. Glaser
Ampex Corporation
EI Segundo, CA

F. E. Graham
Computer Devices, Inc.
Burmingham, MA

Paul Gray
Cox School of Business, SMU
Dallas, TX

Hal Hart
TRW
Redondo Beach, CA

Henry Heffernan
Washington, DC

Jeffrey Hoffer
School of Management
Cleveland, OH

Lance J. Hoffman
George Washington University
Washington, DC

Bob Holland
Database Design Corp.
Ann Arbor, MI

David L. Holzman
University of Southern California
Los Angeles, CA

Joseph E. Izzo
Joseph Izzo Associates
Chicago,IL

Alyce Jackson
TRW
Redondo Beach, CA

Bob Johansen
Institute for the Future
Menlo Park, CA

Steven Kartashev
Vniversity of Nebraska
Lincoln, NEB

Svetlana Kartashev
Vniversity of Nebraska
Lincoln, NEB

Steve Kimbleton
National Bureau of Standards
Washington, DC

Frank Kline
International Data Corp.
Waltham, MA

Rob Kling
V niversity of California
Irvine, CA

Benn R. Konsynski
V niversity of Arizona
Tucson, AZ

Neal Koss
Society for Computer Medicine
Torrance, CA

Philip Kraft
State V niversity of New York
Binghampton, NY

Edward Y. S. Lee
TRW
Redondo Beach, CA

Stephen Levine
Lawrence Livermore Labs.
Livermore, CA

David Lien
Compusoft, Inc.
San Diego, CA

Bennet P. Lientz
V niversity of California
Los Angeles, CA

Myron Lipow
TRW
Redondo Beach, CA

Mary E. S. Loomis
V niversity of Arizona
Tucson, AZ

Eugene Lowenthal
Intel Corp.
Austin, TX

Ephraim R. McLean
V niversity of California
Los Angeles, CA

Dennis McLeod
V niversity of Southern California
Los Angeles, CA

Richard E. Merwin
George Washington V niversity
Washington, DC

Edward F. Miller
Software Research Associates
San Francisco, CA

John Mitchell
Georgia Institute of Technology
Atlanta, GA

John Musa
Bell Laboratories
Whippany, NJ

Jack Nilles
V niversity of Southern California
Los Angeles, CA

David L. Peters
Racal-Vadic, Inc.
Sunnyvale, CA

Lori Pitchell
Burroughs Corp.
Atlanta, GA

William K. Pratt
Compression Laboratories, Inc.
Copertino, CA

Jon Prescott
J &S Associates
Fremont, CA

Kenneth W. Rind
Xerox Development Corporation
Stamford, CT

David C. Rine
Western Illinois V niversity
Macomb,IL

Leigh S. Rosenberg
Jet Propulsion Lab
Pasadena, CA

NCC '80 Session Chairmen 907

Alexander D. Roth
AFIPS Washington Office
Arlington, V A

Donna Shepherd Rund
Pacific Telephone
Martinez, CA

Sabina Saib
GRC
Santa Barbara, CA

N orman Schneidewind
Naval Postgraduate School
Monterey, CA

Nan Shu
IBM Research
San Jose, CA

Eugene Smith
VSDA, Comm. and Data Services

. Division
Beltsville, MD

David Snyder
Walt Disney Productions
Glendale, CA

Norm Sondheimer
Sperry V nivac
Blue Bell, P A

Roland Spaniol
Eastern Illinois V niversity
Charleston, IL

James Stallard
General Dynamics
St. Louis, MO

Leon Stucki
BCS
Seattle, WA

Stanley Su
V niversity of Florida
Gainesville, FL

John Swearingen
V.S. Senate
Washington, DC

Richard H. Thayer
Sacramento Air Logistics Center
McClellan Air Force Base, CA

908 National Computer Conference, 1980

Douglas J. Theis Raymond P. Voith Caroline M. Watteeuw
The Aerospace Corporation Motorola, Inc. Office of the Future, Inc.
Los Angeles, CA Austin, TX Guttenberg, NJ

Charles Tucker Gerald R. Wagner Claude Wiatrowski

Twentieth Century-Fox Execucom, Inc. University of Colorado

Beverly Hills, CA Austin, TX Colorado Springs, CO

Stephen T. Walker Tom Wiener
Rein Turn Dept. of Defense DARPA
California State University Washington, DC· Arlington, V A
Northridge, CA

Virginia Walker Raymond Yeh ,
Walter E. Ulrich Dept. of Energy University of Maryland
Houston, TX Arlington, V A College Park, MD

Charles R. Vick William Ward
BMDATC Theater Arts Department
Huntsville, AL Los Angeles, CA

NCC '80 REFEREES

On behalf of the 1980 Program Committee, we wish to thank the following referees for their efforts. Although an attempt
was made to list all referees, there are undoubtedly some omissions, for which we apologize.

Abbey, Duane
Abbott, Russell
Adams, Russell
Agrawal, Dharma
Agrawala, Ashotz
Ahuja, Pratap
Ahuja, Sanjiv
Ahuja, Vijay
Aiken, Robert
AI-Fedaghi; Sabah
Amenta, Joyce
Ames, Stanley
Andrison, John
Antal, J. R.
Archibald, Julius
Arps, Ron
Aylor, James

Baer, J-L
Bai, William G.
Baird, George
Baker, F. T.
Barnes, Bruce
Bateman, Barry L.
Bauer, Michael
Baxter, Brent
Belford, Geneva
Bering, Doug
Berk, Toby
Bhargava, Bharat
Bise, Robert
Blomgren, George
Bork, Alfred
Borko, Harold
Bracey, R. D.
Brocato, Louis
Brown, Nander
Brown, Russell K.
BrueH, Steven
Burton, William

Campbell, Roy
Cannon, George
Capparo, Gerrard
Carey, Bernard
Carroll, B. D.
Carter, W. C.
Castillo, Pedro
Chapin, Ned
Charney, R. B.

Charp, S.
Cheydleur, B. F.
Chow, Yuan-Chien
Cieslowski, Richard
Clema, Joe
Clemons, Eric
Cobb, Gary
Coke, Esther
Cook, Betty Jane
Cooprider, Lee
Couperus, J.
Cowan, George
Crenshaw, Edsel

Daniels, Walter
Danielsson, Per-Erik
Danner, Lee
Davida, George
Davis, Alan
Day, William
de Jong, Kenneth
Deb, Ashoke
Dekock, Arlan
Denenberg, Stewart A.
Dewdney, A. K.
Dittrich, Klaus
Dixon, Louis
Druseikis, Frederick
Dunaway, Donna
Dunbrow, Ardyn E.
Duncan, Karen
Dutton, Ronald
Dwyer, S. J.

Eastman, Caroline
Eccles, William
Egen., John
Ellis, Clarence A.
Emery, James
Ernst, Ronald L.
Erwin, Harry
Estrin, Thelma

Fay, Tim
Feldman, Michael B.
Finfer, Marcia
Firestone, Roger M.
Flinchbaugh, B. E.
Flynn, Robert
Fong, Elizabeth

909

D.B.MEDLEY,EdD,CDP
Editor

Freeman, Harvey
Friedman, Lee A.
Fu, K. S.

Galkowski, Jan
Gannon, Thomas F.
Garcia, Oscar N.
Gehani, Narain
Geraghty, John
Giordano, J. V., Jr.
Goel, Amrit
Goldhirsh, Isadore
Goldman, Neil
Gonzales, Mario J., Jr.
Gottlieb, Allan
Granlund, G.
Grayson, Alice L.
Green, Teresa
Greenleaf, James F.
Grosch, Audrey
Gross, Arthur G.
Gupta, Ram

Hakozaki, Katsuya
Hall, Ernest L.
Hamblen, John
Hanna, William
Hart, P. E.
Hartson, Rex
Harvey, Thomas
Hattori, Mitsuhiro
Haynes, Gregory A.
Hecht, Herbert
Hein-Gal, Moshe
Heller, Paul S.
Herman, G. T.
Hoffman, Lance
Hollaar, Lee
Holmes, Harvard
Hoover, L. Ronald
Hopper, Grace
Horsted, Burt
Hoyt, Patrick
Hua, Cecil T.
Huang, T. S.

Ichikawa, Tadao
Idesawa, Masanori

Jacobs, Barry

910 National Computer Conference, 1980

Jensen, Douglas Navlakha, Jainendra Sklansky, J.
Jette, Christina Nelson, Victor Smid, Miles
Johnson, L. Arnold Nestman, Chadwick Smith, Eugene
Johnson, Ark Netravali, A. N. Smith, Robert
Jordan, Harry F. Neumann, Peter Smoot, O. R.

Nielsen, Norman Snyder, Wesley E.
Kahn, Kevin Nilsson, Arne A. Soma, Takashi
Kamal, Samir Nutt, Gary Sondheimer, Norman
Kampen, Garry Spaniol, Roland D.
Kaufman, Arie O'Kane, Kevin Stavely, Allan
Kooiman, Donald O'Neal, Beverly Steele, Stuart
Koory, Jerry L. Oliver, Ellen Stevens, D. F.
Kornfield, N. R. Stevens, W. Richard
Kubitz, W. J. Peacock, Walter L. Stuck, B. W.
Kunz, Gregory A. Peralta, L. A. Sudo, Masaru

Perry, J. M. Svigals, Jerone
Landis, Carolyn P. Pfaltz, John L. Szolovits, Peter
Lee, Mary Jane Pottinger,· Hardy
Lee, Theodore Powell, John Tai, K. C.
Leinbaugh, Dennis Pradhan, Dhiraj K. Tausner, Miriam
Levine, M. D. Preston, K. Taylor, Linda T.
Lien, David Prewitt, Judith Taylor, Robert
Little, Elizabeth R. Profio, E. Teichroew, Daniel
Little, Joyce Thurber, K. J.
Lockett, Joann

Rajaler, Sarah A. Tinaziepe, Cihan
Long, Harvey
Lucido, Anthony P. Raskin, Jef Tomaru, Keisuke

Reddy, Raj Towsen, James

Machover, Carl Reho, Andrew M. Tucker, Edwin K.

Madrigal, Orlando Rein, Robert Turn, Rein

Madron, Beverly Resta, Edward V.

Maekawa, Mamoru Richardson, Debra J. Updegrove, Daniel A.

Magel, Kenneth Riddle, William Usanis, Richard A.

Magnuson, Waldo Robb, Richard A.

Maher, Austin Roberts, Eric van Cleemput, W.
Mallett, Patrick W. Rodman, Robert van Name, Mark L.
Mander, K. C. Rosenbaum, Susan ~. Vandergaag, Michael
Maniotes, John Rosin, R. F. Varshney, Pramod K.
Maskewitz, Betty Roth, R. Waldo Verba, John
Mathews, Walter Rowa, Per

Matsushita, Yutaka Rulifson, J. F. Warren, Jim
McAllister, David Ruschitzka, Manfred Wasserman, Reuben
McCrea, Donald Waterman, David
McDonald, Nancy Sangal, Rajeev Weis,s, Stephen
McHenry, J. A. Sashin, D. Wesselkamper, T. C.
McHenry, Stephen Savage, Carla Whiting-O'Keefe, Patricia
McLeod, Dennis Schafer, David Wiederhold, Gio
McMahon, Edith Scheuermann, Peter Wileden, Jack
McNulty, Lynn Schneider, G. Michael Williams, John
Metzner, John Schultz, David J. Wolfson, Seymour J.
Miller, Charles Segal, Ronald Wong, Tom
Miller, Dale Shaffron, Nancy Worrest, Ralph W.
Miller, Mark Leslie Shapiro, Michael Wu, Chaun-Lin
Mittal, Sanjay Shetler, A. C. Wynne, James A.
Modesitt, Kenneth Shoquist, Marc
Murphy, Robert Siegel, H. J. Yamamoto, Masahiro

Simmons, Dick B. Yao, Bing
Naemura, 'Kenji Sitkin, Irwin J. Yasnoff, William
Nash, Michael Skeel, Robert Y ovits, Marshall

NCC '80 SPEAKERS AND PANELISTS

Ahlgren, Dave
AI-Shaikh, Al
Albright, Thomas G.
Alexander, Boyd
Amamiya, Makoto
Anderson, Howard
Anderson, Mary Pastel
Anderson, Ronald E.
Antal, Joe
Appleton, Daniel
Arnold, Robert
Audolph, Jim

Baird, George N.
Ball, Marion J.
Balzer, Robert
Bamburg, Ronald
Barlow, Mel R.
Barrow, N. G.
Bateman, Joan P.
Baumann, L. S.
Baxter, Brent
Beamer, Gary D.
Belady, Lazlo
Belair, Robert
Belz, Frank C.
Berlinger, Eli
Bernstein, Lionel M.
Bethancourt, Michael
Blasgen, Michael
Bloom, Mitchel
Bolles, R. C.
Borden, Chester S.
Bowen, John
Bracker, William
Brand, Donald A.
Braun, Christine L.
Briggs, Warren
Brogie, Roger
Brown, David Go
Brown, Thomas C.
Busenberg, Stavros
Buxton, John N.

Candlin, Jim
Capitant, Patrice
Carlson, William E.
Cartman, Diane
Catmul, Edward
Chang, Hsu
Charlu, D. P. S.
Cheatham, Tom
Chenub, David
Clark, Lori
Cochran, Jack
Codd, E. F.

Colton, Kent W.
Comer, Douglas
Conner, Guy
Cook, Carolyn L.
Cooley, Michael
Copeland, George
Costa, John
Cragon, Harvey
Crane, Steven N.
Cross, Thomas
Crowley, Jeri

Daniels, Gary
Davis, Alan M.
Davis, Joe T.
Davis, Richard
Dawson, Kenneth
Dawson, Stephen
DHdaio, Harry B.
De Millo, Richard A.
de Valpine, Jean E.
Deitrick, William R.
Derico, Cathy
Do!l, Dixon
Donovan, Thomas
Doshay, Irving
Doyle, Richard F.
Draper, William
Druffel, Larry E.
Dubrowski, Robert
Duncan, Karen
Dunn, Robert
Dutton, William
Duvall, Lorraine M.

Eberhart, Charles R.
Eberly, Bill
Edwards, Gwen
Egerman, Paul L.
Eifler, Thomas A.
Embley, David W.
Engel, Gerald
Enzer, Selwyn
Estabrook, Leigh

. Evans, Roger

Fairley, Richard
Faught, Williams S.
Feldstein, M. Alan
Felskin, Jerry
Fife, Dennis
Finegold, Joseph
Firth, Robert
Fischer, Kurt F.
Fischler, M. A.
Fisher, Grant

911

: Fisher, Paul
Fong, Elizabeth
Force, Gordon
Forman, Joel Jon
Ford, William H.
Frazier, William H.
Fujii, Marilyn
Fujiwara, Atsumu

Gallant, William R.
Gallegos, Frederick
Garcia, Hecktor
Gates, Terry
Gentleman, W. Morven
Gerhart, Susan
Gilb,Tom
Gilbert, Barry K.
Glass, Robert L.
Goodlett, James C.
Goodman, Seymour
Gordon, M. E.
Gorg, Roger J.
Green, Edward
Greenberg, Don
Grey, Richard
Groppa, Richard
Gupta, Y.
Gustafson, G. G.

Hales, Blaine
Hammer, Michael
Harada, Minoru
Hardy, Viann B.
Harper, Bobby D.
Harris, Larry
Hart, Hal
Harvey, Bob
Hazan, Paul
Heafner, John F.
Heath, Fred
Heimbigner, Dennis
Heines, Jesse M.
Hendrix, Gary
Herlevich, F. Ann
Hewitt, Peter
Hilborn, Gene
Hilfinger, Paul
Hinerman, Frank
Hofkin, Bob
Holden, Jeffrey B.
Holland, John F.
Hom, Berthold K. P.
Home, P.
Howell, Thomas A.
Hsia, Pei

912 National Computer Conference, 1980

Hunt, Garry G. Madeous, Richard Parks, Judith A.
Hurvitz, Josh Madison, William Parnas, David

Maitlen, Richard Peters, John K.
Ingrassia, Frank S. Malek, M. Peters, Lawrence J.
Irani, Keki B. Manley, John H. Peterson, Duwane
Iwayama, Masatoshi Mannoni, Michel Pflager, Richard

Mariani, Michael D. Pitt, Paul
Jacks, Ed Marill, Thomas Plagman, Bernard
Jacobs, Steven M. Markus, M. Lynne Pramanik, Sakti
Jefferson, David Martens, Jon Premkumar, U. V.
Jensen, A. P. Maryanski, Fred J. Presser, Leon
Jensen, Randall Masatello, Robert Principato, Gene
Johansen, Robert Mason, Ida Pyster, Arthur B.
Johnson, T. A. Matheny, Charles
Jordan, Jim McClung, D. B. Raber, David D.
Joslin, Edward O. McCullough, Timothy Rammamoorthy, C. V.

McGill, Michael J. Rannow, Robert L.
Kanner, Mel McKissick, Jack Rassmussen, Terry
Kapur, R. N. McLeod, Dennis Rault, J. C.
Karbach, Dennis McTap, John L. Rice, Rex
Karplus, Walter Meenaghan, Eamon Riddle, Kay
Kartashev, Steven Merrill, O. Rind, Kenneth W.
Kartashev, Svetlana Merwin, Richard E. Robb, Richard A.
Katzman, James Migneault, Earle Robertson, Michael
Kaufman, Leon Miller, Gene I. Robinson, Richard A.
Keen, Peter Mirhakak, Mohammed Robinson,W. B.
Ketchel, James Mitchell, Joan L. Roman, Gruia-Catali
Key, G. S. Moler, Cleve Rosenblatt, Judah
Kimbleton, Steve Moranda, Paul B. Rosenthal, Paul H.
King, John Mori, F. Rothnic, James
King, R. Morgan, William A. Rotolo, Elio
Kirningham, Brian Morris, James Roufa, Sheldon P.
Klassen, Daniel Moursund, David Roush, C. Steven
Klinzak, Stan Mulhall, Brendan D. L. Ruchinskas, J. E.
Knowles, R. Munnecke, Thomas
Konsynski, Benn R. Musa, John Sagues, Paul
Koyama, Kenji Sandewall, Erik
Kraemer, Kenneth L. Naumann, J. David Santhanam, V.
Kraft, Philip Navlakha, Jainendra Sastry, K. V.
Krzysiak, Emily A. Neilson, R. F. Sawyer, Gary
Kunecke, Harold Nezu, Kohi Sayani, Hasan H.
Kunii, Tosiyasu L. Nickerson, Devon Scacchi, Walt
Kunin, Jay S. Nielsen, Francis H. Scalf, Joseph

Nilles, Jack Schiebe, Lowell H.
Ladd, I. Nottage, Richard Schmidt,· Larry G.
Lasden, Martin Nudd, Graham R. Schwarm, Stephen
Lee, Anthony P. Nycum, Susan H. Sealy, David
Lee, John A. N. Sebrell, William
Levy, Stephen R. O'Donnel, Joe Sejnowski, M. C.
Lieberman, Mark A. O'Kelley, Harold E. Selinger, Patricia Griffiths
Lindstrom, Dean Ogawa, Yutaka Shaiken, Harley
Lipka, Steven Ormancioglu, Levent Shaw, Ward
Lipovski, G. J. Orsaza, Al Shiveley, M.
Littlewood, B. Ouellette, Eugene Shooman, Martin
Lobel, Jerome Owens, Donald P. Shortley, John
Love, Hubert H., Jr. Shosa, Dale
Lowenthal, Eugene Palmer, John F. Signor, Richard W.
Luke, John Panzl, Dave Simmons, Dick B.
Lytle, Ben Parikh, Shyam Smetanka, Terence D.

Smith, David Ned
Smith, Dudrey C.
Smith, John
Smoliar, Stephen W.
Snyder, David
Stearns, Robert H.
Steinberg, David L.
Steinfield, C. W.
Stevenson, D. K.
Stewart, Robert G.
Stonebraker, Mike
Stover, Philip C.
Stucki, Leon
Su, Stanley
Sulg, Madis
Svenning, L. L.
Swanson, E. Burton
Swearingen, John

Tai, Kuo-Chung
Takahashi, Naohisa
Takeshita, Tomomichi
Tanniru, Mohan R.
Tasker, Peter
Tausworthe, Robert
Teichroew, Daniel
Tenenbaum, Jay M.

Terchritzis, D.
Tharp, Alan L.
Theis, Douglas J.
Tomanek, Jerry
Topkus, Raymond
Troost, Marcus
Turkle, Sherry
Turn, Rein

Ulloa, Miguel
Ulrich, Walter E.
U meh, Fidelis
Upchurch, E. T.

Vallone, Antonio
. Vaughn, Carol
Voland, Paul M.
von Meister, William F.
von Urff, Charles

Wagner, Robert F.
Wah, Benjamin W.
Walker, Stephen T.
Wallace, Robert J.
Wallis, Robert H.
Walstrom, John
Ware, Willis

NCC '80 Speakers and Panelists 913

Warner, Ben, Jr.
Wasserman, Anthony
Wecker, Stewart
Weingarten, Fred
Weinstein, Bertram S.
Weisbein, Marvin
Wetmiller, John R.
White, John W.
Whitney , John
Wiederhold, Gio
Wilder, William L.
Wing, Roger W.
Wohl, Amy
Wolf, H. C.
Wolverton, Ray
Work, Anne

Yao, S. Bing
Yeh, Raymond
Young, Stephen
Yourdon, Edward

Zachman, John A.
Zatyko, Dan
Zawacki, Robert A.
Zolnowski, Jean C.

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES, INC. (AFIPS)

President

Albert S. Hoagland
IBM Corporation
San Jose, CA

Vice President

Sylvia Charp
The School District of Philadelphia
Philadelphia, P A

Association for Educational Data
Systems (AEDS)

Judith B. Edwards
Northwest Regional Educational Lab.
Portland, OR

American Institute of Aeronautics &
Astronautics (AIAA)

H. Lewis Parker
COMSAT Labs.
Rockville, MD

American Society for Information
Science (ASIS)

Harold Borko
University of California
Los Angeles, CA

American Statistical Association
(A SA)

George Minich
World Bank
Washington, DC

Association for Computational
Linguistics (ACL)

Donald E. Walker
SRI International
Menlo Park, CA

OFFICERS

Treasurer

M. Stuart Lynn
University of California
Berkeley, CA

Secretary

E. Ronald Carruth
Minnesota School District
St. Paul, MN

BOARD OF DIRECTORS

Association for Computing Machinery,
(ACM)

Daniel McCracken
Ossining, NY

Raymond E. Miller
IBM T. J. Watson Research Center
Yorktown Heights, NY

Aaron Finerman
University of Michigan
Ann Arbor, MI

Steven S. Yau
Northwestern University
Evanston, IL

Tse-yun Feng
Wright State University
Dayton,OH

Instrument Society of America (ISA)

Arthur C. Lumb
Proctor & Gamble Company
Cincinnati, OH

Data Processing Management
Association (DPMA)

George Eggert
Chicago Dept. of Defense
Chicago,IL

Robert Marrigan
Mail Communications, Inc.
Everett, MA

J. Ralph Leatherman
Hughes Tool Company
Houston, TX

914

Acting Executive Director

Jerry Koory
AFIPS
Arlington, VA

IEEE-Computer Society

Rolland B. Arndt
Sperry Univac
St. Paul, MN

Society for Computer Simulation
(SCS)

Per Holst
The Foxboro Company
Foxboro, MA

Society for Industrial and Applied
Mathematics (SIAM)

Donald L. Thomsen, Jr.
SIAM Institute for Mathematics and

Society
New Canaan, CT

Society for Information Display (SID)

Carlo P. Crocetti
Rome Air Development Center
Griffis Air Force Base, NY

AFIPS Immediate Past President

Theodore J. Williams
Purdue University
West Lafayette, IN

Albert S. Hoagland
IBM Corporation
San Jose, CA

Sylvia Charp
The School District of Philadelphia
Philadelphia, P A

M. Stuart Lynn
University of California
Berkeley, CA

American Federation of Information Processing Societies, Inc. (AFIPS) 915

AFIPS EXECUTIVE COMMITTEE

E. Ronald Carruth
Minnesota School Districts
St. Paul, MN

Aaron Finerman
University of Michigan
Ann Arbor, MI

Robert Marrigan
Mail Communications, Inc.
Everett, MA

Steven S. Yau
Northwestern University
Evanston, IL

Per Holst
The Foxboro Company
Foxboro, MA

NATIONAL COMPUTER CONFERENCE BOARD MEMBERS

Chairman and DPMA Representative

Robert Marrigan
Mail Communications, Inc.
Everett, MA

Vice Chairman and SCS
Representative

Carl Malstrom
North Carolina State University
Raleigh, NC

Treasurer and AFIPS Representative

M. Stuart Lynn
University of California
Berkeley, CA

AFIPS Representatives

Albert S. Hoagland
IBM Corporation
San Jose, CA

Sylvia Charp
The School District of Philadelphia
Philadelphia, P A

Harold Borko
University of California
Los Angeles, CA

Secretary and IEEE-Computer
Society Representative

Dick B. Simmons
Texas A & M University
College Station, TX

ACM Representative

Seymour Wolfson
Wayne State University
Detroit, MI

SCS President

Stewart I. Schlesinger
The Aerospace Corporation
Los Angeles, CA

DPMA President

Robert A. Finke
Cummings Engine Co.
Columbus, IN

ACM President

Daniel McCracken
Ossining, NY

IEEE-Computer Society President

Tse-yun Feng
Wright State University
Dayton,OH

Chairman of the Industry Advisory
Panel

Frederick M. Hoar
Fairchild Camera and Instrument Co.
Mountain View, CA

Chairman of the NCC Committee

Jerry Koory
On-Line Business Systems, Inc.
San Francisco, CA

Chairman of the Ancillary Activities
Committee

Jack Sherman
Lockheed Missiles and Space Corp.
Sunnyvale, CA

NATIONAL COMPUTER CONFERENCE COMMITTEE OF THE NCe BOARD

Chairman

Jerry Koory
On-Line Business Systems, Inc.
San Francisco, CA

Secretary

Morton M. Astrahan
IBM Research Laboratory
San Jose, CA

NCC '80 Chairman

Herbert B. Safford
GTE Data Services, Inc.
Marina Del Ray, CA

916 National Computer Conference, 1980

NCC '81 Chairman

Al Hawkes
Sargent & Lundy Engineers
Chicago,IL

Russell K. Brown
Moore Paper Companies
Houston, TX

Harvey L. Garner
University of Pennsylvania
Philadelphia, P A

Floyd Harris
Life of Georgia
Atlanta, GA

Edward V. Resta
Manhattan Beach, CA

Irwin J. Sitkin
Aetna Life and Casualty
Hartford, CT

Arnold P. Smith
IBM Corporation
White Plains, NY

Robert C. Spieker
AT&T
New Brunswick, NJ

Jeffrey D. Stein
On-Line Business Systems, Inc.
San Francisco, CA

NATIONAL COMPUTER CONFERENCE BOARD INDUSTRY ADVISORY PANEL

Chairman

Frederick M. Hoar
Fairchild Camera and Instrument Co.
Mountain View, CA

Gordon Daggy
Fairchild Camera and Instrument Co.
Mountain View, CA

Al Ericson
Dataproducts Corporation
Woodland Hills, CA

S. A. "Sandy" Lanzarotta
Xerox Corporation
El Segundo, CA

William Lonergan
Xerox Development Corporation
Beverly Hills, CA

Richard Mau
Sperry Rand Corporation
New York, NY

Herbert Richman
Data General Corporation
Westboro, MA

Gordon Smith
Memorex Corporation
Santa Clara, CA

Dallas Talley
Qantel Corporation
Hayward, CA

NATIONAL COMPUTER CONFERENCE BOARD ANCILLARY ACTIVITIES COMMITTEE

Chairman

Jack Sherman
Lockheed Missiles and Space Corp.
Sunnyvale, CA

Stanley Winkler
IBM Corporatiori
White Plains, NY

AFIPS HEADQUARTERS AND CONFERENCE SUPPORT STAFF

Acting Executive Director
Jerry Koory

Secretary
Linda Kowalski

Manager Administrative Support
Services

Jane Smith

Secretary
Patricia Mayo

Accountant.
Michael Powers

Bookkeeper
Melinda Yost

Financial Secretary
Joyce Paige

Public Information Coordinator
Nancy Lefebvre

Secretary
Betty S. Foley

AFIPS Press Marketing Manager
Christopher Hoelze~

AFIPS Press Fulfillment
Administrator

Olive Shilland

Secretary
Cynthia Car~er

AFIPS Press Editorial/Production
Specialist

Ellen Marie Randall

Director, AFIPS Washington Office
Alexander D. Roth

Secretary
Kelly Andrus

Administrative Assistant
Pearl Cook

Research Associate
Ellen Law

Assistant Research A.ssociate
Keith Yankow

Director of Conferences
Gerard Chiffriller

Secretary
Nancy Betz

American Federation of Information Processing Societies, Inc. (AFIPS) 917

Associate Director of Conferences
Carol Sturgeon

Marketing Coordinator
Kate Frye

Manager Exhibit Sales
Marie Stewart

Secretary
Victoria Braskett

Manager Conference Operations
Sam Lippman

Albright, Thomas G., 121
Amamiya, Makoto, 147
Anderson, Mary Pastel, 441
Appleton, Daniel S., 307

Baird, George N., 811
Barbacci, Mario, 209, 219, 229
Barro~, H. G., 391
Baumann, L. S., 549
Baxter, Brent, 437
Beamer, Gary D., 479
Berlinger, Eli, 773
Bolles, R. C., 391
Borden, Chester S., 341
Borrione, Dominique, 209, 219,229
Bowen, John B., 697
Bracker, W. E., 41
Braun, Christine L., 465
Brown, David G., 441

Capitant, Patrice J., 415
Chang, Hsu, 191
Charlu, Daniel P. S., 631
Cochran, John E., 509
Colton, Kent W., 841
Comer, Douglas, 807
Cook, Carolyn L., 555
Coop, R. D., 549
Copeland, George, 191
Courtney-Saunders, Susan, 587
Crane, Steven N., 73

Davis, Richard B., 335
de Valpine, Jean E., 785
Deitrick, William R., 83
Dietmeyer, Donald, 209, 219, 229
Duvall, Lorraine, 677

Eifler, Thomas A., 55
EI-Masri, Ramez, 319
Embley, David W., 301
Epstein, Robert, 237

Faught, William S., 459
Finegold, Joseph G., 329
Fischler, M. A., 391
Fisher, Paul, 191
Fong, Elizabeth, 261
Fujiwara, Atsumu, 113

AUTHOR INDEX
Gale, John, 87
Gilbert, Barry K., 427
Goodlett, James C., 503
Gordon, M. E., 597
Gorg, Roger J., 811
Gupta, Y., 347
Gustafson, G. G., 741

Hammer, Michael, 541
Harada, Minoru, 33
Hawthorn, Paula, 237
Heafner, John F., 855, 863'
Heimbigner, Dennis, 283
Hektor, Goran, 569
Herlevich, F. Ann, 329
Hilborn, Gene, 157
Hill, Fredrick, 209, 219, 229
Hohn, William C., 129
Holden, Jeffrey B., 493
Horn, Berthold K. P., 371
Horne, P., 643

Iwayama, Masatoshi, 113

Jacobs, Steven M., 687
Johnson, T. A., 741

Kapur, R. N., 623, 631, 643
Kartashev, Steven I., 165
Kartashev, Svetlana P., 165
Kasper, Jerome V. V., 335
Kaufman, Leon, 445
Key, G. S., 741
Kimbleton, Stephen R., 261
King, Rob, 87
Knowles, R., 347
Konsynski, Benn R., 41
Koyama, Kenji, 147
Kraemer, Kenneth L., 841
Krzysiak, Emily A., 671
Kunii, Tosiyasu L., 33
Kunin, Jay S., 541

Ladd, Ivor, 533
Lipovski, G. J., 623, 631, 643
Littlewood, B., 707
Lobel, Jerome, 831
Love, Hubert H., Jr., 181
Lowenthal, Eugene, 191

918

Malek, M., 643
Martens, Jon, 677
Maryanski, Fred J., 293
McCullough, T. L., 409
McGill, Michael J., 683
McLeod, Dennis, 283
McTap, John L., 767
Merrill, 0., 347
Merwin, Richard E., 139
Migneault, Gerard E., 715
Miller, Gene I., 795
Mirhakak, Mohammed, 139
Mitchell, Joan L., 423
Moler, Cleve, 363
Mori, Fumihiko, 1
Mulhall, Brendan D. L., 687
Munnecke, Thomas, 723

Navlakha, Jainendra K., 871
Nezu, Koji, 257
Nickerson, Devon, 827
Nielsen, Frances H., 855, 863
Nudd, Graham R., 377
Nycum, Susan H., 587

O'Kelley, Harold E., 499
Ogawa, Yutaka, 147
Ormancioglu, Levent, 817
Overgaard, Mark, 747

Palmer, John F., 887
Parks, Judith A., 811
Pflager, Richard c., 791
Piloty, Robert, 209, 219, 229
Pramanik, Sakti, 837
Premkumar, U. V., 623, 643

Raber, David D., 13
Reed, Martin A., 105
Rind, Kenneth W., 795
Robb, Richard A., 427
Robinson, Riehard A., 671
Robinson, W. B., 597
Roman, Gruia-Catalin, 269
Rosenthal, Paul Herbert, 613
Roush, C. Steven, 293
Ruchinskas, John E., 895

Sandewall, Erik, 569
Santhanam, Viswanathan, 877
Sagues, Paul, 607

Sastry, K. V., 453
Sato, Takashi, 1
Schiebe, Lowell H., 135
Schuster, Stewart, 191
Sejnowski, Matthew C., 631
Shiveley, M. Wayne, 863
Shosa, Dale, 445
Simmons, Dick B., 757
Skelly, Patrick, 209, 219, 229
Slater, Dan, 87
Smetanka, Terence D., 105
Smoliar, Stephen W., 67
Snyder, R. David, 51, 73
Sorensen, Henrik, 569
Steinberg, David L., 883
Steinfield, Charles W., 895,
Stevenson, David K., 357
Stock, Bruce E., 473
Stover, Philip C., 51
Strom, Anders, 569
Stromberg, Claes, 569
Stromfors, Ola, 569

Su, Stanley, 191
Svenning, Lynne L., 895

Tai, Kuo-Chung, 275
Takahashi, Naohisa, 147
Tanniru, Mohan R., 23
Tenenbaum, J. M., 391
Tsichritzis, D. C., 533
Tharp, Alan L., 275
Theis, Douglas J., 93
Tomanek, Gerald, 527
Tsuji, Hiroshi, 1
Turn, Rein, 581

Ulloa, Miguel A., 473
Ulrich, Walter E., 485, 489
Upchurch, Edwin T., 631
Urmi, Jaak, 569

Author Index 919

Vallone, Antonio, 801

Wagner, Robert F., 441
Wah, Benjamin W., 243
Walker, Stephen T., 655
Wallace, Robert J., 121
Wallis, Robert H., 415
Wasserman, Anthony I., 731
Wetmiller , John R., 7
White, John W., 515
Wiederhold, Gio, 319
Wilder, William L., 823
Wolf, H. C., 391

Yao, S. Bing, 243
Young, S., 347

Zolnowski, Jean, 757

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862
	863
	864
	865
	866
	867
	868
	869
	870
	871
	872
	873
	874
	875
	876
	877
	878
	879
	880
	881
	882
	883
	884
	885
	886
	887
	888
	889
	890
	891
	892
	893
	894
	895
	896
	897
	898
	899
	900
	901
	902
	903
	904
	905
	906
	907
	908
	909
	910
	911
	912
	913
	914
	915
	916
	917
	918
	919

